if_cas.c revision 243857
1/*-
2 * Copyright (C) 2001 Eduardo Horvath.
3 * Copyright (c) 2001-2003 Thomas Moestl
4 * Copyright (c) 2007-2009 Marius Strobl <marius@FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 *	from: NetBSD: gem.c,v 1.21 2002/06/01 23:50:58 lukem Exp
29 *	from: FreeBSD: if_gem.c 182060 2008-08-23 15:03:26Z marius
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/dev/cas/if_cas.c 243857 2012-12-04 09:32:43Z glebius $");
34
35/*
36 * driver for Sun Cassini/Cassini+ and National Semiconductor DP83065
37 * Saturn Gigabit Ethernet controllers
38 */
39
40#if 0
41#define	CAS_DEBUG
42#endif
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/bus.h>
47#include <sys/callout.h>
48#include <sys/endian.h>
49#include <sys/mbuf.h>
50#include <sys/malloc.h>
51#include <sys/kernel.h>
52#include <sys/lock.h>
53#include <sys/module.h>
54#include <sys/mutex.h>
55#include <sys/refcount.h>
56#include <sys/resource.h>
57#include <sys/rman.h>
58#include <sys/socket.h>
59#include <sys/sockio.h>
60#include <sys/taskqueue.h>
61
62#include <net/bpf.h>
63#include <net/ethernet.h>
64#include <net/if.h>
65#include <net/if_arp.h>
66#include <net/if_dl.h>
67#include <net/if_media.h>
68#include <net/if_types.h>
69#include <net/if_vlan_var.h>
70
71#include <netinet/in.h>
72#include <netinet/in_systm.h>
73#include <netinet/ip.h>
74#include <netinet/tcp.h>
75#include <netinet/udp.h>
76
77#include <machine/bus.h>
78#if defined(__powerpc__) || defined(__sparc64__)
79#include <dev/ofw/ofw_bus.h>
80#include <dev/ofw/openfirm.h>
81#include <machine/ofw_machdep.h>
82#endif
83#include <machine/resource.h>
84
85#include <dev/mii/mii.h>
86#include <dev/mii/miivar.h>
87
88#include <dev/cas/if_casreg.h>
89#include <dev/cas/if_casvar.h>
90
91#include <dev/pci/pcireg.h>
92#include <dev/pci/pcivar.h>
93
94#include "miibus_if.h"
95
96#define RINGASSERT(n , min, max)					\
97	CTASSERT(powerof2(n) && (n) >= (min) && (n) <= (max))
98
99RINGASSERT(CAS_NRXCOMP, 128, 32768);
100RINGASSERT(CAS_NRXDESC, 32, 8192);
101RINGASSERT(CAS_NRXDESC2, 32, 8192);
102RINGASSERT(CAS_NTXDESC, 32, 8192);
103
104#undef RINGASSERT
105
106#define	CCDASSERT(m, a)							\
107	CTASSERT((offsetof(struct cas_control_data, m) & ((a) - 1)) == 0)
108
109CCDASSERT(ccd_rxcomps, CAS_RX_COMP_ALIGN);
110CCDASSERT(ccd_rxdescs, CAS_RX_DESC_ALIGN);
111CCDASSERT(ccd_rxdescs2, CAS_RX_DESC_ALIGN);
112
113#undef CCDASSERT
114
115#define	CAS_TRIES	10000
116
117/*
118 * According to documentation, the hardware has support for basic TCP
119 * checksum offloading only, in practice this can be also used for UDP
120 * however (i.e. the problem of previous Sun NICs that a checksum of 0x0
121 * is not converted to 0xffff no longer exists).
122 */
123#define	CAS_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
124
125static inline void cas_add_rxdesc(struct cas_softc *sc, u_int idx);
126static int	cas_attach(struct cas_softc *sc);
127static int	cas_bitwait(struct cas_softc *sc, bus_addr_t r, uint32_t clr,
128		    uint32_t set);
129static void	cas_cddma_callback(void *xsc, bus_dma_segment_t *segs,
130		    int nsegs, int error);
131static void	cas_detach(struct cas_softc *sc);
132static int	cas_disable_rx(struct cas_softc *sc);
133static int	cas_disable_tx(struct cas_softc *sc);
134static void	cas_eint(struct cas_softc *sc, u_int status);
135static void	cas_free(void *arg1, void* arg2);
136static void	cas_init(void *xsc);
137static void	cas_init_locked(struct cas_softc *sc);
138static void	cas_init_regs(struct cas_softc *sc);
139static int	cas_intr(void *v);
140static void	cas_intr_task(void *arg, int pending __unused);
141static int	cas_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
142static int	cas_load_txmbuf(struct cas_softc *sc, struct mbuf **m_head);
143static int	cas_mediachange(struct ifnet *ifp);
144static void	cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr);
145static void	cas_meminit(struct cas_softc *sc);
146static void	cas_mifinit(struct cas_softc *sc);
147static int	cas_mii_readreg(device_t dev, int phy, int reg);
148static void	cas_mii_statchg(device_t dev);
149static int	cas_mii_writereg(device_t dev, int phy, int reg, int val);
150static void	cas_reset(struct cas_softc *sc);
151static int	cas_reset_rx(struct cas_softc *sc);
152static int	cas_reset_tx(struct cas_softc *sc);
153static void	cas_resume(struct cas_softc *sc);
154static u_int	cas_descsize(u_int sz);
155static void	cas_rint(struct cas_softc *sc);
156static void	cas_rint_timeout(void *arg);
157static inline void cas_rxcksum(struct mbuf *m, uint16_t cksum);
158static inline void cas_rxcompinit(struct cas_rx_comp *rxcomp);
159static u_int	cas_rxcompsize(u_int sz);
160static void	cas_rxdma_callback(void *xsc, bus_dma_segment_t *segs,
161		    int nsegs, int error);
162static void	cas_setladrf(struct cas_softc *sc);
163static void	cas_start(struct ifnet *ifp);
164static void	cas_stop(struct ifnet *ifp);
165static void	cas_suspend(struct cas_softc *sc);
166static void	cas_tick(void *arg);
167static void	cas_tint(struct cas_softc *sc);
168static void	cas_tx_task(void *arg, int pending __unused);
169static inline void cas_txkick(struct cas_softc *sc);
170static void	cas_watchdog(struct cas_softc *sc);
171
172static devclass_t cas_devclass;
173
174MODULE_DEPEND(cas, ether, 1, 1, 1);
175MODULE_DEPEND(cas, miibus, 1, 1, 1);
176
177#ifdef CAS_DEBUG
178#include <sys/ktr.h>
179#define	KTR_CAS		KTR_SPARE2
180#endif
181
182static int
183cas_attach(struct cas_softc *sc)
184{
185	struct cas_txsoft *txs;
186	struct ifnet *ifp;
187	int error, i;
188	uint32_t v;
189
190	/* Set up ifnet structure. */
191	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
192	if (ifp == NULL)
193		return (ENOSPC);
194	ifp->if_softc = sc;
195	if_initname(ifp, device_get_name(sc->sc_dev),
196	    device_get_unit(sc->sc_dev));
197	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
198	ifp->if_start = cas_start;
199	ifp->if_ioctl = cas_ioctl;
200	ifp->if_init = cas_init;
201	IFQ_SET_MAXLEN(&ifp->if_snd, CAS_TXQUEUELEN);
202	ifp->if_snd.ifq_drv_maxlen = CAS_TXQUEUELEN;
203	IFQ_SET_READY(&ifp->if_snd);
204
205	callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
206	callout_init_mtx(&sc->sc_rx_ch, &sc->sc_mtx, 0);
207	/* Create local taskq. */
208	TASK_INIT(&sc->sc_intr_task, 0, cas_intr_task, sc);
209	TASK_INIT(&sc->sc_tx_task, 1, cas_tx_task, ifp);
210	sc->sc_tq = taskqueue_create_fast("cas_taskq", M_WAITOK,
211	    taskqueue_thread_enqueue, &sc->sc_tq);
212	if (sc->sc_tq == NULL) {
213		device_printf(sc->sc_dev, "could not create taskqueue\n");
214		error = ENXIO;
215		goto fail_ifnet;
216	}
217	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
218	    device_get_nameunit(sc->sc_dev));
219
220	/* Make sure the chip is stopped. */
221	cas_reset(sc);
222
223	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
224	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
225	    BUS_SPACE_MAXSIZE, 0, BUS_SPACE_MAXSIZE, 0, NULL, NULL,
226	    &sc->sc_pdmatag);
227	if (error != 0)
228		goto fail_taskq;
229
230	error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
231	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
232	    CAS_PAGE_SIZE, 1, CAS_PAGE_SIZE, 0, NULL, NULL, &sc->sc_rdmatag);
233	if (error != 0)
234		goto fail_ptag;
235
236	error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
237	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
238	    MCLBYTES * CAS_NTXSEGS, CAS_NTXSEGS, MCLBYTES,
239	    BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_tdmatag);
240	if (error != 0)
241		goto fail_rtag;
242
243	error = bus_dma_tag_create(sc->sc_pdmatag, CAS_TX_DESC_ALIGN, 0,
244	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
245	    sizeof(struct cas_control_data), 1,
246	    sizeof(struct cas_control_data), 0,
247	    NULL, NULL, &sc->sc_cdmatag);
248	if (error != 0)
249		goto fail_ttag;
250
251	/*
252	 * Allocate the control data structures, create and load the
253	 * DMA map for it.
254	 */
255	if ((error = bus_dmamem_alloc(sc->sc_cdmatag,
256	    (void **)&sc->sc_control_data,
257	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
258	    &sc->sc_cddmamap)) != 0) {
259		device_printf(sc->sc_dev,
260		    "unable to allocate control data, error = %d\n", error);
261		goto fail_ctag;
262	}
263
264	sc->sc_cddma = 0;
265	if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cddmamap,
266	    sc->sc_control_data, sizeof(struct cas_control_data),
267	    cas_cddma_callback, sc, 0)) != 0 || sc->sc_cddma == 0) {
268		device_printf(sc->sc_dev,
269		    "unable to load control data DMA map, error = %d\n",
270		    error);
271		goto fail_cmem;
272	}
273
274	/*
275	 * Initialize the transmit job descriptors.
276	 */
277	STAILQ_INIT(&sc->sc_txfreeq);
278	STAILQ_INIT(&sc->sc_txdirtyq);
279
280	/*
281	 * Create the transmit buffer DMA maps.
282	 */
283	error = ENOMEM;
284	for (i = 0; i < CAS_TXQUEUELEN; i++) {
285		txs = &sc->sc_txsoft[i];
286		txs->txs_mbuf = NULL;
287		txs->txs_ndescs = 0;
288		if ((error = bus_dmamap_create(sc->sc_tdmatag, 0,
289		    &txs->txs_dmamap)) != 0) {
290			device_printf(sc->sc_dev,
291			    "unable to create TX DMA map %d, error = %d\n",
292			    i, error);
293			goto fail_txd;
294		}
295		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
296	}
297
298	/*
299	 * Allocate the receive buffers, create and load the DMA maps
300	 * for them.
301	 */
302	for (i = 0; i < CAS_NRXDESC; i++) {
303		if ((error = bus_dmamem_alloc(sc->sc_rdmatag,
304		    &sc->sc_rxdsoft[i].rxds_buf, BUS_DMA_WAITOK,
305		    &sc->sc_rxdsoft[i].rxds_dmamap)) != 0) {
306			device_printf(sc->sc_dev,
307			    "unable to allocate RX buffer %d, error = %d\n",
308			    i, error);
309			goto fail_rxmem;
310		}
311
312		sc->sc_rxdptr = i;
313		sc->sc_rxdsoft[i].rxds_paddr = 0;
314		if ((error = bus_dmamap_load(sc->sc_rdmatag,
315		    sc->sc_rxdsoft[i].rxds_dmamap, sc->sc_rxdsoft[i].rxds_buf,
316		    CAS_PAGE_SIZE, cas_rxdma_callback, sc, 0)) != 0 ||
317		    sc->sc_rxdsoft[i].rxds_paddr == 0) {
318			device_printf(sc->sc_dev,
319			    "unable to load RX DMA map %d, error = %d\n",
320			    i, error);
321			goto fail_rxmap;
322		}
323	}
324
325	if ((sc->sc_flags & CAS_SERDES) == 0) {
326		CAS_WRITE_4(sc, CAS_PCS_DATAPATH, CAS_PCS_DATAPATH_MII);
327		CAS_BARRIER(sc, CAS_PCS_DATAPATH, 4,
328		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
329		cas_mifinit(sc);
330		/*
331		 * Look for an external PHY.
332		 */
333		error = ENXIO;
334		v = CAS_READ_4(sc, CAS_MIF_CONF);
335		if ((v & CAS_MIF_CONF_MDI1) != 0) {
336			v |= CAS_MIF_CONF_PHY_SELECT;
337			CAS_WRITE_4(sc, CAS_MIF_CONF, v);
338			CAS_BARRIER(sc, CAS_MIF_CONF, 4,
339			    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
340			/* Enable/unfreeze the GMII pins of Saturn. */
341			if (sc->sc_variant == CAS_SATURN) {
342				CAS_WRITE_4(sc, CAS_SATURN_PCFG, 0);
343				CAS_BARRIER(sc, CAS_SATURN_PCFG, 4,
344				    BUS_SPACE_BARRIER_READ |
345				    BUS_SPACE_BARRIER_WRITE);
346			}
347			error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp,
348			    cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK,
349			    MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE);
350		}
351		/*
352		 * Fall back on an internal PHY if no external PHY was found.
353		 */
354		if (error != 0 && (v & CAS_MIF_CONF_MDI0) != 0) {
355			v &= ~CAS_MIF_CONF_PHY_SELECT;
356			CAS_WRITE_4(sc, CAS_MIF_CONF, v);
357			CAS_BARRIER(sc, CAS_MIF_CONF, 4,
358			    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
359			/* Freeze the GMII pins of Saturn for saving power. */
360			if (sc->sc_variant == CAS_SATURN) {
361				CAS_WRITE_4(sc, CAS_SATURN_PCFG,
362				    CAS_SATURN_PCFG_FSI);
363				CAS_BARRIER(sc, CAS_SATURN_PCFG, 4,
364				    BUS_SPACE_BARRIER_READ |
365				    BUS_SPACE_BARRIER_WRITE);
366			}
367			error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp,
368			    cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK,
369			    MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE);
370		}
371	} else {
372		/*
373		 * Use the external PCS SERDES.
374		 */
375		CAS_WRITE_4(sc, CAS_PCS_DATAPATH, CAS_PCS_DATAPATH_SERDES);
376		CAS_BARRIER(sc, CAS_PCS_DATAPATH, 4, BUS_SPACE_BARRIER_WRITE);
377		/* Enable/unfreeze the SERDES pins of Saturn. */
378		if (sc->sc_variant == CAS_SATURN) {
379			CAS_WRITE_4(sc, CAS_SATURN_PCFG, 0);
380			CAS_BARRIER(sc, CAS_SATURN_PCFG, 4,
381			    BUS_SPACE_BARRIER_WRITE);
382		}
383		CAS_WRITE_4(sc, CAS_PCS_SERDES_CTRL, CAS_PCS_SERDES_CTRL_ESD);
384		CAS_BARRIER(sc, CAS_PCS_SERDES_CTRL, 4,
385		    BUS_SPACE_BARRIER_WRITE);
386		CAS_WRITE_4(sc, CAS_PCS_CONF, CAS_PCS_CONF_EN);
387		CAS_BARRIER(sc, CAS_PCS_CONF, 4,
388		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
389		error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp,
390		    cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK,
391		    CAS_PHYAD_EXTERNAL, MII_OFFSET_ANY, MIIF_DOPAUSE);
392	}
393	if (error != 0) {
394		device_printf(sc->sc_dev, "attaching PHYs failed\n");
395		goto fail_rxmap;
396	}
397	sc->sc_mii = device_get_softc(sc->sc_miibus);
398
399	/*
400	 * From this point forward, the attachment cannot fail.  A failure
401	 * before this point releases all resources that may have been
402	 * allocated.
403	 */
404
405	/* Announce FIFO sizes. */
406	v = CAS_READ_4(sc, CAS_TX_FIFO_SIZE);
407	device_printf(sc->sc_dev, "%ukB RX FIFO, %ukB TX FIFO\n",
408	    CAS_RX_FIFO_SIZE / 1024, v / 16);
409
410	/* Attach the interface. */
411	ether_ifattach(ifp, sc->sc_enaddr);
412
413	/*
414	 * Tell the upper layer(s) we support long frames/checksum offloads.
415	 */
416	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
417	ifp->if_capabilities = IFCAP_VLAN_MTU;
418	if ((sc->sc_flags & CAS_NO_CSUM) == 0) {
419		ifp->if_capabilities |= IFCAP_HWCSUM;
420		ifp->if_hwassist = CAS_CSUM_FEATURES;
421	}
422	ifp->if_capenable = ifp->if_capabilities;
423
424	return (0);
425
426	/*
427	 * Free any resources we've allocated during the failed attach
428	 * attempt.  Do this in reverse order and fall through.
429	 */
430 fail_rxmap:
431	for (i = 0; i < CAS_NRXDESC; i++)
432		if (sc->sc_rxdsoft[i].rxds_paddr != 0)
433			bus_dmamap_unload(sc->sc_rdmatag,
434			    sc->sc_rxdsoft[i].rxds_dmamap);
435 fail_rxmem:
436	for (i = 0; i < CAS_NRXDESC; i++)
437		if (sc->sc_rxdsoft[i].rxds_buf != NULL)
438			bus_dmamem_free(sc->sc_rdmatag,
439			    sc->sc_rxdsoft[i].rxds_buf,
440			    sc->sc_rxdsoft[i].rxds_dmamap);
441 fail_txd:
442	for (i = 0; i < CAS_TXQUEUELEN; i++)
443		if (sc->sc_txsoft[i].txs_dmamap != NULL)
444			bus_dmamap_destroy(sc->sc_tdmatag,
445			    sc->sc_txsoft[i].txs_dmamap);
446	bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
447 fail_cmem:
448	bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
449	    sc->sc_cddmamap);
450 fail_ctag:
451	bus_dma_tag_destroy(sc->sc_cdmatag);
452 fail_ttag:
453	bus_dma_tag_destroy(sc->sc_tdmatag);
454 fail_rtag:
455	bus_dma_tag_destroy(sc->sc_rdmatag);
456 fail_ptag:
457	bus_dma_tag_destroy(sc->sc_pdmatag);
458 fail_taskq:
459	taskqueue_free(sc->sc_tq);
460 fail_ifnet:
461	if_free(ifp);
462	return (error);
463}
464
465static void
466cas_detach(struct cas_softc *sc)
467{
468	struct ifnet *ifp = sc->sc_ifp;
469	int i;
470
471	ether_ifdetach(ifp);
472	CAS_LOCK(sc);
473	cas_stop(ifp);
474	CAS_UNLOCK(sc);
475	callout_drain(&sc->sc_tick_ch);
476	callout_drain(&sc->sc_rx_ch);
477	taskqueue_drain(sc->sc_tq, &sc->sc_intr_task);
478	taskqueue_drain(sc->sc_tq, &sc->sc_tx_task);
479	if_free(ifp);
480	taskqueue_free(sc->sc_tq);
481	device_delete_child(sc->sc_dev, sc->sc_miibus);
482
483	for (i = 0; i < CAS_NRXDESC; i++)
484		if (sc->sc_rxdsoft[i].rxds_dmamap != NULL)
485			bus_dmamap_sync(sc->sc_rdmatag,
486			    sc->sc_rxdsoft[i].rxds_dmamap,
487			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
488	for (i = 0; i < CAS_NRXDESC; i++)
489		if (sc->sc_rxdsoft[i].rxds_paddr != 0)
490			bus_dmamap_unload(sc->sc_rdmatag,
491			    sc->sc_rxdsoft[i].rxds_dmamap);
492	for (i = 0; i < CAS_NRXDESC; i++)
493		if (sc->sc_rxdsoft[i].rxds_buf != NULL)
494			bus_dmamem_free(sc->sc_rdmatag,
495			    sc->sc_rxdsoft[i].rxds_buf,
496			    sc->sc_rxdsoft[i].rxds_dmamap);
497	for (i = 0; i < CAS_TXQUEUELEN; i++)
498		if (sc->sc_txsoft[i].txs_dmamap != NULL)
499			bus_dmamap_destroy(sc->sc_tdmatag,
500			    sc->sc_txsoft[i].txs_dmamap);
501	CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
502	bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
503	bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
504	    sc->sc_cddmamap);
505	bus_dma_tag_destroy(sc->sc_cdmatag);
506	bus_dma_tag_destroy(sc->sc_tdmatag);
507	bus_dma_tag_destroy(sc->sc_rdmatag);
508	bus_dma_tag_destroy(sc->sc_pdmatag);
509}
510
511static void
512cas_suspend(struct cas_softc *sc)
513{
514	struct ifnet *ifp = sc->sc_ifp;
515
516	CAS_LOCK(sc);
517	cas_stop(ifp);
518	CAS_UNLOCK(sc);
519}
520
521static void
522cas_resume(struct cas_softc *sc)
523{
524	struct ifnet *ifp = sc->sc_ifp;
525
526	CAS_LOCK(sc);
527	/*
528	 * On resume all registers have to be initialized again like
529	 * after power-on.
530	 */
531	sc->sc_flags &= ~CAS_INITED;
532	if (ifp->if_flags & IFF_UP)
533		cas_init_locked(sc);
534	CAS_UNLOCK(sc);
535}
536
537static inline void
538cas_rxcksum(struct mbuf *m, uint16_t cksum)
539{
540	struct ether_header *eh;
541	struct ip *ip;
542	struct udphdr *uh;
543	uint16_t *opts;
544	int32_t hlen, len, pktlen;
545	uint32_t temp32;
546
547	pktlen = m->m_pkthdr.len;
548	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
549		return;
550	eh = mtod(m, struct ether_header *);
551	if (eh->ether_type != htons(ETHERTYPE_IP))
552		return;
553	ip = (struct ip *)(eh + 1);
554	if (ip->ip_v != IPVERSION)
555		return;
556
557	hlen = ip->ip_hl << 2;
558	pktlen -= sizeof(struct ether_header);
559	if (hlen < sizeof(struct ip))
560		return;
561	if (ntohs(ip->ip_len) < hlen)
562		return;
563	if (ntohs(ip->ip_len) != pktlen)
564		return;
565	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
566		return;	/* Cannot handle fragmented packet. */
567
568	switch (ip->ip_p) {
569	case IPPROTO_TCP:
570		if (pktlen < (hlen + sizeof(struct tcphdr)))
571			return;
572		break;
573	case IPPROTO_UDP:
574		if (pktlen < (hlen + sizeof(struct udphdr)))
575			return;
576		uh = (struct udphdr *)((uint8_t *)ip + hlen);
577		if (uh->uh_sum == 0)
578			return; /* no checksum */
579		break;
580	default:
581		return;
582	}
583
584	cksum = ~cksum;
585	/* checksum fixup for IP options */
586	len = hlen - sizeof(struct ip);
587	if (len > 0) {
588		opts = (uint16_t *)(ip + 1);
589		for (; len > 0; len -= sizeof(uint16_t), opts++) {
590			temp32 = cksum - *opts;
591			temp32 = (temp32 >> 16) + (temp32 & 65535);
592			cksum = temp32 & 65535;
593		}
594	}
595	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
596	m->m_pkthdr.csum_data = cksum;
597}
598
599static void
600cas_cddma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
601{
602	struct cas_softc *sc = xsc;
603
604	if (error != 0)
605		return;
606	if (nsegs != 1)
607		panic("%s: bad control buffer segment count", __func__);
608	sc->sc_cddma = segs[0].ds_addr;
609}
610
611static void
612cas_rxdma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
613{
614	struct cas_softc *sc = xsc;
615
616	if (error != 0)
617		return;
618	if (nsegs != 1)
619		panic("%s: bad RX buffer segment count", __func__);
620	sc->sc_rxdsoft[sc->sc_rxdptr].rxds_paddr = segs[0].ds_addr;
621}
622
623static void
624cas_tick(void *arg)
625{
626	struct cas_softc *sc = arg;
627	struct ifnet *ifp = sc->sc_ifp;
628	uint32_t v;
629
630	CAS_LOCK_ASSERT(sc, MA_OWNED);
631
632	/*
633	 * Unload collision and error counters.
634	 */
635	ifp->if_collisions +=
636	    CAS_READ_4(sc, CAS_MAC_NORM_COLL_CNT) +
637	    CAS_READ_4(sc, CAS_MAC_FIRST_COLL_CNT);
638	v = CAS_READ_4(sc, CAS_MAC_EXCESS_COLL_CNT) +
639	    CAS_READ_4(sc, CAS_MAC_LATE_COLL_CNT);
640	ifp->if_collisions += v;
641	ifp->if_oerrors += v;
642	ifp->if_ierrors +=
643	    CAS_READ_4(sc, CAS_MAC_RX_LEN_ERR_CNT) +
644	    CAS_READ_4(sc, CAS_MAC_RX_ALIGN_ERR) +
645	    CAS_READ_4(sc, CAS_MAC_RX_CRC_ERR_CNT) +
646	    CAS_READ_4(sc, CAS_MAC_RX_CODE_VIOL);
647
648	/*
649	 * Then clear the hardware counters.
650	 */
651	CAS_WRITE_4(sc, CAS_MAC_NORM_COLL_CNT, 0);
652	CAS_WRITE_4(sc, CAS_MAC_FIRST_COLL_CNT, 0);
653	CAS_WRITE_4(sc, CAS_MAC_EXCESS_COLL_CNT, 0);
654	CAS_WRITE_4(sc, CAS_MAC_LATE_COLL_CNT, 0);
655	CAS_WRITE_4(sc, CAS_MAC_RX_LEN_ERR_CNT, 0);
656	CAS_WRITE_4(sc, CAS_MAC_RX_ALIGN_ERR, 0);
657	CAS_WRITE_4(sc, CAS_MAC_RX_CRC_ERR_CNT, 0);
658	CAS_WRITE_4(sc, CAS_MAC_RX_CODE_VIOL, 0);
659
660	mii_tick(sc->sc_mii);
661
662	if (sc->sc_txfree != CAS_MAXTXFREE)
663		cas_tint(sc);
664
665	cas_watchdog(sc);
666
667	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
668}
669
670static int
671cas_bitwait(struct cas_softc *sc, bus_addr_t r, uint32_t clr, uint32_t set)
672{
673	int i;
674	uint32_t reg;
675
676	for (i = CAS_TRIES; i--; DELAY(100)) {
677		reg = CAS_READ_4(sc, r);
678		if ((reg & clr) == 0 && (reg & set) == set)
679			return (1);
680	}
681	return (0);
682}
683
684static void
685cas_reset(struct cas_softc *sc)
686{
687
688#ifdef CAS_DEBUG
689	CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
690#endif
691	/* Disable all interrupts in order to avoid spurious ones. */
692	CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff);
693
694	cas_reset_rx(sc);
695	cas_reset_tx(sc);
696
697	/*
698	 * Do a full reset modulo the result of the last auto-negotiation
699	 * when using the SERDES.
700	 */
701	CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX |
702	    ((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0));
703	CAS_BARRIER(sc, CAS_RESET, 4,
704	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
705	DELAY(3000);
706	if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
707		device_printf(sc->sc_dev, "cannot reset device\n");
708}
709
710static void
711cas_stop(struct ifnet *ifp)
712{
713	struct cas_softc *sc = ifp->if_softc;
714	struct cas_txsoft *txs;
715
716#ifdef CAS_DEBUG
717	CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
718#endif
719
720	callout_stop(&sc->sc_tick_ch);
721	callout_stop(&sc->sc_rx_ch);
722
723	/* Disable all interrupts in order to avoid spurious ones. */
724	CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff);
725
726	cas_reset_tx(sc);
727	cas_reset_rx(sc);
728
729	/*
730	 * Release any queued transmit buffers.
731	 */
732	while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
733		STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
734		if (txs->txs_ndescs != 0) {
735			bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
736			    BUS_DMASYNC_POSTWRITE);
737			bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
738			if (txs->txs_mbuf != NULL) {
739				m_freem(txs->txs_mbuf);
740				txs->txs_mbuf = NULL;
741			}
742		}
743		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
744	}
745
746	/*
747	 * Mark the interface down and cancel the watchdog timer.
748	 */
749	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
750	sc->sc_flags &= ~CAS_LINK;
751	sc->sc_wdog_timer = 0;
752}
753
754static int
755cas_reset_rx(struct cas_softc *sc)
756{
757
758	/*
759	 * Resetting while DMA is in progress can cause a bus hang, so we
760	 * disable DMA first.
761	 */
762	(void)cas_disable_rx(sc);
763	CAS_WRITE_4(sc, CAS_RX_CONF, 0);
764	CAS_BARRIER(sc, CAS_RX_CONF, 4,
765	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
766	if (!cas_bitwait(sc, CAS_RX_CONF, CAS_RX_CONF_RXDMA_EN, 0))
767		device_printf(sc->sc_dev, "cannot disable RX DMA\n");
768
769	/* Finally, reset the ERX. */
770	CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_RX |
771	    ((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0));
772	CAS_BARRIER(sc, CAS_RESET, 4,
773	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
774	if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_RX, 0)) {
775		device_printf(sc->sc_dev, "cannot reset receiver\n");
776		return (1);
777	}
778	return (0);
779}
780
781static int
782cas_reset_tx(struct cas_softc *sc)
783{
784
785	/*
786	 * Resetting while DMA is in progress can cause a bus hang, so we
787	 * disable DMA first.
788	 */
789	(void)cas_disable_tx(sc);
790	CAS_WRITE_4(sc, CAS_TX_CONF, 0);
791	CAS_BARRIER(sc, CAS_TX_CONF, 4,
792	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
793	if (!cas_bitwait(sc, CAS_TX_CONF, CAS_TX_CONF_TXDMA_EN, 0))
794		device_printf(sc->sc_dev, "cannot disable TX DMA\n");
795
796	/* Finally, reset the ETX. */
797	CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_TX |
798	    ((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0));
799	CAS_BARRIER(sc, CAS_RESET, 4,
800	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
801	if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_TX, 0)) {
802		device_printf(sc->sc_dev, "cannot reset transmitter\n");
803		return (1);
804	}
805	return (0);
806}
807
808static int
809cas_disable_rx(struct cas_softc *sc)
810{
811
812	CAS_WRITE_4(sc, CAS_MAC_RX_CONF,
813	    CAS_READ_4(sc, CAS_MAC_RX_CONF) & ~CAS_MAC_RX_CONF_EN);
814	CAS_BARRIER(sc, CAS_MAC_RX_CONF, 4,
815	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
816	if (cas_bitwait(sc, CAS_MAC_RX_CONF, CAS_MAC_RX_CONF_EN, 0))
817		return (1);
818	device_printf(sc->sc_dev, "cannot disable RX MAC\n");
819	return (0);
820}
821
822static int
823cas_disable_tx(struct cas_softc *sc)
824{
825
826	CAS_WRITE_4(sc, CAS_MAC_TX_CONF,
827	    CAS_READ_4(sc, CAS_MAC_TX_CONF) & ~CAS_MAC_TX_CONF_EN);
828	CAS_BARRIER(sc, CAS_MAC_TX_CONF, 4,
829	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
830	if (cas_bitwait(sc, CAS_MAC_TX_CONF, CAS_MAC_TX_CONF_EN, 0))
831		return (1);
832	device_printf(sc->sc_dev, "cannot disable TX MAC\n");
833	return (0);
834}
835
836static inline void
837cas_rxcompinit(struct cas_rx_comp *rxcomp)
838{
839
840	rxcomp->crc_word1 = 0;
841	rxcomp->crc_word2 = 0;
842	rxcomp->crc_word3 =
843	    htole64(CAS_SET(ETHER_HDR_LEN + sizeof(struct ip), CAS_RC3_CSO));
844	rxcomp->crc_word4 = htole64(CAS_RC4_ZERO);
845}
846
847static void
848cas_meminit(struct cas_softc *sc)
849{
850	int i;
851
852	CAS_LOCK_ASSERT(sc, MA_OWNED);
853
854	/*
855	 * Initialize the transmit descriptor ring.
856	 */
857	for (i = 0; i < CAS_NTXDESC; i++) {
858		sc->sc_txdescs[i].cd_flags = 0;
859		sc->sc_txdescs[i].cd_buf_ptr = 0;
860	}
861	sc->sc_txfree = CAS_MAXTXFREE;
862	sc->sc_txnext = 0;
863	sc->sc_txwin = 0;
864
865	/*
866	 * Initialize the receive completion ring.
867	 */
868	for (i = 0; i < CAS_NRXCOMP; i++)
869		cas_rxcompinit(&sc->sc_rxcomps[i]);
870	sc->sc_rxcptr = 0;
871
872	/*
873	 * Initialize the first receive descriptor ring.  We leave
874	 * the second one zeroed as we don't actually use it.
875	 */
876	for (i = 0; i < CAS_NRXDESC; i++)
877		CAS_INIT_RXDESC(sc, i, i);
878	sc->sc_rxdptr = 0;
879
880	CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
881}
882
883static u_int
884cas_descsize(u_int sz)
885{
886
887	switch (sz) {
888	case 32:
889		return (CAS_DESC_32);
890	case 64:
891		return (CAS_DESC_64);
892	case 128:
893		return (CAS_DESC_128);
894	case 256:
895		return (CAS_DESC_256);
896	case 512:
897		return (CAS_DESC_512);
898	case 1024:
899		return (CAS_DESC_1K);
900	case 2048:
901		return (CAS_DESC_2K);
902	case 4096:
903		return (CAS_DESC_4K);
904	case 8192:
905		return (CAS_DESC_8K);
906	default:
907		printf("%s: invalid descriptor ring size %d\n", __func__, sz);
908		return (CAS_DESC_32);
909	}
910}
911
912static u_int
913cas_rxcompsize(u_int sz)
914{
915
916	switch (sz) {
917	case 128:
918		return (CAS_RX_CONF_COMP_128);
919	case 256:
920		return (CAS_RX_CONF_COMP_256);
921	case 512:
922		return (CAS_RX_CONF_COMP_512);
923	case 1024:
924		return (CAS_RX_CONF_COMP_1K);
925	case 2048:
926		return (CAS_RX_CONF_COMP_2K);
927	case 4096:
928		return (CAS_RX_CONF_COMP_4K);
929	case 8192:
930		return (CAS_RX_CONF_COMP_8K);
931	case 16384:
932		return (CAS_RX_CONF_COMP_16K);
933	case 32768:
934		return (CAS_RX_CONF_COMP_32K);
935	default:
936		printf("%s: invalid dcompletion ring size %d\n", __func__, sz);
937		return (CAS_RX_CONF_COMP_128);
938	}
939}
940
941static void
942cas_init(void *xsc)
943{
944	struct cas_softc *sc = xsc;
945
946	CAS_LOCK(sc);
947	cas_init_locked(sc);
948	CAS_UNLOCK(sc);
949}
950
951/*
952 * Initialization of interface; set up initialization block
953 * and transmit/receive descriptor rings.
954 */
955static void
956cas_init_locked(struct cas_softc *sc)
957{
958	struct ifnet *ifp = sc->sc_ifp;
959	uint32_t v;
960
961	CAS_LOCK_ASSERT(sc, MA_OWNED);
962
963	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
964		return;
965
966#ifdef CAS_DEBUG
967	CTR2(KTR_CAS, "%s: %s: calling stop", device_get_name(sc->sc_dev),
968	    __func__);
969#endif
970	/*
971	 * Initialization sequence.  The numbered steps below correspond
972	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
973	 * Channel Engine manual (part of the PCIO manual).
974	 * See also the STP2002-STQ document from Sun Microsystems.
975	 */
976
977	/* step 1 & 2.  Reset the Ethernet Channel. */
978	cas_stop(ifp);
979	cas_reset(sc);
980#ifdef CAS_DEBUG
981	CTR2(KTR_CAS, "%s: %s: restarting", device_get_name(sc->sc_dev),
982	    __func__);
983#endif
984
985	if ((sc->sc_flags & CAS_SERDES) == 0)
986		/* Re-initialize the MIF. */
987		cas_mifinit(sc);
988
989	/* step 3.  Setup data structures in host memory. */
990	cas_meminit(sc);
991
992	/* step 4.  TX MAC registers & counters */
993	cas_init_regs(sc);
994
995	/* step 5.  RX MAC registers & counters */
996
997	/* step 6 & 7.  Program Ring Base Addresses. */
998	CAS_WRITE_4(sc, CAS_TX_DESC3_BASE_HI,
999	    (((uint64_t)CAS_CDTXDADDR(sc, 0)) >> 32));
1000	CAS_WRITE_4(sc, CAS_TX_DESC3_BASE_LO,
1001	    CAS_CDTXDADDR(sc, 0) & 0xffffffff);
1002
1003	CAS_WRITE_4(sc, CAS_RX_COMP_BASE_HI,
1004	    (((uint64_t)CAS_CDRXCADDR(sc, 0)) >> 32));
1005	CAS_WRITE_4(sc, CAS_RX_COMP_BASE_LO,
1006	    CAS_CDRXCADDR(sc, 0) & 0xffffffff);
1007
1008	CAS_WRITE_4(sc, CAS_RX_DESC_BASE_HI,
1009	    (((uint64_t)CAS_CDRXDADDR(sc, 0)) >> 32));
1010	CAS_WRITE_4(sc, CAS_RX_DESC_BASE_LO,
1011	    CAS_CDRXDADDR(sc, 0) & 0xffffffff);
1012
1013	if ((sc->sc_flags & CAS_REG_PLUS) != 0) {
1014		CAS_WRITE_4(sc, CAS_RX_DESC2_BASE_HI,
1015		    (((uint64_t)CAS_CDRXD2ADDR(sc, 0)) >> 32));
1016		CAS_WRITE_4(sc, CAS_RX_DESC2_BASE_LO,
1017		    CAS_CDRXD2ADDR(sc, 0) & 0xffffffff);
1018	}
1019
1020#ifdef CAS_DEBUG
1021	CTR5(KTR_CAS,
1022	    "loading TXDR %lx, RXCR %lx, RXDR %lx, RXD2R %lx, cddma %lx",
1023	    CAS_CDTXDADDR(sc, 0), CAS_CDRXCADDR(sc, 0), CAS_CDRXDADDR(sc, 0),
1024	    CAS_CDRXD2ADDR(sc, 0), sc->sc_cddma);
1025#endif
1026
1027	/* step 8.  Global Configuration & Interrupt Masks */
1028
1029	/* Disable weighted round robin. */
1030	CAS_WRITE_4(sc, CAS_CAW, CAS_CAW_RR_DIS);
1031
1032	/*
1033	 * Enable infinite bursts for revisions without PCI issues if
1034	 * applicable.  Doing so greatly improves the TX performance on
1035	 * !__sparc64__.
1036	 */
1037	CAS_WRITE_4(sc, CAS_INF_BURST,
1038#if !defined(__sparc64__)
1039	    (sc->sc_flags & CAS_TABORT) == 0 ? CAS_INF_BURST_EN :
1040#endif
1041	    0);
1042
1043	/* Set up interrupts. */
1044	CAS_WRITE_4(sc, CAS_INTMASK,
1045	    ~(CAS_INTR_TX_INT_ME | CAS_INTR_TX_TAG_ERR |
1046	    CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_TAG_ERR |
1047	    CAS_INTR_RX_COMP_FULL | CAS_INTR_RX_BUF_AEMPTY |
1048	    CAS_INTR_RX_COMP_AFULL | CAS_INTR_RX_LEN_MMATCH |
1049	    CAS_INTR_PCI_ERROR_INT
1050#ifdef CAS_DEBUG
1051	    | CAS_INTR_PCS_INT | CAS_INTR_MIF
1052#endif
1053	    ));
1054	/* Don't clear top level interrupts when CAS_STATUS_ALIAS is read. */
1055	CAS_WRITE_4(sc, CAS_CLEAR_ALIAS, 0);
1056	CAS_WRITE_4(sc, CAS_MAC_RX_MASK, ~CAS_MAC_RX_OVERFLOW);
1057	CAS_WRITE_4(sc, CAS_MAC_TX_MASK,
1058	    ~(CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_MAX_PKT_ERR));
1059#ifdef CAS_DEBUG
1060	CAS_WRITE_4(sc, CAS_MAC_CTRL_MASK,
1061	    ~(CAS_MAC_CTRL_PAUSE_RCVD | CAS_MAC_CTRL_PAUSE |
1062	    CAS_MAC_CTRL_NON_PAUSE));
1063#else
1064	CAS_WRITE_4(sc, CAS_MAC_CTRL_MASK,
1065	    CAS_MAC_CTRL_PAUSE_RCVD | CAS_MAC_CTRL_PAUSE |
1066	    CAS_MAC_CTRL_NON_PAUSE);
1067#endif
1068
1069	/* Enable PCI error interrupts. */
1070	CAS_WRITE_4(sc, CAS_ERROR_MASK,
1071	    ~(CAS_ERROR_DTRTO | CAS_ERROR_OTHER | CAS_ERROR_DMAW_ZERO |
1072	    CAS_ERROR_DMAR_ZERO | CAS_ERROR_RTRTO));
1073
1074	/* Enable PCI error interrupts in BIM configuration. */
1075	CAS_WRITE_4(sc, CAS_BIM_CONF,
1076	    CAS_BIM_CONF_DPAR_EN | CAS_BIM_CONF_RMA_EN | CAS_BIM_CONF_RTA_EN);
1077
1078	/*
1079	 * step 9.  ETX Configuration: encode receive descriptor ring size,
1080	 * enable DMA and disable pre-interrupt writeback completion.
1081	 */
1082	v = cas_descsize(CAS_NTXDESC) << CAS_TX_CONF_DESC3_SHFT;
1083	CAS_WRITE_4(sc, CAS_TX_CONF, v | CAS_TX_CONF_TXDMA_EN |
1084	    CAS_TX_CONF_RDPP_DIS | CAS_TX_CONF_PICWB_DIS);
1085
1086	/* step 10.  ERX Configuration */
1087
1088	/*
1089	 * Encode receive completion and descriptor ring sizes, set the
1090	 * swivel offset.
1091	 */
1092	v = cas_rxcompsize(CAS_NRXCOMP) << CAS_RX_CONF_COMP_SHFT;
1093	v |= cas_descsize(CAS_NRXDESC) << CAS_RX_CONF_DESC_SHFT;
1094	if ((sc->sc_flags & CAS_REG_PLUS) != 0)
1095		v |= cas_descsize(CAS_NRXDESC2) << CAS_RX_CONF_DESC2_SHFT;
1096	CAS_WRITE_4(sc, CAS_RX_CONF,
1097	    v | (ETHER_ALIGN << CAS_RX_CONF_SOFF_SHFT));
1098
1099	/* Set the PAUSE thresholds.  We use the maximum OFF threshold. */
1100	CAS_WRITE_4(sc, CAS_RX_PTHRS,
1101	    (111 << CAS_RX_PTHRS_XOFF_SHFT) | (15 << CAS_RX_PTHRS_XON_SHFT));
1102
1103	/* RX blanking */
1104	CAS_WRITE_4(sc, CAS_RX_BLANK,
1105	    (15 << CAS_RX_BLANK_TIME_SHFT) | (5 << CAS_RX_BLANK_PKTS_SHFT));
1106
1107	/* Set RX_COMP_AFULL threshold to half of the RX completions. */
1108	CAS_WRITE_4(sc, CAS_RX_AEMPTY_THRS,
1109	    (CAS_NRXCOMP / 2) << CAS_RX_AEMPTY_COMP_SHFT);
1110
1111	/* Initialize the RX page size register as appropriate for 8k. */
1112	CAS_WRITE_4(sc, CAS_RX_PSZ,
1113	    (CAS_RX_PSZ_8K << CAS_RX_PSZ_SHFT) |
1114	    (4 << CAS_RX_PSZ_MB_CNT_SHFT) |
1115	    (CAS_RX_PSZ_MB_STRD_2K << CAS_RX_PSZ_MB_STRD_SHFT) |
1116	    (CAS_RX_PSZ_MB_OFF_64 << CAS_RX_PSZ_MB_OFF_SHFT));
1117
1118	/* Disable RX random early detection. */
1119	CAS_WRITE_4(sc,	CAS_RX_RED, 0);
1120
1121	/* Zero the RX reassembly DMA table. */
1122	for (v = 0; v <= CAS_RX_REAS_DMA_ADDR_LC; v++) {
1123		CAS_WRITE_4(sc,	CAS_RX_REAS_DMA_ADDR, v);
1124		CAS_WRITE_4(sc,	CAS_RX_REAS_DMA_DATA_LO, 0);
1125		CAS_WRITE_4(sc,	CAS_RX_REAS_DMA_DATA_MD, 0);
1126		CAS_WRITE_4(sc,	CAS_RX_REAS_DMA_DATA_HI, 0);
1127	}
1128
1129	/* Ensure the RX control FIFO and RX IPP FIFO addresses are zero. */
1130	CAS_WRITE_4(sc, CAS_RX_CTRL_FIFO, 0);
1131	CAS_WRITE_4(sc, CAS_RX_IPP_ADDR, 0);
1132
1133	/* Finally, enable RX DMA. */
1134	CAS_WRITE_4(sc, CAS_RX_CONF,
1135	    CAS_READ_4(sc, CAS_RX_CONF) | CAS_RX_CONF_RXDMA_EN);
1136
1137	/* step 11.  Configure Media. */
1138
1139	/* step 12.  RX_MAC Configuration Register */
1140	v = CAS_READ_4(sc, CAS_MAC_RX_CONF);
1141	v &= ~(CAS_MAC_RX_CONF_STRPPAD | CAS_MAC_RX_CONF_EN);
1142	v |= CAS_MAC_RX_CONF_STRPFCS;
1143	sc->sc_mac_rxcfg = v;
1144	/*
1145	 * Clear the RX filter and reprogram it.  This will also set the
1146	 * current RX MAC configuration and enable it.
1147	 */
1148	cas_setladrf(sc);
1149
1150	/* step 13.  TX_MAC Configuration Register */
1151	v = CAS_READ_4(sc, CAS_MAC_TX_CONF);
1152	v |= CAS_MAC_TX_CONF_EN;
1153	(void)cas_disable_tx(sc);
1154	CAS_WRITE_4(sc, CAS_MAC_TX_CONF, v);
1155
1156	/* step 14.  Issue Transmit Pending command. */
1157
1158	/* step 15.  Give the receiver a swift kick. */
1159	CAS_WRITE_4(sc, CAS_RX_KICK, CAS_NRXDESC - 4);
1160	CAS_WRITE_4(sc, CAS_RX_COMP_TAIL, 0);
1161	if ((sc->sc_flags & CAS_REG_PLUS) != 0)
1162		CAS_WRITE_4(sc, CAS_RX_KICK2, CAS_NRXDESC2 - 4);
1163
1164	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1165	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1166
1167	mii_mediachg(sc->sc_mii);
1168
1169	/* Start the one second timer. */
1170	sc->sc_wdog_timer = 0;
1171	callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1172}
1173
1174static int
1175cas_load_txmbuf(struct cas_softc *sc, struct mbuf **m_head)
1176{
1177	bus_dma_segment_t txsegs[CAS_NTXSEGS];
1178	struct cas_txsoft *txs;
1179	struct ip *ip;
1180	struct mbuf *m;
1181	uint64_t cflags;
1182	int error, nexttx, nsegs, offset, seg;
1183
1184	CAS_LOCK_ASSERT(sc, MA_OWNED);
1185
1186	/* Get a work queue entry. */
1187	if ((txs = STAILQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1188		/* Ran out of descriptors. */
1189		return (ENOBUFS);
1190	}
1191
1192	cflags = 0;
1193	if (((*m_head)->m_pkthdr.csum_flags & CAS_CSUM_FEATURES) != 0) {
1194		if (M_WRITABLE(*m_head) == 0) {
1195			m = m_dup(*m_head, M_NOWAIT);
1196			m_freem(*m_head);
1197			*m_head = m;
1198			if (m == NULL)
1199				return (ENOBUFS);
1200		}
1201		offset = sizeof(struct ether_header);
1202		m = m_pullup(*m_head, offset + sizeof(struct ip));
1203		if (m == NULL) {
1204			*m_head = NULL;
1205			return (ENOBUFS);
1206		}
1207		ip = (struct ip *)(mtod(m, caddr_t) + offset);
1208		offset += (ip->ip_hl << 2);
1209		cflags = (offset << CAS_TD_CKSUM_START_SHFT) |
1210		    ((offset + m->m_pkthdr.csum_data) <<
1211		    CAS_TD_CKSUM_STUFF_SHFT) | CAS_TD_CKSUM_EN;
1212		*m_head = m;
1213	}
1214
1215	error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, txs->txs_dmamap,
1216	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1217	if (error == EFBIG) {
1218		m = m_collapse(*m_head, M_NOWAIT, CAS_NTXSEGS);
1219		if (m == NULL) {
1220			m_freem(*m_head);
1221			*m_head = NULL;
1222			return (ENOBUFS);
1223		}
1224		*m_head = m;
1225		error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag,
1226		    txs->txs_dmamap, *m_head, txsegs, &nsegs,
1227		    BUS_DMA_NOWAIT);
1228		if (error != 0) {
1229			m_freem(*m_head);
1230			*m_head = NULL;
1231			return (error);
1232		}
1233	} else if (error != 0)
1234		return (error);
1235	/* If nsegs is wrong then the stack is corrupt. */
1236	KASSERT(nsegs <= CAS_NTXSEGS,
1237	    ("%s: too many DMA segments (%d)", __func__, nsegs));
1238	if (nsegs == 0) {
1239		m_freem(*m_head);
1240		*m_head = NULL;
1241		return (EIO);
1242	}
1243
1244	/*
1245	 * Ensure we have enough descriptors free to describe
1246	 * the packet.  Note, we always reserve one descriptor
1247	 * at the end of the ring as a termination point, in
1248	 * order to prevent wrap-around.
1249	 */
1250	if (nsegs > sc->sc_txfree - 1) {
1251		txs->txs_ndescs = 0;
1252		bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
1253		return (ENOBUFS);
1254	}
1255
1256	txs->txs_ndescs = nsegs;
1257	txs->txs_firstdesc = sc->sc_txnext;
1258	nexttx = txs->txs_firstdesc;
1259	for (seg = 0; seg < nsegs; seg++, nexttx = CAS_NEXTTX(nexttx)) {
1260#ifdef CAS_DEBUG
1261		CTR6(KTR_CAS,
1262		    "%s: mapping seg %d (txd %d), len %lx, addr %#lx (%#lx)",
1263		    __func__, seg, nexttx, txsegs[seg].ds_len,
1264		    txsegs[seg].ds_addr, htole64(txsegs[seg].ds_addr));
1265#endif
1266		sc->sc_txdescs[nexttx].cd_buf_ptr =
1267		    htole64(txsegs[seg].ds_addr);
1268		KASSERT(txsegs[seg].ds_len <
1269		    CAS_TD_BUF_LEN_MASK >> CAS_TD_BUF_LEN_SHFT,
1270		    ("%s: segment size too large!", __func__));
1271		sc->sc_txdescs[nexttx].cd_flags =
1272		    htole64(txsegs[seg].ds_len << CAS_TD_BUF_LEN_SHFT);
1273		txs->txs_lastdesc = nexttx;
1274	}
1275
1276	/* Set EOF on the last descriptor. */
1277#ifdef CAS_DEBUG
1278	CTR3(KTR_CAS, "%s: end of frame at segment %d, TX %d",
1279	    __func__, seg, nexttx);
1280#endif
1281	sc->sc_txdescs[txs->txs_lastdesc].cd_flags |=
1282	    htole64(CAS_TD_END_OF_FRAME);
1283
1284	/* Lastly set SOF on the first descriptor. */
1285#ifdef CAS_DEBUG
1286	CTR3(KTR_CAS, "%s: start of frame at segment %d, TX %d",
1287	    __func__, seg, nexttx);
1288#endif
1289	if (sc->sc_txwin += nsegs > CAS_MAXTXFREE * 2 / 3) {
1290		sc->sc_txwin = 0;
1291		sc->sc_txdescs[txs->txs_firstdesc].cd_flags |=
1292		    htole64(cflags | CAS_TD_START_OF_FRAME | CAS_TD_INT_ME);
1293	} else
1294		sc->sc_txdescs[txs->txs_firstdesc].cd_flags |=
1295		    htole64(cflags | CAS_TD_START_OF_FRAME);
1296
1297	/* Sync the DMA map. */
1298	bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
1299	    BUS_DMASYNC_PREWRITE);
1300
1301#ifdef CAS_DEBUG
1302	CTR4(KTR_CAS, "%s: setting firstdesc=%d, lastdesc=%d, ndescs=%d",
1303	    __func__, txs->txs_firstdesc, txs->txs_lastdesc,
1304	    txs->txs_ndescs);
1305#endif
1306	STAILQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1307	STAILQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1308	txs->txs_mbuf = *m_head;
1309
1310	sc->sc_txnext = CAS_NEXTTX(txs->txs_lastdesc);
1311	sc->sc_txfree -= txs->txs_ndescs;
1312
1313	return (0);
1314}
1315
1316static void
1317cas_init_regs(struct cas_softc *sc)
1318{
1319	int i;
1320	const u_char *laddr = IF_LLADDR(sc->sc_ifp);
1321
1322	CAS_LOCK_ASSERT(sc, MA_OWNED);
1323
1324	/* These registers are not cleared on reset. */
1325	if ((sc->sc_flags & CAS_INITED) == 0) {
1326		/* magic values */
1327		CAS_WRITE_4(sc, CAS_MAC_IPG0, 0);
1328		CAS_WRITE_4(sc, CAS_MAC_IPG1, 8);
1329		CAS_WRITE_4(sc, CAS_MAC_IPG2, 4);
1330
1331		/* min frame length */
1332		CAS_WRITE_4(sc, CAS_MAC_MIN_FRAME, ETHER_MIN_LEN);
1333		/* max frame length and max burst size */
1334		CAS_WRITE_4(sc, CAS_MAC_MAX_BF,
1335		    ((ETHER_MAX_LEN_JUMBO + ETHER_VLAN_ENCAP_LEN) <<
1336		    CAS_MAC_MAX_BF_FRM_SHFT) |
1337		    (0x2000 << CAS_MAC_MAX_BF_BST_SHFT));
1338
1339		/* more magic values */
1340		CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x7);
1341		CAS_WRITE_4(sc, CAS_MAC_JAM_SIZE, 0x4);
1342		CAS_WRITE_4(sc, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1343		CAS_WRITE_4(sc, CAS_MAC_CTRL_TYPE, 0x8808);
1344
1345		/* random number seed */
1346		CAS_WRITE_4(sc, CAS_MAC_RANDOM_SEED,
1347		    ((laddr[5] << 8) | laddr[4]) & 0x3ff);
1348
1349		/* secondary MAC addresses: 0:0:0:0:0:0 */
1350		for (i = CAS_MAC_ADDR3; i <= CAS_MAC_ADDR41;
1351		    i += CAS_MAC_ADDR4 - CAS_MAC_ADDR3)
1352			CAS_WRITE_4(sc, i, 0);
1353
1354		/* MAC control address: 01:80:c2:00:00:01 */
1355		CAS_WRITE_4(sc, CAS_MAC_ADDR42, 0x0001);
1356		CAS_WRITE_4(sc, CAS_MAC_ADDR43, 0xc200);
1357		CAS_WRITE_4(sc, CAS_MAC_ADDR44, 0x0180);
1358
1359		/* MAC filter address: 0:0:0:0:0:0 */
1360		CAS_WRITE_4(sc, CAS_MAC_AFILTER0, 0);
1361		CAS_WRITE_4(sc, CAS_MAC_AFILTER1, 0);
1362		CAS_WRITE_4(sc, CAS_MAC_AFILTER2, 0);
1363		CAS_WRITE_4(sc, CAS_MAC_AFILTER_MASK1_2, 0);
1364		CAS_WRITE_4(sc, CAS_MAC_AFILTER_MASK0, 0);
1365
1366		/* Zero the hash table. */
1367		for (i = CAS_MAC_HASH0; i <= CAS_MAC_HASH15;
1368		    i += CAS_MAC_HASH1 - CAS_MAC_HASH0)
1369			CAS_WRITE_4(sc, i, 0);
1370
1371		sc->sc_flags |= CAS_INITED;
1372	}
1373
1374	/* Counters need to be zeroed. */
1375	CAS_WRITE_4(sc, CAS_MAC_NORM_COLL_CNT, 0);
1376	CAS_WRITE_4(sc, CAS_MAC_FIRST_COLL_CNT, 0);
1377	CAS_WRITE_4(sc, CAS_MAC_EXCESS_COLL_CNT, 0);
1378	CAS_WRITE_4(sc, CAS_MAC_LATE_COLL_CNT, 0);
1379	CAS_WRITE_4(sc, CAS_MAC_DEFER_TMR_CNT, 0);
1380	CAS_WRITE_4(sc, CAS_MAC_PEAK_ATTEMPTS, 0);
1381	CAS_WRITE_4(sc, CAS_MAC_RX_FRAME_COUNT, 0);
1382	CAS_WRITE_4(sc, CAS_MAC_RX_LEN_ERR_CNT, 0);
1383	CAS_WRITE_4(sc, CAS_MAC_RX_ALIGN_ERR, 0);
1384	CAS_WRITE_4(sc, CAS_MAC_RX_CRC_ERR_CNT, 0);
1385	CAS_WRITE_4(sc, CAS_MAC_RX_CODE_VIOL, 0);
1386
1387	/* Set XOFF PAUSE time. */
1388	CAS_WRITE_4(sc, CAS_MAC_SPC, 0x1BF0 << CAS_MAC_SPC_TIME_SHFT);
1389
1390	/* Set the station address. */
1391	CAS_WRITE_4(sc, CAS_MAC_ADDR0, (laddr[4] << 8) | laddr[5]);
1392	CAS_WRITE_4(sc, CAS_MAC_ADDR1, (laddr[2] << 8) | laddr[3]);
1393	CAS_WRITE_4(sc, CAS_MAC_ADDR2, (laddr[0] << 8) | laddr[1]);
1394
1395	/* Enable MII outputs. */
1396	CAS_WRITE_4(sc, CAS_MAC_XIF_CONF, CAS_MAC_XIF_CONF_TX_OE);
1397}
1398
1399static void
1400cas_tx_task(void *arg, int pending __unused)
1401{
1402	struct ifnet *ifp;
1403
1404	ifp = (struct ifnet *)arg;
1405	cas_start(ifp);
1406}
1407
1408static inline void
1409cas_txkick(struct cas_softc *sc)
1410{
1411
1412	/*
1413	 * Update the TX kick register.  This register has to point to the
1414	 * descriptor after the last valid one and for optimum performance
1415	 * should be incremented in multiples of 4 (the DMA engine fetches/
1416	 * updates descriptors in batches of 4).
1417	 */
1418#ifdef CAS_DEBUG
1419	CTR3(KTR_CAS, "%s: %s: kicking TX %d",
1420	    device_get_name(sc->sc_dev), __func__, sc->sc_txnext);
1421#endif
1422	CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1423	CAS_WRITE_4(sc, CAS_TX_KICK3, sc->sc_txnext);
1424}
1425
1426static void
1427cas_start(struct ifnet *ifp)
1428{
1429	struct cas_softc *sc = ifp->if_softc;
1430	struct mbuf *m;
1431	int kicked, ntx;
1432
1433	CAS_LOCK(sc);
1434
1435	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1436	    IFF_DRV_RUNNING || (sc->sc_flags & CAS_LINK) == 0) {
1437		CAS_UNLOCK(sc);
1438		return;
1439	}
1440
1441	if (sc->sc_txfree < CAS_MAXTXFREE / 4)
1442		cas_tint(sc);
1443
1444#ifdef CAS_DEBUG
1445	CTR4(KTR_CAS, "%s: %s: txfree %d, txnext %d",
1446	    device_get_name(sc->sc_dev), __func__, sc->sc_txfree,
1447	    sc->sc_txnext);
1448#endif
1449	ntx = 0;
1450	kicked = 0;
1451	for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && sc->sc_txfree > 1;) {
1452		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
1453		if (m == NULL)
1454			break;
1455		if (cas_load_txmbuf(sc, &m) != 0) {
1456			if (m == NULL)
1457				break;
1458			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1459			IFQ_DRV_PREPEND(&ifp->if_snd, m);
1460			break;
1461		}
1462		if ((sc->sc_txnext % 4) == 0) {
1463			cas_txkick(sc);
1464			kicked = 1;
1465		} else
1466			kicked = 0;
1467		ntx++;
1468		BPF_MTAP(ifp, m);
1469	}
1470
1471	if (ntx > 0) {
1472		if (kicked == 0)
1473			cas_txkick(sc);
1474#ifdef CAS_DEBUG
1475		CTR2(KTR_CAS, "%s: packets enqueued, OWN on %d",
1476		    device_get_name(sc->sc_dev), sc->sc_txnext);
1477#endif
1478
1479		/* Set a watchdog timer in case the chip flakes out. */
1480		sc->sc_wdog_timer = 5;
1481#ifdef CAS_DEBUG
1482		CTR3(KTR_CAS, "%s: %s: watchdog %d",
1483		    device_get_name(sc->sc_dev), __func__,
1484		    sc->sc_wdog_timer);
1485#endif
1486	}
1487
1488	CAS_UNLOCK(sc);
1489}
1490
1491static void
1492cas_tint(struct cas_softc *sc)
1493{
1494	struct ifnet *ifp = sc->sc_ifp;
1495	struct cas_txsoft *txs;
1496	int progress;
1497	uint32_t txlast;
1498#ifdef CAS_DEBUG
1499	int i;
1500
1501	CAS_LOCK_ASSERT(sc, MA_OWNED);
1502
1503	CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
1504#endif
1505
1506	/*
1507	 * Go through our TX list and free mbufs for those
1508	 * frames that have been transmitted.
1509	 */
1510	progress = 0;
1511	CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD);
1512	while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1513#ifdef CAS_DEBUG
1514		if ((ifp->if_flags & IFF_DEBUG) != 0) {
1515			printf("    txsoft %p transmit chain:\n", txs);
1516			for (i = txs->txs_firstdesc;; i = CAS_NEXTTX(i)) {
1517				printf("descriptor %d: ", i);
1518				printf("cd_flags: 0x%016llx\t",
1519				    (long long)le64toh(
1520				    sc->sc_txdescs[i].cd_flags));
1521				printf("cd_buf_ptr: 0x%016llx\n",
1522				    (long long)le64toh(
1523				    sc->sc_txdescs[i].cd_buf_ptr));
1524				if (i == txs->txs_lastdesc)
1525					break;
1526			}
1527		}
1528#endif
1529
1530		/*
1531		 * In theory, we could harvest some descriptors before
1532		 * the ring is empty, but that's a bit complicated.
1533		 *
1534		 * CAS_TX_COMPn points to the last descriptor
1535		 * processed + 1.
1536		 */
1537		txlast = CAS_READ_4(sc, CAS_TX_COMP3);
1538#ifdef CAS_DEBUG
1539		CTR4(KTR_CAS, "%s: txs->txs_firstdesc = %d, "
1540		    "txs->txs_lastdesc = %d, txlast = %d",
1541		    __func__, txs->txs_firstdesc, txs->txs_lastdesc, txlast);
1542#endif
1543		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1544			if ((txlast >= txs->txs_firstdesc) &&
1545			    (txlast <= txs->txs_lastdesc))
1546				break;
1547		} else {
1548			/* Ick -- this command wraps. */
1549			if ((txlast >= txs->txs_firstdesc) ||
1550			    (txlast <= txs->txs_lastdesc))
1551				break;
1552		}
1553
1554#ifdef CAS_DEBUG
1555		CTR1(KTR_CAS, "%s: releasing a descriptor", __func__);
1556#endif
1557		STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1558
1559		sc->sc_txfree += txs->txs_ndescs;
1560
1561		bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
1562		    BUS_DMASYNC_POSTWRITE);
1563		bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
1564		if (txs->txs_mbuf != NULL) {
1565			m_freem(txs->txs_mbuf);
1566			txs->txs_mbuf = NULL;
1567		}
1568
1569		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1570
1571		ifp->if_opackets++;
1572		progress = 1;
1573	}
1574
1575#ifdef CAS_DEBUG
1576	CTR5(KTR_CAS, "%s: CAS_TX_SM1 %x CAS_TX_SM2 %x CAS_TX_DESC_BASE %llx "
1577	    "CAS_TX_COMP3 %x",
1578	    __func__, CAS_READ_4(sc, CAS_TX_SM1), CAS_READ_4(sc, CAS_TX_SM2),
1579	    ((long long)CAS_READ_4(sc, CAS_TX_DESC3_BASE_HI) << 32) |
1580	    CAS_READ_4(sc, CAS_TX_DESC3_BASE_LO),
1581	    CAS_READ_4(sc, CAS_TX_COMP3));
1582#endif
1583
1584	if (progress) {
1585		/* We freed some descriptors, so reset IFF_DRV_OACTIVE. */
1586		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1587		if (STAILQ_EMPTY(&sc->sc_txdirtyq))
1588			sc->sc_wdog_timer = 0;
1589	}
1590
1591#ifdef CAS_DEBUG
1592	CTR3(KTR_CAS, "%s: %s: watchdog %d",
1593	    device_get_name(sc->sc_dev), __func__, sc->sc_wdog_timer);
1594#endif
1595}
1596
1597static void
1598cas_rint_timeout(void *arg)
1599{
1600	struct cas_softc *sc = arg;
1601
1602	CAS_LOCK_ASSERT(sc, MA_OWNED);
1603
1604	cas_rint(sc);
1605}
1606
1607static void
1608cas_rint(struct cas_softc *sc)
1609{
1610	struct cas_rxdsoft *rxds, *rxds2;
1611	struct ifnet *ifp = sc->sc_ifp;
1612	struct mbuf *m, *m2;
1613	uint64_t word1, word2, word3, word4;
1614	uint32_t rxhead;
1615	u_int idx, idx2, len, off, skip;
1616
1617	CAS_LOCK_ASSERT(sc, MA_OWNED);
1618
1619	callout_stop(&sc->sc_rx_ch);
1620
1621#ifdef CAS_DEBUG
1622	CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
1623#endif
1624
1625#define	PRINTWORD(n, delimiter)						\
1626	printf("word ## n: 0x%016llx%c", (long long)word ## n, delimiter)
1627
1628#define	SKIPASSERT(n)							\
1629	KASSERT(sc->sc_rxcomps[sc->sc_rxcptr].crc_word ## n == 0,	\
1630	    ("%s: word ## n not 0", __func__))
1631
1632#define	WORDTOH(n)							\
1633	word ## n = le64toh(sc->sc_rxcomps[sc->sc_rxcptr].crc_word ## n)
1634
1635	/*
1636	 * Read the completion head register once.  This limits
1637	 * how long the following loop can execute.
1638	 */
1639	rxhead = CAS_READ_4(sc, CAS_RX_COMP_HEAD);
1640#ifdef CAS_DEBUG
1641	CTR4(KTR_CAS, "%s: sc->sc_rxcptr %d, sc->sc_rxdptr %d, head %d",
1642	    __func__, sc->sc_rxcptr, sc->sc_rxdptr, rxhead);
1643#endif
1644	skip = 0;
1645	CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1646	for (; sc->sc_rxcptr != rxhead;
1647	    sc->sc_rxcptr = CAS_NEXTRXCOMP(sc->sc_rxcptr)) {
1648		if (skip != 0) {
1649			SKIPASSERT(1);
1650			SKIPASSERT(2);
1651			SKIPASSERT(3);
1652
1653			--skip;
1654			goto skip;
1655		}
1656
1657		WORDTOH(1);
1658		WORDTOH(2);
1659		WORDTOH(3);
1660		WORDTOH(4);
1661
1662#ifdef CAS_DEBUG
1663		if ((ifp->if_flags & IFF_DEBUG) != 0) {
1664			printf("    completion %d: ", sc->sc_rxcptr);
1665			PRINTWORD(1, '\t');
1666			PRINTWORD(2, '\t');
1667			PRINTWORD(3, '\t');
1668			PRINTWORD(4, '\n');
1669		}
1670#endif
1671
1672		if (__predict_false(
1673		    (word1 & CAS_RC1_TYPE_MASK) == CAS_RC1_TYPE_HW ||
1674		    (word4 & CAS_RC4_ZERO) != 0)) {
1675			/*
1676			 * The descriptor is still marked as owned, although
1677			 * it is supposed to have completed.  This has been
1678			 * observed on some machines.  Just exiting here
1679			 * might leave the packet sitting around until another
1680			 * one arrives to trigger a new interrupt, which is
1681			 * generally undesirable, so set up a timeout.
1682			 */
1683			callout_reset(&sc->sc_rx_ch, CAS_RXOWN_TICKS,
1684			    cas_rint_timeout, sc);
1685			break;
1686		}
1687
1688		if (__predict_false(
1689		    (word4 & (CAS_RC4_BAD | CAS_RC4_LEN_MMATCH)) != 0)) {
1690			ifp->if_ierrors++;
1691			device_printf(sc->sc_dev,
1692			    "receive error: CRC error\n");
1693			continue;
1694		}
1695
1696		KASSERT(CAS_GET(word1, CAS_RC1_DATA_SIZE) == 0 ||
1697		    CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0,
1698		    ("%s: data and header present", __func__));
1699		KASSERT((word1 & CAS_RC1_SPLIT_PKT) == 0 ||
1700		    CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0,
1701		    ("%s: split and header present", __func__));
1702		KASSERT(CAS_GET(word1, CAS_RC1_DATA_SIZE) == 0 ||
1703		    (word1 & CAS_RC1_RELEASE_HDR) == 0,
1704		    ("%s: data present but header release", __func__));
1705		KASSERT(CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0 ||
1706		    (word1 & CAS_RC1_RELEASE_DATA) == 0,
1707		    ("%s: header present but data release", __func__));
1708
1709		if ((len = CAS_GET(word2, CAS_RC2_HDR_SIZE)) != 0) {
1710			idx = CAS_GET(word2, CAS_RC2_HDR_INDEX);
1711			off = CAS_GET(word2, CAS_RC2_HDR_OFF);
1712#ifdef CAS_DEBUG
1713			CTR4(KTR_CAS, "%s: hdr at idx %d, off %d, len %d",
1714			    __func__, idx, off, len);
1715#endif
1716			rxds = &sc->sc_rxdsoft[idx];
1717			MGETHDR(m, M_NOWAIT, MT_DATA);
1718			if (m != NULL) {
1719				refcount_acquire(&rxds->rxds_refcount);
1720				bus_dmamap_sync(sc->sc_rdmatag,
1721				    rxds->rxds_dmamap, BUS_DMASYNC_POSTREAD);
1722#if __FreeBSD_version < 800016
1723				MEXTADD(m, (caddr_t)rxds->rxds_buf +
1724				    off * 256 + ETHER_ALIGN, len, cas_free,
1725				    rxds, M_RDONLY, EXT_NET_DRV);
1726#else
1727				MEXTADD(m, (caddr_t)rxds->rxds_buf +
1728				    off * 256 + ETHER_ALIGN, len, cas_free,
1729				    sc, (void *)(uintptr_t)idx,
1730				    M_RDONLY, EXT_NET_DRV);
1731#endif
1732				if ((m->m_flags & M_EXT) == 0) {
1733					m_freem(m);
1734					m = NULL;
1735				}
1736			}
1737			if (m != NULL) {
1738				m->m_pkthdr.rcvif = ifp;
1739				m->m_pkthdr.len = m->m_len = len;
1740				ifp->if_ipackets++;
1741				if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1742					cas_rxcksum(m, CAS_GET(word4,
1743					    CAS_RC4_TCP_CSUM));
1744				/* Pass it on. */
1745				CAS_UNLOCK(sc);
1746				(*ifp->if_input)(ifp, m);
1747				CAS_LOCK(sc);
1748			} else
1749				ifp->if_iqdrops++;
1750
1751			if ((word1 & CAS_RC1_RELEASE_HDR) != 0 &&
1752			    refcount_release(&rxds->rxds_refcount) != 0)
1753				cas_add_rxdesc(sc, idx);
1754		} else if ((len = CAS_GET(word1, CAS_RC1_DATA_SIZE)) != 0) {
1755			idx = CAS_GET(word1, CAS_RC1_DATA_INDEX);
1756			off = CAS_GET(word1, CAS_RC1_DATA_OFF);
1757#ifdef CAS_DEBUG
1758			CTR4(KTR_CAS, "%s: data at idx %d, off %d, len %d",
1759			    __func__, idx, off, len);
1760#endif
1761			rxds = &sc->sc_rxdsoft[idx];
1762			MGETHDR(m, M_NOWAIT, MT_DATA);
1763			if (m != NULL) {
1764				refcount_acquire(&rxds->rxds_refcount);
1765				off += ETHER_ALIGN;
1766				m->m_len = min(CAS_PAGE_SIZE - off, len);
1767				bus_dmamap_sync(sc->sc_rdmatag,
1768				    rxds->rxds_dmamap, BUS_DMASYNC_POSTREAD);
1769#if __FreeBSD_version < 800016
1770				MEXTADD(m, (caddr_t)rxds->rxds_buf + off,
1771				    m->m_len, cas_free, rxds, M_RDONLY,
1772				    EXT_NET_DRV);
1773#else
1774				MEXTADD(m, (caddr_t)rxds->rxds_buf + off,
1775				    m->m_len, cas_free, sc,
1776				    (void *)(uintptr_t)idx, M_RDONLY,
1777				    EXT_NET_DRV);
1778#endif
1779				if ((m->m_flags & M_EXT) == 0) {
1780					m_freem(m);
1781					m = NULL;
1782				}
1783			}
1784			idx2 = 0;
1785			m2 = NULL;
1786			rxds2 = NULL;
1787			if ((word1 & CAS_RC1_SPLIT_PKT) != 0) {
1788				KASSERT((word1 & CAS_RC1_RELEASE_NEXT) != 0,
1789				    ("%s: split but no release next",
1790				    __func__));
1791
1792				idx2 = CAS_GET(word2, CAS_RC2_NEXT_INDEX);
1793#ifdef CAS_DEBUG
1794				CTR2(KTR_CAS, "%s: split at idx %d",
1795				    __func__, idx2);
1796#endif
1797				rxds2 = &sc->sc_rxdsoft[idx2];
1798				if (m != NULL) {
1799					MGET(m2, M_NOWAIT, MT_DATA);
1800					if (m2 != NULL) {
1801						refcount_acquire(
1802						    &rxds2->rxds_refcount);
1803						m2->m_len = len - m->m_len;
1804						bus_dmamap_sync(
1805						    sc->sc_rdmatag,
1806						    rxds2->rxds_dmamap,
1807						    BUS_DMASYNC_POSTREAD);
1808#if __FreeBSD_version < 800016
1809						MEXTADD(m2,
1810						    (caddr_t)rxds2->rxds_buf,
1811						    m2->m_len, cas_free,
1812						    rxds2, M_RDONLY,
1813						    EXT_NET_DRV);
1814#else
1815						MEXTADD(m2,
1816						    (caddr_t)rxds2->rxds_buf,
1817						    m2->m_len, cas_free, sc,
1818						    (void *)(uintptr_t)idx2,
1819						    M_RDONLY, EXT_NET_DRV);
1820#endif
1821						if ((m2->m_flags & M_EXT) ==
1822						    0) {
1823							m_freem(m2);
1824							m2 = NULL;
1825						}
1826					}
1827				}
1828				if (m2 != NULL)
1829					m->m_next = m2;
1830				else if (m != NULL) {
1831					m_freem(m);
1832					m = NULL;
1833				}
1834			}
1835			if (m != NULL) {
1836				m->m_pkthdr.rcvif = ifp;
1837				m->m_pkthdr.len = len;
1838				ifp->if_ipackets++;
1839				if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1840					cas_rxcksum(m, CAS_GET(word4,
1841					    CAS_RC4_TCP_CSUM));
1842				/* Pass it on. */
1843				CAS_UNLOCK(sc);
1844				(*ifp->if_input)(ifp, m);
1845				CAS_LOCK(sc);
1846			} else
1847				ifp->if_iqdrops++;
1848
1849			if ((word1 & CAS_RC1_RELEASE_DATA) != 0 &&
1850			    refcount_release(&rxds->rxds_refcount) != 0)
1851				cas_add_rxdesc(sc, idx);
1852			if ((word1 & CAS_RC1_SPLIT_PKT) != 0 &&
1853			    refcount_release(&rxds2->rxds_refcount) != 0)
1854				cas_add_rxdesc(sc, idx2);
1855		}
1856
1857		skip = CAS_GET(word1, CAS_RC1_SKIP);
1858
1859 skip:
1860		cas_rxcompinit(&sc->sc_rxcomps[sc->sc_rxcptr]);
1861		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1862			break;
1863	}
1864	CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1865	CAS_WRITE_4(sc, CAS_RX_COMP_TAIL, sc->sc_rxcptr);
1866
1867#undef PRINTWORD
1868#undef SKIPASSERT
1869#undef WORDTOH
1870
1871#ifdef CAS_DEBUG
1872	CTR4(KTR_CAS, "%s: done sc->sc_rxcptr %d, sc->sc_rxdptr %d, head %d",
1873	    __func__, sc->sc_rxcptr, sc->sc_rxdptr,
1874	    CAS_READ_4(sc, CAS_RX_COMP_HEAD));
1875#endif
1876}
1877
1878static void
1879cas_free(void *arg1, void *arg2)
1880{
1881	struct cas_rxdsoft *rxds;
1882	struct cas_softc *sc;
1883	u_int idx, locked;
1884
1885#if __FreeBSD_version < 800016
1886	rxds = arg2;
1887	sc = rxds->rxds_sc;
1888	idx = rxds->rxds_idx;
1889#else
1890	sc = arg1;
1891	idx = (uintptr_t)arg2;
1892	rxds = &sc->sc_rxdsoft[idx];
1893#endif
1894	if (refcount_release(&rxds->rxds_refcount) == 0)
1895		return;
1896
1897	/*
1898	 * NB: this function can be called via m_freem(9) within
1899	 * this driver!
1900	 */
1901	if ((locked = CAS_LOCK_OWNED(sc)) == 0)
1902		CAS_LOCK(sc);
1903	cas_add_rxdesc(sc, idx);
1904	if (locked == 0)
1905		CAS_UNLOCK(sc);
1906}
1907
1908static inline void
1909cas_add_rxdesc(struct cas_softc *sc, u_int idx)
1910{
1911
1912	CAS_LOCK_ASSERT(sc, MA_OWNED);
1913
1914	bus_dmamap_sync(sc->sc_rdmatag, sc->sc_rxdsoft[idx].rxds_dmamap,
1915	    BUS_DMASYNC_PREREAD);
1916	CAS_UPDATE_RXDESC(sc, sc->sc_rxdptr, idx);
1917	sc->sc_rxdptr = CAS_NEXTRXDESC(sc->sc_rxdptr);
1918
1919	/*
1920	 * Update the RX kick register.  This register has to point to the
1921	 * descriptor after the last valid one (before the current batch)
1922	 * and for optimum performance should be incremented in multiples
1923	 * of 4 (the DMA engine fetches/updates descriptors in batches of 4).
1924	 */
1925	if ((sc->sc_rxdptr % 4) == 0) {
1926		CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1927		CAS_WRITE_4(sc, CAS_RX_KICK,
1928		    (sc->sc_rxdptr + CAS_NRXDESC - 4) & CAS_NRXDESC_MASK);
1929	}
1930}
1931
1932static void
1933cas_eint(struct cas_softc *sc, u_int status)
1934{
1935	struct ifnet *ifp = sc->sc_ifp;
1936
1937	CAS_LOCK_ASSERT(sc, MA_OWNED);
1938
1939	ifp->if_ierrors++;
1940
1941	device_printf(sc->sc_dev, "%s: status 0x%x", __func__, status);
1942	if ((status & CAS_INTR_PCI_ERROR_INT) != 0) {
1943		status = CAS_READ_4(sc, CAS_ERROR_STATUS);
1944		printf(", PCI bus error 0x%x", status);
1945		if ((status & CAS_ERROR_OTHER) != 0) {
1946			status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
1947			printf(", PCI status 0x%x", status);
1948			pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
1949		}
1950	}
1951	printf("\n");
1952
1953	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1954	cas_init_locked(sc);
1955	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1956		taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task);
1957}
1958
1959static int
1960cas_intr(void *v)
1961{
1962	struct cas_softc *sc = v;
1963
1964	if (__predict_false((CAS_READ_4(sc, CAS_STATUS_ALIAS) &
1965	    CAS_INTR_SUMMARY) == 0))
1966		return (FILTER_STRAY);
1967
1968	/* Disable interrupts. */
1969	CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff);
1970	taskqueue_enqueue(sc->sc_tq, &sc->sc_intr_task);
1971
1972	return (FILTER_HANDLED);
1973}
1974
1975static void
1976cas_intr_task(void *arg, int pending __unused)
1977{
1978	struct cas_softc *sc = arg;
1979	struct ifnet *ifp = sc->sc_ifp;
1980	uint32_t status, status2;
1981
1982	CAS_LOCK_ASSERT(sc, MA_NOTOWNED);
1983
1984	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1985		return;
1986
1987	status = CAS_READ_4(sc, CAS_STATUS);
1988	if (__predict_false((status & CAS_INTR_SUMMARY) == 0))
1989		goto done;
1990
1991	CAS_LOCK(sc);
1992#ifdef CAS_DEBUG
1993	CTR4(KTR_CAS, "%s: %s: cplt %x, status %x",
1994	    device_get_name(sc->sc_dev), __func__,
1995	    (status >> CAS_STATUS_TX_COMP3_SHFT), (u_int)status);
1996
1997	/*
1998	 * PCS interrupts must be cleared, otherwise no traffic is passed!
1999	 */
2000	if ((status & CAS_INTR_PCS_INT) != 0) {
2001		status2 =
2002		    CAS_READ_4(sc, CAS_PCS_INTR_STATUS) |
2003		    CAS_READ_4(sc, CAS_PCS_INTR_STATUS);
2004		if ((status2 & CAS_PCS_INTR_LINK) != 0)
2005			device_printf(sc->sc_dev,
2006			    "%s: PCS link status changed\n", __func__);
2007	}
2008	if ((status & CAS_MAC_CTRL_STATUS) != 0) {
2009		status2 = CAS_READ_4(sc, CAS_MAC_CTRL_STATUS);
2010		if ((status2 & CAS_MAC_CTRL_PAUSE) != 0)
2011			device_printf(sc->sc_dev,
2012			    "%s: PAUSE received (PAUSE time %d slots)\n",
2013			    __func__,
2014			    (status2 & CAS_MAC_CTRL_STATUS_PT_MASK) >>
2015			    CAS_MAC_CTRL_STATUS_PT_SHFT);
2016		if ((status2 & CAS_MAC_CTRL_PAUSE) != 0)
2017			device_printf(sc->sc_dev,
2018			    "%s: transited to PAUSE state\n", __func__);
2019		if ((status2 & CAS_MAC_CTRL_NON_PAUSE) != 0)
2020			device_printf(sc->sc_dev,
2021			    "%s: transited to non-PAUSE state\n", __func__);
2022	}
2023	if ((status & CAS_INTR_MIF) != 0)
2024		device_printf(sc->sc_dev, "%s: MIF interrupt\n", __func__);
2025#endif
2026
2027	if (__predict_false((status &
2028	    (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
2029	    CAS_INTR_RX_LEN_MMATCH | CAS_INTR_PCI_ERROR_INT)) != 0)) {
2030		cas_eint(sc, status);
2031		CAS_UNLOCK(sc);
2032		return;
2033	}
2034
2035	if (__predict_false(status & CAS_INTR_TX_MAC_INT)) {
2036		status2 = CAS_READ_4(sc, CAS_MAC_TX_STATUS);
2037		if ((status2 &
2038		    (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_MAX_PKT_ERR)) != 0)
2039			ifp->if_oerrors++;
2040		else if ((status2 & ~CAS_MAC_TX_FRAME_XMTD) != 0)
2041			device_printf(sc->sc_dev,
2042			    "MAC TX fault, status %x\n", status2);
2043	}
2044
2045	if (__predict_false(status & CAS_INTR_RX_MAC_INT)) {
2046		status2 = CAS_READ_4(sc, CAS_MAC_RX_STATUS);
2047		if ((status2 & CAS_MAC_RX_OVERFLOW) != 0)
2048			ifp->if_ierrors++;
2049		else if ((status2 & ~CAS_MAC_RX_FRAME_RCVD) != 0)
2050			device_printf(sc->sc_dev,
2051			    "MAC RX fault, status %x\n", status2);
2052	}
2053
2054	if ((status &
2055	    (CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_COMP_FULL |
2056	    CAS_INTR_RX_BUF_AEMPTY | CAS_INTR_RX_COMP_AFULL)) != 0) {
2057		cas_rint(sc);
2058#ifdef CAS_DEBUG
2059		if (__predict_false((status &
2060		    (CAS_INTR_RX_BUF_NA | CAS_INTR_RX_COMP_FULL |
2061		    CAS_INTR_RX_BUF_AEMPTY | CAS_INTR_RX_COMP_AFULL)) != 0))
2062			device_printf(sc->sc_dev,
2063			    "RX fault, status %x\n", status);
2064#endif
2065	}
2066
2067	if ((status &
2068	    (CAS_INTR_TX_INT_ME | CAS_INTR_TX_ALL | CAS_INTR_TX_DONE)) != 0)
2069		cas_tint(sc);
2070
2071	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2072		CAS_UNLOCK(sc);
2073		return;
2074	} else if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2075		taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task);
2076	CAS_UNLOCK(sc);
2077
2078	status = CAS_READ_4(sc, CAS_STATUS_ALIAS);
2079	if (__predict_false((status & CAS_INTR_SUMMARY) != 0)) {
2080		taskqueue_enqueue(sc->sc_tq, &sc->sc_intr_task);
2081		return;
2082	}
2083
2084 done:
2085	/* Re-enable interrupts. */
2086	CAS_WRITE_4(sc, CAS_INTMASK,
2087	    ~(CAS_INTR_TX_INT_ME | CAS_INTR_TX_TAG_ERR |
2088	    CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_TAG_ERR |
2089	    CAS_INTR_RX_COMP_FULL | CAS_INTR_RX_BUF_AEMPTY |
2090	    CAS_INTR_RX_COMP_AFULL | CAS_INTR_RX_LEN_MMATCH |
2091	    CAS_INTR_PCI_ERROR_INT
2092#ifdef CAS_DEBUG
2093	    | CAS_INTR_PCS_INT | CAS_INTR_MIF
2094#endif
2095	));
2096}
2097
2098static void
2099cas_watchdog(struct cas_softc *sc)
2100{
2101	struct ifnet *ifp = sc->sc_ifp;
2102
2103	CAS_LOCK_ASSERT(sc, MA_OWNED);
2104
2105#ifdef CAS_DEBUG
2106	CTR4(KTR_CAS,
2107	    "%s: CAS_RX_CONF %x CAS_MAC_RX_STATUS %x CAS_MAC_RX_CONF %x",
2108	    __func__, CAS_READ_4(sc, CAS_RX_CONF),
2109	    CAS_READ_4(sc, CAS_MAC_RX_STATUS),
2110	    CAS_READ_4(sc, CAS_MAC_RX_CONF));
2111	CTR4(KTR_CAS,
2112	    "%s: CAS_TX_CONF %x CAS_MAC_TX_STATUS %x CAS_MAC_TX_CONF %x",
2113	    __func__, CAS_READ_4(sc, CAS_TX_CONF),
2114	    CAS_READ_4(sc, CAS_MAC_TX_STATUS),
2115	    CAS_READ_4(sc, CAS_MAC_TX_CONF));
2116#endif
2117
2118	if (sc->sc_wdog_timer == 0 || --sc->sc_wdog_timer != 0)
2119		return;
2120
2121	if ((sc->sc_flags & CAS_LINK) != 0)
2122		device_printf(sc->sc_dev, "device timeout\n");
2123	else if (bootverbose)
2124		device_printf(sc->sc_dev, "device timeout (no link)\n");
2125	++ifp->if_oerrors;
2126
2127	/* Try to get more packets going. */
2128	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2129	cas_init_locked(sc);
2130	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2131		taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task);
2132}
2133
2134static void
2135cas_mifinit(struct cas_softc *sc)
2136{
2137
2138	/* Configure the MIF in frame mode. */
2139	CAS_WRITE_4(sc, CAS_MIF_CONF,
2140	    CAS_READ_4(sc, CAS_MIF_CONF) & ~CAS_MIF_CONF_BB_MODE);
2141	CAS_BARRIER(sc, CAS_MIF_CONF, 4,
2142	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2143}
2144
2145/*
2146 * MII interface
2147 *
2148 * The MII interface supports at least three different operating modes:
2149 *
2150 * Bitbang mode is implemented using data, clock and output enable registers.
2151 *
2152 * Frame mode is implemented by loading a complete frame into the frame
2153 * register and polling the valid bit for completion.
2154 *
2155 * Polling mode uses the frame register but completion is indicated by
2156 * an interrupt.
2157 *
2158 */
2159static int
2160cas_mii_readreg(device_t dev, int phy, int reg)
2161{
2162	struct cas_softc *sc;
2163	int n;
2164	uint32_t v;
2165
2166#ifdef CAS_DEBUG_PHY
2167	printf("%s: phy %d reg %d\n", __func__, phy, reg);
2168#endif
2169
2170	sc = device_get_softc(dev);
2171	if ((sc->sc_flags & CAS_SERDES) != 0) {
2172		switch (reg) {
2173		case MII_BMCR:
2174			reg = CAS_PCS_CTRL;
2175			break;
2176		case MII_BMSR:
2177			reg = CAS_PCS_STATUS;
2178			break;
2179		case MII_PHYIDR1:
2180		case MII_PHYIDR2:
2181			return (0);
2182		case MII_ANAR:
2183			reg = CAS_PCS_ANAR;
2184			break;
2185		case MII_ANLPAR:
2186			reg = CAS_PCS_ANLPAR;
2187			break;
2188		case MII_EXTSR:
2189			return (EXTSR_1000XFDX | EXTSR_1000XHDX);
2190		default:
2191			device_printf(sc->sc_dev,
2192			    "%s: unhandled register %d\n", __func__, reg);
2193			return (0);
2194		}
2195		return (CAS_READ_4(sc, reg));
2196	}
2197
2198	/* Construct the frame command. */
2199	v = CAS_MIF_FRAME_READ |
2200	    (phy << CAS_MIF_FRAME_PHY_SHFT) |
2201	    (reg << CAS_MIF_FRAME_REG_SHFT);
2202
2203	CAS_WRITE_4(sc, CAS_MIF_FRAME, v);
2204	CAS_BARRIER(sc, CAS_MIF_FRAME, 4,
2205	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2206	for (n = 0; n < 100; n++) {
2207		DELAY(1);
2208		v = CAS_READ_4(sc, CAS_MIF_FRAME);
2209		if (v & CAS_MIF_FRAME_TA_LSB)
2210			return (v & CAS_MIF_FRAME_DATA);
2211	}
2212
2213	device_printf(sc->sc_dev, "%s: timed out\n", __func__);
2214	return (0);
2215}
2216
2217static int
2218cas_mii_writereg(device_t dev, int phy, int reg, int val)
2219{
2220	struct cas_softc *sc;
2221	int n;
2222	uint32_t v;
2223
2224#ifdef CAS_DEBUG_PHY
2225	printf("%s: phy %d reg %d val %x\n", phy, reg, val, __func__);
2226#endif
2227
2228	sc = device_get_softc(dev);
2229	if ((sc->sc_flags & CAS_SERDES) != 0) {
2230		switch (reg) {
2231		case MII_BMSR:
2232			reg = CAS_PCS_STATUS;
2233			break;
2234		case MII_BMCR:
2235			reg = CAS_PCS_CTRL;
2236			if ((val & CAS_PCS_CTRL_RESET) == 0)
2237				break;
2238			CAS_WRITE_4(sc, CAS_PCS_CTRL, val);
2239			CAS_BARRIER(sc, CAS_PCS_CTRL, 4,
2240			    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2241			if (!cas_bitwait(sc, CAS_PCS_CTRL,
2242			    CAS_PCS_CTRL_RESET, 0))
2243				device_printf(sc->sc_dev,
2244				    "cannot reset PCS\n");
2245			/* FALLTHROUGH */
2246		case MII_ANAR:
2247			CAS_WRITE_4(sc, CAS_PCS_CONF, 0);
2248			CAS_BARRIER(sc, CAS_PCS_CONF, 4,
2249			    BUS_SPACE_BARRIER_WRITE);
2250			CAS_WRITE_4(sc, CAS_PCS_ANAR, val);
2251			CAS_BARRIER(sc, CAS_PCS_ANAR, 4,
2252			    BUS_SPACE_BARRIER_WRITE);
2253			CAS_WRITE_4(sc, CAS_PCS_SERDES_CTRL,
2254			    CAS_PCS_SERDES_CTRL_ESD);
2255			CAS_BARRIER(sc, CAS_PCS_CONF, 4,
2256			    BUS_SPACE_BARRIER_WRITE);
2257			CAS_WRITE_4(sc, CAS_PCS_CONF,
2258			    CAS_PCS_CONF_EN);
2259			CAS_BARRIER(sc, CAS_PCS_CONF, 4,
2260			    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2261			return (0);
2262		case MII_ANLPAR:
2263			reg = CAS_PCS_ANLPAR;
2264			break;
2265		default:
2266			device_printf(sc->sc_dev,
2267			    "%s: unhandled register %d\n", __func__, reg);
2268			return (0);
2269		}
2270		CAS_WRITE_4(sc, reg, val);
2271		CAS_BARRIER(sc, reg, 4,
2272		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2273		return (0);
2274	}
2275
2276	/* Construct the frame command. */
2277	v = CAS_MIF_FRAME_WRITE |
2278	    (phy << CAS_MIF_FRAME_PHY_SHFT) |
2279	    (reg << CAS_MIF_FRAME_REG_SHFT) |
2280	    (val & CAS_MIF_FRAME_DATA);
2281
2282	CAS_WRITE_4(sc, CAS_MIF_FRAME, v);
2283	CAS_BARRIER(sc, CAS_MIF_FRAME, 4,
2284	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2285	for (n = 0; n < 100; n++) {
2286		DELAY(1);
2287		v = CAS_READ_4(sc, CAS_MIF_FRAME);
2288		if (v & CAS_MIF_FRAME_TA_LSB)
2289			return (1);
2290	}
2291
2292	device_printf(sc->sc_dev, "%s: timed out\n", __func__);
2293	return (0);
2294}
2295
2296static void
2297cas_mii_statchg(device_t dev)
2298{
2299	struct cas_softc *sc;
2300	struct ifnet *ifp;
2301	int gigabit;
2302	uint32_t rxcfg, txcfg, v;
2303
2304	sc = device_get_softc(dev);
2305	ifp = sc->sc_ifp;
2306
2307	CAS_LOCK_ASSERT(sc, MA_OWNED);
2308
2309#ifdef CAS_DEBUG
2310	if ((ifp->if_flags & IFF_DEBUG) != 0)
2311		device_printf(sc->sc_dev, "%s: status changen", __func__);
2312#endif
2313
2314	if ((sc->sc_mii->mii_media_status & IFM_ACTIVE) != 0 &&
2315	    IFM_SUBTYPE(sc->sc_mii->mii_media_active) != IFM_NONE)
2316		sc->sc_flags |= CAS_LINK;
2317	else
2318		sc->sc_flags &= ~CAS_LINK;
2319
2320	switch (IFM_SUBTYPE(sc->sc_mii->mii_media_active)) {
2321	case IFM_1000_SX:
2322	case IFM_1000_LX:
2323	case IFM_1000_CX:
2324	case IFM_1000_T:
2325		gigabit = 1;
2326		break;
2327	default:
2328		gigabit = 0;
2329	}
2330
2331	/*
2332	 * The configuration done here corresponds to the steps F) and
2333	 * G) and as far as enabling of RX and TX MAC goes also step H)
2334	 * of the initialization sequence outlined in section 11.2.1 of
2335	 * the Cassini+ ASIC Specification.
2336	 */
2337
2338	rxcfg = sc->sc_mac_rxcfg;
2339	rxcfg &= ~CAS_MAC_RX_CONF_CARR;
2340	txcfg = CAS_MAC_TX_CONF_EN_IPG0 | CAS_MAC_TX_CONF_NGU |
2341	    CAS_MAC_TX_CONF_NGUL;
2342	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
2343		txcfg |= CAS_MAC_TX_CONF_ICARR | CAS_MAC_TX_CONF_ICOLLIS;
2344	else if (gigabit != 0) {
2345		rxcfg |= CAS_MAC_RX_CONF_CARR;
2346		txcfg |= CAS_MAC_TX_CONF_CARR;
2347	}
2348	(void)cas_disable_tx(sc);
2349	CAS_WRITE_4(sc, CAS_MAC_TX_CONF, txcfg);
2350	(void)cas_disable_rx(sc);
2351	CAS_WRITE_4(sc, CAS_MAC_RX_CONF, rxcfg);
2352
2353	v = CAS_READ_4(sc, CAS_MAC_CTRL_CONF) &
2354	    ~(CAS_MAC_CTRL_CONF_TXP | CAS_MAC_CTRL_CONF_RXP);
2355	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
2356	    IFM_ETH_RXPAUSE) != 0)
2357		v |= CAS_MAC_CTRL_CONF_RXP;
2358	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
2359	    IFM_ETH_TXPAUSE) != 0)
2360		v |= CAS_MAC_CTRL_CONF_TXP;
2361	CAS_WRITE_4(sc, CAS_MAC_CTRL_CONF, v);
2362
2363	/*
2364	 * All supported chips have a bug causing incorrect checksum
2365	 * to be calculated when letting them strip the FCS in half-
2366	 * duplex mode.  In theory we could disable FCS stripping and
2367	 * manually adjust the checksum accordingly.  It seems to make
2368	 * more sense to optimze for the common case and just disable
2369	 * hardware checksumming in half-duplex mode though.
2370	 */
2371	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0) {
2372		ifp->if_capenable &= ~IFCAP_HWCSUM;
2373		ifp->if_hwassist = 0;
2374	} else if ((sc->sc_flags & CAS_NO_CSUM) == 0) {
2375		ifp->if_capenable = ifp->if_capabilities;
2376		ifp->if_hwassist = CAS_CSUM_FEATURES;
2377	}
2378
2379	if (sc->sc_variant == CAS_SATURN) {
2380		if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0)
2381			/* silicon bug workaround */
2382			CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x41);
2383		else
2384			CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x7);
2385	}
2386
2387	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0 &&
2388	    gigabit != 0)
2389		CAS_WRITE_4(sc, CAS_MAC_SLOT_TIME,
2390		    CAS_MAC_SLOT_TIME_CARR);
2391	else
2392		CAS_WRITE_4(sc, CAS_MAC_SLOT_TIME,
2393		    CAS_MAC_SLOT_TIME_NORM);
2394
2395	/* XIF Configuration */
2396	v = CAS_MAC_XIF_CONF_TX_OE | CAS_MAC_XIF_CONF_LNKLED;
2397	if ((sc->sc_flags & CAS_SERDES) == 0) {
2398		if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0)
2399			v |= CAS_MAC_XIF_CONF_NOECHO;
2400		v |= CAS_MAC_XIF_CONF_BUF_OE;
2401	}
2402	if (gigabit != 0)
2403		v |= CAS_MAC_XIF_CONF_GMII;
2404	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
2405		v |= CAS_MAC_XIF_CONF_FDXLED;
2406	CAS_WRITE_4(sc, CAS_MAC_XIF_CONF, v);
2407
2408	sc->sc_mac_rxcfg = rxcfg;
2409	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2410	    (sc->sc_flags & CAS_LINK) != 0) {
2411		CAS_WRITE_4(sc, CAS_MAC_TX_CONF,
2412		    txcfg | CAS_MAC_TX_CONF_EN);
2413		CAS_WRITE_4(sc, CAS_MAC_RX_CONF,
2414		    rxcfg | CAS_MAC_RX_CONF_EN);
2415	}
2416}
2417
2418static int
2419cas_mediachange(struct ifnet *ifp)
2420{
2421	struct cas_softc *sc = ifp->if_softc;
2422	int error;
2423
2424	/* XXX add support for serial media. */
2425
2426	CAS_LOCK(sc);
2427	error = mii_mediachg(sc->sc_mii);
2428	CAS_UNLOCK(sc);
2429	return (error);
2430}
2431
2432static void
2433cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2434{
2435	struct cas_softc *sc = ifp->if_softc;
2436
2437	CAS_LOCK(sc);
2438	if ((ifp->if_flags & IFF_UP) == 0) {
2439		CAS_UNLOCK(sc);
2440		return;
2441	}
2442
2443	mii_pollstat(sc->sc_mii);
2444	ifmr->ifm_active = sc->sc_mii->mii_media_active;
2445	ifmr->ifm_status = sc->sc_mii->mii_media_status;
2446	CAS_UNLOCK(sc);
2447}
2448
2449static int
2450cas_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2451{
2452	struct cas_softc *sc = ifp->if_softc;
2453	struct ifreq *ifr = (struct ifreq *)data;
2454	int error;
2455
2456	error = 0;
2457	switch (cmd) {
2458	case SIOCSIFFLAGS:
2459		CAS_LOCK(sc);
2460		if ((ifp->if_flags & IFF_UP) != 0) {
2461			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2462			    ((ifp->if_flags ^ sc->sc_ifflags) &
2463			    (IFF_ALLMULTI | IFF_PROMISC)) != 0)
2464				cas_setladrf(sc);
2465			else
2466				cas_init_locked(sc);
2467		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2468			cas_stop(ifp);
2469		sc->sc_ifflags = ifp->if_flags;
2470		CAS_UNLOCK(sc);
2471		break;
2472	case SIOCSIFCAP:
2473		CAS_LOCK(sc);
2474		if ((sc->sc_flags & CAS_NO_CSUM) != 0) {
2475			error = EINVAL;
2476			CAS_UNLOCK(sc);
2477			break;
2478		}
2479		ifp->if_capenable = ifr->ifr_reqcap;
2480		if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2481			ifp->if_hwassist = CAS_CSUM_FEATURES;
2482		else
2483			ifp->if_hwassist = 0;
2484		CAS_UNLOCK(sc);
2485		break;
2486	case SIOCADDMULTI:
2487	case SIOCDELMULTI:
2488		CAS_LOCK(sc);
2489		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2490			cas_setladrf(sc);
2491		CAS_UNLOCK(sc);
2492		break;
2493	case SIOCSIFMTU:
2494		if ((ifr->ifr_mtu < ETHERMIN) ||
2495		    (ifr->ifr_mtu > ETHERMTU_JUMBO))
2496			error = EINVAL;
2497		else
2498			ifp->if_mtu = ifr->ifr_mtu;
2499		break;
2500	case SIOCGIFMEDIA:
2501	case SIOCSIFMEDIA:
2502		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd);
2503		break;
2504	default:
2505		error = ether_ioctl(ifp, cmd, data);
2506		break;
2507	}
2508
2509	return (error);
2510}
2511
2512static void
2513cas_setladrf(struct cas_softc *sc)
2514{
2515	struct ifnet *ifp = sc->sc_ifp;
2516	struct ifmultiaddr *inm;
2517	int i;
2518	uint32_t hash[16];
2519	uint32_t crc, v;
2520
2521	CAS_LOCK_ASSERT(sc, MA_OWNED);
2522
2523	/*
2524	 * Turn off the RX MAC and the hash filter as required by the Sun
2525	 * Cassini programming restrictions.
2526	 */
2527	v = sc->sc_mac_rxcfg & ~(CAS_MAC_RX_CONF_HFILTER |
2528	    CAS_MAC_RX_CONF_EN);
2529	CAS_WRITE_4(sc, CAS_MAC_RX_CONF, v);
2530	CAS_BARRIER(sc, CAS_MAC_RX_CONF, 4,
2531	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2532	if (!cas_bitwait(sc, CAS_MAC_RX_CONF, CAS_MAC_RX_CONF_HFILTER |
2533	    CAS_MAC_RX_CONF_EN, 0))
2534		device_printf(sc->sc_dev,
2535		    "cannot disable RX MAC or hash filter\n");
2536
2537	v &= ~(CAS_MAC_RX_CONF_PROMISC | CAS_MAC_RX_CONF_PGRP);
2538	if ((ifp->if_flags & IFF_PROMISC) != 0) {
2539		v |= CAS_MAC_RX_CONF_PROMISC;
2540		goto chipit;
2541	}
2542	if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
2543		v |= CAS_MAC_RX_CONF_PGRP;
2544		goto chipit;
2545	}
2546
2547	/*
2548	 * Set up multicast address filter by passing all multicast
2549	 * addresses through a crc generator, and then using the high
2550	 * order 8 bits as an index into the 256 bit logical address
2551	 * filter.  The high order 4 bits selects the word, while the
2552	 * other 4 bits select the bit within the word (where bit 0
2553	 * is the MSB).
2554	 */
2555
2556	/* Clear the hash table. */
2557	memset(hash, 0, sizeof(hash));
2558
2559	if_maddr_rlock(ifp);
2560	TAILQ_FOREACH(inm, &ifp->if_multiaddrs, ifma_link) {
2561		if (inm->ifma_addr->sa_family != AF_LINK)
2562			continue;
2563		crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
2564		    inm->ifma_addr), ETHER_ADDR_LEN);
2565
2566		/* We just want the 8 most significant bits. */
2567		crc >>= 24;
2568
2569		/* Set the corresponding bit in the filter. */
2570		hash[crc >> 4] |= 1 << (15 - (crc & 15));
2571	}
2572	if_maddr_runlock(ifp);
2573
2574	v |= CAS_MAC_RX_CONF_HFILTER;
2575
2576	/* Now load the hash table into the chip (if we are using it). */
2577	for (i = 0; i < 16; i++)
2578		CAS_WRITE_4(sc,
2579		    CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
2580		    hash[i]);
2581
2582 chipit:
2583	sc->sc_mac_rxcfg = v;
2584	CAS_WRITE_4(sc, CAS_MAC_RX_CONF, v | CAS_MAC_RX_CONF_EN);
2585}
2586
2587static int	cas_pci_attach(device_t dev);
2588static int	cas_pci_detach(device_t dev);
2589static int	cas_pci_probe(device_t dev);
2590static int	cas_pci_resume(device_t dev);
2591static int	cas_pci_suspend(device_t dev);
2592
2593static device_method_t cas_pci_methods[] = {
2594	/* Device interface */
2595	DEVMETHOD(device_probe,		cas_pci_probe),
2596	DEVMETHOD(device_attach,	cas_pci_attach),
2597	DEVMETHOD(device_detach,	cas_pci_detach),
2598	DEVMETHOD(device_suspend,	cas_pci_suspend),
2599	DEVMETHOD(device_resume,	cas_pci_resume),
2600	/* Use the suspend handler here, it is all that is required. */
2601	DEVMETHOD(device_shutdown,	cas_pci_suspend),
2602
2603	/* MII interface */
2604	DEVMETHOD(miibus_readreg,	cas_mii_readreg),
2605	DEVMETHOD(miibus_writereg,	cas_mii_writereg),
2606	DEVMETHOD(miibus_statchg,	cas_mii_statchg),
2607
2608	DEVMETHOD_END
2609};
2610
2611static driver_t cas_pci_driver = {
2612	"cas",
2613	cas_pci_methods,
2614	sizeof(struct cas_softc)
2615};
2616
2617DRIVER_MODULE(cas, pci, cas_pci_driver, cas_devclass, 0, 0);
2618DRIVER_MODULE(miibus, cas, miibus_driver, miibus_devclass, 0, 0);
2619MODULE_DEPEND(cas, pci, 1, 1, 1);
2620
2621static const struct cas_pci_dev {
2622	uint32_t	cpd_devid;
2623	uint8_t		cpd_revid;
2624	int		cpd_variant;
2625	const char	*cpd_desc;
2626} cas_pci_devlist[] = {
2627	{ 0x0035100b, 0x0, CAS_SATURN, "NS DP83065 Saturn Gigabit Ethernet" },
2628	{ 0xabba108e, 0x10, CAS_CASPLUS, "Sun Cassini+ Gigabit Ethernet" },
2629	{ 0xabba108e, 0x0, CAS_CAS, "Sun Cassini Gigabit Ethernet" },
2630	{ 0, 0, 0, NULL }
2631};
2632
2633static int
2634cas_pci_probe(device_t dev)
2635{
2636	int i;
2637
2638	for (i = 0; cas_pci_devlist[i].cpd_desc != NULL; i++) {
2639		if (pci_get_devid(dev) == cas_pci_devlist[i].cpd_devid &&
2640		    pci_get_revid(dev) >= cas_pci_devlist[i].cpd_revid) {
2641			device_set_desc(dev, cas_pci_devlist[i].cpd_desc);
2642			return (BUS_PROBE_DEFAULT);
2643		}
2644	}
2645
2646	return (ENXIO);
2647}
2648
2649static struct resource_spec cas_pci_res_spec[] = {
2650	{ SYS_RES_IRQ, 0, RF_SHAREABLE | RF_ACTIVE },	/* CAS_RES_INTR */
2651	{ SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE },	/* CAS_RES_MEM */
2652	{ -1, 0 }
2653};
2654
2655#define	CAS_LOCAL_MAC_ADDRESS	"local-mac-address"
2656#define	CAS_PHY_INTERFACE	"phy-interface"
2657#define	CAS_PHY_TYPE		"phy-type"
2658#define	CAS_PHY_TYPE_PCS	"pcs"
2659
2660static int
2661cas_pci_attach(device_t dev)
2662{
2663	char buf[sizeof(CAS_LOCAL_MAC_ADDRESS)];
2664	struct cas_softc *sc;
2665	int i;
2666#if !(defined(__powerpc__) || defined(__sparc64__))
2667	u_char enaddr[4][ETHER_ADDR_LEN];
2668	u_int j, k, lma, pcs[4], phy;
2669#endif
2670
2671	sc = device_get_softc(dev);
2672	sc->sc_variant = CAS_UNKNOWN;
2673	for (i = 0; cas_pci_devlist[i].cpd_desc != NULL; i++) {
2674		if (pci_get_devid(dev) == cas_pci_devlist[i].cpd_devid &&
2675		    pci_get_revid(dev) >= cas_pci_devlist[i].cpd_revid) {
2676			sc->sc_variant = cas_pci_devlist[i].cpd_variant;
2677			break;
2678		}
2679	}
2680	if (sc->sc_variant == CAS_UNKNOWN) {
2681		device_printf(dev, "unknown adaptor\n");
2682		return (ENXIO);
2683	}
2684
2685	pci_enable_busmaster(dev);
2686
2687	sc->sc_dev = dev;
2688	if (sc->sc_variant == CAS_CAS && pci_get_devid(dev) < 0x02)
2689		/* Hardware checksumming may hang TX. */
2690		sc->sc_flags |= CAS_NO_CSUM;
2691	if (sc->sc_variant == CAS_CASPLUS || sc->sc_variant == CAS_SATURN)
2692		sc->sc_flags |= CAS_REG_PLUS;
2693	if (sc->sc_variant == CAS_CAS ||
2694	    (sc->sc_variant == CAS_CASPLUS && pci_get_revid(dev) < 0x11))
2695		sc->sc_flags |= CAS_TABORT;
2696	if (bootverbose)
2697		device_printf(dev, "flags=0x%x\n", sc->sc_flags);
2698
2699	if (bus_alloc_resources(dev, cas_pci_res_spec, sc->sc_res)) {
2700		device_printf(dev, "failed to allocate resources\n");
2701		bus_release_resources(dev, cas_pci_res_spec, sc->sc_res);
2702		return (ENXIO);
2703	}
2704
2705	CAS_LOCK_INIT(sc, device_get_nameunit(dev));
2706
2707#if defined(__powerpc__) || defined(__sparc64__)
2708	OF_getetheraddr(dev, sc->sc_enaddr);
2709	if (OF_getprop(ofw_bus_get_node(dev), CAS_PHY_INTERFACE, buf,
2710	    sizeof(buf)) > 0 || OF_getprop(ofw_bus_get_node(dev),
2711	    CAS_PHY_TYPE, buf, sizeof(buf)) > 0) {
2712		buf[sizeof(buf) - 1] = '\0';
2713		if (strcmp(buf, CAS_PHY_TYPE_PCS) == 0)
2714			sc->sc_flags |= CAS_SERDES;
2715	}
2716#else
2717	/*
2718	 * Dig out VPD (vital product data) and read the MAC address as well
2719	 * as the PHY type.  The VPD resides in the PCI Expansion ROM (PCI
2720	 * FCode) and can't be accessed via the PCI capability pointer.
2721	 * SUNW,pci-ce and SUNW,pci-qge use the Enhanced VPD format described
2722	 * in the free US Patent 7149820.
2723	 */
2724
2725#define	PCI_ROMHDR_SIZE			0x1c
2726#define	PCI_ROMHDR_SIG			0x00
2727#define	PCI_ROMHDR_SIG_MAGIC		0xaa55		/* little endian */
2728#define	PCI_ROMHDR_PTR_DATA		0x18
2729#define	PCI_ROM_SIZE			0x18
2730#define	PCI_ROM_SIG			0x00
2731#define	PCI_ROM_SIG_MAGIC		0x52494350	/* "PCIR", endian */
2732							/* reversed */
2733#define	PCI_ROM_VENDOR			0x04
2734#define	PCI_ROM_DEVICE			0x06
2735#define	PCI_ROM_PTR_VPD			0x08
2736#define	PCI_VPDRES_BYTE0		0x00
2737#define	PCI_VPDRES_ISLARGE(x)		((x) & 0x80)
2738#define	PCI_VPDRES_LARGE_NAME(x)	((x) & 0x7f)
2739#define	PCI_VPDRES_LARGE_LEN_LSB	0x01
2740#define	PCI_VPDRES_LARGE_LEN_MSB	0x02
2741#define	PCI_VPDRES_LARGE_SIZE		0x03
2742#define	PCI_VPDRES_TYPE_ID_STRING	0x02		/* large */
2743#define	PCI_VPDRES_TYPE_VPD		0x10		/* large */
2744#define	PCI_VPD_KEY0			0x00
2745#define	PCI_VPD_KEY1			0x01
2746#define	PCI_VPD_LEN			0x02
2747#define	PCI_VPD_SIZE			0x03
2748
2749#define	CAS_ROM_READ_1(sc, offs)					\
2750	CAS_READ_1((sc), CAS_PCI_ROM_OFFSET + (offs))
2751#define	CAS_ROM_READ_2(sc, offs)					\
2752	CAS_READ_2((sc), CAS_PCI_ROM_OFFSET + (offs))
2753#define	CAS_ROM_READ_4(sc, offs)					\
2754	CAS_READ_4((sc), CAS_PCI_ROM_OFFSET + (offs))
2755
2756	lma = phy = 0;
2757	memset(enaddr, 0, sizeof(enaddr));
2758	memset(pcs, 0, sizeof(pcs));
2759
2760	/* Enable PCI Expansion ROM access. */
2761	CAS_WRITE_4(sc, CAS_BIM_LDEV_OEN,
2762	    CAS_BIM_LDEV_OEN_PAD | CAS_BIM_LDEV_OEN_PROM);
2763
2764	/* Read PCI Expansion ROM header. */
2765	if (CAS_ROM_READ_2(sc, PCI_ROMHDR_SIG) != PCI_ROMHDR_SIG_MAGIC ||
2766	    (i = CAS_ROM_READ_2(sc, PCI_ROMHDR_PTR_DATA)) <
2767	    PCI_ROMHDR_SIZE) {
2768		device_printf(dev, "unexpected PCI Expansion ROM header\n");
2769		goto fail_prom;
2770	}
2771
2772	/* Read PCI Expansion ROM data. */
2773	if (CAS_ROM_READ_4(sc, i + PCI_ROM_SIG) != PCI_ROM_SIG_MAGIC ||
2774	    CAS_ROM_READ_2(sc, i + PCI_ROM_VENDOR) != pci_get_vendor(dev) ||
2775	    CAS_ROM_READ_2(sc, i + PCI_ROM_DEVICE) != pci_get_device(dev) ||
2776	    (j = CAS_ROM_READ_2(sc, i + PCI_ROM_PTR_VPD)) <
2777	    i + PCI_ROM_SIZE) {
2778		device_printf(dev, "unexpected PCI Expansion ROM data\n");
2779		goto fail_prom;
2780	}
2781
2782	/* Read PCI VPD. */
2783 next:
2784	if (PCI_VPDRES_ISLARGE(CAS_ROM_READ_1(sc,
2785	    j + PCI_VPDRES_BYTE0)) == 0) {
2786		device_printf(dev, "no large PCI VPD\n");
2787		goto fail_prom;
2788	}
2789
2790	i = (CAS_ROM_READ_1(sc, j + PCI_VPDRES_LARGE_LEN_MSB) << 8) |
2791	    CAS_ROM_READ_1(sc, j + PCI_VPDRES_LARGE_LEN_LSB);
2792	switch (PCI_VPDRES_LARGE_NAME(CAS_ROM_READ_1(sc,
2793	    j + PCI_VPDRES_BYTE0))) {
2794	case PCI_VPDRES_TYPE_ID_STRING:
2795		/* Skip identifier string. */
2796		j += PCI_VPDRES_LARGE_SIZE + i;
2797		goto next;
2798	case PCI_VPDRES_TYPE_VPD:
2799		for (j += PCI_VPDRES_LARGE_SIZE; i > 0;
2800		    i -= PCI_VPD_SIZE + CAS_ROM_READ_1(sc, j + PCI_VPD_LEN),
2801		    j += PCI_VPD_SIZE + CAS_ROM_READ_1(sc, j + PCI_VPD_LEN)) {
2802			if (CAS_ROM_READ_1(sc, j + PCI_VPD_KEY0) != 'Z')
2803				/* no Enhanced VPD */
2804				continue;
2805			if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE) != 'I')
2806				/* no instance property */
2807				continue;
2808			if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE + 3) == 'B') {
2809				/* byte array */
2810				if (CAS_ROM_READ_1(sc,
2811				    j + PCI_VPD_SIZE + 4) != ETHER_ADDR_LEN)
2812					continue;
2813				bus_read_region_1(sc->sc_res[CAS_RES_MEM],
2814				    CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 5,
2815				    buf, sizeof(buf));
2816				buf[sizeof(buf) - 1] = '\0';
2817				if (strcmp(buf, CAS_LOCAL_MAC_ADDRESS) != 0)
2818					continue;
2819				bus_read_region_1(sc->sc_res[CAS_RES_MEM],
2820				    CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE +
2821				    5 + sizeof(CAS_LOCAL_MAC_ADDRESS),
2822				    enaddr[lma], sizeof(enaddr[lma]));
2823				lma++;
2824				if (lma == 4 && phy == 4)
2825					break;
2826			} else if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE + 3) ==
2827			   'S') {
2828				/* string */
2829				if (CAS_ROM_READ_1(sc,
2830				    j + PCI_VPD_SIZE + 4) !=
2831				    sizeof(CAS_PHY_TYPE_PCS))
2832					continue;
2833				bus_read_region_1(sc->sc_res[CAS_RES_MEM],
2834				    CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 5,
2835				    buf, sizeof(buf));
2836				buf[sizeof(buf) - 1] = '\0';
2837				if (strcmp(buf, CAS_PHY_INTERFACE) == 0)
2838					k = sizeof(CAS_PHY_INTERFACE);
2839				else if (strcmp(buf, CAS_PHY_TYPE) == 0)
2840					k = sizeof(CAS_PHY_TYPE);
2841				else
2842					continue;
2843				bus_read_region_1(sc->sc_res[CAS_RES_MEM],
2844				    CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE +
2845				    5 + k, buf, sizeof(buf));
2846				buf[sizeof(buf) - 1] = '\0';
2847				if (strcmp(buf, CAS_PHY_TYPE_PCS) == 0)
2848					pcs[phy] = 1;
2849				phy++;
2850				if (lma == 4 && phy == 4)
2851					break;
2852			}
2853		}
2854		break;
2855	default:
2856		device_printf(dev, "unexpected PCI VPD\n");
2857		goto fail_prom;
2858	}
2859
2860 fail_prom:
2861	CAS_WRITE_4(sc, CAS_BIM_LDEV_OEN, 0);
2862
2863	if (lma == 0) {
2864		device_printf(dev, "could not determine Ethernet address\n");
2865		goto fail;
2866	}
2867	i = 0;
2868	if (lma > 1 && pci_get_slot(dev) < sizeof(enaddr) / sizeof(*enaddr))
2869		i = pci_get_slot(dev);
2870	memcpy(sc->sc_enaddr, enaddr[i], ETHER_ADDR_LEN);
2871
2872	if (phy == 0) {
2873		device_printf(dev, "could not determine PHY type\n");
2874		goto fail;
2875	}
2876	i = 0;
2877	if (phy > 1 && pci_get_slot(dev) < sizeof(pcs) / sizeof(*pcs))
2878		i = pci_get_slot(dev);
2879	if (pcs[i] != 0)
2880		sc->sc_flags |= CAS_SERDES;
2881#endif
2882
2883	if (cas_attach(sc) != 0) {
2884		device_printf(dev, "could not be attached\n");
2885		goto fail;
2886	}
2887
2888	if (bus_setup_intr(dev, sc->sc_res[CAS_RES_INTR], INTR_TYPE_NET |
2889	    INTR_MPSAFE, cas_intr, NULL, sc, &sc->sc_ih) != 0) {
2890		device_printf(dev, "failed to set up interrupt\n");
2891		cas_detach(sc);
2892		goto fail;
2893	}
2894	return (0);
2895
2896 fail:
2897	CAS_LOCK_DESTROY(sc);
2898	bus_release_resources(dev, cas_pci_res_spec, sc->sc_res);
2899	return (ENXIO);
2900}
2901
2902static int
2903cas_pci_detach(device_t dev)
2904{
2905	struct cas_softc *sc;
2906
2907	sc = device_get_softc(dev);
2908	bus_teardown_intr(dev, sc->sc_res[CAS_RES_INTR], sc->sc_ih);
2909	cas_detach(sc);
2910	CAS_LOCK_DESTROY(sc);
2911	bus_release_resources(dev, cas_pci_res_spec, sc->sc_res);
2912	return (0);
2913}
2914
2915static int
2916cas_pci_suspend(device_t dev)
2917{
2918
2919	cas_suspend(device_get_softc(dev));
2920	return (0);
2921}
2922
2923static int
2924cas_pci_resume(device_t dev)
2925{
2926
2927	cas_resume(device_get_softc(dev));
2928	return (0);
2929}
2930