zio.c revision 269733
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27#include <sys/zfs_context.h>
28#include <sys/fm/fs/zfs.h>
29#include <sys/spa.h>
30#include <sys/txg.h>
31#include <sys/spa_impl.h>
32#include <sys/vdev_impl.h>
33#include <sys/zio_impl.h>
34#include <sys/zio_compress.h>
35#include <sys/zio_checksum.h>
36#include <sys/dmu_objset.h>
37#include <sys/arc.h>
38#include <sys/ddt.h>
39#include <sys/trim_map.h>
40#include <sys/blkptr.h>
41#include <sys/zfeature.h>
42
43SYSCTL_DECL(_vfs_zfs);
44SYSCTL_NODE(_vfs_zfs, OID_AUTO, zio, CTLFLAG_RW, 0, "ZFS ZIO");
45#if defined(__amd64__)
46static int zio_use_uma = 1;
47#else
48static int zio_use_uma = 0;
49#endif
50TUNABLE_INT("vfs.zfs.zio.use_uma", &zio_use_uma);
51SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, use_uma, CTLFLAG_RDTUN, &zio_use_uma, 0,
52    "Use uma(9) for ZIO allocations");
53static int zio_exclude_metadata = 0;
54TUNABLE_INT("vfs.zfs.zio.exclude_metadata", &zio_exclude_metadata);
55SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, exclude_metadata, CTLFLAG_RDTUN, &zio_exclude_metadata, 0,
56    "Exclude metadata buffers from dumps as well");
57
58zio_trim_stats_t zio_trim_stats = {
59	{ "bytes",		KSTAT_DATA_UINT64,
60	  "Number of bytes successfully TRIMmed" },
61	{ "success",		KSTAT_DATA_UINT64,
62	  "Number of successful TRIM requests" },
63	{ "unsupported",	KSTAT_DATA_UINT64,
64	  "Number of TRIM requests that failed because TRIM is not supported" },
65	{ "failed",		KSTAT_DATA_UINT64,
66	  "Number of TRIM requests that failed for reasons other than not supported" },
67};
68
69static kstat_t *zio_trim_ksp;
70
71/*
72 * ==========================================================================
73 * I/O type descriptions
74 * ==========================================================================
75 */
76const char *zio_type_name[ZIO_TYPES] = {
77	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
78	"zio_ioctl"
79};
80
81/*
82 * ==========================================================================
83 * I/O kmem caches
84 * ==========================================================================
85 */
86kmem_cache_t *zio_cache;
87kmem_cache_t *zio_link_cache;
88kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
89kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
90
91#ifdef _KERNEL
92extern vmem_t *zio_alloc_arena;
93#endif
94
95/*
96 * The following actions directly effect the spa's sync-to-convergence logic.
97 * The values below define the sync pass when we start performing the action.
98 * Care should be taken when changing these values as they directly impact
99 * spa_sync() performance. Tuning these values may introduce subtle performance
100 * pathologies and should only be done in the context of performance analysis.
101 * These tunables will eventually be removed and replaced with #defines once
102 * enough analysis has been done to determine optimal values.
103 *
104 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
105 * regular blocks are not deferred.
106 */
107int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
108TUNABLE_INT("vfs.zfs.sync_pass_deferred_free", &zfs_sync_pass_deferred_free);
109SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_deferred_free, CTLFLAG_RDTUN,
110    &zfs_sync_pass_deferred_free, 0, "defer frees starting in this pass");
111int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
112TUNABLE_INT("vfs.zfs.sync_pass_dont_compress", &zfs_sync_pass_dont_compress);
113SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_dont_compress, CTLFLAG_RDTUN,
114    &zfs_sync_pass_dont_compress, 0, "don't compress starting in this pass");
115int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
116TUNABLE_INT("vfs.zfs.sync_pass_rewrite", &zfs_sync_pass_rewrite);
117SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_rewrite, CTLFLAG_RDTUN,
118    &zfs_sync_pass_rewrite, 0, "rewrite new bps starting in this pass");
119
120/*
121 * An allocating zio is one that either currently has the DVA allocate
122 * stage set or will have it later in its lifetime.
123 */
124#define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
125
126boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
127
128#ifdef ZFS_DEBUG
129int zio_buf_debug_limit = 16384;
130#else
131int zio_buf_debug_limit = 0;
132#endif
133
134void
135zio_init(void)
136{
137	size_t c;
138	zio_cache = kmem_cache_create("zio_cache",
139	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
140	zio_link_cache = kmem_cache_create("zio_link_cache",
141	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
142	if (!zio_use_uma)
143		goto out;
144
145	/*
146	 * For small buffers, we want a cache for each multiple of
147	 * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache
148	 * for each quarter-power of 2.  For large buffers, we want
149	 * a cache for each multiple of PAGESIZE.
150	 */
151	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
152		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
153		size_t p2 = size;
154		size_t align = 0;
155		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
156
157		while (p2 & (p2 - 1))
158			p2 &= p2 - 1;
159
160#ifdef illumos
161#ifndef _KERNEL
162		/*
163		 * If we are using watchpoints, put each buffer on its own page,
164		 * to eliminate the performance overhead of trapping to the
165		 * kernel when modifying a non-watched buffer that shares the
166		 * page with a watched buffer.
167		 */
168		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
169			continue;
170#endif
171#endif /* illumos */
172		if (size <= 4 * SPA_MINBLOCKSIZE) {
173			align = SPA_MINBLOCKSIZE;
174		} else if (IS_P2ALIGNED(size, PAGESIZE)) {
175			align = PAGESIZE;
176		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
177			align = p2 >> 2;
178		}
179
180		if (align != 0) {
181			char name[36];
182			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
183			zio_buf_cache[c] = kmem_cache_create(name, size,
184			    align, NULL, NULL, NULL, NULL, NULL, cflags);
185
186			/*
187			 * Since zio_data bufs do not appear in crash dumps, we
188			 * pass KMC_NOTOUCH so that no allocator metadata is
189			 * stored with the buffers.
190			 */
191			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
192			zio_data_buf_cache[c] = kmem_cache_create(name, size,
193			    align, NULL, NULL, NULL, NULL, NULL,
194			    cflags | KMC_NOTOUCH | KMC_NODEBUG);
195		}
196	}
197
198	while (--c != 0) {
199		ASSERT(zio_buf_cache[c] != NULL);
200		if (zio_buf_cache[c - 1] == NULL)
201			zio_buf_cache[c - 1] = zio_buf_cache[c];
202
203		ASSERT(zio_data_buf_cache[c] != NULL);
204		if (zio_data_buf_cache[c - 1] == NULL)
205			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
206	}
207out:
208
209	zio_inject_init();
210
211	zio_trim_ksp = kstat_create("zfs", 0, "zio_trim", "misc",
212	    KSTAT_TYPE_NAMED,
213	    sizeof(zio_trim_stats) / sizeof(kstat_named_t),
214	    KSTAT_FLAG_VIRTUAL);
215
216	if (zio_trim_ksp != NULL) {
217		zio_trim_ksp->ks_data = &zio_trim_stats;
218		kstat_install(zio_trim_ksp);
219	}
220}
221
222void
223zio_fini(void)
224{
225	size_t c;
226	kmem_cache_t *last_cache = NULL;
227	kmem_cache_t *last_data_cache = NULL;
228
229	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
230		if (zio_buf_cache[c] != last_cache) {
231			last_cache = zio_buf_cache[c];
232			kmem_cache_destroy(zio_buf_cache[c]);
233		}
234		zio_buf_cache[c] = NULL;
235
236		if (zio_data_buf_cache[c] != last_data_cache) {
237			last_data_cache = zio_data_buf_cache[c];
238			kmem_cache_destroy(zio_data_buf_cache[c]);
239		}
240		zio_data_buf_cache[c] = NULL;
241	}
242
243	kmem_cache_destroy(zio_link_cache);
244	kmem_cache_destroy(zio_cache);
245
246	zio_inject_fini();
247
248	if (zio_trim_ksp != NULL) {
249		kstat_delete(zio_trim_ksp);
250		zio_trim_ksp = NULL;
251	}
252}
253
254/*
255 * ==========================================================================
256 * Allocate and free I/O buffers
257 * ==========================================================================
258 */
259
260/*
261 * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
262 * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
263 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
264 * excess / transient data in-core during a crashdump.
265 */
266void *
267zio_buf_alloc(size_t size)
268{
269	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
270	int flags = zio_exclude_metadata ? KM_NODEBUG : 0;
271
272	ASSERT3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
273
274	if (zio_use_uma)
275		return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
276	else
277		return (kmem_alloc(size, KM_SLEEP|flags));
278}
279
280/*
281 * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
282 * crashdump if the kernel panics.  This exists so that we will limit the amount
283 * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
284 * of kernel heap dumped to disk when the kernel panics)
285 */
286void *
287zio_data_buf_alloc(size_t size)
288{
289	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
290
291	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
292
293	if (zio_use_uma)
294		return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
295	else
296		return (kmem_alloc(size, KM_SLEEP | KM_NODEBUG));
297}
298
299void
300zio_buf_free(void *buf, size_t size)
301{
302	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
303
304	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
305
306	if (zio_use_uma)
307		kmem_cache_free(zio_buf_cache[c], buf);
308	else
309		kmem_free(buf, size);
310}
311
312void
313zio_data_buf_free(void *buf, size_t size)
314{
315	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
316
317	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
318
319	if (zio_use_uma)
320		kmem_cache_free(zio_data_buf_cache[c], buf);
321	else
322		kmem_free(buf, size);
323}
324
325/*
326 * ==========================================================================
327 * Push and pop I/O transform buffers
328 * ==========================================================================
329 */
330static void
331zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
332	zio_transform_func_t *transform)
333{
334	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
335
336	zt->zt_orig_data = zio->io_data;
337	zt->zt_orig_size = zio->io_size;
338	zt->zt_bufsize = bufsize;
339	zt->zt_transform = transform;
340
341	zt->zt_next = zio->io_transform_stack;
342	zio->io_transform_stack = zt;
343
344	zio->io_data = data;
345	zio->io_size = size;
346}
347
348static void
349zio_pop_transforms(zio_t *zio)
350{
351	zio_transform_t *zt;
352
353	while ((zt = zio->io_transform_stack) != NULL) {
354		if (zt->zt_transform != NULL)
355			zt->zt_transform(zio,
356			    zt->zt_orig_data, zt->zt_orig_size);
357
358		if (zt->zt_bufsize != 0)
359			zio_buf_free(zio->io_data, zt->zt_bufsize);
360
361		zio->io_data = zt->zt_orig_data;
362		zio->io_size = zt->zt_orig_size;
363		zio->io_transform_stack = zt->zt_next;
364
365		kmem_free(zt, sizeof (zio_transform_t));
366	}
367}
368
369/*
370 * ==========================================================================
371 * I/O transform callbacks for subblocks and decompression
372 * ==========================================================================
373 */
374static void
375zio_subblock(zio_t *zio, void *data, uint64_t size)
376{
377	ASSERT(zio->io_size > size);
378
379	if (zio->io_type == ZIO_TYPE_READ)
380		bcopy(zio->io_data, data, size);
381}
382
383static void
384zio_decompress(zio_t *zio, void *data, uint64_t size)
385{
386	if (zio->io_error == 0 &&
387	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
388	    zio->io_data, data, zio->io_size, size) != 0)
389		zio->io_error = SET_ERROR(EIO);
390}
391
392/*
393 * ==========================================================================
394 * I/O parent/child relationships and pipeline interlocks
395 * ==========================================================================
396 */
397/*
398 * NOTE - Callers to zio_walk_parents() and zio_walk_children must
399 *        continue calling these functions until they return NULL.
400 *        Otherwise, the next caller will pick up the list walk in
401 *        some indeterminate state.  (Otherwise every caller would
402 *        have to pass in a cookie to keep the state represented by
403 *        io_walk_link, which gets annoying.)
404 */
405zio_t *
406zio_walk_parents(zio_t *cio)
407{
408	zio_link_t *zl = cio->io_walk_link;
409	list_t *pl = &cio->io_parent_list;
410
411	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
412	cio->io_walk_link = zl;
413
414	if (zl == NULL)
415		return (NULL);
416
417	ASSERT(zl->zl_child == cio);
418	return (zl->zl_parent);
419}
420
421zio_t *
422zio_walk_children(zio_t *pio)
423{
424	zio_link_t *zl = pio->io_walk_link;
425	list_t *cl = &pio->io_child_list;
426
427	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
428	pio->io_walk_link = zl;
429
430	if (zl == NULL)
431		return (NULL);
432
433	ASSERT(zl->zl_parent == pio);
434	return (zl->zl_child);
435}
436
437zio_t *
438zio_unique_parent(zio_t *cio)
439{
440	zio_t *pio = zio_walk_parents(cio);
441
442	VERIFY(zio_walk_parents(cio) == NULL);
443	return (pio);
444}
445
446void
447zio_add_child(zio_t *pio, zio_t *cio)
448{
449	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
450
451	/*
452	 * Logical I/Os can have logical, gang, or vdev children.
453	 * Gang I/Os can have gang or vdev children.
454	 * Vdev I/Os can only have vdev children.
455	 * The following ASSERT captures all of these constraints.
456	 */
457	ASSERT(cio->io_child_type <= pio->io_child_type);
458
459	zl->zl_parent = pio;
460	zl->zl_child = cio;
461
462	mutex_enter(&cio->io_lock);
463	mutex_enter(&pio->io_lock);
464
465	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
466
467	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
468		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
469
470	list_insert_head(&pio->io_child_list, zl);
471	list_insert_head(&cio->io_parent_list, zl);
472
473	pio->io_child_count++;
474	cio->io_parent_count++;
475
476	mutex_exit(&pio->io_lock);
477	mutex_exit(&cio->io_lock);
478}
479
480static void
481zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
482{
483	ASSERT(zl->zl_parent == pio);
484	ASSERT(zl->zl_child == cio);
485
486	mutex_enter(&cio->io_lock);
487	mutex_enter(&pio->io_lock);
488
489	list_remove(&pio->io_child_list, zl);
490	list_remove(&cio->io_parent_list, zl);
491
492	pio->io_child_count--;
493	cio->io_parent_count--;
494
495	mutex_exit(&pio->io_lock);
496	mutex_exit(&cio->io_lock);
497
498	kmem_cache_free(zio_link_cache, zl);
499}
500
501static boolean_t
502zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
503{
504	uint64_t *countp = &zio->io_children[child][wait];
505	boolean_t waiting = B_FALSE;
506
507	mutex_enter(&zio->io_lock);
508	ASSERT(zio->io_stall == NULL);
509	if (*countp != 0) {
510		zio->io_stage >>= 1;
511		zio->io_stall = countp;
512		waiting = B_TRUE;
513	}
514	mutex_exit(&zio->io_lock);
515
516	return (waiting);
517}
518
519static void
520zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
521{
522	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
523	int *errorp = &pio->io_child_error[zio->io_child_type];
524
525	mutex_enter(&pio->io_lock);
526	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
527		*errorp = zio_worst_error(*errorp, zio->io_error);
528	pio->io_reexecute |= zio->io_reexecute;
529	ASSERT3U(*countp, >, 0);
530
531	(*countp)--;
532
533	if (*countp == 0 && pio->io_stall == countp) {
534		pio->io_stall = NULL;
535		mutex_exit(&pio->io_lock);
536		zio_execute(pio);
537	} else {
538		mutex_exit(&pio->io_lock);
539	}
540}
541
542static void
543zio_inherit_child_errors(zio_t *zio, enum zio_child c)
544{
545	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
546		zio->io_error = zio->io_child_error[c];
547}
548
549/*
550 * ==========================================================================
551 * Create the various types of I/O (read, write, free, etc)
552 * ==========================================================================
553 */
554static zio_t *
555zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
556    void *data, uint64_t size, zio_done_func_t *done, void *private,
557    zio_type_t type, zio_priority_t priority, enum zio_flag flags,
558    vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb,
559    enum zio_stage stage, enum zio_stage pipeline)
560{
561	zio_t *zio;
562
563	ASSERT3U(type == ZIO_TYPE_FREE || size, <=, SPA_MAXBLOCKSIZE);
564	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
565	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
566
567	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
568	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
569	ASSERT(vd || stage == ZIO_STAGE_OPEN);
570
571	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
572	bzero(zio, sizeof (zio_t));
573
574	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
575	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
576
577	list_create(&zio->io_parent_list, sizeof (zio_link_t),
578	    offsetof(zio_link_t, zl_parent_node));
579	list_create(&zio->io_child_list, sizeof (zio_link_t),
580	    offsetof(zio_link_t, zl_child_node));
581
582	if (vd != NULL)
583		zio->io_child_type = ZIO_CHILD_VDEV;
584	else if (flags & ZIO_FLAG_GANG_CHILD)
585		zio->io_child_type = ZIO_CHILD_GANG;
586	else if (flags & ZIO_FLAG_DDT_CHILD)
587		zio->io_child_type = ZIO_CHILD_DDT;
588	else
589		zio->io_child_type = ZIO_CHILD_LOGICAL;
590
591	if (bp != NULL) {
592		zio->io_bp = (blkptr_t *)bp;
593		zio->io_bp_copy = *bp;
594		zio->io_bp_orig = *bp;
595		if (type != ZIO_TYPE_WRITE ||
596		    zio->io_child_type == ZIO_CHILD_DDT)
597			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
598		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
599			zio->io_logical = zio;
600		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
601			pipeline |= ZIO_GANG_STAGES;
602	}
603
604	zio->io_spa = spa;
605	zio->io_txg = txg;
606	zio->io_done = done;
607	zio->io_private = private;
608	zio->io_type = type;
609	zio->io_priority = priority;
610	zio->io_vd = vd;
611	zio->io_offset = offset;
612	zio->io_orig_data = zio->io_data = data;
613	zio->io_orig_size = zio->io_size = size;
614	zio->io_orig_flags = zio->io_flags = flags;
615	zio->io_orig_stage = zio->io_stage = stage;
616	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
617
618	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
619	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
620
621	if (zb != NULL)
622		zio->io_bookmark = *zb;
623
624	if (pio != NULL) {
625		if (zio->io_logical == NULL)
626			zio->io_logical = pio->io_logical;
627		if (zio->io_child_type == ZIO_CHILD_GANG)
628			zio->io_gang_leader = pio->io_gang_leader;
629		zio_add_child(pio, zio);
630	}
631
632	return (zio);
633}
634
635static void
636zio_destroy(zio_t *zio)
637{
638	list_destroy(&zio->io_parent_list);
639	list_destroy(&zio->io_child_list);
640	mutex_destroy(&zio->io_lock);
641	cv_destroy(&zio->io_cv);
642	kmem_cache_free(zio_cache, zio);
643}
644
645zio_t *
646zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
647    void *private, enum zio_flag flags)
648{
649	zio_t *zio;
650
651	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
652	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
653	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
654
655	return (zio);
656}
657
658zio_t *
659zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
660{
661	return (zio_null(NULL, spa, NULL, done, private, flags));
662}
663
664zio_t *
665zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
666    void *data, uint64_t size, zio_done_func_t *done, void *private,
667    zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
668{
669	zio_t *zio;
670
671	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
672	    data, size, done, private,
673	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
674	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
675	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
676
677	return (zio);
678}
679
680zio_t *
681zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
682    void *data, uint64_t size, const zio_prop_t *zp,
683    zio_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done,
684    void *private,
685    zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
686{
687	zio_t *zio;
688
689	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
690	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
691	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
692	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
693	    DMU_OT_IS_VALID(zp->zp_type) &&
694	    zp->zp_level < 32 &&
695	    zp->zp_copies > 0 &&
696	    zp->zp_copies <= spa_max_replication(spa));
697
698	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
699	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
700	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
701	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
702
703	zio->io_ready = ready;
704	zio->io_physdone = physdone;
705	zio->io_prop = *zp;
706
707	/*
708	 * Data can be NULL if we are going to call zio_write_override() to
709	 * provide the already-allocated BP.  But we may need the data to
710	 * verify a dedup hit (if requested).  In this case, don't try to
711	 * dedup (just take the already-allocated BP verbatim).
712	 */
713	if (data == NULL && zio->io_prop.zp_dedup_verify) {
714		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
715	}
716
717	return (zio);
718}
719
720zio_t *
721zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
722    uint64_t size, zio_done_func_t *done, void *private,
723    zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
724{
725	zio_t *zio;
726
727	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
728	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
729	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
730
731	return (zio);
732}
733
734void
735zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
736{
737	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
738	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
739	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
740	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
741
742	/*
743	 * We must reset the io_prop to match the values that existed
744	 * when the bp was first written by dmu_sync() keeping in mind
745	 * that nopwrite and dedup are mutually exclusive.
746	 */
747	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
748	zio->io_prop.zp_nopwrite = nopwrite;
749	zio->io_prop.zp_copies = copies;
750	zio->io_bp_override = bp;
751}
752
753void
754zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
755{
756
757	/*
758	 * The check for EMBEDDED is a performance optimization.  We
759	 * process the free here (by ignoring it) rather than
760	 * putting it on the list and then processing it in zio_free_sync().
761	 */
762	if (BP_IS_EMBEDDED(bp))
763		return;
764	metaslab_check_free(spa, bp);
765
766	/*
767	 * Frees that are for the currently-syncing txg, are not going to be
768	 * deferred, and which will not need to do a read (i.e. not GANG or
769	 * DEDUP), can be processed immediately.  Otherwise, put them on the
770	 * in-memory list for later processing.
771	 */
772	if (zfs_trim_enabled || BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
773	    txg != spa->spa_syncing_txg ||
774	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
775		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
776	} else {
777		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp,
778		    BP_GET_PSIZE(bp), 0)));
779	}
780}
781
782zio_t *
783zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
784    uint64_t size, enum zio_flag flags)
785{
786	zio_t *zio;
787	enum zio_stage stage = ZIO_FREE_PIPELINE;
788
789	ASSERT(!BP_IS_HOLE(bp));
790	ASSERT(spa_syncing_txg(spa) == txg);
791	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
792
793	if (BP_IS_EMBEDDED(bp))
794		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
795
796	metaslab_check_free(spa, bp);
797	arc_freed(spa, bp);
798
799	if (zfs_trim_enabled)
800		stage |= ZIO_STAGE_ISSUE_ASYNC | ZIO_STAGE_VDEV_IO_START |
801		    ZIO_STAGE_VDEV_IO_ASSESS;
802	/*
803	 * GANG and DEDUP blocks can induce a read (for the gang block header,
804	 * or the DDT), so issue them asynchronously so that this thread is
805	 * not tied up.
806	 */
807	else if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
808		stage |= ZIO_STAGE_ISSUE_ASYNC;
809
810	zio = zio_create(pio, spa, txg, bp, NULL, size,
811	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags,
812	    NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
813
814	return (zio);
815}
816
817zio_t *
818zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
819    zio_done_func_t *done, void *private, enum zio_flag flags)
820{
821	zio_t *zio;
822
823	dprintf_bp(bp, "claiming in txg %llu", txg);
824
825	if (BP_IS_EMBEDDED(bp))
826		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
827
828	/*
829	 * A claim is an allocation of a specific block.  Claims are needed
830	 * to support immediate writes in the intent log.  The issue is that
831	 * immediate writes contain committed data, but in a txg that was
832	 * *not* committed.  Upon opening the pool after an unclean shutdown,
833	 * the intent log claims all blocks that contain immediate write data
834	 * so that the SPA knows they're in use.
835	 *
836	 * All claims *must* be resolved in the first txg -- before the SPA
837	 * starts allocating blocks -- so that nothing is allocated twice.
838	 * If txg == 0 we just verify that the block is claimable.
839	 */
840	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
841	ASSERT(txg == spa_first_txg(spa) || txg == 0);
842	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
843
844	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
845	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
846	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
847
848	return (zio);
849}
850
851zio_t *
852zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, uint64_t offset,
853    uint64_t size, zio_done_func_t *done, void *private,
854    enum zio_flag flags)
855{
856	zio_t *zio;
857	int c;
858
859	if (vd->vdev_children == 0) {
860		zio = zio_create(pio, spa, 0, NULL, NULL, size, done, private,
861		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, offset, NULL,
862		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
863
864		zio->io_cmd = cmd;
865	} else {
866		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
867
868		for (c = 0; c < vd->vdev_children; c++)
869			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
870			    offset, size, done, private, flags));
871	}
872
873	return (zio);
874}
875
876zio_t *
877zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
878    void *data, int checksum, zio_done_func_t *done, void *private,
879    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
880{
881	zio_t *zio;
882
883	ASSERT(vd->vdev_children == 0);
884	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
885	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
886	ASSERT3U(offset + size, <=, vd->vdev_psize);
887
888	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
889	    ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
890	    NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
891
892	zio->io_prop.zp_checksum = checksum;
893
894	return (zio);
895}
896
897zio_t *
898zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
899    void *data, int checksum, zio_done_func_t *done, void *private,
900    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
901{
902	zio_t *zio;
903
904	ASSERT(vd->vdev_children == 0);
905	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
906	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
907	ASSERT3U(offset + size, <=, vd->vdev_psize);
908
909	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
910	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
911	    NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
912
913	zio->io_prop.zp_checksum = checksum;
914
915	if (zio_checksum_table[checksum].ci_eck) {
916		/*
917		 * zec checksums are necessarily destructive -- they modify
918		 * the end of the write buffer to hold the verifier/checksum.
919		 * Therefore, we must make a local copy in case the data is
920		 * being written to multiple places in parallel.
921		 */
922		void *wbuf = zio_buf_alloc(size);
923		bcopy(data, wbuf, size);
924		zio_push_transform(zio, wbuf, size, size, NULL);
925	}
926
927	return (zio);
928}
929
930/*
931 * Create a child I/O to do some work for us.
932 */
933zio_t *
934zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
935	void *data, uint64_t size, int type, zio_priority_t priority,
936	enum zio_flag flags, zio_done_func_t *done, void *private)
937{
938	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
939	zio_t *zio;
940
941	ASSERT(vd->vdev_parent ==
942	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
943
944	if (type == ZIO_TYPE_READ && bp != NULL) {
945		/*
946		 * If we have the bp, then the child should perform the
947		 * checksum and the parent need not.  This pushes error
948		 * detection as close to the leaves as possible and
949		 * eliminates redundant checksums in the interior nodes.
950		 */
951		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
952		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
953	}
954
955	if (vd->vdev_children == 0)
956		offset += VDEV_LABEL_START_SIZE;
957
958	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
959
960	/*
961	 * If we've decided to do a repair, the write is not speculative --
962	 * even if the original read was.
963	 */
964	if (flags & ZIO_FLAG_IO_REPAIR)
965		flags &= ~ZIO_FLAG_SPECULATIVE;
966
967	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
968	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
969	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
970
971	zio->io_physdone = pio->io_physdone;
972	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
973		zio->io_logical->io_phys_children++;
974
975	return (zio);
976}
977
978zio_t *
979zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
980	int type, zio_priority_t priority, enum zio_flag flags,
981	zio_done_func_t *done, void *private)
982{
983	zio_t *zio;
984
985	ASSERT(vd->vdev_ops->vdev_op_leaf);
986
987	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
988	    data, size, done, private, type, priority,
989	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
990	    vd, offset, NULL,
991	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
992
993	return (zio);
994}
995
996void
997zio_flush(zio_t *zio, vdev_t *vd)
998{
999	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 0, 0,
1000	    NULL, NULL,
1001	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1002}
1003
1004zio_t *
1005zio_trim(zio_t *zio, spa_t *spa, vdev_t *vd, uint64_t offset, uint64_t size)
1006{
1007
1008	ASSERT(vd->vdev_ops->vdev_op_leaf);
1009
1010	return zio_ioctl(zio, spa, vd, DKIOCTRIM, offset, size,
1011	    NULL, NULL,
1012	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY);
1013}
1014
1015void
1016zio_shrink(zio_t *zio, uint64_t size)
1017{
1018	ASSERT(zio->io_executor == NULL);
1019	ASSERT(zio->io_orig_size == zio->io_size);
1020	ASSERT(size <= zio->io_size);
1021
1022	/*
1023	 * We don't shrink for raidz because of problems with the
1024	 * reconstruction when reading back less than the block size.
1025	 * Note, BP_IS_RAIDZ() assumes no compression.
1026	 */
1027	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1028	if (!BP_IS_RAIDZ(zio->io_bp))
1029		zio->io_orig_size = zio->io_size = size;
1030}
1031
1032/*
1033 * ==========================================================================
1034 * Prepare to read and write logical blocks
1035 * ==========================================================================
1036 */
1037
1038static int
1039zio_read_bp_init(zio_t **ziop)
1040{
1041	zio_t *zio = *ziop;
1042	blkptr_t *bp = zio->io_bp;
1043
1044	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1045	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1046	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1047		uint64_t psize =
1048		    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1049		void *cbuf = zio_buf_alloc(psize);
1050
1051		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
1052	}
1053
1054	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1055		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1056		decode_embedded_bp_compressed(bp, zio->io_data);
1057	} else {
1058		ASSERT(!BP_IS_EMBEDDED(bp));
1059	}
1060
1061	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1062		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1063
1064	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1065		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1066
1067	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1068		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1069
1070	return (ZIO_PIPELINE_CONTINUE);
1071}
1072
1073static int
1074zio_write_bp_init(zio_t **ziop)
1075{
1076	zio_t *zio = *ziop;
1077	spa_t *spa = zio->io_spa;
1078	zio_prop_t *zp = &zio->io_prop;
1079	enum zio_compress compress = zp->zp_compress;
1080	blkptr_t *bp = zio->io_bp;
1081	uint64_t lsize = zio->io_size;
1082	uint64_t psize = lsize;
1083	int pass = 1;
1084
1085	/*
1086	 * If our children haven't all reached the ready stage,
1087	 * wait for them and then repeat this pipeline stage.
1088	 */
1089	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1090	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1091		return (ZIO_PIPELINE_STOP);
1092
1093	if (!IO_IS_ALLOCATING(zio))
1094		return (ZIO_PIPELINE_CONTINUE);
1095
1096	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1097
1098	if (zio->io_bp_override) {
1099		ASSERT(bp->blk_birth != zio->io_txg);
1100		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1101
1102		*bp = *zio->io_bp_override;
1103		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1104
1105		if (BP_IS_EMBEDDED(bp))
1106			return (ZIO_PIPELINE_CONTINUE);
1107
1108		/*
1109		 * If we've been overridden and nopwrite is set then
1110		 * set the flag accordingly to indicate that a nopwrite
1111		 * has already occurred.
1112		 */
1113		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1114			ASSERT(!zp->zp_dedup);
1115			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1116			return (ZIO_PIPELINE_CONTINUE);
1117		}
1118
1119		ASSERT(!zp->zp_nopwrite);
1120
1121		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1122			return (ZIO_PIPELINE_CONTINUE);
1123
1124		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1125		    zp->zp_dedup_verify);
1126
1127		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1128			BP_SET_DEDUP(bp, 1);
1129			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1130			return (ZIO_PIPELINE_CONTINUE);
1131		}
1132		zio->io_bp_override = NULL;
1133		BP_ZERO(bp);
1134	}
1135
1136	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1137		/*
1138		 * We're rewriting an existing block, which means we're
1139		 * working on behalf of spa_sync().  For spa_sync() to
1140		 * converge, it must eventually be the case that we don't
1141		 * have to allocate new blocks.  But compression changes
1142		 * the blocksize, which forces a reallocate, and makes
1143		 * convergence take longer.  Therefore, after the first
1144		 * few passes, stop compressing to ensure convergence.
1145		 */
1146		pass = spa_sync_pass(spa);
1147
1148		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1149		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1150		ASSERT(!BP_GET_DEDUP(bp));
1151
1152		if (pass >= zfs_sync_pass_dont_compress)
1153			compress = ZIO_COMPRESS_OFF;
1154
1155		/* Make sure someone doesn't change their mind on overwrites */
1156		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1157		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1158	}
1159
1160	if (compress != ZIO_COMPRESS_OFF) {
1161		void *cbuf = zio_buf_alloc(lsize);
1162		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1163		if (psize == 0 || psize == lsize) {
1164			compress = ZIO_COMPRESS_OFF;
1165			zio_buf_free(cbuf, lsize);
1166		} else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1167		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1168		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1169			encode_embedded_bp_compressed(bp,
1170			    cbuf, compress, lsize, psize);
1171			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1172			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1173			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1174			zio_buf_free(cbuf, lsize);
1175			bp->blk_birth = zio->io_txg;
1176			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1177			ASSERT(spa_feature_is_active(spa,
1178			    SPA_FEATURE_EMBEDDED_DATA));
1179			return (ZIO_PIPELINE_CONTINUE);
1180		} else {
1181			/*
1182			 * Round up compressed size to MINBLOCKSIZE and
1183			 * zero the tail.
1184			 */
1185			size_t rounded =
1186			    P2ROUNDUP(psize, (size_t)SPA_MINBLOCKSIZE);
1187			if (rounded > psize) {
1188				bzero((char *)cbuf + psize, rounded - psize);
1189				psize = rounded;
1190			}
1191			if (psize == lsize) {
1192				compress = ZIO_COMPRESS_OFF;
1193				zio_buf_free(cbuf, lsize);
1194			} else {
1195				zio_push_transform(zio, cbuf,
1196				    psize, lsize, NULL);
1197			}
1198		}
1199	}
1200
1201	/*
1202	 * The final pass of spa_sync() must be all rewrites, but the first
1203	 * few passes offer a trade-off: allocating blocks defers convergence,
1204	 * but newly allocated blocks are sequential, so they can be written
1205	 * to disk faster.  Therefore, we allow the first few passes of
1206	 * spa_sync() to allocate new blocks, but force rewrites after that.
1207	 * There should only be a handful of blocks after pass 1 in any case.
1208	 */
1209	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1210	    BP_GET_PSIZE(bp) == psize &&
1211	    pass >= zfs_sync_pass_rewrite) {
1212		ASSERT(psize != 0);
1213		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1214		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1215		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1216	} else {
1217		BP_ZERO(bp);
1218		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1219	}
1220
1221	if (psize == 0) {
1222		if (zio->io_bp_orig.blk_birth != 0 &&
1223		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1224			BP_SET_LSIZE(bp, lsize);
1225			BP_SET_TYPE(bp, zp->zp_type);
1226			BP_SET_LEVEL(bp, zp->zp_level);
1227			BP_SET_BIRTH(bp, zio->io_txg, 0);
1228		}
1229		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1230	} else {
1231		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1232		BP_SET_LSIZE(bp, lsize);
1233		BP_SET_TYPE(bp, zp->zp_type);
1234		BP_SET_LEVEL(bp, zp->zp_level);
1235		BP_SET_PSIZE(bp, psize);
1236		BP_SET_COMPRESS(bp, compress);
1237		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1238		BP_SET_DEDUP(bp, zp->zp_dedup);
1239		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1240		if (zp->zp_dedup) {
1241			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1242			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1243			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1244		}
1245		if (zp->zp_nopwrite) {
1246			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1247			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1248			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1249		}
1250	}
1251
1252	return (ZIO_PIPELINE_CONTINUE);
1253}
1254
1255static int
1256zio_free_bp_init(zio_t **ziop)
1257{
1258	zio_t *zio = *ziop;
1259	blkptr_t *bp = zio->io_bp;
1260
1261	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1262		if (BP_GET_DEDUP(bp))
1263			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1264	}
1265
1266	return (ZIO_PIPELINE_CONTINUE);
1267}
1268
1269/*
1270 * ==========================================================================
1271 * Execute the I/O pipeline
1272 * ==========================================================================
1273 */
1274
1275static void
1276zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1277{
1278	spa_t *spa = zio->io_spa;
1279	zio_type_t t = zio->io_type;
1280	int flags = (cutinline ? TQ_FRONT : 0);
1281
1282	ASSERT(q == ZIO_TASKQ_ISSUE || q == ZIO_TASKQ_INTERRUPT);
1283
1284	/*
1285	 * If we're a config writer or a probe, the normal issue and
1286	 * interrupt threads may all be blocked waiting for the config lock.
1287	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1288	 */
1289	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1290		t = ZIO_TYPE_NULL;
1291
1292	/*
1293	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1294	 */
1295	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1296		t = ZIO_TYPE_NULL;
1297
1298	/*
1299	 * If this is a high priority I/O, then use the high priority taskq if
1300	 * available.
1301	 */
1302	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1303	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1304		q++;
1305
1306	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1307
1308	/*
1309	 * NB: We are assuming that the zio can only be dispatched
1310	 * to a single taskq at a time.  It would be a grievous error
1311	 * to dispatch the zio to another taskq at the same time.
1312	 */
1313#if defined(illumos) || !defined(_KERNEL)
1314	ASSERT(zio->io_tqent.tqent_next == NULL);
1315#else
1316	ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
1317#endif
1318	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1319	    flags, &zio->io_tqent);
1320}
1321
1322static boolean_t
1323zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1324{
1325	kthread_t *executor = zio->io_executor;
1326	spa_t *spa = zio->io_spa;
1327
1328	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1329		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1330		uint_t i;
1331		for (i = 0; i < tqs->stqs_count; i++) {
1332			if (taskq_member(tqs->stqs_taskq[i], executor))
1333				return (B_TRUE);
1334		}
1335	}
1336
1337	return (B_FALSE);
1338}
1339
1340static int
1341zio_issue_async(zio_t **ziop)
1342{
1343	zio_t *zio = *ziop;
1344
1345	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1346
1347	return (ZIO_PIPELINE_STOP);
1348}
1349
1350void
1351zio_interrupt(zio_t *zio)
1352{
1353	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1354}
1355
1356/*
1357 * Execute the I/O pipeline until one of the following occurs:
1358 *
1359 *	(1) the I/O completes
1360 *	(2) the pipeline stalls waiting for dependent child I/Os
1361 *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1362 *	(4) the I/O is delegated by vdev-level caching or aggregation
1363 *	(5) the I/O is deferred due to vdev-level queueing
1364 *	(6) the I/O is handed off to another thread.
1365 *
1366 * In all cases, the pipeline stops whenever there's no CPU work; it never
1367 * burns a thread in cv_wait().
1368 *
1369 * There's no locking on io_stage because there's no legitimate way
1370 * for multiple threads to be attempting to process the same I/O.
1371 */
1372static zio_pipe_stage_t *zio_pipeline[];
1373
1374void
1375zio_execute(zio_t *zio)
1376{
1377	zio->io_executor = curthread;
1378
1379	while (zio->io_stage < ZIO_STAGE_DONE) {
1380		enum zio_stage pipeline = zio->io_pipeline;
1381		enum zio_stage stage = zio->io_stage;
1382		int rv;
1383
1384		ASSERT(!MUTEX_HELD(&zio->io_lock));
1385		ASSERT(ISP2(stage));
1386		ASSERT(zio->io_stall == NULL);
1387
1388		do {
1389			stage <<= 1;
1390		} while ((stage & pipeline) == 0);
1391
1392		ASSERT(stage <= ZIO_STAGE_DONE);
1393
1394		/*
1395		 * If we are in interrupt context and this pipeline stage
1396		 * will grab a config lock that is held across I/O,
1397		 * or may wait for an I/O that needs an interrupt thread
1398		 * to complete, issue async to avoid deadlock.
1399		 *
1400		 * For VDEV_IO_START, we cut in line so that the io will
1401		 * be sent to disk promptly.
1402		 */
1403		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1404		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1405			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1406			    zio_requeue_io_start_cut_in_line : B_FALSE;
1407			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1408			return;
1409		}
1410
1411		zio->io_stage = stage;
1412		rv = zio_pipeline[highbit64(stage) - 1](&zio);
1413
1414		if (rv == ZIO_PIPELINE_STOP)
1415			return;
1416
1417		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1418	}
1419}
1420
1421/*
1422 * ==========================================================================
1423 * Initiate I/O, either sync or async
1424 * ==========================================================================
1425 */
1426int
1427zio_wait(zio_t *zio)
1428{
1429	int error;
1430
1431	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1432	ASSERT(zio->io_executor == NULL);
1433
1434	zio->io_waiter = curthread;
1435
1436	zio_execute(zio);
1437
1438	mutex_enter(&zio->io_lock);
1439	while (zio->io_executor != NULL)
1440		cv_wait(&zio->io_cv, &zio->io_lock);
1441	mutex_exit(&zio->io_lock);
1442
1443	error = zio->io_error;
1444	zio_destroy(zio);
1445
1446	return (error);
1447}
1448
1449void
1450zio_nowait(zio_t *zio)
1451{
1452	ASSERT(zio->io_executor == NULL);
1453
1454	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1455	    zio_unique_parent(zio) == NULL) {
1456		/*
1457		 * This is a logical async I/O with no parent to wait for it.
1458		 * We add it to the spa_async_root_zio "Godfather" I/O which
1459		 * will ensure they complete prior to unloading the pool.
1460		 */
1461		spa_t *spa = zio->io_spa;
1462
1463		zio_add_child(spa->spa_async_zio_root, zio);
1464	}
1465
1466	zio_execute(zio);
1467}
1468
1469/*
1470 * ==========================================================================
1471 * Reexecute or suspend/resume failed I/O
1472 * ==========================================================================
1473 */
1474
1475static void
1476zio_reexecute(zio_t *pio)
1477{
1478	zio_t *cio, *cio_next;
1479
1480	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1481	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1482	ASSERT(pio->io_gang_leader == NULL);
1483	ASSERT(pio->io_gang_tree == NULL);
1484
1485	pio->io_flags = pio->io_orig_flags;
1486	pio->io_stage = pio->io_orig_stage;
1487	pio->io_pipeline = pio->io_orig_pipeline;
1488	pio->io_reexecute = 0;
1489	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1490	pio->io_error = 0;
1491	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1492		pio->io_state[w] = 0;
1493	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1494		pio->io_child_error[c] = 0;
1495
1496	if (IO_IS_ALLOCATING(pio))
1497		BP_ZERO(pio->io_bp);
1498
1499	/*
1500	 * As we reexecute pio's children, new children could be created.
1501	 * New children go to the head of pio's io_child_list, however,
1502	 * so we will (correctly) not reexecute them.  The key is that
1503	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1504	 * cannot be affected by any side effects of reexecuting 'cio'.
1505	 */
1506	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1507		cio_next = zio_walk_children(pio);
1508		mutex_enter(&pio->io_lock);
1509		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1510			pio->io_children[cio->io_child_type][w]++;
1511		mutex_exit(&pio->io_lock);
1512		zio_reexecute(cio);
1513	}
1514
1515	/*
1516	 * Now that all children have been reexecuted, execute the parent.
1517	 * We don't reexecute "The Godfather" I/O here as it's the
1518	 * responsibility of the caller to wait on him.
1519	 */
1520	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1521		zio_execute(pio);
1522}
1523
1524void
1525zio_suspend(spa_t *spa, zio_t *zio)
1526{
1527	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1528		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1529		    "failure and the failure mode property for this pool "
1530		    "is set to panic.", spa_name(spa));
1531
1532	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1533
1534	mutex_enter(&spa->spa_suspend_lock);
1535
1536	if (spa->spa_suspend_zio_root == NULL)
1537		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1538		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1539		    ZIO_FLAG_GODFATHER);
1540
1541	spa->spa_suspended = B_TRUE;
1542
1543	if (zio != NULL) {
1544		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1545		ASSERT(zio != spa->spa_suspend_zio_root);
1546		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1547		ASSERT(zio_unique_parent(zio) == NULL);
1548		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1549		zio_add_child(spa->spa_suspend_zio_root, zio);
1550	}
1551
1552	mutex_exit(&spa->spa_suspend_lock);
1553}
1554
1555int
1556zio_resume(spa_t *spa)
1557{
1558	zio_t *pio;
1559
1560	/*
1561	 * Reexecute all previously suspended i/o.
1562	 */
1563	mutex_enter(&spa->spa_suspend_lock);
1564	spa->spa_suspended = B_FALSE;
1565	cv_broadcast(&spa->spa_suspend_cv);
1566	pio = spa->spa_suspend_zio_root;
1567	spa->spa_suspend_zio_root = NULL;
1568	mutex_exit(&spa->spa_suspend_lock);
1569
1570	if (pio == NULL)
1571		return (0);
1572
1573	zio_reexecute(pio);
1574	return (zio_wait(pio));
1575}
1576
1577void
1578zio_resume_wait(spa_t *spa)
1579{
1580	mutex_enter(&spa->spa_suspend_lock);
1581	while (spa_suspended(spa))
1582		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1583	mutex_exit(&spa->spa_suspend_lock);
1584}
1585
1586/*
1587 * ==========================================================================
1588 * Gang blocks.
1589 *
1590 * A gang block is a collection of small blocks that looks to the DMU
1591 * like one large block.  When zio_dva_allocate() cannot find a block
1592 * of the requested size, due to either severe fragmentation or the pool
1593 * being nearly full, it calls zio_write_gang_block() to construct the
1594 * block from smaller fragments.
1595 *
1596 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1597 * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1598 * an indirect block: it's an array of block pointers.  It consumes
1599 * only one sector and hence is allocatable regardless of fragmentation.
1600 * The gang header's bps point to its gang members, which hold the data.
1601 *
1602 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1603 * as the verifier to ensure uniqueness of the SHA256 checksum.
1604 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1605 * not the gang header.  This ensures that data block signatures (needed for
1606 * deduplication) are independent of how the block is physically stored.
1607 *
1608 * Gang blocks can be nested: a gang member may itself be a gang block.
1609 * Thus every gang block is a tree in which root and all interior nodes are
1610 * gang headers, and the leaves are normal blocks that contain user data.
1611 * The root of the gang tree is called the gang leader.
1612 *
1613 * To perform any operation (read, rewrite, free, claim) on a gang block,
1614 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1615 * in the io_gang_tree field of the original logical i/o by recursively
1616 * reading the gang leader and all gang headers below it.  This yields
1617 * an in-core tree containing the contents of every gang header and the
1618 * bps for every constituent of the gang block.
1619 *
1620 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1621 * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1622 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1623 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1624 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1625 * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1626 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1627 * of the gang header plus zio_checksum_compute() of the data to update the
1628 * gang header's blk_cksum as described above.
1629 *
1630 * The two-phase assemble/issue model solves the problem of partial failure --
1631 * what if you'd freed part of a gang block but then couldn't read the
1632 * gang header for another part?  Assembling the entire gang tree first
1633 * ensures that all the necessary gang header I/O has succeeded before
1634 * starting the actual work of free, claim, or write.  Once the gang tree
1635 * is assembled, free and claim are in-memory operations that cannot fail.
1636 *
1637 * In the event that a gang write fails, zio_dva_unallocate() walks the
1638 * gang tree to immediately free (i.e. insert back into the space map)
1639 * everything we've allocated.  This ensures that we don't get ENOSPC
1640 * errors during repeated suspend/resume cycles due to a flaky device.
1641 *
1642 * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1643 * the gang tree, we won't modify the block, so we can safely defer the free
1644 * (knowing that the block is still intact).  If we *can* assemble the gang
1645 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1646 * each constituent bp and we can allocate a new block on the next sync pass.
1647 *
1648 * In all cases, the gang tree allows complete recovery from partial failure.
1649 * ==========================================================================
1650 */
1651
1652static zio_t *
1653zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1654{
1655	if (gn != NULL)
1656		return (pio);
1657
1658	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1659	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1660	    &pio->io_bookmark));
1661}
1662
1663zio_t *
1664zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1665{
1666	zio_t *zio;
1667
1668	if (gn != NULL) {
1669		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1670		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1671		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1672		/*
1673		 * As we rewrite each gang header, the pipeline will compute
1674		 * a new gang block header checksum for it; but no one will
1675		 * compute a new data checksum, so we do that here.  The one
1676		 * exception is the gang leader: the pipeline already computed
1677		 * its data checksum because that stage precedes gang assembly.
1678		 * (Presently, nothing actually uses interior data checksums;
1679		 * this is just good hygiene.)
1680		 */
1681		if (gn != pio->io_gang_leader->io_gang_tree) {
1682			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1683			    data, BP_GET_PSIZE(bp));
1684		}
1685		/*
1686		 * If we are here to damage data for testing purposes,
1687		 * leave the GBH alone so that we can detect the damage.
1688		 */
1689		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1690			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1691	} else {
1692		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1693		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1694		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1695	}
1696
1697	return (zio);
1698}
1699
1700/* ARGSUSED */
1701zio_t *
1702zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1703{
1704	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1705	    BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp),
1706	    ZIO_GANG_CHILD_FLAGS(pio)));
1707}
1708
1709/* ARGSUSED */
1710zio_t *
1711zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1712{
1713	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1714	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1715}
1716
1717static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1718	NULL,
1719	zio_read_gang,
1720	zio_rewrite_gang,
1721	zio_free_gang,
1722	zio_claim_gang,
1723	NULL
1724};
1725
1726static void zio_gang_tree_assemble_done(zio_t *zio);
1727
1728static zio_gang_node_t *
1729zio_gang_node_alloc(zio_gang_node_t **gnpp)
1730{
1731	zio_gang_node_t *gn;
1732
1733	ASSERT(*gnpp == NULL);
1734
1735	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1736	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1737	*gnpp = gn;
1738
1739	return (gn);
1740}
1741
1742static void
1743zio_gang_node_free(zio_gang_node_t **gnpp)
1744{
1745	zio_gang_node_t *gn = *gnpp;
1746
1747	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1748		ASSERT(gn->gn_child[g] == NULL);
1749
1750	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1751	kmem_free(gn, sizeof (*gn));
1752	*gnpp = NULL;
1753}
1754
1755static void
1756zio_gang_tree_free(zio_gang_node_t **gnpp)
1757{
1758	zio_gang_node_t *gn = *gnpp;
1759
1760	if (gn == NULL)
1761		return;
1762
1763	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1764		zio_gang_tree_free(&gn->gn_child[g]);
1765
1766	zio_gang_node_free(gnpp);
1767}
1768
1769static void
1770zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1771{
1772	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1773
1774	ASSERT(gio->io_gang_leader == gio);
1775	ASSERT(BP_IS_GANG(bp));
1776
1777	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1778	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1779	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1780}
1781
1782static void
1783zio_gang_tree_assemble_done(zio_t *zio)
1784{
1785	zio_t *gio = zio->io_gang_leader;
1786	zio_gang_node_t *gn = zio->io_private;
1787	blkptr_t *bp = zio->io_bp;
1788
1789	ASSERT(gio == zio_unique_parent(zio));
1790	ASSERT(zio->io_child_count == 0);
1791
1792	if (zio->io_error)
1793		return;
1794
1795	if (BP_SHOULD_BYTESWAP(bp))
1796		byteswap_uint64_array(zio->io_data, zio->io_size);
1797
1798	ASSERT(zio->io_data == gn->gn_gbh);
1799	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1800	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1801
1802	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1803		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1804		if (!BP_IS_GANG(gbp))
1805			continue;
1806		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1807	}
1808}
1809
1810static void
1811zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1812{
1813	zio_t *gio = pio->io_gang_leader;
1814	zio_t *zio;
1815
1816	ASSERT(BP_IS_GANG(bp) == !!gn);
1817	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1818	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1819
1820	/*
1821	 * If you're a gang header, your data is in gn->gn_gbh.
1822	 * If you're a gang member, your data is in 'data' and gn == NULL.
1823	 */
1824	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1825
1826	if (gn != NULL) {
1827		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1828
1829		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1830			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1831			if (BP_IS_HOLE(gbp))
1832				continue;
1833			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1834			data = (char *)data + BP_GET_PSIZE(gbp);
1835		}
1836	}
1837
1838	if (gn == gio->io_gang_tree && gio->io_data != NULL)
1839		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1840
1841	if (zio != pio)
1842		zio_nowait(zio);
1843}
1844
1845static int
1846zio_gang_assemble(zio_t **ziop)
1847{
1848	zio_t *zio = *ziop;
1849	blkptr_t *bp = zio->io_bp;
1850
1851	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1852	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1853
1854	zio->io_gang_leader = zio;
1855
1856	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1857
1858	return (ZIO_PIPELINE_CONTINUE);
1859}
1860
1861static int
1862zio_gang_issue(zio_t **ziop)
1863{
1864	zio_t *zio = *ziop;
1865	blkptr_t *bp = zio->io_bp;
1866
1867	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1868		return (ZIO_PIPELINE_STOP);
1869
1870	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1871	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1872
1873	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1874		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1875	else
1876		zio_gang_tree_free(&zio->io_gang_tree);
1877
1878	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1879
1880	return (ZIO_PIPELINE_CONTINUE);
1881}
1882
1883static void
1884zio_write_gang_member_ready(zio_t *zio)
1885{
1886	zio_t *pio = zio_unique_parent(zio);
1887	zio_t *gio = zio->io_gang_leader;
1888	dva_t *cdva = zio->io_bp->blk_dva;
1889	dva_t *pdva = pio->io_bp->blk_dva;
1890	uint64_t asize;
1891
1892	if (BP_IS_HOLE(zio->io_bp))
1893		return;
1894
1895	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1896
1897	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1898	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1899	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1900	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1901	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1902
1903	mutex_enter(&pio->io_lock);
1904	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1905		ASSERT(DVA_GET_GANG(&pdva[d]));
1906		asize = DVA_GET_ASIZE(&pdva[d]);
1907		asize += DVA_GET_ASIZE(&cdva[d]);
1908		DVA_SET_ASIZE(&pdva[d], asize);
1909	}
1910	mutex_exit(&pio->io_lock);
1911}
1912
1913static int
1914zio_write_gang_block(zio_t *pio)
1915{
1916	spa_t *spa = pio->io_spa;
1917	blkptr_t *bp = pio->io_bp;
1918	zio_t *gio = pio->io_gang_leader;
1919	zio_t *zio;
1920	zio_gang_node_t *gn, **gnpp;
1921	zio_gbh_phys_t *gbh;
1922	uint64_t txg = pio->io_txg;
1923	uint64_t resid = pio->io_size;
1924	uint64_t lsize;
1925	int copies = gio->io_prop.zp_copies;
1926	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1927	zio_prop_t zp;
1928	int error;
1929
1930	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1931	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1932	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1933	if (error) {
1934		pio->io_error = error;
1935		return (ZIO_PIPELINE_CONTINUE);
1936	}
1937
1938	if (pio == gio) {
1939		gnpp = &gio->io_gang_tree;
1940	} else {
1941		gnpp = pio->io_private;
1942		ASSERT(pio->io_ready == zio_write_gang_member_ready);
1943	}
1944
1945	gn = zio_gang_node_alloc(gnpp);
1946	gbh = gn->gn_gbh;
1947	bzero(gbh, SPA_GANGBLOCKSIZE);
1948
1949	/*
1950	 * Create the gang header.
1951	 */
1952	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1953	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1954
1955	/*
1956	 * Create and nowait the gang children.
1957	 */
1958	for (int g = 0; resid != 0; resid -= lsize, g++) {
1959		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1960		    SPA_MINBLOCKSIZE);
1961		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1962
1963		zp.zp_checksum = gio->io_prop.zp_checksum;
1964		zp.zp_compress = ZIO_COMPRESS_OFF;
1965		zp.zp_type = DMU_OT_NONE;
1966		zp.zp_level = 0;
1967		zp.zp_copies = gio->io_prop.zp_copies;
1968		zp.zp_dedup = B_FALSE;
1969		zp.zp_dedup_verify = B_FALSE;
1970		zp.zp_nopwrite = B_FALSE;
1971
1972		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1973		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1974		    zio_write_gang_member_ready, NULL, NULL, &gn->gn_child[g],
1975		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1976		    &pio->io_bookmark));
1977	}
1978
1979	/*
1980	 * Set pio's pipeline to just wait for zio to finish.
1981	 */
1982	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1983
1984	zio_nowait(zio);
1985
1986	return (ZIO_PIPELINE_CONTINUE);
1987}
1988
1989/*
1990 * The zio_nop_write stage in the pipeline determines if allocating
1991 * a new bp is necessary.  By leveraging a cryptographically secure checksum,
1992 * such as SHA256, we can compare the checksums of the new data and the old
1993 * to determine if allocating a new block is required.  The nopwrite
1994 * feature can handle writes in either syncing or open context (i.e. zil
1995 * writes) and as a result is mutually exclusive with dedup.
1996 */
1997static int
1998zio_nop_write(zio_t **ziop)
1999{
2000	zio_t *zio = *ziop;
2001	blkptr_t *bp = zio->io_bp;
2002	blkptr_t *bp_orig = &zio->io_bp_orig;
2003	zio_prop_t *zp = &zio->io_prop;
2004
2005	ASSERT(BP_GET_LEVEL(bp) == 0);
2006	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2007	ASSERT(zp->zp_nopwrite);
2008	ASSERT(!zp->zp_dedup);
2009	ASSERT(zio->io_bp_override == NULL);
2010	ASSERT(IO_IS_ALLOCATING(zio));
2011
2012	/*
2013	 * Check to see if the original bp and the new bp have matching
2014	 * characteristics (i.e. same checksum, compression algorithms, etc).
2015	 * If they don't then just continue with the pipeline which will
2016	 * allocate a new bp.
2017	 */
2018	if (BP_IS_HOLE(bp_orig) ||
2019	    !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
2020	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2021	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2022	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2023	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2024		return (ZIO_PIPELINE_CONTINUE);
2025
2026	/*
2027	 * If the checksums match then reset the pipeline so that we
2028	 * avoid allocating a new bp and issuing any I/O.
2029	 */
2030	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2031		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
2032		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2033		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2034		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2035		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2036		    sizeof (uint64_t)) == 0);
2037
2038		*bp = *bp_orig;
2039		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2040		zio->io_flags |= ZIO_FLAG_NOPWRITE;
2041	}
2042
2043	return (ZIO_PIPELINE_CONTINUE);
2044}
2045
2046/*
2047 * ==========================================================================
2048 * Dedup
2049 * ==========================================================================
2050 */
2051static void
2052zio_ddt_child_read_done(zio_t *zio)
2053{
2054	blkptr_t *bp = zio->io_bp;
2055	ddt_entry_t *dde = zio->io_private;
2056	ddt_phys_t *ddp;
2057	zio_t *pio = zio_unique_parent(zio);
2058
2059	mutex_enter(&pio->io_lock);
2060	ddp = ddt_phys_select(dde, bp);
2061	if (zio->io_error == 0)
2062		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
2063	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
2064		dde->dde_repair_data = zio->io_data;
2065	else
2066		zio_buf_free(zio->io_data, zio->io_size);
2067	mutex_exit(&pio->io_lock);
2068}
2069
2070static int
2071zio_ddt_read_start(zio_t **ziop)
2072{
2073	zio_t *zio = *ziop;
2074	blkptr_t *bp = zio->io_bp;
2075
2076	ASSERT(BP_GET_DEDUP(bp));
2077	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2078	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2079
2080	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2081		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2082		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2083		ddt_phys_t *ddp = dde->dde_phys;
2084		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2085		blkptr_t blk;
2086
2087		ASSERT(zio->io_vsd == NULL);
2088		zio->io_vsd = dde;
2089
2090		if (ddp_self == NULL)
2091			return (ZIO_PIPELINE_CONTINUE);
2092
2093		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2094			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2095				continue;
2096			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2097			    &blk);
2098			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2099			    zio_buf_alloc(zio->io_size), zio->io_size,
2100			    zio_ddt_child_read_done, dde, zio->io_priority,
2101			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
2102			    &zio->io_bookmark));
2103		}
2104		return (ZIO_PIPELINE_CONTINUE);
2105	}
2106
2107	zio_nowait(zio_read(zio, zio->io_spa, bp,
2108	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
2109	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2110
2111	return (ZIO_PIPELINE_CONTINUE);
2112}
2113
2114static int
2115zio_ddt_read_done(zio_t **ziop)
2116{
2117	zio_t *zio = *ziop;
2118	blkptr_t *bp = zio->io_bp;
2119
2120	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2121		return (ZIO_PIPELINE_STOP);
2122
2123	ASSERT(BP_GET_DEDUP(bp));
2124	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2125	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2126
2127	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2128		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2129		ddt_entry_t *dde = zio->io_vsd;
2130		if (ddt == NULL) {
2131			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2132			return (ZIO_PIPELINE_CONTINUE);
2133		}
2134		if (dde == NULL) {
2135			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2136			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2137			return (ZIO_PIPELINE_STOP);
2138		}
2139		if (dde->dde_repair_data != NULL) {
2140			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2141			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2142		}
2143		ddt_repair_done(ddt, dde);
2144		zio->io_vsd = NULL;
2145	}
2146
2147	ASSERT(zio->io_vsd == NULL);
2148
2149	return (ZIO_PIPELINE_CONTINUE);
2150}
2151
2152static boolean_t
2153zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2154{
2155	spa_t *spa = zio->io_spa;
2156
2157	/*
2158	 * Note: we compare the original data, not the transformed data,
2159	 * because when zio->io_bp is an override bp, we will not have
2160	 * pushed the I/O transforms.  That's an important optimization
2161	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2162	 */
2163	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2164		zio_t *lio = dde->dde_lead_zio[p];
2165
2166		if (lio != NULL) {
2167			return (lio->io_orig_size != zio->io_orig_size ||
2168			    bcmp(zio->io_orig_data, lio->io_orig_data,
2169			    zio->io_orig_size) != 0);
2170		}
2171	}
2172
2173	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2174		ddt_phys_t *ddp = &dde->dde_phys[p];
2175
2176		if (ddp->ddp_phys_birth != 0) {
2177			arc_buf_t *abuf = NULL;
2178			uint32_t aflags = ARC_WAIT;
2179			blkptr_t blk = *zio->io_bp;
2180			int error;
2181
2182			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2183
2184			ddt_exit(ddt);
2185
2186			error = arc_read(NULL, spa, &blk,
2187			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2188			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2189			    &aflags, &zio->io_bookmark);
2190
2191			if (error == 0) {
2192				if (arc_buf_size(abuf) != zio->io_orig_size ||
2193				    bcmp(abuf->b_data, zio->io_orig_data,
2194				    zio->io_orig_size) != 0)
2195					error = SET_ERROR(EEXIST);
2196				VERIFY(arc_buf_remove_ref(abuf, &abuf));
2197			}
2198
2199			ddt_enter(ddt);
2200			return (error != 0);
2201		}
2202	}
2203
2204	return (B_FALSE);
2205}
2206
2207static void
2208zio_ddt_child_write_ready(zio_t *zio)
2209{
2210	int p = zio->io_prop.zp_copies;
2211	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2212	ddt_entry_t *dde = zio->io_private;
2213	ddt_phys_t *ddp = &dde->dde_phys[p];
2214	zio_t *pio;
2215
2216	if (zio->io_error)
2217		return;
2218
2219	ddt_enter(ddt);
2220
2221	ASSERT(dde->dde_lead_zio[p] == zio);
2222
2223	ddt_phys_fill(ddp, zio->io_bp);
2224
2225	while ((pio = zio_walk_parents(zio)) != NULL)
2226		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2227
2228	ddt_exit(ddt);
2229}
2230
2231static void
2232zio_ddt_child_write_done(zio_t *zio)
2233{
2234	int p = zio->io_prop.zp_copies;
2235	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2236	ddt_entry_t *dde = zio->io_private;
2237	ddt_phys_t *ddp = &dde->dde_phys[p];
2238
2239	ddt_enter(ddt);
2240
2241	ASSERT(ddp->ddp_refcnt == 0);
2242	ASSERT(dde->dde_lead_zio[p] == zio);
2243	dde->dde_lead_zio[p] = NULL;
2244
2245	if (zio->io_error == 0) {
2246		while (zio_walk_parents(zio) != NULL)
2247			ddt_phys_addref(ddp);
2248	} else {
2249		ddt_phys_clear(ddp);
2250	}
2251
2252	ddt_exit(ddt);
2253}
2254
2255static void
2256zio_ddt_ditto_write_done(zio_t *zio)
2257{
2258	int p = DDT_PHYS_DITTO;
2259	zio_prop_t *zp = &zio->io_prop;
2260	blkptr_t *bp = zio->io_bp;
2261	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2262	ddt_entry_t *dde = zio->io_private;
2263	ddt_phys_t *ddp = &dde->dde_phys[p];
2264	ddt_key_t *ddk = &dde->dde_key;
2265
2266	ddt_enter(ddt);
2267
2268	ASSERT(ddp->ddp_refcnt == 0);
2269	ASSERT(dde->dde_lead_zio[p] == zio);
2270	dde->dde_lead_zio[p] = NULL;
2271
2272	if (zio->io_error == 0) {
2273		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2274		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2275		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2276		if (ddp->ddp_phys_birth != 0)
2277			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2278		ddt_phys_fill(ddp, bp);
2279	}
2280
2281	ddt_exit(ddt);
2282}
2283
2284static int
2285zio_ddt_write(zio_t **ziop)
2286{
2287	zio_t *zio = *ziop;
2288	spa_t *spa = zio->io_spa;
2289	blkptr_t *bp = zio->io_bp;
2290	uint64_t txg = zio->io_txg;
2291	zio_prop_t *zp = &zio->io_prop;
2292	int p = zp->zp_copies;
2293	int ditto_copies;
2294	zio_t *cio = NULL;
2295	zio_t *dio = NULL;
2296	ddt_t *ddt = ddt_select(spa, bp);
2297	ddt_entry_t *dde;
2298	ddt_phys_t *ddp;
2299
2300	ASSERT(BP_GET_DEDUP(bp));
2301	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2302	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2303
2304	ddt_enter(ddt);
2305	dde = ddt_lookup(ddt, bp, B_TRUE);
2306	ddp = &dde->dde_phys[p];
2307
2308	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2309		/*
2310		 * If we're using a weak checksum, upgrade to a strong checksum
2311		 * and try again.  If we're already using a strong checksum,
2312		 * we can't resolve it, so just convert to an ordinary write.
2313		 * (And automatically e-mail a paper to Nature?)
2314		 */
2315		if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2316			zp->zp_checksum = spa_dedup_checksum(spa);
2317			zio_pop_transforms(zio);
2318			zio->io_stage = ZIO_STAGE_OPEN;
2319			BP_ZERO(bp);
2320		} else {
2321			zp->zp_dedup = B_FALSE;
2322		}
2323		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2324		ddt_exit(ddt);
2325		return (ZIO_PIPELINE_CONTINUE);
2326	}
2327
2328	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2329	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2330
2331	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2332	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2333		zio_prop_t czp = *zp;
2334
2335		czp.zp_copies = ditto_copies;
2336
2337		/*
2338		 * If we arrived here with an override bp, we won't have run
2339		 * the transform stack, so we won't have the data we need to
2340		 * generate a child i/o.  So, toss the override bp and restart.
2341		 * This is safe, because using the override bp is just an
2342		 * optimization; and it's rare, so the cost doesn't matter.
2343		 */
2344		if (zio->io_bp_override) {
2345			zio_pop_transforms(zio);
2346			zio->io_stage = ZIO_STAGE_OPEN;
2347			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2348			zio->io_bp_override = NULL;
2349			BP_ZERO(bp);
2350			ddt_exit(ddt);
2351			return (ZIO_PIPELINE_CONTINUE);
2352		}
2353
2354		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2355		    zio->io_orig_size, &czp, NULL, NULL,
2356		    zio_ddt_ditto_write_done, dde, zio->io_priority,
2357		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2358
2359		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2360		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2361	}
2362
2363	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2364		if (ddp->ddp_phys_birth != 0)
2365			ddt_bp_fill(ddp, bp, txg);
2366		if (dde->dde_lead_zio[p] != NULL)
2367			zio_add_child(zio, dde->dde_lead_zio[p]);
2368		else
2369			ddt_phys_addref(ddp);
2370	} else if (zio->io_bp_override) {
2371		ASSERT(bp->blk_birth == txg);
2372		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2373		ddt_phys_fill(ddp, bp);
2374		ddt_phys_addref(ddp);
2375	} else {
2376		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2377		    zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL,
2378		    zio_ddt_child_write_done, dde, zio->io_priority,
2379		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2380
2381		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2382		dde->dde_lead_zio[p] = cio;
2383	}
2384
2385	ddt_exit(ddt);
2386
2387	if (cio)
2388		zio_nowait(cio);
2389	if (dio)
2390		zio_nowait(dio);
2391
2392	return (ZIO_PIPELINE_CONTINUE);
2393}
2394
2395ddt_entry_t *freedde; /* for debugging */
2396
2397static int
2398zio_ddt_free(zio_t **ziop)
2399{
2400	zio_t *zio = *ziop;
2401	spa_t *spa = zio->io_spa;
2402	blkptr_t *bp = zio->io_bp;
2403	ddt_t *ddt = ddt_select(spa, bp);
2404	ddt_entry_t *dde;
2405	ddt_phys_t *ddp;
2406
2407	ASSERT(BP_GET_DEDUP(bp));
2408	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2409
2410	ddt_enter(ddt);
2411	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2412	ddp = ddt_phys_select(dde, bp);
2413	ddt_phys_decref(ddp);
2414	ddt_exit(ddt);
2415
2416	return (ZIO_PIPELINE_CONTINUE);
2417}
2418
2419/*
2420 * ==========================================================================
2421 * Allocate and free blocks
2422 * ==========================================================================
2423 */
2424static int
2425zio_dva_allocate(zio_t **ziop)
2426{
2427	zio_t *zio = *ziop;
2428	spa_t *spa = zio->io_spa;
2429	metaslab_class_t *mc = spa_normal_class(spa);
2430	blkptr_t *bp = zio->io_bp;
2431	int error;
2432	int flags = 0;
2433
2434	if (zio->io_gang_leader == NULL) {
2435		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2436		zio->io_gang_leader = zio;
2437	}
2438
2439	ASSERT(BP_IS_HOLE(bp));
2440	ASSERT0(BP_GET_NDVAS(bp));
2441	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2442	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2443	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2444
2445	/*
2446	 * The dump device does not support gang blocks so allocation on
2447	 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2448	 * the "fast" gang feature.
2449	 */
2450	flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2451	flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2452	    METASLAB_GANG_CHILD : 0;
2453	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2454	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2455
2456	if (error) {
2457		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2458		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2459		    error);
2460		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2461			return (zio_write_gang_block(zio));
2462		zio->io_error = error;
2463	}
2464
2465	return (ZIO_PIPELINE_CONTINUE);
2466}
2467
2468static int
2469zio_dva_free(zio_t **ziop)
2470{
2471	zio_t *zio = *ziop;
2472
2473	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2474
2475	return (ZIO_PIPELINE_CONTINUE);
2476}
2477
2478static int
2479zio_dva_claim(zio_t **ziop)
2480{
2481	zio_t *zio = *ziop;
2482	int error;
2483
2484	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2485	if (error)
2486		zio->io_error = error;
2487
2488	return (ZIO_PIPELINE_CONTINUE);
2489}
2490
2491/*
2492 * Undo an allocation.  This is used by zio_done() when an I/O fails
2493 * and we want to give back the block we just allocated.
2494 * This handles both normal blocks and gang blocks.
2495 */
2496static void
2497zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2498{
2499	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2500	ASSERT(zio->io_bp_override == NULL);
2501
2502	if (!BP_IS_HOLE(bp))
2503		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2504
2505	if (gn != NULL) {
2506		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2507			zio_dva_unallocate(zio, gn->gn_child[g],
2508			    &gn->gn_gbh->zg_blkptr[g]);
2509		}
2510	}
2511}
2512
2513/*
2514 * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2515 */
2516int
2517zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2518    uint64_t size, boolean_t use_slog)
2519{
2520	int error = 1;
2521
2522	ASSERT(txg > spa_syncing_txg(spa));
2523
2524	/*
2525	 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2526	 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2527	 * when allocating them.
2528	 */
2529	if (use_slog) {
2530		error = metaslab_alloc(spa, spa_log_class(spa), size,
2531		    new_bp, 1, txg, old_bp,
2532		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2533	}
2534
2535	if (error) {
2536		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2537		    new_bp, 1, txg, old_bp,
2538		    METASLAB_HINTBP_AVOID);
2539	}
2540
2541	if (error == 0) {
2542		BP_SET_LSIZE(new_bp, size);
2543		BP_SET_PSIZE(new_bp, size);
2544		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2545		BP_SET_CHECKSUM(new_bp,
2546		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2547		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2548		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2549		BP_SET_LEVEL(new_bp, 0);
2550		BP_SET_DEDUP(new_bp, 0);
2551		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2552	}
2553
2554	return (error);
2555}
2556
2557/*
2558 * Free an intent log block.
2559 */
2560void
2561zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2562{
2563	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2564	ASSERT(!BP_IS_GANG(bp));
2565
2566	zio_free(spa, txg, bp);
2567}
2568
2569/*
2570 * ==========================================================================
2571 * Read, write and delete to physical devices
2572 * ==========================================================================
2573 */
2574static int
2575zio_vdev_io_start(zio_t **ziop)
2576{
2577	zio_t *zio = *ziop;
2578	vdev_t *vd = zio->io_vd;
2579	uint64_t align;
2580	spa_t *spa = zio->io_spa;
2581
2582	ASSERT(zio->io_error == 0);
2583	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2584
2585	if (vd == NULL) {
2586		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2587			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2588
2589		/*
2590		 * The mirror_ops handle multiple DVAs in a single BP.
2591		 */
2592		return (vdev_mirror_ops.vdev_op_io_start(zio));
2593	}
2594
2595	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_FREE) {
2596		trim_map_free(vd, zio->io_offset, zio->io_size, zio->io_txg);
2597		return (ZIO_PIPELINE_CONTINUE);
2598	}
2599
2600	/*
2601	 * We keep track of time-sensitive I/Os so that the scan thread
2602	 * can quickly react to certain workloads.  In particular, we care
2603	 * about non-scrubbing, top-level reads and writes with the following
2604	 * characteristics:
2605	 * 	- synchronous writes of user data to non-slog devices
2606	 *	- any reads of user data
2607	 * When these conditions are met, adjust the timestamp of spa_last_io
2608	 * which allows the scan thread to adjust its workload accordingly.
2609	 */
2610	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2611	    vd == vd->vdev_top && !vd->vdev_islog &&
2612	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2613	    zio->io_txg != spa_syncing_txg(spa)) {
2614		uint64_t old = spa->spa_last_io;
2615		uint64_t new = ddi_get_lbolt64();
2616		if (old != new)
2617			(void) atomic_cas_64(&spa->spa_last_io, old, new);
2618	}
2619
2620	align = 1ULL << vd->vdev_top->vdev_ashift;
2621
2622	if ((!(zio->io_flags & ZIO_FLAG_PHYSICAL) ||
2623	    (vd->vdev_top->vdev_physical_ashift > SPA_MINBLOCKSHIFT)) &&
2624	    P2PHASE(zio->io_size, align) != 0) {
2625		/* Transform logical writes to be a full physical block size. */
2626		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2627		char *abuf = NULL;
2628		if (zio->io_type == ZIO_TYPE_READ ||
2629		    zio->io_type == ZIO_TYPE_WRITE)
2630			abuf = zio_buf_alloc(asize);
2631		ASSERT(vd == vd->vdev_top);
2632		if (zio->io_type == ZIO_TYPE_WRITE) {
2633			bcopy(zio->io_data, abuf, zio->io_size);
2634			bzero(abuf + zio->io_size, asize - zio->io_size);
2635		}
2636		zio_push_transform(zio, abuf, asize, abuf ? asize : 0,
2637		    zio_subblock);
2638	}
2639
2640	/*
2641	 * If this is not a physical io, make sure that it is properly aligned
2642	 * before proceeding.
2643	 */
2644	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
2645		ASSERT0(P2PHASE(zio->io_offset, align));
2646		ASSERT0(P2PHASE(zio->io_size, align));
2647	} else {
2648		/*
2649		 * For physical writes, we allow 512b aligned writes and assume
2650		 * the device will perform a read-modify-write as necessary.
2651		 */
2652		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
2653		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
2654	}
2655
2656	VERIFY(zio->io_type == ZIO_TYPE_READ || spa_writeable(spa));
2657
2658	/*
2659	 * If this is a repair I/O, and there's no self-healing involved --
2660	 * that is, we're just resilvering what we expect to resilver --
2661	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2662	 * This prevents spurious resilvering with nested replication.
2663	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2664	 * A is out of date, we'll read from C+D, then use the data to
2665	 * resilver A+B -- but we don't actually want to resilver B, just A.
2666	 * The top-level mirror has no way to know this, so instead we just
2667	 * discard unnecessary repairs as we work our way down the vdev tree.
2668	 * The same logic applies to any form of nested replication:
2669	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2670	 */
2671	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2672	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2673	    zio->io_txg != 0 &&	/* not a delegated i/o */
2674	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2675		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2676		zio_vdev_io_bypass(zio);
2677		return (ZIO_PIPELINE_CONTINUE);
2678	}
2679
2680	if (vd->vdev_ops->vdev_op_leaf &&
2681	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2682
2683		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
2684			return (ZIO_PIPELINE_CONTINUE);
2685
2686		if ((zio = vdev_queue_io(zio)) == NULL)
2687			return (ZIO_PIPELINE_STOP);
2688		*ziop = zio;
2689
2690		if (!vdev_accessible(vd, zio)) {
2691			zio->io_error = SET_ERROR(ENXIO);
2692			zio_interrupt(zio);
2693			return (ZIO_PIPELINE_STOP);
2694		}
2695	}
2696
2697	/*
2698	 * Note that we ignore repair writes for TRIM because they can conflict
2699	 * with normal writes. This isn't an issue because, by definition, we
2700	 * only repair blocks that aren't freed.
2701	 */
2702	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_WRITE &&
2703	    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2704		if (!trim_map_write_start(zio))
2705			return (ZIO_PIPELINE_STOP);
2706	}
2707
2708	return (vd->vdev_ops->vdev_op_io_start(zio));
2709}
2710
2711static int
2712zio_vdev_io_done(zio_t **ziop)
2713{
2714	zio_t *zio = *ziop;
2715	vdev_t *vd = zio->io_vd;
2716	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2717	boolean_t unexpected_error = B_FALSE;
2718
2719	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2720		return (ZIO_PIPELINE_STOP);
2721
2722	ASSERT(zio->io_type == ZIO_TYPE_READ ||
2723	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_FREE);
2724
2725	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2726	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2727
2728		if (zio->io_type == ZIO_TYPE_WRITE &&
2729		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR))
2730			trim_map_write_done(zio);
2731
2732		vdev_queue_io_done(zio);
2733
2734		if (zio->io_type == ZIO_TYPE_WRITE)
2735			vdev_cache_write(zio);
2736
2737		if (zio_injection_enabled && zio->io_error == 0)
2738			zio->io_error = zio_handle_device_injection(vd,
2739			    zio, EIO);
2740
2741		if (zio_injection_enabled && zio->io_error == 0)
2742			zio->io_error = zio_handle_label_injection(zio, EIO);
2743
2744		if (zio->io_error) {
2745			if (!vdev_accessible(vd, zio)) {
2746				zio->io_error = SET_ERROR(ENXIO);
2747			} else {
2748				unexpected_error = B_TRUE;
2749			}
2750		}
2751	}
2752
2753	ops->vdev_op_io_done(zio);
2754
2755	if (unexpected_error)
2756		VERIFY(vdev_probe(vd, zio) == NULL);
2757
2758	return (ZIO_PIPELINE_CONTINUE);
2759}
2760
2761/*
2762 * For non-raidz ZIOs, we can just copy aside the bad data read from the
2763 * disk, and use that to finish the checksum ereport later.
2764 */
2765static void
2766zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2767    const void *good_buf)
2768{
2769	/* no processing needed */
2770	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2771}
2772
2773/*ARGSUSED*/
2774void
2775zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2776{
2777	void *buf = zio_buf_alloc(zio->io_size);
2778
2779	bcopy(zio->io_data, buf, zio->io_size);
2780
2781	zcr->zcr_cbinfo = zio->io_size;
2782	zcr->zcr_cbdata = buf;
2783	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2784	zcr->zcr_free = zio_buf_free;
2785}
2786
2787static int
2788zio_vdev_io_assess(zio_t **ziop)
2789{
2790	zio_t *zio = *ziop;
2791	vdev_t *vd = zio->io_vd;
2792
2793	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2794		return (ZIO_PIPELINE_STOP);
2795
2796	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2797		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2798
2799	if (zio->io_vsd != NULL) {
2800		zio->io_vsd_ops->vsd_free(zio);
2801		zio->io_vsd = NULL;
2802	}
2803
2804	if (zio_injection_enabled && zio->io_error == 0)
2805		zio->io_error = zio_handle_fault_injection(zio, EIO);
2806
2807	if (zio->io_type == ZIO_TYPE_IOCTL && zio->io_cmd == DKIOCTRIM)
2808		switch (zio->io_error) {
2809		case 0:
2810			ZIO_TRIM_STAT_INCR(bytes, zio->io_size);
2811			ZIO_TRIM_STAT_BUMP(success);
2812			break;
2813		case EOPNOTSUPP:
2814			ZIO_TRIM_STAT_BUMP(unsupported);
2815			break;
2816		default:
2817			ZIO_TRIM_STAT_BUMP(failed);
2818			break;
2819		}
2820
2821	/*
2822	 * If the I/O failed, determine whether we should attempt to retry it.
2823	 *
2824	 * On retry, we cut in line in the issue queue, since we don't want
2825	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2826	 */
2827	if (zio->io_error && vd == NULL &&
2828	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2829		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
2830		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
2831		zio->io_error = 0;
2832		zio->io_flags |= ZIO_FLAG_IO_RETRY |
2833		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2834		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2835		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2836		    zio_requeue_io_start_cut_in_line);
2837		return (ZIO_PIPELINE_STOP);
2838	}
2839
2840	/*
2841	 * If we got an error on a leaf device, convert it to ENXIO
2842	 * if the device is not accessible at all.
2843	 */
2844	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2845	    !vdev_accessible(vd, zio))
2846		zio->io_error = SET_ERROR(ENXIO);
2847
2848	/*
2849	 * If we can't write to an interior vdev (mirror or RAID-Z),
2850	 * set vdev_cant_write so that we stop trying to allocate from it.
2851	 */
2852	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2853	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2854		vd->vdev_cant_write = B_TRUE;
2855	}
2856
2857	if (zio->io_error)
2858		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2859
2860	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2861	    zio->io_physdone != NULL) {
2862		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
2863		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
2864		zio->io_physdone(zio->io_logical);
2865	}
2866
2867	return (ZIO_PIPELINE_CONTINUE);
2868}
2869
2870void
2871zio_vdev_io_reissue(zio_t *zio)
2872{
2873	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2874	ASSERT(zio->io_error == 0);
2875
2876	zio->io_stage >>= 1;
2877}
2878
2879void
2880zio_vdev_io_redone(zio_t *zio)
2881{
2882	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2883
2884	zio->io_stage >>= 1;
2885}
2886
2887void
2888zio_vdev_io_bypass(zio_t *zio)
2889{
2890	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2891	ASSERT(zio->io_error == 0);
2892
2893	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2894	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2895}
2896
2897/*
2898 * ==========================================================================
2899 * Generate and verify checksums
2900 * ==========================================================================
2901 */
2902static int
2903zio_checksum_generate(zio_t **ziop)
2904{
2905	zio_t *zio = *ziop;
2906	blkptr_t *bp = zio->io_bp;
2907	enum zio_checksum checksum;
2908
2909	if (bp == NULL) {
2910		/*
2911		 * This is zio_write_phys().
2912		 * We're either generating a label checksum, or none at all.
2913		 */
2914		checksum = zio->io_prop.zp_checksum;
2915
2916		if (checksum == ZIO_CHECKSUM_OFF)
2917			return (ZIO_PIPELINE_CONTINUE);
2918
2919		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2920	} else {
2921		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2922			ASSERT(!IO_IS_ALLOCATING(zio));
2923			checksum = ZIO_CHECKSUM_GANG_HEADER;
2924		} else {
2925			checksum = BP_GET_CHECKSUM(bp);
2926		}
2927	}
2928
2929	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2930
2931	return (ZIO_PIPELINE_CONTINUE);
2932}
2933
2934static int
2935zio_checksum_verify(zio_t **ziop)
2936{
2937	zio_t *zio = *ziop;
2938	zio_bad_cksum_t info;
2939	blkptr_t *bp = zio->io_bp;
2940	int error;
2941
2942	ASSERT(zio->io_vd != NULL);
2943
2944	if (bp == NULL) {
2945		/*
2946		 * This is zio_read_phys().
2947		 * We're either verifying a label checksum, or nothing at all.
2948		 */
2949		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2950			return (ZIO_PIPELINE_CONTINUE);
2951
2952		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2953	}
2954
2955	if ((error = zio_checksum_error(zio, &info)) != 0) {
2956		zio->io_error = error;
2957		if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2958			zfs_ereport_start_checksum(zio->io_spa,
2959			    zio->io_vd, zio, zio->io_offset,
2960			    zio->io_size, NULL, &info);
2961		}
2962	}
2963
2964	return (ZIO_PIPELINE_CONTINUE);
2965}
2966
2967/*
2968 * Called by RAID-Z to ensure we don't compute the checksum twice.
2969 */
2970void
2971zio_checksum_verified(zio_t *zio)
2972{
2973	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2974}
2975
2976/*
2977 * ==========================================================================
2978 * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2979 * An error of 0 indicates success.  ENXIO indicates whole-device failure,
2980 * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2981 * indicate errors that are specific to one I/O, and most likely permanent.
2982 * Any other error is presumed to be worse because we weren't expecting it.
2983 * ==========================================================================
2984 */
2985int
2986zio_worst_error(int e1, int e2)
2987{
2988	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2989	int r1, r2;
2990
2991	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2992		if (e1 == zio_error_rank[r1])
2993			break;
2994
2995	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2996		if (e2 == zio_error_rank[r2])
2997			break;
2998
2999	return (r1 > r2 ? e1 : e2);
3000}
3001
3002/*
3003 * ==========================================================================
3004 * I/O completion
3005 * ==========================================================================
3006 */
3007static int
3008zio_ready(zio_t **ziop)
3009{
3010	zio_t *zio = *ziop;
3011	blkptr_t *bp = zio->io_bp;
3012	zio_t *pio, *pio_next;
3013
3014	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
3015	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
3016		return (ZIO_PIPELINE_STOP);
3017
3018	if (zio->io_ready) {
3019		ASSERT(IO_IS_ALLOCATING(zio));
3020		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3021		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
3022		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3023
3024		zio->io_ready(zio);
3025	}
3026
3027	if (bp != NULL && bp != &zio->io_bp_copy)
3028		zio->io_bp_copy = *bp;
3029
3030	if (zio->io_error)
3031		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3032
3033	mutex_enter(&zio->io_lock);
3034	zio->io_state[ZIO_WAIT_READY] = 1;
3035	pio = zio_walk_parents(zio);
3036	mutex_exit(&zio->io_lock);
3037
3038	/*
3039	 * As we notify zio's parents, new parents could be added.
3040	 * New parents go to the head of zio's io_parent_list, however,
3041	 * so we will (correctly) not notify them.  The remainder of zio's
3042	 * io_parent_list, from 'pio_next' onward, cannot change because
3043	 * all parents must wait for us to be done before they can be done.
3044	 */
3045	for (; pio != NULL; pio = pio_next) {
3046		pio_next = zio_walk_parents(zio);
3047		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3048	}
3049
3050	if (zio->io_flags & ZIO_FLAG_NODATA) {
3051		if (BP_IS_GANG(bp)) {
3052			zio->io_flags &= ~ZIO_FLAG_NODATA;
3053		} else {
3054			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
3055			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3056		}
3057	}
3058
3059	if (zio_injection_enabled &&
3060	    zio->io_spa->spa_syncing_txg == zio->io_txg)
3061		zio_handle_ignored_writes(zio);
3062
3063	return (ZIO_PIPELINE_CONTINUE);
3064}
3065
3066static int
3067zio_done(zio_t **ziop)
3068{
3069	zio_t *zio = *ziop;
3070	spa_t *spa = zio->io_spa;
3071	zio_t *lio = zio->io_logical;
3072	blkptr_t *bp = zio->io_bp;
3073	vdev_t *vd = zio->io_vd;
3074	uint64_t psize = zio->io_size;
3075	zio_t *pio, *pio_next;
3076
3077	/*
3078	 * If our children haven't all completed,
3079	 * wait for them and then repeat this pipeline stage.
3080	 */
3081	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
3082	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
3083	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
3084	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
3085		return (ZIO_PIPELINE_STOP);
3086
3087	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3088		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3089			ASSERT(zio->io_children[c][w] == 0);
3090
3091	if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3092		ASSERT(bp->blk_pad[0] == 0);
3093		ASSERT(bp->blk_pad[1] == 0);
3094		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3095		    (bp == zio_unique_parent(zio)->io_bp));
3096		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3097		    zio->io_bp_override == NULL &&
3098		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3099			ASSERT(!BP_SHOULD_BYTESWAP(bp));
3100			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3101			ASSERT(BP_COUNT_GANG(bp) == 0 ||
3102			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3103		}
3104		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3105			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3106	}
3107
3108	/*
3109	 * If there were child vdev/gang/ddt errors, they apply to us now.
3110	 */
3111	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3112	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3113	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3114
3115	/*
3116	 * If the I/O on the transformed data was successful, generate any
3117	 * checksum reports now while we still have the transformed data.
3118	 */
3119	if (zio->io_error == 0) {
3120		while (zio->io_cksum_report != NULL) {
3121			zio_cksum_report_t *zcr = zio->io_cksum_report;
3122			uint64_t align = zcr->zcr_align;
3123			uint64_t asize = P2ROUNDUP(psize, align);
3124			char *abuf = zio->io_data;
3125
3126			if (asize != psize) {
3127				abuf = zio_buf_alloc(asize);
3128				bcopy(zio->io_data, abuf, psize);
3129				bzero(abuf + psize, asize - psize);
3130			}
3131
3132			zio->io_cksum_report = zcr->zcr_next;
3133			zcr->zcr_next = NULL;
3134			zcr->zcr_finish(zcr, abuf);
3135			zfs_ereport_free_checksum(zcr);
3136
3137			if (asize != psize)
3138				zio_buf_free(abuf, asize);
3139		}
3140	}
3141
3142	zio_pop_transforms(zio);	/* note: may set zio->io_error */
3143
3144	vdev_stat_update(zio, psize);
3145
3146	if (zio->io_error) {
3147		/*
3148		 * If this I/O is attached to a particular vdev,
3149		 * generate an error message describing the I/O failure
3150		 * at the block level.  We ignore these errors if the
3151		 * device is currently unavailable.
3152		 */
3153		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3154			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3155
3156		if ((zio->io_error == EIO || !(zio->io_flags &
3157		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3158		    zio == lio) {
3159			/*
3160			 * For logical I/O requests, tell the SPA to log the
3161			 * error and generate a logical data ereport.
3162			 */
3163			spa_log_error(spa, zio);
3164			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3165			    0, 0);
3166		}
3167	}
3168
3169	if (zio->io_error && zio == lio) {
3170		/*
3171		 * Determine whether zio should be reexecuted.  This will
3172		 * propagate all the way to the root via zio_notify_parent().
3173		 */
3174		ASSERT(vd == NULL && bp != NULL);
3175		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3176
3177		if (IO_IS_ALLOCATING(zio) &&
3178		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3179			if (zio->io_error != ENOSPC)
3180				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3181			else
3182				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3183		}
3184
3185		if ((zio->io_type == ZIO_TYPE_READ ||
3186		    zio->io_type == ZIO_TYPE_FREE) &&
3187		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3188		    zio->io_error == ENXIO &&
3189		    spa_load_state(spa) == SPA_LOAD_NONE &&
3190		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3191			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3192
3193		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3194			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3195
3196		/*
3197		 * Here is a possibly good place to attempt to do
3198		 * either combinatorial reconstruction or error correction
3199		 * based on checksums.  It also might be a good place
3200		 * to send out preliminary ereports before we suspend
3201		 * processing.
3202		 */
3203	}
3204
3205	/*
3206	 * If there were logical child errors, they apply to us now.
3207	 * We defer this until now to avoid conflating logical child
3208	 * errors with errors that happened to the zio itself when
3209	 * updating vdev stats and reporting FMA events above.
3210	 */
3211	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3212
3213	if ((zio->io_error || zio->io_reexecute) &&
3214	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3215	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3216		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3217
3218	zio_gang_tree_free(&zio->io_gang_tree);
3219
3220	/*
3221	 * Godfather I/Os should never suspend.
3222	 */
3223	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3224	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3225		zio->io_reexecute = 0;
3226
3227	if (zio->io_reexecute) {
3228		/*
3229		 * This is a logical I/O that wants to reexecute.
3230		 *
3231		 * Reexecute is top-down.  When an i/o fails, if it's not
3232		 * the root, it simply notifies its parent and sticks around.
3233		 * The parent, seeing that it still has children in zio_done(),
3234		 * does the same.  This percolates all the way up to the root.
3235		 * The root i/o will reexecute or suspend the entire tree.
3236		 *
3237		 * This approach ensures that zio_reexecute() honors
3238		 * all the original i/o dependency relationships, e.g.
3239		 * parents not executing until children are ready.
3240		 */
3241		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3242
3243		zio->io_gang_leader = NULL;
3244
3245		mutex_enter(&zio->io_lock);
3246		zio->io_state[ZIO_WAIT_DONE] = 1;
3247		mutex_exit(&zio->io_lock);
3248
3249		/*
3250		 * "The Godfather" I/O monitors its children but is
3251		 * not a true parent to them. It will track them through
3252		 * the pipeline but severs its ties whenever they get into
3253		 * trouble (e.g. suspended). This allows "The Godfather"
3254		 * I/O to return status without blocking.
3255		 */
3256		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3257			zio_link_t *zl = zio->io_walk_link;
3258			pio_next = zio_walk_parents(zio);
3259
3260			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3261			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3262				zio_remove_child(pio, zio, zl);
3263				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3264			}
3265		}
3266
3267		if ((pio = zio_unique_parent(zio)) != NULL) {
3268			/*
3269			 * We're not a root i/o, so there's nothing to do
3270			 * but notify our parent.  Don't propagate errors
3271			 * upward since we haven't permanently failed yet.
3272			 */
3273			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3274			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3275			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3276		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3277			/*
3278			 * We'd fail again if we reexecuted now, so suspend
3279			 * until conditions improve (e.g. device comes online).
3280			 */
3281			zio_suspend(spa, zio);
3282		} else {
3283			/*
3284			 * Reexecution is potentially a huge amount of work.
3285			 * Hand it off to the otherwise-unused claim taskq.
3286			 */
3287#if defined(illumos) || !defined(_KERNEL)
3288			ASSERT(zio->io_tqent.tqent_next == NULL);
3289#else
3290			ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
3291#endif
3292			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3293			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3294			    0, &zio->io_tqent);
3295		}
3296		return (ZIO_PIPELINE_STOP);
3297	}
3298
3299	ASSERT(zio->io_child_count == 0);
3300	ASSERT(zio->io_reexecute == 0);
3301	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3302
3303	/*
3304	 * Report any checksum errors, since the I/O is complete.
3305	 */
3306	while (zio->io_cksum_report != NULL) {
3307		zio_cksum_report_t *zcr = zio->io_cksum_report;
3308		zio->io_cksum_report = zcr->zcr_next;
3309		zcr->zcr_next = NULL;
3310		zcr->zcr_finish(zcr, NULL);
3311		zfs_ereport_free_checksum(zcr);
3312	}
3313
3314	/*
3315	 * It is the responsibility of the done callback to ensure that this
3316	 * particular zio is no longer discoverable for adoption, and as
3317	 * such, cannot acquire any new parents.
3318	 */
3319	if (zio->io_done)
3320		zio->io_done(zio);
3321
3322	mutex_enter(&zio->io_lock);
3323	zio->io_state[ZIO_WAIT_DONE] = 1;
3324	mutex_exit(&zio->io_lock);
3325
3326	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3327		zio_link_t *zl = zio->io_walk_link;
3328		pio_next = zio_walk_parents(zio);
3329		zio_remove_child(pio, zio, zl);
3330		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3331	}
3332
3333	if (zio->io_waiter != NULL) {
3334		mutex_enter(&zio->io_lock);
3335		zio->io_executor = NULL;
3336		cv_broadcast(&zio->io_cv);
3337		mutex_exit(&zio->io_lock);
3338	} else {
3339		zio_destroy(zio);
3340	}
3341
3342	return (ZIO_PIPELINE_STOP);
3343}
3344
3345/*
3346 * ==========================================================================
3347 * I/O pipeline definition
3348 * ==========================================================================
3349 */
3350static zio_pipe_stage_t *zio_pipeline[] = {
3351	NULL,
3352	zio_read_bp_init,
3353	zio_free_bp_init,
3354	zio_issue_async,
3355	zio_write_bp_init,
3356	zio_checksum_generate,
3357	zio_nop_write,
3358	zio_ddt_read_start,
3359	zio_ddt_read_done,
3360	zio_ddt_write,
3361	zio_ddt_free,
3362	zio_gang_assemble,
3363	zio_gang_issue,
3364	zio_dva_allocate,
3365	zio_dva_free,
3366	zio_dva_claim,
3367	zio_ready,
3368	zio_vdev_io_start,
3369	zio_vdev_io_done,
3370	zio_vdev_io_assess,
3371	zio_checksum_verify,
3372	zio_done
3373};
3374
3375/* dnp is the dnode for zb1->zb_object */
3376boolean_t
3377zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_phys_t *zb1,
3378    const zbookmark_phys_t *zb2)
3379{
3380	uint64_t zb1nextL0, zb2thisobj;
3381
3382	ASSERT(zb1->zb_objset == zb2->zb_objset);
3383	ASSERT(zb2->zb_level == 0);
3384
3385	/* The objset_phys_t isn't before anything. */
3386	if (dnp == NULL)
3387		return (B_FALSE);
3388
3389	zb1nextL0 = (zb1->zb_blkid + 1) <<
3390	    ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3391
3392	zb2thisobj = zb2->zb_object ? zb2->zb_object :
3393	    zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3394
3395	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3396		uint64_t nextobj = zb1nextL0 *
3397		    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3398		return (nextobj <= zb2thisobj);
3399	}
3400
3401	if (zb1->zb_object < zb2thisobj)
3402		return (B_TRUE);
3403	if (zb1->zb_object > zb2thisobj)
3404		return (B_FALSE);
3405	if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3406		return (B_FALSE);
3407	return (zb1nextL0 <= zb2->zb_blkid);
3408}
3409