acpi_cpu.c revision 280973
1/*-
2 * Copyright (c) 2003-2005 Nate Lawson (SDG)
3 * Copyright (c) 2001 Michael Smith
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: stable/10/sys/dev/acpica/acpi_cpu.c 280973 2015-04-02 01:02:42Z jhb $");
30
31#include "opt_acpi.h"
32#include <sys/param.h>
33#include <sys/bus.h>
34#include <sys/cpu.h>
35#include <sys/kernel.h>
36#include <sys/malloc.h>
37#include <sys/module.h>
38#include <sys/pcpu.h>
39#include <sys/power.h>
40#include <sys/proc.h>
41#include <sys/sched.h>
42#include <sys/sbuf.h>
43#include <sys/smp.h>
44
45#include <dev/pci/pcivar.h>
46#include <machine/atomic.h>
47#include <machine/bus.h>
48#if defined(__amd64__) || defined(__i386__)
49#include <machine/clock.h>
50#endif
51#include <sys/rman.h>
52
53#include <contrib/dev/acpica/include/acpi.h>
54#include <contrib/dev/acpica/include/accommon.h>
55
56#include <dev/acpica/acpivar.h>
57
58/*
59 * Support for ACPI Processor devices, including C[1-3] sleep states.
60 */
61
62/* Hooks for the ACPI CA debugging infrastructure */
63#define _COMPONENT	ACPI_PROCESSOR
64ACPI_MODULE_NAME("PROCESSOR")
65
66struct acpi_cx {
67    struct resource	*p_lvlx;	/* Register to read to enter state. */
68    uint32_t		 type;		/* C1-3 (C4 and up treated as C3). */
69    uint32_t		 trans_lat;	/* Transition latency (usec). */
70    uint32_t		 power;		/* Power consumed (mW). */
71    int			 res_type;	/* Resource type for p_lvlx. */
72    int			 res_rid;	/* Resource ID for p_lvlx. */
73};
74#define MAX_CX_STATES	 8
75
76struct acpi_cpu_softc {
77    device_t		 cpu_dev;
78    ACPI_HANDLE		 cpu_handle;
79    struct pcpu		*cpu_pcpu;
80    uint32_t		 cpu_acpi_id;	/* ACPI processor id */
81    uint32_t		 cpu_p_blk;	/* ACPI P_BLK location */
82    uint32_t		 cpu_p_blk_len;	/* P_BLK length (must be 6). */
83    struct acpi_cx	 cpu_cx_states[MAX_CX_STATES];
84    int			 cpu_cx_count;	/* Number of valid Cx states. */
85    int			 cpu_prev_sleep;/* Last idle sleep duration. */
86    int			 cpu_features;	/* Child driver supported features. */
87    /* Runtime state. */
88    int			 cpu_non_c2;	/* Index of lowest non-C2 state. */
89    int			 cpu_non_c3;	/* Index of lowest non-C3 state. */
90    u_int		 cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
91    /* Values for sysctl. */
92    struct sysctl_ctx_list cpu_sysctl_ctx;
93    struct sysctl_oid	*cpu_sysctl_tree;
94    int			 cpu_cx_lowest;
95    int			 cpu_cx_lowest_lim;
96    int			 cpu_disable_idle; /* Disable entry to idle function */
97    char 		 cpu_cx_supported[64];
98};
99
100struct acpi_cpu_device {
101    struct resource_list	ad_rl;
102};
103
104#define CPU_GET_REG(reg, width) 					\
105    (bus_space_read_ ## width(rman_get_bustag((reg)), 			\
106		      rman_get_bushandle((reg)), 0))
107#define CPU_SET_REG(reg, width, val)					\
108    (bus_space_write_ ## width(rman_get_bustag((reg)), 			\
109		       rman_get_bushandle((reg)), 0, (val)))
110
111#define PM_USEC(x)	 ((x) >> 2)	/* ~4 clocks per usec (3.57955 Mhz) */
112
113#define ACPI_NOTIFY_CX_STATES	0x81	/* _CST changed. */
114
115#define CPU_QUIRK_NO_C3		(1<<0)	/* C3-type states are not usable. */
116#define CPU_QUIRK_NO_BM_CTRL	(1<<2)	/* No bus mastering control. */
117
118#define PCI_VENDOR_INTEL	0x8086
119#define PCI_DEVICE_82371AB_3	0x7113	/* PIIX4 chipset for quirks. */
120#define PCI_REVISION_A_STEP	0
121#define PCI_REVISION_B_STEP	1
122#define PCI_REVISION_4E		2
123#define PCI_REVISION_4M		3
124#define PIIX4_DEVACTB_REG	0x58
125#define PIIX4_BRLD_EN_IRQ0	(1<<0)
126#define PIIX4_BRLD_EN_IRQ	(1<<1)
127#define PIIX4_BRLD_EN_IRQ8	(1<<5)
128#define PIIX4_STOP_BREAK_MASK	(PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8)
129#define PIIX4_PCNTRL_BST_EN	(1<<10)
130
131/* Allow users to ignore processor orders in MADT. */
132static int cpu_unordered;
133TUNABLE_INT("debug.acpi.cpu_unordered", &cpu_unordered);
134SYSCTL_INT(_debug_acpi, OID_AUTO, cpu_unordered, CTLFLAG_RDTUN,
135    &cpu_unordered, 0,
136    "Do not use the MADT to match ACPI Processor objects to CPUs.");
137
138/* Platform hardware resource information. */
139static uint32_t		 cpu_smi_cmd;	/* Value to write to SMI_CMD. */
140static uint8_t		 cpu_cst_cnt;	/* Indicate we are _CST aware. */
141static int		 cpu_quirks;	/* Indicate any hardware bugs. */
142
143/* Values for sysctl. */
144static struct sysctl_ctx_list cpu_sysctl_ctx;
145static struct sysctl_oid *cpu_sysctl_tree;
146static int		 cpu_cx_generic;
147static int		 cpu_cx_lowest_lim;
148
149static device_t		*cpu_devices;
150static int		 cpu_ndevices;
151static struct acpi_cpu_softc **cpu_softc;
152ACPI_SERIAL_DECL(cpu, "ACPI CPU");
153
154static int	acpi_cpu_probe(device_t dev);
155static int	acpi_cpu_attach(device_t dev);
156static int	acpi_cpu_suspend(device_t dev);
157static int	acpi_cpu_resume(device_t dev);
158static int	acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id,
159		    uint32_t *cpu_id);
160static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
161static device_t	acpi_cpu_add_child(device_t dev, u_int order, const char *name,
162		    int unit);
163static int	acpi_cpu_read_ivar(device_t dev, device_t child, int index,
164		    uintptr_t *result);
165static int	acpi_cpu_shutdown(device_t dev);
166static void	acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
167static void	acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
168static int	acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
169static void	acpi_cpu_startup(void *arg);
170static void	acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
171static void	acpi_cpu_cx_list(struct acpi_cpu_softc *sc);
172static void	acpi_cpu_idle(sbintime_t sbt);
173static void	acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
174static int	acpi_cpu_quirks(void);
175static int	acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
176static int	acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc);
177static int	acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
178static int	acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
179
180static device_method_t acpi_cpu_methods[] = {
181    /* Device interface */
182    DEVMETHOD(device_probe,	acpi_cpu_probe),
183    DEVMETHOD(device_attach,	acpi_cpu_attach),
184    DEVMETHOD(device_detach,	bus_generic_detach),
185    DEVMETHOD(device_shutdown,	acpi_cpu_shutdown),
186    DEVMETHOD(device_suspend,	acpi_cpu_suspend),
187    DEVMETHOD(device_resume,	acpi_cpu_resume),
188
189    /* Bus interface */
190    DEVMETHOD(bus_add_child,	acpi_cpu_add_child),
191    DEVMETHOD(bus_read_ivar,	acpi_cpu_read_ivar),
192    DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
193    DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
194    DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
195    DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
196    DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
197    DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
198    DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
199    DEVMETHOD(bus_setup_intr,	bus_generic_setup_intr),
200    DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
201
202    DEVMETHOD_END
203};
204
205static driver_t acpi_cpu_driver = {
206    "cpu",
207    acpi_cpu_methods,
208    sizeof(struct acpi_cpu_softc),
209};
210
211static devclass_t acpi_cpu_devclass;
212DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
213MODULE_DEPEND(cpu, acpi, 1, 1, 1);
214
215static int
216acpi_cpu_probe(device_t dev)
217{
218    int			   acpi_id, cpu_id;
219    ACPI_BUFFER		   buf;
220    ACPI_HANDLE		   handle;
221    ACPI_OBJECT		   *obj;
222    ACPI_STATUS		   status;
223
224    if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR)
225	return (ENXIO);
226
227    handle = acpi_get_handle(dev);
228    if (cpu_softc == NULL)
229	cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
230	    (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
231
232    /* Get our Processor object. */
233    buf.Pointer = NULL;
234    buf.Length = ACPI_ALLOCATE_BUFFER;
235    status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
236    if (ACPI_FAILURE(status)) {
237	device_printf(dev, "probe failed to get Processor obj - %s\n",
238		      AcpiFormatException(status));
239	return (ENXIO);
240    }
241    obj = (ACPI_OBJECT *)buf.Pointer;
242    if (obj->Type != ACPI_TYPE_PROCESSOR) {
243	device_printf(dev, "Processor object has bad type %d\n", obj->Type);
244	AcpiOsFree(obj);
245	return (ENXIO);
246    }
247
248    /*
249     * Find the processor associated with our unit.  We could use the
250     * ProcId as a key, however, some boxes do not have the same values
251     * in their Processor object as the ProcId values in the MADT.
252     */
253    acpi_id = obj->Processor.ProcId;
254    AcpiOsFree(obj);
255    if (acpi_pcpu_get_id(dev, &acpi_id, &cpu_id) != 0)
256	return (ENXIO);
257
258    /*
259     * Check if we already probed this processor.  We scan the bus twice
260     * so it's possible we've already seen this one.
261     */
262    if (cpu_softc[cpu_id] != NULL)
263	return (ENXIO);
264
265    /* Mark this processor as in-use and save our derived id for attach. */
266    cpu_softc[cpu_id] = (void *)1;
267    acpi_set_private(dev, (void*)(intptr_t)cpu_id);
268    device_set_desc(dev, "ACPI CPU");
269
270    return (0);
271}
272
273static int
274acpi_cpu_attach(device_t dev)
275{
276    ACPI_BUFFER		   buf;
277    ACPI_OBJECT		   arg[4], *obj;
278    ACPI_OBJECT_LIST	   arglist;
279    struct pcpu		   *pcpu_data;
280    struct acpi_cpu_softc *sc;
281    struct acpi_softc	  *acpi_sc;
282    ACPI_STATUS		   status;
283    u_int		   features;
284    int			   cpu_id, drv_count, i;
285    driver_t 		  **drivers;
286    uint32_t		   cap_set[3];
287
288    /* UUID needed by _OSC evaluation */
289    static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
290				       0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
291				       0x58, 0x71, 0x39, 0x53 };
292
293    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
294
295    sc = device_get_softc(dev);
296    sc->cpu_dev = dev;
297    sc->cpu_handle = acpi_get_handle(dev);
298    cpu_id = (int)(intptr_t)acpi_get_private(dev);
299    cpu_softc[cpu_id] = sc;
300    pcpu_data = pcpu_find(cpu_id);
301    pcpu_data->pc_device = dev;
302    sc->cpu_pcpu = pcpu_data;
303    cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
304    cpu_cst_cnt = AcpiGbl_FADT.CstControl;
305
306    buf.Pointer = NULL;
307    buf.Length = ACPI_ALLOCATE_BUFFER;
308    status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
309    if (ACPI_FAILURE(status)) {
310	device_printf(dev, "attach failed to get Processor obj - %s\n",
311		      AcpiFormatException(status));
312	return (ENXIO);
313    }
314    obj = (ACPI_OBJECT *)buf.Pointer;
315    sc->cpu_p_blk = obj->Processor.PblkAddress;
316    sc->cpu_p_blk_len = obj->Processor.PblkLength;
317    sc->cpu_acpi_id = obj->Processor.ProcId;
318    AcpiOsFree(obj);
319    ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
320		     device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
321
322    /*
323     * If this is the first cpu we attach, create and initialize the generic
324     * resources that will be used by all acpi cpu devices.
325     */
326    if (device_get_unit(dev) == 0) {
327	/* Assume we won't be using generic Cx mode by default */
328	cpu_cx_generic = FALSE;
329
330	/* Install hw.acpi.cpu sysctl tree */
331	acpi_sc = acpi_device_get_parent_softc(dev);
332	sysctl_ctx_init(&cpu_sysctl_ctx);
333	cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
334	    SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
335	    CTLFLAG_RD, 0, "node for CPU children");
336
337	/* Queue post cpu-probing task handler */
338	AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
339    }
340
341    /*
342     * Before calling any CPU methods, collect child driver feature hints
343     * and notify ACPI of them.  We support unified SMP power control
344     * so advertise this ourselves.  Note this is not the same as independent
345     * SMP control where each CPU can have different settings.
346     */
347    sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3;
348    if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
349	for (i = 0; i < drv_count; i++) {
350	    if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
351		sc->cpu_features |= features;
352	}
353	free(drivers, M_TEMP);
354    }
355
356    /*
357     * CPU capabilities are specified in
358     * Intel Processor Vendor-Specific ACPI Interface Specification.
359     */
360    if (sc->cpu_features) {
361	arglist.Pointer = arg;
362	arglist.Count = 4;
363	arg[0].Type = ACPI_TYPE_BUFFER;
364	arg[0].Buffer.Length = sizeof(cpu_oscuuid);
365	arg[0].Buffer.Pointer = cpu_oscuuid;	/* UUID */
366	arg[1].Type = ACPI_TYPE_INTEGER;
367	arg[1].Integer.Value = 1;		/* revision */
368	arg[2].Type = ACPI_TYPE_INTEGER;
369	arg[2].Integer.Value = 1;		/* count */
370	arg[3].Type = ACPI_TYPE_BUFFER;
371	arg[3].Buffer.Length = sizeof(cap_set);	/* Capabilities buffer */
372	arg[3].Buffer.Pointer = (uint8_t *)cap_set;
373	cap_set[0] = 0;				/* status */
374	cap_set[1] = sc->cpu_features;
375	status = AcpiEvaluateObject(sc->cpu_handle, "_OSC", &arglist, NULL);
376	if (ACPI_SUCCESS(status)) {
377	    if (cap_set[0] != 0)
378		device_printf(dev, "_OSC returned status %#x\n", cap_set[0]);
379	}
380	else {
381	    arglist.Pointer = arg;
382	    arglist.Count = 1;
383	    arg[0].Type = ACPI_TYPE_BUFFER;
384	    arg[0].Buffer.Length = sizeof(cap_set);
385	    arg[0].Buffer.Pointer = (uint8_t *)cap_set;
386	    cap_set[0] = 1; /* revision */
387	    cap_set[1] = 1; /* number of capabilities integers */
388	    cap_set[2] = sc->cpu_features;
389	    AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
390	}
391    }
392
393    /* Probe for Cx state support. */
394    acpi_cpu_cx_probe(sc);
395
396    return (0);
397}
398
399static void
400acpi_cpu_postattach(void *unused __unused)
401{
402    device_t *devices;
403    int err;
404    int i, n;
405
406    err = devclass_get_devices(acpi_cpu_devclass, &devices, &n);
407    if (err != 0) {
408	printf("devclass_get_devices(acpi_cpu_devclass) failed\n");
409	return;
410    }
411    for (i = 0; i < n; i++)
412	bus_generic_probe(devices[i]);
413    for (i = 0; i < n; i++)
414	bus_generic_attach(devices[i]);
415    free(devices, M_TEMP);
416}
417
418SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE,
419    acpi_cpu_postattach, NULL);
420
421static void
422disable_idle(struct acpi_cpu_softc *sc)
423{
424    cpuset_t cpuset;
425
426    CPU_SETOF(sc->cpu_pcpu->pc_cpuid, &cpuset);
427    sc->cpu_disable_idle = TRUE;
428
429    /*
430     * Ensure that the CPU is not in idle state or in acpi_cpu_idle().
431     * Note that this code depends on the fact that the rendezvous IPI
432     * can not penetrate context where interrupts are disabled and acpi_cpu_idle
433     * is called and executed in such a context with interrupts being re-enabled
434     * right before return.
435     */
436    smp_rendezvous_cpus(cpuset, smp_no_rendevous_barrier, NULL,
437	smp_no_rendevous_barrier, NULL);
438}
439
440static void
441enable_idle(struct acpi_cpu_softc *sc)
442{
443
444    sc->cpu_disable_idle = FALSE;
445}
446
447static int
448is_idle_disabled(struct acpi_cpu_softc *sc)
449{
450
451    return (sc->cpu_disable_idle);
452}
453
454/*
455 * Disable any entry to the idle function during suspend and re-enable it
456 * during resume.
457 */
458static int
459acpi_cpu_suspend(device_t dev)
460{
461    int error;
462
463    error = bus_generic_suspend(dev);
464    if (error)
465	return (error);
466    disable_idle(device_get_softc(dev));
467    return (0);
468}
469
470static int
471acpi_cpu_resume(device_t dev)
472{
473
474    enable_idle(device_get_softc(dev));
475    return (bus_generic_resume(dev));
476}
477
478/*
479 * Find the processor associated with a given ACPI ID.  By default,
480 * use the MADT to map ACPI IDs to APIC IDs and use that to locate a
481 * processor.  Some systems have inconsistent ASL and MADT however.
482 * For these systems the cpu_unordered tunable can be set in which
483 * case we assume that Processor objects are listed in the same order
484 * in both the MADT and ASL.
485 */
486static int
487acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id, uint32_t *cpu_id)
488{
489    struct pcpu	*pc;
490    uint32_t	 i, idx;
491
492    KASSERT(acpi_id != NULL, ("Null acpi_id"));
493    KASSERT(cpu_id != NULL, ("Null cpu_id"));
494    idx = device_get_unit(dev);
495
496    /*
497     * If pc_acpi_id for CPU 0 is not initialized (e.g. a non-APIC
498     * UP box) use the ACPI ID from the first processor we find.
499     */
500    if (idx == 0 && mp_ncpus == 1) {
501	pc = pcpu_find(0);
502	if (pc->pc_acpi_id == 0xffffffff)
503	    pc->pc_acpi_id = *acpi_id;
504	*cpu_id = 0;
505	return (0);
506    }
507
508    CPU_FOREACH(i) {
509	pc = pcpu_find(i);
510	KASSERT(pc != NULL, ("no pcpu data for %d", i));
511	if (cpu_unordered) {
512	    if (idx-- == 0) {
513		/*
514		 * If pc_acpi_id doesn't match the ACPI ID from the
515		 * ASL, prefer the MADT-derived value.
516		 */
517		if (pc->pc_acpi_id != *acpi_id)
518		    *acpi_id = pc->pc_acpi_id;
519		*cpu_id = pc->pc_cpuid;
520		return (0);
521	    }
522	} else {
523	    if (pc->pc_acpi_id == *acpi_id) {
524		if (bootverbose)
525		    device_printf(dev,
526			"Processor %s (ACPI ID %u) -> APIC ID %d\n",
527			acpi_name(acpi_get_handle(dev)), *acpi_id,
528			pc->pc_cpuid);
529		*cpu_id = pc->pc_cpuid;
530		return (0);
531	    }
532	}
533    }
534
535    if (bootverbose)
536	printf("ACPI: Processor %s (ACPI ID %u) ignored\n",
537	    acpi_name(acpi_get_handle(dev)), *acpi_id);
538
539    return (ESRCH);
540}
541
542static struct resource_list *
543acpi_cpu_get_rlist(device_t dev, device_t child)
544{
545    struct acpi_cpu_device *ad;
546
547    ad = device_get_ivars(child);
548    if (ad == NULL)
549	return (NULL);
550    return (&ad->ad_rl);
551}
552
553static device_t
554acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit)
555{
556    struct acpi_cpu_device *ad;
557    device_t child;
558
559    if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
560	return (NULL);
561
562    resource_list_init(&ad->ad_rl);
563
564    child = device_add_child_ordered(dev, order, name, unit);
565    if (child != NULL)
566	device_set_ivars(child, ad);
567    else
568	free(ad, M_TEMP);
569    return (child);
570}
571
572static int
573acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
574{
575    struct acpi_cpu_softc *sc;
576
577    sc = device_get_softc(dev);
578    switch (index) {
579    case ACPI_IVAR_HANDLE:
580	*result = (uintptr_t)sc->cpu_handle;
581	break;
582    case CPU_IVAR_PCPU:
583	*result = (uintptr_t)sc->cpu_pcpu;
584	break;
585#if defined(__amd64__) || defined(__i386__)
586    case CPU_IVAR_NOMINAL_MHZ:
587	if (tsc_is_invariant) {
588	    *result = (uintptr_t)(atomic_load_acq_64(&tsc_freq) / 1000000);
589	    break;
590	}
591	/* FALLTHROUGH */
592#endif
593    default:
594	return (ENOENT);
595    }
596    return (0);
597}
598
599static int
600acpi_cpu_shutdown(device_t dev)
601{
602    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
603
604    /* Allow children to shutdown first. */
605    bus_generic_shutdown(dev);
606
607    /*
608     * Disable any entry to the idle function.
609     */
610    disable_idle(device_get_softc(dev));
611
612    /*
613     * CPU devices are not truely detached and remain referenced,
614     * so their resources are not freed.
615     */
616
617    return_VALUE (0);
618}
619
620static void
621acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
622{
623    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
624
625    /* Use initial sleep value of 1 sec. to start with lowest idle state. */
626    sc->cpu_prev_sleep = 1000000;
627    sc->cpu_cx_lowest = 0;
628    sc->cpu_cx_lowest_lim = 0;
629
630    /*
631     * Check for the ACPI 2.0 _CST sleep states object. If we can't find
632     * any, we'll revert to generic FADT/P_BLK Cx control method which will
633     * be handled by acpi_cpu_startup. We need to defer to after having
634     * probed all the cpus in the system before probing for generic Cx
635     * states as we may already have found cpus with valid _CST packages
636     */
637    if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
638	/*
639	 * We were unable to find a _CST package for this cpu or there
640	 * was an error parsing it. Switch back to generic mode.
641	 */
642	cpu_cx_generic = TRUE;
643	if (bootverbose)
644	    device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
645    }
646
647    /*
648     * TODO: _CSD Package should be checked here.
649     */
650}
651
652static void
653acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
654{
655    ACPI_GENERIC_ADDRESS	 gas;
656    struct acpi_cx		*cx_ptr;
657
658    sc->cpu_cx_count = 0;
659    cx_ptr = sc->cpu_cx_states;
660
661    /* Use initial sleep value of 1 sec. to start with lowest idle state. */
662    sc->cpu_prev_sleep = 1000000;
663
664    /* C1 has been required since just after ACPI 1.0 */
665    cx_ptr->type = ACPI_STATE_C1;
666    cx_ptr->trans_lat = 0;
667    cx_ptr++;
668    sc->cpu_non_c2 = sc->cpu_cx_count;
669    sc->cpu_non_c3 = sc->cpu_cx_count;
670    sc->cpu_cx_count++;
671    cpu_deepest_sleep = 1;
672
673    /*
674     * The spec says P_BLK must be 6 bytes long.  However, some systems
675     * use it to indicate a fractional set of features present so we
676     * take 5 as C2.  Some may also have a value of 7 to indicate
677     * another C3 but most use _CST for this (as required) and having
678     * "only" C1-C3 is not a hardship.
679     */
680    if (sc->cpu_p_blk_len < 5)
681	return;
682
683    /* Validate and allocate resources for C2 (P_LVL2). */
684    gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
685    gas.BitWidth = 8;
686    if (AcpiGbl_FADT.C2Latency <= 100) {
687	gas.Address = sc->cpu_p_blk + 4;
688	cx_ptr->res_rid = 0;
689	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
690	    &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
691	if (cx_ptr->p_lvlx != NULL) {
692	    cx_ptr->type = ACPI_STATE_C2;
693	    cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
694	    cx_ptr++;
695	    sc->cpu_non_c3 = sc->cpu_cx_count;
696	    sc->cpu_cx_count++;
697	    cpu_deepest_sleep = 2;
698	}
699    }
700    if (sc->cpu_p_blk_len < 6)
701	return;
702
703    /* Validate and allocate resources for C3 (P_LVL3). */
704    if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) {
705	gas.Address = sc->cpu_p_blk + 5;
706	cx_ptr->res_rid = 1;
707	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
708	    &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
709	if (cx_ptr->p_lvlx != NULL) {
710	    cx_ptr->type = ACPI_STATE_C3;
711	    cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
712	    cx_ptr++;
713	    sc->cpu_cx_count++;
714	    cpu_deepest_sleep = 3;
715	}
716    }
717}
718
719/*
720 * Parse a _CST package and set up its Cx states.  Since the _CST object
721 * can change dynamically, our notify handler may call this function
722 * to clean up and probe the new _CST package.
723 */
724static int
725acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
726{
727    struct	 acpi_cx *cx_ptr;
728    ACPI_STATUS	 status;
729    ACPI_BUFFER	 buf;
730    ACPI_OBJECT	*top;
731    ACPI_OBJECT	*pkg;
732    uint32_t	 count;
733    int		 i;
734
735    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
736
737    buf.Pointer = NULL;
738    buf.Length = ACPI_ALLOCATE_BUFFER;
739    status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
740    if (ACPI_FAILURE(status))
741	return (ENXIO);
742
743    /* _CST is a package with a count and at least one Cx package. */
744    top = (ACPI_OBJECT *)buf.Pointer;
745    if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
746	device_printf(sc->cpu_dev, "invalid _CST package\n");
747	AcpiOsFree(buf.Pointer);
748	return (ENXIO);
749    }
750    if (count != top->Package.Count - 1) {
751	device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
752	       count, top->Package.Count - 1);
753	count = top->Package.Count - 1;
754    }
755    if (count > MAX_CX_STATES) {
756	device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
757	count = MAX_CX_STATES;
758    }
759
760    sc->cpu_non_c2 = 0;
761    sc->cpu_non_c3 = 0;
762    sc->cpu_cx_count = 0;
763    cx_ptr = sc->cpu_cx_states;
764
765    /*
766     * C1 has been required since just after ACPI 1.0.
767     * Reserve the first slot for it.
768     */
769    cx_ptr->type = ACPI_STATE_C0;
770    cx_ptr++;
771    sc->cpu_cx_count++;
772    cpu_deepest_sleep = 1;
773
774    /* Set up all valid states. */
775    for (i = 0; i < count; i++) {
776	pkg = &top->Package.Elements[i + 1];
777	if (!ACPI_PKG_VALID(pkg, 4) ||
778	    acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
779	    acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
780	    acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
781
782	    device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
783	    continue;
784	}
785
786	/* Validate the state to see if we should use it. */
787	switch (cx_ptr->type) {
788	case ACPI_STATE_C1:
789	    if (sc->cpu_cx_states[0].type == ACPI_STATE_C0) {
790		/* This is the first C1 state.  Use the reserved slot. */
791		sc->cpu_cx_states[0] = *cx_ptr;
792	    } else {
793		sc->cpu_non_c2 = sc->cpu_cx_count;
794		sc->cpu_non_c3 = sc->cpu_cx_count;
795		cx_ptr++;
796		sc->cpu_cx_count++;
797	    }
798	    continue;
799	case ACPI_STATE_C2:
800	    sc->cpu_non_c3 = sc->cpu_cx_count;
801	    if (cpu_deepest_sleep < 2)
802		    cpu_deepest_sleep = 2;
803	    break;
804	case ACPI_STATE_C3:
805	default:
806	    if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
807		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
808				 "acpi_cpu%d: C3[%d] not available.\n",
809				 device_get_unit(sc->cpu_dev), i));
810		continue;
811	    } else
812		cpu_deepest_sleep = 3;
813	    break;
814	}
815
816	/* Free up any previous register. */
817	if (cx_ptr->p_lvlx != NULL) {
818	    bus_release_resource(sc->cpu_dev, cx_ptr->res_type, cx_ptr->res_rid,
819	        cx_ptr->p_lvlx);
820	    cx_ptr->p_lvlx = NULL;
821	}
822
823	/* Allocate the control register for C2 or C3. */
824	cx_ptr->res_rid = sc->cpu_cx_count;
825	acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &cx_ptr->res_rid,
826	    &cx_ptr->p_lvlx, RF_SHAREABLE);
827	if (cx_ptr->p_lvlx) {
828	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
829			     "acpi_cpu%d: Got C%d - %d latency\n",
830			     device_get_unit(sc->cpu_dev), cx_ptr->type,
831			     cx_ptr->trans_lat));
832	    cx_ptr++;
833	    sc->cpu_cx_count++;
834	}
835    }
836    AcpiOsFree(buf.Pointer);
837
838    /* If C1 state was not found, we need one now. */
839    cx_ptr = sc->cpu_cx_states;
840    if (cx_ptr->type == ACPI_STATE_C0) {
841	cx_ptr->type = ACPI_STATE_C1;
842	cx_ptr->trans_lat = 0;
843    }
844
845    return (0);
846}
847
848/*
849 * Call this *after* all CPUs have been attached.
850 */
851static void
852acpi_cpu_startup(void *arg)
853{
854    struct acpi_cpu_softc *sc;
855    int i;
856
857    /* Get set of CPU devices */
858    devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
859
860    /*
861     * Setup any quirks that might necessary now that we have probed
862     * all the CPUs
863     */
864    acpi_cpu_quirks();
865
866    if (cpu_cx_generic) {
867	/*
868	 * We are using generic Cx mode, probe for available Cx states
869	 * for all processors.
870	 */
871	for (i = 0; i < cpu_ndevices; i++) {
872	    sc = device_get_softc(cpu_devices[i]);
873	    acpi_cpu_generic_cx_probe(sc);
874	}
875    } else {
876	/*
877	 * We are using _CST mode, remove C3 state if necessary.
878	 * As we now know for sure that we will be using _CST mode
879	 * install our notify handler.
880	 */
881	for (i = 0; i < cpu_ndevices; i++) {
882	    sc = device_get_softc(cpu_devices[i]);
883	    if (cpu_quirks & CPU_QUIRK_NO_C3) {
884		sc->cpu_cx_count = min(sc->cpu_cx_count, sc->cpu_non_c3 + 1);
885	    }
886	    AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
887		acpi_cpu_notify, sc);
888	}
889    }
890
891    /* Perform Cx final initialization. */
892    for (i = 0; i < cpu_ndevices; i++) {
893	sc = device_get_softc(cpu_devices[i]);
894	acpi_cpu_startup_cx(sc);
895    }
896
897    /* Add a sysctl handler to handle global Cx lowest setting */
898    SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
899	OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
900	NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
901	"Global lowest Cx sleep state to use");
902
903    /* Take over idling from cpu_idle_default(). */
904    cpu_cx_lowest_lim = 0;
905    for (i = 0; i < cpu_ndevices; i++) {
906	sc = device_get_softc(cpu_devices[i]);
907	enable_idle(sc);
908    }
909    cpu_idle_hook = acpi_cpu_idle;
910}
911
912static void
913acpi_cpu_cx_list(struct acpi_cpu_softc *sc)
914{
915    struct sbuf sb;
916    int i;
917
918    /*
919     * Set up the list of Cx states
920     */
921    sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
922	SBUF_FIXEDLEN);
923    for (i = 0; i < sc->cpu_cx_count; i++)
924	sbuf_printf(&sb, "C%d/%d/%d ", i + 1, sc->cpu_cx_states[i].type,
925	    sc->cpu_cx_states[i].trans_lat);
926    sbuf_trim(&sb);
927    sbuf_finish(&sb);
928}
929
930static void
931acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
932{
933    acpi_cpu_cx_list(sc);
934
935    SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
936		      SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
937		      OID_AUTO, "cx_supported", CTLFLAG_RD,
938		      sc->cpu_cx_supported, 0,
939		      "Cx/microsecond values for supported Cx states");
940    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
941		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
942		    OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
943		    (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
944		    "lowest Cx sleep state to use");
945    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
946		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
947		    OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
948		    (void *)sc, 0, acpi_cpu_usage_sysctl, "A",
949		    "percent usage for each Cx state");
950
951    /* Signal platform that we can handle _CST notification. */
952    if (!cpu_cx_generic && cpu_cst_cnt != 0) {
953	ACPI_LOCK(acpi);
954	AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
955	ACPI_UNLOCK(acpi);
956    }
957}
958
959/*
960 * Idle the CPU in the lowest state possible.  This function is called with
961 * interrupts disabled.  Note that once it re-enables interrupts, a task
962 * switch can occur so do not access shared data (i.e. the softc) after
963 * interrupts are re-enabled.
964 */
965static void
966acpi_cpu_idle(sbintime_t sbt)
967{
968    struct	acpi_cpu_softc *sc;
969    struct	acpi_cx *cx_next;
970    uint64_t	cputicks;
971    uint32_t	start_time, end_time;
972    int		bm_active, cx_next_idx, i, us;
973
974    /*
975     * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
976     * since there is no ACPI processor object for this CPU.  This occurs
977     * for logical CPUs in the HTT case.
978     */
979    sc = cpu_softc[PCPU_GET(cpuid)];
980    if (sc == NULL) {
981	acpi_cpu_c1();
982	return;
983    }
984
985    /* If disabled, take the safe path. */
986    if (is_idle_disabled(sc)) {
987	acpi_cpu_c1();
988	return;
989    }
990
991    /* Find the lowest state that has small enough latency. */
992    us = sc->cpu_prev_sleep;
993    if (sbt >= 0 && us > (sbt >> 12))
994	us = (sbt >> 12);
995    cx_next_idx = 0;
996    if (cpu_disable_c2_sleep)
997	i = min(sc->cpu_cx_lowest, sc->cpu_non_c2);
998    else if (cpu_disable_c3_sleep)
999	i = min(sc->cpu_cx_lowest, sc->cpu_non_c3);
1000    else
1001	i = sc->cpu_cx_lowest;
1002    for (; i >= 0; i--) {
1003	if (sc->cpu_cx_states[i].trans_lat * 3 <= us) {
1004	    cx_next_idx = i;
1005	    break;
1006	}
1007    }
1008
1009    /*
1010     * Check for bus master activity.  If there was activity, clear
1011     * the bit and use the lowest non-C3 state.  Note that the USB
1012     * driver polling for new devices keeps this bit set all the
1013     * time if USB is loaded.
1014     */
1015    if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0 &&
1016	cx_next_idx > sc->cpu_non_c3) {
1017	AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
1018	if (bm_active != 0) {
1019	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1020	    cx_next_idx = sc->cpu_non_c3;
1021	}
1022    }
1023
1024    /* Select the next state and update statistics. */
1025    cx_next = &sc->cpu_cx_states[cx_next_idx];
1026    sc->cpu_cx_stats[cx_next_idx]++;
1027    KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
1028
1029    /*
1030     * Execute HLT (or equivalent) and wait for an interrupt.  We can't
1031     * precisely calculate the time spent in C1 since the place we wake up
1032     * is an ISR.  Assume we slept no more then half of quantum, unless
1033     * we are called inside critical section, delaying context switch.
1034     */
1035    if (cx_next->type == ACPI_STATE_C1) {
1036	cputicks = cpu_ticks();
1037	acpi_cpu_c1();
1038	end_time = ((cpu_ticks() - cputicks) << 20) / cpu_tickrate();
1039	if (curthread->td_critnest == 0)
1040		end_time = min(end_time, 500000 / hz);
1041	sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
1042	return;
1043    }
1044
1045    /*
1046     * For C3, disable bus master arbitration and enable bus master wake
1047     * if BM control is available, otherwise flush the CPU cache.
1048     */
1049    if (cx_next->type == ACPI_STATE_C3) {
1050	if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
1051	    AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
1052	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
1053	} else
1054	    ACPI_FLUSH_CPU_CACHE();
1055    }
1056
1057    /*
1058     * Read from P_LVLx to enter C2(+), checking time spent asleep.
1059     * Use the ACPI timer for measuring sleep time.  Since we need to
1060     * get the time very close to the CPU start/stop clock logic, this
1061     * is the only reliable time source.
1062     */
1063    if (cx_next->type == ACPI_STATE_C3) {
1064	AcpiHwRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock);
1065	cputicks = 0;
1066    } else {
1067	start_time = 0;
1068	cputicks = cpu_ticks();
1069    }
1070    CPU_GET_REG(cx_next->p_lvlx, 1);
1071
1072    /*
1073     * Read the end time twice.  Since it may take an arbitrary time
1074     * to enter the idle state, the first read may be executed before
1075     * the processor has stopped.  Doing it again provides enough
1076     * margin that we are certain to have a correct value.
1077     */
1078    AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
1079    if (cx_next->type == ACPI_STATE_C3) {
1080	AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
1081	end_time = acpi_TimerDelta(end_time, start_time);
1082    } else
1083	end_time = ((cpu_ticks() - cputicks) << 20) / cpu_tickrate();
1084
1085    /* Enable bus master arbitration and disable bus master wakeup. */
1086    if (cx_next->type == ACPI_STATE_C3 &&
1087	(cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
1088	AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
1089	AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
1090    }
1091    ACPI_ENABLE_IRQS();
1092
1093    sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + PM_USEC(end_time)) / 4;
1094}
1095
1096/*
1097 * Re-evaluate the _CST object when we are notified that it changed.
1098 */
1099static void
1100acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
1101{
1102    struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
1103
1104    if (notify != ACPI_NOTIFY_CX_STATES)
1105	return;
1106
1107    /*
1108     * C-state data for target CPU is going to be in flux while we execute
1109     * acpi_cpu_cx_cst, so disable entering acpi_cpu_idle.
1110     * Also, it may happen that multiple ACPI taskqueues may concurrently
1111     * execute notifications for the same CPU.  ACPI_SERIAL is used to
1112     * protect against that.
1113     */
1114    ACPI_SERIAL_BEGIN(cpu);
1115    disable_idle(sc);
1116
1117    /* Update the list of Cx states. */
1118    acpi_cpu_cx_cst(sc);
1119    acpi_cpu_cx_list(sc);
1120    acpi_cpu_set_cx_lowest(sc);
1121
1122    enable_idle(sc);
1123    ACPI_SERIAL_END(cpu);
1124
1125    acpi_UserNotify("PROCESSOR", sc->cpu_handle, notify);
1126}
1127
1128static int
1129acpi_cpu_quirks(void)
1130{
1131    device_t acpi_dev;
1132    uint32_t val;
1133
1134    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1135
1136    /*
1137     * Bus mastering arbitration control is needed to keep caches coherent
1138     * while sleeping in C3.  If it's not present but a working flush cache
1139     * instruction is present, flush the caches before entering C3 instead.
1140     * Otherwise, just disable C3 completely.
1141     */
1142    if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
1143	AcpiGbl_FADT.Pm2ControlLength == 0) {
1144	if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
1145	    (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
1146	    cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1147	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1148		"acpi_cpu: no BM control, using flush cache method\n"));
1149	} else {
1150	    cpu_quirks |= CPU_QUIRK_NO_C3;
1151	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1152		"acpi_cpu: no BM control, C3 not available\n"));
1153	}
1154    }
1155
1156    /*
1157     * If we are using generic Cx mode, C3 on multiple CPUs requires using
1158     * the expensive flush cache instruction.
1159     */
1160    if (cpu_cx_generic && mp_ncpus > 1) {
1161	cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1162	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1163	    "acpi_cpu: SMP, using flush cache mode for C3\n"));
1164    }
1165
1166    /* Look for various quirks of the PIIX4 part. */
1167    acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
1168    if (acpi_dev != NULL) {
1169	switch (pci_get_revid(acpi_dev)) {
1170	/*
1171	 * Disable C3 support for all PIIX4 chipsets.  Some of these parts
1172	 * do not report the BMIDE status to the BM status register and
1173	 * others have a livelock bug if Type-F DMA is enabled.  Linux
1174	 * works around the BMIDE bug by reading the BM status directly
1175	 * but we take the simpler approach of disabling C3 for these
1176	 * parts.
1177	 *
1178	 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
1179	 * Livelock") from the January 2002 PIIX4 specification update.
1180	 * Applies to all PIIX4 models.
1181	 *
1182	 * Also, make sure that all interrupts cause a "Stop Break"
1183	 * event to exit from C2 state.
1184	 * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak)
1185	 * should be set to zero, otherwise it causes C2 to short-sleep.
1186	 * PIIX4 doesn't properly support C3 and bus master activity
1187	 * need not break out of C2.
1188	 */
1189	case PCI_REVISION_A_STEP:
1190	case PCI_REVISION_B_STEP:
1191	case PCI_REVISION_4E:
1192	case PCI_REVISION_4M:
1193	    cpu_quirks |= CPU_QUIRK_NO_C3;
1194	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1195		"acpi_cpu: working around PIIX4 bug, disabling C3\n"));
1196
1197	    val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4);
1198	    if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) {
1199		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1200		    "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n"));
1201	    	val |= PIIX4_STOP_BREAK_MASK;
1202		pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4);
1203	    }
1204	    AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val);
1205	    if (val) {
1206		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1207		    "acpi_cpu: PIIX4: reset BRLD_EN_BM\n"));
1208		AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
1209	    }
1210	    break;
1211	default:
1212	    break;
1213	}
1214    }
1215
1216    return (0);
1217}
1218
1219static int
1220acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
1221{
1222    struct acpi_cpu_softc *sc;
1223    struct sbuf	 sb;
1224    char	 buf[128];
1225    int		 i;
1226    uintmax_t	 fract, sum, whole;
1227
1228    sc = (struct acpi_cpu_softc *) arg1;
1229    sum = 0;
1230    for (i = 0; i < sc->cpu_cx_count; i++)
1231	sum += sc->cpu_cx_stats[i];
1232    sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1233    for (i = 0; i < sc->cpu_cx_count; i++) {
1234	if (sum > 0) {
1235	    whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
1236	    fract = (whole % sum) * 100;
1237	    sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
1238		(u_int)(fract / sum));
1239	} else
1240	    sbuf_printf(&sb, "0.00%% ");
1241    }
1242    sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep);
1243    sbuf_trim(&sb);
1244    sbuf_finish(&sb);
1245    sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1246    sbuf_delete(&sb);
1247
1248    return (0);
1249}
1250
1251static int
1252acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc)
1253{
1254    int i;
1255
1256    ACPI_SERIAL_ASSERT(cpu);
1257    sc->cpu_cx_lowest = min(sc->cpu_cx_lowest_lim, sc->cpu_cx_count - 1);
1258
1259    /* If not disabling, cache the new lowest non-C3 state. */
1260    sc->cpu_non_c3 = 0;
1261    for (i = sc->cpu_cx_lowest; i >= 0; i--) {
1262	if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
1263	    sc->cpu_non_c3 = i;
1264	    break;
1265	}
1266    }
1267
1268    /* Reset the statistics counters. */
1269    bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
1270    return (0);
1271}
1272
1273static int
1274acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1275{
1276    struct	 acpi_cpu_softc *sc;
1277    char	 state[8];
1278    int		 val, error;
1279
1280    sc = (struct acpi_cpu_softc *) arg1;
1281    snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest_lim + 1);
1282    error = sysctl_handle_string(oidp, state, sizeof(state), req);
1283    if (error != 0 || req->newptr == NULL)
1284	return (error);
1285    if (strlen(state) < 2 || toupper(state[0]) != 'C')
1286	return (EINVAL);
1287    if (strcasecmp(state, "Cmax") == 0)
1288	val = MAX_CX_STATES;
1289    else {
1290	val = (int) strtol(state + 1, NULL, 10);
1291	if (val < 1 || val > MAX_CX_STATES)
1292	    return (EINVAL);
1293    }
1294
1295    ACPI_SERIAL_BEGIN(cpu);
1296    sc->cpu_cx_lowest_lim = val - 1;
1297    acpi_cpu_set_cx_lowest(sc);
1298    ACPI_SERIAL_END(cpu);
1299
1300    return (0);
1301}
1302
1303static int
1304acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1305{
1306    struct	acpi_cpu_softc *sc;
1307    char	state[8];
1308    int		val, error, i;
1309
1310    snprintf(state, sizeof(state), "C%d", cpu_cx_lowest_lim + 1);
1311    error = sysctl_handle_string(oidp, state, sizeof(state), req);
1312    if (error != 0 || req->newptr == NULL)
1313	return (error);
1314    if (strlen(state) < 2 || toupper(state[0]) != 'C')
1315	return (EINVAL);
1316    if (strcasecmp(state, "Cmax") == 0)
1317	val = MAX_CX_STATES;
1318    else {
1319	val = (int) strtol(state + 1, NULL, 10);
1320	if (val < 1 || val > MAX_CX_STATES)
1321	    return (EINVAL);
1322    }
1323
1324    /* Update the new lowest useable Cx state for all CPUs. */
1325    ACPI_SERIAL_BEGIN(cpu);
1326    cpu_cx_lowest_lim = val - 1;
1327    for (i = 0; i < cpu_ndevices; i++) {
1328	sc = device_get_softc(cpu_devices[i]);
1329	sc->cpu_cx_lowest_lim = cpu_cx_lowest_lim;
1330	acpi_cpu_set_cx_lowest(sc);
1331    }
1332    ACPI_SERIAL_END(cpu);
1333
1334    return (0);
1335}
1336