t4vf_hw.c revision 309560
1/*-
2 * Copyright (c) 2016 Chelsio Communications, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/10/sys/dev/cxgbe/common/t4vf_hw.c 309560 2016-12-05 20:43:25Z jhb $");
29
30#include "common.h"
31#include "t4_regs.h"
32#include "t4_regs_values.h"
33
34#undef msleep
35#define msleep(x) do { \
36	if (cold) \
37		DELAY((x) * 1000); \
38	else \
39		pause("t4hw", (x) * hz / 1000); \
40} while (0)
41
42/*
43 * Wait for the device to become ready (signified by our "who am I" register
44 * returning a value other than all 1's).  Return an error if it doesn't
45 * become ready ...
46 */
47int t4vf_wait_dev_ready(struct adapter *adapter)
48{
49	const u32 whoami = VF_PL_REG(A_PL_VF_WHOAMI);
50	const u32 notready1 = 0xffffffff;
51	const u32 notready2 = 0xeeeeeeee;
52	u32 val;
53
54	val = t4_read_reg(adapter, whoami);
55	if (val != notready1 && val != notready2)
56		return 0;
57	msleep(500);
58	val = t4_read_reg(adapter, whoami);
59	if (val != notready1 && val != notready2)
60		return 0;
61	else
62		return -EIO;
63}
64
65
66/**
67 *      t4vf_fw_reset - issue a reset to FW
68 *      @adapter: the adapter
69 *
70 *	Issues a reset command to FW.  For a Physical Function this would
71 *	result in the Firmware reseting all of its state.  For a Virtual
72 *	Function this just resets the state associated with the VF.
73 */
74int t4vf_fw_reset(struct adapter *adapter)
75{
76	struct fw_reset_cmd cmd;
77
78	memset(&cmd, 0, sizeof(cmd));
79	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RESET_CMD) |
80				      F_FW_CMD_WRITE);
81	cmd.retval_len16 = cpu_to_be32(V_FW_CMD_LEN16(FW_LEN16(cmd)));
82	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
83}
84
85/**
86 *	t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
87 *	@adapter: the adapter
88 *
89 *	Retrieves various core SGE parameters in the form of hardware SGE
90 *	register values.  The caller is responsible for decoding these as
91 *	needed.  The SGE parameters are stored in @adapter->params.sge.
92 */
93int t4vf_get_sge_params(struct adapter *adapter)
94{
95	struct sge_params *sp = &adapter->params.sge;
96	u32 params[7], vals[7];
97	u32 whoami;
98	unsigned int pf, s_hps;
99	int i, v;
100
101	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
102		     V_FW_PARAMS_PARAM_XYZ(A_SGE_CONTROL));
103	params[1] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
104		     V_FW_PARAMS_PARAM_XYZ(A_SGE_HOST_PAGE_SIZE));
105	params[2] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
106		     V_FW_PARAMS_PARAM_XYZ(A_SGE_TIMER_VALUE_0_AND_1));
107	params[3] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
108		     V_FW_PARAMS_PARAM_XYZ(A_SGE_TIMER_VALUE_2_AND_3));
109	params[4] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
110		     V_FW_PARAMS_PARAM_XYZ(A_SGE_TIMER_VALUE_4_AND_5));
111	params[5] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
112		     V_FW_PARAMS_PARAM_XYZ(A_SGE_CONM_CTRL));
113	params[6] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
114		     V_FW_PARAMS_PARAM_XYZ(A_SGE_INGRESS_RX_THRESHOLD));
115	v = t4vf_query_params(adapter, 7, params, vals);
116	if (v != FW_SUCCESS)
117		return v;
118
119	sp->sge_control = vals[0];
120	sp->counter_val[0] = G_THRESHOLD_0(vals[6]);
121	sp->counter_val[1] = G_THRESHOLD_1(vals[6]);
122	sp->counter_val[2] = G_THRESHOLD_2(vals[6]);
123	sp->counter_val[3] = G_THRESHOLD_3(vals[6]);
124	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(vals[2]));
125	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(vals[2]));
126	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(vals[3]));
127	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(vals[3]));
128	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(vals[4]));
129	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(vals[4]));
130
131	sp->fl_starve_threshold = G_EGRTHRESHOLD(vals[5]) * 2 + 1;
132	if (is_t4(adapter))
133		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
134	else if (is_t5(adapter))
135		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(vals[5]) * 2 + 1;
136	else
137		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(vals[5]) * 2 + 1;
138
139	/*
140	 * We need the Queues/Page and Host Page Size for our VF.
141	 * This is based on the PF from which we're instantiated.
142	 */
143	whoami = t4_read_reg(adapter, VF_PL_REG(A_PL_VF_WHOAMI));
144	pf = G_SOURCEPF(whoami);
145
146	s_hps = (S_HOSTPAGESIZEPF0 +
147	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * pf);
148	sp->page_shift = ((vals[1] >> s_hps) & M_HOSTPAGESIZEPF0) + 10;
149
150	for (i = 0; i < SGE_FLBUF_SIZES; i++) {
151		params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
152		    V_FW_PARAMS_PARAM_XYZ(A_SGE_FL_BUFFER_SIZE0 + (4 * i)));
153		v = t4vf_query_params(adapter, 1, params, vals);
154		if (v != FW_SUCCESS)
155			return v;
156
157		sp->sge_fl_buffer_size[i] = vals[0];
158	}
159
160	/*
161	 * T4 uses a single control field to specify both the PCIe Padding and
162	 * Packing Boundary.  T5 introduced the ability to specify these
163	 * separately with the Padding Boundary in SGE_CONTROL and and Packing
164	 * Boundary in SGE_CONTROL2.  So for T5 and later we need to grab
165	 * SGE_CONTROL in order to determine how ingress packet data will be
166	 * laid out in Packed Buffer Mode.  Unfortunately, older versions of
167	 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
168	 * failure grabbing it we throw an error since we can't figure out the
169	 * right value.
170	 */
171	sp->spg_len = sp->sge_control & F_EGRSTATUSPAGESIZE ? 128 : 64;
172	sp->fl_pktshift = G_PKTSHIFT(sp->sge_control);
173	if (chip_id(adapter) <= CHELSIO_T5) {
174		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(sp->sge_control) +
175		    X_INGPADBOUNDARY_SHIFT);
176	} else {
177		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(sp->sge_control) +
178		    X_T6_INGPADBOUNDARY_SHIFT);
179	}
180	if (is_t4(adapter))
181		sp->pack_boundary = sp->pad_boundary;
182	else {
183		params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
184			     V_FW_PARAMS_PARAM_XYZ(A_SGE_CONTROL2));
185		v = t4vf_query_params(adapter, 1, params, vals);
186		if (v != FW_SUCCESS) {
187			CH_ERR(adapter, "Unable to get SGE Control2; "
188			       "probably old firmware.\n");
189			return v;
190		}
191		if (G_INGPACKBOUNDARY(vals[0]) == 0)
192			sp->pack_boundary = 16;
193		else
194			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(vals[0]) +
195			    5);
196	}
197
198	/*
199	 * For T5 and later we want to use the new BAR2 Doorbells.
200	 * Unfortunately, older firmware didn't allow the this register to be
201	 * read.
202	 */
203	if (!is_t4(adapter)) {
204		unsigned int s_qpp;
205
206		params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
207			     V_FW_PARAMS_PARAM_XYZ(A_SGE_EGRESS_QUEUES_PER_PAGE_VF));
208		params[1] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
209			     V_FW_PARAMS_PARAM_XYZ(A_SGE_INGRESS_QUEUES_PER_PAGE_VF));
210		v = t4vf_query_params(adapter, 2, params, vals);
211		if (v != FW_SUCCESS) {
212			CH_WARN(adapter, "Unable to get VF SGE Queues/Page; "
213				"probably old firmware.\n");
214			return v;
215		}
216
217		s_qpp = (S_QUEUESPERPAGEPF0 +
218			 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * pf);
219		sp->eq_s_qpp = ((vals[0] >> s_qpp) & M_QUEUESPERPAGEPF0);
220		sp->iq_s_qpp = ((vals[1] >> s_qpp) & M_QUEUESPERPAGEPF0);
221	}
222
223	return 0;
224}
225
226/**
227 *	t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
228 *	@adapter: the adapter
229 *
230 *	Retrieves global RSS mode and parameters with which we have to live
231 *	and stores them in the @adapter's RSS parameters.
232 */
233int t4vf_get_rss_glb_config(struct adapter *adapter)
234{
235	struct rss_params *rss = &adapter->params.rss;
236	struct fw_rss_glb_config_cmd cmd, rpl;
237	int v;
238
239	/*
240	 * Execute an RSS Global Configuration read command to retrieve
241	 * our RSS configuration.
242	 */
243	memset(&cmd, 0, sizeof(cmd));
244	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
245				      F_FW_CMD_REQUEST |
246				      F_FW_CMD_READ);
247	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
248	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
249	if (v != FW_SUCCESS)
250		return v;
251
252	/*
253	 * Transate the big-endian RSS Global Configuration into our
254	 * cpu-endian format based on the RSS mode.  We also do first level
255	 * filtering at this point to weed out modes which don't support
256	 * VF Drivers ...
257	 */
258	rss->mode = G_FW_RSS_GLB_CONFIG_CMD_MODE(
259			be32_to_cpu(rpl.u.manual.mode_pkd));
260	switch (rss->mode) {
261	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
262		u32 word = be32_to_cpu(
263				rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
264
265		rss->u.basicvirtual.synmapen =
266			((word & F_FW_RSS_GLB_CONFIG_CMD_SYNMAPEN) != 0);
267		rss->u.basicvirtual.syn4tupenipv6 =
268			((word & F_FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6) != 0);
269		rss->u.basicvirtual.syn2tupenipv6 =
270			((word & F_FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6) != 0);
271		rss->u.basicvirtual.syn4tupenipv4 =
272			((word & F_FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4) != 0);
273		rss->u.basicvirtual.syn2tupenipv4 =
274			((word & F_FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4) != 0);
275
276		rss->u.basicvirtual.ofdmapen =
277			((word & F_FW_RSS_GLB_CONFIG_CMD_OFDMAPEN) != 0);
278
279		rss->u.basicvirtual.tnlmapen =
280			((word & F_FW_RSS_GLB_CONFIG_CMD_TNLMAPEN) != 0);
281		rss->u.basicvirtual.tnlalllookup =
282			((word  & F_FW_RSS_GLB_CONFIG_CMD_TNLALLLKP) != 0);
283
284		rss->u.basicvirtual.hashtoeplitz =
285			((word & F_FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ) != 0);
286
287		/* we need at least Tunnel Map Enable to be set */
288		if (!rss->u.basicvirtual.tnlmapen)
289			return -EINVAL;
290		break;
291	}
292
293	default:
294		/* all unknown/unsupported RSS modes result in an error */
295		return -EINVAL;
296	}
297
298	return 0;
299}
300
301/**
302 *	t4vf_get_vfres - retrieve VF resource limits
303 *	@adapter: the adapter
304 *
305 *	Retrieves configured resource limits and capabilities for a virtual
306 *	function.  The results are stored in @adapter->vfres.
307 */
308int t4vf_get_vfres(struct adapter *adapter)
309{
310	struct vf_resources *vfres = &adapter->params.vfres;
311	struct fw_pfvf_cmd cmd, rpl;
312	int v;
313	u32 word;
314
315	/*
316	 * Execute PFVF Read command to get VF resource limits; bail out early
317	 * with error on command failure.
318	 */
319	memset(&cmd, 0, sizeof(cmd));
320	cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) |
321				    F_FW_CMD_REQUEST |
322				    F_FW_CMD_READ);
323	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
324	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
325	if (v != FW_SUCCESS)
326		return v;
327
328	/*
329	 * Extract VF resource limits and return success.
330	 */
331	word = be32_to_cpu(rpl.niqflint_niq);
332	vfres->niqflint = G_FW_PFVF_CMD_NIQFLINT(word);
333	vfres->niq = G_FW_PFVF_CMD_NIQ(word);
334
335	word = be32_to_cpu(rpl.type_to_neq);
336	vfres->neq = G_FW_PFVF_CMD_NEQ(word);
337	vfres->pmask = G_FW_PFVF_CMD_PMASK(word);
338
339	word = be32_to_cpu(rpl.tc_to_nexactf);
340	vfres->tc = G_FW_PFVF_CMD_TC(word);
341	vfres->nvi = G_FW_PFVF_CMD_NVI(word);
342	vfres->nexactf = G_FW_PFVF_CMD_NEXACTF(word);
343
344	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
345	vfres->r_caps = G_FW_PFVF_CMD_R_CAPS(word);
346	vfres->wx_caps = G_FW_PFVF_CMD_WX_CAPS(word);
347	vfres->nethctrl = G_FW_PFVF_CMD_NETHCTRL(word);
348
349	return 0;
350}
351
352/**
353 */
354int t4vf_prep_adapter(struct adapter *adapter)
355{
356	int err;
357
358	/*
359	 * Wait for the device to become ready before proceeding ...
360	 */
361	err = t4vf_wait_dev_ready(adapter);
362	if (err)
363		return err;
364
365	adapter->params.chipid = pci_get_device(adapter->dev) >> 12;
366	if (adapter->params.chipid >= 0xa) {
367		adapter->params.chipid -= (0xa - 0x4);
368		adapter->params.fpga = 1;
369	}
370
371	/*
372	 * Default port and clock for debugging in case we can't reach
373	 * firmware.
374	 */
375	adapter->params.nports = 1;
376	adapter->params.vfres.pmask = 1;
377	adapter->params.vpd.cclk = 50000;
378
379	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
380	if (adapter->chip_params == NULL)
381		return -EINVAL;
382
383	return 0;
384}
385