if_age.c revision 221407
1/*-
2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/age/if_age.c 221407 2011-05-03 19:51:29Z marius $");
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/bus.h>
36#include <sys/endian.h>
37#include <sys/kernel.h>
38#include <sys/malloc.h>
39#include <sys/mbuf.h>
40#include <sys/rman.h>
41#include <sys/module.h>
42#include <sys/queue.h>
43#include <sys/socket.h>
44#include <sys/sockio.h>
45#include <sys/sysctl.h>
46#include <sys/taskqueue.h>
47
48#include <net/bpf.h>
49#include <net/if.h>
50#include <net/if_arp.h>
51#include <net/ethernet.h>
52#include <net/if_dl.h>
53#include <net/if_media.h>
54#include <net/if_types.h>
55#include <net/if_vlan_var.h>
56
57#include <netinet/in.h>
58#include <netinet/in_systm.h>
59#include <netinet/ip.h>
60#include <netinet/tcp.h>
61
62#include <dev/mii/mii.h>
63#include <dev/mii/miivar.h>
64
65#include <dev/pci/pcireg.h>
66#include <dev/pci/pcivar.h>
67
68#include <machine/bus.h>
69#include <machine/in_cksum.h>
70
71#include <dev/age/if_agereg.h>
72#include <dev/age/if_agevar.h>
73
74/* "device miibus" required.  See GENERIC if you get errors here. */
75#include "miibus_if.h"
76
77#define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
78
79MODULE_DEPEND(age, pci, 1, 1, 1);
80MODULE_DEPEND(age, ether, 1, 1, 1);
81MODULE_DEPEND(age, miibus, 1, 1, 1);
82
83/* Tunables. */
84static int msi_disable = 0;
85static int msix_disable = 0;
86TUNABLE_INT("hw.age.msi_disable", &msi_disable);
87TUNABLE_INT("hw.age.msix_disable", &msix_disable);
88
89/*
90 * Devices supported by this driver.
91 */
92static struct age_dev {
93	uint16_t	age_vendorid;
94	uint16_t	age_deviceid;
95	const char	*age_name;
96} age_devs[] = {
97	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
98	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
99};
100
101static int age_miibus_readreg(device_t, int, int);
102static int age_miibus_writereg(device_t, int, int, int);
103static void age_miibus_statchg(device_t);
104static void age_mediastatus(struct ifnet *, struct ifmediareq *);
105static int age_mediachange(struct ifnet *);
106static int age_probe(device_t);
107static void age_get_macaddr(struct age_softc *);
108static void age_phy_reset(struct age_softc *);
109static int age_attach(device_t);
110static int age_detach(device_t);
111static void age_sysctl_node(struct age_softc *);
112static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113static int age_check_boundary(struct age_softc *);
114static int age_dma_alloc(struct age_softc *);
115static void age_dma_free(struct age_softc *);
116static int age_shutdown(device_t);
117static void age_setwol(struct age_softc *);
118static int age_suspend(device_t);
119static int age_resume(device_t);
120static int age_encap(struct age_softc *, struct mbuf **);
121static void age_start(struct ifnet *);
122static void age_start_locked(struct ifnet *);
123static void age_watchdog(struct age_softc *);
124static int age_ioctl(struct ifnet *, u_long, caddr_t);
125static void age_mac_config(struct age_softc *);
126static void age_link_task(void *, int);
127static void age_stats_update(struct age_softc *);
128static int age_intr(void *);
129static void age_int_task(void *, int);
130static void age_txintr(struct age_softc *, int);
131static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
132static int age_rxintr(struct age_softc *, int, int);
133static void age_tick(void *);
134static void age_reset(struct age_softc *);
135static void age_init(void *);
136static void age_init_locked(struct age_softc *);
137static void age_stop(struct age_softc *);
138static void age_stop_txmac(struct age_softc *);
139static void age_stop_rxmac(struct age_softc *);
140static void age_init_tx_ring(struct age_softc *);
141static int age_init_rx_ring(struct age_softc *);
142static void age_init_rr_ring(struct age_softc *);
143static void age_init_cmb_block(struct age_softc *);
144static void age_init_smb_block(struct age_softc *);
145static int age_newbuf(struct age_softc *, struct age_rxdesc *);
146static void age_rxvlan(struct age_softc *);
147static void age_rxfilter(struct age_softc *);
148static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
149static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
150static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
151static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
152
153
154static device_method_t age_methods[] = {
155	/* Device interface. */
156	DEVMETHOD(device_probe,		age_probe),
157	DEVMETHOD(device_attach,	age_attach),
158	DEVMETHOD(device_detach,	age_detach),
159	DEVMETHOD(device_shutdown,	age_shutdown),
160	DEVMETHOD(device_suspend,	age_suspend),
161	DEVMETHOD(device_resume,	age_resume),
162
163	/* MII interface. */
164	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
165	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
166	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
167
168	{ NULL, NULL }
169};
170
171static driver_t age_driver = {
172	"age",
173	age_methods,
174	sizeof(struct age_softc)
175};
176
177static devclass_t age_devclass;
178
179DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
180DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
181
182static struct resource_spec age_res_spec_mem[] = {
183	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
184	{ -1,			0,		0 }
185};
186
187static struct resource_spec age_irq_spec_legacy[] = {
188	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
189	{ -1,			0,		0 }
190};
191
192static struct resource_spec age_irq_spec_msi[] = {
193	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
194	{ -1,			0,		0 }
195};
196
197static struct resource_spec age_irq_spec_msix[] = {
198	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
199	{ -1,			0,		0 }
200};
201
202/*
203 *	Read a PHY register on the MII of the L1.
204 */
205static int
206age_miibus_readreg(device_t dev, int phy, int reg)
207{
208	struct age_softc *sc;
209	uint32_t v;
210	int i;
211
212	sc = device_get_softc(dev);
213
214	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
215	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
216	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
217		DELAY(1);
218		v = CSR_READ_4(sc, AGE_MDIO);
219		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
220			break;
221	}
222
223	if (i == 0) {
224		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
225		return (0);
226	}
227
228	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
229}
230
231/*
232 *	Write a PHY register on the MII of the L1.
233 */
234static int
235age_miibus_writereg(device_t dev, int phy, int reg, int val)
236{
237	struct age_softc *sc;
238	uint32_t v;
239	int i;
240
241	sc = device_get_softc(dev);
242
243	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
244	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
245	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
246	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
247		DELAY(1);
248		v = CSR_READ_4(sc, AGE_MDIO);
249		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
250			break;
251	}
252
253	if (i == 0)
254		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
255
256	return (0);
257}
258
259/*
260 *	Callback from MII layer when media changes.
261 */
262static void
263age_miibus_statchg(device_t dev)
264{
265	struct age_softc *sc;
266
267	sc = device_get_softc(dev);
268	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
269}
270
271/*
272 *	Get the current interface media status.
273 */
274static void
275age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
276{
277	struct age_softc *sc;
278	struct mii_data *mii;
279
280	sc = ifp->if_softc;
281	AGE_LOCK(sc);
282	mii = device_get_softc(sc->age_miibus);
283
284	mii_pollstat(mii);
285	AGE_UNLOCK(sc);
286	ifmr->ifm_status = mii->mii_media_status;
287	ifmr->ifm_active = mii->mii_media_active;
288}
289
290/*
291 *	Set hardware to newly-selected media.
292 */
293static int
294age_mediachange(struct ifnet *ifp)
295{
296	struct age_softc *sc;
297	struct mii_data *mii;
298	struct mii_softc *miisc;
299	int error;
300
301	sc = ifp->if_softc;
302	AGE_LOCK(sc);
303	mii = device_get_softc(sc->age_miibus);
304	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
305		PHY_RESET(miisc);
306	error = mii_mediachg(mii);
307	AGE_UNLOCK(sc);
308
309	return (error);
310}
311
312static int
313age_probe(device_t dev)
314{
315	struct age_dev *sp;
316	int i;
317	uint16_t vendor, devid;
318
319	vendor = pci_get_vendor(dev);
320	devid = pci_get_device(dev);
321	sp = age_devs;
322	for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]);
323	    i++, sp++) {
324		if (vendor == sp->age_vendorid &&
325		    devid == sp->age_deviceid) {
326			device_set_desc(dev, sp->age_name);
327			return (BUS_PROBE_DEFAULT);
328		}
329	}
330
331	return (ENXIO);
332}
333
334static void
335age_get_macaddr(struct age_softc *sc)
336{
337	uint32_t ea[2], reg;
338	int i, vpdc;
339
340	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
341	if ((reg & SPI_VPD_ENB) != 0) {
342		/* Get VPD stored in TWSI EEPROM. */
343		reg &= ~SPI_VPD_ENB;
344		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
345	}
346
347	if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
348		/*
349		 * PCI VPD capability found, let TWSI reload EEPROM.
350		 * This will set ethernet address of controller.
351		 */
352		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
353		    TWSI_CTRL_SW_LD_START);
354		for (i = 100; i > 0; i--) {
355			DELAY(1000);
356			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
357			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
358				break;
359		}
360		if (i == 0)
361			device_printf(sc->age_dev,
362			    "reloading EEPROM timeout!\n");
363	} else {
364		if (bootverbose)
365			device_printf(sc->age_dev,
366			    "PCI VPD capability not found!\n");
367	}
368
369	ea[0] = CSR_READ_4(sc, AGE_PAR0);
370	ea[1] = CSR_READ_4(sc, AGE_PAR1);
371	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
372	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
373	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
374	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
375	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
376	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
377}
378
379static void
380age_phy_reset(struct age_softc *sc)
381{
382	uint16_t reg, pn;
383	int i, linkup;
384
385	/* Reset PHY. */
386	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
387	DELAY(2000);
388	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
389	DELAY(2000);
390
391#define	ATPHY_DBG_ADDR		0x1D
392#define	ATPHY_DBG_DATA		0x1E
393#define	ATPHY_CDTC		0x16
394#define	PHY_CDTC_ENB		0x0001
395#define	PHY_CDTC_POFF		8
396#define	ATPHY_CDTS		0x1C
397#define	PHY_CDTS_STAT_OK	0x0000
398#define	PHY_CDTS_STAT_SHORT	0x0100
399#define	PHY_CDTS_STAT_OPEN	0x0200
400#define	PHY_CDTS_STAT_INVAL	0x0300
401#define	PHY_CDTS_STAT_MASK	0x0300
402
403	/* Check power saving mode. Magic from Linux. */
404	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
405	for (linkup = 0, pn = 0; pn < 4; pn++) {
406		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
407		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
408		for (i = 200; i > 0; i--) {
409			DELAY(1000);
410			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
411			    ATPHY_CDTC);
412			if ((reg & PHY_CDTC_ENB) == 0)
413				break;
414		}
415		DELAY(1000);
416		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
417		    ATPHY_CDTS);
418		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
419			linkup++;
420			break;
421		}
422	}
423	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
424	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
425	if (linkup == 0) {
426		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
427		    ATPHY_DBG_ADDR, 0);
428		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
429		    ATPHY_DBG_DATA, 0x124E);
430		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
431		    ATPHY_DBG_ADDR, 1);
432		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
433		    ATPHY_DBG_DATA);
434		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
435		    ATPHY_DBG_DATA, reg | 0x03);
436		/* XXX */
437		DELAY(1500 * 1000);
438		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
439		    ATPHY_DBG_ADDR, 0);
440		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
441		    ATPHY_DBG_DATA, 0x024E);
442    }
443
444#undef	ATPHY_DBG_ADDR
445#undef	ATPHY_DBG_DATA
446#undef	ATPHY_CDTC
447#undef	PHY_CDTC_ENB
448#undef	PHY_CDTC_POFF
449#undef	ATPHY_CDTS
450#undef	PHY_CDTS_STAT_OK
451#undef	PHY_CDTS_STAT_SHORT
452#undef	PHY_CDTS_STAT_OPEN
453#undef	PHY_CDTS_STAT_INVAL
454#undef	PHY_CDTS_STAT_MASK
455}
456
457static int
458age_attach(device_t dev)
459{
460	struct age_softc *sc;
461	struct ifnet *ifp;
462	uint16_t burst;
463	int error, i, msic, msixc, pmc;
464
465	error = 0;
466	sc = device_get_softc(dev);
467	sc->age_dev = dev;
468
469	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
470	    MTX_DEF);
471	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
472	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
473	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
474
475	/* Map the device. */
476	pci_enable_busmaster(dev);
477	sc->age_res_spec = age_res_spec_mem;
478	sc->age_irq_spec = age_irq_spec_legacy;
479	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
480	if (error != 0) {
481		device_printf(dev, "cannot allocate memory resources.\n");
482		goto fail;
483	}
484
485	/* Set PHY address. */
486	sc->age_phyaddr = AGE_PHY_ADDR;
487
488	/* Reset PHY. */
489	age_phy_reset(sc);
490
491	/* Reset the ethernet controller. */
492	age_reset(sc);
493
494	/* Get PCI and chip id/revision. */
495	sc->age_rev = pci_get_revid(dev);
496	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
497	    MASTER_CHIP_REV_SHIFT;
498	if (bootverbose) {
499		device_printf(dev, "PCI device revision : 0x%04x\n",
500		    sc->age_rev);
501		device_printf(dev, "Chip id/revision : 0x%04x\n",
502		    sc->age_chip_rev);
503	}
504
505	/*
506	 * XXX
507	 * Unintialized hardware returns an invalid chip id/revision
508	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
509	 * unplugged cable results in putting hardware into automatic
510	 * power down mode which in turn returns invalld chip revision.
511	 */
512	if (sc->age_chip_rev == 0xFFFF) {
513		device_printf(dev,"invalid chip revision : 0x%04x -- "
514		    "not initialized?\n", sc->age_chip_rev);
515		error = ENXIO;
516		goto fail;
517	}
518
519	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
520	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
521	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
522
523	/* Allocate IRQ resources. */
524	msixc = pci_msix_count(dev);
525	msic = pci_msi_count(dev);
526	if (bootverbose) {
527		device_printf(dev, "MSIX count : %d\n", msixc);
528		device_printf(dev, "MSI count : %d\n", msic);
529	}
530
531	/* Prefer MSIX over MSI. */
532	if (msix_disable == 0 || msi_disable == 0) {
533		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
534		    pci_alloc_msix(dev, &msixc) == 0) {
535			if (msic == AGE_MSIX_MESSAGES) {
536				device_printf(dev, "Using %d MSIX messages.\n",
537				    msixc);
538				sc->age_flags |= AGE_FLAG_MSIX;
539				sc->age_irq_spec = age_irq_spec_msix;
540			} else
541				pci_release_msi(dev);
542		}
543		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
544		    msic == AGE_MSI_MESSAGES &&
545		    pci_alloc_msi(dev, &msic) == 0) {
546			if (msic == AGE_MSI_MESSAGES) {
547				device_printf(dev, "Using %d MSI messages.\n",
548				    msic);
549				sc->age_flags |= AGE_FLAG_MSI;
550				sc->age_irq_spec = age_irq_spec_msi;
551			} else
552				pci_release_msi(dev);
553		}
554	}
555
556	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
557	if (error != 0) {
558		device_printf(dev, "cannot allocate IRQ resources.\n");
559		goto fail;
560	}
561
562
563	/* Get DMA parameters from PCIe device control register. */
564	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
565		sc->age_flags |= AGE_FLAG_PCIE;
566		burst = pci_read_config(dev, i + 0x08, 2);
567		/* Max read request size. */
568		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
569		    DMA_CFG_RD_BURST_SHIFT;
570		/* Max payload size. */
571		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
572		    DMA_CFG_WR_BURST_SHIFT;
573		if (bootverbose) {
574			device_printf(dev, "Read request size : %d bytes.\n",
575			    128 << ((burst >> 12) & 0x07));
576			device_printf(dev, "TLP payload size : %d bytes.\n",
577			    128 << ((burst >> 5) & 0x07));
578		}
579	} else {
580		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
581		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
582	}
583
584	/* Create device sysctl node. */
585	age_sysctl_node(sc);
586
587	if ((error = age_dma_alloc(sc) != 0))
588		goto fail;
589
590	/* Load station address. */
591	age_get_macaddr(sc);
592
593	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
594	if (ifp == NULL) {
595		device_printf(dev, "cannot allocate ifnet structure.\n");
596		error = ENXIO;
597		goto fail;
598	}
599
600	ifp->if_softc = sc;
601	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
602	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
603	ifp->if_ioctl = age_ioctl;
604	ifp->if_start = age_start;
605	ifp->if_init = age_init;
606	ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
607	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
608	IFQ_SET_READY(&ifp->if_snd);
609	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
610	ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
611	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
612		sc->age_flags |= AGE_FLAG_PMCAP;
613		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
614	}
615	ifp->if_capenable = ifp->if_capabilities;
616
617	/* Set up MII bus. */
618	error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
619	    age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
620	    0);
621	if (error != 0) {
622		device_printf(dev, "attaching PHYs failed\n");
623		goto fail;
624	}
625
626	ether_ifattach(ifp, sc->age_eaddr);
627
628	/* VLAN capability setup. */
629	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
630	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
631	ifp->if_capenable = ifp->if_capabilities;
632
633	/* Tell the upper layer(s) we support long frames. */
634	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
635
636	/* Create local taskq. */
637	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
638	    taskqueue_thread_enqueue, &sc->age_tq);
639	if (sc->age_tq == NULL) {
640		device_printf(dev, "could not create taskqueue.\n");
641		ether_ifdetach(ifp);
642		error = ENXIO;
643		goto fail;
644	}
645	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
646	    device_get_nameunit(sc->age_dev));
647
648	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
649		msic = AGE_MSIX_MESSAGES;
650	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
651		msic = AGE_MSI_MESSAGES;
652	else
653		msic = 1;
654	for (i = 0; i < msic; i++) {
655		error = bus_setup_intr(dev, sc->age_irq[i],
656		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
657		    &sc->age_intrhand[i]);
658		if (error != 0)
659			break;
660	}
661	if (error != 0) {
662		device_printf(dev, "could not set up interrupt handler.\n");
663		taskqueue_free(sc->age_tq);
664		sc->age_tq = NULL;
665		ether_ifdetach(ifp);
666		goto fail;
667	}
668
669fail:
670	if (error != 0)
671		age_detach(dev);
672
673	return (error);
674}
675
676static int
677age_detach(device_t dev)
678{
679	struct age_softc *sc;
680	struct ifnet *ifp;
681	int i, msic;
682
683	sc = device_get_softc(dev);
684
685	ifp = sc->age_ifp;
686	if (device_is_attached(dev)) {
687		AGE_LOCK(sc);
688		sc->age_flags |= AGE_FLAG_DETACH;
689		age_stop(sc);
690		AGE_UNLOCK(sc);
691		callout_drain(&sc->age_tick_ch);
692		taskqueue_drain(sc->age_tq, &sc->age_int_task);
693		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
694		ether_ifdetach(ifp);
695	}
696
697	if (sc->age_tq != NULL) {
698		taskqueue_drain(sc->age_tq, &sc->age_int_task);
699		taskqueue_free(sc->age_tq);
700		sc->age_tq = NULL;
701	}
702
703	if (sc->age_miibus != NULL) {
704		device_delete_child(dev, sc->age_miibus);
705		sc->age_miibus = NULL;
706	}
707	bus_generic_detach(dev);
708	age_dma_free(sc);
709
710	if (ifp != NULL) {
711		if_free(ifp);
712		sc->age_ifp = NULL;
713	}
714
715	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
716		msic = AGE_MSIX_MESSAGES;
717	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
718		msic = AGE_MSI_MESSAGES;
719	else
720		msic = 1;
721	for (i = 0; i < msic; i++) {
722		if (sc->age_intrhand[i] != NULL) {
723			bus_teardown_intr(dev, sc->age_irq[i],
724			    sc->age_intrhand[i]);
725			sc->age_intrhand[i] = NULL;
726		}
727	}
728
729	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
730	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
731		pci_release_msi(dev);
732	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
733	mtx_destroy(&sc->age_mtx);
734
735	return (0);
736}
737
738static void
739age_sysctl_node(struct age_softc *sc)
740{
741	int error;
742
743	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
744	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
745	    "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
746	    "I", "Statistics");
747
748	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
749	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
750	    "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
751	    sysctl_hw_age_int_mod, "I", "age interrupt moderation");
752
753	/* Pull in device tunables. */
754	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
755	error = resource_int_value(device_get_name(sc->age_dev),
756	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
757	if (error == 0) {
758		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
759		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
760			device_printf(sc->age_dev,
761			    "int_mod value out of range; using default: %d\n",
762			    AGE_IM_TIMER_DEFAULT);
763			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
764		}
765	}
766
767	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
768	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
769	    "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
770	    0, sysctl_hw_age_proc_limit, "I",
771	    "max number of Rx events to process");
772
773	/* Pull in device tunables. */
774	sc->age_process_limit = AGE_PROC_DEFAULT;
775	error = resource_int_value(device_get_name(sc->age_dev),
776	    device_get_unit(sc->age_dev), "process_limit",
777	    &sc->age_process_limit);
778	if (error == 0) {
779		if (sc->age_process_limit < AGE_PROC_MIN ||
780		    sc->age_process_limit > AGE_PROC_MAX) {
781			device_printf(sc->age_dev,
782			    "process_limit value out of range; "
783			    "using default: %d\n", AGE_PROC_DEFAULT);
784			sc->age_process_limit = AGE_PROC_DEFAULT;
785		}
786	}
787}
788
789struct age_dmamap_arg {
790	bus_addr_t	age_busaddr;
791};
792
793static void
794age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
795{
796	struct age_dmamap_arg *ctx;
797
798	if (error != 0)
799		return;
800
801	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
802
803	ctx = (struct age_dmamap_arg *)arg;
804	ctx->age_busaddr = segs[0].ds_addr;
805}
806
807/*
808 * Attansic L1 controller have single register to specify high
809 * address part of DMA blocks. So all descriptor structures and
810 * DMA memory blocks should have the same high address of given
811 * 4GB address space(i.e. crossing 4GB boundary is not allowed).
812 */
813static int
814age_check_boundary(struct age_softc *sc)
815{
816	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
817	bus_addr_t cmb_block_end, smb_block_end;
818
819	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
820	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
821	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
822	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
823	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
824	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
825
826	if ((AGE_ADDR_HI(tx_ring_end) !=
827	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
828	    (AGE_ADDR_HI(rx_ring_end) !=
829	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
830	    (AGE_ADDR_HI(rr_ring_end) !=
831	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
832	    (AGE_ADDR_HI(cmb_block_end) !=
833	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
834	    (AGE_ADDR_HI(smb_block_end) !=
835	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
836		return (EFBIG);
837
838	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
839	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
840	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
841	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
842		return (EFBIG);
843
844	return (0);
845}
846
847static int
848age_dma_alloc(struct age_softc *sc)
849{
850	struct age_txdesc *txd;
851	struct age_rxdesc *rxd;
852	bus_addr_t lowaddr;
853	struct age_dmamap_arg ctx;
854	int error, i;
855
856	lowaddr = BUS_SPACE_MAXADDR;
857
858again:
859	/* Create parent ring/DMA block tag. */
860	error = bus_dma_tag_create(
861	    bus_get_dma_tag(sc->age_dev), /* parent */
862	    1, 0,			/* alignment, boundary */
863	    lowaddr,			/* lowaddr */
864	    BUS_SPACE_MAXADDR,		/* highaddr */
865	    NULL, NULL,			/* filter, filterarg */
866	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
867	    0,				/* nsegments */
868	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
869	    0,				/* flags */
870	    NULL, NULL,			/* lockfunc, lockarg */
871	    &sc->age_cdata.age_parent_tag);
872	if (error != 0) {
873		device_printf(sc->age_dev,
874		    "could not create parent DMA tag.\n");
875		goto fail;
876	}
877
878	/* Create tag for Tx ring. */
879	error = bus_dma_tag_create(
880	    sc->age_cdata.age_parent_tag, /* parent */
881	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
882	    BUS_SPACE_MAXADDR,		/* lowaddr */
883	    BUS_SPACE_MAXADDR,		/* highaddr */
884	    NULL, NULL,			/* filter, filterarg */
885	    AGE_TX_RING_SZ,		/* maxsize */
886	    1,				/* nsegments */
887	    AGE_TX_RING_SZ,		/* maxsegsize */
888	    0,				/* flags */
889	    NULL, NULL,			/* lockfunc, lockarg */
890	    &sc->age_cdata.age_tx_ring_tag);
891	if (error != 0) {
892		device_printf(sc->age_dev,
893		    "could not create Tx ring DMA tag.\n");
894		goto fail;
895	}
896
897	/* Create tag for Rx ring. */
898	error = bus_dma_tag_create(
899	    sc->age_cdata.age_parent_tag, /* parent */
900	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
901	    BUS_SPACE_MAXADDR,		/* lowaddr */
902	    BUS_SPACE_MAXADDR,		/* highaddr */
903	    NULL, NULL,			/* filter, filterarg */
904	    AGE_RX_RING_SZ,		/* maxsize */
905	    1,				/* nsegments */
906	    AGE_RX_RING_SZ,		/* maxsegsize */
907	    0,				/* flags */
908	    NULL, NULL,			/* lockfunc, lockarg */
909	    &sc->age_cdata.age_rx_ring_tag);
910	if (error != 0) {
911		device_printf(sc->age_dev,
912		    "could not create Rx ring DMA tag.\n");
913		goto fail;
914	}
915
916	/* Create tag for Rx return ring. */
917	error = bus_dma_tag_create(
918	    sc->age_cdata.age_parent_tag, /* parent */
919	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
920	    BUS_SPACE_MAXADDR,		/* lowaddr */
921	    BUS_SPACE_MAXADDR,		/* highaddr */
922	    NULL, NULL,			/* filter, filterarg */
923	    AGE_RR_RING_SZ,		/* maxsize */
924	    1,				/* nsegments */
925	    AGE_RR_RING_SZ,		/* maxsegsize */
926	    0,				/* flags */
927	    NULL, NULL,			/* lockfunc, lockarg */
928	    &sc->age_cdata.age_rr_ring_tag);
929	if (error != 0) {
930		device_printf(sc->age_dev,
931		    "could not create Rx return ring DMA tag.\n");
932		goto fail;
933	}
934
935	/* Create tag for coalesing message block. */
936	error = bus_dma_tag_create(
937	    sc->age_cdata.age_parent_tag, /* parent */
938	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
939	    BUS_SPACE_MAXADDR,		/* lowaddr */
940	    BUS_SPACE_MAXADDR,		/* highaddr */
941	    NULL, NULL,			/* filter, filterarg */
942	    AGE_CMB_BLOCK_SZ,		/* maxsize */
943	    1,				/* nsegments */
944	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
945	    0,				/* flags */
946	    NULL, NULL,			/* lockfunc, lockarg */
947	    &sc->age_cdata.age_cmb_block_tag);
948	if (error != 0) {
949		device_printf(sc->age_dev,
950		    "could not create CMB DMA tag.\n");
951		goto fail;
952	}
953
954	/* Create tag for statistics message block. */
955	error = bus_dma_tag_create(
956	    sc->age_cdata.age_parent_tag, /* parent */
957	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
958	    BUS_SPACE_MAXADDR,		/* lowaddr */
959	    BUS_SPACE_MAXADDR,		/* highaddr */
960	    NULL, NULL,			/* filter, filterarg */
961	    AGE_SMB_BLOCK_SZ,		/* maxsize */
962	    1,				/* nsegments */
963	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
964	    0,				/* flags */
965	    NULL, NULL,			/* lockfunc, lockarg */
966	    &sc->age_cdata.age_smb_block_tag);
967	if (error != 0) {
968		device_printf(sc->age_dev,
969		    "could not create SMB DMA tag.\n");
970		goto fail;
971	}
972
973	/* Allocate DMA'able memory and load the DMA map. */
974	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
975	    (void **)&sc->age_rdata.age_tx_ring,
976	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
977	    &sc->age_cdata.age_tx_ring_map);
978	if (error != 0) {
979		device_printf(sc->age_dev,
980		    "could not allocate DMA'able memory for Tx ring.\n");
981		goto fail;
982	}
983	ctx.age_busaddr = 0;
984	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
985	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
986	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
987	if (error != 0 || ctx.age_busaddr == 0) {
988		device_printf(sc->age_dev,
989		    "could not load DMA'able memory for Tx ring.\n");
990		goto fail;
991	}
992	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
993	/* Rx ring */
994	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
995	    (void **)&sc->age_rdata.age_rx_ring,
996	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
997	    &sc->age_cdata.age_rx_ring_map);
998	if (error != 0) {
999		device_printf(sc->age_dev,
1000		    "could not allocate DMA'able memory for Rx ring.\n");
1001		goto fail;
1002	}
1003	ctx.age_busaddr = 0;
1004	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1005	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1006	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1007	if (error != 0 || ctx.age_busaddr == 0) {
1008		device_printf(sc->age_dev,
1009		    "could not load DMA'able memory for Rx ring.\n");
1010		goto fail;
1011	}
1012	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1013	/* Rx return ring */
1014	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1015	    (void **)&sc->age_rdata.age_rr_ring,
1016	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1017	    &sc->age_cdata.age_rr_ring_map);
1018	if (error != 0) {
1019		device_printf(sc->age_dev,
1020		    "could not allocate DMA'able memory for Rx return ring.\n");
1021		goto fail;
1022	}
1023	ctx.age_busaddr = 0;
1024	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1025	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1026	    AGE_RR_RING_SZ, age_dmamap_cb,
1027	    &ctx, 0);
1028	if (error != 0 || ctx.age_busaddr == 0) {
1029		device_printf(sc->age_dev,
1030		    "could not load DMA'able memory for Rx return ring.\n");
1031		goto fail;
1032	}
1033	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1034	/* CMB block */
1035	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1036	    (void **)&sc->age_rdata.age_cmb_block,
1037	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1038	    &sc->age_cdata.age_cmb_block_map);
1039	if (error != 0) {
1040		device_printf(sc->age_dev,
1041		    "could not allocate DMA'able memory for CMB block.\n");
1042		goto fail;
1043	}
1044	ctx.age_busaddr = 0;
1045	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1046	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1047	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1048	if (error != 0 || ctx.age_busaddr == 0) {
1049		device_printf(sc->age_dev,
1050		    "could not load DMA'able memory for CMB block.\n");
1051		goto fail;
1052	}
1053	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1054	/* SMB block */
1055	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1056	    (void **)&sc->age_rdata.age_smb_block,
1057	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1058	    &sc->age_cdata.age_smb_block_map);
1059	if (error != 0) {
1060		device_printf(sc->age_dev,
1061		    "could not allocate DMA'able memory for SMB block.\n");
1062		goto fail;
1063	}
1064	ctx.age_busaddr = 0;
1065	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1066	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1067	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1068	if (error != 0 || ctx.age_busaddr == 0) {
1069		device_printf(sc->age_dev,
1070		    "could not load DMA'able memory for SMB block.\n");
1071		goto fail;
1072	}
1073	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1074
1075	/*
1076	 * All ring buffer and DMA blocks should have the same
1077	 * high address part of 64bit DMA address space.
1078	 */
1079	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1080	    (error = age_check_boundary(sc)) != 0) {
1081		device_printf(sc->age_dev, "4GB boundary crossed, "
1082		    "switching to 32bit DMA addressing mode.\n");
1083		age_dma_free(sc);
1084		/* Limit DMA address space to 32bit and try again. */
1085		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1086		goto again;
1087	}
1088
1089	/*
1090	 * Create Tx/Rx buffer parent tag.
1091	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1092	 * so it needs separate parent DMA tag.
1093	 * XXX
1094	 * It seems enabling 64bit DMA causes data corruption. Limit
1095	 * DMA address space to 32bit.
1096	 */
1097	error = bus_dma_tag_create(
1098	    bus_get_dma_tag(sc->age_dev), /* parent */
1099	    1, 0,			/* alignment, boundary */
1100	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1101	    BUS_SPACE_MAXADDR,		/* highaddr */
1102	    NULL, NULL,			/* filter, filterarg */
1103	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1104	    0,				/* nsegments */
1105	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1106	    0,				/* flags */
1107	    NULL, NULL,			/* lockfunc, lockarg */
1108	    &sc->age_cdata.age_buffer_tag);
1109	if (error != 0) {
1110		device_printf(sc->age_dev,
1111		    "could not create parent buffer DMA tag.\n");
1112		goto fail;
1113	}
1114
1115	/* Create tag for Tx buffers. */
1116	error = bus_dma_tag_create(
1117	    sc->age_cdata.age_buffer_tag, /* parent */
1118	    1, 0,			/* alignment, boundary */
1119	    BUS_SPACE_MAXADDR,		/* lowaddr */
1120	    BUS_SPACE_MAXADDR,		/* highaddr */
1121	    NULL, NULL,			/* filter, filterarg */
1122	    AGE_TSO_MAXSIZE,		/* maxsize */
1123	    AGE_MAXTXSEGS,		/* nsegments */
1124	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1125	    0,				/* flags */
1126	    NULL, NULL,			/* lockfunc, lockarg */
1127	    &sc->age_cdata.age_tx_tag);
1128	if (error != 0) {
1129		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1130		goto fail;
1131	}
1132
1133	/* Create tag for Rx buffers. */
1134	error = bus_dma_tag_create(
1135	    sc->age_cdata.age_buffer_tag, /* parent */
1136	    1, 0,			/* alignment, boundary */
1137	    BUS_SPACE_MAXADDR,		/* lowaddr */
1138	    BUS_SPACE_MAXADDR,		/* highaddr */
1139	    NULL, NULL,			/* filter, filterarg */
1140	    MCLBYTES,			/* maxsize */
1141	    1,				/* nsegments */
1142	    MCLBYTES,			/* maxsegsize */
1143	    0,				/* flags */
1144	    NULL, NULL,			/* lockfunc, lockarg */
1145	    &sc->age_cdata.age_rx_tag);
1146	if (error != 0) {
1147		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1148		goto fail;
1149	}
1150
1151	/* Create DMA maps for Tx buffers. */
1152	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1153		txd = &sc->age_cdata.age_txdesc[i];
1154		txd->tx_m = NULL;
1155		txd->tx_dmamap = NULL;
1156		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1157		    &txd->tx_dmamap);
1158		if (error != 0) {
1159			device_printf(sc->age_dev,
1160			    "could not create Tx dmamap.\n");
1161			goto fail;
1162		}
1163	}
1164	/* Create DMA maps for Rx buffers. */
1165	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1166	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1167		device_printf(sc->age_dev,
1168		    "could not create spare Rx dmamap.\n");
1169		goto fail;
1170	}
1171	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1172		rxd = &sc->age_cdata.age_rxdesc[i];
1173		rxd->rx_m = NULL;
1174		rxd->rx_dmamap = NULL;
1175		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1176		    &rxd->rx_dmamap);
1177		if (error != 0) {
1178			device_printf(sc->age_dev,
1179			    "could not create Rx dmamap.\n");
1180			goto fail;
1181		}
1182	}
1183
1184fail:
1185	return (error);
1186}
1187
1188static void
1189age_dma_free(struct age_softc *sc)
1190{
1191	struct age_txdesc *txd;
1192	struct age_rxdesc *rxd;
1193	int i;
1194
1195	/* Tx buffers */
1196	if (sc->age_cdata.age_tx_tag != NULL) {
1197		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1198			txd = &sc->age_cdata.age_txdesc[i];
1199			if (txd->tx_dmamap != NULL) {
1200				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1201				    txd->tx_dmamap);
1202				txd->tx_dmamap = NULL;
1203			}
1204		}
1205		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1206		sc->age_cdata.age_tx_tag = NULL;
1207	}
1208	/* Rx buffers */
1209	if (sc->age_cdata.age_rx_tag != NULL) {
1210		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1211			rxd = &sc->age_cdata.age_rxdesc[i];
1212			if (rxd->rx_dmamap != NULL) {
1213				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1214				    rxd->rx_dmamap);
1215				rxd->rx_dmamap = NULL;
1216			}
1217		}
1218		if (sc->age_cdata.age_rx_sparemap != NULL) {
1219			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1220			    sc->age_cdata.age_rx_sparemap);
1221			sc->age_cdata.age_rx_sparemap = NULL;
1222		}
1223		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1224		sc->age_cdata.age_rx_tag = NULL;
1225	}
1226	/* Tx ring. */
1227	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1228		if (sc->age_cdata.age_tx_ring_map != NULL)
1229			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1230			    sc->age_cdata.age_tx_ring_map);
1231		if (sc->age_cdata.age_tx_ring_map != NULL &&
1232		    sc->age_rdata.age_tx_ring != NULL)
1233			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1234			    sc->age_rdata.age_tx_ring,
1235			    sc->age_cdata.age_tx_ring_map);
1236		sc->age_rdata.age_tx_ring = NULL;
1237		sc->age_cdata.age_tx_ring_map = NULL;
1238		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1239		sc->age_cdata.age_tx_ring_tag = NULL;
1240	}
1241	/* Rx ring. */
1242	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1243		if (sc->age_cdata.age_rx_ring_map != NULL)
1244			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1245			    sc->age_cdata.age_rx_ring_map);
1246		if (sc->age_cdata.age_rx_ring_map != NULL &&
1247		    sc->age_rdata.age_rx_ring != NULL)
1248			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1249			    sc->age_rdata.age_rx_ring,
1250			    sc->age_cdata.age_rx_ring_map);
1251		sc->age_rdata.age_rx_ring = NULL;
1252		sc->age_cdata.age_rx_ring_map = NULL;
1253		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1254		sc->age_cdata.age_rx_ring_tag = NULL;
1255	}
1256	/* Rx return ring. */
1257	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1258		if (sc->age_cdata.age_rr_ring_map != NULL)
1259			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1260			    sc->age_cdata.age_rr_ring_map);
1261		if (sc->age_cdata.age_rr_ring_map != NULL &&
1262		    sc->age_rdata.age_rr_ring != NULL)
1263			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1264			    sc->age_rdata.age_rr_ring,
1265			    sc->age_cdata.age_rr_ring_map);
1266		sc->age_rdata.age_rr_ring = NULL;
1267		sc->age_cdata.age_rr_ring_map = NULL;
1268		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1269		sc->age_cdata.age_rr_ring_tag = NULL;
1270	}
1271	/* CMB block */
1272	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1273		if (sc->age_cdata.age_cmb_block_map != NULL)
1274			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1275			    sc->age_cdata.age_cmb_block_map);
1276		if (sc->age_cdata.age_cmb_block_map != NULL &&
1277		    sc->age_rdata.age_cmb_block != NULL)
1278			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1279			    sc->age_rdata.age_cmb_block,
1280			    sc->age_cdata.age_cmb_block_map);
1281		sc->age_rdata.age_cmb_block = NULL;
1282		sc->age_cdata.age_cmb_block_map = NULL;
1283		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1284		sc->age_cdata.age_cmb_block_tag = NULL;
1285	}
1286	/* SMB block */
1287	if (sc->age_cdata.age_smb_block_tag != NULL) {
1288		if (sc->age_cdata.age_smb_block_map != NULL)
1289			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1290			    sc->age_cdata.age_smb_block_map);
1291		if (sc->age_cdata.age_smb_block_map != NULL &&
1292		    sc->age_rdata.age_smb_block != NULL)
1293			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1294			    sc->age_rdata.age_smb_block,
1295			    sc->age_cdata.age_smb_block_map);
1296		sc->age_rdata.age_smb_block = NULL;
1297		sc->age_cdata.age_smb_block_map = NULL;
1298		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1299		sc->age_cdata.age_smb_block_tag = NULL;
1300	}
1301
1302	if (sc->age_cdata.age_buffer_tag != NULL) {
1303		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1304		sc->age_cdata.age_buffer_tag = NULL;
1305	}
1306	if (sc->age_cdata.age_parent_tag != NULL) {
1307		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1308		sc->age_cdata.age_parent_tag = NULL;
1309	}
1310}
1311
1312/*
1313 *	Make sure the interface is stopped at reboot time.
1314 */
1315static int
1316age_shutdown(device_t dev)
1317{
1318
1319	return (age_suspend(dev));
1320}
1321
1322static void
1323age_setwol(struct age_softc *sc)
1324{
1325	struct ifnet *ifp;
1326	struct mii_data *mii;
1327	uint32_t reg, pmcs;
1328	uint16_t pmstat;
1329	int aneg, i, pmc;
1330
1331	AGE_LOCK_ASSERT(sc);
1332
1333	if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1334		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1335		/*
1336		 * No PME capability, PHY power down.
1337		 * XXX
1338		 * Due to an unknown reason powering down PHY resulted
1339		 * in unexpected results such as inaccessbility of
1340		 * hardware of freshly rebooted system. Disable
1341		 * powering down PHY until I got more information for
1342		 * Attansic/Atheros PHY hardwares.
1343		 */
1344#ifdef notyet
1345		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1346		    MII_BMCR, BMCR_PDOWN);
1347#endif
1348		return;
1349	}
1350
1351	ifp = sc->age_ifp;
1352	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1353		/*
1354		 * Note, this driver resets the link speed to 10/100Mbps with
1355		 * auto-negotiation but we don't know whether that operation
1356		 * would succeed or not as it have no control after powering
1357		 * off. If the renegotiation fail WOL may not work. Running
1358		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1359		 * specified in PCI specification and that would result in
1360		 * complete shutdowning power to ethernet controller.
1361		 *
1362		 * TODO
1363		 *  Save current negotiated media speed/duplex/flow-control
1364		 *  to softc and restore the same link again after resuming.
1365		 *  PHY handling such as power down/resetting to 100Mbps
1366		 *  may be better handled in suspend method in phy driver.
1367		 */
1368		mii = device_get_softc(sc->age_miibus);
1369		mii_pollstat(mii);
1370		aneg = 0;
1371		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1372			switch IFM_SUBTYPE(mii->mii_media_active) {
1373			case IFM_10_T:
1374			case IFM_100_TX:
1375				goto got_link;
1376			case IFM_1000_T:
1377				aneg++;
1378			default:
1379				break;
1380			}
1381		}
1382		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1383		    MII_100T2CR, 0);
1384		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1385		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1386		    ANAR_10 | ANAR_CSMA);
1387		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1388		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1389		DELAY(1000);
1390		if (aneg != 0) {
1391			/* Poll link state until age(4) get a 10/100 link. */
1392			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1393				mii_pollstat(mii);
1394				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1395					switch (IFM_SUBTYPE(
1396					    mii->mii_media_active)) {
1397					case IFM_10_T:
1398					case IFM_100_TX:
1399						age_mac_config(sc);
1400						goto got_link;
1401					default:
1402						break;
1403					}
1404				}
1405				AGE_UNLOCK(sc);
1406				pause("agelnk", hz);
1407				AGE_LOCK(sc);
1408			}
1409			if (i == MII_ANEGTICKS_GIGE)
1410				device_printf(sc->age_dev,
1411				    "establishing link failed, "
1412				    "WOL may not work!");
1413		}
1414		/*
1415		 * No link, force MAC to have 100Mbps, full-duplex link.
1416		 * This is the last resort and may/may not work.
1417		 */
1418		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1419		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1420		age_mac_config(sc);
1421	}
1422
1423got_link:
1424	pmcs = 0;
1425	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1426		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1427	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1428	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1429	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1430	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1431	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1432		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1433	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1434		reg |= MAC_CFG_RX_ENB;
1435		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1436	}
1437
1438	/* Request PME. */
1439	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1440	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1441	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1442		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1443	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1444#ifdef notyet
1445	/* See above for powering down PHY issues. */
1446	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1447		/* No WOL, PHY power down. */
1448		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1449		    MII_BMCR, BMCR_PDOWN);
1450	}
1451#endif
1452}
1453
1454static int
1455age_suspend(device_t dev)
1456{
1457	struct age_softc *sc;
1458
1459	sc = device_get_softc(dev);
1460
1461	AGE_LOCK(sc);
1462	age_stop(sc);
1463	age_setwol(sc);
1464	AGE_UNLOCK(sc);
1465
1466	return (0);
1467}
1468
1469static int
1470age_resume(device_t dev)
1471{
1472	struct age_softc *sc;
1473	struct ifnet *ifp;
1474
1475	sc = device_get_softc(dev);
1476
1477	AGE_LOCK(sc);
1478	age_phy_reset(sc);
1479	ifp = sc->age_ifp;
1480	if ((ifp->if_flags & IFF_UP) != 0)
1481		age_init_locked(sc);
1482
1483	AGE_UNLOCK(sc);
1484
1485	return (0);
1486}
1487
1488static int
1489age_encap(struct age_softc *sc, struct mbuf **m_head)
1490{
1491	struct age_txdesc *txd, *txd_last;
1492	struct tx_desc *desc;
1493	struct mbuf *m;
1494	struct ip *ip;
1495	struct tcphdr *tcp;
1496	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1497	bus_dmamap_t map;
1498	uint32_t cflags, ip_off, poff, vtag;
1499	int error, i, nsegs, prod, si;
1500
1501	AGE_LOCK_ASSERT(sc);
1502
1503	M_ASSERTPKTHDR((*m_head));
1504
1505	m = *m_head;
1506	ip = NULL;
1507	tcp = NULL;
1508	cflags = vtag = 0;
1509	ip_off = poff = 0;
1510	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1511		/*
1512		 * L1 requires offset of TCP/UDP payload in its Tx
1513		 * descriptor to perform hardware Tx checksum offload.
1514		 * Additionally, TSO requires IP/TCP header size and
1515		 * modification of IP/TCP header in order to make TSO
1516		 * engine work. This kind of operation takes many CPU
1517		 * cycles on FreeBSD so fast host CPU is needed to get
1518		 * smooth TSO performance.
1519		 */
1520		struct ether_header *eh;
1521
1522		if (M_WRITABLE(m) == 0) {
1523			/* Get a writable copy. */
1524			m = m_dup(*m_head, M_DONTWAIT);
1525			/* Release original mbufs. */
1526			m_freem(*m_head);
1527			if (m == NULL) {
1528				*m_head = NULL;
1529				return (ENOBUFS);
1530			}
1531			*m_head = m;
1532		}
1533		ip_off = sizeof(struct ether_header);
1534		m = m_pullup(m, ip_off);
1535		if (m == NULL) {
1536			*m_head = NULL;
1537			return (ENOBUFS);
1538		}
1539		eh = mtod(m, struct ether_header *);
1540		/*
1541		 * Check if hardware VLAN insertion is off.
1542		 * Additional check for LLC/SNAP frame?
1543		 */
1544		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1545			ip_off = sizeof(struct ether_vlan_header);
1546			m = m_pullup(m, ip_off);
1547			if (m == NULL) {
1548				*m_head = NULL;
1549				return (ENOBUFS);
1550			}
1551		}
1552		m = m_pullup(m, ip_off + sizeof(struct ip));
1553		if (m == NULL) {
1554			*m_head = NULL;
1555			return (ENOBUFS);
1556		}
1557		ip = (struct ip *)(mtod(m, char *) + ip_off);
1558		poff = ip_off + (ip->ip_hl << 2);
1559		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1560			m = m_pullup(m, poff + sizeof(struct tcphdr));
1561			if (m == NULL) {
1562				*m_head = NULL;
1563				return (ENOBUFS);
1564			}
1565			ip = (struct ip *)(mtod(m, char *) + ip_off);
1566			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1567			/*
1568			 * L1 requires IP/TCP header size and offset as
1569			 * well as TCP pseudo checksum which complicates
1570			 * TSO configuration. I guess this comes from the
1571			 * adherence to Microsoft NDIS Large Send
1572			 * specification which requires insertion of
1573			 * pseudo checksum by upper stack. The pseudo
1574			 * checksum that NDIS refers to doesn't include
1575			 * TCP payload length so age(4) should recompute
1576			 * the pseudo checksum here. Hopefully this wouldn't
1577			 * be much burden on modern CPUs.
1578			 * Reset IP checksum and recompute TCP pseudo
1579			 * checksum as NDIS specification said.
1580			 */
1581			ip->ip_sum = 0;
1582			if (poff + (tcp->th_off << 2) == m->m_pkthdr.len)
1583				tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1584				    ip->ip_dst.s_addr,
1585				    htons((tcp->th_off << 2) + IPPROTO_TCP));
1586			else
1587				tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1588				    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1589		}
1590		*m_head = m;
1591	}
1592
1593	si = prod = sc->age_cdata.age_tx_prod;
1594	txd = &sc->age_cdata.age_txdesc[prod];
1595	txd_last = txd;
1596	map = txd->tx_dmamap;
1597
1598	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1599	    *m_head, txsegs, &nsegs, 0);
1600	if (error == EFBIG) {
1601		m = m_collapse(*m_head, M_DONTWAIT, AGE_MAXTXSEGS);
1602		if (m == NULL) {
1603			m_freem(*m_head);
1604			*m_head = NULL;
1605			return (ENOMEM);
1606		}
1607		*m_head = m;
1608		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1609		    *m_head, txsegs, &nsegs, 0);
1610		if (error != 0) {
1611			m_freem(*m_head);
1612			*m_head = NULL;
1613			return (error);
1614		}
1615	} else if (error != 0)
1616		return (error);
1617	if (nsegs == 0) {
1618		m_freem(*m_head);
1619		*m_head = NULL;
1620		return (EIO);
1621	}
1622
1623	/* Check descriptor overrun. */
1624	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1625		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1626		return (ENOBUFS);
1627	}
1628
1629	m = *m_head;
1630	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1631		/* Configure TSO. */
1632		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1633			/* Not TSO but IP/TCP checksum offload. */
1634			cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1635			/* Clear TSO in order not to set AGE_TD_TSO_HDR. */
1636			m->m_pkthdr.csum_flags &= ~CSUM_TSO;
1637		} else {
1638			/* Request TSO and set MSS. */
1639			cflags |= AGE_TD_TSO_IPV4;
1640			cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1641			cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1642			    AGE_TD_TSO_MSS_SHIFT);
1643		}
1644		/* Set IP/TCP header size. */
1645		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1646		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1647	} else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1648		/* Configure Tx IP/TCP/UDP checksum offload. */
1649		cflags |= AGE_TD_CSUM;
1650		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1651			cflags |= AGE_TD_TCPCSUM;
1652		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1653			cflags |= AGE_TD_UDPCSUM;
1654		/* Set checksum start offset. */
1655		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1656		/* Set checksum insertion position of TCP/UDP. */
1657		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1658		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1659	}
1660
1661	/* Configure VLAN hardware tag insertion. */
1662	if ((m->m_flags & M_VLANTAG) != 0) {
1663		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1664		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1665		cflags |= AGE_TD_INSERT_VLAN_TAG;
1666	}
1667
1668	desc = NULL;
1669	for (i = 0; i < nsegs; i++) {
1670		desc = &sc->age_rdata.age_tx_ring[prod];
1671		desc->addr = htole64(txsegs[i].ds_addr);
1672		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1673		desc->flags = htole32(cflags);
1674		sc->age_cdata.age_tx_cnt++;
1675		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1676	}
1677	/* Update producer index. */
1678	sc->age_cdata.age_tx_prod = prod;
1679
1680	/* Set EOP on the last descriptor. */
1681	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1682	desc = &sc->age_rdata.age_tx_ring[prod];
1683	desc->flags |= htole32(AGE_TD_EOP);
1684
1685	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1686	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1687		desc = &sc->age_rdata.age_tx_ring[si];
1688		desc->flags |= htole32(AGE_TD_TSO_HDR);
1689	}
1690
1691	/* Swap dmamap of the first and the last. */
1692	txd = &sc->age_cdata.age_txdesc[prod];
1693	map = txd_last->tx_dmamap;
1694	txd_last->tx_dmamap = txd->tx_dmamap;
1695	txd->tx_dmamap = map;
1696	txd->tx_m = m;
1697
1698	/* Sync descriptors. */
1699	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1700	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1701	    sc->age_cdata.age_tx_ring_map,
1702	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1703
1704	return (0);
1705}
1706
1707static void
1708age_start(struct ifnet *ifp)
1709{
1710        struct age_softc *sc;
1711
1712	sc = ifp->if_softc;
1713	AGE_LOCK(sc);
1714	age_start_locked(ifp);
1715	AGE_UNLOCK(sc);
1716}
1717
1718static void
1719age_start_locked(struct ifnet *ifp)
1720{
1721        struct age_softc *sc;
1722        struct mbuf *m_head;
1723	int enq;
1724
1725	sc = ifp->if_softc;
1726
1727	AGE_LOCK_ASSERT(sc);
1728
1729	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1730	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1731		return;
1732
1733	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1734		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1735		if (m_head == NULL)
1736			break;
1737		/*
1738		 * Pack the data into the transmit ring. If we
1739		 * don't have room, set the OACTIVE flag and wait
1740		 * for the NIC to drain the ring.
1741		 */
1742		if (age_encap(sc, &m_head)) {
1743			if (m_head == NULL)
1744				break;
1745			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1746			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1747			break;
1748		}
1749
1750		enq++;
1751		/*
1752		 * If there's a BPF listener, bounce a copy of this frame
1753		 * to him.
1754		 */
1755		ETHER_BPF_MTAP(ifp, m_head);
1756	}
1757
1758	if (enq > 0) {
1759		/* Update mbox. */
1760		AGE_COMMIT_MBOX(sc);
1761		/* Set a timeout in case the chip goes out to lunch. */
1762		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1763	}
1764}
1765
1766static void
1767age_watchdog(struct age_softc *sc)
1768{
1769	struct ifnet *ifp;
1770
1771	AGE_LOCK_ASSERT(sc);
1772
1773	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1774		return;
1775
1776	ifp = sc->age_ifp;
1777	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1778		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1779		ifp->if_oerrors++;
1780		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1781		age_init_locked(sc);
1782		return;
1783	}
1784	if (sc->age_cdata.age_tx_cnt == 0) {
1785		if_printf(sc->age_ifp,
1786		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1787		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1788			age_start_locked(ifp);
1789		return;
1790	}
1791	if_printf(sc->age_ifp, "watchdog timeout\n");
1792	ifp->if_oerrors++;
1793	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1794	age_init_locked(sc);
1795	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1796		age_start_locked(ifp);
1797}
1798
1799static int
1800age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1801{
1802	struct age_softc *sc;
1803	struct ifreq *ifr;
1804	struct mii_data *mii;
1805	uint32_t reg;
1806	int error, mask;
1807
1808	sc = ifp->if_softc;
1809	ifr = (struct ifreq *)data;
1810	error = 0;
1811	switch (cmd) {
1812	case SIOCSIFMTU:
1813		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1814			error = EINVAL;
1815		else if (ifp->if_mtu != ifr->ifr_mtu) {
1816			AGE_LOCK(sc);
1817			ifp->if_mtu = ifr->ifr_mtu;
1818			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1819				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1820				age_init_locked(sc);
1821			}
1822			AGE_UNLOCK(sc);
1823		}
1824		break;
1825	case SIOCSIFFLAGS:
1826		AGE_LOCK(sc);
1827		if ((ifp->if_flags & IFF_UP) != 0) {
1828			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1829				if (((ifp->if_flags ^ sc->age_if_flags)
1830				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1831					age_rxfilter(sc);
1832			} else {
1833				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1834					age_init_locked(sc);
1835			}
1836		} else {
1837			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1838				age_stop(sc);
1839		}
1840		sc->age_if_flags = ifp->if_flags;
1841		AGE_UNLOCK(sc);
1842		break;
1843	case SIOCADDMULTI:
1844	case SIOCDELMULTI:
1845		AGE_LOCK(sc);
1846		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1847			age_rxfilter(sc);
1848		AGE_UNLOCK(sc);
1849		break;
1850	case SIOCSIFMEDIA:
1851	case SIOCGIFMEDIA:
1852		mii = device_get_softc(sc->age_miibus);
1853		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1854		break;
1855	case SIOCSIFCAP:
1856		AGE_LOCK(sc);
1857		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1858		if ((mask & IFCAP_TXCSUM) != 0 &&
1859		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1860			ifp->if_capenable ^= IFCAP_TXCSUM;
1861			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1862				ifp->if_hwassist |= AGE_CSUM_FEATURES;
1863			else
1864				ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1865		}
1866		if ((mask & IFCAP_RXCSUM) != 0 &&
1867		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1868			ifp->if_capenable ^= IFCAP_RXCSUM;
1869			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1870			reg &= ~MAC_CFG_RXCSUM_ENB;
1871			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1872				reg |= MAC_CFG_RXCSUM_ENB;
1873			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1874		}
1875		if ((mask & IFCAP_TSO4) != 0 &&
1876		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1877			ifp->if_capenable ^= IFCAP_TSO4;
1878			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1879				ifp->if_hwassist |= CSUM_TSO;
1880			else
1881				ifp->if_hwassist &= ~CSUM_TSO;
1882		}
1883
1884		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1885		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1886			ifp->if_capenable ^= IFCAP_WOL_MCAST;
1887		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1888		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1889			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1890		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1891		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1892			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1893		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1894		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1895			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1896		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1897		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1898			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1899			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1900				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1901			age_rxvlan(sc);
1902		}
1903		AGE_UNLOCK(sc);
1904		VLAN_CAPABILITIES(ifp);
1905		break;
1906	default:
1907		error = ether_ioctl(ifp, cmd, data);
1908		break;
1909	}
1910
1911	return (error);
1912}
1913
1914static void
1915age_mac_config(struct age_softc *sc)
1916{
1917	struct mii_data *mii;
1918	uint32_t reg;
1919
1920	AGE_LOCK_ASSERT(sc);
1921
1922	mii = device_get_softc(sc->age_miibus);
1923	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1924	reg &= ~MAC_CFG_FULL_DUPLEX;
1925	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1926	reg &= ~MAC_CFG_SPEED_MASK;
1927	/* Reprogram MAC with resolved speed/duplex. */
1928	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1929	case IFM_10_T:
1930	case IFM_100_TX:
1931		reg |= MAC_CFG_SPEED_10_100;
1932		break;
1933	case IFM_1000_T:
1934		reg |= MAC_CFG_SPEED_1000;
1935		break;
1936	}
1937	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1938		reg |= MAC_CFG_FULL_DUPLEX;
1939#ifdef notyet
1940		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1941			reg |= MAC_CFG_TX_FC;
1942		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1943			reg |= MAC_CFG_RX_FC;
1944#endif
1945	}
1946
1947	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1948}
1949
1950static void
1951age_link_task(void *arg, int pending)
1952{
1953	struct age_softc *sc;
1954	struct mii_data *mii;
1955	struct ifnet *ifp;
1956	uint32_t reg;
1957
1958	sc = (struct age_softc *)arg;
1959
1960	AGE_LOCK(sc);
1961	mii = device_get_softc(sc->age_miibus);
1962	ifp = sc->age_ifp;
1963	if (mii == NULL || ifp == NULL ||
1964	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1965		AGE_UNLOCK(sc);
1966		return;
1967	}
1968
1969	sc->age_flags &= ~AGE_FLAG_LINK;
1970	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1971		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1972		case IFM_10_T:
1973		case IFM_100_TX:
1974		case IFM_1000_T:
1975			sc->age_flags |= AGE_FLAG_LINK;
1976			break;
1977		default:
1978			break;
1979		}
1980	}
1981
1982	/* Stop Rx/Tx MACs. */
1983	age_stop_rxmac(sc);
1984	age_stop_txmac(sc);
1985
1986	/* Program MACs with resolved speed/duplex/flow-control. */
1987	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
1988		age_mac_config(sc);
1989		reg = CSR_READ_4(sc, AGE_MAC_CFG);
1990		/* Restart DMA engine and Tx/Rx MAC. */
1991		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
1992		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
1993		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1994		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1995	}
1996
1997	AGE_UNLOCK(sc);
1998}
1999
2000static void
2001age_stats_update(struct age_softc *sc)
2002{
2003	struct age_stats *stat;
2004	struct smb *smb;
2005	struct ifnet *ifp;
2006
2007	AGE_LOCK_ASSERT(sc);
2008
2009	stat = &sc->age_stat;
2010
2011	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2012	    sc->age_cdata.age_smb_block_map,
2013	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2014
2015	smb = sc->age_rdata.age_smb_block;
2016	if (smb->updated == 0)
2017		return;
2018
2019	ifp = sc->age_ifp;
2020	/* Rx stats. */
2021	stat->rx_frames += smb->rx_frames;
2022	stat->rx_bcast_frames += smb->rx_bcast_frames;
2023	stat->rx_mcast_frames += smb->rx_mcast_frames;
2024	stat->rx_pause_frames += smb->rx_pause_frames;
2025	stat->rx_control_frames += smb->rx_control_frames;
2026	stat->rx_crcerrs += smb->rx_crcerrs;
2027	stat->rx_lenerrs += smb->rx_lenerrs;
2028	stat->rx_bytes += smb->rx_bytes;
2029	stat->rx_runts += smb->rx_runts;
2030	stat->rx_fragments += smb->rx_fragments;
2031	stat->rx_pkts_64 += smb->rx_pkts_64;
2032	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2033	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2034	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2035	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2036	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2037	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2038	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2039	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2040	stat->rx_desc_oflows += smb->rx_desc_oflows;
2041	stat->rx_alignerrs += smb->rx_alignerrs;
2042	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2043	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2044	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2045
2046	/* Tx stats. */
2047	stat->tx_frames += smb->tx_frames;
2048	stat->tx_bcast_frames += smb->tx_bcast_frames;
2049	stat->tx_mcast_frames += smb->tx_mcast_frames;
2050	stat->tx_pause_frames += smb->tx_pause_frames;
2051	stat->tx_excess_defer += smb->tx_excess_defer;
2052	stat->tx_control_frames += smb->tx_control_frames;
2053	stat->tx_deferred += smb->tx_deferred;
2054	stat->tx_bytes += smb->tx_bytes;
2055	stat->tx_pkts_64 += smb->tx_pkts_64;
2056	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2057	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2058	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2059	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2060	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2061	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2062	stat->tx_single_colls += smb->tx_single_colls;
2063	stat->tx_multi_colls += smb->tx_multi_colls;
2064	stat->tx_late_colls += smb->tx_late_colls;
2065	stat->tx_excess_colls += smb->tx_excess_colls;
2066	stat->tx_underrun += smb->tx_underrun;
2067	stat->tx_desc_underrun += smb->tx_desc_underrun;
2068	stat->tx_lenerrs += smb->tx_lenerrs;
2069	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2070	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2071	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2072
2073	/* Update counters in ifnet. */
2074	ifp->if_opackets += smb->tx_frames;
2075
2076	ifp->if_collisions += smb->tx_single_colls +
2077	    smb->tx_multi_colls + smb->tx_late_colls +
2078	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2079
2080	ifp->if_oerrors += smb->tx_excess_colls +
2081	    smb->tx_late_colls + smb->tx_underrun +
2082	    smb->tx_pkts_truncated;
2083
2084	ifp->if_ipackets += smb->rx_frames;
2085
2086	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2087	    smb->rx_runts + smb->rx_pkts_truncated +
2088	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2089	    smb->rx_alignerrs;
2090
2091	/* Update done, clear. */
2092	smb->updated = 0;
2093
2094	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2095	    sc->age_cdata.age_smb_block_map,
2096	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2097}
2098
2099static int
2100age_intr(void *arg)
2101{
2102	struct age_softc *sc;
2103	uint32_t status;
2104
2105	sc = (struct age_softc *)arg;
2106
2107	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2108	if (status == 0 || (status & AGE_INTRS) == 0)
2109		return (FILTER_STRAY);
2110	/* Disable interrupts. */
2111	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2112	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2113
2114	return (FILTER_HANDLED);
2115}
2116
2117static void
2118age_int_task(void *arg, int pending)
2119{
2120	struct age_softc *sc;
2121	struct ifnet *ifp;
2122	struct cmb *cmb;
2123	uint32_t status;
2124
2125	sc = (struct age_softc *)arg;
2126
2127	AGE_LOCK(sc);
2128
2129	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2130	    sc->age_cdata.age_cmb_block_map,
2131	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2132	cmb = sc->age_rdata.age_cmb_block;
2133	status = le32toh(cmb->intr_status);
2134	if (sc->age_morework != 0)
2135		status |= INTR_CMB_RX;
2136	if ((status & AGE_INTRS) == 0)
2137		goto done;
2138
2139	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2140	    TPD_CONS_SHIFT;
2141	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2142	    RRD_PROD_SHIFT;
2143	/* Let hardware know CMB was served. */
2144	cmb->intr_status = 0;
2145	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2146	    sc->age_cdata.age_cmb_block_map,
2147	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2148
2149#if 0
2150	printf("INTR: 0x%08x\n", status);
2151	status &= ~INTR_DIS_DMA;
2152	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2153#endif
2154	ifp = sc->age_ifp;
2155	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2156		if ((status & INTR_CMB_RX) != 0)
2157			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2158			    sc->age_process_limit);
2159		if ((status & INTR_CMB_TX) != 0)
2160			age_txintr(sc, sc->age_tpd_cons);
2161		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2162			if ((status & INTR_DMA_RD_TO_RST) != 0)
2163				device_printf(sc->age_dev,
2164				    "DMA read error! -- resetting\n");
2165			if ((status & INTR_DMA_WR_TO_RST) != 0)
2166				device_printf(sc->age_dev,
2167				    "DMA write error! -- resetting\n");
2168			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2169			age_init_locked(sc);
2170		}
2171		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2172			age_start_locked(ifp);
2173		if ((status & INTR_SMB) != 0)
2174			age_stats_update(sc);
2175	}
2176
2177	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2178	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2179	    sc->age_cdata.age_cmb_block_map,
2180	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2181	status = le32toh(cmb->intr_status);
2182	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2183		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2184		AGE_UNLOCK(sc);
2185		return;
2186	}
2187
2188done:
2189	/* Re-enable interrupts. */
2190	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2191	AGE_UNLOCK(sc);
2192}
2193
2194static void
2195age_txintr(struct age_softc *sc, int tpd_cons)
2196{
2197	struct ifnet *ifp;
2198	struct age_txdesc *txd;
2199	int cons, prog;
2200
2201	AGE_LOCK_ASSERT(sc);
2202
2203	ifp = sc->age_ifp;
2204
2205	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2206	    sc->age_cdata.age_tx_ring_map,
2207	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2208
2209	/*
2210	 * Go through our Tx list and free mbufs for those
2211	 * frames which have been transmitted.
2212	 */
2213	cons = sc->age_cdata.age_tx_cons;
2214	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2215		if (sc->age_cdata.age_tx_cnt <= 0)
2216			break;
2217		prog++;
2218		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2219		sc->age_cdata.age_tx_cnt--;
2220		txd = &sc->age_cdata.age_txdesc[cons];
2221		/*
2222		 * Clear Tx descriptors, it's not required but would
2223		 * help debugging in case of Tx issues.
2224		 */
2225		txd->tx_desc->addr = 0;
2226		txd->tx_desc->len = 0;
2227		txd->tx_desc->flags = 0;
2228
2229		if (txd->tx_m == NULL)
2230			continue;
2231		/* Reclaim transmitted mbufs. */
2232		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2233		    BUS_DMASYNC_POSTWRITE);
2234		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2235		m_freem(txd->tx_m);
2236		txd->tx_m = NULL;
2237	}
2238
2239	if (prog > 0) {
2240		sc->age_cdata.age_tx_cons = cons;
2241
2242		/*
2243		 * Unarm watchdog timer only when there are no pending
2244		 * Tx descriptors in queue.
2245		 */
2246		if (sc->age_cdata.age_tx_cnt == 0)
2247			sc->age_watchdog_timer = 0;
2248		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2249		    sc->age_cdata.age_tx_ring_map,
2250		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2251	}
2252}
2253
2254/* Receive a frame. */
2255static void
2256age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2257{
2258	struct age_rxdesc *rxd;
2259	struct rx_desc *desc;
2260	struct ifnet *ifp;
2261	struct mbuf *mp, *m;
2262	uint32_t status, index, vtag;
2263	int count, nsegs, pktlen;
2264	int rx_cons;
2265
2266	AGE_LOCK_ASSERT(sc);
2267
2268	ifp = sc->age_ifp;
2269	status = le32toh(rxrd->flags);
2270	index = le32toh(rxrd->index);
2271	rx_cons = AGE_RX_CONS(index);
2272	nsegs = AGE_RX_NSEGS(index);
2273
2274	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2275	if ((status & AGE_RRD_ERROR) != 0 &&
2276	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2277	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
2278		/*
2279		 * We want to pass the following frames to upper
2280		 * layer regardless of error status of Rx return
2281		 * ring.
2282		 *
2283		 *  o IP/TCP/UDP checksum is bad.
2284		 *  o frame length and protocol specific length
2285		 *     does not match.
2286		 */
2287		sc->age_cdata.age_rx_cons += nsegs;
2288		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2289		return;
2290	}
2291
2292	pktlen = 0;
2293	for (count = 0; count < nsegs; count++,
2294	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2295		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2296		mp = rxd->rx_m;
2297		desc = rxd->rx_desc;
2298		/* Add a new receive buffer to the ring. */
2299		if (age_newbuf(sc, rxd) != 0) {
2300			ifp->if_iqdrops++;
2301			/* Reuse Rx buffers. */
2302			if (sc->age_cdata.age_rxhead != NULL) {
2303				m_freem(sc->age_cdata.age_rxhead);
2304				AGE_RXCHAIN_RESET(sc);
2305			}
2306			break;
2307		}
2308
2309		/* The length of the first mbuf is computed last. */
2310		if (count != 0) {
2311			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
2312			pktlen += mp->m_len;
2313		}
2314
2315		/* Chain received mbufs. */
2316		if (sc->age_cdata.age_rxhead == NULL) {
2317			sc->age_cdata.age_rxhead = mp;
2318			sc->age_cdata.age_rxtail = mp;
2319		} else {
2320			mp->m_flags &= ~M_PKTHDR;
2321			sc->age_cdata.age_rxprev_tail =
2322			    sc->age_cdata.age_rxtail;
2323			sc->age_cdata.age_rxtail->m_next = mp;
2324			sc->age_cdata.age_rxtail = mp;
2325		}
2326
2327		if (count == nsegs - 1) {
2328			/*
2329			 * It seems that L1 controller has no way
2330			 * to tell hardware to strip CRC bytes.
2331			 */
2332			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
2333			if (nsegs > 1) {
2334				/* Remove the CRC bytes in chained mbufs. */
2335				pktlen -= ETHER_CRC_LEN;
2336				if (mp->m_len <= ETHER_CRC_LEN) {
2337					sc->age_cdata.age_rxtail =
2338					    sc->age_cdata.age_rxprev_tail;
2339					sc->age_cdata.age_rxtail->m_len -=
2340					    (ETHER_CRC_LEN - mp->m_len);
2341					sc->age_cdata.age_rxtail->m_next = NULL;
2342					m_freem(mp);
2343				} else {
2344					mp->m_len -= ETHER_CRC_LEN;
2345				}
2346			}
2347
2348			m = sc->age_cdata.age_rxhead;
2349			m->m_flags |= M_PKTHDR;
2350			m->m_pkthdr.rcvif = ifp;
2351			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
2352			/* Set the first mbuf length. */
2353			m->m_len = sc->age_cdata.age_rxlen - pktlen;
2354
2355			/*
2356			 * Set checksum information.
2357			 * It seems that L1 controller can compute partial
2358			 * checksum. The partial checksum value can be used
2359			 * to accelerate checksum computation for fragmented
2360			 * TCP/UDP packets. Upper network stack already
2361			 * takes advantage of the partial checksum value in
2362			 * IP reassembly stage. But I'm not sure the
2363			 * correctness of the partial hardware checksum
2364			 * assistance due to lack of data sheet. If it is
2365			 * proven to work on L1 I'll enable it.
2366			 */
2367			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2368			    (status & AGE_RRD_IPV4) != 0) {
2369				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2370				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2371					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2372				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2373				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2374					m->m_pkthdr.csum_flags |=
2375					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2376					m->m_pkthdr.csum_data = 0xffff;
2377				}
2378				/*
2379				 * Don't mark bad checksum for TCP/UDP frames
2380				 * as fragmented frames may always have set
2381				 * bad checksummed bit of descriptor status.
2382				 */
2383			}
2384
2385			/* Check for VLAN tagged frames. */
2386			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2387			    (status & AGE_RRD_VLAN) != 0) {
2388				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2389				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2390				m->m_flags |= M_VLANTAG;
2391			}
2392
2393			/* Pass it on. */
2394			AGE_UNLOCK(sc);
2395			(*ifp->if_input)(ifp, m);
2396			AGE_LOCK(sc);
2397
2398			/* Reset mbuf chains. */
2399			AGE_RXCHAIN_RESET(sc);
2400		}
2401	}
2402
2403	if (count != nsegs) {
2404		sc->age_cdata.age_rx_cons += nsegs;
2405		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2406	} else
2407		sc->age_cdata.age_rx_cons = rx_cons;
2408}
2409
2410static int
2411age_rxintr(struct age_softc *sc, int rr_prod, int count)
2412{
2413	struct rx_rdesc *rxrd;
2414	int rr_cons, nsegs, pktlen, prog;
2415
2416	AGE_LOCK_ASSERT(sc);
2417
2418	rr_cons = sc->age_cdata.age_rr_cons;
2419	if (rr_cons == rr_prod)
2420		return (0);
2421
2422	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2423	    sc->age_cdata.age_rr_ring_map,
2424	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2425	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2426	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2427
2428	for (prog = 0; rr_cons != rr_prod; prog++) {
2429		if (count <= 0)
2430			break;
2431		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2432		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2433		if (nsegs == 0)
2434			break;
2435		/*
2436		 * Check number of segments against received bytes.
2437		 * Non-matching value would indicate that hardware
2438		 * is still trying to update Rx return descriptors.
2439		 * I'm not sure whether this check is really needed.
2440		 */
2441		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2442		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
2443		    (MCLBYTES - ETHER_ALIGN)))
2444			break;
2445
2446		prog++;
2447		/* Received a frame. */
2448		age_rxeof(sc, rxrd);
2449		/* Clear return ring. */
2450		rxrd->index = 0;
2451		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2452	}
2453
2454	if (prog > 0) {
2455		/* Update the consumer index. */
2456		sc->age_cdata.age_rr_cons = rr_cons;
2457
2458		bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2459		    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2460		/* Sync descriptors. */
2461		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2462		    sc->age_cdata.age_rr_ring_map,
2463		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2464
2465		/* Notify hardware availability of new Rx buffers. */
2466		AGE_COMMIT_MBOX(sc);
2467	}
2468
2469	return (count > 0 ? 0 : EAGAIN);
2470}
2471
2472static void
2473age_tick(void *arg)
2474{
2475	struct age_softc *sc;
2476	struct mii_data *mii;
2477
2478	sc = (struct age_softc *)arg;
2479
2480	AGE_LOCK_ASSERT(sc);
2481
2482	mii = device_get_softc(sc->age_miibus);
2483	mii_tick(mii);
2484	age_watchdog(sc);
2485	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2486}
2487
2488static void
2489age_reset(struct age_softc *sc)
2490{
2491	uint32_t reg;
2492	int i;
2493
2494	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2495	CSR_READ_4(sc, AGE_MASTER_CFG);
2496	DELAY(1000);
2497	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2498		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2499			break;
2500		DELAY(10);
2501	}
2502
2503	if (i == 0)
2504		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2505	/* Initialize PCIe module. From Linux. */
2506	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2507	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2508}
2509
2510static void
2511age_init(void *xsc)
2512{
2513	struct age_softc *sc;
2514
2515	sc = (struct age_softc *)xsc;
2516	AGE_LOCK(sc);
2517	age_init_locked(sc);
2518	AGE_UNLOCK(sc);
2519}
2520
2521static void
2522age_init_locked(struct age_softc *sc)
2523{
2524	struct ifnet *ifp;
2525	struct mii_data *mii;
2526	uint8_t eaddr[ETHER_ADDR_LEN];
2527	bus_addr_t paddr;
2528	uint32_t reg, fsize;
2529	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2530	int error;
2531
2532	AGE_LOCK_ASSERT(sc);
2533
2534	ifp = sc->age_ifp;
2535	mii = device_get_softc(sc->age_miibus);
2536
2537	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2538		return;
2539
2540	/*
2541	 * Cancel any pending I/O.
2542	 */
2543	age_stop(sc);
2544
2545	/*
2546	 * Reset the chip to a known state.
2547	 */
2548	age_reset(sc);
2549
2550	/* Initialize descriptors. */
2551	error = age_init_rx_ring(sc);
2552        if (error != 0) {
2553                device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2554                age_stop(sc);
2555		return;
2556        }
2557	age_init_rr_ring(sc);
2558	age_init_tx_ring(sc);
2559	age_init_cmb_block(sc);
2560	age_init_smb_block(sc);
2561
2562	/* Reprogram the station address. */
2563	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2564	CSR_WRITE_4(sc, AGE_PAR0,
2565	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2566	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2567
2568	/* Set descriptor base addresses. */
2569	paddr = sc->age_rdata.age_tx_ring_paddr;
2570	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2571	paddr = sc->age_rdata.age_rx_ring_paddr;
2572	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2573	paddr = sc->age_rdata.age_rr_ring_paddr;
2574	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2575	paddr = sc->age_rdata.age_tx_ring_paddr;
2576	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2577	paddr = sc->age_rdata.age_cmb_block_paddr;
2578	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2579	paddr = sc->age_rdata.age_smb_block_paddr;
2580	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2581	/* Set Rx/Rx return descriptor counter. */
2582	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2583	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2584	    DESC_RRD_CNT_MASK) |
2585	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2586	/* Set Tx descriptor counter. */
2587	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2588	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2589
2590	/* Tell hardware that we're ready to load descriptors. */
2591	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2592
2593	/*
2594	 * Initialize mailbox register.
2595	 * Updated producer/consumer index information is exchanged
2596	 * through this mailbox register. However Tx producer and
2597	 * Rx return consumer/Rx producer are all shared such that
2598	 * it's hard to separate code path between Tx and Rx without
2599	 * locking. If L1 hardware have a separate mail box register
2600	 * for Tx and Rx consumer/producer management we could have
2601	 * indepent Tx/Rx handler which in turn Rx handler could have
2602	 * been run without any locking.
2603	 */
2604	AGE_COMMIT_MBOX(sc);
2605
2606	/* Configure IPG/IFG parameters. */
2607	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2608	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2609	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2610	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2611	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2612
2613	/* Set parameters for half-duplex media. */
2614	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2615	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2616	    HDPX_CFG_LCOL_MASK) |
2617	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2618	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2619	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2620	    HDPX_CFG_ABEBT_MASK) |
2621	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2622	    HDPX_CFG_JAMIPG_MASK));
2623
2624	/* Configure interrupt moderation timer. */
2625	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2626	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2627	reg &= ~MASTER_MTIMER_ENB;
2628	if (AGE_USECS(sc->age_int_mod) == 0)
2629		reg &= ~MASTER_ITIMER_ENB;
2630	else
2631		reg |= MASTER_ITIMER_ENB;
2632	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2633	if (bootverbose)
2634		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2635		    sc->age_int_mod);
2636	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2637
2638	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2639	if (ifp->if_mtu < ETHERMTU)
2640		sc->age_max_frame_size = ETHERMTU;
2641	else
2642		sc->age_max_frame_size = ifp->if_mtu;
2643	sc->age_max_frame_size += ETHER_HDR_LEN +
2644	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2645	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2646	/* Configure jumbo frame. */
2647	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2648	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2649	    (((fsize / sizeof(uint64_t)) <<
2650	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2651	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2652	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2653	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2654	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2655
2656	/* Configure flow-control parameters. From Linux. */
2657	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2658		/*
2659		 * Magic workaround for old-L1.
2660		 * Don't know which hw revision requires this magic.
2661		 */
2662		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2663		/*
2664		 * Another magic workaround for flow-control mode
2665		 * change. From Linux.
2666		 */
2667		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2668	}
2669	/*
2670	 * TODO
2671	 *  Should understand pause parameter relationships between FIFO
2672	 *  size and number of Rx descriptors and Rx return descriptors.
2673	 *
2674	 *  Magic parameters came from Linux.
2675	 */
2676	switch (sc->age_chip_rev) {
2677	case 0x8001:
2678	case 0x9001:
2679	case 0x9002:
2680	case 0x9003:
2681		rxf_hi = AGE_RX_RING_CNT / 16;
2682		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2683		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2684		rrd_lo = AGE_RR_RING_CNT / 16;
2685		break;
2686	default:
2687		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2688		rxf_lo = reg / 16;
2689		if (rxf_lo < 192)
2690			rxf_lo = 192;
2691		rxf_hi = (reg * 7) / 8;
2692		if (rxf_hi < rxf_lo)
2693			rxf_hi = rxf_lo + 16;
2694		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2695		rrd_lo = reg / 8;
2696		rrd_hi = (reg * 7) / 8;
2697		if (rrd_lo < 2)
2698			rrd_lo = 2;
2699		if (rrd_hi < rrd_lo)
2700			rrd_hi = rrd_lo + 3;
2701		break;
2702	}
2703	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2704	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2705	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2706	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2707	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2708	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2709	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2710	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2711	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2712	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2713
2714	/* Configure RxQ. */
2715	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2716	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2717	    RXQ_CFG_RD_BURST_MASK) |
2718	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2719	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2720	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2721	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2722	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2723
2724	/* Configure TxQ. */
2725	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2726	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2727	    TXQ_CFG_TPD_BURST_MASK) |
2728	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2729	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2730	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2731	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2732	    TXQ_CFG_ENB);
2733
2734	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2735	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2736	    TX_JUMBO_TPD_TH_MASK) |
2737	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2738	    TX_JUMBO_TPD_IPG_MASK));
2739	/* Configure DMA parameters. */
2740	CSR_WRITE_4(sc, AGE_DMA_CFG,
2741	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2742	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2743	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2744
2745	/* Configure CMB DMA write threshold. */
2746	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2747	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2748	    CMB_WR_THRESH_RRD_MASK) |
2749	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2750	    CMB_WR_THRESH_TPD_MASK));
2751
2752	/* Set CMB/SMB timer and enable them. */
2753	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2754	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2755	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2756	/* Request SMB updates for every seconds. */
2757	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2758	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2759
2760	/*
2761	 * Disable all WOL bits as WOL can interfere normal Rx
2762	 * operation.
2763	 */
2764	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2765
2766	/*
2767	 * Configure Tx/Rx MACs.
2768	 *  - Auto-padding for short frames.
2769	 *  - Enable CRC generation.
2770	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2771	 *  of MAC is followed after link establishment.
2772	 */
2773	CSR_WRITE_4(sc, AGE_MAC_CFG,
2774	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2775	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2776	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2777	    MAC_CFG_PREAMBLE_MASK));
2778	/* Set up the receive filter. */
2779	age_rxfilter(sc);
2780	age_rxvlan(sc);
2781
2782	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2783	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2784		reg |= MAC_CFG_RXCSUM_ENB;
2785
2786	/* Ack all pending interrupts and clear it. */
2787	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2788	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2789
2790	/* Finally enable Tx/Rx MAC. */
2791	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2792
2793	sc->age_flags &= ~AGE_FLAG_LINK;
2794	/* Switch to the current media. */
2795	mii_mediachg(mii);
2796
2797	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2798
2799	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2800	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2801}
2802
2803static void
2804age_stop(struct age_softc *sc)
2805{
2806	struct ifnet *ifp;
2807	struct age_txdesc *txd;
2808	struct age_rxdesc *rxd;
2809	uint32_t reg;
2810	int i;
2811
2812	AGE_LOCK_ASSERT(sc);
2813	/*
2814	 * Mark the interface down and cancel the watchdog timer.
2815	 */
2816	ifp = sc->age_ifp;
2817	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2818	sc->age_flags &= ~AGE_FLAG_LINK;
2819	callout_stop(&sc->age_tick_ch);
2820	sc->age_watchdog_timer = 0;
2821
2822	/*
2823	 * Disable interrupts.
2824	 */
2825	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2826	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2827	/* Stop CMB/SMB updates. */
2828	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2829	/* Stop Rx/Tx MAC. */
2830	age_stop_rxmac(sc);
2831	age_stop_txmac(sc);
2832	/* Stop DMA. */
2833	CSR_WRITE_4(sc, AGE_DMA_CFG,
2834	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2835	/* Stop TxQ/RxQ. */
2836	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2837	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2838	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2839	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2840	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2841		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2842			break;
2843		DELAY(10);
2844	}
2845	if (i == 0)
2846		device_printf(sc->age_dev,
2847		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2848
2849	 /* Reclaim Rx buffers that have been processed. */
2850	if (sc->age_cdata.age_rxhead != NULL)
2851		m_freem(sc->age_cdata.age_rxhead);
2852	AGE_RXCHAIN_RESET(sc);
2853	/*
2854	 * Free RX and TX mbufs still in the queues.
2855	 */
2856	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2857		rxd = &sc->age_cdata.age_rxdesc[i];
2858		if (rxd->rx_m != NULL) {
2859			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2860			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2861			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2862			    rxd->rx_dmamap);
2863			m_freem(rxd->rx_m);
2864			rxd->rx_m = NULL;
2865		}
2866        }
2867	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2868		txd = &sc->age_cdata.age_txdesc[i];
2869		if (txd->tx_m != NULL) {
2870			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2871			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2872			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2873			    txd->tx_dmamap);
2874			m_freem(txd->tx_m);
2875			txd->tx_m = NULL;
2876		}
2877        }
2878}
2879
2880static void
2881age_stop_txmac(struct age_softc *sc)
2882{
2883	uint32_t reg;
2884	int i;
2885
2886	AGE_LOCK_ASSERT(sc);
2887
2888	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2889	if ((reg & MAC_CFG_TX_ENB) != 0) {
2890		reg &= ~MAC_CFG_TX_ENB;
2891		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2892	}
2893	/* Stop Tx DMA engine. */
2894	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2895	if ((reg & DMA_CFG_RD_ENB) != 0) {
2896		reg &= ~DMA_CFG_RD_ENB;
2897		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2898	}
2899	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2900		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2901		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2902			break;
2903		DELAY(10);
2904	}
2905	if (i == 0)
2906		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2907}
2908
2909static void
2910age_stop_rxmac(struct age_softc *sc)
2911{
2912	uint32_t reg;
2913	int i;
2914
2915	AGE_LOCK_ASSERT(sc);
2916
2917	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2918	if ((reg & MAC_CFG_RX_ENB) != 0) {
2919		reg &= ~MAC_CFG_RX_ENB;
2920		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2921	}
2922	/* Stop Rx DMA engine. */
2923	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2924	if ((reg & DMA_CFG_WR_ENB) != 0) {
2925		reg &= ~DMA_CFG_WR_ENB;
2926		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2927	}
2928	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2929		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2930		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2931			break;
2932		DELAY(10);
2933	}
2934	if (i == 0)
2935		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2936}
2937
2938static void
2939age_init_tx_ring(struct age_softc *sc)
2940{
2941	struct age_ring_data *rd;
2942	struct age_txdesc *txd;
2943	int i;
2944
2945	AGE_LOCK_ASSERT(sc);
2946
2947	sc->age_cdata.age_tx_prod = 0;
2948	sc->age_cdata.age_tx_cons = 0;
2949	sc->age_cdata.age_tx_cnt = 0;
2950
2951	rd = &sc->age_rdata;
2952	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2953	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2954		txd = &sc->age_cdata.age_txdesc[i];
2955		txd->tx_desc = &rd->age_tx_ring[i];
2956		txd->tx_m = NULL;
2957	}
2958
2959	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2960	    sc->age_cdata.age_tx_ring_map,
2961	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2962}
2963
2964static int
2965age_init_rx_ring(struct age_softc *sc)
2966{
2967	struct age_ring_data *rd;
2968	struct age_rxdesc *rxd;
2969	int i;
2970
2971	AGE_LOCK_ASSERT(sc);
2972
2973	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2974	sc->age_morework = 0;
2975	rd = &sc->age_rdata;
2976	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2977	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2978		rxd = &sc->age_cdata.age_rxdesc[i];
2979		rxd->rx_m = NULL;
2980		rxd->rx_desc = &rd->age_rx_ring[i];
2981		if (age_newbuf(sc, rxd) != 0)
2982			return (ENOBUFS);
2983	}
2984
2985	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2986	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2987
2988	return (0);
2989}
2990
2991static void
2992age_init_rr_ring(struct age_softc *sc)
2993{
2994	struct age_ring_data *rd;
2995
2996	AGE_LOCK_ASSERT(sc);
2997
2998	sc->age_cdata.age_rr_cons = 0;
2999	AGE_RXCHAIN_RESET(sc);
3000
3001	rd = &sc->age_rdata;
3002	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3003	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3004	    sc->age_cdata.age_rr_ring_map,
3005	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3006}
3007
3008static void
3009age_init_cmb_block(struct age_softc *sc)
3010{
3011	struct age_ring_data *rd;
3012
3013	AGE_LOCK_ASSERT(sc);
3014
3015	rd = &sc->age_rdata;
3016	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3017	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3018	    sc->age_cdata.age_cmb_block_map,
3019	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3020}
3021
3022static void
3023age_init_smb_block(struct age_softc *sc)
3024{
3025	struct age_ring_data *rd;
3026
3027	AGE_LOCK_ASSERT(sc);
3028
3029	rd = &sc->age_rdata;
3030	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3031	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3032	    sc->age_cdata.age_smb_block_map,
3033	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3034}
3035
3036static int
3037age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3038{
3039	struct rx_desc *desc;
3040	struct mbuf *m;
3041	bus_dma_segment_t segs[1];
3042	bus_dmamap_t map;
3043	int nsegs;
3044
3045	AGE_LOCK_ASSERT(sc);
3046
3047	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3048	if (m == NULL)
3049		return (ENOBUFS);
3050	m->m_len = m->m_pkthdr.len = MCLBYTES;
3051	m_adj(m, ETHER_ALIGN);
3052
3053	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3054	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3055		m_freem(m);
3056		return (ENOBUFS);
3057	}
3058	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3059
3060	if (rxd->rx_m != NULL) {
3061		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3062		    BUS_DMASYNC_POSTREAD);
3063		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3064	}
3065	map = rxd->rx_dmamap;
3066	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3067	sc->age_cdata.age_rx_sparemap = map;
3068	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3069	    BUS_DMASYNC_PREREAD);
3070	rxd->rx_m = m;
3071
3072	desc = rxd->rx_desc;
3073	desc->addr = htole64(segs[0].ds_addr);
3074	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3075	    AGE_RD_LEN_SHIFT);
3076	return (0);
3077}
3078
3079static void
3080age_rxvlan(struct age_softc *sc)
3081{
3082	struct ifnet *ifp;
3083	uint32_t reg;
3084
3085	AGE_LOCK_ASSERT(sc);
3086
3087	ifp = sc->age_ifp;
3088	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3089	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3090	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3091		reg |= MAC_CFG_VLAN_TAG_STRIP;
3092	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3093}
3094
3095static void
3096age_rxfilter(struct age_softc *sc)
3097{
3098	struct ifnet *ifp;
3099	struct ifmultiaddr *ifma;
3100	uint32_t crc;
3101	uint32_t mchash[2];
3102	uint32_t rxcfg;
3103
3104	AGE_LOCK_ASSERT(sc);
3105
3106	ifp = sc->age_ifp;
3107
3108	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3109	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3110	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3111		rxcfg |= MAC_CFG_BCAST;
3112	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3113		if ((ifp->if_flags & IFF_PROMISC) != 0)
3114			rxcfg |= MAC_CFG_PROMISC;
3115		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3116			rxcfg |= MAC_CFG_ALLMULTI;
3117		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3118		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3119		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3120		return;
3121	}
3122
3123	/* Program new filter. */
3124	bzero(mchash, sizeof(mchash));
3125
3126	if_maddr_rlock(ifp);
3127	TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3128		if (ifma->ifma_addr->sa_family != AF_LINK)
3129			continue;
3130		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3131		    ifma->ifma_addr), ETHER_ADDR_LEN);
3132		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3133	}
3134	if_maddr_runlock(ifp);
3135
3136	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3137	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3138	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3139}
3140
3141static int
3142sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3143{
3144	struct age_softc *sc;
3145	struct age_stats *stats;
3146	int error, result;
3147
3148	result = -1;
3149	error = sysctl_handle_int(oidp, &result, 0, req);
3150
3151	if (error != 0 || req->newptr == NULL)
3152		return (error);
3153
3154	if (result != 1)
3155		return (error);
3156
3157	sc = (struct age_softc *)arg1;
3158	stats = &sc->age_stat;
3159	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3160	printf("Transmit good frames : %ju\n",
3161	    (uintmax_t)stats->tx_frames);
3162	printf("Transmit good broadcast frames : %ju\n",
3163	    (uintmax_t)stats->tx_bcast_frames);
3164	printf("Transmit good multicast frames : %ju\n",
3165	    (uintmax_t)stats->tx_mcast_frames);
3166	printf("Transmit pause control frames : %u\n",
3167	    stats->tx_pause_frames);
3168	printf("Transmit control frames : %u\n",
3169	    stats->tx_control_frames);
3170	printf("Transmit frames with excessive deferrals : %u\n",
3171	    stats->tx_excess_defer);
3172	printf("Transmit deferrals : %u\n",
3173	    stats->tx_deferred);
3174	printf("Transmit good octets : %ju\n",
3175	    (uintmax_t)stats->tx_bytes);
3176	printf("Transmit good broadcast octets : %ju\n",
3177	    (uintmax_t)stats->tx_bcast_bytes);
3178	printf("Transmit good multicast octets : %ju\n",
3179	    (uintmax_t)stats->tx_mcast_bytes);
3180	printf("Transmit frames 64 bytes : %ju\n",
3181	    (uintmax_t)stats->tx_pkts_64);
3182	printf("Transmit frames 65 to 127 bytes : %ju\n",
3183	    (uintmax_t)stats->tx_pkts_65_127);
3184	printf("Transmit frames 128 to 255 bytes : %ju\n",
3185	    (uintmax_t)stats->tx_pkts_128_255);
3186	printf("Transmit frames 256 to 511 bytes : %ju\n",
3187	    (uintmax_t)stats->tx_pkts_256_511);
3188	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3189	    (uintmax_t)stats->tx_pkts_512_1023);
3190	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3191	    (uintmax_t)stats->tx_pkts_1024_1518);
3192	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3193	    (uintmax_t)stats->tx_pkts_1519_max);
3194	printf("Transmit single collisions : %u\n",
3195	    stats->tx_single_colls);
3196	printf("Transmit multiple collisions : %u\n",
3197	    stats->tx_multi_colls);
3198	printf("Transmit late collisions : %u\n",
3199	    stats->tx_late_colls);
3200	printf("Transmit abort due to excessive collisions : %u\n",
3201	    stats->tx_excess_colls);
3202	printf("Transmit underruns due to FIFO underruns : %u\n",
3203	    stats->tx_underrun);
3204	printf("Transmit descriptor write-back errors : %u\n",
3205	    stats->tx_desc_underrun);
3206	printf("Transmit frames with length mismatched frame size : %u\n",
3207	    stats->tx_lenerrs);
3208	printf("Transmit frames with truncated due to MTU size : %u\n",
3209	    stats->tx_lenerrs);
3210
3211	printf("Receive good frames : %ju\n",
3212	    (uintmax_t)stats->rx_frames);
3213	printf("Receive good broadcast frames : %ju\n",
3214	    (uintmax_t)stats->rx_bcast_frames);
3215	printf("Receive good multicast frames : %ju\n",
3216	    (uintmax_t)stats->rx_mcast_frames);
3217	printf("Receive pause control frames : %u\n",
3218	    stats->rx_pause_frames);
3219	printf("Receive control frames : %u\n",
3220	    stats->rx_control_frames);
3221	printf("Receive CRC errors : %u\n",
3222	    stats->rx_crcerrs);
3223	printf("Receive frames with length errors : %u\n",
3224	    stats->rx_lenerrs);
3225	printf("Receive good octets : %ju\n",
3226	    (uintmax_t)stats->rx_bytes);
3227	printf("Receive good broadcast octets : %ju\n",
3228	    (uintmax_t)stats->rx_bcast_bytes);
3229	printf("Receive good multicast octets : %ju\n",
3230	    (uintmax_t)stats->rx_mcast_bytes);
3231	printf("Receive frames too short : %u\n",
3232	    stats->rx_runts);
3233	printf("Receive fragmented frames : %ju\n",
3234	    (uintmax_t)stats->rx_fragments);
3235	printf("Receive frames 64 bytes : %ju\n",
3236	    (uintmax_t)stats->rx_pkts_64);
3237	printf("Receive frames 65 to 127 bytes : %ju\n",
3238	    (uintmax_t)stats->rx_pkts_65_127);
3239	printf("Receive frames 128 to 255 bytes : %ju\n",
3240	    (uintmax_t)stats->rx_pkts_128_255);
3241	printf("Receive frames 256 to 511 bytes : %ju\n",
3242	    (uintmax_t)stats->rx_pkts_256_511);
3243	printf("Receive frames 512 to 1024 bytes : %ju\n",
3244	    (uintmax_t)stats->rx_pkts_512_1023);
3245	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3246	    (uintmax_t)stats->rx_pkts_1024_1518);
3247	printf("Receive frames 1519 to MTU bytes : %ju\n",
3248	    (uintmax_t)stats->rx_pkts_1519_max);
3249	printf("Receive frames too long : %ju\n",
3250	    (uint64_t)stats->rx_pkts_truncated);
3251	printf("Receive frames with FIFO overflow : %u\n",
3252	    stats->rx_fifo_oflows);
3253	printf("Receive frames with return descriptor overflow : %u\n",
3254	    stats->rx_desc_oflows);
3255	printf("Receive frames with alignment errors : %u\n",
3256	    stats->rx_alignerrs);
3257	printf("Receive frames dropped due to address filtering : %ju\n",
3258	    (uint64_t)stats->rx_pkts_filtered);
3259
3260	return (error);
3261}
3262
3263static int
3264sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3265{
3266	int error, value;
3267
3268	if (arg1 == NULL)
3269		return (EINVAL);
3270	value = *(int *)arg1;
3271	error = sysctl_handle_int(oidp, &value, 0, req);
3272	if (error || req->newptr == NULL)
3273		return (error);
3274	if (value < low || value > high)
3275		return (EINVAL);
3276        *(int *)arg1 = value;
3277
3278        return (0);
3279}
3280
3281static int
3282sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3283{
3284	return (sysctl_int_range(oidp, arg1, arg2, req,
3285	    AGE_PROC_MIN, AGE_PROC_MAX));
3286}
3287
3288static int
3289sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3290{
3291
3292	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3293	    AGE_IM_TIMER_MAX));
3294}
3295