if_ath_tx.c revision 227651
1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath_tx.c 227651 2011-11-18 05:06:30Z adrian $");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42#include "opt_wlan.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/sysctl.h>
47#include <sys/mbuf.h>
48#include <sys/malloc.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/kernel.h>
52#include <sys/socket.h>
53#include <sys/sockio.h>
54#include <sys/errno.h>
55#include <sys/callout.h>
56#include <sys/bus.h>
57#include <sys/endian.h>
58#include <sys/kthread.h>
59#include <sys/taskqueue.h>
60#include <sys/priv.h>
61
62#include <machine/bus.h>
63
64#include <net/if.h>
65#include <net/if_dl.h>
66#include <net/if_media.h>
67#include <net/if_types.h>
68#include <net/if_arp.h>
69#include <net/ethernet.h>
70#include <net/if_llc.h>
71
72#include <net80211/ieee80211_var.h>
73#include <net80211/ieee80211_regdomain.h>
74#ifdef IEEE80211_SUPPORT_SUPERG
75#include <net80211/ieee80211_superg.h>
76#endif
77#ifdef IEEE80211_SUPPORT_TDMA
78#include <net80211/ieee80211_tdma.h>
79#endif
80#include <net80211/ieee80211_ht.h>
81
82#include <net/bpf.h>
83
84#ifdef INET
85#include <netinet/in.h>
86#include <netinet/if_ether.h>
87#endif
88
89#include <dev/ath/if_athvar.h>
90#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
91#include <dev/ath/ath_hal/ah_diagcodes.h>
92
93#include <dev/ath/if_ath_debug.h>
94
95#ifdef ATH_TX99_DIAG
96#include <dev/ath/ath_tx99/ath_tx99.h>
97#endif
98
99#include <dev/ath/if_ath_misc.h>
100#include <dev/ath/if_ath_tx.h>
101#include <dev/ath/if_ath_tx_ht.h>
102
103/*
104 * How many retries to perform in software
105 */
106#define	SWMAX_RETRIES		10
107
108static int ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an,
109    int tid);
110static int ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an,
111    int tid);
112static ieee80211_seq ath_tx_tid_seqno_assign(struct ath_softc *sc,
113    struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0);
114static int ath_tx_action_frame_override_queue(struct ath_softc *sc,
115    struct ieee80211_node *ni, struct mbuf *m0, int *tid);
116
117/*
118 * Whether to use the 11n rate scenario functions or not
119 */
120static inline int
121ath_tx_is_11n(struct ath_softc *sc)
122{
123	return (sc->sc_ah->ah_magic == 0x20065416);
124}
125
126/*
127 * Obtain the current TID from the given frame.
128 *
129 * Non-QoS frames need to go into TID 16 (IEEE80211_NONQOS_TID.)
130 * This has implications for which AC/priority the packet is placed
131 * in.
132 */
133static int
134ath_tx_gettid(struct ath_softc *sc, const struct mbuf *m0)
135{
136	const struct ieee80211_frame *wh;
137	int pri = M_WME_GETAC(m0);
138
139	wh = mtod(m0, const struct ieee80211_frame *);
140	if (! IEEE80211_QOS_HAS_SEQ(wh))
141		return IEEE80211_NONQOS_TID;
142	else
143		return WME_AC_TO_TID(pri);
144}
145
146/*
147 * Determine what the correct AC queue for the given frame
148 * should be.
149 *
150 * This code assumes that the TIDs map consistently to
151 * the underlying hardware (or software) ath_txq.
152 * Since the sender may try to set an AC which is
153 * arbitrary, non-QoS TIDs may end up being put on
154 * completely different ACs. There's no way to put a
155 * TID into multiple ath_txq's for scheduling, so
156 * for now we override the AC/TXQ selection and set
157 * non-QOS TID frames into the BE queue.
158 *
159 * This may be completely incorrect - specifically,
160 * some management frames may end up out of order
161 * compared to the QoS traffic they're controlling.
162 * I'll look into this later.
163 */
164static int
165ath_tx_getac(struct ath_softc *sc, const struct mbuf *m0)
166{
167	const struct ieee80211_frame *wh;
168	int pri = M_WME_GETAC(m0);
169	wh = mtod(m0, const struct ieee80211_frame *);
170	if (IEEE80211_QOS_HAS_SEQ(wh))
171		return pri;
172
173	return WME_AC_BE;
174}
175
176void
177ath_txfrag_cleanup(struct ath_softc *sc,
178	ath_bufhead *frags, struct ieee80211_node *ni)
179{
180	struct ath_buf *bf, *next;
181
182	ATH_TXBUF_LOCK_ASSERT(sc);
183
184	TAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
185		/* NB: bf assumed clean */
186		TAILQ_REMOVE(frags, bf, bf_list);
187		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
188		ieee80211_node_decref(ni);
189	}
190}
191
192/*
193 * Setup xmit of a fragmented frame.  Allocate a buffer
194 * for each frag and bump the node reference count to
195 * reflect the held reference to be setup by ath_tx_start.
196 */
197int
198ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
199	struct mbuf *m0, struct ieee80211_node *ni)
200{
201	struct mbuf *m;
202	struct ath_buf *bf;
203
204	ATH_TXBUF_LOCK(sc);
205	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
206		bf = _ath_getbuf_locked(sc);
207		if (bf == NULL) {	/* out of buffers, cleanup */
208			ath_txfrag_cleanup(sc, frags, ni);
209			break;
210		}
211		ieee80211_node_incref(ni);
212		TAILQ_INSERT_TAIL(frags, bf, bf_list);
213	}
214	ATH_TXBUF_UNLOCK(sc);
215
216	return !TAILQ_EMPTY(frags);
217}
218
219/*
220 * Reclaim mbuf resources.  For fragmented frames we
221 * need to claim each frag chained with m_nextpkt.
222 */
223void
224ath_freetx(struct mbuf *m)
225{
226	struct mbuf *next;
227
228	do {
229		next = m->m_nextpkt;
230		m->m_nextpkt = NULL;
231		m_freem(m);
232	} while ((m = next) != NULL);
233}
234
235static int
236ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
237{
238	struct mbuf *m;
239	int error;
240
241	/*
242	 * Load the DMA map so any coalescing is done.  This
243	 * also calculates the number of descriptors we need.
244	 */
245	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
246				     bf->bf_segs, &bf->bf_nseg,
247				     BUS_DMA_NOWAIT);
248	if (error == EFBIG) {
249		/* XXX packet requires too many descriptors */
250		bf->bf_nseg = ATH_TXDESC+1;
251	} else if (error != 0) {
252		sc->sc_stats.ast_tx_busdma++;
253		ath_freetx(m0);
254		return error;
255	}
256	/*
257	 * Discard null packets and check for packets that
258	 * require too many TX descriptors.  We try to convert
259	 * the latter to a cluster.
260	 */
261	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
262		sc->sc_stats.ast_tx_linear++;
263		m = m_collapse(m0, M_DONTWAIT, ATH_TXDESC);
264		if (m == NULL) {
265			ath_freetx(m0);
266			sc->sc_stats.ast_tx_nombuf++;
267			return ENOMEM;
268		}
269		m0 = m;
270		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
271					     bf->bf_segs, &bf->bf_nseg,
272					     BUS_DMA_NOWAIT);
273		if (error != 0) {
274			sc->sc_stats.ast_tx_busdma++;
275			ath_freetx(m0);
276			return error;
277		}
278		KASSERT(bf->bf_nseg <= ATH_TXDESC,
279		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
280	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
281		sc->sc_stats.ast_tx_nodata++;
282		ath_freetx(m0);
283		return EIO;
284	}
285	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
286		__func__, m0, m0->m_pkthdr.len);
287	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
288	bf->bf_m = m0;
289
290	return 0;
291}
292
293/*
294 * Chain together segments+descriptors for a non-11n frame.
295 */
296static void
297ath_tx_chaindesclist(struct ath_softc *sc, struct ath_buf *bf)
298{
299	struct ath_hal *ah = sc->sc_ah;
300	struct ath_desc *ds, *ds0;
301	int i;
302
303	/*
304	 * Fillin the remainder of the descriptor info.
305	 */
306	ds0 = ds = bf->bf_desc;
307	for (i = 0; i < bf->bf_nseg; i++, ds++) {
308		ds->ds_data = bf->bf_segs[i].ds_addr;
309		if (i == bf->bf_nseg - 1)
310			ds->ds_link = 0;
311		else
312			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
313		ath_hal_filltxdesc(ah, ds
314			, bf->bf_segs[i].ds_len	/* segment length */
315			, i == 0		/* first segment */
316			, i == bf->bf_nseg - 1	/* last segment */
317			, ds0			/* first descriptor */
318		);
319		DPRINTF(sc, ATH_DEBUG_XMIT,
320			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
321			__func__, i, ds->ds_link, ds->ds_data,
322			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
323		bf->bf_lastds = ds;
324	}
325}
326
327/*
328 * Fill in the descriptor list for a aggregate subframe.
329 *
330 * The subframe is returned with the ds_link field in the last subframe
331 * pointing to 0.
332 */
333static void
334ath_tx_chaindesclist_subframe(struct ath_softc *sc, struct ath_buf *bf)
335{
336	struct ath_hal *ah = sc->sc_ah;
337	struct ath_desc *ds, *ds0;
338	int i;
339
340	ds0 = ds = bf->bf_desc;
341
342	/*
343	 * There's no need to call ath_hal_setupfirsttxdesc here;
344	 * That's only going to occur for the first frame in an aggregate.
345	 */
346	for (i = 0; i < bf->bf_nseg; i++, ds++) {
347		ds->ds_data = bf->bf_segs[i].ds_addr;
348		if (i == bf->bf_nseg - 1)
349			ds->ds_link = 0;
350		else
351			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
352
353		/*
354		 * This performs the setup for an aggregate frame.
355		 * This includes enabling the aggregate flags if needed.
356		 */
357		ath_hal_chaintxdesc(ah, ds,
358		    bf->bf_state.bfs_pktlen,
359		    bf->bf_state.bfs_hdrlen,
360		    HAL_PKT_TYPE_AMPDU,	/* forces aggregate bits to be set */
361		    bf->bf_state.bfs_keyix,
362		    0,			/* cipher, calculated from keyix */
363		    bf->bf_state.bfs_ndelim,
364		    bf->bf_segs[i].ds_len,	/* segment length */
365		    i == 0,		/* first segment */
366		    i == bf->bf_nseg - 1	/* last segment */
367		);
368
369		DPRINTF(sc, ATH_DEBUG_XMIT,
370			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
371			__func__, i, ds->ds_link, ds->ds_data,
372			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
373		bf->bf_lastds = ds;
374	}
375}
376
377/*
378 * Setup segments+descriptors for an 11n aggregate.
379 * bf_first is the first buffer in the aggregate.
380 * The descriptor list must already been linked together using
381 * bf->bf_next.
382 */
383static void
384ath_tx_setds_11n(struct ath_softc *sc, struct ath_buf *bf_first)
385{
386	struct ath_buf *bf, *bf_prev = NULL;
387
388	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: nframes=%d, al=%d\n",
389	    __func__, bf_first->bf_state.bfs_nframes,
390	    bf_first->bf_state.bfs_al);
391
392	/*
393	 * Setup all descriptors of all subframes.
394	 */
395	bf = bf_first;
396	while (bf != NULL) {
397		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
398		    "%s: bf=%p, nseg=%d, pktlen=%d, seqno=%d\n",
399		    __func__, bf, bf->bf_nseg, bf->bf_state.bfs_pktlen,
400		    SEQNO(bf->bf_state.bfs_seqno));
401
402		/* Sub-frame setup */
403		ath_tx_chaindesclist_subframe(sc, bf);
404
405		/*
406		 * Link the last descriptor of the previous frame
407		 * to the beginning descriptor of this frame.
408		 */
409		if (bf_prev != NULL)
410			bf_prev->bf_lastds->ds_link = bf->bf_daddr;
411
412		/* Save a copy so we can link the next descriptor in */
413		bf_prev = bf;
414		bf = bf->bf_next;
415	}
416
417	/*
418	 * Setup first descriptor of first frame.
419	 * chaintxdesc() overwrites the descriptor entries;
420	 * setupfirsttxdesc() merges in things.
421	 * Otherwise various fields aren't set correctly (eg flags).
422	 */
423	ath_hal_setupfirsttxdesc(sc->sc_ah,
424	    bf_first->bf_desc,
425	    bf_first->bf_state.bfs_al,
426	    bf_first->bf_state.bfs_flags | HAL_TXDESC_INTREQ,
427	    bf_first->bf_state.bfs_txpower,
428	    bf_first->bf_state.bfs_txrate0,
429	    bf_first->bf_state.bfs_try0,
430	    bf_first->bf_state.bfs_txantenna,
431	    bf_first->bf_state.bfs_ctsrate,
432	    bf_first->bf_state.bfs_ctsduration);
433
434	/*
435	 * Setup the last descriptor in the list.
436	 * bf_prev points to the last; bf is NULL here.
437	 */
438	ath_hal_setuplasttxdesc(sc->sc_ah, bf_prev->bf_desc, bf_first->bf_desc);
439
440	/*
441	 * Set the first descriptor bf_lastds field to point to
442	 * the last descriptor in the last subframe, that's where
443	 * the status update will occur.
444	 */
445	bf_first->bf_lastds = bf_prev->bf_lastds;
446
447	/*
448	 * And bf_last in the first descriptor points to the end of
449	 * the aggregate list.
450	 */
451	bf_first->bf_last = bf_prev;
452
453	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: end\n", __func__);
454}
455
456static void
457ath_tx_handoff_mcast(struct ath_softc *sc, struct ath_txq *txq,
458    struct ath_buf *bf)
459{
460	ATH_TXQ_LOCK_ASSERT(txq);
461	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
462	     ("%s: busy status 0x%x", __func__, bf->bf_flags));
463	if (txq->axq_link != NULL) {
464		struct ath_buf *last = ATH_TXQ_LAST(txq, axq_q_s);
465		struct ieee80211_frame *wh;
466
467		/* mark previous frame */
468		wh = mtod(last->bf_m, struct ieee80211_frame *);
469		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
470		bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap,
471		    BUS_DMASYNC_PREWRITE);
472
473		/* link descriptor */
474		*txq->axq_link = bf->bf_daddr;
475	}
476	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
477	txq->axq_link = &bf->bf_lastds->ds_link;
478}
479
480/*
481 * Hand-off packet to a hardware queue.
482 */
483static void
484ath_tx_handoff_hw(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
485{
486	struct ath_hal *ah = sc->sc_ah;
487
488	/*
489	 * Insert the frame on the outbound list and pass it on
490	 * to the hardware.  Multicast frames buffered for power
491	 * save stations and transmit from the CAB queue are stored
492	 * on a s/w only queue and loaded on to the CAB queue in
493	 * the SWBA handler since frames only go out on DTIM and
494	 * to avoid possible races.
495	 */
496	ATH_TXQ_LOCK_ASSERT(txq);
497	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
498	     ("%s: busy status 0x%x", __func__, bf->bf_flags));
499	KASSERT(txq->axq_qnum != ATH_TXQ_SWQ,
500	     ("ath_tx_handoff_hw called for mcast queue"));
501
502#if 0
503	/*
504	 * This causes a LOR. Find out where the PCU lock is being
505	 * held whilst the TXQ lock is grabbed - that shouldn't
506	 * be occuring.
507	 */
508	ATH_PCU_LOCK(sc);
509	if (sc->sc_inreset_cnt) {
510		ATH_PCU_UNLOCK(sc);
511		DPRINTF(sc, ATH_DEBUG_RESET,
512		    "%s: called with sc_in_reset != 0\n",
513		    __func__);
514		DPRINTF(sc, ATH_DEBUG_XMIT,
515		    "%s: queued: TXDP[%u] = %p (%p) depth %d\n",
516		    __func__, txq->axq_qnum,
517		    (caddr_t)bf->bf_daddr, bf->bf_desc,
518		    txq->axq_depth);
519		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
520		if (bf->bf_state.bfs_aggr)
521			txq->axq_aggr_depth++;
522		/*
523		 * There's no need to update axq_link; the hardware
524		 * is in reset and once the reset is complete, any
525		 * non-empty queues will simply have DMA restarted.
526		 */
527		return;
528		}
529	ATH_PCU_UNLOCK(sc);
530#endif
531
532	/* For now, so not to generate whitespace diffs */
533	if (1) {
534#ifdef IEEE80211_SUPPORT_TDMA
535		int qbusy;
536
537		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
538		qbusy = ath_hal_txqenabled(ah, txq->axq_qnum);
539		if (txq->axq_link == NULL) {
540			/*
541			 * Be careful writing the address to TXDP.  If
542			 * the tx q is enabled then this write will be
543			 * ignored.  Normally this is not an issue but
544			 * when tdma is in use and the q is beacon gated
545			 * this race can occur.  If the q is busy then
546			 * defer the work to later--either when another
547			 * packet comes along or when we prepare a beacon
548			 * frame at SWBA.
549			 */
550			if (!qbusy) {
551				ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
552				txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
553				DPRINTF(sc, ATH_DEBUG_XMIT,
554				    "%s: TXDP[%u] = %p (%p) depth %d\n",
555				    __func__, txq->axq_qnum,
556				    (caddr_t)bf->bf_daddr, bf->bf_desc,
557				    txq->axq_depth);
558			} else {
559				txq->axq_flags |= ATH_TXQ_PUTPENDING;
560				DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
561				    "%s: Q%u busy, defer enable\n", __func__,
562				    txq->axq_qnum);
563			}
564		} else {
565			*txq->axq_link = bf->bf_daddr;
566			DPRINTF(sc, ATH_DEBUG_XMIT,
567			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
568			    txq->axq_qnum, txq->axq_link,
569			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
570			if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) {
571				/*
572				 * The q was busy when we previously tried
573				 * to write the address of the first buffer
574				 * in the chain.  Since it's not busy now
575				 * handle this chore.  We are certain the
576				 * buffer at the front is the right one since
577				 * axq_link is NULL only when the buffer list
578				 * is/was empty.
579				 */
580				ath_hal_puttxbuf(ah, txq->axq_qnum,
581					TAILQ_FIRST(&txq->axq_q)->bf_daddr);
582				txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
583				DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
584				    "%s: Q%u restarted\n", __func__,
585				    txq->axq_qnum);
586			}
587		}
588#else
589		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
590		if (txq->axq_link == NULL) {
591			ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
592			DPRINTF(sc, ATH_DEBUG_XMIT,
593			    "%s: TXDP[%u] = %p (%p) depth %d\n",
594			    __func__, txq->axq_qnum,
595			    (caddr_t)bf->bf_daddr, bf->bf_desc,
596			    txq->axq_depth);
597		} else {
598			*txq->axq_link = bf->bf_daddr;
599			DPRINTF(sc, ATH_DEBUG_XMIT,
600			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
601			    txq->axq_qnum, txq->axq_link,
602			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
603		}
604#endif /* IEEE80211_SUPPORT_TDMA */
605		if (bf->bf_state.bfs_aggr)
606			txq->axq_aggr_depth++;
607		txq->axq_link = &bf->bf_lastds->ds_link;
608		ath_hal_txstart(ah, txq->axq_qnum);
609	}
610}
611
612/*
613 * Restart TX DMA for the given TXQ.
614 *
615 * This must be called whether the queue is empty or not.
616 */
617void
618ath_txq_restart_dma(struct ath_softc *sc, struct ath_txq *txq)
619{
620	struct ath_hal *ah = sc->sc_ah;
621	struct ath_buf *bf;
622
623	ATH_TXQ_LOCK_ASSERT(txq);
624
625	/* This is always going to be cleared, empty or not */
626	txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
627
628	bf = TAILQ_FIRST(&txq->axq_q);
629	if (bf == NULL)
630		return;
631
632	ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
633	txq->axq_link = &bf->bf_lastds->ds_link;
634	ath_hal_txstart(ah, txq->axq_qnum);
635}
636
637/*
638 * Hand off a packet to the hardware (or mcast queue.)
639 *
640 * The relevant hardware txq should be locked.
641 */
642static void
643ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
644{
645	ATH_TXQ_LOCK_ASSERT(txq);
646
647	if (txq->axq_qnum == ATH_TXQ_SWQ)
648		ath_tx_handoff_mcast(sc, txq, bf);
649	else
650		ath_tx_handoff_hw(sc, txq, bf);
651}
652
653static int
654ath_tx_tag_crypto(struct ath_softc *sc, struct ieee80211_node *ni,
655    struct mbuf *m0, int iswep, int isfrag, int *hdrlen, int *pktlen, int *keyix)
656{
657	if (iswep) {
658		const struct ieee80211_cipher *cip;
659		struct ieee80211_key *k;
660
661		/*
662		 * Construct the 802.11 header+trailer for an encrypted
663		 * frame. The only reason this can fail is because of an
664		 * unknown or unsupported cipher/key type.
665		 */
666		k = ieee80211_crypto_encap(ni, m0);
667		if (k == NULL) {
668			/*
669			 * This can happen when the key is yanked after the
670			 * frame was queued.  Just discard the frame; the
671			 * 802.11 layer counts failures and provides
672			 * debugging/diagnostics.
673			 */
674			return 0;
675		}
676		/*
677		 * Adjust the packet + header lengths for the crypto
678		 * additions and calculate the h/w key index.  When
679		 * a s/w mic is done the frame will have had any mic
680		 * added to it prior to entry so m0->m_pkthdr.len will
681		 * account for it. Otherwise we need to add it to the
682		 * packet length.
683		 */
684		cip = k->wk_cipher;
685		(*hdrlen) += cip->ic_header;
686		(*pktlen) += cip->ic_header + cip->ic_trailer;
687		/* NB: frags always have any TKIP MIC done in s/w */
688		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
689			(*pktlen) += cip->ic_miclen;
690		(*keyix) = k->wk_keyix;
691	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
692		/*
693		 * Use station key cache slot, if assigned.
694		 */
695		(*keyix) = ni->ni_ucastkey.wk_keyix;
696		if ((*keyix) == IEEE80211_KEYIX_NONE)
697			(*keyix) = HAL_TXKEYIX_INVALID;
698	} else
699		(*keyix) = HAL_TXKEYIX_INVALID;
700
701	return 1;
702}
703
704static uint8_t
705ath_tx_get_rtscts_rate(struct ath_hal *ah, const HAL_RATE_TABLE *rt,
706    int cix, int shortPreamble)
707{
708	uint8_t ctsrate;
709
710	/*
711	 * CTS transmit rate is derived from the transmit rate
712	 * by looking in the h/w rate table.  We must also factor
713	 * in whether or not a short preamble is to be used.
714	 */
715	/* NB: cix is set above where RTS/CTS is enabled */
716	KASSERT(cix != 0xff, ("cix not setup"));
717	ctsrate = rt->info[cix].rateCode;
718
719	/* XXX this should only matter for legacy rates */
720	if (shortPreamble)
721		ctsrate |= rt->info[cix].shortPreamble;
722
723	return ctsrate;
724}
725
726/*
727 * Calculate the RTS/CTS duration for legacy frames.
728 */
729static int
730ath_tx_calc_ctsduration(struct ath_hal *ah, int rix, int cix,
731    int shortPreamble, int pktlen, const HAL_RATE_TABLE *rt,
732    int flags)
733{
734	int ctsduration = 0;
735
736	/* This mustn't be called for HT modes */
737	if (rt->info[cix].phy == IEEE80211_T_HT) {
738		printf("%s: HT rate where it shouldn't be (0x%x)\n",
739		    __func__, rt->info[cix].rateCode);
740		return -1;
741	}
742
743	/*
744	 * Compute the transmit duration based on the frame
745	 * size and the size of an ACK frame.  We call into the
746	 * HAL to do the computation since it depends on the
747	 * characteristics of the actual PHY being used.
748	 *
749	 * NB: CTS is assumed the same size as an ACK so we can
750	 *     use the precalculated ACK durations.
751	 */
752	if (shortPreamble) {
753		if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
754			ctsduration += rt->info[cix].spAckDuration;
755		ctsduration += ath_hal_computetxtime(ah,
756			rt, pktlen, rix, AH_TRUE);
757		if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
758			ctsduration += rt->info[rix].spAckDuration;
759	} else {
760		if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
761			ctsduration += rt->info[cix].lpAckDuration;
762		ctsduration += ath_hal_computetxtime(ah,
763			rt, pktlen, rix, AH_FALSE);
764		if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
765			ctsduration += rt->info[rix].lpAckDuration;
766	}
767
768	return ctsduration;
769}
770
771/*
772 * Update the given ath_buf with updated rts/cts setup and duration
773 * values.
774 *
775 * To support rate lookups for each software retry, the rts/cts rate
776 * and cts duration must be re-calculated.
777 *
778 * This function assumes the RTS/CTS flags have been set as needed;
779 * mrr has been disabled; and the rate control lookup has been done.
780 *
781 * XXX TODO: MRR need only be disabled for the pre-11n NICs.
782 * XXX The 11n NICs support per-rate RTS/CTS configuration.
783 */
784static void
785ath_tx_set_rtscts(struct ath_softc *sc, struct ath_buf *bf)
786{
787	uint16_t ctsduration = 0;
788	uint8_t ctsrate = 0;
789	uint8_t rix = bf->bf_state.bfs_rc[0].rix;
790	uint8_t cix = 0;
791	const HAL_RATE_TABLE *rt = sc->sc_currates;
792
793	/*
794	 * No RTS/CTS enabled? Don't bother.
795	 */
796	if ((bf->bf_state.bfs_flags &
797	    (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) == 0) {
798		/* XXX is this really needed? */
799		bf->bf_state.bfs_ctsrate = 0;
800		bf->bf_state.bfs_ctsduration = 0;
801		return;
802	}
803
804	/*
805	 * If protection is enabled, use the protection rix control
806	 * rate. Otherwise use the rate0 control rate.
807	 */
808	if (bf->bf_state.bfs_doprot)
809		rix = sc->sc_protrix;
810	else
811		rix = bf->bf_state.bfs_rc[0].rix;
812
813	/*
814	 * If the raw path has hard-coded ctsrate0 to something,
815	 * use it.
816	 */
817	if (bf->bf_state.bfs_ctsrate0 != 0)
818		cix = ath_tx_findrix(sc, bf->bf_state.bfs_ctsrate0);
819	else
820		/* Control rate from above */
821		cix = rt->info[rix].controlRate;
822
823	/* Calculate the rtscts rate for the given cix */
824	ctsrate = ath_tx_get_rtscts_rate(sc->sc_ah, rt, cix,
825	    bf->bf_state.bfs_shpream);
826
827	/* The 11n chipsets do ctsduration calculations for you */
828	if (! ath_tx_is_11n(sc))
829		ctsduration = ath_tx_calc_ctsduration(sc->sc_ah, rix, cix,
830		    bf->bf_state.bfs_shpream, bf->bf_state.bfs_pktlen,
831		    rt, bf->bf_state.bfs_flags);
832
833	/* Squirrel away in ath_buf */
834	bf->bf_state.bfs_ctsrate = ctsrate;
835	bf->bf_state.bfs_ctsduration = ctsduration;
836
837	/*
838	 * Must disable multi-rate retry when using RTS/CTS.
839	 * XXX TODO: only for pre-11n NICs.
840	 */
841	bf->bf_state.bfs_ismrr = 0;
842	bf->bf_state.bfs_try0 =
843	    bf->bf_state.bfs_rc[0].tries = ATH_TXMGTTRY;	/* XXX ew */
844}
845
846/*
847 * Setup the descriptor chain for a normal or fast-frame
848 * frame.
849 */
850static void
851ath_tx_setds(struct ath_softc *sc, struct ath_buf *bf)
852{
853	struct ath_desc *ds = bf->bf_desc;
854	struct ath_hal *ah = sc->sc_ah;
855
856	ath_hal_setuptxdesc(ah, ds
857		, bf->bf_state.bfs_pktlen	/* packet length */
858		, bf->bf_state.bfs_hdrlen	/* header length */
859		, bf->bf_state.bfs_atype	/* Atheros packet type */
860		, bf->bf_state.bfs_txpower	/* txpower */
861		, bf->bf_state.bfs_txrate0
862		, bf->bf_state.bfs_try0		/* series 0 rate/tries */
863		, bf->bf_state.bfs_keyix	/* key cache index */
864		, bf->bf_state.bfs_txantenna	/* antenna mode */
865		, bf->bf_state.bfs_flags	/* flags */
866		, bf->bf_state.bfs_ctsrate	/* rts/cts rate */
867		, bf->bf_state.bfs_ctsduration	/* rts/cts duration */
868	);
869
870	/*
871	 * This will be overriden when the descriptor chain is written.
872	 */
873	bf->bf_lastds = ds;
874	bf->bf_last = bf;
875
876	/* XXX TODO: Setup descriptor chain */
877}
878
879/*
880 * Do a rate lookup.
881 *
882 * This performs a rate lookup for the given ath_buf only if it's required.
883 * Non-data frames and raw frames don't require it.
884 *
885 * This populates the primary and MRR entries; MRR values are
886 * then disabled later on if something requires it (eg RTS/CTS on
887 * pre-11n chipsets.
888 *
889 * This needs to be done before the RTS/CTS fields are calculated
890 * as they may depend upon the rate chosen.
891 */
892static void
893ath_tx_do_ratelookup(struct ath_softc *sc, struct ath_buf *bf)
894{
895	uint8_t rate, rix;
896	int try0;
897
898	if (! bf->bf_state.bfs_doratelookup)
899		return;
900
901	/* Get rid of any previous state */
902	bzero(bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
903
904	ATH_NODE_LOCK(ATH_NODE(bf->bf_node));
905	ath_rate_findrate(sc, ATH_NODE(bf->bf_node), bf->bf_state.bfs_shpream,
906	    bf->bf_state.bfs_pktlen, &rix, &try0, &rate);
907
908	/* In case MRR is disabled, make sure rc[0] is setup correctly */
909	bf->bf_state.bfs_rc[0].rix = rix;
910	bf->bf_state.bfs_rc[0].ratecode = rate;
911	bf->bf_state.bfs_rc[0].tries = try0;
912
913	if (bf->bf_state.bfs_ismrr && try0 != ATH_TXMAXTRY)
914		ath_rate_getxtxrates(sc, ATH_NODE(bf->bf_node), rix,
915		    bf->bf_state.bfs_rc);
916	ATH_NODE_UNLOCK(ATH_NODE(bf->bf_node));
917
918	sc->sc_txrix = rix;	/* for LED blinking */
919	sc->sc_lastdatarix = rix;	/* for fast frames */
920	bf->bf_state.bfs_try0 = try0;
921	bf->bf_state.bfs_txrate0 = rate;
922}
923
924/*
925 * Set the rate control fields in the given descriptor based on
926 * the bf_state fields and node state.
927 *
928 * The bfs fields should already be set with the relevant rate
929 * control information, including whether MRR is to be enabled.
930 *
931 * Since the FreeBSD HAL currently sets up the first TX rate
932 * in ath_hal_setuptxdesc(), this will setup the MRR
933 * conditionally for the pre-11n chips, and call ath_buf_set_rate
934 * unconditionally for 11n chips. These require the 11n rate
935 * scenario to be set if MCS rates are enabled, so it's easier
936 * to just always call it. The caller can then only set rates 2, 3
937 * and 4 if multi-rate retry is needed.
938 */
939static void
940ath_tx_set_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
941    struct ath_buf *bf)
942{
943	struct ath_rc_series *rc = bf->bf_state.bfs_rc;
944
945	/* If mrr is disabled, blank tries 1, 2, 3 */
946	if (! bf->bf_state.bfs_ismrr)
947		rc[1].tries = rc[2].tries = rc[3].tries = 0;
948
949	/*
950	 * Always call - that way a retried descriptor will
951	 * have the MRR fields overwritten.
952	 *
953	 * XXX TODO: see if this is really needed - setting up
954	 * the first descriptor should set the MRR fields to 0
955	 * for us anyway.
956	 */
957	if (ath_tx_is_11n(sc)) {
958		ath_buf_set_rate(sc, ni, bf);
959	} else {
960		ath_hal_setupxtxdesc(sc->sc_ah, bf->bf_desc
961			, rc[1].ratecode, rc[1].tries
962			, rc[2].ratecode, rc[2].tries
963			, rc[3].ratecode, rc[3].tries
964		);
965	}
966}
967
968/*
969 * Transmit the given frame to the hardware.
970 *
971 * The frame must already be setup; rate control must already have
972 * been done.
973 *
974 * XXX since the TXQ lock is being held here (and I dislike holding
975 * it for this long when not doing software aggregation), later on
976 * break this function into "setup_normal" and "xmit_normal". The
977 * lock only needs to be held for the ath_tx_handoff call.
978 */
979static void
980ath_tx_xmit_normal(struct ath_softc *sc, struct ath_txq *txq,
981    struct ath_buf *bf)
982{
983
984	ATH_TXQ_LOCK_ASSERT(txq);
985
986	/* Setup the descriptor before handoff */
987	ath_tx_do_ratelookup(sc, bf);
988	ath_tx_rate_fill_rcflags(sc, bf);
989	ath_tx_set_rtscts(sc, bf);
990	ath_tx_setds(sc, bf);
991	ath_tx_set_ratectrl(sc, bf->bf_node, bf);
992	ath_tx_chaindesclist(sc, bf);
993
994	/* Hand off to hardware */
995	ath_tx_handoff(sc, txq, bf);
996}
997
998
999
1000static int
1001ath_tx_normal_setup(struct ath_softc *sc, struct ieee80211_node *ni,
1002    struct ath_buf *bf, struct mbuf *m0)
1003{
1004	struct ieee80211vap *vap = ni->ni_vap;
1005	struct ath_vap *avp = ATH_VAP(vap);
1006	struct ath_hal *ah = sc->sc_ah;
1007	struct ifnet *ifp = sc->sc_ifp;
1008	struct ieee80211com *ic = ifp->if_l2com;
1009	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1010	int error, iswep, ismcast, isfrag, ismrr;
1011	int keyix, hdrlen, pktlen, try0 = 0;
1012	u_int8_t rix = 0, txrate = 0;
1013	struct ath_desc *ds;
1014	struct ath_txq *txq;
1015	struct ieee80211_frame *wh;
1016	u_int subtype, flags;
1017	HAL_PKT_TYPE atype;
1018	const HAL_RATE_TABLE *rt;
1019	HAL_BOOL shortPreamble;
1020	struct ath_node *an;
1021	u_int pri;
1022
1023	wh = mtod(m0, struct ieee80211_frame *);
1024	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
1025	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1026	isfrag = m0->m_flags & M_FRAG;
1027	hdrlen = ieee80211_anyhdrsize(wh);
1028	/*
1029	 * Packet length must not include any
1030	 * pad bytes; deduct them here.
1031	 */
1032	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
1033
1034	/* Handle encryption twiddling if needed */
1035	if (! ath_tx_tag_crypto(sc, ni, m0, iswep, isfrag, &hdrlen,
1036	    &pktlen, &keyix)) {
1037		ath_freetx(m0);
1038		return EIO;
1039	}
1040
1041	/* packet header may have moved, reset our local pointer */
1042	wh = mtod(m0, struct ieee80211_frame *);
1043
1044	pktlen += IEEE80211_CRC_LEN;
1045
1046	/*
1047	 * Load the DMA map so any coalescing is done.  This
1048	 * also calculates the number of descriptors we need.
1049	 */
1050	error = ath_tx_dmasetup(sc, bf, m0);
1051	if (error != 0)
1052		return error;
1053	bf->bf_node = ni;			/* NB: held reference */
1054	m0 = bf->bf_m;				/* NB: may have changed */
1055	wh = mtod(m0, struct ieee80211_frame *);
1056
1057	/* setup descriptors */
1058	ds = bf->bf_desc;
1059	rt = sc->sc_currates;
1060	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1061
1062	/*
1063	 * NB: the 802.11 layer marks whether or not we should
1064	 * use short preamble based on the current mode and
1065	 * negotiated parameters.
1066	 */
1067	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1068	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
1069		shortPreamble = AH_TRUE;
1070		sc->sc_stats.ast_tx_shortpre++;
1071	} else {
1072		shortPreamble = AH_FALSE;
1073	}
1074
1075	an = ATH_NODE(ni);
1076	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
1077	ismrr = 0;				/* default no multi-rate retry*/
1078	pri = M_WME_GETAC(m0);			/* honor classification */
1079	/* XXX use txparams instead of fixed values */
1080	/*
1081	 * Calculate Atheros packet type from IEEE80211 packet header,
1082	 * setup for rate calculations, and select h/w transmit queue.
1083	 */
1084	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
1085	case IEEE80211_FC0_TYPE_MGT:
1086		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1087		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
1088			atype = HAL_PKT_TYPE_BEACON;
1089		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1090			atype = HAL_PKT_TYPE_PROBE_RESP;
1091		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
1092			atype = HAL_PKT_TYPE_ATIM;
1093		else
1094			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
1095		rix = an->an_mgmtrix;
1096		txrate = rt->info[rix].rateCode;
1097		if (shortPreamble)
1098			txrate |= rt->info[rix].shortPreamble;
1099		try0 = ATH_TXMGTTRY;
1100		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
1101		break;
1102	case IEEE80211_FC0_TYPE_CTL:
1103		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
1104		rix = an->an_mgmtrix;
1105		txrate = rt->info[rix].rateCode;
1106		if (shortPreamble)
1107			txrate |= rt->info[rix].shortPreamble;
1108		try0 = ATH_TXMGTTRY;
1109		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
1110		break;
1111	case IEEE80211_FC0_TYPE_DATA:
1112		atype = HAL_PKT_TYPE_NORMAL;		/* default */
1113		/*
1114		 * Data frames: multicast frames go out at a fixed rate,
1115		 * EAPOL frames use the mgmt frame rate; otherwise consult
1116		 * the rate control module for the rate to use.
1117		 */
1118		if (ismcast) {
1119			rix = an->an_mcastrix;
1120			txrate = rt->info[rix].rateCode;
1121			if (shortPreamble)
1122				txrate |= rt->info[rix].shortPreamble;
1123			try0 = 1;
1124		} else if (m0->m_flags & M_EAPOL) {
1125			/* XXX? maybe always use long preamble? */
1126			rix = an->an_mgmtrix;
1127			txrate = rt->info[rix].rateCode;
1128			if (shortPreamble)
1129				txrate |= rt->info[rix].shortPreamble;
1130			try0 = ATH_TXMAXTRY;	/* XXX?too many? */
1131		} else {
1132			/*
1133			 * Do rate lookup on each TX, rather than using
1134			 * the hard-coded TX information decided here.
1135			 */
1136			ismrr = 1;
1137			bf->bf_state.bfs_doratelookup = 1;
1138		}
1139		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
1140			flags |= HAL_TXDESC_NOACK;
1141		break;
1142	default:
1143		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
1144			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
1145		/* XXX statistic */
1146		ath_freetx(m0);
1147		return EIO;
1148	}
1149	txq = sc->sc_ac2q[pri];
1150
1151	/*
1152	 * When servicing one or more stations in power-save mode
1153	 * (or) if there is some mcast data waiting on the mcast
1154	 * queue (to prevent out of order delivery) multicast
1155	 * frames must be buffered until after the beacon.
1156	 */
1157	if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
1158		txq = &avp->av_mcastq;
1159
1160	/*
1161	 * Calculate miscellaneous flags.
1162	 */
1163	if (ismcast) {
1164		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
1165	} else if (pktlen > vap->iv_rtsthreshold &&
1166	    (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
1167		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
1168		sc->sc_stats.ast_tx_rts++;
1169	}
1170	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
1171		sc->sc_stats.ast_tx_noack++;
1172#ifdef IEEE80211_SUPPORT_TDMA
1173	if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
1174		DPRINTF(sc, ATH_DEBUG_TDMA,
1175		    "%s: discard frame, ACK required w/ TDMA\n", __func__);
1176		sc->sc_stats.ast_tdma_ack++;
1177		ath_freetx(m0);
1178		return EIO;
1179	}
1180#endif
1181
1182	/*
1183	 * If 802.11g protection is enabled, determine whether
1184	 * to use RTS/CTS or just CTS.  Note that this is only
1185	 * done for OFDM unicast frames.
1186	 */
1187	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1188	    rt->info[rix].phy == IEEE80211_T_OFDM &&
1189	    (flags & HAL_TXDESC_NOACK) == 0) {
1190		bf->bf_state.bfs_doprot = 1;
1191		/* XXX fragments must use CCK rates w/ protection */
1192		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) {
1193			flags |= HAL_TXDESC_RTSENA;
1194		} else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) {
1195			flags |= HAL_TXDESC_CTSENA;
1196		}
1197		/*
1198		 * For frags it would be desirable to use the
1199		 * highest CCK rate for RTS/CTS.  But stations
1200		 * farther away may detect it at a lower CCK rate
1201		 * so use the configured protection rate instead
1202		 * (for now).
1203		 */
1204		sc->sc_stats.ast_tx_protect++;
1205	}
1206
1207#if 0
1208	/*
1209	 * If 11n protection is enabled and it's a HT frame,
1210	 * enable RTS.
1211	 *
1212	 * XXX ic_htprotmode or ic_curhtprotmode?
1213	 * XXX should it_htprotmode only matter if ic_curhtprotmode
1214	 * XXX indicates it's not a HT pure environment?
1215	 */
1216	if ((ic->ic_htprotmode == IEEE80211_PROT_RTSCTS) &&
1217	    rt->info[rix].phy == IEEE80211_T_HT &&
1218	    (flags & HAL_TXDESC_NOACK) == 0) {
1219		cix = rt->info[sc->sc_protrix].controlRate;
1220	    	flags |= HAL_TXDESC_RTSENA;
1221		sc->sc_stats.ast_tx_htprotect++;
1222	}
1223#endif
1224
1225	/*
1226	 * Calculate duration.  This logically belongs in the 802.11
1227	 * layer but it lacks sufficient information to calculate it.
1228	 */
1229	if ((flags & HAL_TXDESC_NOACK) == 0 &&
1230	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
1231		u_int16_t dur;
1232		if (shortPreamble)
1233			dur = rt->info[rix].spAckDuration;
1234		else
1235			dur = rt->info[rix].lpAckDuration;
1236		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
1237			dur += dur;		/* additional SIFS+ACK */
1238			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
1239			/*
1240			 * Include the size of next fragment so NAV is
1241			 * updated properly.  The last fragment uses only
1242			 * the ACK duration
1243			 */
1244			dur += ath_hal_computetxtime(ah, rt,
1245					m0->m_nextpkt->m_pkthdr.len,
1246					rix, shortPreamble);
1247		}
1248		if (isfrag) {
1249			/*
1250			 * Force hardware to use computed duration for next
1251			 * fragment by disabling multi-rate retry which updates
1252			 * duration based on the multi-rate duration table.
1253			 */
1254			ismrr = 0;
1255			try0 = ATH_TXMGTTRY;	/* XXX? */
1256		}
1257		*(u_int16_t *)wh->i_dur = htole16(dur);
1258	}
1259
1260	/*
1261	 * Determine if a tx interrupt should be generated for
1262	 * this descriptor.  We take a tx interrupt to reap
1263	 * descriptors when the h/w hits an EOL condition or
1264	 * when the descriptor is specifically marked to generate
1265	 * an interrupt.  We periodically mark descriptors in this
1266	 * way to insure timely replenishing of the supply needed
1267	 * for sending frames.  Defering interrupts reduces system
1268	 * load and potentially allows more concurrent work to be
1269	 * done but if done to aggressively can cause senders to
1270	 * backup.
1271	 *
1272	 * NB: use >= to deal with sc_txintrperiod changing
1273	 *     dynamically through sysctl.
1274	 */
1275	if (flags & HAL_TXDESC_INTREQ) {
1276		txq->axq_intrcnt = 0;
1277	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
1278		flags |= HAL_TXDESC_INTREQ;
1279		txq->axq_intrcnt = 0;
1280	}
1281
1282	/* This point forward is actual TX bits */
1283
1284	/*
1285	 * At this point we are committed to sending the frame
1286	 * and we don't need to look at m_nextpkt; clear it in
1287	 * case this frame is part of frag chain.
1288	 */
1289	m0->m_nextpkt = NULL;
1290
1291	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
1292		ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len,
1293		    sc->sc_hwmap[rix].ieeerate, -1);
1294
1295	if (ieee80211_radiotap_active_vap(vap)) {
1296		u_int64_t tsf = ath_hal_gettsf64(ah);
1297
1298		sc->sc_tx_th.wt_tsf = htole64(tsf);
1299		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
1300		if (iswep)
1301			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1302		if (isfrag)
1303			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
1304		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
1305		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
1306		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
1307
1308		ieee80211_radiotap_tx(vap, m0);
1309	}
1310
1311	/* Blank the legacy rate array */
1312	bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
1313
1314	/*
1315	 * ath_buf_set_rate needs at least one rate/try to setup
1316	 * the rate scenario.
1317	 */
1318	bf->bf_state.bfs_rc[0].rix = rix;
1319	bf->bf_state.bfs_rc[0].tries = try0;
1320	bf->bf_state.bfs_rc[0].ratecode = txrate;
1321
1322	/* Store the decided rate index values away */
1323	bf->bf_state.bfs_pktlen = pktlen;
1324	bf->bf_state.bfs_hdrlen = hdrlen;
1325	bf->bf_state.bfs_atype = atype;
1326	bf->bf_state.bfs_txpower = ni->ni_txpower;
1327	bf->bf_state.bfs_txrate0 = txrate;
1328	bf->bf_state.bfs_try0 = try0;
1329	bf->bf_state.bfs_keyix = keyix;
1330	bf->bf_state.bfs_txantenna = sc->sc_txantenna;
1331	bf->bf_state.bfs_flags = flags;
1332	bf->bf_txflags = flags;
1333	bf->bf_state.bfs_shpream = shortPreamble;
1334
1335	/* XXX this should be done in ath_tx_setrate() */
1336	bf->bf_state.bfs_ctsrate0 = 0;	/* ie, no hard-coded ctsrate */
1337	bf->bf_state.bfs_ctsrate = 0;	/* calculated later */
1338	bf->bf_state.bfs_ctsduration = 0;
1339	bf->bf_state.bfs_ismrr = ismrr;
1340
1341	return 0;
1342}
1343
1344/*
1345 * Direct-dispatch the current frame to the hardware.
1346 *
1347 * This can be called by the net80211 code.
1348 *
1349 * XXX what about locking? Or, push the seqno assign into the
1350 * XXX aggregate scheduler so its serialised?
1351 */
1352int
1353ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni,
1354    struct ath_buf *bf, struct mbuf *m0)
1355{
1356	struct ieee80211vap *vap = ni->ni_vap;
1357	struct ath_vap *avp = ATH_VAP(vap);
1358	int r;
1359	u_int pri;
1360	int tid;
1361	struct ath_txq *txq;
1362	int ismcast;
1363	const struct ieee80211_frame *wh;
1364	int is_ampdu, is_ampdu_tx, is_ampdu_pending;
1365	ieee80211_seq seqno;
1366	uint8_t type, subtype;
1367
1368	/*
1369	 * Determine the target hardware queue.
1370	 *
1371	 * For multicast frames, the txq gets overridden to be the
1372	 * software TXQ and it's done via direct-dispatch.
1373	 *
1374	 * For any other frame, we do a TID/QoS lookup inside the frame
1375	 * to see what the TID should be. If it's a non-QoS frame, the
1376	 * AC and TID are overridden. The TID/TXQ code assumes the
1377	 * TID is on a predictable hardware TXQ, so we don't support
1378	 * having a node TID queued to multiple hardware TXQs.
1379	 * This may change in the future but would require some locking
1380	 * fudgery.
1381	 */
1382	pri = ath_tx_getac(sc, m0);
1383	tid = ath_tx_gettid(sc, m0);
1384
1385	txq = sc->sc_ac2q[pri];
1386	wh = mtod(m0, struct ieee80211_frame *);
1387	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1388	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1389	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1390
1391	/* A-MPDU TX */
1392	is_ampdu_tx = ath_tx_ampdu_running(sc, ATH_NODE(ni), tid);
1393	is_ampdu_pending = ath_tx_ampdu_pending(sc, ATH_NODE(ni), tid);
1394	is_ampdu = is_ampdu_tx | is_ampdu_pending;
1395
1396	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ac=%d, is_ampdu=%d\n",
1397	    __func__, tid, pri, is_ampdu);
1398
1399	/* Multicast frames go onto the software multicast queue */
1400	if (ismcast)
1401		txq = &avp->av_mcastq;
1402
1403	if ((! is_ampdu) && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
1404		txq = &avp->av_mcastq;
1405
1406	/* Do the generic frame setup */
1407	/* XXX should just bzero the bf_state? */
1408	bf->bf_state.bfs_dobaw = 0;
1409
1410	/* A-MPDU TX? Manually set sequence number */
1411	/* Don't do it whilst pending; the net80211 layer still assigns them */
1412	/* XXX do we need locking here? */
1413	if (is_ampdu_tx) {
1414		ATH_TXQ_LOCK(txq);
1415		/*
1416		 * Always call; this function will
1417		 * handle making sure that null data frames
1418		 * don't get a sequence number from the current
1419		 * TID and thus mess with the BAW.
1420		 */
1421		seqno = ath_tx_tid_seqno_assign(sc, ni, bf, m0);
1422		if (IEEE80211_QOS_HAS_SEQ(wh) &&
1423		    subtype != IEEE80211_FC0_SUBTYPE_QOS_NULL) {
1424			bf->bf_state.bfs_dobaw = 1;
1425		}
1426		ATH_TXQ_UNLOCK(txq);
1427	}
1428
1429	/*
1430	 * If needed, the sequence number has been assigned.
1431	 * Squirrel it away somewhere easy to get to.
1432	 */
1433	bf->bf_state.bfs_seqno = M_SEQNO_GET(m0) << IEEE80211_SEQ_SEQ_SHIFT;
1434
1435	/* Is ampdu pending? fetch the seqno and print it out */
1436	if (is_ampdu_pending)
1437		DPRINTF(sc, ATH_DEBUG_SW_TX,
1438		    "%s: tid %d: ampdu pending, seqno %d\n",
1439		    __func__, tid, M_SEQNO_GET(m0));
1440
1441	/* This also sets up the DMA map */
1442	r = ath_tx_normal_setup(sc, ni, bf, m0);
1443
1444	if (r != 0)
1445		return r;
1446
1447	/* At this point m0 could have changed! */
1448	m0 = bf->bf_m;
1449
1450#if 1
1451	/*
1452	 * If it's a multicast frame, do a direct-dispatch to the
1453	 * destination hardware queue. Don't bother software
1454	 * queuing it.
1455	 */
1456	/*
1457	 * If it's a BAR frame, do a direct dispatch to the
1458	 * destination hardware queue. Don't bother software
1459	 * queuing it, as the TID will now be paused.
1460	 * Sending a BAR frame can occur from the net80211 txa timer
1461	 * (ie, retries) or from the ath txtask (completion call.)
1462	 * It queues directly to hardware because the TID is paused
1463	 * at this point (and won't be unpaused until the BAR has
1464	 * either been TXed successfully or max retries has been
1465	 * reached.)
1466	 */
1467	if (txq == &avp->av_mcastq) {
1468		ATH_TXQ_LOCK(txq);
1469		ath_tx_xmit_normal(sc, txq, bf);
1470		ATH_TXQ_UNLOCK(txq);
1471	} else if (type == IEEE80211_FC0_TYPE_CTL &&
1472		    subtype == IEEE80211_FC0_SUBTYPE_BAR) {
1473		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
1474		    "%s: BAR: TX'ing direct\n", __func__);
1475		ATH_TXQ_LOCK(txq);
1476		ath_tx_xmit_normal(sc, txq, bf);
1477		ATH_TXQ_UNLOCK(txq);
1478	} else {
1479		/* add to software queue */
1480		ath_tx_swq(sc, ni, txq, bf);
1481	}
1482#else
1483	/*
1484	 * For now, since there's no software queue,
1485	 * direct-dispatch to the hardware.
1486	 */
1487	ATH_TXQ_LOCK(txq);
1488	ath_tx_xmit_normal(sc, txq, bf);
1489	ATH_TXQ_UNLOCK(txq);
1490#endif
1491
1492	return 0;
1493}
1494
1495static int
1496ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
1497	struct ath_buf *bf, struct mbuf *m0,
1498	const struct ieee80211_bpf_params *params)
1499{
1500	struct ifnet *ifp = sc->sc_ifp;
1501	struct ieee80211com *ic = ifp->if_l2com;
1502	struct ath_hal *ah = sc->sc_ah;
1503	struct ieee80211vap *vap = ni->ni_vap;
1504	int error, ismcast, ismrr;
1505	int keyix, hdrlen, pktlen, try0, txantenna;
1506	u_int8_t rix, txrate;
1507	struct ieee80211_frame *wh;
1508	u_int flags;
1509	HAL_PKT_TYPE atype;
1510	const HAL_RATE_TABLE *rt;
1511	struct ath_desc *ds;
1512	u_int pri;
1513	int o_tid = -1;
1514	int do_override;
1515
1516	wh = mtod(m0, struct ieee80211_frame *);
1517	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1518	hdrlen = ieee80211_anyhdrsize(wh);
1519	/*
1520	 * Packet length must not include any
1521	 * pad bytes; deduct them here.
1522	 */
1523	/* XXX honor IEEE80211_BPF_DATAPAD */
1524	pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
1525
1526
1527	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: ismcast=%d\n",
1528	    __func__, ismcast);
1529
1530	/* Handle encryption twiddling if needed */
1531	if (! ath_tx_tag_crypto(sc, ni,
1532	    m0, params->ibp_flags & IEEE80211_BPF_CRYPTO, 0,
1533	    &hdrlen, &pktlen, &keyix)) {
1534		ath_freetx(m0);
1535		return EIO;
1536	}
1537	/* packet header may have moved, reset our local pointer */
1538	wh = mtod(m0, struct ieee80211_frame *);
1539
1540	/* Do the generic frame setup */
1541	/* XXX should just bzero the bf_state? */
1542	bf->bf_state.bfs_dobaw = 0;
1543
1544	error = ath_tx_dmasetup(sc, bf, m0);
1545	if (error != 0)
1546		return error;
1547	m0 = bf->bf_m;				/* NB: may have changed */
1548	wh = mtod(m0, struct ieee80211_frame *);
1549	bf->bf_node = ni;			/* NB: held reference */
1550
1551	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
1552	flags |= HAL_TXDESC_INTREQ;		/* force interrupt */
1553	if (params->ibp_flags & IEEE80211_BPF_RTS)
1554		flags |= HAL_TXDESC_RTSENA;
1555	else if (params->ibp_flags & IEEE80211_BPF_CTS) {
1556		/* XXX assume 11g/11n protection? */
1557		bf->bf_state.bfs_doprot = 1;
1558		flags |= HAL_TXDESC_CTSENA;
1559	}
1560	/* XXX leave ismcast to injector? */
1561	if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
1562		flags |= HAL_TXDESC_NOACK;
1563
1564	rt = sc->sc_currates;
1565	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1566	rix = ath_tx_findrix(sc, params->ibp_rate0);
1567	txrate = rt->info[rix].rateCode;
1568	if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
1569		txrate |= rt->info[rix].shortPreamble;
1570	sc->sc_txrix = rix;
1571	try0 = params->ibp_try0;
1572	ismrr = (params->ibp_try1 != 0);
1573	txantenna = params->ibp_pri >> 2;
1574	if (txantenna == 0)			/* XXX? */
1575		txantenna = sc->sc_txantenna;
1576
1577	/*
1578	 * Since ctsrate is fixed, store it away for later
1579	 * use when the descriptor fields are being set.
1580	 */
1581	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA))
1582		bf->bf_state.bfs_ctsrate0 = params->ibp_ctsrate;
1583
1584	pri = params->ibp_pri & 3;
1585	/* Override pri if the frame isn't a QoS one */
1586	if (! IEEE80211_QOS_HAS_SEQ(wh))
1587		pri = ath_tx_getac(sc, m0);
1588
1589	/*
1590	 * NB: we mark all packets as type PSPOLL so the h/w won't
1591	 * set the sequence number, duration, etc.
1592	 */
1593	atype = HAL_PKT_TYPE_PSPOLL;
1594
1595	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
1596		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
1597		    sc->sc_hwmap[rix].ieeerate, -1);
1598
1599	if (ieee80211_radiotap_active_vap(vap)) {
1600		u_int64_t tsf = ath_hal_gettsf64(ah);
1601
1602		sc->sc_tx_th.wt_tsf = htole64(tsf);
1603		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
1604		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1605			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1606		if (m0->m_flags & M_FRAG)
1607			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
1608		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
1609		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
1610		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
1611
1612		ieee80211_radiotap_tx(vap, m0);
1613	}
1614
1615	/*
1616	 * Formulate first tx descriptor with tx controls.
1617	 */
1618	ds = bf->bf_desc;
1619	/* XXX check return value? */
1620
1621	/* Store the decided rate index values away */
1622	bf->bf_state.bfs_pktlen = pktlen;
1623	bf->bf_state.bfs_hdrlen = hdrlen;
1624	bf->bf_state.bfs_atype = atype;
1625	bf->bf_state.bfs_txpower = params->ibp_power;
1626	bf->bf_state.bfs_txrate0 = txrate;
1627	bf->bf_state.bfs_try0 = try0;
1628	bf->bf_state.bfs_keyix = keyix;
1629	bf->bf_state.bfs_txantenna = txantenna;
1630	bf->bf_state.bfs_flags = flags;
1631	bf->bf_txflags = flags;
1632	bf->bf_state.bfs_shpream =
1633	    !! (params->ibp_flags & IEEE80211_BPF_SHORTPRE);
1634
1635	/* XXX this should be done in ath_tx_setrate() */
1636	bf->bf_state.bfs_ctsrate = 0;
1637	bf->bf_state.bfs_ctsduration = 0;
1638	bf->bf_state.bfs_ismrr = ismrr;
1639
1640	/* Blank the legacy rate array */
1641	bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
1642
1643	bf->bf_state.bfs_rc[0].rix =
1644	    ath_tx_findrix(sc, params->ibp_rate0);
1645	bf->bf_state.bfs_rc[0].tries = try0;
1646	bf->bf_state.bfs_rc[0].ratecode = txrate;
1647
1648	if (ismrr) {
1649		int rix;
1650
1651		rix = ath_tx_findrix(sc, params->ibp_rate1);
1652		bf->bf_state.bfs_rc[1].rix = rix;
1653		bf->bf_state.bfs_rc[1].tries = params->ibp_try1;
1654
1655		rix = ath_tx_findrix(sc, params->ibp_rate2);
1656		bf->bf_state.bfs_rc[2].rix = rix;
1657		bf->bf_state.bfs_rc[2].tries = params->ibp_try2;
1658
1659		rix = ath_tx_findrix(sc, params->ibp_rate3);
1660		bf->bf_state.bfs_rc[3].rix = rix;
1661		bf->bf_state.bfs_rc[3].tries = params->ibp_try3;
1662	}
1663	/*
1664	 * All the required rate control decisions have been made;
1665	 * fill in the rc flags.
1666	 */
1667	ath_tx_rate_fill_rcflags(sc, bf);
1668
1669	/* NB: no buffered multicast in power save support */
1670
1671	/* XXX If it's an ADDBA, override the correct queue */
1672	do_override = ath_tx_action_frame_override_queue(sc, ni, m0, &o_tid);
1673
1674	/* Map ADDBA to the correct priority */
1675	if (do_override) {
1676#if 0
1677		device_printf(sc->sc_dev,
1678		    "%s: overriding tid %d pri %d -> %d\n",
1679		    __func__, o_tid, pri, TID_TO_WME_AC(o_tid));
1680#endif
1681		pri = TID_TO_WME_AC(o_tid);
1682	}
1683
1684	/*
1685	 * If we're overiding the ADDBA destination, dump directly
1686	 * into the hardware queue, right after any pending
1687	 * frames to that node are.
1688	 */
1689	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: dooverride=%d\n",
1690	    __func__, do_override);
1691
1692	if (do_override) {
1693		ATH_TXQ_LOCK(sc->sc_ac2q[pri]);
1694		ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf);
1695		ATH_TXQ_UNLOCK(sc->sc_ac2q[pri]);
1696	} else {
1697		/* Queue to software queue */
1698		ath_tx_swq(sc, ni, sc->sc_ac2q[pri], bf);
1699	}
1700
1701	return 0;
1702}
1703
1704/*
1705 * Send a raw frame.
1706 *
1707 * This can be called by net80211.
1708 */
1709int
1710ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1711	const struct ieee80211_bpf_params *params)
1712{
1713	struct ieee80211com *ic = ni->ni_ic;
1714	struct ifnet *ifp = ic->ic_ifp;
1715	struct ath_softc *sc = ifp->if_softc;
1716	struct ath_buf *bf;
1717	int error;
1718
1719	ATH_PCU_LOCK(sc);
1720	if (sc->sc_inreset_cnt > 0) {
1721		device_printf(sc->sc_dev, "%s: sc_inreset_cnt > 0; bailing\n",
1722		    __func__);
1723		error = EIO;
1724		ATH_PCU_UNLOCK(sc);
1725		goto bad0;
1726	}
1727	sc->sc_txstart_cnt++;
1728	ATH_PCU_UNLOCK(sc);
1729
1730	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
1731		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__,
1732		    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ?
1733			"!running" : "invalid");
1734		m_freem(m);
1735		error = ENETDOWN;
1736		goto bad;
1737	}
1738	/*
1739	 * Grab a TX buffer and associated resources.
1740	 */
1741	bf = ath_getbuf(sc);
1742	if (bf == NULL) {
1743		sc->sc_stats.ast_tx_nobuf++;
1744		m_freem(m);
1745		error = ENOBUFS;
1746		goto bad;
1747	}
1748
1749	if (params == NULL) {
1750		/*
1751		 * Legacy path; interpret frame contents to decide
1752		 * precisely how to send the frame.
1753		 */
1754		if (ath_tx_start(sc, ni, bf, m)) {
1755			error = EIO;		/* XXX */
1756			goto bad2;
1757		}
1758	} else {
1759		/*
1760		 * Caller supplied explicit parameters to use in
1761		 * sending the frame.
1762		 */
1763		if (ath_tx_raw_start(sc, ni, bf, m, params)) {
1764			error = EIO;		/* XXX */
1765			goto bad2;
1766		}
1767	}
1768	sc->sc_wd_timer = 5;
1769	ifp->if_opackets++;
1770	sc->sc_stats.ast_tx_raw++;
1771
1772	ATH_PCU_LOCK(sc);
1773	sc->sc_txstart_cnt--;
1774	ATH_PCU_UNLOCK(sc);
1775
1776	return 0;
1777bad2:
1778	ATH_TXBUF_LOCK(sc);
1779	TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1780	ATH_TXBUF_UNLOCK(sc);
1781bad:
1782	ATH_PCU_LOCK(sc);
1783	sc->sc_txstart_cnt--;
1784	ATH_PCU_UNLOCK(sc);
1785bad0:
1786	ifp->if_oerrors++;
1787	sc->sc_stats.ast_tx_raw_fail++;
1788	ieee80211_free_node(ni);
1789
1790	return error;
1791}
1792
1793/* Some helper functions */
1794
1795/*
1796 * ADDBA (and potentially others) need to be placed in the same
1797 * hardware queue as the TID/node it's relating to. This is so
1798 * it goes out after any pending non-aggregate frames to the
1799 * same node/TID.
1800 *
1801 * If this isn't done, the ADDBA can go out before the frames
1802 * queued in hardware. Even though these frames have a sequence
1803 * number -earlier- than the ADDBA can be transmitted (but
1804 * no frames whose sequence numbers are after the ADDBA should
1805 * be!) they'll arrive after the ADDBA - and the receiving end
1806 * will simply drop them as being out of the BAW.
1807 *
1808 * The frames can't be appended to the TID software queue - it'll
1809 * never be sent out. So these frames have to be directly
1810 * dispatched to the hardware, rather than queued in software.
1811 * So if this function returns true, the TXQ has to be
1812 * overridden and it has to be directly dispatched.
1813 *
1814 * It's a dirty hack, but someone's gotta do it.
1815 */
1816
1817/*
1818 * XXX doesn't belong here!
1819 */
1820static int
1821ieee80211_is_action(struct ieee80211_frame *wh)
1822{
1823	/* Type: Management frame? */
1824	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
1825	    IEEE80211_FC0_TYPE_MGT)
1826		return 0;
1827
1828	/* Subtype: Action frame? */
1829	if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) !=
1830	    IEEE80211_FC0_SUBTYPE_ACTION)
1831		return 0;
1832
1833	return 1;
1834}
1835
1836#define	MS(_v, _f)	(((_v) & _f) >> _f##_S)
1837/*
1838 * Return an alternate TID for ADDBA request frames.
1839 *
1840 * Yes, this likely should be done in the net80211 layer.
1841 */
1842static int
1843ath_tx_action_frame_override_queue(struct ath_softc *sc,
1844    struct ieee80211_node *ni,
1845    struct mbuf *m0, int *tid)
1846{
1847	struct ieee80211_frame *wh = mtod(m0, struct ieee80211_frame *);
1848	struct ieee80211_action_ba_addbarequest *ia;
1849	uint8_t *frm;
1850	uint16_t baparamset;
1851
1852	/* Not action frame? Bail */
1853	if (! ieee80211_is_action(wh))
1854		return 0;
1855
1856	/* XXX Not needed for frames we send? */
1857#if 0
1858	/* Correct length? */
1859	if (! ieee80211_parse_action(ni, m))
1860		return 0;
1861#endif
1862
1863	/* Extract out action frame */
1864	frm = (u_int8_t *)&wh[1];
1865	ia = (struct ieee80211_action_ba_addbarequest *) frm;
1866
1867	/* Not ADDBA? Bail */
1868	if (ia->rq_header.ia_category != IEEE80211_ACTION_CAT_BA)
1869		return 0;
1870	if (ia->rq_header.ia_action != IEEE80211_ACTION_BA_ADDBA_REQUEST)
1871		return 0;
1872
1873	/* Extract TID, return it */
1874	baparamset = le16toh(ia->rq_baparamset);
1875	*tid = (int) MS(baparamset, IEEE80211_BAPS_TID);
1876
1877	return 1;
1878}
1879#undef	MS
1880
1881/* Per-node software queue operations */
1882
1883/*
1884 * Add the current packet to the given BAW.
1885 * It is assumed that the current packet
1886 *
1887 * + fits inside the BAW;
1888 * + already has had a sequence number allocated.
1889 *
1890 * Since the BAW status may be modified by both the ath task and
1891 * the net80211/ifnet contexts, the TID must be locked.
1892 */
1893void
1894ath_tx_addto_baw(struct ath_softc *sc, struct ath_node *an,
1895    struct ath_tid *tid, struct ath_buf *bf)
1896{
1897	int index, cindex;
1898	struct ieee80211_tx_ampdu *tap;
1899
1900	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
1901
1902	if (bf->bf_state.bfs_isretried)
1903		return;
1904
1905	tap = ath_tx_get_tx_tid(an, tid->tid);
1906
1907	if (bf->bf_state.bfs_addedbaw)
1908		device_printf(sc->sc_dev,
1909		    "%s: re-added? tid=%d, seqno %d; window %d:%d; baw head=%d tail=%d\n",
1910		    __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
1911		    tap->txa_start, tap->txa_wnd, tid->baw_head, tid->baw_tail);
1912
1913	/*
1914	 * ni->ni_txseqs[] is the currently allocated seqno.
1915	 * the txa state contains the current baw start.
1916	 */
1917	index  = ATH_BA_INDEX(tap->txa_start, SEQNO(bf->bf_state.bfs_seqno));
1918	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
1919	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
1920	    "%s: tid=%d, seqno %d; window %d:%d; index=%d cindex=%d baw head=%d tail=%d\n",
1921	    __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
1922	    tap->txa_start, tap->txa_wnd, index, cindex, tid->baw_head, tid->baw_tail);
1923
1924
1925#if 0
1926	assert(tid->tx_buf[cindex] == NULL);
1927#endif
1928	if (tid->tx_buf[cindex] != NULL) {
1929		device_printf(sc->sc_dev,
1930		    "%s: ba packet dup (index=%d, cindex=%d, "
1931		    "head=%d, tail=%d)\n",
1932		    __func__, index, cindex, tid->baw_head, tid->baw_tail);
1933		device_printf(sc->sc_dev,
1934		    "%s: BA bf: %p; seqno=%d ; new bf: %p; seqno=%d\n",
1935		    __func__,
1936		    tid->tx_buf[cindex],
1937		    SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno),
1938		    bf,
1939		    SEQNO(bf->bf_state.bfs_seqno)
1940		);
1941	}
1942	tid->tx_buf[cindex] = bf;
1943
1944	if (index >= ((tid->baw_tail - tid->baw_head) & (ATH_TID_MAX_BUFS - 1))) {
1945		tid->baw_tail = cindex;
1946		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
1947	}
1948}
1949
1950/*
1951 * Flip the BAW buffer entry over from the existing one to the new one.
1952 *
1953 * When software retransmitting a (sub-)frame, it is entirely possible that
1954 * the frame ath_buf is marked as BUSY and can't be immediately reused.
1955 * In that instance the buffer is cloned and the new buffer is used for
1956 * retransmit. We thus need to update the ath_buf slot in the BAW buf
1957 * tracking array to maintain consistency.
1958 */
1959static void
1960ath_tx_switch_baw_buf(struct ath_softc *sc, struct ath_node *an,
1961    struct ath_tid *tid, struct ath_buf *old_bf, struct ath_buf *new_bf)
1962{
1963	int index, cindex;
1964	struct ieee80211_tx_ampdu *tap;
1965	int seqno = SEQNO(old_bf->bf_state.bfs_seqno);
1966
1967	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
1968
1969	tap = ath_tx_get_tx_tid(an, tid->tid);
1970	index  = ATH_BA_INDEX(tap->txa_start, seqno);
1971	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
1972
1973	/*
1974	 * Just warn for now; if it happens then we should find out
1975	 * about it. It's highly likely the aggregation session will
1976	 * soon hang.
1977	 */
1978	if (old_bf->bf_state.bfs_seqno != new_bf->bf_state.bfs_seqno) {
1979		device_printf(sc->sc_dev, "%s: retransmitted buffer"
1980		    " has mismatching seqno's, BA session may hang.\n",
1981		    __func__);
1982		device_printf(sc->sc_dev, "%s: old seqno=%d, new_seqno=%d\n",
1983		    __func__,
1984		    old_bf->bf_state.bfs_seqno,
1985		    new_bf->bf_state.bfs_seqno);
1986	}
1987
1988	if (tid->tx_buf[cindex] != old_bf) {
1989		device_printf(sc->sc_dev, "%s: ath_buf pointer incorrect; "
1990		    " has m BA session may hang.\n",
1991		    __func__);
1992		device_printf(sc->sc_dev, "%s: old bf=%p, new bf=%p\n",
1993		    __func__,
1994		    old_bf, new_bf);
1995	}
1996
1997	tid->tx_buf[cindex] = new_bf;
1998}
1999
2000/*
2001 * seq_start - left edge of BAW
2002 * seq_next - current/next sequence number to allocate
2003 *
2004 * Since the BAW status may be modified by both the ath task and
2005 * the net80211/ifnet contexts, the TID must be locked.
2006 */
2007static void
2008ath_tx_update_baw(struct ath_softc *sc, struct ath_node *an,
2009    struct ath_tid *tid, const struct ath_buf *bf)
2010{
2011	int index, cindex;
2012	struct ieee80211_tx_ampdu *tap;
2013	int seqno = SEQNO(bf->bf_state.bfs_seqno);
2014
2015	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2016
2017	tap = ath_tx_get_tx_tid(an, tid->tid);
2018	index  = ATH_BA_INDEX(tap->txa_start, seqno);
2019	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
2020
2021	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2022	    "%s: tid=%d, baw=%d:%d, seqno=%d, index=%d, cindex=%d, baw head=%d, tail=%d\n",
2023	    __func__, tid->tid, tap->txa_start, tap->txa_wnd, seqno, index,
2024	    cindex, tid->baw_head, tid->baw_tail);
2025
2026	/*
2027	 * If this occurs then we have a big problem - something else
2028	 * has slid tap->txa_start along without updating the BAW
2029	 * tracking start/end pointers. Thus the TX BAW state is now
2030	 * completely busted.
2031	 *
2032	 * But for now, since I haven't yet fixed TDMA and buffer cloning,
2033	 * it's quite possible that a cloned buffer is making its way
2034	 * here and causing it to fire off. Disable TDMA for now.
2035	 */
2036	if (tid->tx_buf[cindex] != bf) {
2037		device_printf(sc->sc_dev,
2038		    "%s: comp bf=%p, seq=%d; slot bf=%p, seqno=%d\n",
2039		    __func__,
2040		    bf, SEQNO(bf->bf_state.bfs_seqno),
2041		    tid->tx_buf[cindex],
2042		    SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno));
2043	}
2044
2045	tid->tx_buf[cindex] = NULL;
2046
2047	while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
2048		INCR(tap->txa_start, IEEE80211_SEQ_RANGE);
2049		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
2050	}
2051	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, "%s: baw is now %d:%d, baw head=%d\n",
2052	    __func__, tap->txa_start, tap->txa_wnd, tid->baw_head);
2053}
2054
2055/*
2056 * Mark the current node/TID as ready to TX.
2057 *
2058 * This is done to make it easy for the software scheduler to
2059 * find which nodes have data to send.
2060 *
2061 * The TXQ lock must be held.
2062 */
2063static void
2064ath_tx_tid_sched(struct ath_softc *sc, struct ath_tid *tid)
2065{
2066	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
2067
2068	ATH_TXQ_LOCK_ASSERT(txq);
2069
2070	if (tid->paused)
2071		return;		/* paused, can't schedule yet */
2072
2073	if (tid->sched)
2074		return;		/* already scheduled */
2075
2076	tid->sched = 1;
2077
2078	TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem);
2079}
2080
2081/*
2082 * Mark the current node as no longer needing to be polled for
2083 * TX packets.
2084 *
2085 * The TXQ lock must be held.
2086 */
2087static void
2088ath_tx_tid_unsched(struct ath_softc *sc, struct ath_tid *tid)
2089{
2090	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
2091
2092	ATH_TXQ_LOCK_ASSERT(txq);
2093
2094	if (tid->sched == 0)
2095		return;
2096
2097	tid->sched = 0;
2098	TAILQ_REMOVE(&txq->axq_tidq, tid, axq_qelem);
2099}
2100
2101/*
2102 * Assign a sequence number manually to the given frame.
2103 *
2104 * This should only be called for A-MPDU TX frames.
2105 */
2106static ieee80211_seq
2107ath_tx_tid_seqno_assign(struct ath_softc *sc, struct ieee80211_node *ni,
2108    struct ath_buf *bf, struct mbuf *m0)
2109{
2110	struct ieee80211_frame *wh;
2111	int tid, pri;
2112	ieee80211_seq seqno;
2113	uint8_t subtype;
2114
2115	/* TID lookup */
2116	wh = mtod(m0, struct ieee80211_frame *);
2117	pri = M_WME_GETAC(m0);			/* honor classification */
2118	tid = WME_AC_TO_TID(pri);
2119	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pri=%d, tid=%d, qos has seq=%d\n",
2120	    __func__, pri, tid, IEEE80211_QOS_HAS_SEQ(wh));
2121
2122	/* XXX Is it a control frame? Ignore */
2123
2124	/* Does the packet require a sequence number? */
2125	if (! IEEE80211_QOS_HAS_SEQ(wh))
2126		return -1;
2127
2128	/*
2129	 * Is it a QOS NULL Data frame? Give it a sequence number from
2130	 * the default TID (IEEE80211_NONQOS_TID.)
2131	 *
2132	 * The RX path of everything I've looked at doesn't include the NULL
2133	 * data frame sequence number in the aggregation state updates, so
2134	 * assigning it a sequence number there will cause a BAW hole on the
2135	 * RX side.
2136	 */
2137	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2138	if (subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL) {
2139		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID];
2140		INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE);
2141	} else {
2142		/* Manually assign sequence number */
2143		seqno = ni->ni_txseqs[tid];
2144		INCR(ni->ni_txseqs[tid], IEEE80211_SEQ_RANGE);
2145	}
2146	*(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
2147	M_SEQNO_SET(m0, seqno);
2148
2149	/* Return so caller can do something with it if needed */
2150	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s:  -> seqno=%d\n", __func__, seqno);
2151	return seqno;
2152}
2153
2154/*
2155 * Attempt to direct dispatch an aggregate frame to hardware.
2156 * If the frame is out of BAW, queue.
2157 * Otherwise, schedule it as a single frame.
2158 */
2159static void
2160ath_tx_xmit_aggr(struct ath_softc *sc, struct ath_node *an, struct ath_buf *bf)
2161{
2162	struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid];
2163	struct ath_txq *txq = bf->bf_state.bfs_txq;
2164	struct ieee80211_tx_ampdu *tap;
2165
2166	ATH_TXQ_LOCK_ASSERT(txq);
2167
2168	tap = ath_tx_get_tx_tid(an, tid->tid);
2169
2170	/* paused? queue */
2171	if (tid->paused) {
2172		ATH_TXQ_INSERT_TAIL(tid, bf, bf_list);
2173		return;
2174	}
2175
2176	/* outside baw? queue */
2177	if (bf->bf_state.bfs_dobaw &&
2178	    (! BAW_WITHIN(tap->txa_start, tap->txa_wnd,
2179	    SEQNO(bf->bf_state.bfs_seqno)))) {
2180		ATH_TXQ_INSERT_TAIL(tid, bf, bf_list);
2181		ath_tx_tid_sched(sc, tid);
2182		return;
2183	}
2184
2185	/* Direct dispatch to hardware */
2186	ath_tx_do_ratelookup(sc, bf);
2187	ath_tx_rate_fill_rcflags(sc, bf);
2188	ath_tx_set_rtscts(sc, bf);
2189	ath_tx_setds(sc, bf);
2190	ath_tx_set_ratectrl(sc, bf->bf_node, bf);
2191	ath_tx_chaindesclist(sc, bf);
2192
2193	/* Statistics */
2194	sc->sc_aggr_stats.aggr_low_hwq_single_pkt++;
2195
2196	/* Track per-TID hardware queue depth correctly */
2197	tid->hwq_depth++;
2198
2199	/* Add to BAW */
2200	if (bf->bf_state.bfs_dobaw) {
2201		ath_tx_addto_baw(sc, an, tid, bf);
2202		bf->bf_state.bfs_addedbaw = 1;
2203	}
2204
2205	/* Set completion handler, multi-frame aggregate or not */
2206	bf->bf_comp = ath_tx_aggr_comp;
2207
2208	/* Hand off to hardware */
2209	ath_tx_handoff(sc, txq, bf);
2210}
2211
2212/*
2213 * Attempt to send the packet.
2214 * If the queue isn't busy, direct-dispatch.
2215 * If the queue is busy enough, queue the given packet on the
2216 *  relevant software queue.
2217 */
2218void
2219ath_tx_swq(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_txq *txq,
2220    struct ath_buf *bf)
2221{
2222	struct ath_node *an = ATH_NODE(ni);
2223	struct ieee80211_frame *wh;
2224	struct ath_tid *atid;
2225	int pri, tid;
2226	struct mbuf *m0 = bf->bf_m;
2227
2228	/* Fetch the TID - non-QoS frames get assigned to TID 16 */
2229	wh = mtod(m0, struct ieee80211_frame *);
2230	pri = ath_tx_getac(sc, m0);
2231	tid = ath_tx_gettid(sc, m0);
2232	atid = &an->an_tid[tid];
2233
2234	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p, pri=%d, tid=%d, qos=%d\n",
2235	    __func__, bf, pri, tid, IEEE80211_QOS_HAS_SEQ(wh));
2236
2237	/* Set local packet state, used to queue packets to hardware */
2238	bf->bf_state.bfs_tid = tid;
2239	bf->bf_state.bfs_txq = txq;
2240	bf->bf_state.bfs_pri = pri;
2241
2242	/*
2243	 * If the hardware queue isn't busy, queue it directly.
2244	 * If the hardware queue is busy, queue it.
2245	 * If the TID is paused or the traffic it outside BAW, software
2246	 * queue it.
2247	 */
2248	ATH_TXQ_LOCK(txq);
2249	if (atid->paused) {
2250		/* TID is paused, queue */
2251		ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
2252	} else if (ath_tx_ampdu_pending(sc, an, tid)) {
2253		/* AMPDU pending; queue */
2254		ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
2255		/* XXX sched? */
2256	} else if (ath_tx_ampdu_running(sc, an, tid)) {
2257		/* AMPDU running, attempt direct dispatch if possible */
2258		if (txq->axq_depth < sc->sc_hwq_limit)
2259			ath_tx_xmit_aggr(sc, an, bf);
2260		else {
2261			ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
2262			ath_tx_tid_sched(sc, atid);
2263		}
2264	} else if (txq->axq_depth < sc->sc_hwq_limit) {
2265		/* AMPDU not running, attempt direct dispatch */
2266		ath_tx_xmit_normal(sc, txq, bf);
2267	} else {
2268		/* Busy; queue */
2269		ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
2270		ath_tx_tid_sched(sc, atid);
2271	}
2272	ATH_TXQ_UNLOCK(txq);
2273}
2274
2275/*
2276 * Do the basic frame setup stuff that's required before the frame
2277 * is added to a software queue.
2278 *
2279 * All frames get mostly the same treatment and it's done once.
2280 * Retransmits fiddle with things like the rate control setup,
2281 * setting the retransmit bit in the packet; doing relevant DMA/bus
2282 * syncing and relinking it (back) into the hardware TX queue.
2283 *
2284 * Note that this may cause the mbuf to be reallocated, so
2285 * m0 may not be valid.
2286 */
2287
2288
2289/*
2290 * Configure the per-TID node state.
2291 *
2292 * This likely belongs in if_ath_node.c but I can't think of anywhere
2293 * else to put it just yet.
2294 *
2295 * This sets up the SLISTs and the mutex as appropriate.
2296 */
2297void
2298ath_tx_tid_init(struct ath_softc *sc, struct ath_node *an)
2299{
2300	int i, j;
2301	struct ath_tid *atid;
2302
2303	for (i = 0; i < IEEE80211_TID_SIZE; i++) {
2304		atid = &an->an_tid[i];
2305		TAILQ_INIT(&atid->axq_q);
2306		atid->tid = i;
2307		atid->an = an;
2308		for (j = 0; j < ATH_TID_MAX_BUFS; j++)
2309			atid->tx_buf[j] = NULL;
2310		atid->baw_head = atid->baw_tail = 0;
2311		atid->paused = 0;
2312		atid->sched = 0;
2313		atid->hwq_depth = 0;
2314		atid->cleanup_inprogress = 0;
2315		if (i == IEEE80211_NONQOS_TID)
2316			atid->ac = WME_AC_BE;
2317		else
2318			atid->ac = TID_TO_WME_AC(i);
2319	}
2320}
2321
2322/*
2323 * Pause the current TID. This stops packets from being transmitted
2324 * on it.
2325 *
2326 * Since this is also called from upper layers as well as the driver,
2327 * it will get the TID lock.
2328 */
2329static void
2330ath_tx_tid_pause(struct ath_softc *sc, struct ath_tid *tid)
2331{
2332	ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]);
2333	tid->paused++;
2334	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: paused = %d\n",
2335	    __func__, tid->paused);
2336	ATH_TXQ_UNLOCK(sc->sc_ac2q[tid->ac]);
2337}
2338
2339/*
2340 * Unpause the current TID, and schedule it if needed.
2341 */
2342static void
2343ath_tx_tid_resume(struct ath_softc *sc, struct ath_tid *tid)
2344{
2345	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2346
2347	tid->paused--;
2348
2349	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: unpaused = %d\n",
2350	    __func__, tid->paused);
2351
2352	if (tid->paused || tid->axq_depth == 0) {
2353		return;
2354	}
2355
2356	ath_tx_tid_sched(sc, tid);
2357	/* Punt some frames to the hardware if needed */
2358	ath_txq_sched(sc, sc->sc_ac2q[tid->ac]);
2359}
2360
2361/*
2362 * Free any packets currently pending in the software TX queue.
2363 *
2364 * This will be called when a node is being deleted.
2365 *
2366 * It can also be called on an active node during an interface
2367 * reset or state transition.
2368 *
2369 * (From Linux/reference):
2370 *
2371 * TODO: For frame(s) that are in the retry state, we will reuse the
2372 * sequence number(s) without setting the retry bit. The
2373 * alternative is to give up on these and BAR the receiver's window
2374 * forward.
2375 */
2376static void
2377ath_tx_tid_drain(struct ath_softc *sc, struct ath_node *an, struct ath_tid *tid,
2378    ath_bufhead *bf_cq)
2379{
2380	struct ath_buf *bf;
2381	struct ieee80211_tx_ampdu *tap;
2382	struct ieee80211_node *ni = &an->an_node;
2383	int t = 0;
2384	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
2385
2386	tap = ath_tx_get_tx_tid(an, tid->tid);
2387
2388	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2389
2390	/* Walk the queue, free frames */
2391	for (;;) {
2392		bf = TAILQ_FIRST(&tid->axq_q);
2393		if (bf == NULL) {
2394			break;
2395		}
2396
2397		if (t == 0) {
2398			device_printf(sc->sc_dev,
2399			    "%s: node %p: tid %d: txq_depth=%d, "
2400			    "txq_aggr_depth=%d, sched=%d, paused=%d, "
2401			    "hwq_depth=%d, incomp=%d, baw_head=%d, baw_tail=%d "
2402			    "txa_start=%d, ni_txseqs=%d\n",
2403			     __func__, ni, tid->tid, txq->axq_depth,
2404			     txq->axq_aggr_depth, tid->sched, tid->paused,
2405			     tid->hwq_depth, tid->incomp, tid->baw_head,
2406			     tid->baw_tail, tap == NULL ? -1 : tap->txa_start,
2407			     ni->ni_txseqs[tid->tid]);
2408			t = 1;
2409		}
2410
2411
2412		/*
2413		 * If the current TID is running AMPDU, update
2414		 * the BAW.
2415		 */
2416		if (ath_tx_ampdu_running(sc, an, tid->tid) &&
2417		    bf->bf_state.bfs_dobaw) {
2418			/*
2419			 * Only remove the frame from the BAW if it's
2420			 * been transmitted at least once; this means
2421			 * the frame was in the BAW to begin with.
2422			 */
2423			if (bf->bf_state.bfs_retries > 0) {
2424				ath_tx_update_baw(sc, an, tid, bf);
2425				bf->bf_state.bfs_dobaw = 0;
2426			}
2427			/*
2428			 * This has become a non-fatal error now
2429			 */
2430			if (! bf->bf_state.bfs_addedbaw)
2431				device_printf(sc->sc_dev,
2432				    "%s: wasn't added: seqno %d\n",
2433				    __func__, SEQNO(bf->bf_state.bfs_seqno));
2434		}
2435		ATH_TXQ_REMOVE(tid, bf, bf_list);
2436		TAILQ_INSERT_TAIL(bf_cq, bf, bf_list);
2437	}
2438
2439	/*
2440	 * Now that it's completed, grab the TID lock and update
2441	 * the sequence number and BAW window.
2442	 * Because sequence numbers have been assigned to frames
2443	 * that haven't been sent yet, it's entirely possible
2444	 * we'll be called with some pending frames that have not
2445	 * been transmitted.
2446	 *
2447	 * The cleaner solution is to do the sequence number allocation
2448	 * when the packet is first transmitted - and thus the "retries"
2449	 * check above would be enough to update the BAW/seqno.
2450	 */
2451
2452	/* But don't do it for non-QoS TIDs */
2453	if (tap) {
2454#if 0
2455		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
2456		    "%s: node %p: TID %d: sliding BAW left edge to %d\n",
2457		    __func__, an, tid->tid, tap->txa_start);
2458#endif
2459		ni->ni_txseqs[tid->tid] = tap->txa_start;
2460		tid->baw_tail = tid->baw_head;
2461	}
2462}
2463
2464/*
2465 * Flush all software queued packets for the given node.
2466 *
2467 * This occurs when a completion handler frees the last buffer
2468 * for a node, and the node is thus freed. This causes the node
2469 * to be cleaned up, which ends up calling ath_tx_node_flush.
2470 */
2471void
2472ath_tx_node_flush(struct ath_softc *sc, struct ath_node *an)
2473{
2474	int tid;
2475	ath_bufhead bf_cq;
2476	struct ath_buf *bf;
2477
2478	TAILQ_INIT(&bf_cq);
2479
2480	for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) {
2481		struct ath_tid *atid = &an->an_tid[tid];
2482		struct ath_txq *txq = sc->sc_ac2q[atid->ac];
2483
2484		/* Remove this tid from the list of active tids */
2485		ATH_TXQ_LOCK(txq);
2486		ath_tx_tid_unsched(sc, atid);
2487
2488		/* Free packets */
2489		ath_tx_tid_drain(sc, an, atid, &bf_cq);
2490		ATH_TXQ_UNLOCK(txq);
2491	}
2492
2493	/* Handle completed frames */
2494	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
2495		TAILQ_REMOVE(&bf_cq, bf, bf_list);
2496		ath_tx_default_comp(sc, bf, 0);
2497	}
2498}
2499
2500/*
2501 * Drain all the software TXQs currently with traffic queued.
2502 */
2503void
2504ath_tx_txq_drain(struct ath_softc *sc, struct ath_txq *txq)
2505{
2506	struct ath_tid *tid;
2507	ath_bufhead bf_cq;
2508	struct ath_buf *bf;
2509
2510	TAILQ_INIT(&bf_cq);
2511	ATH_TXQ_LOCK(txq);
2512
2513	/*
2514	 * Iterate over all active tids for the given txq,
2515	 * flushing and unsched'ing them
2516	 */
2517	while (! TAILQ_EMPTY(&txq->axq_tidq)) {
2518		tid = TAILQ_FIRST(&txq->axq_tidq);
2519		ath_tx_tid_drain(sc, tid->an, tid, &bf_cq);
2520		ath_tx_tid_unsched(sc, tid);
2521	}
2522
2523	ATH_TXQ_UNLOCK(txq);
2524
2525	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
2526		TAILQ_REMOVE(&bf_cq, bf, bf_list);
2527		ath_tx_default_comp(sc, bf, 0);
2528	}
2529}
2530
2531/*
2532 * Handle completion of non-aggregate session frames.
2533 */
2534void
2535ath_tx_normal_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
2536{
2537	struct ieee80211_node *ni = bf->bf_node;
2538	struct ath_node *an = ATH_NODE(ni);
2539	int tid = bf->bf_state.bfs_tid;
2540	struct ath_tid *atid = &an->an_tid[tid];
2541	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
2542
2543	/* The TID state is protected behind the TXQ lock */
2544	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
2545
2546	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: fail=%d, hwq_depth now %d\n",
2547	    __func__, bf, fail, atid->hwq_depth - 1);
2548
2549	atid->hwq_depth--;
2550	if (atid->hwq_depth < 0)
2551		device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n",
2552		    __func__, atid->hwq_depth);
2553	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
2554
2555	/*
2556	 * punt to rate control if we're not being cleaned up
2557	 * during a hw queue drain and the frame wanted an ACK.
2558	 */
2559	if (fail == 0 && ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0))
2560		ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc,
2561		    ts, bf->bf_state.bfs_pktlen,
2562		    1, (ts->ts_status == 0) ? 0 : 1);
2563
2564	ath_tx_default_comp(sc, bf, fail);
2565}
2566
2567/*
2568 * Handle cleanup of aggregate session packets that aren't
2569 * an A-MPDU.
2570 *
2571 * There's no need to update the BAW here - the session is being
2572 * torn down.
2573 */
2574static void
2575ath_tx_comp_cleanup_unaggr(struct ath_softc *sc, struct ath_buf *bf)
2576{
2577	struct ieee80211_node *ni = bf->bf_node;
2578	struct ath_node *an = ATH_NODE(ni);
2579	int tid = bf->bf_state.bfs_tid;
2580	struct ath_tid *atid = &an->an_tid[tid];
2581
2582	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: incomp=%d\n",
2583	    __func__, tid, atid->incomp);
2584
2585	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
2586	atid->incomp--;
2587	if (atid->incomp == 0) {
2588		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
2589		    "%s: TID %d: cleaned up! resume!\n",
2590		    __func__, tid);
2591		atid->cleanup_inprogress = 0;
2592		ath_tx_tid_resume(sc, atid);
2593	}
2594	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
2595
2596	ath_tx_default_comp(sc, bf, 0);
2597}
2598
2599/*
2600 * Performs transmit side cleanup when TID changes from aggregated to
2601 * unaggregated.
2602 *
2603 * - Discard all retry frames from the s/w queue.
2604 * - Fix the tx completion function for all buffers in s/w queue.
2605 * - Count the number of unacked frames, and let transmit completion
2606 *   handle it later.
2607 *
2608 * The caller is responsible for pausing the TID.
2609 */
2610static void
2611ath_tx_cleanup(struct ath_softc *sc, struct ath_node *an, int tid)
2612{
2613	struct ath_tid *atid = &an->an_tid[tid];
2614	struct ieee80211_tx_ampdu *tap;
2615	struct ath_buf *bf, *bf_next;
2616	ath_bufhead bf_cq;
2617
2618	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
2619	    "%s: TID %d: called\n", __func__, tid);
2620
2621	TAILQ_INIT(&bf_cq);
2622	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
2623
2624	/*
2625	 * Update the frames in the software TX queue:
2626	 *
2627	 * + Discard retry frames in the queue
2628	 * + Fix the completion function to be non-aggregate
2629	 */
2630	bf = TAILQ_FIRST(&atid->axq_q);
2631	while (bf) {
2632		if (bf->bf_state.bfs_isretried) {
2633			bf_next = TAILQ_NEXT(bf, bf_list);
2634			TAILQ_REMOVE(&atid->axq_q, bf, bf_list);
2635			atid->axq_depth--;
2636			if (bf->bf_state.bfs_dobaw) {
2637				ath_tx_update_baw(sc, an, atid, bf);
2638				if (! bf->bf_state.bfs_addedbaw)
2639					device_printf(sc->sc_dev,
2640					    "%s: wasn't added: seqno %d\n",
2641					    __func__, SEQNO(bf->bf_state.bfs_seqno));
2642			}
2643			bf->bf_state.bfs_dobaw = 0;
2644			/*
2645			 * Call the default completion handler with "fail" just
2646			 * so upper levels are suitably notified about this.
2647			 */
2648			TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
2649			bf = bf_next;
2650			continue;
2651		}
2652		/* Give these the default completion handler */
2653		bf->bf_comp = ath_tx_normal_comp;
2654		bf = TAILQ_NEXT(bf, bf_list);
2655	}
2656
2657	/* The caller is required to pause the TID */
2658#if 0
2659	/* Pause the TID */
2660	ath_tx_tid_pause(sc, atid);
2661#endif
2662
2663	/*
2664	 * Calculate what hardware-queued frames exist based
2665	 * on the current BAW size. Ie, what frames have been
2666	 * added to the TX hardware queue for this TID but
2667	 * not yet ACKed.
2668	 */
2669	tap = ath_tx_get_tx_tid(an, tid);
2670	/* Need the lock - fiddling with BAW */
2671	while (atid->baw_head != atid->baw_tail) {
2672		if (atid->tx_buf[atid->baw_head]) {
2673			atid->incomp++;
2674			atid->cleanup_inprogress = 1;
2675			atid->tx_buf[atid->baw_head] = NULL;
2676		}
2677		INCR(atid->baw_head, ATH_TID_MAX_BUFS);
2678		INCR(tap->txa_start, IEEE80211_SEQ_RANGE);
2679	}
2680
2681	/*
2682	 * If cleanup is required, defer TID scheduling
2683	 * until all the HW queued packets have been
2684	 * sent.
2685	 */
2686	if (! atid->cleanup_inprogress)
2687		ath_tx_tid_resume(sc, atid);
2688
2689	if (atid->cleanup_inprogress)
2690		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
2691		    "%s: TID %d: cleanup needed: %d packets\n",
2692		    __func__, tid, atid->incomp);
2693	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
2694
2695	/* Handle completing frames and fail them */
2696	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
2697		TAILQ_REMOVE(&bf_cq, bf, bf_list);
2698		ath_tx_default_comp(sc, bf, 1);
2699	}
2700}
2701
2702static void
2703ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf)
2704{
2705	struct ieee80211_frame *wh;
2706
2707	wh = mtod(bf->bf_m, struct ieee80211_frame *);
2708	/* Only update/resync if needed */
2709	if (bf->bf_state.bfs_isretried == 0) {
2710		wh->i_fc[1] |= IEEE80211_FC1_RETRY;
2711		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2712		    BUS_DMASYNC_PREWRITE);
2713	}
2714	sc->sc_stats.ast_tx_swretries++;
2715	bf->bf_state.bfs_isretried = 1;
2716	bf->bf_state.bfs_retries ++;
2717}
2718
2719static struct ath_buf *
2720ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an,
2721    struct ath_tid *tid, struct ath_buf *bf)
2722{
2723	struct ath_buf *nbf;
2724	int error;
2725
2726	nbf = ath_buf_clone(sc, bf);
2727
2728#if 0
2729	device_printf(sc->sc_dev, "%s: ATH_BUF_BUSY; cloning\n",
2730	    __func__);
2731#endif
2732
2733	if (nbf == NULL) {
2734		/* Failed to clone */
2735		device_printf(sc->sc_dev,
2736		    "%s: failed to clone a busy buffer\n",
2737		    __func__);
2738		return NULL;
2739	}
2740
2741	/* Setup the dma for the new buffer */
2742	error = ath_tx_dmasetup(sc, nbf, nbf->bf_m);
2743	if (error != 0) {
2744		device_printf(sc->sc_dev,
2745		    "%s: failed to setup dma for clone\n",
2746		    __func__);
2747		/*
2748		 * Put this at the head of the list, not tail;
2749		 * that way it doesn't interfere with the
2750		 * busy buffer logic (which uses the tail of
2751		 * the list.)
2752		 */
2753		ATH_TXBUF_LOCK(sc);
2754		TAILQ_INSERT_HEAD(&sc->sc_txbuf, nbf, bf_list);
2755		ATH_TXBUF_UNLOCK(sc);
2756		return NULL;
2757	}
2758
2759	/* Update BAW if required, before we free the original buf */
2760	if (bf->bf_state.bfs_dobaw)
2761		ath_tx_switch_baw_buf(sc, an, tid, bf, nbf);
2762
2763	/* Free current buffer; return the older buffer */
2764	bf->bf_m = NULL;
2765	bf->bf_node = NULL;
2766	ath_freebuf(sc, bf);
2767	return nbf;
2768}
2769
2770/*
2771 * Handle retrying an unaggregate frame in an aggregate
2772 * session.
2773 *
2774 * If too many retries occur, pause the TID, wait for
2775 * any further retransmits (as there's no reason why
2776 * non-aggregate frames in an aggregate session are
2777 * transmitted in-order; they just have to be in-BAW)
2778 * and then queue a BAR.
2779 */
2780static void
2781ath_tx_aggr_retry_unaggr(struct ath_softc *sc, struct ath_buf *bf)
2782{
2783	struct ieee80211_node *ni = bf->bf_node;
2784	struct ath_node *an = ATH_NODE(ni);
2785	int tid = bf->bf_state.bfs_tid;
2786	struct ath_tid *atid = &an->an_tid[tid];
2787	struct ieee80211_tx_ampdu *tap;
2788	int txseq;
2789
2790	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
2791
2792	tap = ath_tx_get_tx_tid(an, tid);
2793
2794	/*
2795	 * If the buffer is marked as busy, we can't directly
2796	 * reuse it. Instead, try to clone the buffer.
2797	 * If the clone is successful, recycle the old buffer.
2798	 * If the clone is unsuccessful, set bfs_retries to max
2799	 * to force the next bit of code to free the buffer
2800	 * for us.
2801	 */
2802	if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) &&
2803	    (bf->bf_flags & ATH_BUF_BUSY)) {
2804		struct ath_buf *nbf;
2805		nbf = ath_tx_retry_clone(sc, an, atid, bf);
2806		if (nbf)
2807			/* bf has been freed at this point */
2808			bf = nbf;
2809		else
2810			bf->bf_state.bfs_retries = SWMAX_RETRIES + 1;
2811	}
2812
2813	if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) {
2814		DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES,
2815		    "%s: exceeded retries; seqno %d\n",
2816		    __func__, SEQNO(bf->bf_state.bfs_seqno));
2817		sc->sc_stats.ast_tx_swretrymax++;
2818
2819		/* Update BAW anyway */
2820		if (bf->bf_state.bfs_dobaw) {
2821			ath_tx_update_baw(sc, an, atid, bf);
2822			if (! bf->bf_state.bfs_addedbaw)
2823				device_printf(sc->sc_dev,
2824				    "%s: wasn't added: seqno %d\n",
2825				    __func__, SEQNO(bf->bf_state.bfs_seqno));
2826		}
2827		bf->bf_state.bfs_dobaw = 0;
2828
2829		/* Send BAR frame */
2830		/*
2831		 * This'll end up going into net80211 and back out
2832		 * again, via ic->ic_raw_xmit().
2833		 */
2834		txseq = tap->txa_start;
2835		ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
2836
2837		device_printf(sc->sc_dev,
2838		    "%s: TID %d: send BAR; seq %d\n", __func__, tid, txseq);
2839
2840		/* XXX TODO: send BAR */
2841
2842		/* Free buffer, bf is free after this call */
2843		ath_tx_default_comp(sc, bf, 0);
2844		return;
2845	}
2846
2847	/*
2848	 * This increments the retry counter as well as
2849	 * sets the retry flag in the ath_buf and packet
2850	 * body.
2851	 */
2852	ath_tx_set_retry(sc, bf);
2853
2854	/*
2855	 * Insert this at the head of the queue, so it's
2856	 * retried before any current/subsequent frames.
2857	 */
2858	ATH_TXQ_INSERT_HEAD(atid, bf, bf_list);
2859	ath_tx_tid_sched(sc, atid);
2860
2861	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
2862}
2863
2864/*
2865 * Common code for aggregate excessive retry/subframe retry.
2866 * If retrying, queues buffers to bf_q. If not, frees the
2867 * buffers.
2868 *
2869 * XXX should unify this with ath_tx_aggr_retry_unaggr()
2870 */
2871static int
2872ath_tx_retry_subframe(struct ath_softc *sc, struct ath_buf *bf,
2873    ath_bufhead *bf_q)
2874{
2875	struct ieee80211_node *ni = bf->bf_node;
2876	struct ath_node *an = ATH_NODE(ni);
2877	int tid = bf->bf_state.bfs_tid;
2878	struct ath_tid *atid = &an->an_tid[tid];
2879
2880	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[atid->ac]);
2881
2882	ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
2883	ath_hal_set11nburstduration(sc->sc_ah, bf->bf_desc, 0);
2884	/* ath_hal_set11n_virtualmorefrag(sc->sc_ah, bf->bf_desc, 0); */
2885
2886	/*
2887	 * If the buffer is marked as busy, we can't directly
2888	 * reuse it. Instead, try to clone the buffer.
2889	 * If the clone is successful, recycle the old buffer.
2890	 * If the clone is unsuccessful, set bfs_retries to max
2891	 * to force the next bit of code to free the buffer
2892	 * for us.
2893	 */
2894	if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) &&
2895	    (bf->bf_flags & ATH_BUF_BUSY)) {
2896		struct ath_buf *nbf;
2897		nbf = ath_tx_retry_clone(sc, an, atid, bf);
2898		if (nbf)
2899			/* bf has been freed at this point */
2900			bf = nbf;
2901		else
2902			bf->bf_state.bfs_retries = SWMAX_RETRIES + 1;
2903	}
2904
2905	if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) {
2906		sc->sc_stats.ast_tx_swretrymax++;
2907		DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES,
2908		    "%s: max retries: seqno %d\n",
2909		    __func__, SEQNO(bf->bf_state.bfs_seqno));
2910		ath_tx_update_baw(sc, an, atid, bf);
2911		if (! bf->bf_state.bfs_addedbaw)
2912			device_printf(sc->sc_dev,
2913			    "%s: wasn't added: seqno %d\n",
2914			    __func__, SEQNO(bf->bf_state.bfs_seqno));
2915		bf->bf_state.bfs_dobaw = 0;
2916		return 1;
2917	}
2918
2919	ath_tx_set_retry(sc, bf);
2920	bf->bf_next = NULL;		/* Just to make sure */
2921
2922	TAILQ_INSERT_TAIL(bf_q, bf, bf_list);
2923	return 0;
2924}
2925
2926/*
2927 * error pkt completion for an aggregate destination
2928 */
2929static void
2930ath_tx_comp_aggr_error(struct ath_softc *sc, struct ath_buf *bf_first,
2931    struct ath_tid *tid)
2932{
2933	struct ieee80211_node *ni = bf_first->bf_node;
2934	struct ath_node *an = ATH_NODE(ni);
2935	struct ath_buf *bf_next, *bf;
2936	ath_bufhead bf_q;
2937	int drops = 0;
2938	struct ieee80211_tx_ampdu *tap;
2939	ath_bufhead bf_cq;
2940
2941	TAILQ_INIT(&bf_q);
2942	TAILQ_INIT(&bf_cq);
2943	sc->sc_stats.ast_tx_aggrfail++;
2944
2945	/*
2946	 * Update rate control - all frames have failed.
2947	 *
2948	 * XXX use the length in the first frame in the series;
2949	 * XXX just so things are consistent for now.
2950	 */
2951	ath_tx_update_ratectrl(sc, ni, bf_first->bf_state.bfs_rc,
2952	    &bf_first->bf_status.ds_txstat,
2953	    bf_first->bf_state.bfs_pktlen,
2954	    bf_first->bf_state.bfs_nframes, bf_first->bf_state.bfs_nframes);
2955
2956	ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]);
2957	tap = ath_tx_get_tx_tid(an, tid->tid);
2958
2959	/* Retry all subframes */
2960	bf = bf_first;
2961	while (bf) {
2962		bf_next = bf->bf_next;
2963		bf->bf_next = NULL;	/* Remove it from the aggr list */
2964		if (ath_tx_retry_subframe(sc, bf, &bf_q)) {
2965			drops++;
2966			bf->bf_next = NULL;
2967			TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
2968		}
2969		bf = bf_next;
2970	}
2971
2972	/* Prepend all frames to the beginning of the queue */
2973	while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) {
2974		TAILQ_REMOVE(&bf_q, bf, bf_list);
2975		ATH_TXQ_INSERT_HEAD(tid, bf, bf_list);
2976	}
2977
2978	ath_tx_tid_sched(sc, tid);
2979
2980	/*
2981	 * send bar if we dropped any frames
2982	 *
2983	 * Keep the txq lock held for now, as we need to ensure
2984	 * that ni_txseqs[] is consistent (as it's being updated
2985	 * in the ifnet TX context or raw TX context.)
2986	 */
2987	if (drops) {
2988		int txseq = tap->txa_start;
2989		ATH_TXQ_UNLOCK(sc->sc_ac2q[tid->ac]);
2990		device_printf(sc->sc_dev,
2991		    "%s: TID %d: send BAR; seq %d\n",
2992		    __func__, tid->tid, txseq);
2993
2994		/* XXX TODO: send BAR */
2995	} else {
2996		ATH_TXQ_UNLOCK(sc->sc_ac2q[tid->ac]);
2997	}
2998
2999	/* Complete frames which errored out */
3000	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
3001		TAILQ_REMOVE(&bf_cq, bf, bf_list);
3002		ath_tx_default_comp(sc, bf, 0);
3003	}
3004}
3005
3006/*
3007 * Handle clean-up of packets from an aggregate list.
3008 *
3009 * There's no need to update the BAW here - the session is being
3010 * torn down.
3011 */
3012static void
3013ath_tx_comp_cleanup_aggr(struct ath_softc *sc, struct ath_buf *bf_first)
3014{
3015	struct ath_buf *bf, *bf_next;
3016	struct ieee80211_node *ni = bf_first->bf_node;
3017	struct ath_node *an = ATH_NODE(ni);
3018	int tid = bf_first->bf_state.bfs_tid;
3019	struct ath_tid *atid = &an->an_tid[tid];
3020
3021	bf = bf_first;
3022
3023	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3024
3025	/* update incomp */
3026	while (bf) {
3027		atid->incomp--;
3028		bf = bf->bf_next;
3029	}
3030
3031	if (atid->incomp == 0) {
3032		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3033		    "%s: TID %d: cleaned up! resume!\n",
3034		    __func__, tid);
3035		atid->cleanup_inprogress = 0;
3036		ath_tx_tid_resume(sc, atid);
3037	}
3038	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3039
3040	/* Handle frame completion */
3041	while (bf) {
3042		bf_next = bf->bf_next;
3043		ath_tx_default_comp(sc, bf, 1);
3044		bf = bf_next;
3045	}
3046}
3047
3048/*
3049 * Handle completion of an set of aggregate frames.
3050 *
3051 * XXX for now, simply complete each sub-frame.
3052 *
3053 * Note: the completion handler is the last descriptor in the aggregate,
3054 * not the last descriptor in the first frame.
3055 */
3056static void
3057ath_tx_aggr_comp_aggr(struct ath_softc *sc, struct ath_buf *bf_first, int fail)
3058{
3059	//struct ath_desc *ds = bf->bf_lastds;
3060	struct ieee80211_node *ni = bf_first->bf_node;
3061	struct ath_node *an = ATH_NODE(ni);
3062	int tid = bf_first->bf_state.bfs_tid;
3063	struct ath_tid *atid = &an->an_tid[tid];
3064	struct ath_tx_status ts;
3065	struct ieee80211_tx_ampdu *tap;
3066	ath_bufhead bf_q;
3067	ath_bufhead bf_cq;
3068	int seq_st, tx_ok;
3069	int hasba, isaggr;
3070	uint32_t ba[2];
3071	struct ath_buf *bf, *bf_next;
3072	int ba_index;
3073	int drops = 0;
3074	int nframes = 0, nbad = 0, nf;
3075	int pktlen;
3076	/* XXX there's too much on the stack? */
3077	struct ath_rc_series rc[4];
3078	int txseq;
3079
3080	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: called; hwq_depth=%d\n",
3081	    __func__, atid->hwq_depth);
3082
3083	/* The TID state is kept behind the TXQ lock */
3084	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3085
3086	atid->hwq_depth--;
3087	if (atid->hwq_depth < 0)
3088		device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n",
3089		    __func__, atid->hwq_depth);
3090
3091	/*
3092	 * Punt cleanup to the relevant function, not our problem now
3093	 */
3094	if (atid->cleanup_inprogress) {
3095		ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3096		ath_tx_comp_cleanup_aggr(sc, bf_first);
3097		return;
3098	}
3099
3100	/*
3101	 * Take a copy; this may be needed -after- bf_first
3102	 * has been completed and freed.
3103	 */
3104	ts = bf_first->bf_status.ds_txstat;
3105	/*
3106	 * XXX for now, use the first frame in the aggregate for
3107	 * XXX rate control completion; it's at least consistent.
3108	 */
3109	pktlen = bf_first->bf_state.bfs_pktlen;
3110
3111	/*
3112	 * handle errors first
3113	 */
3114	if (ts.ts_status & HAL_TXERR_XRETRY) {
3115		ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3116		ath_tx_comp_aggr_error(sc, bf_first, atid);
3117		return;
3118	}
3119
3120	TAILQ_INIT(&bf_q);
3121	TAILQ_INIT(&bf_cq);
3122	tap = ath_tx_get_tx_tid(an, tid);
3123
3124	/*
3125	 * extract starting sequence and block-ack bitmap
3126	 */
3127	/* XXX endian-ness of seq_st, ba? */
3128	seq_st = ts.ts_seqnum;
3129	hasba = !! (ts.ts_flags & HAL_TX_BA);
3130	tx_ok = (ts.ts_status == 0);
3131	isaggr = bf_first->bf_state.bfs_aggr;
3132	ba[0] = ts.ts_ba_low;
3133	ba[1] = ts.ts_ba_high;
3134
3135	/*
3136	 * Copy the TX completion status and the rate control
3137	 * series from the first descriptor, as it may be freed
3138	 * before the rate control code can get its grubby fingers
3139	 * into things.
3140	 */
3141	memcpy(rc, bf_first->bf_state.bfs_rc, sizeof(rc));
3142
3143	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3144	    "%s: txa_start=%d, tx_ok=%d, status=%.8x, flags=%.8x, isaggr=%d, seq_st=%d, hasba=%d, ba=%.8x, %.8x\n",
3145	    __func__, tap->txa_start, tx_ok, ts.ts_status, ts.ts_flags,
3146	    isaggr, seq_st, hasba, ba[0], ba[1]);
3147
3148	/* Occasionally, the MAC sends a tx status for the wrong TID. */
3149	if (tid != ts.ts_tid) {
3150		device_printf(sc->sc_dev, "%s: tid %d != hw tid %d\n",
3151		    __func__, tid, ts.ts_tid);
3152		tx_ok = 0;
3153	}
3154
3155	/* AR5416 BA bug; this requires an interface reset */
3156	if (isaggr && tx_ok && (! hasba)) {
3157		device_printf(sc->sc_dev,
3158		    "%s: AR5416 bug: hasba=%d; txok=%d, isaggr=%d, seq_st=%d\n",
3159		    __func__, hasba, tx_ok, isaggr, seq_st);
3160		/* XXX TODO: schedule an interface reset */
3161	}
3162
3163	/*
3164	 * Walk the list of frames, figure out which ones were correctly
3165	 * sent and which weren't.
3166	 */
3167	bf = bf_first;
3168	nf = bf_first->bf_state.bfs_nframes;
3169
3170	/* bf_first is going to be invalid once this list is walked */
3171	bf_first = NULL;
3172
3173	/*
3174	 * Walk the list of completed frames and determine
3175	 * which need to be completed and which need to be
3176	 * retransmitted.
3177	 *
3178	 * For completed frames, the completion functions need
3179	 * to be called at the end of this function as the last
3180	 * node reference may free the node.
3181	 *
3182	 * Finally, since the TXQ lock can't be held during the
3183	 * completion callback (to avoid lock recursion),
3184	 * the completion calls have to be done outside of the
3185	 * lock.
3186	 */
3187	while (bf) {
3188		nframes++;
3189		ba_index = ATH_BA_INDEX(seq_st, SEQNO(bf->bf_state.bfs_seqno));
3190		bf_next = bf->bf_next;
3191		bf->bf_next = NULL;	/* Remove it from the aggr list */
3192
3193		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3194		    "%s: checking bf=%p seqno=%d; ack=%d\n",
3195		    __func__, bf, SEQNO(bf->bf_state.bfs_seqno),
3196		    ATH_BA_ISSET(ba, ba_index));
3197
3198		if (tx_ok && ATH_BA_ISSET(ba, ba_index)) {
3199			ath_tx_update_baw(sc, an, atid, bf);
3200			bf->bf_state.bfs_dobaw = 0;
3201			if (! bf->bf_state.bfs_addedbaw)
3202				device_printf(sc->sc_dev,
3203				    "%s: wasn't added: seqno %d\n",
3204				    __func__, SEQNO(bf->bf_state.bfs_seqno));
3205			bf->bf_next = NULL;
3206			TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
3207		} else {
3208			if (ath_tx_retry_subframe(sc, bf, &bf_q)) {
3209				drops++;
3210				bf->bf_next = NULL;
3211				TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
3212			}
3213			nbad++;
3214		}
3215		bf = bf_next;
3216	}
3217
3218	/*
3219	 * Now that the BAW updates have been done, unlock
3220	 *
3221	 * txseq is grabbed before the lock is released so we
3222	 * have a consistent view of what -was- in the BAW.
3223	 * Anything after this point will not yet have been
3224	 * TXed.
3225	 */
3226	txseq = tap->txa_start;
3227	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3228
3229	if (nframes != nf)
3230		device_printf(sc->sc_dev,
3231		    "%s: num frames seen=%d; bf nframes=%d\n",
3232		    __func__, nframes, nf);
3233
3234	/*
3235	 * Now we know how many frames were bad, call the rate
3236	 * control code.
3237	 */
3238	if (fail == 0)
3239		ath_tx_update_ratectrl(sc, ni, rc, &ts, pktlen, nframes, nbad);
3240
3241	/*
3242	 * send bar if we dropped any frames
3243	 */
3244	if (drops) {
3245		device_printf(sc->sc_dev,
3246		    "%s: TID %d: send BAR; seq %d\n", __func__, tid, txseq);
3247		/* XXX TODO: send BAR */
3248	}
3249
3250	/* Prepend all frames to the beginning of the queue */
3251	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3252	while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) {
3253		TAILQ_REMOVE(&bf_q, bf, bf_list);
3254		ATH_TXQ_INSERT_HEAD(atid, bf, bf_list);
3255	}
3256	ath_tx_tid_sched(sc, atid);
3257	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3258
3259	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3260	    "%s: txa_start now %d\n", __func__, tap->txa_start);
3261
3262	/* Do deferred completion */
3263	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
3264		TAILQ_REMOVE(&bf_cq, bf, bf_list);
3265		ath_tx_default_comp(sc, bf, 0);
3266	}
3267}
3268
3269/*
3270 * Handle completion of unaggregated frames in an ADDBA
3271 * session.
3272 *
3273 * Fail is set to 1 if the entry is being freed via a call to
3274 * ath_tx_draintxq().
3275 */
3276static void
3277ath_tx_aggr_comp_unaggr(struct ath_softc *sc, struct ath_buf *bf, int fail)
3278{
3279	struct ieee80211_node *ni = bf->bf_node;
3280	struct ath_node *an = ATH_NODE(ni);
3281	int tid = bf->bf_state.bfs_tid;
3282	struct ath_tid *atid = &an->an_tid[tid];
3283	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
3284
3285	/*
3286	 * Update rate control status here, before we possibly
3287	 * punt to retry or cleanup.
3288	 *
3289	 * Do it outside of the TXQ lock.
3290	 */
3291	if (fail == 0 && ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0))
3292		ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc,
3293		    &bf->bf_status.ds_txstat,
3294		    bf->bf_state.bfs_pktlen,
3295		    1, (ts->ts_status == 0) ? 0 : 1);
3296
3297	/*
3298	 * This is called early so atid->hwq_depth can be tracked.
3299	 * This unfortunately means that it's released and regrabbed
3300	 * during retry and cleanup. That's rather inefficient.
3301	 */
3302	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3303
3304	if (tid == IEEE80211_NONQOS_TID)
3305		device_printf(sc->sc_dev, "%s: TID=16!\n", __func__);
3306
3307	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: tid=%d, hwq_depth=%d\n",
3308	    __func__, bf, bf->bf_state.bfs_tid, atid->hwq_depth);
3309
3310	atid->hwq_depth--;
3311	if (atid->hwq_depth < 0)
3312		device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n",
3313		    __func__, atid->hwq_depth);
3314
3315	/*
3316	 * If a cleanup is in progress, punt to comp_cleanup;
3317	 * rather than handling it here. It's thus their
3318	 * responsibility to clean up, call the completion
3319	 * function in net80211, etc.
3320	 */
3321	if (atid->cleanup_inprogress) {
3322		ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3323		ath_tx_comp_cleanup_unaggr(sc, bf);
3324		return;
3325	}
3326
3327	/*
3328	 * Don't bother with the retry check if all frames
3329	 * are being failed (eg during queue deletion.)
3330	 */
3331	if (fail == 0 && ts->ts_status & HAL_TXERR_XRETRY) {
3332		ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3333		ath_tx_aggr_retry_unaggr(sc, bf);
3334		return;
3335	}
3336
3337	/* Success? Complete */
3338	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=%d, seqno %d\n",
3339	    __func__, tid, SEQNO(bf->bf_state.bfs_seqno));
3340	if (bf->bf_state.bfs_dobaw) {
3341		ath_tx_update_baw(sc, an, atid, bf);
3342		bf->bf_state.bfs_dobaw = 0;
3343		if (! bf->bf_state.bfs_addedbaw)
3344			device_printf(sc->sc_dev,
3345			    "%s: wasn't added: seqno %d\n",
3346			    __func__, SEQNO(bf->bf_state.bfs_seqno));
3347	}
3348
3349	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3350
3351	ath_tx_default_comp(sc, bf, fail);
3352	/* bf is freed at this point */
3353}
3354
3355void
3356ath_tx_aggr_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
3357{
3358	if (bf->bf_state.bfs_aggr)
3359		ath_tx_aggr_comp_aggr(sc, bf, fail);
3360	else
3361		ath_tx_aggr_comp_unaggr(sc, bf, fail);
3362}
3363
3364/*
3365 * Schedule some packets from the given node/TID to the hardware.
3366 *
3367 * This is the aggregate version.
3368 */
3369void
3370ath_tx_tid_hw_queue_aggr(struct ath_softc *sc, struct ath_node *an,
3371    struct ath_tid *tid)
3372{
3373	struct ath_buf *bf;
3374	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
3375	struct ieee80211_tx_ampdu *tap;
3376	struct ieee80211_node *ni = &an->an_node;
3377	ATH_AGGR_STATUS status;
3378	ath_bufhead bf_q;
3379
3380	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d\n", __func__, tid->tid);
3381	ATH_TXQ_LOCK_ASSERT(txq);
3382
3383	tap = ath_tx_get_tx_tid(an, tid->tid);
3384
3385	if (tid->tid == IEEE80211_NONQOS_TID)
3386		device_printf(sc->sc_dev, "%s: called for TID=NONQOS_TID?\n",
3387		    __func__);
3388
3389	for (;;) {
3390		status = ATH_AGGR_DONE;
3391
3392		/*
3393		 * If the upper layer has paused the TID, don't
3394		 * queue any further packets.
3395		 *
3396		 * This can also occur from the completion task because
3397		 * of packet loss; but as its serialised with this code,
3398		 * it won't "appear" half way through queuing packets.
3399		 */
3400		if (tid->paused)
3401			break;
3402
3403		bf = TAILQ_FIRST(&tid->axq_q);
3404		if (bf == NULL) {
3405			break;
3406		}
3407
3408		/*
3409		 * If the packet doesn't fall within the BAW (eg a NULL
3410		 * data frame), schedule it directly; continue.
3411		 */
3412		if (! bf->bf_state.bfs_dobaw) {
3413			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: non-baw packet\n",
3414			    __func__);
3415			ATH_TXQ_REMOVE(tid, bf, bf_list);
3416			bf->bf_state.bfs_aggr = 0;
3417			ath_tx_do_ratelookup(sc, bf);
3418			ath_tx_rate_fill_rcflags(sc, bf);
3419			ath_tx_set_rtscts(sc, bf);
3420			ath_tx_setds(sc, bf);
3421			ath_tx_chaindesclist(sc, bf);
3422			ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
3423			ath_tx_set_ratectrl(sc, ni, bf);
3424
3425			sc->sc_aggr_stats.aggr_nonbaw_pkt++;
3426
3427			/* Queue the packet; continue */
3428			goto queuepkt;
3429		}
3430
3431		TAILQ_INIT(&bf_q);
3432
3433		/*
3434		 * Do a rate control lookup on the first frame in the
3435		 * list. The rate control code needs that to occur
3436		 * before it can determine whether to TX.
3437		 * It's inaccurate because the rate control code doesn't
3438		 * really "do" aggregate lookups, so it only considers
3439		 * the size of the first frame.
3440		 */
3441		ath_tx_do_ratelookup(sc, bf);
3442		bf->bf_state.bfs_rc[3].rix = 0;
3443		bf->bf_state.bfs_rc[3].tries = 0;
3444		ath_tx_rate_fill_rcflags(sc, bf);
3445
3446		status = ath_tx_form_aggr(sc, an, tid, &bf_q);
3447
3448		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3449		    "%s: ath_tx_form_aggr() status=%d\n", __func__, status);
3450
3451		/*
3452		 * No frames to be picked up - out of BAW
3453		 */
3454		if (TAILQ_EMPTY(&bf_q))
3455			break;
3456
3457		/*
3458		 * This assumes that the descriptor list in the ath_bufhead
3459		 * are already linked together via bf_next pointers.
3460		 */
3461		bf = TAILQ_FIRST(&bf_q);
3462
3463		/*
3464		 * If it's the only frame send as non-aggregate
3465		 * assume that ath_tx_form_aggr() has checked
3466		 * whether it's in the BAW and added it appropriately.
3467		 */
3468		if (bf->bf_state.bfs_nframes == 1) {
3469			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3470			    "%s: single-frame aggregate\n", __func__);
3471			bf->bf_state.bfs_aggr = 0;
3472			ath_tx_set_rtscts(sc, bf);
3473			ath_tx_setds(sc, bf);
3474			ath_tx_chaindesclist(sc, bf);
3475			ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
3476			ath_tx_set_ratectrl(sc, ni, bf);
3477			if (status == ATH_AGGR_BAW_CLOSED)
3478				sc->sc_aggr_stats.aggr_baw_closed_single_pkt++;
3479			else
3480				sc->sc_aggr_stats.aggr_single_pkt++;
3481		} else {
3482			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3483			    "%s: multi-frame aggregate: %d frames, length %d\n",
3484			     __func__, bf->bf_state.bfs_nframes,
3485			    bf->bf_state.bfs_al);
3486			bf->bf_state.bfs_aggr = 1;
3487			sc->sc_aggr_stats.aggr_pkts[bf->bf_state.bfs_nframes]++;
3488			sc->sc_aggr_stats.aggr_aggr_pkt++;
3489
3490			/*
3491			 * Update the rate and rtscts information based on the
3492			 * rate decision made by the rate control code;
3493			 * the first frame in the aggregate needs it.
3494			 */
3495			ath_tx_set_rtscts(sc, bf);
3496
3497			/*
3498			 * Setup the relevant descriptor fields
3499			 * for aggregation. The first descriptor
3500			 * already points to the rest in the chain.
3501			 */
3502			ath_tx_setds_11n(sc, bf);
3503
3504			/*
3505			 * setup first desc with rate and aggr info
3506			 */
3507			ath_tx_set_ratectrl(sc, ni, bf);
3508		}
3509	queuepkt:
3510		//txq = bf->bf_state.bfs_txq;
3511
3512		/* Set completion handler, multi-frame aggregate or not */
3513		bf->bf_comp = ath_tx_aggr_comp;
3514
3515		if (bf->bf_state.bfs_tid == IEEE80211_NONQOS_TID)
3516		    device_printf(sc->sc_dev, "%s: TID=16?\n", __func__);
3517
3518		/* Punt to txq */
3519		ath_tx_handoff(sc, txq, bf);
3520
3521		/* Track outstanding buffer count to hardware */
3522		/* aggregates are "one" buffer */
3523		tid->hwq_depth++;
3524
3525		/*
3526		 * Break out if ath_tx_form_aggr() indicated
3527		 * there can't be any further progress (eg BAW is full.)
3528		 * Checking for an empty txq is done above.
3529		 *
3530		 * XXX locking on txq here?
3531		 */
3532		if (txq->axq_aggr_depth >= sc->sc_hwq_limit ||
3533		    status == ATH_AGGR_BAW_CLOSED)
3534			break;
3535	}
3536}
3537
3538/*
3539 * Schedule some packets from the given node/TID to the hardware.
3540 */
3541void
3542ath_tx_tid_hw_queue_norm(struct ath_softc *sc, struct ath_node *an,
3543    struct ath_tid *tid)
3544{
3545	struct ath_buf *bf;
3546	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
3547	struct ieee80211_node *ni = &an->an_node;
3548
3549	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: node %p: TID %d: called\n",
3550	    __func__, an, tid->tid);
3551
3552	ATH_TXQ_LOCK_ASSERT(txq);
3553
3554	/* Check - is AMPDU pending or running? then print out something */
3555	if (ath_tx_ampdu_pending(sc, an, tid->tid))
3556		device_printf(sc->sc_dev, "%s: tid=%d, ampdu pending?\n",
3557		    __func__, tid->tid);
3558	if (ath_tx_ampdu_running(sc, an, tid->tid))
3559		device_printf(sc->sc_dev, "%s: tid=%d, ampdu running?\n",
3560		    __func__, tid->tid);
3561
3562	for (;;) {
3563
3564		/*
3565		 * If the upper layers have paused the TID, don't
3566		 * queue any further packets.
3567		 */
3568		if (tid->paused)
3569			break;
3570
3571		bf = TAILQ_FIRST(&tid->axq_q);
3572		if (bf == NULL) {
3573			break;
3574		}
3575
3576		ATH_TXQ_REMOVE(tid, bf, bf_list);
3577
3578		KASSERT(txq == bf->bf_state.bfs_txq, ("txqs not equal!\n"));
3579
3580		/* Sanity check! */
3581		if (tid->tid != bf->bf_state.bfs_tid) {
3582			device_printf(sc->sc_dev, "%s: bfs_tid %d !="
3583			    " tid %d\n",
3584			    __func__, bf->bf_state.bfs_tid, tid->tid);
3585		}
3586		/* Normal completion handler */
3587		bf->bf_comp = ath_tx_normal_comp;
3588
3589		/* Program descriptors + rate control */
3590		ath_tx_do_ratelookup(sc, bf);
3591		ath_tx_rate_fill_rcflags(sc, bf);
3592		ath_tx_set_rtscts(sc, bf);
3593		ath_tx_setds(sc, bf);
3594		ath_tx_chaindesclist(sc, bf);
3595		ath_tx_set_ratectrl(sc, ni, bf);
3596
3597		/* Track outstanding buffer count to hardware */
3598		/* aggregates are "one" buffer */
3599		tid->hwq_depth++;
3600
3601		/* Punt to hardware or software txq */
3602		ath_tx_handoff(sc, txq, bf);
3603	}
3604}
3605
3606/*
3607 * Schedule some packets to the given hardware queue.
3608 *
3609 * This function walks the list of TIDs (ie, ath_node TIDs
3610 * with queued traffic) and attempts to schedule traffic
3611 * from them.
3612 *
3613 * TID scheduling is implemented as a FIFO, with TIDs being
3614 * added to the end of the queue after some frames have been
3615 * scheduled.
3616 */
3617void
3618ath_txq_sched(struct ath_softc *sc, struct ath_txq *txq)
3619{
3620	struct ath_tid *tid, *next, *last;
3621
3622	ATH_TXQ_LOCK_ASSERT(txq);
3623
3624	/*
3625	 * Don't schedule if the hardware queue is busy.
3626	 * This (hopefully) gives some more time to aggregate
3627	 * some packets in the aggregation queue.
3628	 */
3629	if (txq->axq_aggr_depth >= sc->sc_hwq_limit) {
3630		sc->sc_aggr_stats.aggr_sched_nopkt++;
3631		return;
3632	}
3633
3634	last = TAILQ_LAST(&txq->axq_tidq, axq_t_s);
3635
3636	TAILQ_FOREACH_SAFE(tid, &txq->axq_tidq, axq_qelem, next) {
3637		/*
3638		 * Suspend paused queues here; they'll be resumed
3639		 * once the addba completes or times out.
3640		 */
3641		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, paused=%d\n",
3642		    __func__, tid->tid, tid->paused);
3643		ath_tx_tid_unsched(sc, tid);
3644		if (tid->paused) {
3645			continue;
3646		}
3647		if (ath_tx_ampdu_running(sc, tid->an, tid->tid))
3648			ath_tx_tid_hw_queue_aggr(sc, tid->an, tid);
3649		else
3650			ath_tx_tid_hw_queue_norm(sc, tid->an, tid);
3651
3652		/* Not empty? Re-schedule */
3653		if (tid->axq_depth != 0)
3654			ath_tx_tid_sched(sc, tid);
3655
3656		/* Give the software queue time to aggregate more packets */
3657		if (txq->axq_aggr_depth >= sc->sc_hwq_limit) {
3658			break;
3659		}
3660
3661		/*
3662		 * If this was the last entry on the original list, stop.
3663		 * Otherwise nodes that have been rescheduled onto the end
3664		 * of the TID FIFO list will just keep being rescheduled.
3665		 */
3666		if (tid == last)
3667			break;
3668	}
3669}
3670
3671/*
3672 * TX addba handling
3673 */
3674
3675/*
3676 * Return net80211 TID struct pointer, or NULL for none
3677 */
3678struct ieee80211_tx_ampdu *
3679ath_tx_get_tx_tid(struct ath_node *an, int tid)
3680{
3681	struct ieee80211_node *ni = &an->an_node;
3682	struct ieee80211_tx_ampdu *tap;
3683	int ac;
3684
3685	if (tid == IEEE80211_NONQOS_TID)
3686		return NULL;
3687
3688	ac = TID_TO_WME_AC(tid);
3689
3690	tap = &ni->ni_tx_ampdu[ac];
3691	return tap;
3692}
3693
3694/*
3695 * Is AMPDU-TX running?
3696 */
3697static int
3698ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, int tid)
3699{
3700	struct ieee80211_tx_ampdu *tap;
3701
3702	if (tid == IEEE80211_NONQOS_TID)
3703		return 0;
3704
3705	tap = ath_tx_get_tx_tid(an, tid);
3706	if (tap == NULL)
3707		return 0;	/* Not valid; default to not running */
3708
3709	return !! (tap->txa_flags & IEEE80211_AGGR_RUNNING);
3710}
3711
3712/*
3713 * Is AMPDU-TX negotiation pending?
3714 */
3715static int
3716ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, int tid)
3717{
3718	struct ieee80211_tx_ampdu *tap;
3719
3720	if (tid == IEEE80211_NONQOS_TID)
3721		return 0;
3722
3723	tap = ath_tx_get_tx_tid(an, tid);
3724	if (tap == NULL)
3725		return 0;	/* Not valid; default to not pending */
3726
3727	return !! (tap->txa_flags & IEEE80211_AGGR_XCHGPEND);
3728}
3729
3730/*
3731 * Is AMPDU-TX pending for the given TID?
3732 */
3733
3734
3735/*
3736 * Method to handle sending an ADDBA request.
3737 *
3738 * We tap this so the relevant flags can be set to pause the TID
3739 * whilst waiting for the response.
3740 *
3741 * XXX there's no timeout handler we can override?
3742 */
3743int
3744ath_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
3745    int dialogtoken, int baparamset, int batimeout)
3746{
3747	struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3748	int tid = WME_AC_TO_TID(tap->txa_ac);
3749	struct ath_node *an = ATH_NODE(ni);
3750	struct ath_tid *atid = &an->an_tid[tid];
3751
3752	/*
3753	 * XXX danger Will Robinson!
3754	 *
3755	 * Although the taskqueue may be running and scheduling some more
3756	 * packets, these should all be _before_ the addba sequence number.
3757	 * However, net80211 will keep self-assigning sequence numbers
3758	 * until addba has been negotiated.
3759	 *
3760	 * In the past, these packets would be "paused" (which still works
3761	 * fine, as they're being scheduled to the driver in the same
3762	 * serialised method which is calling the addba request routine)
3763	 * and when the aggregation session begins, they'll be dequeued
3764	 * as aggregate packets and added to the BAW. However, now there's
3765	 * a "bf->bf_state.bfs_dobaw" flag, and this isn't set for these
3766	 * packets. Thus they never get included in the BAW tracking and
3767	 * this can cause the initial burst of packets after the addba
3768	 * negotiation to "hang", as they quickly fall outside the BAW.
3769	 *
3770	 * The "eventual" solution should be to tag these packets with
3771	 * dobaw. Although net80211 has given us a sequence number,
3772	 * it'll be "after" the left edge of the BAW and thus it'll
3773	 * fall within it.
3774	 */
3775	ath_tx_tid_pause(sc, atid);
3776
3777	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3778	    "%s: called; dialogtoken=%d, baparamset=%d, batimeout=%d\n",
3779	    __func__, dialogtoken, baparamset, batimeout);
3780	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3781	    "%s: txa_start=%d, ni_txseqs=%d\n",
3782	    __func__, tap->txa_start, ni->ni_txseqs[tid]);
3783
3784	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
3785	    batimeout);
3786}
3787
3788/*
3789 * Handle an ADDBA response.
3790 *
3791 * We unpause the queue so TX'ing can resume.
3792 *
3793 * Any packets TX'ed from this point should be "aggregate" (whether
3794 * aggregate or not) so the BAW is updated.
3795 *
3796 * Note! net80211 keeps self-assigning sequence numbers until
3797 * ampdu is negotiated. This means the initially-negotiated BAW left
3798 * edge won't match the ni->ni_txseq.
3799 *
3800 * So, being very dirty, the BAW left edge is "slid" here to match
3801 * ni->ni_txseq.
3802 *
3803 * What likely SHOULD happen is that all packets subsequent to the
3804 * addba request should be tagged as aggregate and queued as non-aggregate
3805 * frames; thus updating the BAW. For now though, I'll just slide the
3806 * window.
3807 */
3808int
3809ath_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
3810    int status, int code, int batimeout)
3811{
3812	struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3813	int tid = WME_AC_TO_TID(tap->txa_ac);
3814	struct ath_node *an = ATH_NODE(ni);
3815	struct ath_tid *atid = &an->an_tid[tid];
3816	int r;
3817
3818	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3819	    "%s: called; status=%d, code=%d, batimeout=%d\n", __func__,
3820	    status, code, batimeout);
3821
3822	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3823	    "%s: txa_start=%d, ni_txseqs=%d\n",
3824	    __func__, tap->txa_start, ni->ni_txseqs[tid]);
3825
3826	/*
3827	 * Call this first, so the interface flags get updated
3828	 * before the TID is unpaused. Otherwise a race condition
3829	 * exists where the unpaused TID still doesn't yet have
3830	 * IEEE80211_AGGR_RUNNING set.
3831	 */
3832	r = sc->sc_addba_response(ni, tap, status, code, batimeout);
3833
3834	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3835	/*
3836	 * XXX dirty!
3837	 * Slide the BAW left edge to wherever net80211 left it for us.
3838	 * Read above for more information.
3839	 */
3840	tap->txa_start = ni->ni_txseqs[tid];
3841	ath_tx_tid_resume(sc, atid);
3842	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3843	return r;
3844}
3845
3846
3847/*
3848 * Stop ADDBA on a queue.
3849 */
3850void
3851ath_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
3852{
3853	struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3854	int tid = WME_AC_TO_TID(tap->txa_ac);
3855	struct ath_node *an = ATH_NODE(ni);
3856	struct ath_tid *atid = &an->an_tid[tid];
3857
3858	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: called\n", __func__);
3859
3860	/* Pause TID traffic early, so there aren't any races */
3861	ath_tx_tid_pause(sc, atid);
3862
3863	/* There's no need to hold the TXQ lock here */
3864	sc->sc_addba_stop(ni, tap);
3865
3866	/*
3867	 * ath_tx_cleanup will resume the TID if possible, otherwise
3868	 * it'll set the cleanup flag, and it'll be unpaused once
3869	 * things have been cleaned up.
3870	 */
3871	ath_tx_cleanup(sc, an, tid);
3872}
3873
3874/*
3875 * Note: net80211 bar_timeout() doesn't call this function on BAR failure;
3876 * it simply tears down the aggregation session. Ew.
3877 *
3878 * It however will call ieee80211_ampdu_stop() which will call
3879 * ic->ic_addba_stop().
3880 *
3881 * XXX This uses a hard-coded max BAR count value; the whole
3882 * XXX BAR TX success or failure should be better handled!
3883 */
3884void
3885ath_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
3886    int status)
3887{
3888	struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3889	int tid = WME_AC_TO_TID(tap->txa_ac);
3890	struct ath_node *an = ATH_NODE(ni);
3891	struct ath_tid *atid = &an->an_tid[tid];
3892	int attempts = tap->txa_attempts;
3893
3894	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3895	    "%s: called; status=%d\n", __func__, status);
3896
3897	/* Note: This may update the BAW details */
3898	sc->sc_bar_response(ni, tap, status);
3899
3900	/* Unpause the TID */
3901	/*
3902	 * XXX if this is attempt=50, the TID will be downgraded
3903	 * XXX to a non-aggregate session. So we must unpause the
3904	 * XXX TID here or it'll never be done.
3905	 */
3906	if (status == 0 || attempts == 50) {
3907		ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3908		ath_tx_tid_resume(sc, atid);
3909		ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3910	}
3911}
3912
3913/*
3914 * This is called whenever the pending ADDBA request times out.
3915 * Unpause and reschedule the TID.
3916 */
3917void
3918ath_addba_response_timeout(struct ieee80211_node *ni,
3919    struct ieee80211_tx_ampdu *tap)
3920{
3921	struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3922	int tid = WME_AC_TO_TID(tap->txa_ac);
3923	struct ath_node *an = ATH_NODE(ni);
3924	struct ath_tid *atid = &an->an_tid[tid];
3925
3926	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3927	    "%s: called; resuming\n", __func__);
3928
3929	/* Note: This updates the aggregate state to (again) pending */
3930	sc->sc_addba_response_timeout(ni, tap);
3931
3932	/* Unpause the TID; which reschedules it */
3933	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3934	ath_tx_tid_resume(sc, atid);
3935	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3936}
3937