if_age.c revision 204377
1/*-
2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/age/if_age.c 204377 2010-02-26 22:43:23Z yongari $");
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/bus.h>
36#include <sys/endian.h>
37#include <sys/kernel.h>
38#include <sys/malloc.h>
39#include <sys/mbuf.h>
40#include <sys/rman.h>
41#include <sys/module.h>
42#include <sys/queue.h>
43#include <sys/socket.h>
44#include <sys/sockio.h>
45#include <sys/sysctl.h>
46#include <sys/taskqueue.h>
47
48#include <net/bpf.h>
49#include <net/if.h>
50#include <net/if_arp.h>
51#include <net/ethernet.h>
52#include <net/if_dl.h>
53#include <net/if_media.h>
54#include <net/if_types.h>
55#include <net/if_vlan_var.h>
56
57#include <netinet/in.h>
58#include <netinet/in_systm.h>
59#include <netinet/ip.h>
60#include <netinet/tcp.h>
61
62#include <dev/mii/mii.h>
63#include <dev/mii/miivar.h>
64
65#include <dev/pci/pcireg.h>
66#include <dev/pci/pcivar.h>
67
68#include <machine/bus.h>
69#include <machine/in_cksum.h>
70
71#include <dev/age/if_agereg.h>
72#include <dev/age/if_agevar.h>
73
74/* "device miibus" required.  See GENERIC if you get errors here. */
75#include "miibus_if.h"
76
77#define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
78
79MODULE_DEPEND(age, pci, 1, 1, 1);
80MODULE_DEPEND(age, ether, 1, 1, 1);
81MODULE_DEPEND(age, miibus, 1, 1, 1);
82
83/* Tunables. */
84static int msi_disable = 0;
85static int msix_disable = 0;
86TUNABLE_INT("hw.age.msi_disable", &msi_disable);
87TUNABLE_INT("hw.age.msix_disable", &msix_disable);
88
89/*
90 * Devices supported by this driver.
91 */
92static struct age_dev {
93	uint16_t	age_vendorid;
94	uint16_t	age_deviceid;
95	const char	*age_name;
96} age_devs[] = {
97	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
98	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
99};
100
101static int age_miibus_readreg(device_t, int, int);
102static int age_miibus_writereg(device_t, int, int, int);
103static void age_miibus_statchg(device_t);
104static void age_mediastatus(struct ifnet *, struct ifmediareq *);
105static int age_mediachange(struct ifnet *);
106static int age_probe(device_t);
107static void age_get_macaddr(struct age_softc *);
108static void age_phy_reset(struct age_softc *);
109static int age_attach(device_t);
110static int age_detach(device_t);
111static void age_sysctl_node(struct age_softc *);
112static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113static int age_check_boundary(struct age_softc *);
114static int age_dma_alloc(struct age_softc *);
115static void age_dma_free(struct age_softc *);
116static int age_shutdown(device_t);
117static void age_setwol(struct age_softc *);
118static int age_suspend(device_t);
119static int age_resume(device_t);
120static int age_encap(struct age_softc *, struct mbuf **);
121static void age_tx_task(void *, int);
122static void age_start(struct ifnet *);
123static void age_watchdog(struct age_softc *);
124static int age_ioctl(struct ifnet *, u_long, caddr_t);
125static void age_mac_config(struct age_softc *);
126static void age_link_task(void *, int);
127static void age_stats_update(struct age_softc *);
128static int age_intr(void *);
129static void age_int_task(void *, int);
130static void age_txintr(struct age_softc *, int);
131static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
132static int age_rxintr(struct age_softc *, int, int);
133static void age_tick(void *);
134static void age_reset(struct age_softc *);
135static void age_init(void *);
136static void age_init_locked(struct age_softc *);
137static void age_stop(struct age_softc *);
138static void age_stop_txmac(struct age_softc *);
139static void age_stop_rxmac(struct age_softc *);
140static void age_init_tx_ring(struct age_softc *);
141static int age_init_rx_ring(struct age_softc *);
142static void age_init_rr_ring(struct age_softc *);
143static void age_init_cmb_block(struct age_softc *);
144static void age_init_smb_block(struct age_softc *);
145static int age_newbuf(struct age_softc *, struct age_rxdesc *);
146static void age_rxvlan(struct age_softc *);
147static void age_rxfilter(struct age_softc *);
148static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
149static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
150static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
151static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
152
153
154static device_method_t age_methods[] = {
155	/* Device interface. */
156	DEVMETHOD(device_probe,		age_probe),
157	DEVMETHOD(device_attach,	age_attach),
158	DEVMETHOD(device_detach,	age_detach),
159	DEVMETHOD(device_shutdown,	age_shutdown),
160	DEVMETHOD(device_suspend,	age_suspend),
161	DEVMETHOD(device_resume,	age_resume),
162
163	/* MII interface. */
164	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
165	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
166	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
167
168	{ NULL, NULL }
169};
170
171static driver_t age_driver = {
172	"age",
173	age_methods,
174	sizeof(struct age_softc)
175};
176
177static devclass_t age_devclass;
178
179DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
180DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
181
182static struct resource_spec age_res_spec_mem[] = {
183	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
184	{ -1,			0,		0 }
185};
186
187static struct resource_spec age_irq_spec_legacy[] = {
188	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
189	{ -1,			0,		0 }
190};
191
192static struct resource_spec age_irq_spec_msi[] = {
193	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
194	{ -1,			0,		0 }
195};
196
197static struct resource_spec age_irq_spec_msix[] = {
198	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
199	{ -1,			0,		0 }
200};
201
202/*
203 *	Read a PHY register on the MII of the L1.
204 */
205static int
206age_miibus_readreg(device_t dev, int phy, int reg)
207{
208	struct age_softc *sc;
209	uint32_t v;
210	int i;
211
212	sc = device_get_softc(dev);
213	if (phy != sc->age_phyaddr)
214		return (0);
215
216	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
217	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
218	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
219		DELAY(1);
220		v = CSR_READ_4(sc, AGE_MDIO);
221		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
222			break;
223	}
224
225	if (i == 0) {
226		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
227		return (0);
228	}
229
230	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
231}
232
233/*
234 *	Write a PHY register on the MII of the L1.
235 */
236static int
237age_miibus_writereg(device_t dev, int phy, int reg, int val)
238{
239	struct age_softc *sc;
240	uint32_t v;
241	int i;
242
243	sc = device_get_softc(dev);
244	if (phy != sc->age_phyaddr)
245		return (0);
246
247	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
248	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
249	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
250	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
251		DELAY(1);
252		v = CSR_READ_4(sc, AGE_MDIO);
253		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
254			break;
255	}
256
257	if (i == 0)
258		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
259
260	return (0);
261}
262
263/*
264 *	Callback from MII layer when media changes.
265 */
266static void
267age_miibus_statchg(device_t dev)
268{
269	struct age_softc *sc;
270
271	sc = device_get_softc(dev);
272	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
273}
274
275/*
276 *	Get the current interface media status.
277 */
278static void
279age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
280{
281	struct age_softc *sc;
282	struct mii_data *mii;
283
284	sc = ifp->if_softc;
285	AGE_LOCK(sc);
286	mii = device_get_softc(sc->age_miibus);
287
288	mii_pollstat(mii);
289	AGE_UNLOCK(sc);
290	ifmr->ifm_status = mii->mii_media_status;
291	ifmr->ifm_active = mii->mii_media_active;
292}
293
294/*
295 *	Set hardware to newly-selected media.
296 */
297static int
298age_mediachange(struct ifnet *ifp)
299{
300	struct age_softc *sc;
301	struct mii_data *mii;
302	struct mii_softc *miisc;
303	int error;
304
305	sc = ifp->if_softc;
306	AGE_LOCK(sc);
307	mii = device_get_softc(sc->age_miibus);
308	if (mii->mii_instance != 0) {
309		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
310			mii_phy_reset(miisc);
311	}
312	error = mii_mediachg(mii);
313	AGE_UNLOCK(sc);
314
315	return (error);
316}
317
318static int
319age_probe(device_t dev)
320{
321	struct age_dev *sp;
322	int i;
323	uint16_t vendor, devid;
324
325	vendor = pci_get_vendor(dev);
326	devid = pci_get_device(dev);
327	sp = age_devs;
328	for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]);
329	    i++, sp++) {
330		if (vendor == sp->age_vendorid &&
331		    devid == sp->age_deviceid) {
332			device_set_desc(dev, sp->age_name);
333			return (BUS_PROBE_DEFAULT);
334		}
335	}
336
337	return (ENXIO);
338}
339
340static void
341age_get_macaddr(struct age_softc *sc)
342{
343	uint32_t ea[2], reg;
344	int i, vpdc;
345
346	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
347	if ((reg & SPI_VPD_ENB) != 0) {
348		/* Get VPD stored in TWSI EEPROM. */
349		reg &= ~SPI_VPD_ENB;
350		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
351	}
352
353	if (pci_find_extcap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
354		/*
355		 * PCI VPD capability found, let TWSI reload EEPROM.
356		 * This will set ethernet address of controller.
357		 */
358		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
359		    TWSI_CTRL_SW_LD_START);
360		for (i = 100; i > 0; i--) {
361			DELAY(1000);
362			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
363			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
364				break;
365		}
366		if (i == 0)
367			device_printf(sc->age_dev,
368			    "reloading EEPROM timeout!\n");
369	} else {
370		if (bootverbose)
371			device_printf(sc->age_dev,
372			    "PCI VPD capability not found!\n");
373	}
374
375	ea[0] = CSR_READ_4(sc, AGE_PAR0);
376	ea[1] = CSR_READ_4(sc, AGE_PAR1);
377	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
378	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
379	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
380	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
381	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
382	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
383}
384
385static void
386age_phy_reset(struct age_softc *sc)
387{
388	uint16_t reg, pn;
389	int i, linkup;
390
391	/* Reset PHY. */
392	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
393	DELAY(2000);
394	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
395	DELAY(2000);
396
397#define	ATPHY_DBG_ADDR		0x1D
398#define	ATPHY_DBG_DATA		0x1E
399#define	ATPHY_CDTC		0x16
400#define	PHY_CDTC_ENB		0x0001
401#define	PHY_CDTC_POFF		8
402#define	ATPHY_CDTS		0x1C
403#define	PHY_CDTS_STAT_OK	0x0000
404#define	PHY_CDTS_STAT_SHORT	0x0100
405#define	PHY_CDTS_STAT_OPEN	0x0200
406#define	PHY_CDTS_STAT_INVAL	0x0300
407#define	PHY_CDTS_STAT_MASK	0x0300
408
409	/* Check power saving mode. Magic from Linux. */
410	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
411	for (linkup = 0, pn = 0; pn < 4; pn++) {
412		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
413		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
414		for (i = 200; i > 0; i--) {
415			DELAY(1000);
416			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
417			    ATPHY_CDTC);
418			if ((reg & PHY_CDTC_ENB) == 0)
419				break;
420		}
421		DELAY(1000);
422		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
423		    ATPHY_CDTS);
424		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
425			linkup++;
426			break;
427		}
428	}
429	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
430	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
431	if (linkup == 0) {
432		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
433		    ATPHY_DBG_ADDR, 0);
434		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
435		    ATPHY_DBG_DATA, 0x124E);
436		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
437		    ATPHY_DBG_ADDR, 1);
438		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
439		    ATPHY_DBG_DATA);
440		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
441		    ATPHY_DBG_DATA, reg | 0x03);
442		/* XXX */
443		DELAY(1500 * 1000);
444		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
445		    ATPHY_DBG_ADDR, 0);
446		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
447		    ATPHY_DBG_DATA, 0x024E);
448    }
449
450#undef	ATPHY_DBG_ADDR
451#undef	ATPHY_DBG_DATA
452#undef	ATPHY_CDTC
453#undef	PHY_CDTC_ENB
454#undef	PHY_CDTC_POFF
455#undef	ATPHY_CDTS
456#undef	PHY_CDTS_STAT_OK
457#undef	PHY_CDTS_STAT_SHORT
458#undef	PHY_CDTS_STAT_OPEN
459#undef	PHY_CDTS_STAT_INVAL
460#undef	PHY_CDTS_STAT_MASK
461}
462
463static int
464age_attach(device_t dev)
465{
466	struct age_softc *sc;
467	struct ifnet *ifp;
468	uint16_t burst;
469	int error, i, msic, msixc, pmc;
470
471	error = 0;
472	sc = device_get_softc(dev);
473	sc->age_dev = dev;
474
475	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
476	    MTX_DEF);
477	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
478	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
479	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
480
481	/* Map the device. */
482	pci_enable_busmaster(dev);
483	sc->age_res_spec = age_res_spec_mem;
484	sc->age_irq_spec = age_irq_spec_legacy;
485	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
486	if (error != 0) {
487		device_printf(dev, "cannot allocate memory resources.\n");
488		goto fail;
489	}
490
491	/* Set PHY address. */
492	sc->age_phyaddr = AGE_PHY_ADDR;
493
494	/* Reset PHY. */
495	age_phy_reset(sc);
496
497	/* Reset the ethernet controller. */
498	age_reset(sc);
499
500	/* Get PCI and chip id/revision. */
501	sc->age_rev = pci_get_revid(dev);
502	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
503	    MASTER_CHIP_REV_SHIFT;
504	if (bootverbose) {
505		device_printf(dev, "PCI device revision : 0x%04x\n",
506		    sc->age_rev);
507		device_printf(dev, "Chip id/revision : 0x%04x\n",
508		    sc->age_chip_rev);
509	}
510
511	/*
512	 * XXX
513	 * Unintialized hardware returns an invalid chip id/revision
514	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
515	 * unplugged cable results in putting hardware into automatic
516	 * power down mode which in turn returns invalld chip revision.
517	 */
518	if (sc->age_chip_rev == 0xFFFF) {
519		device_printf(dev,"invalid chip revision : 0x%04x -- "
520		    "not initialized?\n", sc->age_chip_rev);
521		error = ENXIO;
522		goto fail;
523	}
524
525	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
526	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
527	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
528
529	/* Allocate IRQ resources. */
530	msixc = pci_msix_count(dev);
531	msic = pci_msi_count(dev);
532	if (bootverbose) {
533		device_printf(dev, "MSIX count : %d\n", msixc);
534		device_printf(dev, "MSI count : %d\n", msic);
535	}
536
537	/* Prefer MSIX over MSI. */
538	if (msix_disable == 0 || msi_disable == 0) {
539		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
540		    pci_alloc_msix(dev, &msixc) == 0) {
541			if (msic == AGE_MSIX_MESSAGES) {
542				device_printf(dev, "Using %d MSIX messages.\n",
543				    msixc);
544				sc->age_flags |= AGE_FLAG_MSIX;
545				sc->age_irq_spec = age_irq_spec_msix;
546			} else
547				pci_release_msi(dev);
548		}
549		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
550		    msic == AGE_MSI_MESSAGES &&
551		    pci_alloc_msi(dev, &msic) == 0) {
552			if (msic == AGE_MSI_MESSAGES) {
553				device_printf(dev, "Using %d MSI messages.\n",
554				    msic);
555				sc->age_flags |= AGE_FLAG_MSI;
556				sc->age_irq_spec = age_irq_spec_msi;
557			} else
558				pci_release_msi(dev);
559		}
560	}
561
562	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
563	if (error != 0) {
564		device_printf(dev, "cannot allocate IRQ resources.\n");
565		goto fail;
566	}
567
568
569	/* Get DMA parameters from PCIe device control register. */
570	if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
571		sc->age_flags |= AGE_FLAG_PCIE;
572		burst = pci_read_config(dev, i + 0x08, 2);
573		/* Max read request size. */
574		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
575		    DMA_CFG_RD_BURST_SHIFT;
576		/* Max payload size. */
577		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
578		    DMA_CFG_WR_BURST_SHIFT;
579		if (bootverbose) {
580			device_printf(dev, "Read request size : %d bytes.\n",
581			    128 << ((burst >> 12) & 0x07));
582			device_printf(dev, "TLP payload size : %d bytes.\n",
583			    128 << ((burst >> 5) & 0x07));
584		}
585	} else {
586		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
587		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
588	}
589
590	/* Create device sysctl node. */
591	age_sysctl_node(sc);
592
593	if ((error = age_dma_alloc(sc) != 0))
594		goto fail;
595
596	/* Load station address. */
597	age_get_macaddr(sc);
598
599	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
600	if (ifp == NULL) {
601		device_printf(dev, "cannot allocate ifnet structure.\n");
602		error = ENXIO;
603		goto fail;
604	}
605
606	ifp->if_softc = sc;
607	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
608	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
609	ifp->if_ioctl = age_ioctl;
610	ifp->if_start = age_start;
611	ifp->if_init = age_init;
612	ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
613	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
614	IFQ_SET_READY(&ifp->if_snd);
615	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
616	ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
617	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
618		sc->age_flags |= AGE_FLAG_PMCAP;
619		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
620	}
621	ifp->if_capenable = ifp->if_capabilities;
622
623	/* Set up MII bus. */
624	if ((error = mii_phy_probe(dev, &sc->age_miibus, age_mediachange,
625	    age_mediastatus)) != 0) {
626		device_printf(dev, "no PHY found!\n");
627		goto fail;
628	}
629
630	ether_ifattach(ifp, sc->age_eaddr);
631
632	/* VLAN capability setup. */
633	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
634	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
635	ifp->if_capenable = ifp->if_capabilities;
636
637	/* Tell the upper layer(s) we support long frames. */
638	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
639
640	/* Create local taskq. */
641	TASK_INIT(&sc->age_tx_task, 1, age_tx_task, ifp);
642	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
643	    taskqueue_thread_enqueue, &sc->age_tq);
644	if (sc->age_tq == NULL) {
645		device_printf(dev, "could not create taskqueue.\n");
646		ether_ifdetach(ifp);
647		error = ENXIO;
648		goto fail;
649	}
650	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
651	    device_get_nameunit(sc->age_dev));
652
653	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
654		msic = AGE_MSIX_MESSAGES;
655	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
656		msic = AGE_MSI_MESSAGES;
657	else
658		msic = 1;
659	for (i = 0; i < msic; i++) {
660		error = bus_setup_intr(dev, sc->age_irq[i],
661		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
662		    &sc->age_intrhand[i]);
663		if (error != 0)
664			break;
665	}
666	if (error != 0) {
667		device_printf(dev, "could not set up interrupt handler.\n");
668		taskqueue_free(sc->age_tq);
669		sc->age_tq = NULL;
670		ether_ifdetach(ifp);
671		goto fail;
672	}
673
674fail:
675	if (error != 0)
676		age_detach(dev);
677
678	return (error);
679}
680
681static int
682age_detach(device_t dev)
683{
684	struct age_softc *sc;
685	struct ifnet *ifp;
686	int i, msic;
687
688	sc = device_get_softc(dev);
689
690	ifp = sc->age_ifp;
691	if (device_is_attached(dev)) {
692		AGE_LOCK(sc);
693		sc->age_flags |= AGE_FLAG_DETACH;
694		age_stop(sc);
695		AGE_UNLOCK(sc);
696		callout_drain(&sc->age_tick_ch);
697		taskqueue_drain(sc->age_tq, &sc->age_int_task);
698		taskqueue_drain(sc->age_tq, &sc->age_tx_task);
699		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
700		ether_ifdetach(ifp);
701	}
702
703	if (sc->age_tq != NULL) {
704		taskqueue_drain(sc->age_tq, &sc->age_int_task);
705		taskqueue_free(sc->age_tq);
706		sc->age_tq = NULL;
707	}
708
709	if (sc->age_miibus != NULL) {
710		device_delete_child(dev, sc->age_miibus);
711		sc->age_miibus = NULL;
712	}
713	bus_generic_detach(dev);
714	age_dma_free(sc);
715
716	if (ifp != NULL) {
717		if_free(ifp);
718		sc->age_ifp = NULL;
719	}
720
721	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
722		msic = AGE_MSIX_MESSAGES;
723	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
724		msic = AGE_MSI_MESSAGES;
725	else
726		msic = 1;
727	for (i = 0; i < msic; i++) {
728		if (sc->age_intrhand[i] != NULL) {
729			bus_teardown_intr(dev, sc->age_irq[i],
730			    sc->age_intrhand[i]);
731			sc->age_intrhand[i] = NULL;
732		}
733	}
734
735	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
736	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
737		pci_release_msi(dev);
738	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
739	mtx_destroy(&sc->age_mtx);
740
741	return (0);
742}
743
744static void
745age_sysctl_node(struct age_softc *sc)
746{
747	int error;
748
749	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
750	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
751	    "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
752	    "I", "Statistics");
753
754	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
755	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
756	    "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
757	    sysctl_hw_age_int_mod, "I", "age interrupt moderation");
758
759	/* Pull in device tunables. */
760	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
761	error = resource_int_value(device_get_name(sc->age_dev),
762	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
763	if (error == 0) {
764		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
765		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
766			device_printf(sc->age_dev,
767			    "int_mod value out of range; using default: %d\n",
768			    AGE_IM_TIMER_DEFAULT);
769			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
770		}
771	}
772
773	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
774	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
775	    "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
776	    0, sysctl_hw_age_proc_limit, "I",
777	    "max number of Rx events to process");
778
779	/* Pull in device tunables. */
780	sc->age_process_limit = AGE_PROC_DEFAULT;
781	error = resource_int_value(device_get_name(sc->age_dev),
782	    device_get_unit(sc->age_dev), "process_limit",
783	    &sc->age_process_limit);
784	if (error == 0) {
785		if (sc->age_process_limit < AGE_PROC_MIN ||
786		    sc->age_process_limit > AGE_PROC_MAX) {
787			device_printf(sc->age_dev,
788			    "process_limit value out of range; "
789			    "using default: %d\n", AGE_PROC_DEFAULT);
790			sc->age_process_limit = AGE_PROC_DEFAULT;
791		}
792	}
793}
794
795struct age_dmamap_arg {
796	bus_addr_t	age_busaddr;
797};
798
799static void
800age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
801{
802	struct age_dmamap_arg *ctx;
803
804	if (error != 0)
805		return;
806
807	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
808
809	ctx = (struct age_dmamap_arg *)arg;
810	ctx->age_busaddr = segs[0].ds_addr;
811}
812
813/*
814 * Attansic L1 controller have single register to specify high
815 * address part of DMA blocks. So all descriptor structures and
816 * DMA memory blocks should have the same high address of given
817 * 4GB address space(i.e. crossing 4GB boundary is not allowed).
818 */
819static int
820age_check_boundary(struct age_softc *sc)
821{
822	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
823	bus_addr_t cmb_block_end, smb_block_end;
824
825	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
826	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
827	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
828	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
829	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
830	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
831
832	if ((AGE_ADDR_HI(tx_ring_end) !=
833	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
834	    (AGE_ADDR_HI(rx_ring_end) !=
835	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
836	    (AGE_ADDR_HI(rr_ring_end) !=
837	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
838	    (AGE_ADDR_HI(cmb_block_end) !=
839	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
840	    (AGE_ADDR_HI(smb_block_end) !=
841	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
842		return (EFBIG);
843
844	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
845	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
846	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
847	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
848		return (EFBIG);
849
850	return (0);
851}
852
853static int
854age_dma_alloc(struct age_softc *sc)
855{
856	struct age_txdesc *txd;
857	struct age_rxdesc *rxd;
858	bus_addr_t lowaddr;
859	struct age_dmamap_arg ctx;
860	int error, i;
861
862	lowaddr = BUS_SPACE_MAXADDR;
863
864again:
865	/* Create parent ring/DMA block tag. */
866	error = bus_dma_tag_create(
867	    bus_get_dma_tag(sc->age_dev), /* parent */
868	    1, 0,			/* alignment, boundary */
869	    lowaddr,			/* lowaddr */
870	    BUS_SPACE_MAXADDR,		/* highaddr */
871	    NULL, NULL,			/* filter, filterarg */
872	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
873	    0,				/* nsegments */
874	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
875	    0,				/* flags */
876	    NULL, NULL,			/* lockfunc, lockarg */
877	    &sc->age_cdata.age_parent_tag);
878	if (error != 0) {
879		device_printf(sc->age_dev,
880		    "could not create parent DMA tag.\n");
881		goto fail;
882	}
883
884	/* Create tag for Tx ring. */
885	error = bus_dma_tag_create(
886	    sc->age_cdata.age_parent_tag, /* parent */
887	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
888	    BUS_SPACE_MAXADDR,		/* lowaddr */
889	    BUS_SPACE_MAXADDR,		/* highaddr */
890	    NULL, NULL,			/* filter, filterarg */
891	    AGE_TX_RING_SZ,		/* maxsize */
892	    1,				/* nsegments */
893	    AGE_TX_RING_SZ,		/* maxsegsize */
894	    0,				/* flags */
895	    NULL, NULL,			/* lockfunc, lockarg */
896	    &sc->age_cdata.age_tx_ring_tag);
897	if (error != 0) {
898		device_printf(sc->age_dev,
899		    "could not create Tx ring DMA tag.\n");
900		goto fail;
901	}
902
903	/* Create tag for Rx ring. */
904	error = bus_dma_tag_create(
905	    sc->age_cdata.age_parent_tag, /* parent */
906	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
907	    BUS_SPACE_MAXADDR,		/* lowaddr */
908	    BUS_SPACE_MAXADDR,		/* highaddr */
909	    NULL, NULL,			/* filter, filterarg */
910	    AGE_RX_RING_SZ,		/* maxsize */
911	    1,				/* nsegments */
912	    AGE_RX_RING_SZ,		/* maxsegsize */
913	    0,				/* flags */
914	    NULL, NULL,			/* lockfunc, lockarg */
915	    &sc->age_cdata.age_rx_ring_tag);
916	if (error != 0) {
917		device_printf(sc->age_dev,
918		    "could not create Rx ring DMA tag.\n");
919		goto fail;
920	}
921
922	/* Create tag for Rx return ring. */
923	error = bus_dma_tag_create(
924	    sc->age_cdata.age_parent_tag, /* parent */
925	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
926	    BUS_SPACE_MAXADDR,		/* lowaddr */
927	    BUS_SPACE_MAXADDR,		/* highaddr */
928	    NULL, NULL,			/* filter, filterarg */
929	    AGE_RR_RING_SZ,		/* maxsize */
930	    1,				/* nsegments */
931	    AGE_RR_RING_SZ,		/* maxsegsize */
932	    0,				/* flags */
933	    NULL, NULL,			/* lockfunc, lockarg */
934	    &sc->age_cdata.age_rr_ring_tag);
935	if (error != 0) {
936		device_printf(sc->age_dev,
937		    "could not create Rx return ring DMA tag.\n");
938		goto fail;
939	}
940
941	/* Create tag for coalesing message block. */
942	error = bus_dma_tag_create(
943	    sc->age_cdata.age_parent_tag, /* parent */
944	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
945	    BUS_SPACE_MAXADDR,		/* lowaddr */
946	    BUS_SPACE_MAXADDR,		/* highaddr */
947	    NULL, NULL,			/* filter, filterarg */
948	    AGE_CMB_BLOCK_SZ,		/* maxsize */
949	    1,				/* nsegments */
950	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
951	    0,				/* flags */
952	    NULL, NULL,			/* lockfunc, lockarg */
953	    &sc->age_cdata.age_cmb_block_tag);
954	if (error != 0) {
955		device_printf(sc->age_dev,
956		    "could not create CMB DMA tag.\n");
957		goto fail;
958	}
959
960	/* Create tag for statistics message block. */
961	error = bus_dma_tag_create(
962	    sc->age_cdata.age_parent_tag, /* parent */
963	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
964	    BUS_SPACE_MAXADDR,		/* lowaddr */
965	    BUS_SPACE_MAXADDR,		/* highaddr */
966	    NULL, NULL,			/* filter, filterarg */
967	    AGE_SMB_BLOCK_SZ,		/* maxsize */
968	    1,				/* nsegments */
969	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
970	    0,				/* flags */
971	    NULL, NULL,			/* lockfunc, lockarg */
972	    &sc->age_cdata.age_smb_block_tag);
973	if (error != 0) {
974		device_printf(sc->age_dev,
975		    "could not create SMB DMA tag.\n");
976		goto fail;
977	}
978
979	/* Allocate DMA'able memory and load the DMA map. */
980	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
981	    (void **)&sc->age_rdata.age_tx_ring,
982	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
983	    &sc->age_cdata.age_tx_ring_map);
984	if (error != 0) {
985		device_printf(sc->age_dev,
986		    "could not allocate DMA'able memory for Tx ring.\n");
987		goto fail;
988	}
989	ctx.age_busaddr = 0;
990	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
991	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
992	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
993	if (error != 0 || ctx.age_busaddr == 0) {
994		device_printf(sc->age_dev,
995		    "could not load DMA'able memory for Tx ring.\n");
996		goto fail;
997	}
998	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
999	/* Rx ring */
1000	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
1001	    (void **)&sc->age_rdata.age_rx_ring,
1002	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1003	    &sc->age_cdata.age_rx_ring_map);
1004	if (error != 0) {
1005		device_printf(sc->age_dev,
1006		    "could not allocate DMA'able memory for Rx ring.\n");
1007		goto fail;
1008	}
1009	ctx.age_busaddr = 0;
1010	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1011	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1012	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1013	if (error != 0 || ctx.age_busaddr == 0) {
1014		device_printf(sc->age_dev,
1015		    "could not load DMA'able memory for Rx ring.\n");
1016		goto fail;
1017	}
1018	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1019	/* Rx return ring */
1020	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1021	    (void **)&sc->age_rdata.age_rr_ring,
1022	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1023	    &sc->age_cdata.age_rr_ring_map);
1024	if (error != 0) {
1025		device_printf(sc->age_dev,
1026		    "could not allocate DMA'able memory for Rx return ring.\n");
1027		goto fail;
1028	}
1029	ctx.age_busaddr = 0;
1030	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1031	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1032	    AGE_RR_RING_SZ, age_dmamap_cb,
1033	    &ctx, 0);
1034	if (error != 0 || ctx.age_busaddr == 0) {
1035		device_printf(sc->age_dev,
1036		    "could not load DMA'able memory for Rx return ring.\n");
1037		goto fail;
1038	}
1039	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1040	/* CMB block */
1041	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1042	    (void **)&sc->age_rdata.age_cmb_block,
1043	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1044	    &sc->age_cdata.age_cmb_block_map);
1045	if (error != 0) {
1046		device_printf(sc->age_dev,
1047		    "could not allocate DMA'able memory for CMB block.\n");
1048		goto fail;
1049	}
1050	ctx.age_busaddr = 0;
1051	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1052	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1053	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1054	if (error != 0 || ctx.age_busaddr == 0) {
1055		device_printf(sc->age_dev,
1056		    "could not load DMA'able memory for CMB block.\n");
1057		goto fail;
1058	}
1059	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1060	/* SMB block */
1061	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1062	    (void **)&sc->age_rdata.age_smb_block,
1063	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1064	    &sc->age_cdata.age_smb_block_map);
1065	if (error != 0) {
1066		device_printf(sc->age_dev,
1067		    "could not allocate DMA'able memory for SMB block.\n");
1068		goto fail;
1069	}
1070	ctx.age_busaddr = 0;
1071	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1072	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1073	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1074	if (error != 0 || ctx.age_busaddr == 0) {
1075		device_printf(sc->age_dev,
1076		    "could not load DMA'able memory for SMB block.\n");
1077		goto fail;
1078	}
1079	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1080
1081	/*
1082	 * All ring buffer and DMA blocks should have the same
1083	 * high address part of 64bit DMA address space.
1084	 */
1085	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1086	    (error = age_check_boundary(sc)) != 0) {
1087		device_printf(sc->age_dev, "4GB boundary crossed, "
1088		    "switching to 32bit DMA addressing mode.\n");
1089		age_dma_free(sc);
1090		/* Limit DMA address space to 32bit and try again. */
1091		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1092		goto again;
1093	}
1094
1095	/*
1096	 * Create Tx/Rx buffer parent tag.
1097	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1098	 * so it needs separate parent DMA tag.
1099	 */
1100	error = bus_dma_tag_create(
1101	    bus_get_dma_tag(sc->age_dev), /* parent */
1102	    1, 0,			/* alignment, boundary */
1103	    BUS_SPACE_MAXADDR,		/* lowaddr */
1104	    BUS_SPACE_MAXADDR,		/* highaddr */
1105	    NULL, NULL,			/* filter, filterarg */
1106	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1107	    0,				/* nsegments */
1108	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1109	    0,				/* flags */
1110	    NULL, NULL,			/* lockfunc, lockarg */
1111	    &sc->age_cdata.age_buffer_tag);
1112	if (error != 0) {
1113		device_printf(sc->age_dev,
1114		    "could not create parent buffer DMA tag.\n");
1115		goto fail;
1116	}
1117
1118	/* Create tag for Tx buffers. */
1119	error = bus_dma_tag_create(
1120	    sc->age_cdata.age_buffer_tag, /* parent */
1121	    1, 0,			/* alignment, boundary */
1122	    BUS_SPACE_MAXADDR,		/* lowaddr */
1123	    BUS_SPACE_MAXADDR,		/* highaddr */
1124	    NULL, NULL,			/* filter, filterarg */
1125	    AGE_TSO_MAXSIZE,		/* maxsize */
1126	    AGE_MAXTXSEGS,		/* nsegments */
1127	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1128	    0,				/* flags */
1129	    NULL, NULL,			/* lockfunc, lockarg */
1130	    &sc->age_cdata.age_tx_tag);
1131	if (error != 0) {
1132		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1133		goto fail;
1134	}
1135
1136	/* Create tag for Rx buffers. */
1137	error = bus_dma_tag_create(
1138	    sc->age_cdata.age_buffer_tag, /* parent */
1139	    1, 0,			/* alignment, boundary */
1140	    BUS_SPACE_MAXADDR,		/* lowaddr */
1141	    BUS_SPACE_MAXADDR,		/* highaddr */
1142	    NULL, NULL,			/* filter, filterarg */
1143	    MCLBYTES,			/* maxsize */
1144	    1,				/* nsegments */
1145	    MCLBYTES,			/* maxsegsize */
1146	    0,				/* flags */
1147	    NULL, NULL,			/* lockfunc, lockarg */
1148	    &sc->age_cdata.age_rx_tag);
1149	if (error != 0) {
1150		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1151		goto fail;
1152	}
1153
1154	/* Create DMA maps for Tx buffers. */
1155	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1156		txd = &sc->age_cdata.age_txdesc[i];
1157		txd->tx_m = NULL;
1158		txd->tx_dmamap = NULL;
1159		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1160		    &txd->tx_dmamap);
1161		if (error != 0) {
1162			device_printf(sc->age_dev,
1163			    "could not create Tx dmamap.\n");
1164			goto fail;
1165		}
1166	}
1167	/* Create DMA maps for Rx buffers. */
1168	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1169	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1170		device_printf(sc->age_dev,
1171		    "could not create spare Rx dmamap.\n");
1172		goto fail;
1173	}
1174	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1175		rxd = &sc->age_cdata.age_rxdesc[i];
1176		rxd->rx_m = NULL;
1177		rxd->rx_dmamap = NULL;
1178		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1179		    &rxd->rx_dmamap);
1180		if (error != 0) {
1181			device_printf(sc->age_dev,
1182			    "could not create Rx dmamap.\n");
1183			goto fail;
1184		}
1185	}
1186
1187fail:
1188	return (error);
1189}
1190
1191static void
1192age_dma_free(struct age_softc *sc)
1193{
1194	struct age_txdesc *txd;
1195	struct age_rxdesc *rxd;
1196	int i;
1197
1198	/* Tx buffers */
1199	if (sc->age_cdata.age_tx_tag != NULL) {
1200		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1201			txd = &sc->age_cdata.age_txdesc[i];
1202			if (txd->tx_dmamap != NULL) {
1203				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1204				    txd->tx_dmamap);
1205				txd->tx_dmamap = NULL;
1206			}
1207		}
1208		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1209		sc->age_cdata.age_tx_tag = NULL;
1210	}
1211	/* Rx buffers */
1212	if (sc->age_cdata.age_rx_tag != NULL) {
1213		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1214			rxd = &sc->age_cdata.age_rxdesc[i];
1215			if (rxd->rx_dmamap != NULL) {
1216				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1217				    rxd->rx_dmamap);
1218				rxd->rx_dmamap = NULL;
1219			}
1220		}
1221		if (sc->age_cdata.age_rx_sparemap != NULL) {
1222			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1223			    sc->age_cdata.age_rx_sparemap);
1224			sc->age_cdata.age_rx_sparemap = NULL;
1225		}
1226		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1227		sc->age_cdata.age_rx_tag = NULL;
1228	}
1229	/* Tx ring. */
1230	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1231		if (sc->age_cdata.age_tx_ring_map != NULL)
1232			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1233			    sc->age_cdata.age_tx_ring_map);
1234		if (sc->age_cdata.age_tx_ring_map != NULL &&
1235		    sc->age_rdata.age_tx_ring != NULL)
1236			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1237			    sc->age_rdata.age_tx_ring,
1238			    sc->age_cdata.age_tx_ring_map);
1239		sc->age_rdata.age_tx_ring = NULL;
1240		sc->age_cdata.age_tx_ring_map = NULL;
1241		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1242		sc->age_cdata.age_tx_ring_tag = NULL;
1243	}
1244	/* Rx ring. */
1245	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1246		if (sc->age_cdata.age_rx_ring_map != NULL)
1247			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1248			    sc->age_cdata.age_rx_ring_map);
1249		if (sc->age_cdata.age_rx_ring_map != NULL &&
1250		    sc->age_rdata.age_rx_ring != NULL)
1251			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1252			    sc->age_rdata.age_rx_ring,
1253			    sc->age_cdata.age_rx_ring_map);
1254		sc->age_rdata.age_rx_ring = NULL;
1255		sc->age_cdata.age_rx_ring_map = NULL;
1256		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1257		sc->age_cdata.age_rx_ring_tag = NULL;
1258	}
1259	/* Rx return ring. */
1260	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1261		if (sc->age_cdata.age_rr_ring_map != NULL)
1262			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1263			    sc->age_cdata.age_rr_ring_map);
1264		if (sc->age_cdata.age_rr_ring_map != NULL &&
1265		    sc->age_rdata.age_rr_ring != NULL)
1266			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1267			    sc->age_rdata.age_rr_ring,
1268			    sc->age_cdata.age_rr_ring_map);
1269		sc->age_rdata.age_rr_ring = NULL;
1270		sc->age_cdata.age_rr_ring_map = NULL;
1271		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1272		sc->age_cdata.age_rr_ring_tag = NULL;
1273	}
1274	/* CMB block */
1275	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1276		if (sc->age_cdata.age_cmb_block_map != NULL)
1277			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1278			    sc->age_cdata.age_cmb_block_map);
1279		if (sc->age_cdata.age_cmb_block_map != NULL &&
1280		    sc->age_rdata.age_cmb_block != NULL)
1281			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1282			    sc->age_rdata.age_cmb_block,
1283			    sc->age_cdata.age_cmb_block_map);
1284		sc->age_rdata.age_cmb_block = NULL;
1285		sc->age_cdata.age_cmb_block_map = NULL;
1286		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1287		sc->age_cdata.age_cmb_block_tag = NULL;
1288	}
1289	/* SMB block */
1290	if (sc->age_cdata.age_smb_block_tag != NULL) {
1291		if (sc->age_cdata.age_smb_block_map != NULL)
1292			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1293			    sc->age_cdata.age_smb_block_map);
1294		if (sc->age_cdata.age_smb_block_map != NULL &&
1295		    sc->age_rdata.age_smb_block != NULL)
1296			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1297			    sc->age_rdata.age_smb_block,
1298			    sc->age_cdata.age_smb_block_map);
1299		sc->age_rdata.age_smb_block = NULL;
1300		sc->age_cdata.age_smb_block_map = NULL;
1301		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1302		sc->age_cdata.age_smb_block_tag = NULL;
1303	}
1304
1305	if (sc->age_cdata.age_buffer_tag != NULL) {
1306		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1307		sc->age_cdata.age_buffer_tag = NULL;
1308	}
1309	if (sc->age_cdata.age_parent_tag != NULL) {
1310		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1311		sc->age_cdata.age_parent_tag = NULL;
1312	}
1313}
1314
1315/*
1316 *	Make sure the interface is stopped at reboot time.
1317 */
1318static int
1319age_shutdown(device_t dev)
1320{
1321
1322	return (age_suspend(dev));
1323}
1324
1325static void
1326age_setwol(struct age_softc *sc)
1327{
1328	struct ifnet *ifp;
1329	struct mii_data *mii;
1330	uint32_t reg, pmcs;
1331	uint16_t pmstat;
1332	int aneg, i, pmc;
1333
1334	AGE_LOCK_ASSERT(sc);
1335
1336	if (pci_find_extcap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1337		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1338		/*
1339		 * No PME capability, PHY power down.
1340		 * XXX
1341		 * Due to an unknown reason powering down PHY resulted
1342		 * in unexpected results such as inaccessbility of
1343		 * hardware of freshly rebooted system. Disable
1344		 * powering down PHY until I got more information for
1345		 * Attansic/Atheros PHY hardwares.
1346		 */
1347#ifdef notyet
1348		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1349		    MII_BMCR, BMCR_PDOWN);
1350#endif
1351		return;
1352	}
1353
1354	ifp = sc->age_ifp;
1355	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1356		/*
1357		 * Note, this driver resets the link speed to 10/100Mbps with
1358		 * auto-negotiation but we don't know whether that operation
1359		 * would succeed or not as it have no control after powering
1360		 * off. If the renegotiation fail WOL may not work. Running
1361		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1362		 * specified in PCI specification and that would result in
1363		 * complete shutdowning power to ethernet controller.
1364		 *
1365		 * TODO
1366		 *  Save current negotiated media speed/duplex/flow-control
1367		 *  to softc and restore the same link again after resuming.
1368		 *  PHY handling such as power down/resetting to 100Mbps
1369		 *  may be better handled in suspend method in phy driver.
1370		 */
1371		mii = device_get_softc(sc->age_miibus);
1372		mii_pollstat(mii);
1373		aneg = 0;
1374		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1375			switch IFM_SUBTYPE(mii->mii_media_active) {
1376			case IFM_10_T:
1377			case IFM_100_TX:
1378				goto got_link;
1379			case IFM_1000_T:
1380				aneg++;
1381			default:
1382				break;
1383			}
1384		}
1385		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1386		    MII_100T2CR, 0);
1387		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1388		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1389		    ANAR_10 | ANAR_CSMA);
1390		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1391		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1392		DELAY(1000);
1393		if (aneg != 0) {
1394			/* Poll link state until age(4) get a 10/100 link. */
1395			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1396				mii_pollstat(mii);
1397				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1398					switch (IFM_SUBTYPE(
1399					    mii->mii_media_active)) {
1400					case IFM_10_T:
1401					case IFM_100_TX:
1402						age_mac_config(sc);
1403						goto got_link;
1404					default:
1405						break;
1406					}
1407				}
1408				AGE_UNLOCK(sc);
1409				pause("agelnk", hz);
1410				AGE_LOCK(sc);
1411			}
1412			if (i == MII_ANEGTICKS_GIGE)
1413				device_printf(sc->age_dev,
1414				    "establishing link failed, "
1415				    "WOL may not work!");
1416		}
1417		/*
1418		 * No link, force MAC to have 100Mbps, full-duplex link.
1419		 * This is the last resort and may/may not work.
1420		 */
1421		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1422		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1423		age_mac_config(sc);
1424	}
1425
1426got_link:
1427	pmcs = 0;
1428	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1429		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1430	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1431	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1432	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1433	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1434	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1435		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1436	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1437		reg |= MAC_CFG_RX_ENB;
1438		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1439	}
1440
1441	/* Request PME. */
1442	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1443	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1444	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1445		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1446	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1447#ifdef notyet
1448	/* See above for powering down PHY issues. */
1449	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1450		/* No WOL, PHY power down. */
1451		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1452		    MII_BMCR, BMCR_PDOWN);
1453	}
1454#endif
1455}
1456
1457static int
1458age_suspend(device_t dev)
1459{
1460	struct age_softc *sc;
1461
1462	sc = device_get_softc(dev);
1463
1464	AGE_LOCK(sc);
1465	age_stop(sc);
1466	age_setwol(sc);
1467	AGE_UNLOCK(sc);
1468
1469	return (0);
1470}
1471
1472static int
1473age_resume(device_t dev)
1474{
1475	struct age_softc *sc;
1476	struct ifnet *ifp;
1477
1478	sc = device_get_softc(dev);
1479
1480	AGE_LOCK(sc);
1481	age_phy_reset(sc);
1482	ifp = sc->age_ifp;
1483	if ((ifp->if_flags & IFF_UP) != 0)
1484		age_init_locked(sc);
1485
1486	AGE_UNLOCK(sc);
1487
1488	return (0);
1489}
1490
1491static int
1492age_encap(struct age_softc *sc, struct mbuf **m_head)
1493{
1494	struct age_txdesc *txd, *txd_last;
1495	struct tx_desc *desc;
1496	struct mbuf *m;
1497	struct ip *ip;
1498	struct tcphdr *tcp;
1499	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1500	bus_dmamap_t map;
1501	uint32_t cflags, ip_off, poff, vtag;
1502	int error, i, nsegs, prod, si;
1503
1504	AGE_LOCK_ASSERT(sc);
1505
1506	M_ASSERTPKTHDR((*m_head));
1507
1508	m = *m_head;
1509	ip = NULL;
1510	tcp = NULL;
1511	cflags = vtag = 0;
1512	ip_off = poff = 0;
1513	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1514		/*
1515		 * L1 requires offset of TCP/UDP payload in its Tx
1516		 * descriptor to perform hardware Tx checksum offload.
1517		 * Additionally, TSO requires IP/TCP header size and
1518		 * modification of IP/TCP header in order to make TSO
1519		 * engine work. This kind of operation takes many CPU
1520		 * cycles on FreeBSD so fast host CPU is needed to get
1521		 * smooth TSO performance.
1522		 */
1523		struct ether_header *eh;
1524
1525		if (M_WRITABLE(m) == 0) {
1526			/* Get a writable copy. */
1527			m = m_dup(*m_head, M_DONTWAIT);
1528			/* Release original mbufs. */
1529			m_freem(*m_head);
1530			if (m == NULL) {
1531				*m_head = NULL;
1532				return (ENOBUFS);
1533			}
1534			*m_head = m;
1535		}
1536		ip_off = sizeof(struct ether_header);
1537		m = m_pullup(m, ip_off);
1538		if (m == NULL) {
1539			*m_head = NULL;
1540			return (ENOBUFS);
1541		}
1542		eh = mtod(m, struct ether_header *);
1543		/*
1544		 * Check if hardware VLAN insertion is off.
1545		 * Additional check for LLC/SNAP frame?
1546		 */
1547		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1548			ip_off = sizeof(struct ether_vlan_header);
1549			m = m_pullup(m, ip_off);
1550			if (m == NULL) {
1551				*m_head = NULL;
1552				return (ENOBUFS);
1553			}
1554		}
1555		m = m_pullup(m, ip_off + sizeof(struct ip));
1556		if (m == NULL) {
1557			*m_head = NULL;
1558			return (ENOBUFS);
1559		}
1560		ip = (struct ip *)(mtod(m, char *) + ip_off);
1561		poff = ip_off + (ip->ip_hl << 2);
1562		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1563			m = m_pullup(m, poff + sizeof(struct tcphdr));
1564			if (m == NULL) {
1565				*m_head = NULL;
1566				return (ENOBUFS);
1567			}
1568			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1569			/*
1570			 * L1 requires IP/TCP header size and offset as
1571			 * well as TCP pseudo checksum which complicates
1572			 * TSO configuration. I guess this comes from the
1573			 * adherence to Microsoft NDIS Large Send
1574			 * specification which requires insertion of
1575			 * pseudo checksum by upper stack. The pseudo
1576			 * checksum that NDIS refers to doesn't include
1577			 * TCP payload length so age(4) should recompute
1578			 * the pseudo checksum here. Hopefully this wouldn't
1579			 * be much burden on modern CPUs.
1580			 * Reset IP checksum and recompute TCP pseudo
1581			 * checksum as NDIS specification said.
1582			 */
1583			ip->ip_sum = 0;
1584			if (poff + (tcp->th_off << 2) == m->m_pkthdr.len)
1585				tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1586				    ip->ip_dst.s_addr,
1587				    htons((tcp->th_off << 2) + IPPROTO_TCP));
1588			else
1589				tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1590				    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1591		}
1592		*m_head = m;
1593	}
1594
1595	si = prod = sc->age_cdata.age_tx_prod;
1596	txd = &sc->age_cdata.age_txdesc[prod];
1597	txd_last = txd;
1598	map = txd->tx_dmamap;
1599
1600	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1601	    *m_head, txsegs, &nsegs, 0);
1602	if (error == EFBIG) {
1603		m = m_collapse(*m_head, M_DONTWAIT, AGE_MAXTXSEGS);
1604		if (m == NULL) {
1605			m_freem(*m_head);
1606			*m_head = NULL;
1607			return (ENOMEM);
1608		}
1609		*m_head = m;
1610		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1611		    *m_head, txsegs, &nsegs, 0);
1612		if (error != 0) {
1613			m_freem(*m_head);
1614			*m_head = NULL;
1615			return (error);
1616		}
1617	} else if (error != 0)
1618		return (error);
1619	if (nsegs == 0) {
1620		m_freem(*m_head);
1621		*m_head = NULL;
1622		return (EIO);
1623	}
1624
1625	/* Check descriptor overrun. */
1626	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1627		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1628		return (ENOBUFS);
1629	}
1630
1631	m = *m_head;
1632	/* Configure Tx IP/TCP/UDP checksum offload. */
1633	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1634		cflags |= AGE_TD_CSUM;
1635		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1636			cflags |= AGE_TD_TCPCSUM;
1637		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1638			cflags |= AGE_TD_UDPCSUM;
1639		/* Set checksum start offset. */
1640		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1641		/* Set checksum insertion position of TCP/UDP. */
1642		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1643		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1644	}
1645
1646	/* Configure TSO. */
1647	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1648		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1649			/* Not TSO but IP/TCP checksum offload. */
1650			cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1651			/* Clear TSO in order not to set AGE_TD_TSO_HDR. */
1652			m->m_pkthdr.csum_flags &= ~CSUM_TSO;
1653		} else {
1654			/* Request TSO and set MSS. */
1655			cflags |= AGE_TD_TSO_IPV4;
1656			cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1657			cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1658			    AGE_TD_TSO_MSS_SHIFT);
1659		}
1660		/* Set IP/TCP header size. */
1661		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1662		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1663	}
1664
1665	/* Configure VLAN hardware tag insertion. */
1666	if ((m->m_flags & M_VLANTAG) != 0) {
1667		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1668		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1669		cflags |= AGE_TD_INSERT_VLAN_TAG;
1670	}
1671
1672	desc = NULL;
1673	for (i = 0; i < nsegs; i++) {
1674		desc = &sc->age_rdata.age_tx_ring[prod];
1675		desc->addr = htole64(txsegs[i].ds_addr);
1676		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1677		desc->flags = htole32(cflags);
1678		sc->age_cdata.age_tx_cnt++;
1679		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1680	}
1681	/* Update producer index. */
1682	sc->age_cdata.age_tx_prod = prod;
1683
1684	/* Set EOP on the last descriptor. */
1685	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1686	desc = &sc->age_rdata.age_tx_ring[prod];
1687	desc->flags |= htole32(AGE_TD_EOP);
1688
1689	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1690	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1691		desc = &sc->age_rdata.age_tx_ring[si];
1692		desc->flags |= htole32(AGE_TD_TSO_HDR);
1693	}
1694
1695	/* Swap dmamap of the first and the last. */
1696	txd = &sc->age_cdata.age_txdesc[prod];
1697	map = txd_last->tx_dmamap;
1698	txd_last->tx_dmamap = txd->tx_dmamap;
1699	txd->tx_dmamap = map;
1700	txd->tx_m = m;
1701
1702	/* Sync descriptors. */
1703	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1704	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1705	    sc->age_cdata.age_tx_ring_map,
1706	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1707
1708	return (0);
1709}
1710
1711static void
1712age_tx_task(void *arg, int pending)
1713{
1714	struct ifnet *ifp;
1715
1716	ifp = (struct ifnet *)arg;
1717	age_start(ifp);
1718}
1719
1720static void
1721age_start(struct ifnet *ifp)
1722{
1723        struct age_softc *sc;
1724        struct mbuf *m_head;
1725	int enq;
1726
1727	sc = ifp->if_softc;
1728
1729	AGE_LOCK(sc);
1730
1731	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1732	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0) {
1733		AGE_UNLOCK(sc);
1734		return;
1735	}
1736
1737	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1738		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1739		if (m_head == NULL)
1740			break;
1741		/*
1742		 * Pack the data into the transmit ring. If we
1743		 * don't have room, set the OACTIVE flag and wait
1744		 * for the NIC to drain the ring.
1745		 */
1746		if (age_encap(sc, &m_head)) {
1747			if (m_head == NULL)
1748				break;
1749			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1750			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1751			break;
1752		}
1753
1754		enq++;
1755		/*
1756		 * If there's a BPF listener, bounce a copy of this frame
1757		 * to him.
1758		 */
1759		ETHER_BPF_MTAP(ifp, m_head);
1760	}
1761
1762	if (enq > 0) {
1763		/* Update mbox. */
1764		AGE_COMMIT_MBOX(sc);
1765		/* Set a timeout in case the chip goes out to lunch. */
1766		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1767	}
1768
1769	AGE_UNLOCK(sc);
1770}
1771
1772static void
1773age_watchdog(struct age_softc *sc)
1774{
1775	struct ifnet *ifp;
1776
1777	AGE_LOCK_ASSERT(sc);
1778
1779	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1780		return;
1781
1782	ifp = sc->age_ifp;
1783	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1784		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1785		ifp->if_oerrors++;
1786		age_init_locked(sc);
1787		return;
1788	}
1789	if (sc->age_cdata.age_tx_cnt == 0) {
1790		if_printf(sc->age_ifp,
1791		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1792		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1793			taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
1794		return;
1795	}
1796	if_printf(sc->age_ifp, "watchdog timeout\n");
1797	ifp->if_oerrors++;
1798	age_init_locked(sc);
1799	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1800		taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
1801}
1802
1803static int
1804age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1805{
1806	struct age_softc *sc;
1807	struct ifreq *ifr;
1808	struct mii_data *mii;
1809	uint32_t reg;
1810	int error, mask;
1811
1812	sc = ifp->if_softc;
1813	ifr = (struct ifreq *)data;
1814	error = 0;
1815	switch (cmd) {
1816	case SIOCSIFMTU:
1817		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1818			error = EINVAL;
1819		else if (ifp->if_mtu != ifr->ifr_mtu) {
1820			AGE_LOCK(sc);
1821			ifp->if_mtu = ifr->ifr_mtu;
1822			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1823				age_init_locked(sc);
1824			AGE_UNLOCK(sc);
1825		}
1826		break;
1827	case SIOCSIFFLAGS:
1828		AGE_LOCK(sc);
1829		if ((ifp->if_flags & IFF_UP) != 0) {
1830			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1831				if (((ifp->if_flags ^ sc->age_if_flags)
1832				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1833					age_rxfilter(sc);
1834			} else {
1835				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1836					age_init_locked(sc);
1837			}
1838		} else {
1839			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1840				age_stop(sc);
1841		}
1842		sc->age_if_flags = ifp->if_flags;
1843		AGE_UNLOCK(sc);
1844		break;
1845	case SIOCADDMULTI:
1846	case SIOCDELMULTI:
1847		AGE_LOCK(sc);
1848		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1849			age_rxfilter(sc);
1850		AGE_UNLOCK(sc);
1851		break;
1852	case SIOCSIFMEDIA:
1853	case SIOCGIFMEDIA:
1854		mii = device_get_softc(sc->age_miibus);
1855		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1856		break;
1857	case SIOCSIFCAP:
1858		AGE_LOCK(sc);
1859		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1860		if ((mask & IFCAP_TXCSUM) != 0 &&
1861		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1862			ifp->if_capenable ^= IFCAP_TXCSUM;
1863			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1864				ifp->if_hwassist |= AGE_CSUM_FEATURES;
1865			else
1866				ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1867		}
1868		if ((mask & IFCAP_RXCSUM) != 0 &&
1869		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1870			ifp->if_capenable ^= IFCAP_RXCSUM;
1871			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1872			reg &= ~MAC_CFG_RXCSUM_ENB;
1873			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1874				reg |= MAC_CFG_RXCSUM_ENB;
1875			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1876		}
1877		if ((mask & IFCAP_TSO4) != 0 &&
1878		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1879			ifp->if_capenable ^= IFCAP_TSO4;
1880			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1881				ifp->if_hwassist |= CSUM_TSO;
1882			else
1883				ifp->if_hwassist &= ~CSUM_TSO;
1884		}
1885
1886		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1887		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1888			ifp->if_capenable ^= IFCAP_WOL_MCAST;
1889		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1890		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1891			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1892		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1893		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1894			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1895		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1896		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1897			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1898		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1899		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1900			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1901			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1902				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1903			age_rxvlan(sc);
1904		}
1905		AGE_UNLOCK(sc);
1906		VLAN_CAPABILITIES(ifp);
1907		break;
1908	default:
1909		error = ether_ioctl(ifp, cmd, data);
1910		break;
1911	}
1912
1913	return (error);
1914}
1915
1916static void
1917age_mac_config(struct age_softc *sc)
1918{
1919	struct mii_data *mii;
1920	uint32_t reg;
1921
1922	AGE_LOCK_ASSERT(sc);
1923
1924	mii = device_get_softc(sc->age_miibus);
1925	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1926	reg &= ~MAC_CFG_FULL_DUPLEX;
1927	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1928	reg &= ~MAC_CFG_SPEED_MASK;
1929	/* Reprogram MAC with resolved speed/duplex. */
1930	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1931	case IFM_10_T:
1932	case IFM_100_TX:
1933		reg |= MAC_CFG_SPEED_10_100;
1934		break;
1935	case IFM_1000_T:
1936		reg |= MAC_CFG_SPEED_1000;
1937		break;
1938	}
1939	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1940		reg |= MAC_CFG_FULL_DUPLEX;
1941#ifdef notyet
1942		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1943			reg |= MAC_CFG_TX_FC;
1944		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1945			reg |= MAC_CFG_RX_FC;
1946#endif
1947	}
1948
1949	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1950}
1951
1952static void
1953age_link_task(void *arg, int pending)
1954{
1955	struct age_softc *sc;
1956	struct mii_data *mii;
1957	struct ifnet *ifp;
1958	uint32_t reg;
1959
1960	sc = (struct age_softc *)arg;
1961
1962	AGE_LOCK(sc);
1963	mii = device_get_softc(sc->age_miibus);
1964	ifp = sc->age_ifp;
1965	if (mii == NULL || ifp == NULL ||
1966	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1967		AGE_UNLOCK(sc);
1968		return;
1969	}
1970
1971	sc->age_flags &= ~AGE_FLAG_LINK;
1972	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1973		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1974		case IFM_10_T:
1975		case IFM_100_TX:
1976		case IFM_1000_T:
1977			sc->age_flags |= AGE_FLAG_LINK;
1978			break;
1979		default:
1980			break;
1981		}
1982	}
1983
1984	/* Stop Rx/Tx MACs. */
1985	age_stop_rxmac(sc);
1986	age_stop_txmac(sc);
1987
1988	/* Program MACs with resolved speed/duplex/flow-control. */
1989	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
1990		age_mac_config(sc);
1991		reg = CSR_READ_4(sc, AGE_MAC_CFG);
1992		/* Restart DMA engine and Tx/Rx MAC. */
1993		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
1994		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
1995		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1996		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1997	}
1998
1999	AGE_UNLOCK(sc);
2000}
2001
2002static void
2003age_stats_update(struct age_softc *sc)
2004{
2005	struct age_stats *stat;
2006	struct smb *smb;
2007	struct ifnet *ifp;
2008
2009	AGE_LOCK_ASSERT(sc);
2010
2011	stat = &sc->age_stat;
2012
2013	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2014	    sc->age_cdata.age_smb_block_map,
2015	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2016
2017	smb = sc->age_rdata.age_smb_block;
2018	if (smb->updated == 0)
2019		return;
2020
2021	ifp = sc->age_ifp;
2022	/* Rx stats. */
2023	stat->rx_frames += smb->rx_frames;
2024	stat->rx_bcast_frames += smb->rx_bcast_frames;
2025	stat->rx_mcast_frames += smb->rx_mcast_frames;
2026	stat->rx_pause_frames += smb->rx_pause_frames;
2027	stat->rx_control_frames += smb->rx_control_frames;
2028	stat->rx_crcerrs += smb->rx_crcerrs;
2029	stat->rx_lenerrs += smb->rx_lenerrs;
2030	stat->rx_bytes += smb->rx_bytes;
2031	stat->rx_runts += smb->rx_runts;
2032	stat->rx_fragments += smb->rx_fragments;
2033	stat->rx_pkts_64 += smb->rx_pkts_64;
2034	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2035	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2036	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2037	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2038	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2039	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2040	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2041	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2042	stat->rx_desc_oflows += smb->rx_desc_oflows;
2043	stat->rx_alignerrs += smb->rx_alignerrs;
2044	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2045	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2046	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2047
2048	/* Tx stats. */
2049	stat->tx_frames += smb->tx_frames;
2050	stat->tx_bcast_frames += smb->tx_bcast_frames;
2051	stat->tx_mcast_frames += smb->tx_mcast_frames;
2052	stat->tx_pause_frames += smb->tx_pause_frames;
2053	stat->tx_excess_defer += smb->tx_excess_defer;
2054	stat->tx_control_frames += smb->tx_control_frames;
2055	stat->tx_deferred += smb->tx_deferred;
2056	stat->tx_bytes += smb->tx_bytes;
2057	stat->tx_pkts_64 += smb->tx_pkts_64;
2058	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2059	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2060	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2061	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2062	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2063	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2064	stat->tx_single_colls += smb->tx_single_colls;
2065	stat->tx_multi_colls += smb->tx_multi_colls;
2066	stat->tx_late_colls += smb->tx_late_colls;
2067	stat->tx_excess_colls += smb->tx_excess_colls;
2068	stat->tx_underrun += smb->tx_underrun;
2069	stat->tx_desc_underrun += smb->tx_desc_underrun;
2070	stat->tx_lenerrs += smb->tx_lenerrs;
2071	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2072	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2073	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2074
2075	/* Update counters in ifnet. */
2076	ifp->if_opackets += smb->tx_frames;
2077
2078	ifp->if_collisions += smb->tx_single_colls +
2079	    smb->tx_multi_colls + smb->tx_late_colls +
2080	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2081
2082	ifp->if_oerrors += smb->tx_excess_colls +
2083	    smb->tx_late_colls + smb->tx_underrun +
2084	    smb->tx_pkts_truncated;
2085
2086	ifp->if_ipackets += smb->rx_frames;
2087
2088	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2089	    smb->rx_runts + smb->rx_pkts_truncated +
2090	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2091	    smb->rx_alignerrs;
2092
2093	/* Update done, clear. */
2094	smb->updated = 0;
2095
2096	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2097	    sc->age_cdata.age_smb_block_map,
2098	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2099}
2100
2101static int
2102age_intr(void *arg)
2103{
2104	struct age_softc *sc;
2105	uint32_t status;
2106
2107	sc = (struct age_softc *)arg;
2108
2109	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2110	if (status == 0 || (status & AGE_INTRS) == 0)
2111		return (FILTER_STRAY);
2112	/* Disable interrupts. */
2113	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2114	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2115
2116	return (FILTER_HANDLED);
2117}
2118
2119static void
2120age_int_task(void *arg, int pending)
2121{
2122	struct age_softc *sc;
2123	struct ifnet *ifp;
2124	struct cmb *cmb;
2125	uint32_t status;
2126
2127	sc = (struct age_softc *)arg;
2128
2129	AGE_LOCK(sc);
2130
2131	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2132	    sc->age_cdata.age_cmb_block_map,
2133	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2134	cmb = sc->age_rdata.age_cmb_block;
2135	status = le32toh(cmb->intr_status);
2136	if (sc->age_morework != 0)
2137		status |= INTR_CMB_RX;
2138	if ((status & AGE_INTRS) == 0)
2139		goto done;
2140
2141	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2142	    TPD_CONS_SHIFT;
2143	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2144	    RRD_PROD_SHIFT;
2145	/* Let hardware know CMB was served. */
2146	cmb->intr_status = 0;
2147	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2148	    sc->age_cdata.age_cmb_block_map,
2149	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2150
2151#if 0
2152	printf("INTR: 0x%08x\n", status);
2153	status &= ~INTR_DIS_DMA;
2154	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2155#endif
2156	ifp = sc->age_ifp;
2157	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2158		if ((status & INTR_CMB_RX) != 0)
2159			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2160			    sc->age_process_limit);
2161		if ((status & INTR_CMB_TX) != 0)
2162			age_txintr(sc, sc->age_tpd_cons);
2163		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2164			if ((status & INTR_DMA_RD_TO_RST) != 0)
2165				device_printf(sc->age_dev,
2166				    "DMA read error! -- resetting\n");
2167			if ((status & INTR_DMA_WR_TO_RST) != 0)
2168				device_printf(sc->age_dev,
2169				    "DMA write error! -- resetting\n");
2170			age_init_locked(sc);
2171		}
2172		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2173			taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
2174		if ((status & INTR_SMB) != 0)
2175			age_stats_update(sc);
2176	}
2177
2178	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2179	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2180	    sc->age_cdata.age_cmb_block_map,
2181	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2182	status = le32toh(cmb->intr_status);
2183	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2184		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2185		AGE_UNLOCK(sc);
2186		return;
2187	}
2188
2189done:
2190	/* Re-enable interrupts. */
2191	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2192	AGE_UNLOCK(sc);
2193}
2194
2195static void
2196age_txintr(struct age_softc *sc, int tpd_cons)
2197{
2198	struct ifnet *ifp;
2199	struct age_txdesc *txd;
2200	int cons, prog;
2201
2202	AGE_LOCK_ASSERT(sc);
2203
2204	ifp = sc->age_ifp;
2205
2206	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2207	    sc->age_cdata.age_tx_ring_map,
2208	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2209
2210	/*
2211	 * Go through our Tx list and free mbufs for those
2212	 * frames which have been transmitted.
2213	 */
2214	cons = sc->age_cdata.age_tx_cons;
2215	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2216		if (sc->age_cdata.age_tx_cnt <= 0)
2217			break;
2218		prog++;
2219		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2220		sc->age_cdata.age_tx_cnt--;
2221		txd = &sc->age_cdata.age_txdesc[cons];
2222		/*
2223		 * Clear Tx descriptors, it's not required but would
2224		 * help debugging in case of Tx issues.
2225		 */
2226		txd->tx_desc->addr = 0;
2227		txd->tx_desc->len = 0;
2228		txd->tx_desc->flags = 0;
2229
2230		if (txd->tx_m == NULL)
2231			continue;
2232		/* Reclaim transmitted mbufs. */
2233		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2234		    BUS_DMASYNC_POSTWRITE);
2235		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2236		m_freem(txd->tx_m);
2237		txd->tx_m = NULL;
2238	}
2239
2240	if (prog > 0) {
2241		sc->age_cdata.age_tx_cons = cons;
2242
2243		/*
2244		 * Unarm watchdog timer only when there are no pending
2245		 * Tx descriptors in queue.
2246		 */
2247		if (sc->age_cdata.age_tx_cnt == 0)
2248			sc->age_watchdog_timer = 0;
2249		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2250		    sc->age_cdata.age_tx_ring_map,
2251		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2252	}
2253}
2254
2255/* Receive a frame. */
2256static void
2257age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2258{
2259	struct age_rxdesc *rxd;
2260	struct rx_desc *desc;
2261	struct ifnet *ifp;
2262	struct mbuf *mp, *m;
2263	uint32_t status, index, vtag;
2264	int count, nsegs, pktlen;
2265	int rx_cons;
2266
2267	AGE_LOCK_ASSERT(sc);
2268
2269	ifp = sc->age_ifp;
2270	status = le32toh(rxrd->flags);
2271	index = le32toh(rxrd->index);
2272	rx_cons = AGE_RX_CONS(index);
2273	nsegs = AGE_RX_NSEGS(index);
2274
2275	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2276	if ((status & AGE_RRD_ERROR) != 0 &&
2277	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2278	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
2279		/*
2280		 * We want to pass the following frames to upper
2281		 * layer regardless of error status of Rx return
2282		 * ring.
2283		 *
2284		 *  o IP/TCP/UDP checksum is bad.
2285		 *  o frame length and protocol specific length
2286		 *     does not match.
2287		 */
2288		sc->age_cdata.age_rx_cons += nsegs;
2289		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2290		return;
2291	}
2292
2293	pktlen = 0;
2294	for (count = 0; count < nsegs; count++,
2295	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2296		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2297		mp = rxd->rx_m;
2298		desc = rxd->rx_desc;
2299		/* Add a new receive buffer to the ring. */
2300		if (age_newbuf(sc, rxd) != 0) {
2301			ifp->if_iqdrops++;
2302			/* Reuse Rx buffers. */
2303			if (sc->age_cdata.age_rxhead != NULL) {
2304				m_freem(sc->age_cdata.age_rxhead);
2305				AGE_RXCHAIN_RESET(sc);
2306			}
2307			break;
2308		}
2309
2310		/* The length of the first mbuf is computed last. */
2311		if (count != 0) {
2312			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
2313			pktlen += mp->m_len;
2314		}
2315
2316		/* Chain received mbufs. */
2317		if (sc->age_cdata.age_rxhead == NULL) {
2318			sc->age_cdata.age_rxhead = mp;
2319			sc->age_cdata.age_rxtail = mp;
2320		} else {
2321			mp->m_flags &= ~M_PKTHDR;
2322			sc->age_cdata.age_rxprev_tail =
2323			    sc->age_cdata.age_rxtail;
2324			sc->age_cdata.age_rxtail->m_next = mp;
2325			sc->age_cdata.age_rxtail = mp;
2326		}
2327
2328		if (count == nsegs - 1) {
2329			/*
2330			 * It seems that L1 controller has no way
2331			 * to tell hardware to strip CRC bytes.
2332			 */
2333			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
2334			if (nsegs > 1) {
2335				/* Remove the CRC bytes in chained mbufs. */
2336				pktlen -= ETHER_CRC_LEN;
2337				if (mp->m_len <= ETHER_CRC_LEN) {
2338					sc->age_cdata.age_rxtail =
2339					    sc->age_cdata.age_rxprev_tail;
2340					sc->age_cdata.age_rxtail->m_len -=
2341					    (ETHER_CRC_LEN - mp->m_len);
2342					sc->age_cdata.age_rxtail->m_next = NULL;
2343					m_freem(mp);
2344				} else {
2345					mp->m_len -= ETHER_CRC_LEN;
2346				}
2347			}
2348
2349			m = sc->age_cdata.age_rxhead;
2350			m->m_flags |= M_PKTHDR;
2351			m->m_pkthdr.rcvif = ifp;
2352			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
2353			/* Set the first mbuf length. */
2354			m->m_len = sc->age_cdata.age_rxlen - pktlen;
2355
2356			/*
2357			 * Set checksum information.
2358			 * It seems that L1 controller can compute partial
2359			 * checksum. The partial checksum value can be used
2360			 * to accelerate checksum computation for fragmented
2361			 * TCP/UDP packets. Upper network stack already
2362			 * takes advantage of the partial checksum value in
2363			 * IP reassembly stage. But I'm not sure the
2364			 * correctness of the partial hardware checksum
2365			 * assistance due to lack of data sheet. If it is
2366			 * proven to work on L1 I'll enable it.
2367			 */
2368			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2369			    (status & AGE_RRD_IPV4) != 0) {
2370				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2371				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2372					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2373				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2374				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2375					m->m_pkthdr.csum_flags |=
2376					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2377					m->m_pkthdr.csum_data = 0xffff;
2378				}
2379				/*
2380				 * Don't mark bad checksum for TCP/UDP frames
2381				 * as fragmented frames may always have set
2382				 * bad checksummed bit of descriptor status.
2383				 */
2384			}
2385
2386			/* Check for VLAN tagged frames. */
2387			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2388			    (status & AGE_RRD_VLAN) != 0) {
2389				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2390				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2391				m->m_flags |= M_VLANTAG;
2392			}
2393
2394			/* Pass it on. */
2395			AGE_UNLOCK(sc);
2396			(*ifp->if_input)(ifp, m);
2397			AGE_LOCK(sc);
2398
2399			/* Reset mbuf chains. */
2400			AGE_RXCHAIN_RESET(sc);
2401		}
2402	}
2403
2404	if (count != nsegs) {
2405		sc->age_cdata.age_rx_cons += nsegs;
2406		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2407	} else
2408		sc->age_cdata.age_rx_cons = rx_cons;
2409}
2410
2411static int
2412age_rxintr(struct age_softc *sc, int rr_prod, int count)
2413{
2414	struct rx_rdesc *rxrd;
2415	int rr_cons, nsegs, pktlen, prog;
2416
2417	AGE_LOCK_ASSERT(sc);
2418
2419	rr_cons = sc->age_cdata.age_rr_cons;
2420	if (rr_cons == rr_prod)
2421		return (0);
2422
2423	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2424	    sc->age_cdata.age_rr_ring_map,
2425	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2426
2427	for (prog = 0; rr_cons != rr_prod; prog++) {
2428		if (count <= 0)
2429			break;
2430		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2431		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2432		if (nsegs == 0)
2433			break;
2434		/*
2435		 * Check number of segments against received bytes.
2436		 * Non-matching value would indicate that hardware
2437		 * is still trying to update Rx return descriptors.
2438		 * I'm not sure whether this check is really needed.
2439		 */
2440		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2441		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
2442		    (MCLBYTES - ETHER_ALIGN)))
2443			break;
2444
2445		prog++;
2446		/* Received a frame. */
2447		age_rxeof(sc, rxrd);
2448		/* Clear return ring. */
2449		rxrd->index = 0;
2450		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2451	}
2452
2453	if (prog > 0) {
2454		/* Update the consumer index. */
2455		sc->age_cdata.age_rr_cons = rr_cons;
2456
2457		/* Sync descriptors. */
2458		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2459		    sc->age_cdata.age_rr_ring_map,
2460		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2461
2462		/* Notify hardware availability of new Rx buffers. */
2463		AGE_COMMIT_MBOX(sc);
2464	}
2465
2466	return (count > 0 ? 0 : EAGAIN);
2467}
2468
2469static void
2470age_tick(void *arg)
2471{
2472	struct age_softc *sc;
2473	struct mii_data *mii;
2474
2475	sc = (struct age_softc *)arg;
2476
2477	AGE_LOCK_ASSERT(sc);
2478
2479	mii = device_get_softc(sc->age_miibus);
2480	mii_tick(mii);
2481	age_watchdog(sc);
2482	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2483}
2484
2485static void
2486age_reset(struct age_softc *sc)
2487{
2488	uint32_t reg;
2489	int i;
2490
2491	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2492	CSR_READ_4(sc, AGE_MASTER_CFG);
2493	DELAY(1000);
2494	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2495		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2496			break;
2497		DELAY(10);
2498	}
2499
2500	if (i == 0)
2501		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2502	/* Initialize PCIe module. From Linux. */
2503	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2504	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2505}
2506
2507static void
2508age_init(void *xsc)
2509{
2510	struct age_softc *sc;
2511
2512	sc = (struct age_softc *)xsc;
2513	AGE_LOCK(sc);
2514	age_init_locked(sc);
2515	AGE_UNLOCK(sc);
2516}
2517
2518static void
2519age_init_locked(struct age_softc *sc)
2520{
2521	struct ifnet *ifp;
2522	struct mii_data *mii;
2523	uint8_t eaddr[ETHER_ADDR_LEN];
2524	bus_addr_t paddr;
2525	uint32_t reg, fsize;
2526	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2527	int error;
2528
2529	AGE_LOCK_ASSERT(sc);
2530
2531	ifp = sc->age_ifp;
2532	mii = device_get_softc(sc->age_miibus);
2533
2534	/*
2535	 * Cancel any pending I/O.
2536	 */
2537	age_stop(sc);
2538
2539	/*
2540	 * Reset the chip to a known state.
2541	 */
2542	age_reset(sc);
2543
2544	/* Initialize descriptors. */
2545	error = age_init_rx_ring(sc);
2546        if (error != 0) {
2547                device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2548                age_stop(sc);
2549		return;
2550        }
2551	age_init_rr_ring(sc);
2552	age_init_tx_ring(sc);
2553	age_init_cmb_block(sc);
2554	age_init_smb_block(sc);
2555
2556	/* Reprogram the station address. */
2557	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2558	CSR_WRITE_4(sc, AGE_PAR0,
2559	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2560	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2561
2562	/* Set descriptor base addresses. */
2563	paddr = sc->age_rdata.age_tx_ring_paddr;
2564	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2565	paddr = sc->age_rdata.age_rx_ring_paddr;
2566	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2567	paddr = sc->age_rdata.age_rr_ring_paddr;
2568	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2569	paddr = sc->age_rdata.age_tx_ring_paddr;
2570	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2571	paddr = sc->age_rdata.age_cmb_block_paddr;
2572	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2573	paddr = sc->age_rdata.age_smb_block_paddr;
2574	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2575	/* Set Rx/Rx return descriptor counter. */
2576	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2577	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2578	    DESC_RRD_CNT_MASK) |
2579	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2580	/* Set Tx descriptor counter. */
2581	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2582	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2583
2584	/* Tell hardware that we're ready to load descriptors. */
2585	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2586
2587	/*
2588	 * Initialize mailbox register.
2589	 * Updated producer/consumer index information is exchanged
2590	 * through this mailbox register. However Tx producer and
2591	 * Rx return consumer/Rx producer are all shared such that
2592	 * it's hard to separate code path between Tx and Rx without
2593	 * locking. If L1 hardware have a separate mail box register
2594	 * for Tx and Rx consumer/producer management we could have
2595	 * indepent Tx/Rx handler which in turn Rx handler could have
2596	 * been run without any locking.
2597	 */
2598	AGE_COMMIT_MBOX(sc);
2599
2600	/* Configure IPG/IFG parameters. */
2601	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2602	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2603	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2604	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2605	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2606
2607	/* Set parameters for half-duplex media. */
2608	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2609	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2610	    HDPX_CFG_LCOL_MASK) |
2611	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2612	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2613	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2614	    HDPX_CFG_ABEBT_MASK) |
2615	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2616	    HDPX_CFG_JAMIPG_MASK));
2617
2618	/* Configure interrupt moderation timer. */
2619	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2620	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2621	reg &= ~MASTER_MTIMER_ENB;
2622	if (AGE_USECS(sc->age_int_mod) == 0)
2623		reg &= ~MASTER_ITIMER_ENB;
2624	else
2625		reg |= MASTER_ITIMER_ENB;
2626	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2627	if (bootverbose)
2628		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2629		    sc->age_int_mod);
2630	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2631
2632	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2633	if (ifp->if_mtu < ETHERMTU)
2634		sc->age_max_frame_size = ETHERMTU;
2635	else
2636		sc->age_max_frame_size = ifp->if_mtu;
2637	sc->age_max_frame_size += ETHER_HDR_LEN +
2638	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2639	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2640	/* Configure jumbo frame. */
2641	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2642	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2643	    (((fsize / sizeof(uint64_t)) <<
2644	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2645	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2646	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2647	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2648	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2649
2650	/* Configure flow-control parameters. From Linux. */
2651	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2652		/*
2653		 * Magic workaround for old-L1.
2654		 * Don't know which hw revision requires this magic.
2655		 */
2656		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2657		/*
2658		 * Another magic workaround for flow-control mode
2659		 * change. From Linux.
2660		 */
2661		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2662	}
2663	/*
2664	 * TODO
2665	 *  Should understand pause parameter relationships between FIFO
2666	 *  size and number of Rx descriptors and Rx return descriptors.
2667	 *
2668	 *  Magic parameters came from Linux.
2669	 */
2670	switch (sc->age_chip_rev) {
2671	case 0x8001:
2672	case 0x9001:
2673	case 0x9002:
2674	case 0x9003:
2675		rxf_hi = AGE_RX_RING_CNT / 16;
2676		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2677		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2678		rrd_lo = AGE_RR_RING_CNT / 16;
2679		break;
2680	default:
2681		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2682		rxf_lo = reg / 16;
2683		if (rxf_lo < 192)
2684			rxf_lo = 192;
2685		rxf_hi = (reg * 7) / 8;
2686		if (rxf_hi < rxf_lo)
2687			rxf_hi = rxf_lo + 16;
2688		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2689		rrd_lo = reg / 8;
2690		rrd_hi = (reg * 7) / 8;
2691		if (rrd_lo < 2)
2692			rrd_lo = 2;
2693		if (rrd_hi < rrd_lo)
2694			rrd_hi = rrd_lo + 3;
2695		break;
2696	}
2697	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2698	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2699	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2700	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2701	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2702	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2703	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2704	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2705	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2706	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2707
2708	/* Configure RxQ. */
2709	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2710	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2711	    RXQ_CFG_RD_BURST_MASK) |
2712	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2713	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2714	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2715	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2716	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2717
2718	/* Configure TxQ. */
2719	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2720	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2721	    TXQ_CFG_TPD_BURST_MASK) |
2722	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2723	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2724	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2725	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2726	    TXQ_CFG_ENB);
2727
2728	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2729	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2730	    TX_JUMBO_TPD_TH_MASK) |
2731	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2732	    TX_JUMBO_TPD_IPG_MASK));
2733	/* Configure DMA parameters. */
2734	CSR_WRITE_4(sc, AGE_DMA_CFG,
2735	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2736	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2737	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2738
2739	/* Configure CMB DMA write threshold. */
2740	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2741	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2742	    CMB_WR_THRESH_RRD_MASK) |
2743	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2744	    CMB_WR_THRESH_TPD_MASK));
2745
2746	/* Set CMB/SMB timer and enable them. */
2747	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2748	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2749	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2750	/* Request SMB updates for every seconds. */
2751	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2752	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2753
2754	/*
2755	 * Disable all WOL bits as WOL can interfere normal Rx
2756	 * operation.
2757	 */
2758	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2759
2760	/*
2761	 * Configure Tx/Rx MACs.
2762	 *  - Auto-padding for short frames.
2763	 *  - Enable CRC generation.
2764	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2765	 *  of MAC is followed after link establishment.
2766	 */
2767	CSR_WRITE_4(sc, AGE_MAC_CFG,
2768	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2769	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2770	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2771	    MAC_CFG_PREAMBLE_MASK));
2772	/* Set up the receive filter. */
2773	age_rxfilter(sc);
2774	age_rxvlan(sc);
2775
2776	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2777	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2778		reg |= MAC_CFG_RXCSUM_ENB;
2779
2780	/* Ack all pending interrupts and clear it. */
2781	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2782	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2783
2784	/* Finally enable Tx/Rx MAC. */
2785	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2786
2787	sc->age_flags &= ~AGE_FLAG_LINK;
2788	/* Switch to the current media. */
2789	mii_mediachg(mii);
2790
2791	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2792
2793	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2794	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2795}
2796
2797static void
2798age_stop(struct age_softc *sc)
2799{
2800	struct ifnet *ifp;
2801	struct age_txdesc *txd;
2802	struct age_rxdesc *rxd;
2803	uint32_t reg;
2804	int i;
2805
2806	AGE_LOCK_ASSERT(sc);
2807	/*
2808	 * Mark the interface down and cancel the watchdog timer.
2809	 */
2810	ifp = sc->age_ifp;
2811	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2812	sc->age_flags &= ~AGE_FLAG_LINK;
2813	callout_stop(&sc->age_tick_ch);
2814	sc->age_watchdog_timer = 0;
2815
2816	/*
2817	 * Disable interrupts.
2818	 */
2819	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2820	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2821	/* Stop CMB/SMB updates. */
2822	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2823	/* Stop Rx/Tx MAC. */
2824	age_stop_rxmac(sc);
2825	age_stop_txmac(sc);
2826	/* Stop DMA. */
2827	CSR_WRITE_4(sc, AGE_DMA_CFG,
2828	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2829	/* Stop TxQ/RxQ. */
2830	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2831	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2832	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2833	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2834	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2835		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2836			break;
2837		DELAY(10);
2838	}
2839	if (i == 0)
2840		device_printf(sc->age_dev,
2841		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2842
2843	 /* Reclaim Rx buffers that have been processed. */
2844	if (sc->age_cdata.age_rxhead != NULL)
2845		m_freem(sc->age_cdata.age_rxhead);
2846	AGE_RXCHAIN_RESET(sc);
2847	/*
2848	 * Free RX and TX mbufs still in the queues.
2849	 */
2850	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2851		rxd = &sc->age_cdata.age_rxdesc[i];
2852		if (rxd->rx_m != NULL) {
2853			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2854			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2855			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2856			    rxd->rx_dmamap);
2857			m_freem(rxd->rx_m);
2858			rxd->rx_m = NULL;
2859		}
2860        }
2861	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2862		txd = &sc->age_cdata.age_txdesc[i];
2863		if (txd->tx_m != NULL) {
2864			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2865			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2866			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2867			    txd->tx_dmamap);
2868			m_freem(txd->tx_m);
2869			txd->tx_m = NULL;
2870		}
2871        }
2872}
2873
2874static void
2875age_stop_txmac(struct age_softc *sc)
2876{
2877	uint32_t reg;
2878	int i;
2879
2880	AGE_LOCK_ASSERT(sc);
2881
2882	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2883	if ((reg & MAC_CFG_TX_ENB) != 0) {
2884		reg &= ~MAC_CFG_TX_ENB;
2885		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2886	}
2887	/* Stop Tx DMA engine. */
2888	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2889	if ((reg & DMA_CFG_RD_ENB) != 0) {
2890		reg &= ~DMA_CFG_RD_ENB;
2891		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2892	}
2893	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2894		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2895		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2896			break;
2897		DELAY(10);
2898	}
2899	if (i == 0)
2900		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2901}
2902
2903static void
2904age_stop_rxmac(struct age_softc *sc)
2905{
2906	uint32_t reg;
2907	int i;
2908
2909	AGE_LOCK_ASSERT(sc);
2910
2911	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2912	if ((reg & MAC_CFG_RX_ENB) != 0) {
2913		reg &= ~MAC_CFG_RX_ENB;
2914		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2915	}
2916	/* Stop Rx DMA engine. */
2917	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2918	if ((reg & DMA_CFG_WR_ENB) != 0) {
2919		reg &= ~DMA_CFG_WR_ENB;
2920		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2921	}
2922	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2923		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2924		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2925			break;
2926		DELAY(10);
2927	}
2928	if (i == 0)
2929		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2930}
2931
2932static void
2933age_init_tx_ring(struct age_softc *sc)
2934{
2935	struct age_ring_data *rd;
2936	struct age_txdesc *txd;
2937	int i;
2938
2939	AGE_LOCK_ASSERT(sc);
2940
2941	sc->age_cdata.age_tx_prod = 0;
2942	sc->age_cdata.age_tx_cons = 0;
2943	sc->age_cdata.age_tx_cnt = 0;
2944
2945	rd = &sc->age_rdata;
2946	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2947	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2948		txd = &sc->age_cdata.age_txdesc[i];
2949		txd->tx_desc = &rd->age_tx_ring[i];
2950		txd->tx_m = NULL;
2951	}
2952
2953	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2954	    sc->age_cdata.age_tx_ring_map,
2955	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2956}
2957
2958static int
2959age_init_rx_ring(struct age_softc *sc)
2960{
2961	struct age_ring_data *rd;
2962	struct age_rxdesc *rxd;
2963	int i;
2964
2965	AGE_LOCK_ASSERT(sc);
2966
2967	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2968	sc->age_morework = 0;
2969	rd = &sc->age_rdata;
2970	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2971	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2972		rxd = &sc->age_cdata.age_rxdesc[i];
2973		rxd->rx_m = NULL;
2974		rxd->rx_desc = &rd->age_rx_ring[i];
2975		if (age_newbuf(sc, rxd) != 0)
2976			return (ENOBUFS);
2977	}
2978
2979	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2980	    sc->age_cdata.age_rx_ring_map,
2981	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2982
2983	return (0);
2984}
2985
2986static void
2987age_init_rr_ring(struct age_softc *sc)
2988{
2989	struct age_ring_data *rd;
2990
2991	AGE_LOCK_ASSERT(sc);
2992
2993	sc->age_cdata.age_rr_cons = 0;
2994	AGE_RXCHAIN_RESET(sc);
2995
2996	rd = &sc->age_rdata;
2997	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
2998	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2999	    sc->age_cdata.age_rr_ring_map,
3000	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3001}
3002
3003static void
3004age_init_cmb_block(struct age_softc *sc)
3005{
3006	struct age_ring_data *rd;
3007
3008	AGE_LOCK_ASSERT(sc);
3009
3010	rd = &sc->age_rdata;
3011	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3012	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3013	    sc->age_cdata.age_cmb_block_map,
3014	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3015}
3016
3017static void
3018age_init_smb_block(struct age_softc *sc)
3019{
3020	struct age_ring_data *rd;
3021
3022	AGE_LOCK_ASSERT(sc);
3023
3024	rd = &sc->age_rdata;
3025	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3026	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3027	    sc->age_cdata.age_smb_block_map,
3028	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3029}
3030
3031static int
3032age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3033{
3034	struct rx_desc *desc;
3035	struct mbuf *m;
3036	bus_dma_segment_t segs[1];
3037	bus_dmamap_t map;
3038	int nsegs;
3039
3040	AGE_LOCK_ASSERT(sc);
3041
3042	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3043	if (m == NULL)
3044		return (ENOBUFS);
3045	m->m_len = m->m_pkthdr.len = MCLBYTES;
3046	m_adj(m, ETHER_ALIGN);
3047
3048	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3049	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3050		m_freem(m);
3051		return (ENOBUFS);
3052	}
3053	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3054
3055	if (rxd->rx_m != NULL) {
3056		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3057		    BUS_DMASYNC_POSTREAD);
3058		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3059	}
3060	map = rxd->rx_dmamap;
3061	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3062	sc->age_cdata.age_rx_sparemap = map;
3063	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3064	    BUS_DMASYNC_PREREAD);
3065	rxd->rx_m = m;
3066
3067	desc = rxd->rx_desc;
3068	desc->addr = htole64(segs[0].ds_addr);
3069	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3070	    AGE_RD_LEN_SHIFT);
3071	return (0);
3072}
3073
3074static void
3075age_rxvlan(struct age_softc *sc)
3076{
3077	struct ifnet *ifp;
3078	uint32_t reg;
3079
3080	AGE_LOCK_ASSERT(sc);
3081
3082	ifp = sc->age_ifp;
3083	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3084	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3085	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3086		reg |= MAC_CFG_VLAN_TAG_STRIP;
3087	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3088}
3089
3090static void
3091age_rxfilter(struct age_softc *sc)
3092{
3093	struct ifnet *ifp;
3094	struct ifmultiaddr *ifma;
3095	uint32_t crc;
3096	uint32_t mchash[2];
3097	uint32_t rxcfg;
3098
3099	AGE_LOCK_ASSERT(sc);
3100
3101	ifp = sc->age_ifp;
3102
3103	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3104	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3105	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3106		rxcfg |= MAC_CFG_BCAST;
3107	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3108		if ((ifp->if_flags & IFF_PROMISC) != 0)
3109			rxcfg |= MAC_CFG_PROMISC;
3110		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3111			rxcfg |= MAC_CFG_ALLMULTI;
3112		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3113		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3114		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3115		return;
3116	}
3117
3118	/* Program new filter. */
3119	bzero(mchash, sizeof(mchash));
3120
3121	if_maddr_rlock(ifp);
3122	TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3123		if (ifma->ifma_addr->sa_family != AF_LINK)
3124			continue;
3125		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3126		    ifma->ifma_addr), ETHER_ADDR_LEN);
3127		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3128	}
3129	if_maddr_runlock(ifp);
3130
3131	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3132	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3133	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3134}
3135
3136static int
3137sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3138{
3139	struct age_softc *sc;
3140	struct age_stats *stats;
3141	int error, result;
3142
3143	result = -1;
3144	error = sysctl_handle_int(oidp, &result, 0, req);
3145
3146	if (error != 0 || req->newptr == NULL)
3147		return (error);
3148
3149	if (result != 1)
3150		return (error);
3151
3152	sc = (struct age_softc *)arg1;
3153	stats = &sc->age_stat;
3154	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3155	printf("Transmit good frames : %ju\n",
3156	    (uintmax_t)stats->tx_frames);
3157	printf("Transmit good broadcast frames : %ju\n",
3158	    (uintmax_t)stats->tx_bcast_frames);
3159	printf("Transmit good multicast frames : %ju\n",
3160	    (uintmax_t)stats->tx_mcast_frames);
3161	printf("Transmit pause control frames : %u\n",
3162	    stats->tx_pause_frames);
3163	printf("Transmit control frames : %u\n",
3164	    stats->tx_control_frames);
3165	printf("Transmit frames with excessive deferrals : %u\n",
3166	    stats->tx_excess_defer);
3167	printf("Transmit deferrals : %u\n",
3168	    stats->tx_deferred);
3169	printf("Transmit good octets : %ju\n",
3170	    (uintmax_t)stats->tx_bytes);
3171	printf("Transmit good broadcast octets : %ju\n",
3172	    (uintmax_t)stats->tx_bcast_bytes);
3173	printf("Transmit good multicast octets : %ju\n",
3174	    (uintmax_t)stats->tx_mcast_bytes);
3175	printf("Transmit frames 64 bytes : %ju\n",
3176	    (uintmax_t)stats->tx_pkts_64);
3177	printf("Transmit frames 65 to 127 bytes : %ju\n",
3178	    (uintmax_t)stats->tx_pkts_65_127);
3179	printf("Transmit frames 128 to 255 bytes : %ju\n",
3180	    (uintmax_t)stats->tx_pkts_128_255);
3181	printf("Transmit frames 256 to 511 bytes : %ju\n",
3182	    (uintmax_t)stats->tx_pkts_256_511);
3183	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3184	    (uintmax_t)stats->tx_pkts_512_1023);
3185	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3186	    (uintmax_t)stats->tx_pkts_1024_1518);
3187	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3188	    (uintmax_t)stats->tx_pkts_1519_max);
3189	printf("Transmit single collisions : %u\n",
3190	    stats->tx_single_colls);
3191	printf("Transmit multiple collisions : %u\n",
3192	    stats->tx_multi_colls);
3193	printf("Transmit late collisions : %u\n",
3194	    stats->tx_late_colls);
3195	printf("Transmit abort due to excessive collisions : %u\n",
3196	    stats->tx_excess_colls);
3197	printf("Transmit underruns due to FIFO underruns : %u\n",
3198	    stats->tx_underrun);
3199	printf("Transmit descriptor write-back errors : %u\n",
3200	    stats->tx_desc_underrun);
3201	printf("Transmit frames with length mismatched frame size : %u\n",
3202	    stats->tx_lenerrs);
3203	printf("Transmit frames with truncated due to MTU size : %u\n",
3204	    stats->tx_lenerrs);
3205
3206	printf("Receive good frames : %ju\n",
3207	    (uintmax_t)stats->rx_frames);
3208	printf("Receive good broadcast frames : %ju\n",
3209	    (uintmax_t)stats->rx_bcast_frames);
3210	printf("Receive good multicast frames : %ju\n",
3211	    (uintmax_t)stats->rx_mcast_frames);
3212	printf("Receive pause control frames : %u\n",
3213	    stats->rx_pause_frames);
3214	printf("Receive control frames : %u\n",
3215	    stats->rx_control_frames);
3216	printf("Receive CRC errors : %u\n",
3217	    stats->rx_crcerrs);
3218	printf("Receive frames with length errors : %u\n",
3219	    stats->rx_lenerrs);
3220	printf("Receive good octets : %ju\n",
3221	    (uintmax_t)stats->rx_bytes);
3222	printf("Receive good broadcast octets : %ju\n",
3223	    (uintmax_t)stats->rx_bcast_bytes);
3224	printf("Receive good multicast octets : %ju\n",
3225	    (uintmax_t)stats->rx_mcast_bytes);
3226	printf("Receive frames too short : %u\n",
3227	    stats->rx_runts);
3228	printf("Receive fragmented frames : %ju\n",
3229	    (uintmax_t)stats->rx_fragments);
3230	printf("Receive frames 64 bytes : %ju\n",
3231	    (uintmax_t)stats->rx_pkts_64);
3232	printf("Receive frames 65 to 127 bytes : %ju\n",
3233	    (uintmax_t)stats->rx_pkts_65_127);
3234	printf("Receive frames 128 to 255 bytes : %ju\n",
3235	    (uintmax_t)stats->rx_pkts_128_255);
3236	printf("Receive frames 256 to 511 bytes : %ju\n",
3237	    (uintmax_t)stats->rx_pkts_256_511);
3238	printf("Receive frames 512 to 1024 bytes : %ju\n",
3239	    (uintmax_t)stats->rx_pkts_512_1023);
3240	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3241	    (uintmax_t)stats->rx_pkts_1024_1518);
3242	printf("Receive frames 1519 to MTU bytes : %ju\n",
3243	    (uintmax_t)stats->rx_pkts_1519_max);
3244	printf("Receive frames too long : %ju\n",
3245	    (uint64_t)stats->rx_pkts_truncated);
3246	printf("Receive frames with FIFO overflow : %u\n",
3247	    stats->rx_fifo_oflows);
3248	printf("Receive frames with return descriptor overflow : %u\n",
3249	    stats->rx_desc_oflows);
3250	printf("Receive frames with alignment errors : %u\n",
3251	    stats->rx_alignerrs);
3252	printf("Receive frames dropped due to address filtering : %ju\n",
3253	    (uint64_t)stats->rx_pkts_filtered);
3254
3255	return (error);
3256}
3257
3258static int
3259sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3260{
3261	int error, value;
3262
3263	if (arg1 == NULL)
3264		return (EINVAL);
3265	value = *(int *)arg1;
3266	error = sysctl_handle_int(oidp, &value, 0, req);
3267	if (error || req->newptr == NULL)
3268		return (error);
3269	if (value < low || value > high)
3270		return (EINVAL);
3271        *(int *)arg1 = value;
3272
3273        return (0);
3274}
3275
3276static int
3277sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3278{
3279	return (sysctl_int_range(oidp, arg1, arg2, req,
3280	    AGE_PROC_MIN, AGE_PROC_MAX));
3281}
3282
3283static int
3284sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3285{
3286
3287	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3288	    AGE_IM_TIMER_MAX));
3289}
3290