sysmacros.h revision 265740
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22/*	  All Rights Reserved  	*/
23
24
25/*
26 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
27 * Use is subject to license terms.
28 */
29
30#ifndef _SYS_SYSMACROS_H
31#define	_SYS_SYSMACROS_H
32
33#include <sys/param.h>
34#include <sys/isa_defs.h>
35
36#ifdef	__cplusplus
37extern "C" {
38#endif
39
40/*
41 * Some macros for units conversion
42 */
43/*
44 * Disk blocks (sectors) and bytes.
45 */
46#define	dtob(DD)	((DD) << DEV_BSHIFT)
47#define	btod(BB)	(((BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
48#define	btodt(BB)	((BB) >> DEV_BSHIFT)
49#define	lbtod(BB)	(((offset_t)(BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
50
51/* common macros */
52#ifndef MIN
53#define	MIN(a, b)	((a) < (b) ? (a) : (b))
54#endif
55#ifndef MAX
56#define	MAX(a, b)	((a) < (b) ? (b) : (a))
57#endif
58#ifndef ABS
59#define	ABS(a)		((a) < 0 ? -(a) : (a))
60#endif
61#ifndef	SIGNOF
62#define	SIGNOF(a)	((a) < 0 ? -1 : (a) > 0)
63#endif
64
65#ifdef _KERNEL
66
67/*
68 * Convert a single byte to/from binary-coded decimal (BCD).
69 */
70extern unsigned char byte_to_bcd[256];
71extern unsigned char bcd_to_byte[256];
72
73#define	BYTE_TO_BCD(x)	byte_to_bcd[(x) & 0xff]
74#define	BCD_TO_BYTE(x)	bcd_to_byte[(x) & 0xff]
75
76#endif	/* _KERNEL */
77
78/*
79 * WARNING: The device number macros defined here should not be used by device
80 * drivers or user software. Device drivers should use the device functions
81 * defined in the DDI/DKI interface (see also ddi.h). Application software
82 * should make use of the library routines available in makedev(3). A set of
83 * new device macros are provided to operate on the expanded device number
84 * format supported in SVR4. Macro versions of the DDI device functions are
85 * provided for use by kernel proper routines only. Macro routines bmajor(),
86 * major(), minor(), emajor(), eminor(), and makedev() will be removed or
87 * their definitions changed at the next major release following SVR4.
88 */
89
90#define	O_BITSMAJOR	7	/* # of SVR3 major device bits */
91#define	O_BITSMINOR	8	/* # of SVR3 minor device bits */
92#define	O_MAXMAJ	0x7f	/* SVR3 max major value */
93#define	O_MAXMIN	0xff	/* SVR3 max minor value */
94
95
96#define	L_BITSMAJOR32	14	/* # of SVR4 major device bits */
97#define	L_BITSMINOR32	18	/* # of SVR4 minor device bits */
98#define	L_MAXMAJ32	0x3fff	/* SVR4 max major value */
99#define	L_MAXMIN32	0x3ffff	/* MAX minor for 3b2 software drivers. */
100				/* For 3b2 hardware devices the minor is */
101				/* restricted to 256 (0-255) */
102
103#ifdef _LP64
104#define	L_BITSMAJOR	32	/* # of major device bits in 64-bit Solaris */
105#define	L_BITSMINOR	32	/* # of minor device bits in 64-bit Solaris */
106#define	L_MAXMAJ	0xfffffffful	/* max major value */
107#define	L_MAXMIN	0xfffffffful	/* max minor value */
108#else
109#define	L_BITSMAJOR	L_BITSMAJOR32
110#define	L_BITSMINOR	L_BITSMINOR32
111#define	L_MAXMAJ	L_MAXMAJ32
112#define	L_MAXMIN	L_MAXMIN32
113#endif
114
115#ifdef sun
116#ifdef _KERNEL
117
118/* major part of a device internal to the kernel */
119
120#define	major(x)	(major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
121#define	bmajor(x)	(major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
122
123/* get internal major part of expanded device number */
124
125#define	getmajor(x)	(major_t)((((dev_t)(x)) >> L_BITSMINOR) & L_MAXMAJ)
126
127/* minor part of a device internal to the kernel */
128
129#define	minor(x)	(minor_t)((x) & O_MAXMIN)
130
131/* get internal minor part of expanded device number */
132
133#define	getminor(x)	(minor_t)((x) & L_MAXMIN)
134
135#else
136
137/* major part of a device external from the kernel (same as emajor below) */
138
139#define	major(x)	(major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
140
141/* minor part of a device external from the kernel  (same as eminor below) */
142
143#define	minor(x)	(minor_t)((x) & O_MAXMIN)
144
145#endif	/* _KERNEL */
146
147/* create old device number */
148
149#define	makedev(x, y) (unsigned short)(((x) << O_BITSMINOR) | ((y) & O_MAXMIN))
150
151/* make an new device number */
152
153#define	makedevice(x, y) (dev_t)(((dev_t)(x) << L_BITSMINOR) | ((y) & L_MAXMIN))
154
155
156/*
157 * emajor() allows kernel/driver code to print external major numbers
158 * eminor() allows kernel/driver code to print external minor numbers
159 */
160
161#define	emajor(x) \
162	(major_t)(((unsigned int)(x) >> O_BITSMINOR) > O_MAXMAJ) ? \
163	    NODEV : (((unsigned int)(x) >> O_BITSMINOR) & O_MAXMAJ)
164
165#define	eminor(x) \
166	(minor_t)((x) & O_MAXMIN)
167
168/*
169 * get external major and minor device
170 * components from expanded device number
171 */
172#define	getemajor(x)	(major_t)((((dev_t)(x) >> L_BITSMINOR) > L_MAXMAJ) ? \
173			    NODEV : (((dev_t)(x) >> L_BITSMINOR) & L_MAXMAJ))
174#define	geteminor(x)	(minor_t)((x) & L_MAXMIN)
175#endif /* sun */
176
177/*
178 * These are versions of the kernel routines for compressing and
179 * expanding long device numbers that don't return errors.
180 */
181#if (L_BITSMAJOR32 == L_BITSMAJOR) && (L_BITSMINOR32 == L_BITSMINOR)
182
183#define	DEVCMPL(x)	(x)
184#define	DEVEXPL(x)	(x)
185
186#else
187
188#define	DEVCMPL(x)	\
189	(dev32_t)((((x) >> L_BITSMINOR) > L_MAXMAJ32 || \
190	    ((x) & L_MAXMIN) > L_MAXMIN32) ? NODEV32 : \
191	    ((((x) >> L_BITSMINOR) << L_BITSMINOR32) | ((x) & L_MAXMIN32)))
192
193#define	DEVEXPL(x)	\
194	(((x) == NODEV32) ? NODEV : \
195	makedevice(((x) >> L_BITSMINOR32) & L_MAXMAJ32, (x) & L_MAXMIN32))
196
197#endif /* L_BITSMAJOR32 ... */
198
199/* convert to old (SVR3.2) dev format */
200
201#define	cmpdev(x) \
202	(o_dev_t)((((x) >> L_BITSMINOR) > O_MAXMAJ || \
203	    ((x) & L_MAXMIN) > O_MAXMIN) ? NODEV : \
204	    ((((x) >> L_BITSMINOR) << O_BITSMINOR) | ((x) & O_MAXMIN)))
205
206/* convert to new (SVR4) dev format */
207
208#define	expdev(x) \
209	(dev_t)(((dev_t)(((x) >> O_BITSMINOR) & O_MAXMAJ) << L_BITSMINOR) | \
210	    ((x) & O_MAXMIN))
211
212/*
213 * Macro for checking power of 2 address alignment.
214 */
215#define	IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0)
216
217/*
218 * Macros for counting and rounding.
219 */
220#define	howmany(x, y)	(((x)+((y)-1))/(y))
221#define	roundup(x, y)	((((x)+((y)-1))/(y))*(y))
222
223/*
224 * Macro to determine if value is a power of 2
225 */
226#define	ISP2(x)		(((x) & ((x) - 1)) == 0)
227
228/*
229 * Macros for various sorts of alignment and rounding.  The "align" must
230 * be a power of 2.  Often times it is a block, sector, or page.
231 */
232
233/*
234 * return x rounded down to an align boundary
235 * eg, P2ALIGN(1200, 1024) == 1024 (1*align)
236 * eg, P2ALIGN(1024, 1024) == 1024 (1*align)
237 * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align)
238 * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align)
239 */
240#define	P2ALIGN(x, align)		((x) & -(align))
241
242/*
243 * return x % (mod) align
244 * eg, P2PHASE(0x1234, 0x100) == 0x34 (x-0x12*align)
245 * eg, P2PHASE(0x5600, 0x100) == 0x00 (x-0x56*align)
246 */
247#define	P2PHASE(x, align)		((x) & ((align) - 1))
248
249/*
250 * return how much space is left in this block (but if it's perfectly
251 * aligned, return 0).
252 * eg, P2NPHASE(0x1234, 0x100) == 0xcc (0x13*align-x)
253 * eg, P2NPHASE(0x5600, 0x100) == 0x00 (0x56*align-x)
254 */
255#define	P2NPHASE(x, align)		(-(x) & ((align) - 1))
256
257/*
258 * return x rounded up to an align boundary
259 * eg, P2ROUNDUP(0x1234, 0x100) == 0x1300 (0x13*align)
260 * eg, P2ROUNDUP(0x5600, 0x100) == 0x5600 (0x56*align)
261 */
262#define	P2ROUNDUP(x, align)		(-(-(x) & -(align)))
263
264/*
265 * return the ending address of the block that x is in
266 * eg, P2END(0x1234, 0x100) == 0x12ff (0x13*align - 1)
267 * eg, P2END(0x5600, 0x100) == 0x56ff (0x57*align - 1)
268 */
269#define	P2END(x, align)			(-(~(x) & -(align)))
270
271/*
272 * return x rounded up to the next phase (offset) within align.
273 * phase should be < align.
274 * eg, P2PHASEUP(0x1234, 0x100, 0x10) == 0x1310 (0x13*align + phase)
275 * eg, P2PHASEUP(0x5600, 0x100, 0x10) == 0x5610 (0x56*align + phase)
276 */
277#define	P2PHASEUP(x, align, phase)	((phase) - (((phase) - (x)) & -(align)))
278
279/*
280 * return TRUE if adding len to off would cause it to cross an align
281 * boundary.
282 * eg, P2BOUNDARY(0x1234, 0xe0, 0x100) == TRUE (0x1234 + 0xe0 == 0x1314)
283 * eg, P2BOUNDARY(0x1234, 0x50, 0x100) == FALSE (0x1234 + 0x50 == 0x1284)
284 */
285#define	P2BOUNDARY(off, len, align) \
286	(((off) ^ ((off) + (len) - 1)) > (align) - 1)
287
288/*
289 * Return TRUE if they have the same highest bit set.
290 * eg, P2SAMEHIGHBIT(0x1234, 0x1001) == TRUE (the high bit is 0x1000)
291 * eg, P2SAMEHIGHBIT(0x1234, 0x3010) == FALSE (high bit of 0x3010 is 0x2000)
292 */
293#define	P2SAMEHIGHBIT(x, y)		(((x) ^ (y)) < ((x) & (y)))
294
295/*
296 * Typed version of the P2* macros.  These macros should be used to ensure
297 * that the result is correctly calculated based on the data type of (x),
298 * which is passed in as the last argument, regardless of the data
299 * type of the alignment.  For example, if (x) is of type uint64_t,
300 * and we want to round it up to a page boundary using "PAGESIZE" as
301 * the alignment, we can do either
302 *	P2ROUNDUP(x, (uint64_t)PAGESIZE)
303 * or
304 *	P2ROUNDUP_TYPED(x, PAGESIZE, uint64_t)
305 */
306#define	P2ALIGN_TYPED(x, align, type)	\
307	((type)(x) & -(type)(align))
308#define	P2PHASE_TYPED(x, align, type)	\
309	((type)(x) & ((type)(align) - 1))
310#define	P2NPHASE_TYPED(x, align, type)	\
311	(-(type)(x) & ((type)(align) - 1))
312#define	P2ROUNDUP_TYPED(x, align, type)	\
313	(-(-(type)(x) & -(type)(align)))
314#define	P2END_TYPED(x, align, type)	\
315	(-(~(type)(x) & -(type)(align)))
316#define	P2PHASEUP_TYPED(x, align, phase, type)	\
317	((type)(phase) - (((type)(phase) - (type)(x)) & -(type)(align)))
318#define	P2CROSS_TYPED(x, y, align, type)	\
319	(((type)(x) ^ (type)(y)) > (type)(align) - 1)
320#define	P2SAMEHIGHBIT_TYPED(x, y, type) \
321	(((type)(x) ^ (type)(y)) < ((type)(x) & (type)(y)))
322
323/*
324 * Macros to atomically increment/decrement a variable.  mutex and var
325 * must be pointers.
326 */
327#define	INCR_COUNT(var, mutex) mutex_enter(mutex), (*(var))++, mutex_exit(mutex)
328#define	DECR_COUNT(var, mutex) mutex_enter(mutex), (*(var))--, mutex_exit(mutex)
329
330/*
331 * Macros to declare bitfields - the order in the parameter list is
332 * Low to High - that is, declare bit 0 first.  We only support 8-bit bitfields
333 * because if a field crosses a byte boundary it's not likely to be meaningful
334 * without reassembly in its nonnative endianness.
335 */
336#if defined(_BIT_FIELDS_LTOH)
337#define	DECL_BITFIELD2(_a, _b)				\
338	uint8_t _a, _b
339#define	DECL_BITFIELD3(_a, _b, _c)			\
340	uint8_t _a, _b, _c
341#define	DECL_BITFIELD4(_a, _b, _c, _d)			\
342	uint8_t _a, _b, _c, _d
343#define	DECL_BITFIELD5(_a, _b, _c, _d, _e)		\
344	uint8_t _a, _b, _c, _d, _e
345#define	DECL_BITFIELD6(_a, _b, _c, _d, _e, _f)		\
346	uint8_t _a, _b, _c, _d, _e, _f
347#define	DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g)	\
348	uint8_t _a, _b, _c, _d, _e, _f, _g
349#define	DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h)	\
350	uint8_t _a, _b, _c, _d, _e, _f, _g, _h
351#elif defined(_BIT_FIELDS_HTOL)
352#define	DECL_BITFIELD2(_a, _b)				\
353	uint8_t _b, _a
354#define	DECL_BITFIELD3(_a, _b, _c)			\
355	uint8_t _c, _b, _a
356#define	DECL_BITFIELD4(_a, _b, _c, _d)			\
357	uint8_t _d, _c, _b, _a
358#define	DECL_BITFIELD5(_a, _b, _c, _d, _e)		\
359	uint8_t _e, _d, _c, _b, _a
360#define	DECL_BITFIELD6(_a, _b, _c, _d, _e, _f)		\
361	uint8_t _f, _e, _d, _c, _b, _a
362#define	DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g)	\
363	uint8_t _g, _f, _e, _d, _c, _b, _a
364#define	DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h)	\
365	uint8_t _h, _g, _f, _e, _d, _c, _b, _a
366#else
367#error	One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
368#endif  /* _BIT_FIELDS_LTOH */
369
370#if defined(_KERNEL) && !defined(_KMEMUSER) && !defined(offsetof)
371
372/* avoid any possibility of clashing with <stddef.h> version */
373
374#define	offsetof(s, m)	((size_t)(&(((s *)0)->m)))
375#endif
376
377/*
378 * Find highest one bit set.
379 *      Returns bit number + 1 of highest bit that is set, otherwise returns 0.
380 * High order bit is 31 (or 63 in _LP64 kernel).
381 */
382static __inline int
383highbit(ulong_t i)
384{
385	register int h = 1;
386
387	if (i == 0)
388		return (0);
389#ifdef _LP64
390	if (i & 0xffffffff00000000ul) {
391		h += 32; i >>= 32;
392	}
393#endif
394	if (i & 0xffff0000) {
395		h += 16; i >>= 16;
396	}
397	if (i & 0xff00) {
398		h += 8; i >>= 8;
399	}
400	if (i & 0xf0) {
401		h += 4; i >>= 4;
402	}
403	if (i & 0xc) {
404		h += 2; i >>= 2;
405	}
406	if (i & 0x2) {
407		h += 1;
408	}
409	return (h);
410}
411
412/*
413 * Find highest one bit set.
414 *	Returns bit number + 1 of highest bit that is set, otherwise returns 0.
415 */
416static __inline int
417highbit64(uint64_t i)
418{
419	int h = 1;
420
421	if (i == 0)
422		return (0);
423	if (i & 0xffffffff00000000ULL) {
424		h += 32; i >>= 32;
425	}
426	if (i & 0xffff0000) {
427		h += 16; i >>= 16;
428	}
429	if (i & 0xff00) {
430		h += 8; i >>= 8;
431	}
432	if (i & 0xf0) {
433		h += 4; i >>= 4;
434	}
435	if (i & 0xc) {
436		h += 2; i >>= 2;
437	}
438	if (i & 0x2) {
439		h += 1;
440	}
441	return (h);
442}
443
444#ifdef	__cplusplus
445}
446#endif
447
448#endif	/* _SYS_SYSMACROS_H */
449