fasttrap_isa.c revision 299003
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 * Portions Copyright 2010 The FreeBSD Foundation
22 *
23 * $FreeBSD$
24 */
25
26/*
27 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
28 * Use is subject to license terms.
29 */
30
31#ifdef illumos
32#pragma ident	"%Z%%M%	%I%	%E% SMI"
33#endif
34
35#include <sys/fasttrap_isa.h>
36#include <sys/fasttrap_impl.h>
37#include <sys/dtrace.h>
38#include <sys/dtrace_impl.h>
39#include <sys/cmn_err.h>
40#ifdef illumos
41#include <sys/regset.h>
42#include <sys/privregs.h>
43#include <sys/segments.h>
44#include <sys/x86_archext.h>
45#else
46#include <cddl/dev/dtrace/dtrace_cddl.h>
47#include <sys/types.h>
48#include <sys/proc.h>
49#include <sys/rmlock.h>
50#include <sys/dtrace_bsd.h>
51#include <cddl/dev/dtrace/x86/regset.h>
52#include <machine/segments.h>
53#include <machine/reg.h>
54#include <machine/pcb.h>
55#endif
56#include <sys/sysmacros.h>
57#ifdef illumos
58#include <sys/trap.h>
59#include <sys/archsystm.h>
60#else
61#include <sys/ptrace.h>
62
63static int
64proc_ops(int op, proc_t *p, void *kaddr, off_t uaddr, size_t len)
65{
66	struct iovec iov;
67	struct uio uio;
68
69	iov.iov_base = kaddr;
70	iov.iov_len = len;
71	uio.uio_offset = uaddr;
72	uio.uio_iov = &iov;
73	uio.uio_resid = len;
74	uio.uio_iovcnt = 1;
75	uio.uio_segflg = UIO_SYSSPACE;
76	uio.uio_td = curthread;
77	uio.uio_rw = op;
78	PHOLD(p);
79	if (proc_rwmem(p, &uio) != 0) {
80		PRELE(p);
81		return (-1);
82	}
83	PRELE(p);
84
85	return (0);
86}
87
88static int
89uread(proc_t *p, void *kaddr, size_t len, uintptr_t uaddr)
90{
91
92	return (proc_ops(UIO_READ, p, kaddr, uaddr, len));
93}
94
95static int
96uwrite(proc_t *p, void *kaddr, size_t len, uintptr_t uaddr)
97{
98
99	return (proc_ops(UIO_WRITE, p, kaddr, uaddr, len));
100}
101#endif /* illumos */
102#ifdef __i386__
103#define	r_rax	r_eax
104#define	r_rbx	r_ebx
105#define	r_rip	r_eip
106#define	r_rflags r_eflags
107#define	r_rsp	r_esp
108#define	r_rbp	r_ebp
109#endif
110
111/*
112 * Lossless User-Land Tracing on x86
113 * ---------------------------------
114 *
115 * The execution of most instructions is not dependent on the address; for
116 * these instructions it is sufficient to copy them into the user process's
117 * address space and execute them. To effectively single-step an instruction
118 * in user-land, we copy out the following sequence of instructions to scratch
119 * space in the user thread's ulwp_t structure.
120 *
121 * We then set the program counter (%eip or %rip) to point to this scratch
122 * space. Once execution resumes, the original instruction is executed and
123 * then control flow is redirected to what was originally the subsequent
124 * instruction. If the kernel attemps to deliver a signal while single-
125 * stepping, the signal is deferred and the program counter is moved into the
126 * second sequence of instructions. The second sequence ends in a trap into
127 * the kernel where the deferred signal is then properly handled and delivered.
128 *
129 * For instructions whose execute is position dependent, we perform simple
130 * emulation. These instructions are limited to control transfer
131 * instructions in 32-bit mode, but in 64-bit mode there's the added wrinkle
132 * of %rip-relative addressing that means that almost any instruction can be
133 * position dependent. For all the details on how we emulate generic
134 * instructions included %rip-relative instructions, see the code in
135 * fasttrap_pid_probe() below where we handle instructions of type
136 * FASTTRAP_T_COMMON (under the header: Generic Instruction Tracing).
137 */
138
139#define	FASTTRAP_MODRM_MOD(modrm)	(((modrm) >> 6) & 0x3)
140#define	FASTTRAP_MODRM_REG(modrm)	(((modrm) >> 3) & 0x7)
141#define	FASTTRAP_MODRM_RM(modrm)	((modrm) & 0x7)
142#define	FASTTRAP_MODRM(mod, reg, rm)	(((mod) << 6) | ((reg) << 3) | (rm))
143
144#define	FASTTRAP_SIB_SCALE(sib)		(((sib) >> 6) & 0x3)
145#define	FASTTRAP_SIB_INDEX(sib)		(((sib) >> 3) & 0x7)
146#define	FASTTRAP_SIB_BASE(sib)		((sib) & 0x7)
147
148#define	FASTTRAP_REX_W(rex)		(((rex) >> 3) & 1)
149#define	FASTTRAP_REX_R(rex)		(((rex) >> 2) & 1)
150#define	FASTTRAP_REX_X(rex)		(((rex) >> 1) & 1)
151#define	FASTTRAP_REX_B(rex)		((rex) & 1)
152#define	FASTTRAP_REX(w, r, x, b)	\
153	(0x40 | ((w) << 3) | ((r) << 2) | ((x) << 1) | (b))
154
155/*
156 * Single-byte op-codes.
157 */
158#define	FASTTRAP_PUSHL_EBP	0x55
159
160#define	FASTTRAP_JO		0x70
161#define	FASTTRAP_JNO		0x71
162#define	FASTTRAP_JB		0x72
163#define	FASTTRAP_JAE		0x73
164#define	FASTTRAP_JE		0x74
165#define	FASTTRAP_JNE		0x75
166#define	FASTTRAP_JBE		0x76
167#define	FASTTRAP_JA		0x77
168#define	FASTTRAP_JS		0x78
169#define	FASTTRAP_JNS		0x79
170#define	FASTTRAP_JP		0x7a
171#define	FASTTRAP_JNP		0x7b
172#define	FASTTRAP_JL		0x7c
173#define	FASTTRAP_JGE		0x7d
174#define	FASTTRAP_JLE		0x7e
175#define	FASTTRAP_JG		0x7f
176
177#define	FASTTRAP_NOP		0x90
178
179#define	FASTTRAP_MOV_EAX	0xb8
180#define	FASTTRAP_MOV_ECX	0xb9
181
182#define	FASTTRAP_RET16		0xc2
183#define	FASTTRAP_RET		0xc3
184
185#define	FASTTRAP_LOOPNZ		0xe0
186#define	FASTTRAP_LOOPZ		0xe1
187#define	FASTTRAP_LOOP		0xe2
188#define	FASTTRAP_JCXZ		0xe3
189
190#define	FASTTRAP_CALL		0xe8
191#define	FASTTRAP_JMP32		0xe9
192#define	FASTTRAP_JMP8		0xeb
193
194#define	FASTTRAP_INT3		0xcc
195#define	FASTTRAP_INT		0xcd
196
197#define	FASTTRAP_2_BYTE_OP	0x0f
198#define	FASTTRAP_GROUP5_OP	0xff
199
200/*
201 * Two-byte op-codes (second byte only).
202 */
203#define	FASTTRAP_0F_JO		0x80
204#define	FASTTRAP_0F_JNO		0x81
205#define	FASTTRAP_0F_JB		0x82
206#define	FASTTRAP_0F_JAE		0x83
207#define	FASTTRAP_0F_JE		0x84
208#define	FASTTRAP_0F_JNE		0x85
209#define	FASTTRAP_0F_JBE		0x86
210#define	FASTTRAP_0F_JA		0x87
211#define	FASTTRAP_0F_JS		0x88
212#define	FASTTRAP_0F_JNS		0x89
213#define	FASTTRAP_0F_JP		0x8a
214#define	FASTTRAP_0F_JNP		0x8b
215#define	FASTTRAP_0F_JL		0x8c
216#define	FASTTRAP_0F_JGE		0x8d
217#define	FASTTRAP_0F_JLE		0x8e
218#define	FASTTRAP_0F_JG		0x8f
219
220#define	FASTTRAP_EFLAGS_OF	0x800
221#define	FASTTRAP_EFLAGS_DF	0x400
222#define	FASTTRAP_EFLAGS_SF	0x080
223#define	FASTTRAP_EFLAGS_ZF	0x040
224#define	FASTTRAP_EFLAGS_AF	0x010
225#define	FASTTRAP_EFLAGS_PF	0x004
226#define	FASTTRAP_EFLAGS_CF	0x001
227
228/*
229 * Instruction prefixes.
230 */
231#define	FASTTRAP_PREFIX_OPERAND	0x66
232#define	FASTTRAP_PREFIX_ADDRESS	0x67
233#define	FASTTRAP_PREFIX_CS	0x2E
234#define	FASTTRAP_PREFIX_DS	0x3E
235#define	FASTTRAP_PREFIX_ES	0x26
236#define	FASTTRAP_PREFIX_FS	0x64
237#define	FASTTRAP_PREFIX_GS	0x65
238#define	FASTTRAP_PREFIX_SS	0x36
239#define	FASTTRAP_PREFIX_LOCK	0xF0
240#define	FASTTRAP_PREFIX_REP	0xF3
241#define	FASTTRAP_PREFIX_REPNE	0xF2
242
243#define	FASTTRAP_NOREG	0xff
244
245/*
246 * Map between instruction register encodings and the kernel constants which
247 * correspond to indicies into struct regs.
248 */
249#ifdef __amd64
250static const uint8_t regmap[16] = {
251	REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI,
252	REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15,
253};
254#else
255static const uint8_t regmap[8] = {
256	EAX, ECX, EDX, EBX, UESP, EBP, ESI, EDI
257};
258#endif
259
260static ulong_t fasttrap_getreg(struct reg *, uint_t);
261
262static uint64_t
263fasttrap_anarg(struct reg *rp, int function_entry, int argno)
264{
265	uint64_t value = 0;
266	int shift = function_entry ? 1 : 0;
267
268#ifdef __amd64
269	if (curproc->p_model == DATAMODEL_LP64) {
270		uintptr_t *stack;
271
272		/*
273		 * In 64-bit mode, the first six arguments are stored in
274		 * registers.
275		 */
276		if (argno < 6)
277			switch (argno) {
278			case 0:
279				return (rp->r_rdi);
280			case 1:
281				return (rp->r_rsi);
282			case 2:
283				return (rp->r_rdx);
284			case 3:
285				return (rp->r_rcx);
286			case 4:
287				return (rp->r_r8);
288			case 5:
289				return (rp->r_r9);
290			}
291
292		stack = (uintptr_t *)rp->r_rsp;
293		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
294		value = dtrace_fulword(&stack[argno - 6 + shift]);
295		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
296	} else {
297#endif
298#ifdef __i386
299		uint32_t *stack = (uint32_t *)rp->r_esp;
300		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
301		value = dtrace_fuword32(&stack[argno + shift]);
302		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
303#endif
304#ifdef __amd64
305	}
306#endif
307
308	return (value);
309}
310
311/*ARGSUSED*/
312int
313fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, uintptr_t pc,
314    fasttrap_probe_type_t type)
315{
316	uint8_t instr[FASTTRAP_MAX_INSTR_SIZE + 10];
317	size_t len = FASTTRAP_MAX_INSTR_SIZE;
318	size_t first = MIN(len, PAGESIZE - (pc & PAGEOFFSET));
319	uint_t start = 0;
320	int rmindex, size;
321	uint8_t seg, rex = 0;
322
323	/*
324	 * Read the instruction at the given address out of the process's
325	 * address space. We don't have to worry about a debugger
326	 * changing this instruction before we overwrite it with our trap
327	 * instruction since P_PR_LOCK is set. Since instructions can span
328	 * pages, we potentially read the instruction in two parts. If the
329	 * second part fails, we just zero out that part of the instruction.
330	 */
331	if (uread(p, &instr[0], first, pc) != 0)
332		return (-1);
333	if (len > first &&
334	    uread(p, &instr[first], len - first, pc + first) != 0) {
335		bzero(&instr[first], len - first);
336		len = first;
337	}
338
339	/*
340	 * If the disassembly fails, then we have a malformed instruction.
341	 */
342	if ((size = dtrace_instr_size_isa(instr, p->p_model, &rmindex)) <= 0)
343		return (-1);
344
345	/*
346	 * Make sure the disassembler isn't completely broken.
347	 */
348	ASSERT(-1 <= rmindex && rmindex < size);
349
350	/*
351	 * If the computed size is greater than the number of bytes read,
352	 * then it was a malformed instruction possibly because it fell on a
353	 * page boundary and the subsequent page was missing or because of
354	 * some malicious user.
355	 */
356	if (size > len)
357		return (-1);
358
359	tp->ftt_size = (uint8_t)size;
360	tp->ftt_segment = FASTTRAP_SEG_NONE;
361
362	/*
363	 * Find the start of the instruction's opcode by processing any
364	 * legacy prefixes.
365	 */
366	for (;;) {
367		seg = 0;
368		switch (instr[start]) {
369		case FASTTRAP_PREFIX_SS:
370			seg++;
371			/*FALLTHRU*/
372		case FASTTRAP_PREFIX_GS:
373			seg++;
374			/*FALLTHRU*/
375		case FASTTRAP_PREFIX_FS:
376			seg++;
377			/*FALLTHRU*/
378		case FASTTRAP_PREFIX_ES:
379			seg++;
380			/*FALLTHRU*/
381		case FASTTRAP_PREFIX_DS:
382			seg++;
383			/*FALLTHRU*/
384		case FASTTRAP_PREFIX_CS:
385			seg++;
386			/*FALLTHRU*/
387		case FASTTRAP_PREFIX_OPERAND:
388		case FASTTRAP_PREFIX_ADDRESS:
389		case FASTTRAP_PREFIX_LOCK:
390		case FASTTRAP_PREFIX_REP:
391		case FASTTRAP_PREFIX_REPNE:
392			if (seg != 0) {
393				/*
394				 * It's illegal for an instruction to specify
395				 * two segment prefixes -- give up on this
396				 * illegal instruction.
397				 */
398				if (tp->ftt_segment != FASTTRAP_SEG_NONE)
399					return (-1);
400
401				tp->ftt_segment = seg;
402			}
403			start++;
404			continue;
405		}
406		break;
407	}
408
409#ifdef __amd64
410	/*
411	 * Identify the REX prefix on 64-bit processes.
412	 */
413	if (p->p_model == DATAMODEL_LP64 && (instr[start] & 0xf0) == 0x40)
414		rex = instr[start++];
415#endif
416
417	/*
418	 * Now that we're pretty sure that the instruction is okay, copy the
419	 * valid part to the tracepoint.
420	 */
421	bcopy(instr, tp->ftt_instr, FASTTRAP_MAX_INSTR_SIZE);
422
423	tp->ftt_type = FASTTRAP_T_COMMON;
424	if (instr[start] == FASTTRAP_2_BYTE_OP) {
425		switch (instr[start + 1]) {
426		case FASTTRAP_0F_JO:
427		case FASTTRAP_0F_JNO:
428		case FASTTRAP_0F_JB:
429		case FASTTRAP_0F_JAE:
430		case FASTTRAP_0F_JE:
431		case FASTTRAP_0F_JNE:
432		case FASTTRAP_0F_JBE:
433		case FASTTRAP_0F_JA:
434		case FASTTRAP_0F_JS:
435		case FASTTRAP_0F_JNS:
436		case FASTTRAP_0F_JP:
437		case FASTTRAP_0F_JNP:
438		case FASTTRAP_0F_JL:
439		case FASTTRAP_0F_JGE:
440		case FASTTRAP_0F_JLE:
441		case FASTTRAP_0F_JG:
442			tp->ftt_type = FASTTRAP_T_JCC;
443			tp->ftt_code = (instr[start + 1] & 0x0f) | FASTTRAP_JO;
444			tp->ftt_dest = pc + tp->ftt_size +
445			    /* LINTED - alignment */
446			    *(int32_t *)&instr[start + 2];
447			break;
448		}
449	} else if (instr[start] == FASTTRAP_GROUP5_OP) {
450		uint_t mod = FASTTRAP_MODRM_MOD(instr[start + 1]);
451		uint_t reg = FASTTRAP_MODRM_REG(instr[start + 1]);
452		uint_t rm = FASTTRAP_MODRM_RM(instr[start + 1]);
453
454		if (reg == 2 || reg == 4) {
455			uint_t i, sz;
456
457			if (reg == 2)
458				tp->ftt_type = FASTTRAP_T_CALL;
459			else
460				tp->ftt_type = FASTTRAP_T_JMP;
461
462			if (mod == 3)
463				tp->ftt_code = 2;
464			else
465				tp->ftt_code = 1;
466
467			ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
468
469			/*
470			 * See AMD x86-64 Architecture Programmer's Manual
471			 * Volume 3, Section 1.2.7, Table 1-12, and
472			 * Appendix A.3.1, Table A-15.
473			 */
474			if (mod != 3 && rm == 4) {
475				uint8_t sib = instr[start + 2];
476				uint_t index = FASTTRAP_SIB_INDEX(sib);
477				uint_t base = FASTTRAP_SIB_BASE(sib);
478
479				tp->ftt_scale = FASTTRAP_SIB_SCALE(sib);
480
481				tp->ftt_index = (index == 4) ?
482				    FASTTRAP_NOREG :
483				    regmap[index | (FASTTRAP_REX_X(rex) << 3)];
484				tp->ftt_base = (mod == 0 && base == 5) ?
485				    FASTTRAP_NOREG :
486				    regmap[base | (FASTTRAP_REX_B(rex) << 3)];
487
488				i = 3;
489				sz = mod == 1 ? 1 : 4;
490			} else {
491				/*
492				 * In 64-bit mode, mod == 0 and r/m == 5
493				 * denotes %rip-relative addressing; in 32-bit
494				 * mode, the base register isn't used. In both
495				 * modes, there is a 32-bit operand.
496				 */
497				if (mod == 0 && rm == 5) {
498#ifdef __amd64
499					if (p->p_model == DATAMODEL_LP64)
500						tp->ftt_base = REG_RIP;
501					else
502#endif
503						tp->ftt_base = FASTTRAP_NOREG;
504					sz = 4;
505				} else  {
506					uint8_t base = rm |
507					    (FASTTRAP_REX_B(rex) << 3);
508
509					tp->ftt_base = regmap[base];
510					sz = mod == 1 ? 1 : mod == 2 ? 4 : 0;
511				}
512				tp->ftt_index = FASTTRAP_NOREG;
513				i = 2;
514			}
515
516			if (sz == 1) {
517				tp->ftt_dest = *(int8_t *)&instr[start + i];
518			} else if (sz == 4) {
519				/* LINTED - alignment */
520				tp->ftt_dest = *(int32_t *)&instr[start + i];
521			} else {
522				tp->ftt_dest = 0;
523			}
524		}
525	} else {
526		switch (instr[start]) {
527		case FASTTRAP_RET:
528			tp->ftt_type = FASTTRAP_T_RET;
529			break;
530
531		case FASTTRAP_RET16:
532			tp->ftt_type = FASTTRAP_T_RET16;
533			/* LINTED - alignment */
534			tp->ftt_dest = *(uint16_t *)&instr[start + 1];
535			break;
536
537		case FASTTRAP_JO:
538		case FASTTRAP_JNO:
539		case FASTTRAP_JB:
540		case FASTTRAP_JAE:
541		case FASTTRAP_JE:
542		case FASTTRAP_JNE:
543		case FASTTRAP_JBE:
544		case FASTTRAP_JA:
545		case FASTTRAP_JS:
546		case FASTTRAP_JNS:
547		case FASTTRAP_JP:
548		case FASTTRAP_JNP:
549		case FASTTRAP_JL:
550		case FASTTRAP_JGE:
551		case FASTTRAP_JLE:
552		case FASTTRAP_JG:
553			tp->ftt_type = FASTTRAP_T_JCC;
554			tp->ftt_code = instr[start];
555			tp->ftt_dest = pc + tp->ftt_size +
556			    (int8_t)instr[start + 1];
557			break;
558
559		case FASTTRAP_LOOPNZ:
560		case FASTTRAP_LOOPZ:
561		case FASTTRAP_LOOP:
562			tp->ftt_type = FASTTRAP_T_LOOP;
563			tp->ftt_code = instr[start];
564			tp->ftt_dest = pc + tp->ftt_size +
565			    (int8_t)instr[start + 1];
566			break;
567
568		case FASTTRAP_JCXZ:
569			tp->ftt_type = FASTTRAP_T_JCXZ;
570			tp->ftt_dest = pc + tp->ftt_size +
571			    (int8_t)instr[start + 1];
572			break;
573
574		case FASTTRAP_CALL:
575			tp->ftt_type = FASTTRAP_T_CALL;
576			tp->ftt_dest = pc + tp->ftt_size +
577			    /* LINTED - alignment */
578			    *(int32_t *)&instr[start + 1];
579			tp->ftt_code = 0;
580			break;
581
582		case FASTTRAP_JMP32:
583			tp->ftt_type = FASTTRAP_T_JMP;
584			tp->ftt_dest = pc + tp->ftt_size +
585			    /* LINTED - alignment */
586			    *(int32_t *)&instr[start + 1];
587			break;
588		case FASTTRAP_JMP8:
589			tp->ftt_type = FASTTRAP_T_JMP;
590			tp->ftt_dest = pc + tp->ftt_size +
591			    (int8_t)instr[start + 1];
592			break;
593
594		case FASTTRAP_PUSHL_EBP:
595			if (start == 0)
596				tp->ftt_type = FASTTRAP_T_PUSHL_EBP;
597			break;
598
599		case FASTTRAP_NOP:
600#ifdef __amd64
601			ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
602
603			/*
604			 * On amd64 we have to be careful not to confuse a nop
605			 * (actually xchgl %eax, %eax) with an instruction using
606			 * the same opcode, but that does something different
607			 * (e.g. xchgl %r8d, %eax or xcghq %r8, %rax).
608			 */
609			if (FASTTRAP_REX_B(rex) == 0)
610#endif
611				tp->ftt_type = FASTTRAP_T_NOP;
612			break;
613
614		case FASTTRAP_INT3:
615			/*
616			 * The pid provider shares the int3 trap with debugger
617			 * breakpoints so we can't instrument them.
618			 */
619			ASSERT(instr[start] == FASTTRAP_INSTR);
620			return (-1);
621
622		case FASTTRAP_INT:
623			/*
624			 * Interrupts seem like they could be traced with
625			 * no negative implications, but it's possible that
626			 * a thread could be redirected by the trap handling
627			 * code which would eventually return to the
628			 * instruction after the interrupt. If the interrupt
629			 * were in our scratch space, the subsequent
630			 * instruction might be overwritten before we return.
631			 * Accordingly we refuse to instrument any interrupt.
632			 */
633			return (-1);
634		}
635	}
636
637#ifdef __amd64
638	if (p->p_model == DATAMODEL_LP64 && tp->ftt_type == FASTTRAP_T_COMMON) {
639		/*
640		 * If the process is 64-bit and the instruction type is still
641		 * FASTTRAP_T_COMMON -- meaning we're going to copy it out an
642		 * execute it -- we need to watch for %rip-relative
643		 * addressing mode. See the portion of fasttrap_pid_probe()
644		 * below where we handle tracepoints with type
645		 * FASTTRAP_T_COMMON for how we emulate instructions that
646		 * employ %rip-relative addressing.
647		 */
648		if (rmindex != -1) {
649			uint_t mod = FASTTRAP_MODRM_MOD(instr[rmindex]);
650			uint_t reg = FASTTRAP_MODRM_REG(instr[rmindex]);
651			uint_t rm = FASTTRAP_MODRM_RM(instr[rmindex]);
652
653			ASSERT(rmindex > start);
654
655			if (mod == 0 && rm == 5) {
656				/*
657				 * We need to be sure to avoid other
658				 * registers used by this instruction. While
659				 * the reg field may determine the op code
660				 * rather than denoting a register, assuming
661				 * that it denotes a register is always safe.
662				 * We leave the REX field intact and use
663				 * whatever value's there for simplicity.
664				 */
665				if (reg != 0) {
666					tp->ftt_ripmode = FASTTRAP_RIP_1 |
667					    (FASTTRAP_RIP_X *
668					    FASTTRAP_REX_B(rex));
669					rm = 0;
670				} else {
671					tp->ftt_ripmode = FASTTRAP_RIP_2 |
672					    (FASTTRAP_RIP_X *
673					    FASTTRAP_REX_B(rex));
674					rm = 1;
675				}
676
677				tp->ftt_modrm = tp->ftt_instr[rmindex];
678				tp->ftt_instr[rmindex] =
679				    FASTTRAP_MODRM(2, reg, rm);
680			}
681		}
682	}
683#endif
684
685	return (0);
686}
687
688int
689fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp)
690{
691	fasttrap_instr_t instr = FASTTRAP_INSTR;
692
693	if (uwrite(p, &instr, 1, tp->ftt_pc) != 0)
694		return (-1);
695
696	return (0);
697}
698
699int
700fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp)
701{
702	uint8_t instr;
703
704	/*
705	 * Distinguish between read or write failures and a changed
706	 * instruction.
707	 */
708	if (uread(p, &instr, 1, tp->ftt_pc) != 0)
709		return (0);
710	if (instr != FASTTRAP_INSTR)
711		return (0);
712	if (uwrite(p, &tp->ftt_instr[0], 1, tp->ftt_pc) != 0)
713		return (-1);
714
715	return (0);
716}
717
718#ifdef __amd64
719static uintptr_t
720fasttrap_fulword_noerr(const void *uaddr)
721{
722	uintptr_t ret;
723
724	if ((ret = fasttrap_fulword(uaddr)) != -1)
725		return (ret);
726
727	return (0);
728}
729#endif
730
731#ifdef __i386__
732static uint32_t
733fasttrap_fuword32_noerr(const void *uaddr)
734{
735	uint32_t ret;
736
737	if ((ret = fasttrap_fuword32(uaddr)) != -1)
738		return (ret);
739
740	return (0);
741}
742#endif
743
744static void
745fasttrap_return_common(struct reg *rp, uintptr_t pc, pid_t pid,
746    uintptr_t new_pc)
747{
748	fasttrap_tracepoint_t *tp;
749	fasttrap_bucket_t *bucket;
750	fasttrap_id_t *id;
751#ifdef illumos
752	kmutex_t *pid_mtx;
753
754	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
755	mutex_enter(pid_mtx);
756#else
757	struct rm_priotracker tracker;
758
759	rm_rlock(&fasttrap_tp_lock, &tracker);
760#endif
761	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
762
763	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
764		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
765		    tp->ftt_proc->ftpc_acount != 0)
766			break;
767	}
768
769	/*
770	 * Don't sweat it if we can't find the tracepoint again; unlike
771	 * when we're in fasttrap_pid_probe(), finding the tracepoint here
772	 * is not essential to the correct execution of the process.
773	 */
774	if (tp == NULL) {
775#ifdef illumos
776		mutex_exit(pid_mtx);
777#else
778		rm_runlock(&fasttrap_tp_lock, &tracker);
779#endif
780		return;
781	}
782
783	for (id = tp->ftt_retids; id != NULL; id = id->fti_next) {
784		/*
785		 * If there's a branch that could act as a return site, we
786		 * need to trace it, and check here if the program counter is
787		 * external to the function.
788		 */
789		if (tp->ftt_type != FASTTRAP_T_RET &&
790		    tp->ftt_type != FASTTRAP_T_RET16 &&
791		    new_pc - id->fti_probe->ftp_faddr <
792		    id->fti_probe->ftp_fsize)
793			continue;
794
795		dtrace_probe(id->fti_probe->ftp_id,
796		    pc - id->fti_probe->ftp_faddr,
797		    rp->r_rax, rp->r_rbx, 0, 0);
798	}
799
800#ifdef illumos
801	mutex_exit(pid_mtx);
802#else
803	rm_runlock(&fasttrap_tp_lock, &tracker);
804#endif
805}
806
807static void
808fasttrap_sigsegv(proc_t *p, kthread_t *t, uintptr_t addr)
809{
810#ifdef illumos
811	sigqueue_t *sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
812
813	sqp->sq_info.si_signo = SIGSEGV;
814	sqp->sq_info.si_code = SEGV_MAPERR;
815	sqp->sq_info.si_addr = (caddr_t)addr;
816
817	mutex_enter(&p->p_lock);
818	sigaddqa(p, t, sqp);
819	mutex_exit(&p->p_lock);
820
821	if (t != NULL)
822		aston(t);
823#else
824	ksiginfo_t *ksi = kmem_zalloc(sizeof (ksiginfo_t), KM_SLEEP);
825
826	ksiginfo_init(ksi);
827	ksi->ksi_signo = SIGSEGV;
828	ksi->ksi_code = SEGV_MAPERR;
829	ksi->ksi_addr = (caddr_t)addr;
830	(void) tdksignal(t, SIGSEGV, ksi);
831#endif
832}
833
834#ifdef __amd64
835static void
836fasttrap_usdt_args64(fasttrap_probe_t *probe, struct reg *rp, int argc,
837    uintptr_t *argv)
838{
839	int i, x, cap = MIN(argc, probe->ftp_nargs);
840	uintptr_t *stack = (uintptr_t *)rp->r_rsp;
841
842	for (i = 0; i < cap; i++) {
843		x = probe->ftp_argmap[i];
844
845		if (x < 6)
846			argv[i] = (&rp->r_rdi)[x];
847		else
848			argv[i] = fasttrap_fulword_noerr(&stack[x]);
849	}
850
851	for (; i < argc; i++) {
852		argv[i] = 0;
853	}
854}
855#endif
856
857#ifdef __i386__
858static void
859fasttrap_usdt_args32(fasttrap_probe_t *probe, struct reg *rp, int argc,
860    uint32_t *argv)
861{
862	int i, x, cap = MIN(argc, probe->ftp_nargs);
863	uint32_t *stack = (uint32_t *)rp->r_rsp;
864
865	for (i = 0; i < cap; i++) {
866		x = probe->ftp_argmap[i];
867
868		argv[i] = fasttrap_fuword32_noerr(&stack[x]);
869	}
870
871	for (; i < argc; i++) {
872		argv[i] = 0;
873	}
874}
875#endif
876
877static int
878fasttrap_do_seg(fasttrap_tracepoint_t *tp, struct reg *rp, uintptr_t *addr)
879{
880	proc_t *p = curproc;
881#ifdef __i386__
882	struct segment_descriptor *desc;
883#else
884	struct user_segment_descriptor *desc;
885#endif
886	uint16_t sel = 0, ndx, type;
887	uintptr_t limit;
888
889	switch (tp->ftt_segment) {
890	case FASTTRAP_SEG_CS:
891		sel = rp->r_cs;
892		break;
893	case FASTTRAP_SEG_DS:
894		sel = rp->r_ds;
895		break;
896	case FASTTRAP_SEG_ES:
897		sel = rp->r_es;
898		break;
899	case FASTTRAP_SEG_FS:
900		sel = rp->r_fs;
901		break;
902	case FASTTRAP_SEG_GS:
903		sel = rp->r_gs;
904		break;
905	case FASTTRAP_SEG_SS:
906		sel = rp->r_ss;
907		break;
908	}
909
910	/*
911	 * Make sure the given segment register specifies a user priority
912	 * selector rather than a kernel selector.
913	 */
914	if (ISPL(sel) != SEL_UPL)
915		return (-1);
916
917	ndx = IDXSEL(sel);
918
919	/*
920	 * Check the bounds and grab the descriptor out of the specified
921	 * descriptor table.
922	 */
923	if (ISLDT(sel)) {
924#ifdef __i386__
925		if (ndx > p->p_md.md_ldt->ldt_len)
926			return (-1);
927
928		desc = (struct segment_descriptor *)
929		    p->p_md.md_ldt[ndx].ldt_base;
930#else
931		if (ndx > max_ldt_segment)
932			return (-1);
933
934		desc = (struct user_segment_descriptor *)
935		    p->p_md.md_ldt[ndx].ldt_base;
936#endif
937
938	} else {
939		if (ndx >= NGDT)
940			return (-1);
941
942#ifdef __i386__
943		desc = &gdt[ndx].sd;
944#else
945		desc = &gdt[ndx];
946#endif
947	}
948
949	/*
950	 * The descriptor must have user privilege level and it must be
951	 * present in memory.
952	 */
953	if (desc->sd_dpl != SEL_UPL || desc->sd_p != 1)
954		return (-1);
955
956	type = desc->sd_type;
957
958	/*
959	 * If the S bit in the type field is not set, this descriptor can
960	 * only be used in system context.
961	 */
962	if ((type & 0x10) != 0x10)
963		return (-1);
964
965	limit = USD_GETLIMIT(desc) * (desc->sd_gran ? PAGESIZE : 1);
966
967	if (tp->ftt_segment == FASTTRAP_SEG_CS) {
968		/*
969		 * The code/data bit and readable bit must both be set.
970		 */
971		if ((type & 0xa) != 0xa)
972			return (-1);
973
974		if (*addr > limit)
975			return (-1);
976	} else {
977		/*
978		 * The code/data bit must be clear.
979		 */
980		if ((type & 0x8) != 0)
981			return (-1);
982
983		/*
984		 * If the expand-down bit is clear, we just check the limit as
985		 * it would naturally be applied. Otherwise, we need to check
986		 * that the address is the range [limit + 1 .. 0xffff] or
987		 * [limit + 1 ... 0xffffffff] depending on if the default
988		 * operand size bit is set.
989		 */
990		if ((type & 0x4) == 0) {
991			if (*addr > limit)
992				return (-1);
993		} else if (desc->sd_def32) {
994			if (*addr < limit + 1 || 0xffff < *addr)
995				return (-1);
996		} else {
997			if (*addr < limit + 1 || 0xffffffff < *addr)
998				return (-1);
999		}
1000	}
1001
1002	*addr += USD_GETBASE(desc);
1003
1004	return (0);
1005}
1006
1007int
1008fasttrap_pid_probe(struct reg *rp)
1009{
1010	proc_t *p = curproc;
1011#ifndef illumos
1012	struct rm_priotracker tracker;
1013	proc_t *pp;
1014#endif
1015	uintptr_t pc = rp->r_rip - 1;
1016	uintptr_t new_pc = 0;
1017	fasttrap_bucket_t *bucket;
1018#ifdef illumos
1019	kmutex_t *pid_mtx;
1020#endif
1021	fasttrap_tracepoint_t *tp, tp_local;
1022	pid_t pid;
1023	dtrace_icookie_t cookie;
1024	uint_t is_enabled = 0;
1025
1026	/*
1027	 * It's possible that a user (in a veritable orgy of bad planning)
1028	 * could redirect this thread's flow of control before it reached the
1029	 * return probe fasttrap. In this case we need to kill the process
1030	 * since it's in a unrecoverable state.
1031	 */
1032	if (curthread->t_dtrace_step) {
1033		ASSERT(curthread->t_dtrace_on);
1034		fasttrap_sigtrap(p, curthread, pc);
1035		return (0);
1036	}
1037
1038	/*
1039	 * Clear all user tracing flags.
1040	 */
1041	curthread->t_dtrace_ft = 0;
1042	curthread->t_dtrace_pc = 0;
1043	curthread->t_dtrace_npc = 0;
1044	curthread->t_dtrace_scrpc = 0;
1045	curthread->t_dtrace_astpc = 0;
1046#ifdef __amd64
1047	curthread->t_dtrace_regv = 0;
1048#endif
1049
1050	/*
1051	 * Treat a child created by a call to vfork(2) as if it were its
1052	 * parent. We know that there's only one thread of control in such a
1053	 * process: this one.
1054	 */
1055#ifdef illumos
1056	while (p->p_flag & SVFORK) {
1057		p = p->p_parent;
1058	}
1059
1060	pid = p->p_pid;
1061	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
1062	mutex_enter(pid_mtx);
1063#else
1064	pp = p;
1065	sx_slock(&proctree_lock);
1066	while (pp->p_vmspace == pp->p_pptr->p_vmspace)
1067		pp = pp->p_pptr;
1068	pid = pp->p_pid;
1069	sx_sunlock(&proctree_lock);
1070	pp = NULL;
1071
1072	rm_rlock(&fasttrap_tp_lock, &tracker);
1073#endif
1074
1075	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
1076
1077	/*
1078	 * Lookup the tracepoint that the process just hit.
1079	 */
1080	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
1081		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
1082		    tp->ftt_proc->ftpc_acount != 0)
1083			break;
1084	}
1085
1086	/*
1087	 * If we couldn't find a matching tracepoint, either a tracepoint has
1088	 * been inserted without using the pid<pid> ioctl interface (see
1089	 * fasttrap_ioctl), or somehow we have mislaid this tracepoint.
1090	 */
1091	if (tp == NULL) {
1092#ifdef illumos
1093		mutex_exit(pid_mtx);
1094#else
1095		rm_runlock(&fasttrap_tp_lock, &tracker);
1096#endif
1097		return (-1);
1098	}
1099
1100	/*
1101	 * Set the program counter to the address of the traced instruction
1102	 * so that it looks right in ustack() output.
1103	 */
1104	rp->r_rip = pc;
1105
1106	if (tp->ftt_ids != NULL) {
1107		fasttrap_id_t *id;
1108
1109#ifdef __amd64
1110		if (p->p_model == DATAMODEL_LP64) {
1111			for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
1112				fasttrap_probe_t *probe = id->fti_probe;
1113
1114				if (id->fti_ptype == DTFTP_ENTRY) {
1115					/*
1116					 * We note that this was an entry
1117					 * probe to help ustack() find the
1118					 * first caller.
1119					 */
1120					cookie = dtrace_interrupt_disable();
1121					DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
1122					dtrace_probe(probe->ftp_id, rp->r_rdi,
1123					    rp->r_rsi, rp->r_rdx, rp->r_rcx,
1124					    rp->r_r8);
1125					DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
1126					dtrace_interrupt_enable(cookie);
1127				} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
1128					/*
1129					 * Note that in this case, we don't
1130					 * call dtrace_probe() since it's only
1131					 * an artificial probe meant to change
1132					 * the flow of control so that it
1133					 * encounters the true probe.
1134					 */
1135					is_enabled = 1;
1136				} else if (probe->ftp_argmap == NULL) {
1137					dtrace_probe(probe->ftp_id, rp->r_rdi,
1138					    rp->r_rsi, rp->r_rdx, rp->r_rcx,
1139					    rp->r_r8);
1140				} else {
1141					uintptr_t t[5];
1142
1143					fasttrap_usdt_args64(probe, rp,
1144					    sizeof (t) / sizeof (t[0]), t);
1145
1146					dtrace_probe(probe->ftp_id, t[0], t[1],
1147					    t[2], t[3], t[4]);
1148				}
1149			}
1150		} else {
1151#else /* __amd64 */
1152			uintptr_t s0, s1, s2, s3, s4, s5;
1153			uint32_t *stack = (uint32_t *)rp->r_esp;
1154
1155			/*
1156			 * In 32-bit mode, all arguments are passed on the
1157			 * stack. If this is a function entry probe, we need
1158			 * to skip the first entry on the stack as it
1159			 * represents the return address rather than a
1160			 * parameter to the function.
1161			 */
1162			s0 = fasttrap_fuword32_noerr(&stack[0]);
1163			s1 = fasttrap_fuword32_noerr(&stack[1]);
1164			s2 = fasttrap_fuword32_noerr(&stack[2]);
1165			s3 = fasttrap_fuword32_noerr(&stack[3]);
1166			s4 = fasttrap_fuword32_noerr(&stack[4]);
1167			s5 = fasttrap_fuword32_noerr(&stack[5]);
1168
1169			for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
1170				fasttrap_probe_t *probe = id->fti_probe;
1171
1172				if (id->fti_ptype == DTFTP_ENTRY) {
1173					/*
1174					 * We note that this was an entry
1175					 * probe to help ustack() find the
1176					 * first caller.
1177					 */
1178					cookie = dtrace_interrupt_disable();
1179					DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
1180					dtrace_probe(probe->ftp_id, s1, s2,
1181					    s3, s4, s5);
1182					DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
1183					dtrace_interrupt_enable(cookie);
1184				} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
1185					/*
1186					 * Note that in this case, we don't
1187					 * call dtrace_probe() since it's only
1188					 * an artificial probe meant to change
1189					 * the flow of control so that it
1190					 * encounters the true probe.
1191					 */
1192					is_enabled = 1;
1193				} else if (probe->ftp_argmap == NULL) {
1194					dtrace_probe(probe->ftp_id, s0, s1,
1195					    s2, s3, s4);
1196				} else {
1197					uint32_t t[5];
1198
1199					fasttrap_usdt_args32(probe, rp,
1200					    sizeof (t) / sizeof (t[0]), t);
1201
1202					dtrace_probe(probe->ftp_id, t[0], t[1],
1203					    t[2], t[3], t[4]);
1204				}
1205			}
1206#endif /* __amd64 */
1207#ifdef __amd64
1208		}
1209#endif
1210	}
1211
1212	/*
1213	 * We're about to do a bunch of work so we cache a local copy of
1214	 * the tracepoint to emulate the instruction, and then find the
1215	 * tracepoint again later if we need to light up any return probes.
1216	 */
1217	tp_local = *tp;
1218#ifdef illumos
1219	mutex_exit(pid_mtx);
1220#else
1221	rm_runlock(&fasttrap_tp_lock, &tracker);
1222#endif
1223	tp = &tp_local;
1224
1225	/*
1226	 * Set the program counter to appear as though the traced instruction
1227	 * had completely executed. This ensures that fasttrap_getreg() will
1228	 * report the expected value for REG_RIP.
1229	 */
1230	rp->r_rip = pc + tp->ftt_size;
1231
1232	/*
1233	 * If there's an is-enabled probe connected to this tracepoint it
1234	 * means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax'
1235	 * instruction that was placed there by DTrace when the binary was
1236	 * linked. As this probe is, in fact, enabled, we need to stuff 1
1237	 * into %eax or %rax. Accordingly, we can bypass all the instruction
1238	 * emulation logic since we know the inevitable result. It's possible
1239	 * that a user could construct a scenario where the 'is-enabled'
1240	 * probe was on some other instruction, but that would be a rather
1241	 * exotic way to shoot oneself in the foot.
1242	 */
1243	if (is_enabled) {
1244		rp->r_rax = 1;
1245		new_pc = rp->r_rip;
1246		goto done;
1247	}
1248
1249	/*
1250	 * We emulate certain types of instructions to ensure correctness
1251	 * (in the case of position dependent instructions) or optimize
1252	 * common cases. The rest we have the thread execute back in user-
1253	 * land.
1254	 */
1255	switch (tp->ftt_type) {
1256	case FASTTRAP_T_RET:
1257	case FASTTRAP_T_RET16:
1258	{
1259		uintptr_t dst = 0;
1260		uintptr_t addr = 0;
1261		int ret = 0;
1262
1263		/*
1264		 * We have to emulate _every_ facet of the behavior of a ret
1265		 * instruction including what happens if the load from %esp
1266		 * fails; in that case, we send a SIGSEGV.
1267		 */
1268#ifdef __amd64
1269		if (p->p_model == DATAMODEL_NATIVE) {
1270			ret = dst = fasttrap_fulword((void *)rp->r_rsp);
1271			addr = rp->r_rsp + sizeof (uintptr_t);
1272		} else {
1273#endif
1274#ifdef __i386__
1275			uint32_t dst32;
1276			ret = dst32 = fasttrap_fuword32((void *)rp->r_esp);
1277			dst = dst32;
1278			addr = rp->r_esp + sizeof (uint32_t);
1279#endif
1280#ifdef __amd64
1281		}
1282#endif
1283
1284		if (ret == -1) {
1285			fasttrap_sigsegv(p, curthread, rp->r_rsp);
1286			new_pc = pc;
1287			break;
1288		}
1289
1290		if (tp->ftt_type == FASTTRAP_T_RET16)
1291			addr += tp->ftt_dest;
1292
1293		rp->r_rsp = addr;
1294		new_pc = dst;
1295		break;
1296	}
1297
1298	case FASTTRAP_T_JCC:
1299	{
1300		uint_t taken = 0;
1301
1302		switch (tp->ftt_code) {
1303		case FASTTRAP_JO:
1304			taken = (rp->r_rflags & FASTTRAP_EFLAGS_OF) != 0;
1305			break;
1306		case FASTTRAP_JNO:
1307			taken = (rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0;
1308			break;
1309		case FASTTRAP_JB:
1310			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) != 0;
1311			break;
1312		case FASTTRAP_JAE:
1313			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) == 0;
1314			break;
1315		case FASTTRAP_JE:
1316			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0;
1317			break;
1318		case FASTTRAP_JNE:
1319			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0;
1320			break;
1321		case FASTTRAP_JBE:
1322			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) != 0 ||
1323			    (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0;
1324			break;
1325		case FASTTRAP_JA:
1326			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) == 0 &&
1327			    (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0;
1328			break;
1329		case FASTTRAP_JS:
1330			taken = (rp->r_rflags & FASTTRAP_EFLAGS_SF) != 0;
1331			break;
1332		case FASTTRAP_JNS:
1333			taken = (rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0;
1334			break;
1335		case FASTTRAP_JP:
1336			taken = (rp->r_rflags & FASTTRAP_EFLAGS_PF) != 0;
1337			break;
1338		case FASTTRAP_JNP:
1339			taken = (rp->r_rflags & FASTTRAP_EFLAGS_PF) == 0;
1340			break;
1341		case FASTTRAP_JL:
1342			taken = ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) !=
1343			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1344			break;
1345		case FASTTRAP_JGE:
1346			taken = ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) ==
1347			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1348			break;
1349		case FASTTRAP_JLE:
1350			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0 ||
1351			    ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) !=
1352			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1353			break;
1354		case FASTTRAP_JG:
1355			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0 &&
1356			    ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) ==
1357			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1358			break;
1359
1360		}
1361
1362		if (taken)
1363			new_pc = tp->ftt_dest;
1364		else
1365			new_pc = pc + tp->ftt_size;
1366		break;
1367	}
1368
1369	case FASTTRAP_T_LOOP:
1370	{
1371		uint_t taken = 0;
1372#ifdef __amd64
1373		greg_t cx = rp->r_rcx--;
1374#else
1375		greg_t cx = rp->r_ecx--;
1376#endif
1377
1378		switch (tp->ftt_code) {
1379		case FASTTRAP_LOOPNZ:
1380			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0 &&
1381			    cx != 0;
1382			break;
1383		case FASTTRAP_LOOPZ:
1384			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0 &&
1385			    cx != 0;
1386			break;
1387		case FASTTRAP_LOOP:
1388			taken = (cx != 0);
1389			break;
1390		}
1391
1392		if (taken)
1393			new_pc = tp->ftt_dest;
1394		else
1395			new_pc = pc + tp->ftt_size;
1396		break;
1397	}
1398
1399	case FASTTRAP_T_JCXZ:
1400	{
1401#ifdef __amd64
1402		greg_t cx = rp->r_rcx;
1403#else
1404		greg_t cx = rp->r_ecx;
1405#endif
1406
1407		if (cx == 0)
1408			new_pc = tp->ftt_dest;
1409		else
1410			new_pc = pc + tp->ftt_size;
1411		break;
1412	}
1413
1414	case FASTTRAP_T_PUSHL_EBP:
1415	{
1416		int ret = 0;
1417
1418#ifdef __amd64
1419		if (p->p_model == DATAMODEL_NATIVE) {
1420			rp->r_rsp -= sizeof (uintptr_t);
1421			ret = fasttrap_sulword((void *)rp->r_rsp, rp->r_rbp);
1422		} else {
1423#endif
1424#ifdef __i386__
1425			rp->r_rsp -= sizeof (uint32_t);
1426			ret = fasttrap_suword32((void *)rp->r_rsp, rp->r_rbp);
1427#endif
1428#ifdef __amd64
1429		}
1430#endif
1431
1432		if (ret == -1) {
1433			fasttrap_sigsegv(p, curthread, rp->r_rsp);
1434			new_pc = pc;
1435			break;
1436		}
1437
1438		new_pc = pc + tp->ftt_size;
1439		break;
1440	}
1441
1442	case FASTTRAP_T_NOP:
1443		new_pc = pc + tp->ftt_size;
1444		break;
1445
1446	case FASTTRAP_T_JMP:
1447	case FASTTRAP_T_CALL:
1448		if (tp->ftt_code == 0) {
1449			new_pc = tp->ftt_dest;
1450		} else {
1451			uintptr_t value, addr = tp->ftt_dest;
1452
1453			if (tp->ftt_base != FASTTRAP_NOREG)
1454				addr += fasttrap_getreg(rp, tp->ftt_base);
1455			if (tp->ftt_index != FASTTRAP_NOREG)
1456				addr += fasttrap_getreg(rp, tp->ftt_index) <<
1457				    tp->ftt_scale;
1458
1459			if (tp->ftt_code == 1) {
1460				/*
1461				 * If there's a segment prefix for this
1462				 * instruction, we'll need to check permissions
1463				 * and bounds on the given selector, and adjust
1464				 * the address accordingly.
1465				 */
1466				if (tp->ftt_segment != FASTTRAP_SEG_NONE &&
1467				    fasttrap_do_seg(tp, rp, &addr) != 0) {
1468					fasttrap_sigsegv(p, curthread, addr);
1469					new_pc = pc;
1470					break;
1471				}
1472
1473#ifdef __amd64
1474				if (p->p_model == DATAMODEL_NATIVE) {
1475#endif
1476					if ((value = fasttrap_fulword((void *)addr))
1477					     == -1) {
1478						fasttrap_sigsegv(p, curthread,
1479						    addr);
1480						new_pc = pc;
1481						break;
1482					}
1483					new_pc = value;
1484#ifdef __amd64
1485				} else {
1486					uint32_t value32;
1487					addr = (uintptr_t)(uint32_t)addr;
1488					if ((value32 = fasttrap_fuword32((void *)addr))
1489					    == -1) {
1490						fasttrap_sigsegv(p, curthread,
1491						    addr);
1492						new_pc = pc;
1493						break;
1494					}
1495					new_pc = value32;
1496				}
1497#endif
1498			} else {
1499				new_pc = addr;
1500			}
1501		}
1502
1503		/*
1504		 * If this is a call instruction, we need to push the return
1505		 * address onto the stack. If this fails, we send the process
1506		 * a SIGSEGV and reset the pc to emulate what would happen if
1507		 * this instruction weren't traced.
1508		 */
1509		if (tp->ftt_type == FASTTRAP_T_CALL) {
1510			int ret = 0;
1511			uintptr_t addr = 0, pcps;
1512#ifdef __amd64
1513			if (p->p_model == DATAMODEL_NATIVE) {
1514				addr = rp->r_rsp - sizeof (uintptr_t);
1515				pcps = pc + tp->ftt_size;
1516				ret = fasttrap_sulword((void *)addr, pcps);
1517			} else {
1518#endif
1519				addr = rp->r_rsp - sizeof (uint32_t);
1520				pcps = (uint32_t)(pc + tp->ftt_size);
1521				ret = fasttrap_suword32((void *)addr, pcps);
1522#ifdef __amd64
1523			}
1524#endif
1525
1526			if (ret == -1) {
1527				fasttrap_sigsegv(p, curthread, addr);
1528				new_pc = pc;
1529				break;
1530			}
1531
1532			rp->r_rsp = addr;
1533		}
1534
1535		break;
1536
1537	case FASTTRAP_T_COMMON:
1538	{
1539		uintptr_t addr;
1540#if defined(__amd64)
1541		uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 22];
1542#else
1543		uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 7];
1544#endif
1545		uint_t i = 0;
1546#ifdef illumos
1547		klwp_t *lwp = ttolwp(curthread);
1548
1549		/*
1550		 * Compute the address of the ulwp_t and step over the
1551		 * ul_self pointer. The method used to store the user-land
1552		 * thread pointer is very different on 32- and 64-bit
1553		 * kernels.
1554		 */
1555#if defined(__amd64)
1556		if (p->p_model == DATAMODEL_LP64) {
1557			addr = lwp->lwp_pcb.pcb_fsbase;
1558			addr += sizeof (void *);
1559		} else {
1560			addr = lwp->lwp_pcb.pcb_gsbase;
1561			addr += sizeof (caddr32_t);
1562		}
1563#else
1564		addr = USD_GETBASE(&lwp->lwp_pcb.pcb_gsdesc);
1565		addr += sizeof (void *);
1566#endif
1567#else	/* !illumos */
1568		fasttrap_scrspace_t *scrspace;
1569		scrspace = fasttrap_scraddr(curthread, tp->ftt_proc);
1570		if (scrspace == NULL) {
1571			/*
1572			 * We failed to allocate scratch space for this thread.
1573			 * Try to write the original instruction back out and
1574			 * reset the pc.
1575			 */
1576			if (fasttrap_copyout(tp->ftt_instr, (void *)pc,
1577			    tp->ftt_size))
1578				fasttrap_sigtrap(p, curthread, pc);
1579			new_pc = pc;
1580			break;
1581		}
1582		addr = scrspace->ftss_addr;
1583#endif /* illumos */
1584
1585		/*
1586		 * Generic Instruction Tracing
1587		 * ---------------------------
1588		 *
1589		 * This is the layout of the scratch space in the user-land
1590		 * thread structure for our generated instructions.
1591		 *
1592		 *	32-bit mode			bytes
1593		 *	------------------------	-----
1594		 * a:	<original instruction>		<= 15
1595		 *	jmp	<pc + tp->ftt_size>	    5
1596		 * b:	<original instruction>		<= 15
1597		 *	int	T_DTRACE_RET		    2
1598		 *					-----
1599		 *					<= 37
1600		 *
1601		 *	64-bit mode			bytes
1602		 *	------------------------	-----
1603		 * a:	<original instruction>		<= 15
1604		 *	jmp	0(%rip)			    6
1605		 *	<pc + tp->ftt_size>		    8
1606		 * b:	<original instruction>		<= 15
1607		 * 	int	T_DTRACE_RET		    2
1608		 * 					-----
1609		 * 					<= 46
1610		 *
1611		 * The %pc is set to a, and curthread->t_dtrace_astpc is set
1612		 * to b. If we encounter a signal on the way out of the
1613		 * kernel, trap() will set %pc to curthread->t_dtrace_astpc
1614		 * so that we execute the original instruction and re-enter
1615		 * the kernel rather than redirecting to the next instruction.
1616		 *
1617		 * If there are return probes (so we know that we're going to
1618		 * need to reenter the kernel after executing the original
1619		 * instruction), the scratch space will just contain the
1620		 * original instruction followed by an interrupt -- the same
1621		 * data as at b.
1622		 *
1623		 * %rip-relative Addressing
1624		 * ------------------------
1625		 *
1626		 * There's a further complication in 64-bit mode due to %rip-
1627		 * relative addressing. While this is clearly a beneficial
1628		 * architectural decision for position independent code, it's
1629		 * hard not to see it as a personal attack against the pid
1630		 * provider since before there was a relatively small set of
1631		 * instructions to emulate; with %rip-relative addressing,
1632		 * almost every instruction can potentially depend on the
1633		 * address at which it's executed. Rather than emulating
1634		 * the broad spectrum of instructions that can now be
1635		 * position dependent, we emulate jumps and others as in
1636		 * 32-bit mode, and take a different tack for instructions
1637		 * using %rip-relative addressing.
1638		 *
1639		 * For every instruction that uses the ModRM byte, the
1640		 * in-kernel disassembler reports its location. We use the
1641		 * ModRM byte to identify that an instruction uses
1642		 * %rip-relative addressing and to see what other registers
1643		 * the instruction uses. To emulate those instructions,
1644		 * we modify the instruction to be %rax-relative rather than
1645		 * %rip-relative (or %rcx-relative if the instruction uses
1646		 * %rax; or %r8- or %r9-relative if the REX.B is present so
1647		 * we don't have to rewrite the REX prefix). We then load
1648		 * the value that %rip would have been into the scratch
1649		 * register and generate an instruction to reset the scratch
1650		 * register back to its original value. The instruction
1651		 * sequence looks like this:
1652		 *
1653		 *	64-mode %rip-relative		bytes
1654		 *	------------------------	-----
1655		 * a:	<modified instruction>		<= 15
1656		 *	movq	$<value>, %<scratch>	    6
1657		 *	jmp	0(%rip)			    6
1658		 *	<pc + tp->ftt_size>		    8
1659		 * b:	<modified instruction>  	<= 15
1660		 * 	int	T_DTRACE_RET		    2
1661		 * 					-----
1662		 *					   52
1663		 *
1664		 * We set curthread->t_dtrace_regv so that upon receiving
1665		 * a signal we can reset the value of the scratch register.
1666		 */
1667
1668		ASSERT(tp->ftt_size < FASTTRAP_MAX_INSTR_SIZE);
1669
1670		curthread->t_dtrace_scrpc = addr;
1671		bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1672		i += tp->ftt_size;
1673
1674#ifdef __amd64
1675		if (tp->ftt_ripmode != 0) {
1676			greg_t *reg = NULL;
1677
1678			ASSERT(p->p_model == DATAMODEL_LP64);
1679			ASSERT(tp->ftt_ripmode &
1680			    (FASTTRAP_RIP_1 | FASTTRAP_RIP_2));
1681
1682			/*
1683			 * If this was a %rip-relative instruction, we change
1684			 * it to be either a %rax- or %rcx-relative
1685			 * instruction (depending on whether those registers
1686			 * are used as another operand; or %r8- or %r9-
1687			 * relative depending on the value of REX.B). We then
1688			 * set that register and generate a movq instruction
1689			 * to reset the value.
1690			 */
1691			if (tp->ftt_ripmode & FASTTRAP_RIP_X)
1692				scratch[i++] = FASTTRAP_REX(1, 0, 0, 1);
1693			else
1694				scratch[i++] = FASTTRAP_REX(1, 0, 0, 0);
1695
1696			if (tp->ftt_ripmode & FASTTRAP_RIP_1)
1697				scratch[i++] = FASTTRAP_MOV_EAX;
1698			else
1699				scratch[i++] = FASTTRAP_MOV_ECX;
1700
1701			switch (tp->ftt_ripmode) {
1702			case FASTTRAP_RIP_1:
1703				reg = &rp->r_rax;
1704				curthread->t_dtrace_reg = REG_RAX;
1705				break;
1706			case FASTTRAP_RIP_2:
1707				reg = &rp->r_rcx;
1708				curthread->t_dtrace_reg = REG_RCX;
1709				break;
1710			case FASTTRAP_RIP_1 | FASTTRAP_RIP_X:
1711				reg = &rp->r_r8;
1712				curthread->t_dtrace_reg = REG_R8;
1713				break;
1714			case FASTTRAP_RIP_2 | FASTTRAP_RIP_X:
1715				reg = &rp->r_r9;
1716				curthread->t_dtrace_reg = REG_R9;
1717				break;
1718			}
1719
1720			/* LINTED - alignment */
1721			*(uint64_t *)&scratch[i] = *reg;
1722			curthread->t_dtrace_regv = *reg;
1723			*reg = pc + tp->ftt_size;
1724			i += sizeof (uint64_t);
1725		}
1726#endif
1727
1728		/*
1729		 * Generate the branch instruction to what would have
1730		 * normally been the subsequent instruction. In 32-bit mode,
1731		 * this is just a relative branch; in 64-bit mode this is a
1732		 * %rip-relative branch that loads the 64-bit pc value
1733		 * immediately after the jmp instruction.
1734		 */
1735#ifdef __amd64
1736		if (p->p_model == DATAMODEL_LP64) {
1737			scratch[i++] = FASTTRAP_GROUP5_OP;
1738			scratch[i++] = FASTTRAP_MODRM(0, 4, 5);
1739			/* LINTED - alignment */
1740			*(uint32_t *)&scratch[i] = 0;
1741			i += sizeof (uint32_t);
1742			/* LINTED - alignment */
1743			*(uint64_t *)&scratch[i] = pc + tp->ftt_size;
1744			i += sizeof (uint64_t);
1745		} else {
1746#endif
1747#ifdef __i386__
1748			/*
1749			 * Set up the jmp to the next instruction; note that
1750			 * the size of the traced instruction cancels out.
1751			 */
1752			scratch[i++] = FASTTRAP_JMP32;
1753			/* LINTED - alignment */
1754			*(uint32_t *)&scratch[i] = pc - addr - 5;
1755			i += sizeof (uint32_t);
1756#endif
1757#ifdef __amd64
1758		}
1759#endif
1760
1761		curthread->t_dtrace_astpc = addr + i;
1762		bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1763		i += tp->ftt_size;
1764		scratch[i++] = FASTTRAP_INT;
1765		scratch[i++] = T_DTRACE_RET;
1766
1767		ASSERT(i <= sizeof (scratch));
1768
1769#ifdef illumos
1770		if (fasttrap_copyout(scratch, (char *)addr, i)) {
1771#else
1772		if (uwrite(p, scratch, i, addr)) {
1773#endif
1774			fasttrap_sigtrap(p, curthread, pc);
1775			new_pc = pc;
1776			break;
1777		}
1778		if (tp->ftt_retids != NULL) {
1779			curthread->t_dtrace_step = 1;
1780			curthread->t_dtrace_ret = 1;
1781			new_pc = curthread->t_dtrace_astpc;
1782		} else {
1783			new_pc = curthread->t_dtrace_scrpc;
1784		}
1785
1786		curthread->t_dtrace_pc = pc;
1787		curthread->t_dtrace_npc = pc + tp->ftt_size;
1788		curthread->t_dtrace_on = 1;
1789		break;
1790	}
1791
1792	default:
1793		panic("fasttrap: mishandled an instruction");
1794	}
1795
1796done:
1797	/*
1798	 * If there were no return probes when we first found the tracepoint,
1799	 * we should feel no obligation to honor any return probes that were
1800	 * subsequently enabled -- they'll just have to wait until the next
1801	 * time around.
1802	 */
1803	if (tp->ftt_retids != NULL) {
1804		/*
1805		 * We need to wait until the results of the instruction are
1806		 * apparent before invoking any return probes. If this
1807		 * instruction was emulated we can just call
1808		 * fasttrap_return_common(); if it needs to be executed, we
1809		 * need to wait until the user thread returns to the kernel.
1810		 */
1811		if (tp->ftt_type != FASTTRAP_T_COMMON) {
1812			/*
1813			 * Set the program counter to the address of the traced
1814			 * instruction so that it looks right in ustack()
1815			 * output. We had previously set it to the end of the
1816			 * instruction to simplify %rip-relative addressing.
1817			 */
1818			rp->r_rip = pc;
1819
1820			fasttrap_return_common(rp, pc, pid, new_pc);
1821		} else {
1822			ASSERT(curthread->t_dtrace_ret != 0);
1823			ASSERT(curthread->t_dtrace_pc == pc);
1824			ASSERT(curthread->t_dtrace_scrpc != 0);
1825			ASSERT(new_pc == curthread->t_dtrace_astpc);
1826		}
1827	}
1828
1829	rp->r_rip = new_pc;
1830
1831#ifndef illumos
1832	PROC_LOCK(p);
1833	proc_write_regs(curthread, rp);
1834	PROC_UNLOCK(p);
1835#endif
1836
1837	return (0);
1838}
1839
1840int
1841fasttrap_return_probe(struct reg *rp)
1842{
1843	proc_t *p = curproc;
1844	uintptr_t pc = curthread->t_dtrace_pc;
1845	uintptr_t npc = curthread->t_dtrace_npc;
1846
1847	curthread->t_dtrace_pc = 0;
1848	curthread->t_dtrace_npc = 0;
1849	curthread->t_dtrace_scrpc = 0;
1850	curthread->t_dtrace_astpc = 0;
1851
1852#ifdef illumos
1853	/*
1854	 * Treat a child created by a call to vfork(2) as if it were its
1855	 * parent. We know that there's only one thread of control in such a
1856	 * process: this one.
1857	 */
1858	while (p->p_flag & SVFORK) {
1859		p = p->p_parent;
1860	}
1861#endif
1862
1863	/*
1864	 * We set rp->r_rip to the address of the traced instruction so
1865	 * that it appears to dtrace_probe() that we're on the original
1866	 * instruction, and so that the user can't easily detect our
1867	 * complex web of lies. dtrace_return_probe() (our caller)
1868	 * will correctly set %pc after we return.
1869	 */
1870	rp->r_rip = pc;
1871
1872	fasttrap_return_common(rp, pc, p->p_pid, npc);
1873
1874	return (0);
1875}
1876
1877/*ARGSUSED*/
1878uint64_t
1879fasttrap_pid_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1880    int aframes)
1881{
1882	struct reg r;
1883
1884	fill_regs(curthread, &r);
1885
1886	return (fasttrap_anarg(&r, 1, argno));
1887}
1888
1889/*ARGSUSED*/
1890uint64_t
1891fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1892    int aframes)
1893{
1894	struct reg r;
1895
1896	fill_regs(curthread, &r);
1897
1898	return (fasttrap_anarg(&r, 0, argno));
1899}
1900
1901static ulong_t
1902fasttrap_getreg(struct reg *rp, uint_t reg)
1903{
1904#ifdef __amd64
1905	switch (reg) {
1906	case REG_R15:		return (rp->r_r15);
1907	case REG_R14:		return (rp->r_r14);
1908	case REG_R13:		return (rp->r_r13);
1909	case REG_R12:		return (rp->r_r12);
1910	case REG_R11:		return (rp->r_r11);
1911	case REG_R10:		return (rp->r_r10);
1912	case REG_R9:		return (rp->r_r9);
1913	case REG_R8:		return (rp->r_r8);
1914	case REG_RDI:		return (rp->r_rdi);
1915	case REG_RSI:		return (rp->r_rsi);
1916	case REG_RBP:		return (rp->r_rbp);
1917	case REG_RBX:		return (rp->r_rbx);
1918	case REG_RDX:		return (rp->r_rdx);
1919	case REG_RCX:		return (rp->r_rcx);
1920	case REG_RAX:		return (rp->r_rax);
1921	case REG_TRAPNO:	return (rp->r_trapno);
1922	case REG_ERR:		return (rp->r_err);
1923	case REG_RIP:		return (rp->r_rip);
1924	case REG_CS:		return (rp->r_cs);
1925#ifdef illumos
1926	case REG_RFL:		return (rp->r_rfl);
1927#endif
1928	case REG_RSP:		return (rp->r_rsp);
1929	case REG_SS:		return (rp->r_ss);
1930	case REG_FS:		return (rp->r_fs);
1931	case REG_GS:		return (rp->r_gs);
1932	case REG_DS:		return (rp->r_ds);
1933	case REG_ES:		return (rp->r_es);
1934	case REG_FSBASE:	return (rdmsr(MSR_FSBASE));
1935	case REG_GSBASE:	return (rdmsr(MSR_GSBASE));
1936	}
1937
1938	panic("dtrace: illegal register constant");
1939	/*NOTREACHED*/
1940#else
1941#define _NGREG 19
1942	if (reg >= _NGREG)
1943		panic("dtrace: illegal register constant");
1944
1945	return (((greg_t *)&rp->r_gs)[reg]);
1946#endif
1947}
1948