if_age.c revision 219902
1/*-
2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/age/if_age.c 219902 2011-03-23 13:10:15Z jhb $");
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/bus.h>
36#include <sys/endian.h>
37#include <sys/kernel.h>
38#include <sys/malloc.h>
39#include <sys/mbuf.h>
40#include <sys/rman.h>
41#include <sys/module.h>
42#include <sys/queue.h>
43#include <sys/socket.h>
44#include <sys/sockio.h>
45#include <sys/sysctl.h>
46#include <sys/taskqueue.h>
47
48#include <net/bpf.h>
49#include <net/if.h>
50#include <net/if_arp.h>
51#include <net/ethernet.h>
52#include <net/if_dl.h>
53#include <net/if_media.h>
54#include <net/if_types.h>
55#include <net/if_vlan_var.h>
56
57#include <netinet/in.h>
58#include <netinet/in_systm.h>
59#include <netinet/ip.h>
60#include <netinet/tcp.h>
61
62#include <dev/mii/mii.h>
63#include <dev/mii/miivar.h>
64
65#include <dev/pci/pcireg.h>
66#include <dev/pci/pcivar.h>
67
68#include <machine/bus.h>
69#include <machine/in_cksum.h>
70
71#include <dev/age/if_agereg.h>
72#include <dev/age/if_agevar.h>
73
74/* "device miibus" required.  See GENERIC if you get errors here. */
75#include "miibus_if.h"
76
77#define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
78
79MODULE_DEPEND(age, pci, 1, 1, 1);
80MODULE_DEPEND(age, ether, 1, 1, 1);
81MODULE_DEPEND(age, miibus, 1, 1, 1);
82
83/* Tunables. */
84static int msi_disable = 0;
85static int msix_disable = 0;
86TUNABLE_INT("hw.age.msi_disable", &msi_disable);
87TUNABLE_INT("hw.age.msix_disable", &msix_disable);
88
89/*
90 * Devices supported by this driver.
91 */
92static struct age_dev {
93	uint16_t	age_vendorid;
94	uint16_t	age_deviceid;
95	const char	*age_name;
96} age_devs[] = {
97	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
98	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
99};
100
101static int age_miibus_readreg(device_t, int, int);
102static int age_miibus_writereg(device_t, int, int, int);
103static void age_miibus_statchg(device_t);
104static void age_mediastatus(struct ifnet *, struct ifmediareq *);
105static int age_mediachange(struct ifnet *);
106static int age_probe(device_t);
107static void age_get_macaddr(struct age_softc *);
108static void age_phy_reset(struct age_softc *);
109static int age_attach(device_t);
110static int age_detach(device_t);
111static void age_sysctl_node(struct age_softc *);
112static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113static int age_check_boundary(struct age_softc *);
114static int age_dma_alloc(struct age_softc *);
115static void age_dma_free(struct age_softc *);
116static int age_shutdown(device_t);
117static void age_setwol(struct age_softc *);
118static int age_suspend(device_t);
119static int age_resume(device_t);
120static int age_encap(struct age_softc *, struct mbuf **);
121static void age_start(struct ifnet *);
122static void age_start_locked(struct ifnet *);
123static void age_watchdog(struct age_softc *);
124static int age_ioctl(struct ifnet *, u_long, caddr_t);
125static void age_mac_config(struct age_softc *);
126static void age_link_task(void *, int);
127static void age_stats_update(struct age_softc *);
128static int age_intr(void *);
129static void age_int_task(void *, int);
130static void age_txintr(struct age_softc *, int);
131static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
132static int age_rxintr(struct age_softc *, int, int);
133static void age_tick(void *);
134static void age_reset(struct age_softc *);
135static void age_init(void *);
136static void age_init_locked(struct age_softc *);
137static void age_stop(struct age_softc *);
138static void age_stop_txmac(struct age_softc *);
139static void age_stop_rxmac(struct age_softc *);
140static void age_init_tx_ring(struct age_softc *);
141static int age_init_rx_ring(struct age_softc *);
142static void age_init_rr_ring(struct age_softc *);
143static void age_init_cmb_block(struct age_softc *);
144static void age_init_smb_block(struct age_softc *);
145static int age_newbuf(struct age_softc *, struct age_rxdesc *);
146static void age_rxvlan(struct age_softc *);
147static void age_rxfilter(struct age_softc *);
148static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
149static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
150static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
151static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
152
153
154static device_method_t age_methods[] = {
155	/* Device interface. */
156	DEVMETHOD(device_probe,		age_probe),
157	DEVMETHOD(device_attach,	age_attach),
158	DEVMETHOD(device_detach,	age_detach),
159	DEVMETHOD(device_shutdown,	age_shutdown),
160	DEVMETHOD(device_suspend,	age_suspend),
161	DEVMETHOD(device_resume,	age_resume),
162
163	/* MII interface. */
164	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
165	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
166	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
167
168	{ NULL, NULL }
169};
170
171static driver_t age_driver = {
172	"age",
173	age_methods,
174	sizeof(struct age_softc)
175};
176
177static devclass_t age_devclass;
178
179DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
180DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
181
182static struct resource_spec age_res_spec_mem[] = {
183	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
184	{ -1,			0,		0 }
185};
186
187static struct resource_spec age_irq_spec_legacy[] = {
188	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
189	{ -1,			0,		0 }
190};
191
192static struct resource_spec age_irq_spec_msi[] = {
193	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
194	{ -1,			0,		0 }
195};
196
197static struct resource_spec age_irq_spec_msix[] = {
198	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
199	{ -1,			0,		0 }
200};
201
202/*
203 *	Read a PHY register on the MII of the L1.
204 */
205static int
206age_miibus_readreg(device_t dev, int phy, int reg)
207{
208	struct age_softc *sc;
209	uint32_t v;
210	int i;
211
212	sc = device_get_softc(dev);
213
214	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
215	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
216	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
217		DELAY(1);
218		v = CSR_READ_4(sc, AGE_MDIO);
219		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
220			break;
221	}
222
223	if (i == 0) {
224		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
225		return (0);
226	}
227
228	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
229}
230
231/*
232 *	Write a PHY register on the MII of the L1.
233 */
234static int
235age_miibus_writereg(device_t dev, int phy, int reg, int val)
236{
237	struct age_softc *sc;
238	uint32_t v;
239	int i;
240
241	sc = device_get_softc(dev);
242
243	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
244	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
245	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
246	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
247		DELAY(1);
248		v = CSR_READ_4(sc, AGE_MDIO);
249		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
250			break;
251	}
252
253	if (i == 0)
254		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
255
256	return (0);
257}
258
259/*
260 *	Callback from MII layer when media changes.
261 */
262static void
263age_miibus_statchg(device_t dev)
264{
265	struct age_softc *sc;
266
267	sc = device_get_softc(dev);
268	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
269}
270
271/*
272 *	Get the current interface media status.
273 */
274static void
275age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
276{
277	struct age_softc *sc;
278	struct mii_data *mii;
279
280	sc = ifp->if_softc;
281	AGE_LOCK(sc);
282	mii = device_get_softc(sc->age_miibus);
283
284	mii_pollstat(mii);
285	AGE_UNLOCK(sc);
286	ifmr->ifm_status = mii->mii_media_status;
287	ifmr->ifm_active = mii->mii_media_active;
288}
289
290/*
291 *	Set hardware to newly-selected media.
292 */
293static int
294age_mediachange(struct ifnet *ifp)
295{
296	struct age_softc *sc;
297	struct mii_data *mii;
298	struct mii_softc *miisc;
299	int error;
300
301	sc = ifp->if_softc;
302	AGE_LOCK(sc);
303	mii = device_get_softc(sc->age_miibus);
304	if (mii->mii_instance != 0) {
305		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
306			mii_phy_reset(miisc);
307	}
308	error = mii_mediachg(mii);
309	AGE_UNLOCK(sc);
310
311	return (error);
312}
313
314static int
315age_probe(device_t dev)
316{
317	struct age_dev *sp;
318	int i;
319	uint16_t vendor, devid;
320
321	vendor = pci_get_vendor(dev);
322	devid = pci_get_device(dev);
323	sp = age_devs;
324	for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]);
325	    i++, sp++) {
326		if (vendor == sp->age_vendorid &&
327		    devid == sp->age_deviceid) {
328			device_set_desc(dev, sp->age_name);
329			return (BUS_PROBE_DEFAULT);
330		}
331	}
332
333	return (ENXIO);
334}
335
336static void
337age_get_macaddr(struct age_softc *sc)
338{
339	uint32_t ea[2], reg;
340	int i, vpdc;
341
342	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
343	if ((reg & SPI_VPD_ENB) != 0) {
344		/* Get VPD stored in TWSI EEPROM. */
345		reg &= ~SPI_VPD_ENB;
346		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
347	}
348
349	if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
350		/*
351		 * PCI VPD capability found, let TWSI reload EEPROM.
352		 * This will set ethernet address of controller.
353		 */
354		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
355		    TWSI_CTRL_SW_LD_START);
356		for (i = 100; i > 0; i--) {
357			DELAY(1000);
358			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
359			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
360				break;
361		}
362		if (i == 0)
363			device_printf(sc->age_dev,
364			    "reloading EEPROM timeout!\n");
365	} else {
366		if (bootverbose)
367			device_printf(sc->age_dev,
368			    "PCI VPD capability not found!\n");
369	}
370
371	ea[0] = CSR_READ_4(sc, AGE_PAR0);
372	ea[1] = CSR_READ_4(sc, AGE_PAR1);
373	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
374	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
375	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
376	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
377	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
378	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
379}
380
381static void
382age_phy_reset(struct age_softc *sc)
383{
384	uint16_t reg, pn;
385	int i, linkup;
386
387	/* Reset PHY. */
388	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
389	DELAY(2000);
390	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
391	DELAY(2000);
392
393#define	ATPHY_DBG_ADDR		0x1D
394#define	ATPHY_DBG_DATA		0x1E
395#define	ATPHY_CDTC		0x16
396#define	PHY_CDTC_ENB		0x0001
397#define	PHY_CDTC_POFF		8
398#define	ATPHY_CDTS		0x1C
399#define	PHY_CDTS_STAT_OK	0x0000
400#define	PHY_CDTS_STAT_SHORT	0x0100
401#define	PHY_CDTS_STAT_OPEN	0x0200
402#define	PHY_CDTS_STAT_INVAL	0x0300
403#define	PHY_CDTS_STAT_MASK	0x0300
404
405	/* Check power saving mode. Magic from Linux. */
406	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
407	for (linkup = 0, pn = 0; pn < 4; pn++) {
408		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
409		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
410		for (i = 200; i > 0; i--) {
411			DELAY(1000);
412			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
413			    ATPHY_CDTC);
414			if ((reg & PHY_CDTC_ENB) == 0)
415				break;
416		}
417		DELAY(1000);
418		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
419		    ATPHY_CDTS);
420		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
421			linkup++;
422			break;
423		}
424	}
425	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
426	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
427	if (linkup == 0) {
428		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
429		    ATPHY_DBG_ADDR, 0);
430		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
431		    ATPHY_DBG_DATA, 0x124E);
432		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
433		    ATPHY_DBG_ADDR, 1);
434		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
435		    ATPHY_DBG_DATA);
436		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
437		    ATPHY_DBG_DATA, reg | 0x03);
438		/* XXX */
439		DELAY(1500 * 1000);
440		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
441		    ATPHY_DBG_ADDR, 0);
442		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
443		    ATPHY_DBG_DATA, 0x024E);
444    }
445
446#undef	ATPHY_DBG_ADDR
447#undef	ATPHY_DBG_DATA
448#undef	ATPHY_CDTC
449#undef	PHY_CDTC_ENB
450#undef	PHY_CDTC_POFF
451#undef	ATPHY_CDTS
452#undef	PHY_CDTS_STAT_OK
453#undef	PHY_CDTS_STAT_SHORT
454#undef	PHY_CDTS_STAT_OPEN
455#undef	PHY_CDTS_STAT_INVAL
456#undef	PHY_CDTS_STAT_MASK
457}
458
459static int
460age_attach(device_t dev)
461{
462	struct age_softc *sc;
463	struct ifnet *ifp;
464	uint16_t burst;
465	int error, i, msic, msixc, pmc;
466
467	error = 0;
468	sc = device_get_softc(dev);
469	sc->age_dev = dev;
470
471	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
472	    MTX_DEF);
473	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
474	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
475	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
476
477	/* Map the device. */
478	pci_enable_busmaster(dev);
479	sc->age_res_spec = age_res_spec_mem;
480	sc->age_irq_spec = age_irq_spec_legacy;
481	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
482	if (error != 0) {
483		device_printf(dev, "cannot allocate memory resources.\n");
484		goto fail;
485	}
486
487	/* Set PHY address. */
488	sc->age_phyaddr = AGE_PHY_ADDR;
489
490	/* Reset PHY. */
491	age_phy_reset(sc);
492
493	/* Reset the ethernet controller. */
494	age_reset(sc);
495
496	/* Get PCI and chip id/revision. */
497	sc->age_rev = pci_get_revid(dev);
498	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
499	    MASTER_CHIP_REV_SHIFT;
500	if (bootverbose) {
501		device_printf(dev, "PCI device revision : 0x%04x\n",
502		    sc->age_rev);
503		device_printf(dev, "Chip id/revision : 0x%04x\n",
504		    sc->age_chip_rev);
505	}
506
507	/*
508	 * XXX
509	 * Unintialized hardware returns an invalid chip id/revision
510	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
511	 * unplugged cable results in putting hardware into automatic
512	 * power down mode which in turn returns invalld chip revision.
513	 */
514	if (sc->age_chip_rev == 0xFFFF) {
515		device_printf(dev,"invalid chip revision : 0x%04x -- "
516		    "not initialized?\n", sc->age_chip_rev);
517		error = ENXIO;
518		goto fail;
519	}
520
521	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
522	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
523	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
524
525	/* Allocate IRQ resources. */
526	msixc = pci_msix_count(dev);
527	msic = pci_msi_count(dev);
528	if (bootverbose) {
529		device_printf(dev, "MSIX count : %d\n", msixc);
530		device_printf(dev, "MSI count : %d\n", msic);
531	}
532
533	/* Prefer MSIX over MSI. */
534	if (msix_disable == 0 || msi_disable == 0) {
535		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
536		    pci_alloc_msix(dev, &msixc) == 0) {
537			if (msic == AGE_MSIX_MESSAGES) {
538				device_printf(dev, "Using %d MSIX messages.\n",
539				    msixc);
540				sc->age_flags |= AGE_FLAG_MSIX;
541				sc->age_irq_spec = age_irq_spec_msix;
542			} else
543				pci_release_msi(dev);
544		}
545		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
546		    msic == AGE_MSI_MESSAGES &&
547		    pci_alloc_msi(dev, &msic) == 0) {
548			if (msic == AGE_MSI_MESSAGES) {
549				device_printf(dev, "Using %d MSI messages.\n",
550				    msic);
551				sc->age_flags |= AGE_FLAG_MSI;
552				sc->age_irq_spec = age_irq_spec_msi;
553			} else
554				pci_release_msi(dev);
555		}
556	}
557
558	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
559	if (error != 0) {
560		device_printf(dev, "cannot allocate IRQ resources.\n");
561		goto fail;
562	}
563
564
565	/* Get DMA parameters from PCIe device control register. */
566	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
567		sc->age_flags |= AGE_FLAG_PCIE;
568		burst = pci_read_config(dev, i + 0x08, 2);
569		/* Max read request size. */
570		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
571		    DMA_CFG_RD_BURST_SHIFT;
572		/* Max payload size. */
573		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
574		    DMA_CFG_WR_BURST_SHIFT;
575		if (bootverbose) {
576			device_printf(dev, "Read request size : %d bytes.\n",
577			    128 << ((burst >> 12) & 0x07));
578			device_printf(dev, "TLP payload size : %d bytes.\n",
579			    128 << ((burst >> 5) & 0x07));
580		}
581	} else {
582		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
583		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
584	}
585
586	/* Create device sysctl node. */
587	age_sysctl_node(sc);
588
589	if ((error = age_dma_alloc(sc) != 0))
590		goto fail;
591
592	/* Load station address. */
593	age_get_macaddr(sc);
594
595	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
596	if (ifp == NULL) {
597		device_printf(dev, "cannot allocate ifnet structure.\n");
598		error = ENXIO;
599		goto fail;
600	}
601
602	ifp->if_softc = sc;
603	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
604	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
605	ifp->if_ioctl = age_ioctl;
606	ifp->if_start = age_start;
607	ifp->if_init = age_init;
608	ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
609	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
610	IFQ_SET_READY(&ifp->if_snd);
611	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
612	ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
613	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
614		sc->age_flags |= AGE_FLAG_PMCAP;
615		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
616	}
617	ifp->if_capenable = ifp->if_capabilities;
618
619	/* Set up MII bus. */
620	error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
621	    age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
622	    0);
623	if (error != 0) {
624		device_printf(dev, "attaching PHYs failed\n");
625		goto fail;
626	}
627
628	ether_ifattach(ifp, sc->age_eaddr);
629
630	/* VLAN capability setup. */
631	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
632	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
633	ifp->if_capenable = ifp->if_capabilities;
634
635	/* Tell the upper layer(s) we support long frames. */
636	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
637
638	/* Create local taskq. */
639	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
640	    taskqueue_thread_enqueue, &sc->age_tq);
641	if (sc->age_tq == NULL) {
642		device_printf(dev, "could not create taskqueue.\n");
643		ether_ifdetach(ifp);
644		error = ENXIO;
645		goto fail;
646	}
647	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
648	    device_get_nameunit(sc->age_dev));
649
650	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
651		msic = AGE_MSIX_MESSAGES;
652	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
653		msic = AGE_MSI_MESSAGES;
654	else
655		msic = 1;
656	for (i = 0; i < msic; i++) {
657		error = bus_setup_intr(dev, sc->age_irq[i],
658		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
659		    &sc->age_intrhand[i]);
660		if (error != 0)
661			break;
662	}
663	if (error != 0) {
664		device_printf(dev, "could not set up interrupt handler.\n");
665		taskqueue_free(sc->age_tq);
666		sc->age_tq = NULL;
667		ether_ifdetach(ifp);
668		goto fail;
669	}
670
671fail:
672	if (error != 0)
673		age_detach(dev);
674
675	return (error);
676}
677
678static int
679age_detach(device_t dev)
680{
681	struct age_softc *sc;
682	struct ifnet *ifp;
683	int i, msic;
684
685	sc = device_get_softc(dev);
686
687	ifp = sc->age_ifp;
688	if (device_is_attached(dev)) {
689		AGE_LOCK(sc);
690		sc->age_flags |= AGE_FLAG_DETACH;
691		age_stop(sc);
692		AGE_UNLOCK(sc);
693		callout_drain(&sc->age_tick_ch);
694		taskqueue_drain(sc->age_tq, &sc->age_int_task);
695		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
696		ether_ifdetach(ifp);
697	}
698
699	if (sc->age_tq != NULL) {
700		taskqueue_drain(sc->age_tq, &sc->age_int_task);
701		taskqueue_free(sc->age_tq);
702		sc->age_tq = NULL;
703	}
704
705	if (sc->age_miibus != NULL) {
706		device_delete_child(dev, sc->age_miibus);
707		sc->age_miibus = NULL;
708	}
709	bus_generic_detach(dev);
710	age_dma_free(sc);
711
712	if (ifp != NULL) {
713		if_free(ifp);
714		sc->age_ifp = NULL;
715	}
716
717	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
718		msic = AGE_MSIX_MESSAGES;
719	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
720		msic = AGE_MSI_MESSAGES;
721	else
722		msic = 1;
723	for (i = 0; i < msic; i++) {
724		if (sc->age_intrhand[i] != NULL) {
725			bus_teardown_intr(dev, sc->age_irq[i],
726			    sc->age_intrhand[i]);
727			sc->age_intrhand[i] = NULL;
728		}
729	}
730
731	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
732	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
733		pci_release_msi(dev);
734	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
735	mtx_destroy(&sc->age_mtx);
736
737	return (0);
738}
739
740static void
741age_sysctl_node(struct age_softc *sc)
742{
743	int error;
744
745	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
746	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
747	    "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
748	    "I", "Statistics");
749
750	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
751	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
752	    "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
753	    sysctl_hw_age_int_mod, "I", "age interrupt moderation");
754
755	/* Pull in device tunables. */
756	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
757	error = resource_int_value(device_get_name(sc->age_dev),
758	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
759	if (error == 0) {
760		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
761		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
762			device_printf(sc->age_dev,
763			    "int_mod value out of range; using default: %d\n",
764			    AGE_IM_TIMER_DEFAULT);
765			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
766		}
767	}
768
769	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
770	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
771	    "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
772	    0, sysctl_hw_age_proc_limit, "I",
773	    "max number of Rx events to process");
774
775	/* Pull in device tunables. */
776	sc->age_process_limit = AGE_PROC_DEFAULT;
777	error = resource_int_value(device_get_name(sc->age_dev),
778	    device_get_unit(sc->age_dev), "process_limit",
779	    &sc->age_process_limit);
780	if (error == 0) {
781		if (sc->age_process_limit < AGE_PROC_MIN ||
782		    sc->age_process_limit > AGE_PROC_MAX) {
783			device_printf(sc->age_dev,
784			    "process_limit value out of range; "
785			    "using default: %d\n", AGE_PROC_DEFAULT);
786			sc->age_process_limit = AGE_PROC_DEFAULT;
787		}
788	}
789}
790
791struct age_dmamap_arg {
792	bus_addr_t	age_busaddr;
793};
794
795static void
796age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
797{
798	struct age_dmamap_arg *ctx;
799
800	if (error != 0)
801		return;
802
803	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
804
805	ctx = (struct age_dmamap_arg *)arg;
806	ctx->age_busaddr = segs[0].ds_addr;
807}
808
809/*
810 * Attansic L1 controller have single register to specify high
811 * address part of DMA blocks. So all descriptor structures and
812 * DMA memory blocks should have the same high address of given
813 * 4GB address space(i.e. crossing 4GB boundary is not allowed).
814 */
815static int
816age_check_boundary(struct age_softc *sc)
817{
818	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
819	bus_addr_t cmb_block_end, smb_block_end;
820
821	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
822	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
823	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
824	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
825	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
826	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
827
828	if ((AGE_ADDR_HI(tx_ring_end) !=
829	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
830	    (AGE_ADDR_HI(rx_ring_end) !=
831	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
832	    (AGE_ADDR_HI(rr_ring_end) !=
833	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
834	    (AGE_ADDR_HI(cmb_block_end) !=
835	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
836	    (AGE_ADDR_HI(smb_block_end) !=
837	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
838		return (EFBIG);
839
840	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
841	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
842	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
843	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
844		return (EFBIG);
845
846	return (0);
847}
848
849static int
850age_dma_alloc(struct age_softc *sc)
851{
852	struct age_txdesc *txd;
853	struct age_rxdesc *rxd;
854	bus_addr_t lowaddr;
855	struct age_dmamap_arg ctx;
856	int error, i;
857
858	lowaddr = BUS_SPACE_MAXADDR;
859
860again:
861	/* Create parent ring/DMA block tag. */
862	error = bus_dma_tag_create(
863	    bus_get_dma_tag(sc->age_dev), /* parent */
864	    1, 0,			/* alignment, boundary */
865	    lowaddr,			/* lowaddr */
866	    BUS_SPACE_MAXADDR,		/* highaddr */
867	    NULL, NULL,			/* filter, filterarg */
868	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
869	    0,				/* nsegments */
870	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
871	    0,				/* flags */
872	    NULL, NULL,			/* lockfunc, lockarg */
873	    &sc->age_cdata.age_parent_tag);
874	if (error != 0) {
875		device_printf(sc->age_dev,
876		    "could not create parent DMA tag.\n");
877		goto fail;
878	}
879
880	/* Create tag for Tx ring. */
881	error = bus_dma_tag_create(
882	    sc->age_cdata.age_parent_tag, /* parent */
883	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
884	    BUS_SPACE_MAXADDR,		/* lowaddr */
885	    BUS_SPACE_MAXADDR,		/* highaddr */
886	    NULL, NULL,			/* filter, filterarg */
887	    AGE_TX_RING_SZ,		/* maxsize */
888	    1,				/* nsegments */
889	    AGE_TX_RING_SZ,		/* maxsegsize */
890	    0,				/* flags */
891	    NULL, NULL,			/* lockfunc, lockarg */
892	    &sc->age_cdata.age_tx_ring_tag);
893	if (error != 0) {
894		device_printf(sc->age_dev,
895		    "could not create Tx ring DMA tag.\n");
896		goto fail;
897	}
898
899	/* Create tag for Rx ring. */
900	error = bus_dma_tag_create(
901	    sc->age_cdata.age_parent_tag, /* parent */
902	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
903	    BUS_SPACE_MAXADDR,		/* lowaddr */
904	    BUS_SPACE_MAXADDR,		/* highaddr */
905	    NULL, NULL,			/* filter, filterarg */
906	    AGE_RX_RING_SZ,		/* maxsize */
907	    1,				/* nsegments */
908	    AGE_RX_RING_SZ,		/* maxsegsize */
909	    0,				/* flags */
910	    NULL, NULL,			/* lockfunc, lockarg */
911	    &sc->age_cdata.age_rx_ring_tag);
912	if (error != 0) {
913		device_printf(sc->age_dev,
914		    "could not create Rx ring DMA tag.\n");
915		goto fail;
916	}
917
918	/* Create tag for Rx return ring. */
919	error = bus_dma_tag_create(
920	    sc->age_cdata.age_parent_tag, /* parent */
921	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
922	    BUS_SPACE_MAXADDR,		/* lowaddr */
923	    BUS_SPACE_MAXADDR,		/* highaddr */
924	    NULL, NULL,			/* filter, filterarg */
925	    AGE_RR_RING_SZ,		/* maxsize */
926	    1,				/* nsegments */
927	    AGE_RR_RING_SZ,		/* maxsegsize */
928	    0,				/* flags */
929	    NULL, NULL,			/* lockfunc, lockarg */
930	    &sc->age_cdata.age_rr_ring_tag);
931	if (error != 0) {
932		device_printf(sc->age_dev,
933		    "could not create Rx return ring DMA tag.\n");
934		goto fail;
935	}
936
937	/* Create tag for coalesing message block. */
938	error = bus_dma_tag_create(
939	    sc->age_cdata.age_parent_tag, /* parent */
940	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
941	    BUS_SPACE_MAXADDR,		/* lowaddr */
942	    BUS_SPACE_MAXADDR,		/* highaddr */
943	    NULL, NULL,			/* filter, filterarg */
944	    AGE_CMB_BLOCK_SZ,		/* maxsize */
945	    1,				/* nsegments */
946	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
947	    0,				/* flags */
948	    NULL, NULL,			/* lockfunc, lockarg */
949	    &sc->age_cdata.age_cmb_block_tag);
950	if (error != 0) {
951		device_printf(sc->age_dev,
952		    "could not create CMB DMA tag.\n");
953		goto fail;
954	}
955
956	/* Create tag for statistics message block. */
957	error = bus_dma_tag_create(
958	    sc->age_cdata.age_parent_tag, /* parent */
959	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
960	    BUS_SPACE_MAXADDR,		/* lowaddr */
961	    BUS_SPACE_MAXADDR,		/* highaddr */
962	    NULL, NULL,			/* filter, filterarg */
963	    AGE_SMB_BLOCK_SZ,		/* maxsize */
964	    1,				/* nsegments */
965	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
966	    0,				/* flags */
967	    NULL, NULL,			/* lockfunc, lockarg */
968	    &sc->age_cdata.age_smb_block_tag);
969	if (error != 0) {
970		device_printf(sc->age_dev,
971		    "could not create SMB DMA tag.\n");
972		goto fail;
973	}
974
975	/* Allocate DMA'able memory and load the DMA map. */
976	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
977	    (void **)&sc->age_rdata.age_tx_ring,
978	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
979	    &sc->age_cdata.age_tx_ring_map);
980	if (error != 0) {
981		device_printf(sc->age_dev,
982		    "could not allocate DMA'able memory for Tx ring.\n");
983		goto fail;
984	}
985	ctx.age_busaddr = 0;
986	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
987	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
988	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
989	if (error != 0 || ctx.age_busaddr == 0) {
990		device_printf(sc->age_dev,
991		    "could not load DMA'able memory for Tx ring.\n");
992		goto fail;
993	}
994	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
995	/* Rx ring */
996	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
997	    (void **)&sc->age_rdata.age_rx_ring,
998	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
999	    &sc->age_cdata.age_rx_ring_map);
1000	if (error != 0) {
1001		device_printf(sc->age_dev,
1002		    "could not allocate DMA'able memory for Rx ring.\n");
1003		goto fail;
1004	}
1005	ctx.age_busaddr = 0;
1006	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1007	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1008	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1009	if (error != 0 || ctx.age_busaddr == 0) {
1010		device_printf(sc->age_dev,
1011		    "could not load DMA'able memory for Rx ring.\n");
1012		goto fail;
1013	}
1014	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1015	/* Rx return ring */
1016	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1017	    (void **)&sc->age_rdata.age_rr_ring,
1018	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1019	    &sc->age_cdata.age_rr_ring_map);
1020	if (error != 0) {
1021		device_printf(sc->age_dev,
1022		    "could not allocate DMA'able memory for Rx return ring.\n");
1023		goto fail;
1024	}
1025	ctx.age_busaddr = 0;
1026	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1027	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1028	    AGE_RR_RING_SZ, age_dmamap_cb,
1029	    &ctx, 0);
1030	if (error != 0 || ctx.age_busaddr == 0) {
1031		device_printf(sc->age_dev,
1032		    "could not load DMA'able memory for Rx return ring.\n");
1033		goto fail;
1034	}
1035	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1036	/* CMB block */
1037	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1038	    (void **)&sc->age_rdata.age_cmb_block,
1039	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1040	    &sc->age_cdata.age_cmb_block_map);
1041	if (error != 0) {
1042		device_printf(sc->age_dev,
1043		    "could not allocate DMA'able memory for CMB block.\n");
1044		goto fail;
1045	}
1046	ctx.age_busaddr = 0;
1047	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1048	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1049	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1050	if (error != 0 || ctx.age_busaddr == 0) {
1051		device_printf(sc->age_dev,
1052		    "could not load DMA'able memory for CMB block.\n");
1053		goto fail;
1054	}
1055	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1056	/* SMB block */
1057	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1058	    (void **)&sc->age_rdata.age_smb_block,
1059	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1060	    &sc->age_cdata.age_smb_block_map);
1061	if (error != 0) {
1062		device_printf(sc->age_dev,
1063		    "could not allocate DMA'able memory for SMB block.\n");
1064		goto fail;
1065	}
1066	ctx.age_busaddr = 0;
1067	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1068	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1069	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1070	if (error != 0 || ctx.age_busaddr == 0) {
1071		device_printf(sc->age_dev,
1072		    "could not load DMA'able memory for SMB block.\n");
1073		goto fail;
1074	}
1075	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1076
1077	/*
1078	 * All ring buffer and DMA blocks should have the same
1079	 * high address part of 64bit DMA address space.
1080	 */
1081	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1082	    (error = age_check_boundary(sc)) != 0) {
1083		device_printf(sc->age_dev, "4GB boundary crossed, "
1084		    "switching to 32bit DMA addressing mode.\n");
1085		age_dma_free(sc);
1086		/* Limit DMA address space to 32bit and try again. */
1087		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1088		goto again;
1089	}
1090
1091	/*
1092	 * Create Tx/Rx buffer parent tag.
1093	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1094	 * so it needs separate parent DMA tag.
1095	 */
1096	error = bus_dma_tag_create(
1097	    bus_get_dma_tag(sc->age_dev), /* parent */
1098	    1, 0,			/* alignment, boundary */
1099	    BUS_SPACE_MAXADDR,		/* lowaddr */
1100	    BUS_SPACE_MAXADDR,		/* highaddr */
1101	    NULL, NULL,			/* filter, filterarg */
1102	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1103	    0,				/* nsegments */
1104	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1105	    0,				/* flags */
1106	    NULL, NULL,			/* lockfunc, lockarg */
1107	    &sc->age_cdata.age_buffer_tag);
1108	if (error != 0) {
1109		device_printf(sc->age_dev,
1110		    "could not create parent buffer DMA tag.\n");
1111		goto fail;
1112	}
1113
1114	/* Create tag for Tx buffers. */
1115	error = bus_dma_tag_create(
1116	    sc->age_cdata.age_buffer_tag, /* parent */
1117	    1, 0,			/* alignment, boundary */
1118	    BUS_SPACE_MAXADDR,		/* lowaddr */
1119	    BUS_SPACE_MAXADDR,		/* highaddr */
1120	    NULL, NULL,			/* filter, filterarg */
1121	    AGE_TSO_MAXSIZE,		/* maxsize */
1122	    AGE_MAXTXSEGS,		/* nsegments */
1123	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1124	    0,				/* flags */
1125	    NULL, NULL,			/* lockfunc, lockarg */
1126	    &sc->age_cdata.age_tx_tag);
1127	if (error != 0) {
1128		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1129		goto fail;
1130	}
1131
1132	/* Create tag for Rx buffers. */
1133	error = bus_dma_tag_create(
1134	    sc->age_cdata.age_buffer_tag, /* parent */
1135	    1, 0,			/* alignment, boundary */
1136	    BUS_SPACE_MAXADDR,		/* lowaddr */
1137	    BUS_SPACE_MAXADDR,		/* highaddr */
1138	    NULL, NULL,			/* filter, filterarg */
1139	    MCLBYTES,			/* maxsize */
1140	    1,				/* nsegments */
1141	    MCLBYTES,			/* maxsegsize */
1142	    0,				/* flags */
1143	    NULL, NULL,			/* lockfunc, lockarg */
1144	    &sc->age_cdata.age_rx_tag);
1145	if (error != 0) {
1146		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1147		goto fail;
1148	}
1149
1150	/* Create DMA maps for Tx buffers. */
1151	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1152		txd = &sc->age_cdata.age_txdesc[i];
1153		txd->tx_m = NULL;
1154		txd->tx_dmamap = NULL;
1155		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1156		    &txd->tx_dmamap);
1157		if (error != 0) {
1158			device_printf(sc->age_dev,
1159			    "could not create Tx dmamap.\n");
1160			goto fail;
1161		}
1162	}
1163	/* Create DMA maps for Rx buffers. */
1164	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1165	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1166		device_printf(sc->age_dev,
1167		    "could not create spare Rx dmamap.\n");
1168		goto fail;
1169	}
1170	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1171		rxd = &sc->age_cdata.age_rxdesc[i];
1172		rxd->rx_m = NULL;
1173		rxd->rx_dmamap = NULL;
1174		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1175		    &rxd->rx_dmamap);
1176		if (error != 0) {
1177			device_printf(sc->age_dev,
1178			    "could not create Rx dmamap.\n");
1179			goto fail;
1180		}
1181	}
1182
1183fail:
1184	return (error);
1185}
1186
1187static void
1188age_dma_free(struct age_softc *sc)
1189{
1190	struct age_txdesc *txd;
1191	struct age_rxdesc *rxd;
1192	int i;
1193
1194	/* Tx buffers */
1195	if (sc->age_cdata.age_tx_tag != NULL) {
1196		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1197			txd = &sc->age_cdata.age_txdesc[i];
1198			if (txd->tx_dmamap != NULL) {
1199				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1200				    txd->tx_dmamap);
1201				txd->tx_dmamap = NULL;
1202			}
1203		}
1204		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1205		sc->age_cdata.age_tx_tag = NULL;
1206	}
1207	/* Rx buffers */
1208	if (sc->age_cdata.age_rx_tag != NULL) {
1209		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1210			rxd = &sc->age_cdata.age_rxdesc[i];
1211			if (rxd->rx_dmamap != NULL) {
1212				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1213				    rxd->rx_dmamap);
1214				rxd->rx_dmamap = NULL;
1215			}
1216		}
1217		if (sc->age_cdata.age_rx_sparemap != NULL) {
1218			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1219			    sc->age_cdata.age_rx_sparemap);
1220			sc->age_cdata.age_rx_sparemap = NULL;
1221		}
1222		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1223		sc->age_cdata.age_rx_tag = NULL;
1224	}
1225	/* Tx ring. */
1226	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1227		if (sc->age_cdata.age_tx_ring_map != NULL)
1228			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1229			    sc->age_cdata.age_tx_ring_map);
1230		if (sc->age_cdata.age_tx_ring_map != NULL &&
1231		    sc->age_rdata.age_tx_ring != NULL)
1232			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1233			    sc->age_rdata.age_tx_ring,
1234			    sc->age_cdata.age_tx_ring_map);
1235		sc->age_rdata.age_tx_ring = NULL;
1236		sc->age_cdata.age_tx_ring_map = NULL;
1237		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1238		sc->age_cdata.age_tx_ring_tag = NULL;
1239	}
1240	/* Rx ring. */
1241	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1242		if (sc->age_cdata.age_rx_ring_map != NULL)
1243			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1244			    sc->age_cdata.age_rx_ring_map);
1245		if (sc->age_cdata.age_rx_ring_map != NULL &&
1246		    sc->age_rdata.age_rx_ring != NULL)
1247			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1248			    sc->age_rdata.age_rx_ring,
1249			    sc->age_cdata.age_rx_ring_map);
1250		sc->age_rdata.age_rx_ring = NULL;
1251		sc->age_cdata.age_rx_ring_map = NULL;
1252		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1253		sc->age_cdata.age_rx_ring_tag = NULL;
1254	}
1255	/* Rx return ring. */
1256	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1257		if (sc->age_cdata.age_rr_ring_map != NULL)
1258			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1259			    sc->age_cdata.age_rr_ring_map);
1260		if (sc->age_cdata.age_rr_ring_map != NULL &&
1261		    sc->age_rdata.age_rr_ring != NULL)
1262			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1263			    sc->age_rdata.age_rr_ring,
1264			    sc->age_cdata.age_rr_ring_map);
1265		sc->age_rdata.age_rr_ring = NULL;
1266		sc->age_cdata.age_rr_ring_map = NULL;
1267		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1268		sc->age_cdata.age_rr_ring_tag = NULL;
1269	}
1270	/* CMB block */
1271	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1272		if (sc->age_cdata.age_cmb_block_map != NULL)
1273			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1274			    sc->age_cdata.age_cmb_block_map);
1275		if (sc->age_cdata.age_cmb_block_map != NULL &&
1276		    sc->age_rdata.age_cmb_block != NULL)
1277			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1278			    sc->age_rdata.age_cmb_block,
1279			    sc->age_cdata.age_cmb_block_map);
1280		sc->age_rdata.age_cmb_block = NULL;
1281		sc->age_cdata.age_cmb_block_map = NULL;
1282		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1283		sc->age_cdata.age_cmb_block_tag = NULL;
1284	}
1285	/* SMB block */
1286	if (sc->age_cdata.age_smb_block_tag != NULL) {
1287		if (sc->age_cdata.age_smb_block_map != NULL)
1288			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1289			    sc->age_cdata.age_smb_block_map);
1290		if (sc->age_cdata.age_smb_block_map != NULL &&
1291		    sc->age_rdata.age_smb_block != NULL)
1292			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1293			    sc->age_rdata.age_smb_block,
1294			    sc->age_cdata.age_smb_block_map);
1295		sc->age_rdata.age_smb_block = NULL;
1296		sc->age_cdata.age_smb_block_map = NULL;
1297		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1298		sc->age_cdata.age_smb_block_tag = NULL;
1299	}
1300
1301	if (sc->age_cdata.age_buffer_tag != NULL) {
1302		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1303		sc->age_cdata.age_buffer_tag = NULL;
1304	}
1305	if (sc->age_cdata.age_parent_tag != NULL) {
1306		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1307		sc->age_cdata.age_parent_tag = NULL;
1308	}
1309}
1310
1311/*
1312 *	Make sure the interface is stopped at reboot time.
1313 */
1314static int
1315age_shutdown(device_t dev)
1316{
1317
1318	return (age_suspend(dev));
1319}
1320
1321static void
1322age_setwol(struct age_softc *sc)
1323{
1324	struct ifnet *ifp;
1325	struct mii_data *mii;
1326	uint32_t reg, pmcs;
1327	uint16_t pmstat;
1328	int aneg, i, pmc;
1329
1330	AGE_LOCK_ASSERT(sc);
1331
1332	if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1333		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1334		/*
1335		 * No PME capability, PHY power down.
1336		 * XXX
1337		 * Due to an unknown reason powering down PHY resulted
1338		 * in unexpected results such as inaccessbility of
1339		 * hardware of freshly rebooted system. Disable
1340		 * powering down PHY until I got more information for
1341		 * Attansic/Atheros PHY hardwares.
1342		 */
1343#ifdef notyet
1344		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1345		    MII_BMCR, BMCR_PDOWN);
1346#endif
1347		return;
1348	}
1349
1350	ifp = sc->age_ifp;
1351	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1352		/*
1353		 * Note, this driver resets the link speed to 10/100Mbps with
1354		 * auto-negotiation but we don't know whether that operation
1355		 * would succeed or not as it have no control after powering
1356		 * off. If the renegotiation fail WOL may not work. Running
1357		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1358		 * specified in PCI specification and that would result in
1359		 * complete shutdowning power to ethernet controller.
1360		 *
1361		 * TODO
1362		 *  Save current negotiated media speed/duplex/flow-control
1363		 *  to softc and restore the same link again after resuming.
1364		 *  PHY handling such as power down/resetting to 100Mbps
1365		 *  may be better handled in suspend method in phy driver.
1366		 */
1367		mii = device_get_softc(sc->age_miibus);
1368		mii_pollstat(mii);
1369		aneg = 0;
1370		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1371			switch IFM_SUBTYPE(mii->mii_media_active) {
1372			case IFM_10_T:
1373			case IFM_100_TX:
1374				goto got_link;
1375			case IFM_1000_T:
1376				aneg++;
1377			default:
1378				break;
1379			}
1380		}
1381		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1382		    MII_100T2CR, 0);
1383		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1384		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1385		    ANAR_10 | ANAR_CSMA);
1386		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1387		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1388		DELAY(1000);
1389		if (aneg != 0) {
1390			/* Poll link state until age(4) get a 10/100 link. */
1391			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1392				mii_pollstat(mii);
1393				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1394					switch (IFM_SUBTYPE(
1395					    mii->mii_media_active)) {
1396					case IFM_10_T:
1397					case IFM_100_TX:
1398						age_mac_config(sc);
1399						goto got_link;
1400					default:
1401						break;
1402					}
1403				}
1404				AGE_UNLOCK(sc);
1405				pause("agelnk", hz);
1406				AGE_LOCK(sc);
1407			}
1408			if (i == MII_ANEGTICKS_GIGE)
1409				device_printf(sc->age_dev,
1410				    "establishing link failed, "
1411				    "WOL may not work!");
1412		}
1413		/*
1414		 * No link, force MAC to have 100Mbps, full-duplex link.
1415		 * This is the last resort and may/may not work.
1416		 */
1417		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1418		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1419		age_mac_config(sc);
1420	}
1421
1422got_link:
1423	pmcs = 0;
1424	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1425		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1426	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1427	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1428	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1429	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1430	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1431		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1432	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1433		reg |= MAC_CFG_RX_ENB;
1434		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1435	}
1436
1437	/* Request PME. */
1438	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1439	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1440	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1441		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1442	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1443#ifdef notyet
1444	/* See above for powering down PHY issues. */
1445	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1446		/* No WOL, PHY power down. */
1447		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1448		    MII_BMCR, BMCR_PDOWN);
1449	}
1450#endif
1451}
1452
1453static int
1454age_suspend(device_t dev)
1455{
1456	struct age_softc *sc;
1457
1458	sc = device_get_softc(dev);
1459
1460	AGE_LOCK(sc);
1461	age_stop(sc);
1462	age_setwol(sc);
1463	AGE_UNLOCK(sc);
1464
1465	return (0);
1466}
1467
1468static int
1469age_resume(device_t dev)
1470{
1471	struct age_softc *sc;
1472	struct ifnet *ifp;
1473
1474	sc = device_get_softc(dev);
1475
1476	AGE_LOCK(sc);
1477	age_phy_reset(sc);
1478	ifp = sc->age_ifp;
1479	if ((ifp->if_flags & IFF_UP) != 0)
1480		age_init_locked(sc);
1481
1482	AGE_UNLOCK(sc);
1483
1484	return (0);
1485}
1486
1487static int
1488age_encap(struct age_softc *sc, struct mbuf **m_head)
1489{
1490	struct age_txdesc *txd, *txd_last;
1491	struct tx_desc *desc;
1492	struct mbuf *m;
1493	struct ip *ip;
1494	struct tcphdr *tcp;
1495	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1496	bus_dmamap_t map;
1497	uint32_t cflags, ip_off, poff, vtag;
1498	int error, i, nsegs, prod, si;
1499
1500	AGE_LOCK_ASSERT(sc);
1501
1502	M_ASSERTPKTHDR((*m_head));
1503
1504	m = *m_head;
1505	ip = NULL;
1506	tcp = NULL;
1507	cflags = vtag = 0;
1508	ip_off = poff = 0;
1509	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1510		/*
1511		 * L1 requires offset of TCP/UDP payload in its Tx
1512		 * descriptor to perform hardware Tx checksum offload.
1513		 * Additionally, TSO requires IP/TCP header size and
1514		 * modification of IP/TCP header in order to make TSO
1515		 * engine work. This kind of operation takes many CPU
1516		 * cycles on FreeBSD so fast host CPU is needed to get
1517		 * smooth TSO performance.
1518		 */
1519		struct ether_header *eh;
1520
1521		if (M_WRITABLE(m) == 0) {
1522			/* Get a writable copy. */
1523			m = m_dup(*m_head, M_DONTWAIT);
1524			/* Release original mbufs. */
1525			m_freem(*m_head);
1526			if (m == NULL) {
1527				*m_head = NULL;
1528				return (ENOBUFS);
1529			}
1530			*m_head = m;
1531		}
1532		ip_off = sizeof(struct ether_header);
1533		m = m_pullup(m, ip_off);
1534		if (m == NULL) {
1535			*m_head = NULL;
1536			return (ENOBUFS);
1537		}
1538		eh = mtod(m, struct ether_header *);
1539		/*
1540		 * Check if hardware VLAN insertion is off.
1541		 * Additional check for LLC/SNAP frame?
1542		 */
1543		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1544			ip_off = sizeof(struct ether_vlan_header);
1545			m = m_pullup(m, ip_off);
1546			if (m == NULL) {
1547				*m_head = NULL;
1548				return (ENOBUFS);
1549			}
1550		}
1551		m = m_pullup(m, ip_off + sizeof(struct ip));
1552		if (m == NULL) {
1553			*m_head = NULL;
1554			return (ENOBUFS);
1555		}
1556		ip = (struct ip *)(mtod(m, char *) + ip_off);
1557		poff = ip_off + (ip->ip_hl << 2);
1558		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1559			m = m_pullup(m, poff + sizeof(struct tcphdr));
1560			if (m == NULL) {
1561				*m_head = NULL;
1562				return (ENOBUFS);
1563			}
1564			ip = (struct ip *)(mtod(m, char *) + ip_off);
1565			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1566			/*
1567			 * L1 requires IP/TCP header size and offset as
1568			 * well as TCP pseudo checksum which complicates
1569			 * TSO configuration. I guess this comes from the
1570			 * adherence to Microsoft NDIS Large Send
1571			 * specification which requires insertion of
1572			 * pseudo checksum by upper stack. The pseudo
1573			 * checksum that NDIS refers to doesn't include
1574			 * TCP payload length so age(4) should recompute
1575			 * the pseudo checksum here. Hopefully this wouldn't
1576			 * be much burden on modern CPUs.
1577			 * Reset IP checksum and recompute TCP pseudo
1578			 * checksum as NDIS specification said.
1579			 */
1580			ip->ip_sum = 0;
1581			if (poff + (tcp->th_off << 2) == m->m_pkthdr.len)
1582				tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1583				    ip->ip_dst.s_addr,
1584				    htons((tcp->th_off << 2) + IPPROTO_TCP));
1585			else
1586				tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1587				    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1588		}
1589		*m_head = m;
1590	}
1591
1592	si = prod = sc->age_cdata.age_tx_prod;
1593	txd = &sc->age_cdata.age_txdesc[prod];
1594	txd_last = txd;
1595	map = txd->tx_dmamap;
1596
1597	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1598	    *m_head, txsegs, &nsegs, 0);
1599	if (error == EFBIG) {
1600		m = m_collapse(*m_head, M_DONTWAIT, AGE_MAXTXSEGS);
1601		if (m == NULL) {
1602			m_freem(*m_head);
1603			*m_head = NULL;
1604			return (ENOMEM);
1605		}
1606		*m_head = m;
1607		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1608		    *m_head, txsegs, &nsegs, 0);
1609		if (error != 0) {
1610			m_freem(*m_head);
1611			*m_head = NULL;
1612			return (error);
1613		}
1614	} else if (error != 0)
1615		return (error);
1616	if (nsegs == 0) {
1617		m_freem(*m_head);
1618		*m_head = NULL;
1619		return (EIO);
1620	}
1621
1622	/* Check descriptor overrun. */
1623	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1624		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1625		return (ENOBUFS);
1626	}
1627
1628	m = *m_head;
1629	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1630		/* Configure TSO. */
1631		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1632			/* Not TSO but IP/TCP checksum offload. */
1633			cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1634			/* Clear TSO in order not to set AGE_TD_TSO_HDR. */
1635			m->m_pkthdr.csum_flags &= ~CSUM_TSO;
1636		} else {
1637			/* Request TSO and set MSS. */
1638			cflags |= AGE_TD_TSO_IPV4;
1639			cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1640			cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1641			    AGE_TD_TSO_MSS_SHIFT);
1642		}
1643		/* Set IP/TCP header size. */
1644		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1645		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1646	} else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1647		/* Configure Tx IP/TCP/UDP checksum offload. */
1648		cflags |= AGE_TD_CSUM;
1649		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1650			cflags |= AGE_TD_TCPCSUM;
1651		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1652			cflags |= AGE_TD_UDPCSUM;
1653		/* Set checksum start offset. */
1654		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1655		/* Set checksum insertion position of TCP/UDP. */
1656		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1657		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1658	}
1659
1660	/* Configure VLAN hardware tag insertion. */
1661	if ((m->m_flags & M_VLANTAG) != 0) {
1662		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1663		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1664		cflags |= AGE_TD_INSERT_VLAN_TAG;
1665	}
1666
1667	desc = NULL;
1668	for (i = 0; i < nsegs; i++) {
1669		desc = &sc->age_rdata.age_tx_ring[prod];
1670		desc->addr = htole64(txsegs[i].ds_addr);
1671		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1672		desc->flags = htole32(cflags);
1673		sc->age_cdata.age_tx_cnt++;
1674		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1675	}
1676	/* Update producer index. */
1677	sc->age_cdata.age_tx_prod = prod;
1678
1679	/* Set EOP on the last descriptor. */
1680	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1681	desc = &sc->age_rdata.age_tx_ring[prod];
1682	desc->flags |= htole32(AGE_TD_EOP);
1683
1684	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1685	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1686		desc = &sc->age_rdata.age_tx_ring[si];
1687		desc->flags |= htole32(AGE_TD_TSO_HDR);
1688	}
1689
1690	/* Swap dmamap of the first and the last. */
1691	txd = &sc->age_cdata.age_txdesc[prod];
1692	map = txd_last->tx_dmamap;
1693	txd_last->tx_dmamap = txd->tx_dmamap;
1694	txd->tx_dmamap = map;
1695	txd->tx_m = m;
1696
1697	/* Sync descriptors. */
1698	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1699	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1700	    sc->age_cdata.age_tx_ring_map,
1701	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1702
1703	return (0);
1704}
1705
1706static void
1707age_start(struct ifnet *ifp)
1708{
1709        struct age_softc *sc;
1710
1711	sc = ifp->if_softc;
1712	AGE_LOCK(sc);
1713	age_start_locked(ifp);
1714	AGE_UNLOCK(sc);
1715}
1716
1717static void
1718age_start_locked(struct ifnet *ifp)
1719{
1720        struct age_softc *sc;
1721        struct mbuf *m_head;
1722	int enq;
1723
1724	sc = ifp->if_softc;
1725
1726	AGE_LOCK_ASSERT(sc);
1727
1728	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1729	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1730		return;
1731
1732	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1733		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1734		if (m_head == NULL)
1735			break;
1736		/*
1737		 * Pack the data into the transmit ring. If we
1738		 * don't have room, set the OACTIVE flag and wait
1739		 * for the NIC to drain the ring.
1740		 */
1741		if (age_encap(sc, &m_head)) {
1742			if (m_head == NULL)
1743				break;
1744			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1745			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1746			break;
1747		}
1748
1749		enq++;
1750		/*
1751		 * If there's a BPF listener, bounce a copy of this frame
1752		 * to him.
1753		 */
1754		ETHER_BPF_MTAP(ifp, m_head);
1755	}
1756
1757	if (enq > 0) {
1758		/* Update mbox. */
1759		AGE_COMMIT_MBOX(sc);
1760		/* Set a timeout in case the chip goes out to lunch. */
1761		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1762	}
1763}
1764
1765static void
1766age_watchdog(struct age_softc *sc)
1767{
1768	struct ifnet *ifp;
1769
1770	AGE_LOCK_ASSERT(sc);
1771
1772	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1773		return;
1774
1775	ifp = sc->age_ifp;
1776	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1777		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1778		ifp->if_oerrors++;
1779		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1780		age_init_locked(sc);
1781		return;
1782	}
1783	if (sc->age_cdata.age_tx_cnt == 0) {
1784		if_printf(sc->age_ifp,
1785		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1786		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1787			age_start_locked(ifp);
1788		return;
1789	}
1790	if_printf(sc->age_ifp, "watchdog timeout\n");
1791	ifp->if_oerrors++;
1792	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1793	age_init_locked(sc);
1794	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1795		age_start_locked(ifp);
1796}
1797
1798static int
1799age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1800{
1801	struct age_softc *sc;
1802	struct ifreq *ifr;
1803	struct mii_data *mii;
1804	uint32_t reg;
1805	int error, mask;
1806
1807	sc = ifp->if_softc;
1808	ifr = (struct ifreq *)data;
1809	error = 0;
1810	switch (cmd) {
1811	case SIOCSIFMTU:
1812		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1813			error = EINVAL;
1814		else if (ifp->if_mtu != ifr->ifr_mtu) {
1815			AGE_LOCK(sc);
1816			ifp->if_mtu = ifr->ifr_mtu;
1817			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1818				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1819				age_init_locked(sc);
1820			}
1821			AGE_UNLOCK(sc);
1822		}
1823		break;
1824	case SIOCSIFFLAGS:
1825		AGE_LOCK(sc);
1826		if ((ifp->if_flags & IFF_UP) != 0) {
1827			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1828				if (((ifp->if_flags ^ sc->age_if_flags)
1829				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1830					age_rxfilter(sc);
1831			} else {
1832				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1833					age_init_locked(sc);
1834			}
1835		} else {
1836			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1837				age_stop(sc);
1838		}
1839		sc->age_if_flags = ifp->if_flags;
1840		AGE_UNLOCK(sc);
1841		break;
1842	case SIOCADDMULTI:
1843	case SIOCDELMULTI:
1844		AGE_LOCK(sc);
1845		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1846			age_rxfilter(sc);
1847		AGE_UNLOCK(sc);
1848		break;
1849	case SIOCSIFMEDIA:
1850	case SIOCGIFMEDIA:
1851		mii = device_get_softc(sc->age_miibus);
1852		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1853		break;
1854	case SIOCSIFCAP:
1855		AGE_LOCK(sc);
1856		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1857		if ((mask & IFCAP_TXCSUM) != 0 &&
1858		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1859			ifp->if_capenable ^= IFCAP_TXCSUM;
1860			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1861				ifp->if_hwassist |= AGE_CSUM_FEATURES;
1862			else
1863				ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1864		}
1865		if ((mask & IFCAP_RXCSUM) != 0 &&
1866		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1867			ifp->if_capenable ^= IFCAP_RXCSUM;
1868			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1869			reg &= ~MAC_CFG_RXCSUM_ENB;
1870			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1871				reg |= MAC_CFG_RXCSUM_ENB;
1872			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1873		}
1874		if ((mask & IFCAP_TSO4) != 0 &&
1875		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1876			ifp->if_capenable ^= IFCAP_TSO4;
1877			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1878				ifp->if_hwassist |= CSUM_TSO;
1879			else
1880				ifp->if_hwassist &= ~CSUM_TSO;
1881		}
1882
1883		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1884		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1885			ifp->if_capenable ^= IFCAP_WOL_MCAST;
1886		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1887		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1888			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1889		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1890		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1891			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1892		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1893		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1894			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1895		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1896		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1897			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1898			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1899				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1900			age_rxvlan(sc);
1901		}
1902		AGE_UNLOCK(sc);
1903		VLAN_CAPABILITIES(ifp);
1904		break;
1905	default:
1906		error = ether_ioctl(ifp, cmd, data);
1907		break;
1908	}
1909
1910	return (error);
1911}
1912
1913static void
1914age_mac_config(struct age_softc *sc)
1915{
1916	struct mii_data *mii;
1917	uint32_t reg;
1918
1919	AGE_LOCK_ASSERT(sc);
1920
1921	mii = device_get_softc(sc->age_miibus);
1922	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1923	reg &= ~MAC_CFG_FULL_DUPLEX;
1924	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1925	reg &= ~MAC_CFG_SPEED_MASK;
1926	/* Reprogram MAC with resolved speed/duplex. */
1927	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1928	case IFM_10_T:
1929	case IFM_100_TX:
1930		reg |= MAC_CFG_SPEED_10_100;
1931		break;
1932	case IFM_1000_T:
1933		reg |= MAC_CFG_SPEED_1000;
1934		break;
1935	}
1936	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1937		reg |= MAC_CFG_FULL_DUPLEX;
1938#ifdef notyet
1939		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1940			reg |= MAC_CFG_TX_FC;
1941		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1942			reg |= MAC_CFG_RX_FC;
1943#endif
1944	}
1945
1946	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1947}
1948
1949static void
1950age_link_task(void *arg, int pending)
1951{
1952	struct age_softc *sc;
1953	struct mii_data *mii;
1954	struct ifnet *ifp;
1955	uint32_t reg;
1956
1957	sc = (struct age_softc *)arg;
1958
1959	AGE_LOCK(sc);
1960	mii = device_get_softc(sc->age_miibus);
1961	ifp = sc->age_ifp;
1962	if (mii == NULL || ifp == NULL ||
1963	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1964		AGE_UNLOCK(sc);
1965		return;
1966	}
1967
1968	sc->age_flags &= ~AGE_FLAG_LINK;
1969	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1970		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1971		case IFM_10_T:
1972		case IFM_100_TX:
1973		case IFM_1000_T:
1974			sc->age_flags |= AGE_FLAG_LINK;
1975			break;
1976		default:
1977			break;
1978		}
1979	}
1980
1981	/* Stop Rx/Tx MACs. */
1982	age_stop_rxmac(sc);
1983	age_stop_txmac(sc);
1984
1985	/* Program MACs with resolved speed/duplex/flow-control. */
1986	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
1987		age_mac_config(sc);
1988		reg = CSR_READ_4(sc, AGE_MAC_CFG);
1989		/* Restart DMA engine and Tx/Rx MAC. */
1990		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
1991		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
1992		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1993		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1994	}
1995
1996	AGE_UNLOCK(sc);
1997}
1998
1999static void
2000age_stats_update(struct age_softc *sc)
2001{
2002	struct age_stats *stat;
2003	struct smb *smb;
2004	struct ifnet *ifp;
2005
2006	AGE_LOCK_ASSERT(sc);
2007
2008	stat = &sc->age_stat;
2009
2010	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2011	    sc->age_cdata.age_smb_block_map,
2012	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2013
2014	smb = sc->age_rdata.age_smb_block;
2015	if (smb->updated == 0)
2016		return;
2017
2018	ifp = sc->age_ifp;
2019	/* Rx stats. */
2020	stat->rx_frames += smb->rx_frames;
2021	stat->rx_bcast_frames += smb->rx_bcast_frames;
2022	stat->rx_mcast_frames += smb->rx_mcast_frames;
2023	stat->rx_pause_frames += smb->rx_pause_frames;
2024	stat->rx_control_frames += smb->rx_control_frames;
2025	stat->rx_crcerrs += smb->rx_crcerrs;
2026	stat->rx_lenerrs += smb->rx_lenerrs;
2027	stat->rx_bytes += smb->rx_bytes;
2028	stat->rx_runts += smb->rx_runts;
2029	stat->rx_fragments += smb->rx_fragments;
2030	stat->rx_pkts_64 += smb->rx_pkts_64;
2031	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2032	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2033	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2034	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2035	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2036	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2037	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2038	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2039	stat->rx_desc_oflows += smb->rx_desc_oflows;
2040	stat->rx_alignerrs += smb->rx_alignerrs;
2041	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2042	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2043	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2044
2045	/* Tx stats. */
2046	stat->tx_frames += smb->tx_frames;
2047	stat->tx_bcast_frames += smb->tx_bcast_frames;
2048	stat->tx_mcast_frames += smb->tx_mcast_frames;
2049	stat->tx_pause_frames += smb->tx_pause_frames;
2050	stat->tx_excess_defer += smb->tx_excess_defer;
2051	stat->tx_control_frames += smb->tx_control_frames;
2052	stat->tx_deferred += smb->tx_deferred;
2053	stat->tx_bytes += smb->tx_bytes;
2054	stat->tx_pkts_64 += smb->tx_pkts_64;
2055	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2056	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2057	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2058	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2059	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2060	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2061	stat->tx_single_colls += smb->tx_single_colls;
2062	stat->tx_multi_colls += smb->tx_multi_colls;
2063	stat->tx_late_colls += smb->tx_late_colls;
2064	stat->tx_excess_colls += smb->tx_excess_colls;
2065	stat->tx_underrun += smb->tx_underrun;
2066	stat->tx_desc_underrun += smb->tx_desc_underrun;
2067	stat->tx_lenerrs += smb->tx_lenerrs;
2068	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2069	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2070	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2071
2072	/* Update counters in ifnet. */
2073	ifp->if_opackets += smb->tx_frames;
2074
2075	ifp->if_collisions += smb->tx_single_colls +
2076	    smb->tx_multi_colls + smb->tx_late_colls +
2077	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2078
2079	ifp->if_oerrors += smb->tx_excess_colls +
2080	    smb->tx_late_colls + smb->tx_underrun +
2081	    smb->tx_pkts_truncated;
2082
2083	ifp->if_ipackets += smb->rx_frames;
2084
2085	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2086	    smb->rx_runts + smb->rx_pkts_truncated +
2087	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2088	    smb->rx_alignerrs;
2089
2090	/* Update done, clear. */
2091	smb->updated = 0;
2092
2093	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2094	    sc->age_cdata.age_smb_block_map,
2095	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2096}
2097
2098static int
2099age_intr(void *arg)
2100{
2101	struct age_softc *sc;
2102	uint32_t status;
2103
2104	sc = (struct age_softc *)arg;
2105
2106	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2107	if (status == 0 || (status & AGE_INTRS) == 0)
2108		return (FILTER_STRAY);
2109	/* Disable interrupts. */
2110	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2111	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2112
2113	return (FILTER_HANDLED);
2114}
2115
2116static void
2117age_int_task(void *arg, int pending)
2118{
2119	struct age_softc *sc;
2120	struct ifnet *ifp;
2121	struct cmb *cmb;
2122	uint32_t status;
2123
2124	sc = (struct age_softc *)arg;
2125
2126	AGE_LOCK(sc);
2127
2128	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2129	    sc->age_cdata.age_cmb_block_map,
2130	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2131	cmb = sc->age_rdata.age_cmb_block;
2132	status = le32toh(cmb->intr_status);
2133	if (sc->age_morework != 0)
2134		status |= INTR_CMB_RX;
2135	if ((status & AGE_INTRS) == 0)
2136		goto done;
2137
2138	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2139	    TPD_CONS_SHIFT;
2140	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2141	    RRD_PROD_SHIFT;
2142	/* Let hardware know CMB was served. */
2143	cmb->intr_status = 0;
2144	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2145	    sc->age_cdata.age_cmb_block_map,
2146	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2147
2148#if 0
2149	printf("INTR: 0x%08x\n", status);
2150	status &= ~INTR_DIS_DMA;
2151	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2152#endif
2153	ifp = sc->age_ifp;
2154	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2155		if ((status & INTR_CMB_RX) != 0)
2156			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2157			    sc->age_process_limit);
2158		if ((status & INTR_CMB_TX) != 0)
2159			age_txintr(sc, sc->age_tpd_cons);
2160		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2161			if ((status & INTR_DMA_RD_TO_RST) != 0)
2162				device_printf(sc->age_dev,
2163				    "DMA read error! -- resetting\n");
2164			if ((status & INTR_DMA_WR_TO_RST) != 0)
2165				device_printf(sc->age_dev,
2166				    "DMA write error! -- resetting\n");
2167			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2168			age_init_locked(sc);
2169		}
2170		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2171			age_start_locked(ifp);
2172		if ((status & INTR_SMB) != 0)
2173			age_stats_update(sc);
2174	}
2175
2176	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2177	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2178	    sc->age_cdata.age_cmb_block_map,
2179	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2180	status = le32toh(cmb->intr_status);
2181	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2182		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2183		AGE_UNLOCK(sc);
2184		return;
2185	}
2186
2187done:
2188	/* Re-enable interrupts. */
2189	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2190	AGE_UNLOCK(sc);
2191}
2192
2193static void
2194age_txintr(struct age_softc *sc, int tpd_cons)
2195{
2196	struct ifnet *ifp;
2197	struct age_txdesc *txd;
2198	int cons, prog;
2199
2200	AGE_LOCK_ASSERT(sc);
2201
2202	ifp = sc->age_ifp;
2203
2204	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2205	    sc->age_cdata.age_tx_ring_map,
2206	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2207
2208	/*
2209	 * Go through our Tx list and free mbufs for those
2210	 * frames which have been transmitted.
2211	 */
2212	cons = sc->age_cdata.age_tx_cons;
2213	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2214		if (sc->age_cdata.age_tx_cnt <= 0)
2215			break;
2216		prog++;
2217		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2218		sc->age_cdata.age_tx_cnt--;
2219		txd = &sc->age_cdata.age_txdesc[cons];
2220		/*
2221		 * Clear Tx descriptors, it's not required but would
2222		 * help debugging in case of Tx issues.
2223		 */
2224		txd->tx_desc->addr = 0;
2225		txd->tx_desc->len = 0;
2226		txd->tx_desc->flags = 0;
2227
2228		if (txd->tx_m == NULL)
2229			continue;
2230		/* Reclaim transmitted mbufs. */
2231		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2232		    BUS_DMASYNC_POSTWRITE);
2233		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2234		m_freem(txd->tx_m);
2235		txd->tx_m = NULL;
2236	}
2237
2238	if (prog > 0) {
2239		sc->age_cdata.age_tx_cons = cons;
2240
2241		/*
2242		 * Unarm watchdog timer only when there are no pending
2243		 * Tx descriptors in queue.
2244		 */
2245		if (sc->age_cdata.age_tx_cnt == 0)
2246			sc->age_watchdog_timer = 0;
2247		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2248		    sc->age_cdata.age_tx_ring_map,
2249		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2250	}
2251}
2252
2253/* Receive a frame. */
2254static void
2255age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2256{
2257	struct age_rxdesc *rxd;
2258	struct rx_desc *desc;
2259	struct ifnet *ifp;
2260	struct mbuf *mp, *m;
2261	uint32_t status, index, vtag;
2262	int count, nsegs, pktlen;
2263	int rx_cons;
2264
2265	AGE_LOCK_ASSERT(sc);
2266
2267	ifp = sc->age_ifp;
2268	status = le32toh(rxrd->flags);
2269	index = le32toh(rxrd->index);
2270	rx_cons = AGE_RX_CONS(index);
2271	nsegs = AGE_RX_NSEGS(index);
2272
2273	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2274	if ((status & AGE_RRD_ERROR) != 0 &&
2275	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2276	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
2277		/*
2278		 * We want to pass the following frames to upper
2279		 * layer regardless of error status of Rx return
2280		 * ring.
2281		 *
2282		 *  o IP/TCP/UDP checksum is bad.
2283		 *  o frame length and protocol specific length
2284		 *     does not match.
2285		 */
2286		sc->age_cdata.age_rx_cons += nsegs;
2287		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2288		return;
2289	}
2290
2291	pktlen = 0;
2292	for (count = 0; count < nsegs; count++,
2293	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2294		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2295		mp = rxd->rx_m;
2296		desc = rxd->rx_desc;
2297		/* Add a new receive buffer to the ring. */
2298		if (age_newbuf(sc, rxd) != 0) {
2299			ifp->if_iqdrops++;
2300			/* Reuse Rx buffers. */
2301			if (sc->age_cdata.age_rxhead != NULL) {
2302				m_freem(sc->age_cdata.age_rxhead);
2303				AGE_RXCHAIN_RESET(sc);
2304			}
2305			break;
2306		}
2307
2308		/* The length of the first mbuf is computed last. */
2309		if (count != 0) {
2310			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
2311			pktlen += mp->m_len;
2312		}
2313
2314		/* Chain received mbufs. */
2315		if (sc->age_cdata.age_rxhead == NULL) {
2316			sc->age_cdata.age_rxhead = mp;
2317			sc->age_cdata.age_rxtail = mp;
2318		} else {
2319			mp->m_flags &= ~M_PKTHDR;
2320			sc->age_cdata.age_rxprev_tail =
2321			    sc->age_cdata.age_rxtail;
2322			sc->age_cdata.age_rxtail->m_next = mp;
2323			sc->age_cdata.age_rxtail = mp;
2324		}
2325
2326		if (count == nsegs - 1) {
2327			/*
2328			 * It seems that L1 controller has no way
2329			 * to tell hardware to strip CRC bytes.
2330			 */
2331			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
2332			if (nsegs > 1) {
2333				/* Remove the CRC bytes in chained mbufs. */
2334				pktlen -= ETHER_CRC_LEN;
2335				if (mp->m_len <= ETHER_CRC_LEN) {
2336					sc->age_cdata.age_rxtail =
2337					    sc->age_cdata.age_rxprev_tail;
2338					sc->age_cdata.age_rxtail->m_len -=
2339					    (ETHER_CRC_LEN - mp->m_len);
2340					sc->age_cdata.age_rxtail->m_next = NULL;
2341					m_freem(mp);
2342				} else {
2343					mp->m_len -= ETHER_CRC_LEN;
2344				}
2345			}
2346
2347			m = sc->age_cdata.age_rxhead;
2348			m->m_flags |= M_PKTHDR;
2349			m->m_pkthdr.rcvif = ifp;
2350			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
2351			/* Set the first mbuf length. */
2352			m->m_len = sc->age_cdata.age_rxlen - pktlen;
2353
2354			/*
2355			 * Set checksum information.
2356			 * It seems that L1 controller can compute partial
2357			 * checksum. The partial checksum value can be used
2358			 * to accelerate checksum computation for fragmented
2359			 * TCP/UDP packets. Upper network stack already
2360			 * takes advantage of the partial checksum value in
2361			 * IP reassembly stage. But I'm not sure the
2362			 * correctness of the partial hardware checksum
2363			 * assistance due to lack of data sheet. If it is
2364			 * proven to work on L1 I'll enable it.
2365			 */
2366			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2367			    (status & AGE_RRD_IPV4) != 0) {
2368				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2369				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2370					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2371				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2372				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2373					m->m_pkthdr.csum_flags |=
2374					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2375					m->m_pkthdr.csum_data = 0xffff;
2376				}
2377				/*
2378				 * Don't mark bad checksum for TCP/UDP frames
2379				 * as fragmented frames may always have set
2380				 * bad checksummed bit of descriptor status.
2381				 */
2382			}
2383
2384			/* Check for VLAN tagged frames. */
2385			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2386			    (status & AGE_RRD_VLAN) != 0) {
2387				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2388				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2389				m->m_flags |= M_VLANTAG;
2390			}
2391
2392			/* Pass it on. */
2393			AGE_UNLOCK(sc);
2394			(*ifp->if_input)(ifp, m);
2395			AGE_LOCK(sc);
2396
2397			/* Reset mbuf chains. */
2398			AGE_RXCHAIN_RESET(sc);
2399		}
2400	}
2401
2402	if (count != nsegs) {
2403		sc->age_cdata.age_rx_cons += nsegs;
2404		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2405	} else
2406		sc->age_cdata.age_rx_cons = rx_cons;
2407}
2408
2409static int
2410age_rxintr(struct age_softc *sc, int rr_prod, int count)
2411{
2412	struct rx_rdesc *rxrd;
2413	int rr_cons, nsegs, pktlen, prog;
2414
2415	AGE_LOCK_ASSERT(sc);
2416
2417	rr_cons = sc->age_cdata.age_rr_cons;
2418	if (rr_cons == rr_prod)
2419		return (0);
2420
2421	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2422	    sc->age_cdata.age_rr_ring_map,
2423	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2424
2425	for (prog = 0; rr_cons != rr_prod; prog++) {
2426		if (count <= 0)
2427			break;
2428		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2429		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2430		if (nsegs == 0)
2431			break;
2432		/*
2433		 * Check number of segments against received bytes.
2434		 * Non-matching value would indicate that hardware
2435		 * is still trying to update Rx return descriptors.
2436		 * I'm not sure whether this check is really needed.
2437		 */
2438		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2439		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
2440		    (MCLBYTES - ETHER_ALIGN)))
2441			break;
2442
2443		prog++;
2444		/* Received a frame. */
2445		age_rxeof(sc, rxrd);
2446		/* Clear return ring. */
2447		rxrd->index = 0;
2448		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2449	}
2450
2451	if (prog > 0) {
2452		/* Update the consumer index. */
2453		sc->age_cdata.age_rr_cons = rr_cons;
2454
2455		/* Sync descriptors. */
2456		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2457		    sc->age_cdata.age_rr_ring_map,
2458		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2459
2460		/* Notify hardware availability of new Rx buffers. */
2461		AGE_COMMIT_MBOX(sc);
2462	}
2463
2464	return (count > 0 ? 0 : EAGAIN);
2465}
2466
2467static void
2468age_tick(void *arg)
2469{
2470	struct age_softc *sc;
2471	struct mii_data *mii;
2472
2473	sc = (struct age_softc *)arg;
2474
2475	AGE_LOCK_ASSERT(sc);
2476
2477	mii = device_get_softc(sc->age_miibus);
2478	mii_tick(mii);
2479	age_watchdog(sc);
2480	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2481}
2482
2483static void
2484age_reset(struct age_softc *sc)
2485{
2486	uint32_t reg;
2487	int i;
2488
2489	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2490	CSR_READ_4(sc, AGE_MASTER_CFG);
2491	DELAY(1000);
2492	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2493		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2494			break;
2495		DELAY(10);
2496	}
2497
2498	if (i == 0)
2499		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2500	/* Initialize PCIe module. From Linux. */
2501	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2502	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2503}
2504
2505static void
2506age_init(void *xsc)
2507{
2508	struct age_softc *sc;
2509
2510	sc = (struct age_softc *)xsc;
2511	AGE_LOCK(sc);
2512	age_init_locked(sc);
2513	AGE_UNLOCK(sc);
2514}
2515
2516static void
2517age_init_locked(struct age_softc *sc)
2518{
2519	struct ifnet *ifp;
2520	struct mii_data *mii;
2521	uint8_t eaddr[ETHER_ADDR_LEN];
2522	bus_addr_t paddr;
2523	uint32_t reg, fsize;
2524	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2525	int error;
2526
2527	AGE_LOCK_ASSERT(sc);
2528
2529	ifp = sc->age_ifp;
2530	mii = device_get_softc(sc->age_miibus);
2531
2532	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2533		return;
2534
2535	/*
2536	 * Cancel any pending I/O.
2537	 */
2538	age_stop(sc);
2539
2540	/*
2541	 * Reset the chip to a known state.
2542	 */
2543	age_reset(sc);
2544
2545	/* Initialize descriptors. */
2546	error = age_init_rx_ring(sc);
2547        if (error != 0) {
2548                device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2549                age_stop(sc);
2550		return;
2551        }
2552	age_init_rr_ring(sc);
2553	age_init_tx_ring(sc);
2554	age_init_cmb_block(sc);
2555	age_init_smb_block(sc);
2556
2557	/* Reprogram the station address. */
2558	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2559	CSR_WRITE_4(sc, AGE_PAR0,
2560	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2561	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2562
2563	/* Set descriptor base addresses. */
2564	paddr = sc->age_rdata.age_tx_ring_paddr;
2565	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2566	paddr = sc->age_rdata.age_rx_ring_paddr;
2567	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2568	paddr = sc->age_rdata.age_rr_ring_paddr;
2569	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2570	paddr = sc->age_rdata.age_tx_ring_paddr;
2571	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2572	paddr = sc->age_rdata.age_cmb_block_paddr;
2573	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2574	paddr = sc->age_rdata.age_smb_block_paddr;
2575	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2576	/* Set Rx/Rx return descriptor counter. */
2577	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2578	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2579	    DESC_RRD_CNT_MASK) |
2580	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2581	/* Set Tx descriptor counter. */
2582	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2583	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2584
2585	/* Tell hardware that we're ready to load descriptors. */
2586	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2587
2588	/*
2589	 * Initialize mailbox register.
2590	 * Updated producer/consumer index information is exchanged
2591	 * through this mailbox register. However Tx producer and
2592	 * Rx return consumer/Rx producer are all shared such that
2593	 * it's hard to separate code path between Tx and Rx without
2594	 * locking. If L1 hardware have a separate mail box register
2595	 * for Tx and Rx consumer/producer management we could have
2596	 * indepent Tx/Rx handler which in turn Rx handler could have
2597	 * been run without any locking.
2598	 */
2599	AGE_COMMIT_MBOX(sc);
2600
2601	/* Configure IPG/IFG parameters. */
2602	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2603	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2604	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2605	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2606	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2607
2608	/* Set parameters for half-duplex media. */
2609	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2610	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2611	    HDPX_CFG_LCOL_MASK) |
2612	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2613	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2614	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2615	    HDPX_CFG_ABEBT_MASK) |
2616	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2617	    HDPX_CFG_JAMIPG_MASK));
2618
2619	/* Configure interrupt moderation timer. */
2620	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2621	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2622	reg &= ~MASTER_MTIMER_ENB;
2623	if (AGE_USECS(sc->age_int_mod) == 0)
2624		reg &= ~MASTER_ITIMER_ENB;
2625	else
2626		reg |= MASTER_ITIMER_ENB;
2627	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2628	if (bootverbose)
2629		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2630		    sc->age_int_mod);
2631	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2632
2633	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2634	if (ifp->if_mtu < ETHERMTU)
2635		sc->age_max_frame_size = ETHERMTU;
2636	else
2637		sc->age_max_frame_size = ifp->if_mtu;
2638	sc->age_max_frame_size += ETHER_HDR_LEN +
2639	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2640	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2641	/* Configure jumbo frame. */
2642	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2643	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2644	    (((fsize / sizeof(uint64_t)) <<
2645	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2646	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2647	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2648	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2649	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2650
2651	/* Configure flow-control parameters. From Linux. */
2652	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2653		/*
2654		 * Magic workaround for old-L1.
2655		 * Don't know which hw revision requires this magic.
2656		 */
2657		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2658		/*
2659		 * Another magic workaround for flow-control mode
2660		 * change. From Linux.
2661		 */
2662		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2663	}
2664	/*
2665	 * TODO
2666	 *  Should understand pause parameter relationships between FIFO
2667	 *  size and number of Rx descriptors and Rx return descriptors.
2668	 *
2669	 *  Magic parameters came from Linux.
2670	 */
2671	switch (sc->age_chip_rev) {
2672	case 0x8001:
2673	case 0x9001:
2674	case 0x9002:
2675	case 0x9003:
2676		rxf_hi = AGE_RX_RING_CNT / 16;
2677		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2678		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2679		rrd_lo = AGE_RR_RING_CNT / 16;
2680		break;
2681	default:
2682		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2683		rxf_lo = reg / 16;
2684		if (rxf_lo < 192)
2685			rxf_lo = 192;
2686		rxf_hi = (reg * 7) / 8;
2687		if (rxf_hi < rxf_lo)
2688			rxf_hi = rxf_lo + 16;
2689		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2690		rrd_lo = reg / 8;
2691		rrd_hi = (reg * 7) / 8;
2692		if (rrd_lo < 2)
2693			rrd_lo = 2;
2694		if (rrd_hi < rrd_lo)
2695			rrd_hi = rrd_lo + 3;
2696		break;
2697	}
2698	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2699	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2700	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2701	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2702	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2703	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2704	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2705	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2706	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2707	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2708
2709	/* Configure RxQ. */
2710	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2711	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2712	    RXQ_CFG_RD_BURST_MASK) |
2713	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2714	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2715	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2716	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2717	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2718
2719	/* Configure TxQ. */
2720	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2721	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2722	    TXQ_CFG_TPD_BURST_MASK) |
2723	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2724	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2725	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2726	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2727	    TXQ_CFG_ENB);
2728
2729	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2730	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2731	    TX_JUMBO_TPD_TH_MASK) |
2732	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2733	    TX_JUMBO_TPD_IPG_MASK));
2734	/* Configure DMA parameters. */
2735	CSR_WRITE_4(sc, AGE_DMA_CFG,
2736	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2737	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2738	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2739
2740	/* Configure CMB DMA write threshold. */
2741	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2742	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2743	    CMB_WR_THRESH_RRD_MASK) |
2744	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2745	    CMB_WR_THRESH_TPD_MASK));
2746
2747	/* Set CMB/SMB timer and enable them. */
2748	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2749	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2750	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2751	/* Request SMB updates for every seconds. */
2752	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2753	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2754
2755	/*
2756	 * Disable all WOL bits as WOL can interfere normal Rx
2757	 * operation.
2758	 */
2759	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2760
2761	/*
2762	 * Configure Tx/Rx MACs.
2763	 *  - Auto-padding for short frames.
2764	 *  - Enable CRC generation.
2765	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2766	 *  of MAC is followed after link establishment.
2767	 */
2768	CSR_WRITE_4(sc, AGE_MAC_CFG,
2769	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2770	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2771	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2772	    MAC_CFG_PREAMBLE_MASK));
2773	/* Set up the receive filter. */
2774	age_rxfilter(sc);
2775	age_rxvlan(sc);
2776
2777	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2778	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2779		reg |= MAC_CFG_RXCSUM_ENB;
2780
2781	/* Ack all pending interrupts and clear it. */
2782	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2783	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2784
2785	/* Finally enable Tx/Rx MAC. */
2786	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2787
2788	sc->age_flags &= ~AGE_FLAG_LINK;
2789	/* Switch to the current media. */
2790	mii_mediachg(mii);
2791
2792	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2793
2794	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2795	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2796}
2797
2798static void
2799age_stop(struct age_softc *sc)
2800{
2801	struct ifnet *ifp;
2802	struct age_txdesc *txd;
2803	struct age_rxdesc *rxd;
2804	uint32_t reg;
2805	int i;
2806
2807	AGE_LOCK_ASSERT(sc);
2808	/*
2809	 * Mark the interface down and cancel the watchdog timer.
2810	 */
2811	ifp = sc->age_ifp;
2812	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2813	sc->age_flags &= ~AGE_FLAG_LINK;
2814	callout_stop(&sc->age_tick_ch);
2815	sc->age_watchdog_timer = 0;
2816
2817	/*
2818	 * Disable interrupts.
2819	 */
2820	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2821	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2822	/* Stop CMB/SMB updates. */
2823	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2824	/* Stop Rx/Tx MAC. */
2825	age_stop_rxmac(sc);
2826	age_stop_txmac(sc);
2827	/* Stop DMA. */
2828	CSR_WRITE_4(sc, AGE_DMA_CFG,
2829	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2830	/* Stop TxQ/RxQ. */
2831	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2832	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2833	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2834	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2835	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2836		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2837			break;
2838		DELAY(10);
2839	}
2840	if (i == 0)
2841		device_printf(sc->age_dev,
2842		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2843
2844	 /* Reclaim Rx buffers that have been processed. */
2845	if (sc->age_cdata.age_rxhead != NULL)
2846		m_freem(sc->age_cdata.age_rxhead);
2847	AGE_RXCHAIN_RESET(sc);
2848	/*
2849	 * Free RX and TX mbufs still in the queues.
2850	 */
2851	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2852		rxd = &sc->age_cdata.age_rxdesc[i];
2853		if (rxd->rx_m != NULL) {
2854			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2855			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2856			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2857			    rxd->rx_dmamap);
2858			m_freem(rxd->rx_m);
2859			rxd->rx_m = NULL;
2860		}
2861        }
2862	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2863		txd = &sc->age_cdata.age_txdesc[i];
2864		if (txd->tx_m != NULL) {
2865			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2866			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2867			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2868			    txd->tx_dmamap);
2869			m_freem(txd->tx_m);
2870			txd->tx_m = NULL;
2871		}
2872        }
2873}
2874
2875static void
2876age_stop_txmac(struct age_softc *sc)
2877{
2878	uint32_t reg;
2879	int i;
2880
2881	AGE_LOCK_ASSERT(sc);
2882
2883	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2884	if ((reg & MAC_CFG_TX_ENB) != 0) {
2885		reg &= ~MAC_CFG_TX_ENB;
2886		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2887	}
2888	/* Stop Tx DMA engine. */
2889	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2890	if ((reg & DMA_CFG_RD_ENB) != 0) {
2891		reg &= ~DMA_CFG_RD_ENB;
2892		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2893	}
2894	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2895		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2896		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2897			break;
2898		DELAY(10);
2899	}
2900	if (i == 0)
2901		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2902}
2903
2904static void
2905age_stop_rxmac(struct age_softc *sc)
2906{
2907	uint32_t reg;
2908	int i;
2909
2910	AGE_LOCK_ASSERT(sc);
2911
2912	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2913	if ((reg & MAC_CFG_RX_ENB) != 0) {
2914		reg &= ~MAC_CFG_RX_ENB;
2915		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2916	}
2917	/* Stop Rx DMA engine. */
2918	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2919	if ((reg & DMA_CFG_WR_ENB) != 0) {
2920		reg &= ~DMA_CFG_WR_ENB;
2921		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2922	}
2923	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2924		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2925		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2926			break;
2927		DELAY(10);
2928	}
2929	if (i == 0)
2930		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2931}
2932
2933static void
2934age_init_tx_ring(struct age_softc *sc)
2935{
2936	struct age_ring_data *rd;
2937	struct age_txdesc *txd;
2938	int i;
2939
2940	AGE_LOCK_ASSERT(sc);
2941
2942	sc->age_cdata.age_tx_prod = 0;
2943	sc->age_cdata.age_tx_cons = 0;
2944	sc->age_cdata.age_tx_cnt = 0;
2945
2946	rd = &sc->age_rdata;
2947	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2948	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2949		txd = &sc->age_cdata.age_txdesc[i];
2950		txd->tx_desc = &rd->age_tx_ring[i];
2951		txd->tx_m = NULL;
2952	}
2953
2954	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2955	    sc->age_cdata.age_tx_ring_map,
2956	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2957}
2958
2959static int
2960age_init_rx_ring(struct age_softc *sc)
2961{
2962	struct age_ring_data *rd;
2963	struct age_rxdesc *rxd;
2964	int i;
2965
2966	AGE_LOCK_ASSERT(sc);
2967
2968	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2969	sc->age_morework = 0;
2970	rd = &sc->age_rdata;
2971	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2972	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2973		rxd = &sc->age_cdata.age_rxdesc[i];
2974		rxd->rx_m = NULL;
2975		rxd->rx_desc = &rd->age_rx_ring[i];
2976		if (age_newbuf(sc, rxd) != 0)
2977			return (ENOBUFS);
2978	}
2979
2980	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2981	    sc->age_cdata.age_rx_ring_map,
2982	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2983
2984	return (0);
2985}
2986
2987static void
2988age_init_rr_ring(struct age_softc *sc)
2989{
2990	struct age_ring_data *rd;
2991
2992	AGE_LOCK_ASSERT(sc);
2993
2994	sc->age_cdata.age_rr_cons = 0;
2995	AGE_RXCHAIN_RESET(sc);
2996
2997	rd = &sc->age_rdata;
2998	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
2999	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3000	    sc->age_cdata.age_rr_ring_map,
3001	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3002}
3003
3004static void
3005age_init_cmb_block(struct age_softc *sc)
3006{
3007	struct age_ring_data *rd;
3008
3009	AGE_LOCK_ASSERT(sc);
3010
3011	rd = &sc->age_rdata;
3012	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3013	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3014	    sc->age_cdata.age_cmb_block_map,
3015	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3016}
3017
3018static void
3019age_init_smb_block(struct age_softc *sc)
3020{
3021	struct age_ring_data *rd;
3022
3023	AGE_LOCK_ASSERT(sc);
3024
3025	rd = &sc->age_rdata;
3026	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3027	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3028	    sc->age_cdata.age_smb_block_map,
3029	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3030}
3031
3032static int
3033age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3034{
3035	struct rx_desc *desc;
3036	struct mbuf *m;
3037	bus_dma_segment_t segs[1];
3038	bus_dmamap_t map;
3039	int nsegs;
3040
3041	AGE_LOCK_ASSERT(sc);
3042
3043	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3044	if (m == NULL)
3045		return (ENOBUFS);
3046	m->m_len = m->m_pkthdr.len = MCLBYTES;
3047	m_adj(m, ETHER_ALIGN);
3048
3049	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3050	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3051		m_freem(m);
3052		return (ENOBUFS);
3053	}
3054	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3055
3056	if (rxd->rx_m != NULL) {
3057		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3058		    BUS_DMASYNC_POSTREAD);
3059		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3060	}
3061	map = rxd->rx_dmamap;
3062	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3063	sc->age_cdata.age_rx_sparemap = map;
3064	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3065	    BUS_DMASYNC_PREREAD);
3066	rxd->rx_m = m;
3067
3068	desc = rxd->rx_desc;
3069	desc->addr = htole64(segs[0].ds_addr);
3070	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3071	    AGE_RD_LEN_SHIFT);
3072	return (0);
3073}
3074
3075static void
3076age_rxvlan(struct age_softc *sc)
3077{
3078	struct ifnet *ifp;
3079	uint32_t reg;
3080
3081	AGE_LOCK_ASSERT(sc);
3082
3083	ifp = sc->age_ifp;
3084	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3085	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3086	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3087		reg |= MAC_CFG_VLAN_TAG_STRIP;
3088	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3089}
3090
3091static void
3092age_rxfilter(struct age_softc *sc)
3093{
3094	struct ifnet *ifp;
3095	struct ifmultiaddr *ifma;
3096	uint32_t crc;
3097	uint32_t mchash[2];
3098	uint32_t rxcfg;
3099
3100	AGE_LOCK_ASSERT(sc);
3101
3102	ifp = sc->age_ifp;
3103
3104	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3105	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3106	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3107		rxcfg |= MAC_CFG_BCAST;
3108	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3109		if ((ifp->if_flags & IFF_PROMISC) != 0)
3110			rxcfg |= MAC_CFG_PROMISC;
3111		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3112			rxcfg |= MAC_CFG_ALLMULTI;
3113		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3114		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3115		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3116		return;
3117	}
3118
3119	/* Program new filter. */
3120	bzero(mchash, sizeof(mchash));
3121
3122	if_maddr_rlock(ifp);
3123	TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3124		if (ifma->ifma_addr->sa_family != AF_LINK)
3125			continue;
3126		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3127		    ifma->ifma_addr), ETHER_ADDR_LEN);
3128		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3129	}
3130	if_maddr_runlock(ifp);
3131
3132	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3133	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3134	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3135}
3136
3137static int
3138sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3139{
3140	struct age_softc *sc;
3141	struct age_stats *stats;
3142	int error, result;
3143
3144	result = -1;
3145	error = sysctl_handle_int(oidp, &result, 0, req);
3146
3147	if (error != 0 || req->newptr == NULL)
3148		return (error);
3149
3150	if (result != 1)
3151		return (error);
3152
3153	sc = (struct age_softc *)arg1;
3154	stats = &sc->age_stat;
3155	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3156	printf("Transmit good frames : %ju\n",
3157	    (uintmax_t)stats->tx_frames);
3158	printf("Transmit good broadcast frames : %ju\n",
3159	    (uintmax_t)stats->tx_bcast_frames);
3160	printf("Transmit good multicast frames : %ju\n",
3161	    (uintmax_t)stats->tx_mcast_frames);
3162	printf("Transmit pause control frames : %u\n",
3163	    stats->tx_pause_frames);
3164	printf("Transmit control frames : %u\n",
3165	    stats->tx_control_frames);
3166	printf("Transmit frames with excessive deferrals : %u\n",
3167	    stats->tx_excess_defer);
3168	printf("Transmit deferrals : %u\n",
3169	    stats->tx_deferred);
3170	printf("Transmit good octets : %ju\n",
3171	    (uintmax_t)stats->tx_bytes);
3172	printf("Transmit good broadcast octets : %ju\n",
3173	    (uintmax_t)stats->tx_bcast_bytes);
3174	printf("Transmit good multicast octets : %ju\n",
3175	    (uintmax_t)stats->tx_mcast_bytes);
3176	printf("Transmit frames 64 bytes : %ju\n",
3177	    (uintmax_t)stats->tx_pkts_64);
3178	printf("Transmit frames 65 to 127 bytes : %ju\n",
3179	    (uintmax_t)stats->tx_pkts_65_127);
3180	printf("Transmit frames 128 to 255 bytes : %ju\n",
3181	    (uintmax_t)stats->tx_pkts_128_255);
3182	printf("Transmit frames 256 to 511 bytes : %ju\n",
3183	    (uintmax_t)stats->tx_pkts_256_511);
3184	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3185	    (uintmax_t)stats->tx_pkts_512_1023);
3186	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3187	    (uintmax_t)stats->tx_pkts_1024_1518);
3188	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3189	    (uintmax_t)stats->tx_pkts_1519_max);
3190	printf("Transmit single collisions : %u\n",
3191	    stats->tx_single_colls);
3192	printf("Transmit multiple collisions : %u\n",
3193	    stats->tx_multi_colls);
3194	printf("Transmit late collisions : %u\n",
3195	    stats->tx_late_colls);
3196	printf("Transmit abort due to excessive collisions : %u\n",
3197	    stats->tx_excess_colls);
3198	printf("Transmit underruns due to FIFO underruns : %u\n",
3199	    stats->tx_underrun);
3200	printf("Transmit descriptor write-back errors : %u\n",
3201	    stats->tx_desc_underrun);
3202	printf("Transmit frames with length mismatched frame size : %u\n",
3203	    stats->tx_lenerrs);
3204	printf("Transmit frames with truncated due to MTU size : %u\n",
3205	    stats->tx_lenerrs);
3206
3207	printf("Receive good frames : %ju\n",
3208	    (uintmax_t)stats->rx_frames);
3209	printf("Receive good broadcast frames : %ju\n",
3210	    (uintmax_t)stats->rx_bcast_frames);
3211	printf("Receive good multicast frames : %ju\n",
3212	    (uintmax_t)stats->rx_mcast_frames);
3213	printf("Receive pause control frames : %u\n",
3214	    stats->rx_pause_frames);
3215	printf("Receive control frames : %u\n",
3216	    stats->rx_control_frames);
3217	printf("Receive CRC errors : %u\n",
3218	    stats->rx_crcerrs);
3219	printf("Receive frames with length errors : %u\n",
3220	    stats->rx_lenerrs);
3221	printf("Receive good octets : %ju\n",
3222	    (uintmax_t)stats->rx_bytes);
3223	printf("Receive good broadcast octets : %ju\n",
3224	    (uintmax_t)stats->rx_bcast_bytes);
3225	printf("Receive good multicast octets : %ju\n",
3226	    (uintmax_t)stats->rx_mcast_bytes);
3227	printf("Receive frames too short : %u\n",
3228	    stats->rx_runts);
3229	printf("Receive fragmented frames : %ju\n",
3230	    (uintmax_t)stats->rx_fragments);
3231	printf("Receive frames 64 bytes : %ju\n",
3232	    (uintmax_t)stats->rx_pkts_64);
3233	printf("Receive frames 65 to 127 bytes : %ju\n",
3234	    (uintmax_t)stats->rx_pkts_65_127);
3235	printf("Receive frames 128 to 255 bytes : %ju\n",
3236	    (uintmax_t)stats->rx_pkts_128_255);
3237	printf("Receive frames 256 to 511 bytes : %ju\n",
3238	    (uintmax_t)stats->rx_pkts_256_511);
3239	printf("Receive frames 512 to 1024 bytes : %ju\n",
3240	    (uintmax_t)stats->rx_pkts_512_1023);
3241	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3242	    (uintmax_t)stats->rx_pkts_1024_1518);
3243	printf("Receive frames 1519 to MTU bytes : %ju\n",
3244	    (uintmax_t)stats->rx_pkts_1519_max);
3245	printf("Receive frames too long : %ju\n",
3246	    (uint64_t)stats->rx_pkts_truncated);
3247	printf("Receive frames with FIFO overflow : %u\n",
3248	    stats->rx_fifo_oflows);
3249	printf("Receive frames with return descriptor overflow : %u\n",
3250	    stats->rx_desc_oflows);
3251	printf("Receive frames with alignment errors : %u\n",
3252	    stats->rx_alignerrs);
3253	printf("Receive frames dropped due to address filtering : %ju\n",
3254	    (uint64_t)stats->rx_pkts_filtered);
3255
3256	return (error);
3257}
3258
3259static int
3260sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3261{
3262	int error, value;
3263
3264	if (arg1 == NULL)
3265		return (EINVAL);
3266	value = *(int *)arg1;
3267	error = sysctl_handle_int(oidp, &value, 0, req);
3268	if (error || req->newptr == NULL)
3269		return (error);
3270	if (value < low || value > high)
3271		return (EINVAL);
3272        *(int *)arg1 = value;
3273
3274        return (0);
3275}
3276
3277static int
3278sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3279{
3280	return (sysctl_int_range(oidp, arg1, arg2, req,
3281	    AGE_PROC_MIN, AGE_PROC_MAX));
3282}
3283
3284static int
3285sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3286{
3287
3288	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3289	    AGE_IM_TIMER_MAX));
3290}
3291