zio.c revision 268657
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27#include <sys/zfs_context.h>
28#include <sys/fm/fs/zfs.h>
29#include <sys/spa.h>
30#include <sys/txg.h>
31#include <sys/spa_impl.h>
32#include <sys/vdev_impl.h>
33#include <sys/zio_impl.h>
34#include <sys/zio_compress.h>
35#include <sys/zio_checksum.h>
36#include <sys/dmu_objset.h>
37#include <sys/arc.h>
38#include <sys/ddt.h>
39#include <sys/trim_map.h>
40#include <sys/blkptr.h>
41#include <sys/zfeature.h>
42
43SYSCTL_DECL(_vfs_zfs);
44SYSCTL_NODE(_vfs_zfs, OID_AUTO, zio, CTLFLAG_RW, 0, "ZFS ZIO");
45#if defined(__amd64__)
46static int zio_use_uma = 1;
47#else
48static int zio_use_uma = 0;
49#endif
50TUNABLE_INT("vfs.zfs.zio.use_uma", &zio_use_uma);
51SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, use_uma, CTLFLAG_RDTUN, &zio_use_uma, 0,
52    "Use uma(9) for ZIO allocations");
53static int zio_exclude_metadata = 0;
54TUNABLE_INT("vfs.zfs.zio.exclude_metadata", &zio_exclude_metadata);
55SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, exclude_metadata, CTLFLAG_RDTUN, &zio_exclude_metadata, 0,
56    "Exclude metadata buffers from dumps as well");
57
58zio_trim_stats_t zio_trim_stats = {
59	{ "bytes",		KSTAT_DATA_UINT64,
60	  "Number of bytes successfully TRIMmed" },
61	{ "success",		KSTAT_DATA_UINT64,
62	  "Number of successful TRIM requests" },
63	{ "unsupported",	KSTAT_DATA_UINT64,
64	  "Number of TRIM requests that failed because TRIM is not supported" },
65	{ "failed",		KSTAT_DATA_UINT64,
66	  "Number of TRIM requests that failed for reasons other than not supported" },
67};
68
69static kstat_t *zio_trim_ksp;
70
71/*
72 * ==========================================================================
73 * I/O type descriptions
74 * ==========================================================================
75 */
76const char *zio_type_name[ZIO_TYPES] = {
77	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
78	"zio_ioctl"
79};
80
81/*
82 * ==========================================================================
83 * I/O kmem caches
84 * ==========================================================================
85 */
86kmem_cache_t *zio_cache;
87kmem_cache_t *zio_link_cache;
88kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
89kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
90
91#ifdef _KERNEL
92extern vmem_t *zio_alloc_arena;
93#endif
94
95/*
96 * The following actions directly effect the spa's sync-to-convergence logic.
97 * The values below define the sync pass when we start performing the action.
98 * Care should be taken when changing these values as they directly impact
99 * spa_sync() performance. Tuning these values may introduce subtle performance
100 * pathologies and should only be done in the context of performance analysis.
101 * These tunables will eventually be removed and replaced with #defines once
102 * enough analysis has been done to determine optimal values.
103 *
104 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
105 * regular blocks are not deferred.
106 */
107int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
108TUNABLE_INT("vfs.zfs.sync_pass_deferred_free", &zfs_sync_pass_deferred_free);
109SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_deferred_free, CTLFLAG_RDTUN,
110    &zfs_sync_pass_deferred_free, 0, "defer frees starting in this pass");
111int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
112TUNABLE_INT("vfs.zfs.sync_pass_dont_compress", &zfs_sync_pass_dont_compress);
113SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_dont_compress, CTLFLAG_RDTUN,
114    &zfs_sync_pass_dont_compress, 0, "don't compress starting in this pass");
115int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
116TUNABLE_INT("vfs.zfs.sync_pass_rewrite", &zfs_sync_pass_rewrite);
117SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_rewrite, CTLFLAG_RDTUN,
118    &zfs_sync_pass_rewrite, 0, "rewrite new bps starting in this pass");
119
120/*
121 * An allocating zio is one that either currently has the DVA allocate
122 * stage set or will have it later in its lifetime.
123 */
124#define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
125
126boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
127
128#ifdef ZFS_DEBUG
129int zio_buf_debug_limit = 16384;
130#else
131int zio_buf_debug_limit = 0;
132#endif
133
134void
135zio_init(void)
136{
137	size_t c;
138	zio_cache = kmem_cache_create("zio_cache",
139	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
140	zio_link_cache = kmem_cache_create("zio_link_cache",
141	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
142	if (!zio_use_uma)
143		goto out;
144
145	/*
146	 * For small buffers, we want a cache for each multiple of
147	 * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache
148	 * for each quarter-power of 2.  For large buffers, we want
149	 * a cache for each multiple of PAGESIZE.
150	 */
151	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
152		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
153		size_t p2 = size;
154		size_t align = 0;
155		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
156
157		while (p2 & (p2 - 1))
158			p2 &= p2 - 1;
159
160#ifdef illumos
161#ifndef _KERNEL
162		/*
163		 * If we are using watchpoints, put each buffer on its own page,
164		 * to eliminate the performance overhead of trapping to the
165		 * kernel when modifying a non-watched buffer that shares the
166		 * page with a watched buffer.
167		 */
168		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
169			continue;
170#endif
171#endif /* illumos */
172		if (size <= 4 * SPA_MINBLOCKSIZE) {
173			align = SPA_MINBLOCKSIZE;
174		} else if (IS_P2ALIGNED(size, PAGESIZE)) {
175			align = PAGESIZE;
176		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
177			align = p2 >> 2;
178		}
179
180		if (align != 0) {
181			char name[36];
182			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
183			zio_buf_cache[c] = kmem_cache_create(name, size,
184			    align, NULL, NULL, NULL, NULL, NULL, cflags);
185
186			/*
187			 * Since zio_data bufs do not appear in crash dumps, we
188			 * pass KMC_NOTOUCH so that no allocator metadata is
189			 * stored with the buffers.
190			 */
191			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
192			zio_data_buf_cache[c] = kmem_cache_create(name, size,
193			    align, NULL, NULL, NULL, NULL, NULL,
194			    cflags | KMC_NOTOUCH | KMC_NODEBUG);
195		}
196	}
197
198	while (--c != 0) {
199		ASSERT(zio_buf_cache[c] != NULL);
200		if (zio_buf_cache[c - 1] == NULL)
201			zio_buf_cache[c - 1] = zio_buf_cache[c];
202
203		ASSERT(zio_data_buf_cache[c] != NULL);
204		if (zio_data_buf_cache[c - 1] == NULL)
205			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
206	}
207out:
208
209	zio_inject_init();
210
211	zio_trim_ksp = kstat_create("zfs", 0, "zio_trim", "misc",
212	    KSTAT_TYPE_NAMED,
213	    sizeof(zio_trim_stats) / sizeof(kstat_named_t),
214	    KSTAT_FLAG_VIRTUAL);
215
216	if (zio_trim_ksp != NULL) {
217		zio_trim_ksp->ks_data = &zio_trim_stats;
218		kstat_install(zio_trim_ksp);
219	}
220}
221
222void
223zio_fini(void)
224{
225	size_t c;
226	kmem_cache_t *last_cache = NULL;
227	kmem_cache_t *last_data_cache = NULL;
228
229	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
230		if (zio_buf_cache[c] != last_cache) {
231			last_cache = zio_buf_cache[c];
232			kmem_cache_destroy(zio_buf_cache[c]);
233		}
234		zio_buf_cache[c] = NULL;
235
236		if (zio_data_buf_cache[c] != last_data_cache) {
237			last_data_cache = zio_data_buf_cache[c];
238			kmem_cache_destroy(zio_data_buf_cache[c]);
239		}
240		zio_data_buf_cache[c] = NULL;
241	}
242
243	kmem_cache_destroy(zio_link_cache);
244	kmem_cache_destroy(zio_cache);
245
246	zio_inject_fini();
247
248	if (zio_trim_ksp != NULL) {
249		kstat_delete(zio_trim_ksp);
250		zio_trim_ksp = NULL;
251	}
252}
253
254/*
255 * ==========================================================================
256 * Allocate and free I/O buffers
257 * ==========================================================================
258 */
259
260/*
261 * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
262 * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
263 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
264 * excess / transient data in-core during a crashdump.
265 */
266void *
267zio_buf_alloc(size_t size)
268{
269	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
270	int flags = zio_exclude_metadata ? KM_NODEBUG : 0;
271
272	ASSERT3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
273
274	if (zio_use_uma)
275		return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
276	else
277		return (kmem_alloc(size, KM_SLEEP|flags));
278}
279
280/*
281 * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
282 * crashdump if the kernel panics.  This exists so that we will limit the amount
283 * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
284 * of kernel heap dumped to disk when the kernel panics)
285 */
286void *
287zio_data_buf_alloc(size_t size)
288{
289	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
290
291	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
292
293	if (zio_use_uma)
294		return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
295	else
296		return (kmem_alloc(size, KM_SLEEP | KM_NODEBUG));
297}
298
299void
300zio_buf_free(void *buf, size_t size)
301{
302	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
303
304	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
305
306	if (zio_use_uma)
307		kmem_cache_free(zio_buf_cache[c], buf);
308	else
309		kmem_free(buf, size);
310}
311
312void
313zio_data_buf_free(void *buf, size_t size)
314{
315	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
316
317	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
318
319	if (zio_use_uma)
320		kmem_cache_free(zio_data_buf_cache[c], buf);
321	else
322		kmem_free(buf, size);
323}
324
325/*
326 * ==========================================================================
327 * Push and pop I/O transform buffers
328 * ==========================================================================
329 */
330static void
331zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
332	zio_transform_func_t *transform)
333{
334	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
335
336	zt->zt_orig_data = zio->io_data;
337	zt->zt_orig_size = zio->io_size;
338	zt->zt_bufsize = bufsize;
339	zt->zt_transform = transform;
340
341	zt->zt_next = zio->io_transform_stack;
342	zio->io_transform_stack = zt;
343
344	zio->io_data = data;
345	zio->io_size = size;
346}
347
348static void
349zio_pop_transforms(zio_t *zio)
350{
351	zio_transform_t *zt;
352
353	while ((zt = zio->io_transform_stack) != NULL) {
354		if (zt->zt_transform != NULL)
355			zt->zt_transform(zio,
356			    zt->zt_orig_data, zt->zt_orig_size);
357
358		if (zt->zt_bufsize != 0)
359			zio_buf_free(zio->io_data, zt->zt_bufsize);
360
361		zio->io_data = zt->zt_orig_data;
362		zio->io_size = zt->zt_orig_size;
363		zio->io_transform_stack = zt->zt_next;
364
365		kmem_free(zt, sizeof (zio_transform_t));
366	}
367}
368
369/*
370 * ==========================================================================
371 * I/O transform callbacks for subblocks and decompression
372 * ==========================================================================
373 */
374static void
375zio_subblock(zio_t *zio, void *data, uint64_t size)
376{
377	ASSERT(zio->io_size > size);
378
379	if (zio->io_type == ZIO_TYPE_READ)
380		bcopy(zio->io_data, data, size);
381}
382
383static void
384zio_decompress(zio_t *zio, void *data, uint64_t size)
385{
386	if (zio->io_error == 0 &&
387	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
388	    zio->io_data, data, zio->io_size, size) != 0)
389		zio->io_error = SET_ERROR(EIO);
390}
391
392/*
393 * ==========================================================================
394 * I/O parent/child relationships and pipeline interlocks
395 * ==========================================================================
396 */
397/*
398 * NOTE - Callers to zio_walk_parents() and zio_walk_children must
399 *        continue calling these functions until they return NULL.
400 *        Otherwise, the next caller will pick up the list walk in
401 *        some indeterminate state.  (Otherwise every caller would
402 *        have to pass in a cookie to keep the state represented by
403 *        io_walk_link, which gets annoying.)
404 */
405zio_t *
406zio_walk_parents(zio_t *cio)
407{
408	zio_link_t *zl = cio->io_walk_link;
409	list_t *pl = &cio->io_parent_list;
410
411	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
412	cio->io_walk_link = zl;
413
414	if (zl == NULL)
415		return (NULL);
416
417	ASSERT(zl->zl_child == cio);
418	return (zl->zl_parent);
419}
420
421zio_t *
422zio_walk_children(zio_t *pio)
423{
424	zio_link_t *zl = pio->io_walk_link;
425	list_t *cl = &pio->io_child_list;
426
427	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
428	pio->io_walk_link = zl;
429
430	if (zl == NULL)
431		return (NULL);
432
433	ASSERT(zl->zl_parent == pio);
434	return (zl->zl_child);
435}
436
437zio_t *
438zio_unique_parent(zio_t *cio)
439{
440	zio_t *pio = zio_walk_parents(cio);
441
442	VERIFY(zio_walk_parents(cio) == NULL);
443	return (pio);
444}
445
446void
447zio_add_child(zio_t *pio, zio_t *cio)
448{
449	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
450
451	/*
452	 * Logical I/Os can have logical, gang, or vdev children.
453	 * Gang I/Os can have gang or vdev children.
454	 * Vdev I/Os can only have vdev children.
455	 * The following ASSERT captures all of these constraints.
456	 */
457	ASSERT(cio->io_child_type <= pio->io_child_type);
458
459	zl->zl_parent = pio;
460	zl->zl_child = cio;
461
462	mutex_enter(&cio->io_lock);
463	mutex_enter(&pio->io_lock);
464
465	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
466
467	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
468		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
469
470	list_insert_head(&pio->io_child_list, zl);
471	list_insert_head(&cio->io_parent_list, zl);
472
473	pio->io_child_count++;
474	cio->io_parent_count++;
475
476	mutex_exit(&pio->io_lock);
477	mutex_exit(&cio->io_lock);
478}
479
480static void
481zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
482{
483	ASSERT(zl->zl_parent == pio);
484	ASSERT(zl->zl_child == cio);
485
486	mutex_enter(&cio->io_lock);
487	mutex_enter(&pio->io_lock);
488
489	list_remove(&pio->io_child_list, zl);
490	list_remove(&cio->io_parent_list, zl);
491
492	pio->io_child_count--;
493	cio->io_parent_count--;
494
495	mutex_exit(&pio->io_lock);
496	mutex_exit(&cio->io_lock);
497
498	kmem_cache_free(zio_link_cache, zl);
499}
500
501static boolean_t
502zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
503{
504	uint64_t *countp = &zio->io_children[child][wait];
505	boolean_t waiting = B_FALSE;
506
507	mutex_enter(&zio->io_lock);
508	ASSERT(zio->io_stall == NULL);
509	if (*countp != 0) {
510		zio->io_stage >>= 1;
511		zio->io_stall = countp;
512		waiting = B_TRUE;
513	}
514	mutex_exit(&zio->io_lock);
515
516	return (waiting);
517}
518
519static void
520zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
521{
522	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
523	int *errorp = &pio->io_child_error[zio->io_child_type];
524
525	mutex_enter(&pio->io_lock);
526	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
527		*errorp = zio_worst_error(*errorp, zio->io_error);
528	pio->io_reexecute |= zio->io_reexecute;
529	ASSERT3U(*countp, >, 0);
530
531	(*countp)--;
532
533	if (*countp == 0 && pio->io_stall == countp) {
534		pio->io_stall = NULL;
535		mutex_exit(&pio->io_lock);
536		zio_execute(pio);
537	} else {
538		mutex_exit(&pio->io_lock);
539	}
540}
541
542static void
543zio_inherit_child_errors(zio_t *zio, enum zio_child c)
544{
545	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
546		zio->io_error = zio->io_child_error[c];
547}
548
549/*
550 * ==========================================================================
551 * Create the various types of I/O (read, write, free, etc)
552 * ==========================================================================
553 */
554static zio_t *
555zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
556    void *data, uint64_t size, zio_done_func_t *done, void *private,
557    zio_type_t type, zio_priority_t priority, enum zio_flag flags,
558    vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb,
559    enum zio_stage stage, enum zio_stage pipeline)
560{
561	zio_t *zio;
562
563	ASSERT3U(type == ZIO_TYPE_FREE || size, <=, SPA_MAXBLOCKSIZE);
564	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
565	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
566
567	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
568	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
569	ASSERT(vd || stage == ZIO_STAGE_OPEN);
570
571	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
572	bzero(zio, sizeof (zio_t));
573
574	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
575	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
576
577	list_create(&zio->io_parent_list, sizeof (zio_link_t),
578	    offsetof(zio_link_t, zl_parent_node));
579	list_create(&zio->io_child_list, sizeof (zio_link_t),
580	    offsetof(zio_link_t, zl_child_node));
581
582	if (vd != NULL)
583		zio->io_child_type = ZIO_CHILD_VDEV;
584	else if (flags & ZIO_FLAG_GANG_CHILD)
585		zio->io_child_type = ZIO_CHILD_GANG;
586	else if (flags & ZIO_FLAG_DDT_CHILD)
587		zio->io_child_type = ZIO_CHILD_DDT;
588	else
589		zio->io_child_type = ZIO_CHILD_LOGICAL;
590
591	if (bp != NULL) {
592		zio->io_bp = (blkptr_t *)bp;
593		zio->io_bp_copy = *bp;
594		zio->io_bp_orig = *bp;
595		if (type != ZIO_TYPE_WRITE ||
596		    zio->io_child_type == ZIO_CHILD_DDT)
597			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
598		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
599			zio->io_logical = zio;
600		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
601			pipeline |= ZIO_GANG_STAGES;
602	}
603
604	zio->io_spa = spa;
605	zio->io_txg = txg;
606	zio->io_done = done;
607	zio->io_private = private;
608	zio->io_type = type;
609	zio->io_priority = priority;
610	zio->io_vd = vd;
611	zio->io_offset = offset;
612	zio->io_orig_data = zio->io_data = data;
613	zio->io_orig_size = zio->io_size = size;
614	zio->io_orig_flags = zio->io_flags = flags;
615	zio->io_orig_stage = zio->io_stage = stage;
616	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
617
618	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
619	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
620
621	if (zb != NULL)
622		zio->io_bookmark = *zb;
623
624	if (pio != NULL) {
625		if (zio->io_logical == NULL)
626			zio->io_logical = pio->io_logical;
627		if (zio->io_child_type == ZIO_CHILD_GANG)
628			zio->io_gang_leader = pio->io_gang_leader;
629		zio_add_child(pio, zio);
630	}
631
632	return (zio);
633}
634
635static void
636zio_destroy(zio_t *zio)
637{
638	list_destroy(&zio->io_parent_list);
639	list_destroy(&zio->io_child_list);
640	mutex_destroy(&zio->io_lock);
641	cv_destroy(&zio->io_cv);
642	kmem_cache_free(zio_cache, zio);
643}
644
645zio_t *
646zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
647    void *private, enum zio_flag flags)
648{
649	zio_t *zio;
650
651	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
652	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
653	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
654
655	return (zio);
656}
657
658zio_t *
659zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
660{
661	return (zio_null(NULL, spa, NULL, done, private, flags));
662}
663
664zio_t *
665zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
666    void *data, uint64_t size, zio_done_func_t *done, void *private,
667    zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
668{
669	zio_t *zio;
670
671	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
672	    data, size, done, private,
673	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
674	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
675	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
676
677	return (zio);
678}
679
680zio_t *
681zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
682    void *data, uint64_t size, const zio_prop_t *zp,
683    zio_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done,
684    void *private,
685    zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
686{
687	zio_t *zio;
688
689	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
690	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
691	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
692	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
693	    DMU_OT_IS_VALID(zp->zp_type) &&
694	    zp->zp_level < 32 &&
695	    zp->zp_copies > 0 &&
696	    zp->zp_copies <= spa_max_replication(spa));
697
698	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
699	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
700	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
701	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
702
703	zio->io_ready = ready;
704	zio->io_physdone = physdone;
705	zio->io_prop = *zp;
706
707	/*
708	 * Data can be NULL if we are going to call zio_write_override() to
709	 * provide the already-allocated BP.  But we may need the data to
710	 * verify a dedup hit (if requested).  In this case, don't try to
711	 * dedup (just take the already-allocated BP verbatim).
712	 */
713	if (data == NULL && zio->io_prop.zp_dedup_verify) {
714		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
715	}
716
717	return (zio);
718}
719
720zio_t *
721zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
722    uint64_t size, zio_done_func_t *done, void *private,
723    zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
724{
725	zio_t *zio;
726
727	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
728	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
729	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
730
731	return (zio);
732}
733
734void
735zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
736{
737	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
738	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
739	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
740	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
741
742	/*
743	 * We must reset the io_prop to match the values that existed
744	 * when the bp was first written by dmu_sync() keeping in mind
745	 * that nopwrite and dedup are mutually exclusive.
746	 */
747	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
748	zio->io_prop.zp_nopwrite = nopwrite;
749	zio->io_prop.zp_copies = copies;
750	zio->io_bp_override = bp;
751}
752
753void
754zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
755{
756
757	/*
758	 * The check for EMBEDDED is a performance optimization.  We
759	 * process the free here (by ignoring it) rather than
760	 * putting it on the list and then processing it in zio_free_sync().
761	 */
762	if (BP_IS_EMBEDDED(bp))
763		return;
764	metaslab_check_free(spa, bp);
765
766	/*
767	 * Frees that are for the currently-syncing txg, are not going to be
768	 * deferred, and which will not need to do a read (i.e. not GANG or
769	 * DEDUP), can be processed immediately.  Otherwise, put them on the
770	 * in-memory list for later processing.
771	 */
772	if (zfs_trim_enabled || BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
773	    txg != spa->spa_syncing_txg ||
774	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
775		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
776	} else {
777		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp,
778		    BP_GET_PSIZE(bp), 0)));
779	}
780}
781
782zio_t *
783zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
784    uint64_t size, enum zio_flag flags)
785{
786	zio_t *zio;
787	enum zio_stage stage = ZIO_FREE_PIPELINE;
788
789	ASSERT(!BP_IS_HOLE(bp));
790	ASSERT(spa_syncing_txg(spa) == txg);
791	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
792
793	if (BP_IS_EMBEDDED(bp))
794		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
795
796	metaslab_check_free(spa, bp);
797	arc_freed(spa, bp);
798
799	if (zfs_trim_enabled)
800		stage |= ZIO_STAGE_ISSUE_ASYNC | ZIO_STAGE_VDEV_IO_START |
801		    ZIO_STAGE_VDEV_IO_ASSESS;
802	/*
803	 * GANG and DEDUP blocks can induce a read (for the gang block header,
804	 * or the DDT), so issue them asynchronously so that this thread is
805	 * not tied up.
806	 */
807	else if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
808		stage |= ZIO_STAGE_ISSUE_ASYNC;
809
810	zio = zio_create(pio, spa, txg, bp, NULL, size,
811	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags,
812	    NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
813
814	return (zio);
815}
816
817zio_t *
818zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
819    zio_done_func_t *done, void *private, enum zio_flag flags)
820{
821	zio_t *zio;
822
823	dprintf_bp(bp, "claiming in txg %llu", txg);
824
825	if (BP_IS_EMBEDDED(bp))
826		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
827
828	/*
829	 * A claim is an allocation of a specific block.  Claims are needed
830	 * to support immediate writes in the intent log.  The issue is that
831	 * immediate writes contain committed data, but in a txg that was
832	 * *not* committed.  Upon opening the pool after an unclean shutdown,
833	 * the intent log claims all blocks that contain immediate write data
834	 * so that the SPA knows they're in use.
835	 *
836	 * All claims *must* be resolved in the first txg -- before the SPA
837	 * starts allocating blocks -- so that nothing is allocated twice.
838	 * If txg == 0 we just verify that the block is claimable.
839	 */
840	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
841	ASSERT(txg == spa_first_txg(spa) || txg == 0);
842	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
843
844	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
845	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
846	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
847
848	return (zio);
849}
850
851zio_t *
852zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, uint64_t offset,
853    uint64_t size, zio_done_func_t *done, void *private,
854    enum zio_flag flags)
855{
856	zio_t *zio;
857	int c;
858
859	if (vd->vdev_children == 0) {
860		zio = zio_create(pio, spa, 0, NULL, NULL, size, done, private,
861		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, offset, NULL,
862		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
863
864		zio->io_cmd = cmd;
865	} else {
866		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
867
868		for (c = 0; c < vd->vdev_children; c++)
869			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
870			    offset, size, done, private, flags));
871	}
872
873	return (zio);
874}
875
876zio_t *
877zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
878    void *data, int checksum, zio_done_func_t *done, void *private,
879    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
880{
881	zio_t *zio;
882
883	ASSERT(vd->vdev_children == 0);
884	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
885	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
886	ASSERT3U(offset + size, <=, vd->vdev_psize);
887
888	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
889	    ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
890	    ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
891
892	zio->io_prop.zp_checksum = checksum;
893
894	return (zio);
895}
896
897zio_t *
898zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
899    void *data, int checksum, zio_done_func_t *done, void *private,
900    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
901{
902	zio_t *zio;
903
904	ASSERT(vd->vdev_children == 0);
905	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
906	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
907	ASSERT3U(offset + size, <=, vd->vdev_psize);
908
909	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
910	    ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
911	    ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
912
913	zio->io_prop.zp_checksum = checksum;
914
915	if (zio_checksum_table[checksum].ci_eck) {
916		/*
917		 * zec checksums are necessarily destructive -- they modify
918		 * the end of the write buffer to hold the verifier/checksum.
919		 * Therefore, we must make a local copy in case the data is
920		 * being written to multiple places in parallel.
921		 */
922		void *wbuf = zio_buf_alloc(size);
923		bcopy(data, wbuf, size);
924		zio_push_transform(zio, wbuf, size, size, NULL);
925	}
926
927	return (zio);
928}
929
930/*
931 * Create a child I/O to do some work for us.
932 */
933zio_t *
934zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
935	void *data, uint64_t size, int type, zio_priority_t priority,
936	enum zio_flag flags, zio_done_func_t *done, void *private)
937{
938	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
939	zio_t *zio;
940
941	ASSERT(vd->vdev_parent ==
942	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
943
944	if (type == ZIO_TYPE_READ && bp != NULL) {
945		/*
946		 * If we have the bp, then the child should perform the
947		 * checksum and the parent need not.  This pushes error
948		 * detection as close to the leaves as possible and
949		 * eliminates redundant checksums in the interior nodes.
950		 */
951		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
952		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
953	}
954
955	if (vd->vdev_children == 0)
956		offset += VDEV_LABEL_START_SIZE;
957
958	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
959
960	/*
961	 * If we've decided to do a repair, the write is not speculative --
962	 * even if the original read was.
963	 */
964	if (flags & ZIO_FLAG_IO_REPAIR)
965		flags &= ~ZIO_FLAG_SPECULATIVE;
966
967	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
968	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
969	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
970
971	zio->io_physdone = pio->io_physdone;
972	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
973		zio->io_logical->io_phys_children++;
974
975	return (zio);
976}
977
978zio_t *
979zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
980	int type, zio_priority_t priority, enum zio_flag flags,
981	zio_done_func_t *done, void *private)
982{
983	zio_t *zio;
984
985	ASSERT(vd->vdev_ops->vdev_op_leaf);
986
987	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
988	    data, size, done, private, type, priority,
989	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
990	    vd, offset, NULL,
991	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
992
993	return (zio);
994}
995
996void
997zio_flush(zio_t *zio, vdev_t *vd)
998{
999	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 0, 0,
1000	    NULL, NULL,
1001	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1002}
1003
1004zio_t *
1005zio_trim(zio_t *zio, spa_t *spa, vdev_t *vd, uint64_t offset, uint64_t size)
1006{
1007
1008	ASSERT(vd->vdev_ops->vdev_op_leaf);
1009
1010	return zio_ioctl(zio, spa, vd, DKIOCTRIM, offset, size,
1011	    NULL, NULL,
1012	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY);
1013}
1014
1015void
1016zio_shrink(zio_t *zio, uint64_t size)
1017{
1018	ASSERT(zio->io_executor == NULL);
1019	ASSERT(zio->io_orig_size == zio->io_size);
1020	ASSERT(size <= zio->io_size);
1021
1022	/*
1023	 * We don't shrink for raidz because of problems with the
1024	 * reconstruction when reading back less than the block size.
1025	 * Note, BP_IS_RAIDZ() assumes no compression.
1026	 */
1027	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1028	if (!BP_IS_RAIDZ(zio->io_bp))
1029		zio->io_orig_size = zio->io_size = size;
1030}
1031
1032/*
1033 * ==========================================================================
1034 * Prepare to read and write logical blocks
1035 * ==========================================================================
1036 */
1037
1038static int
1039zio_read_bp_init(zio_t **ziop)
1040{
1041	zio_t *zio = *ziop;
1042	blkptr_t *bp = zio->io_bp;
1043
1044	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1045	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1046	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1047		uint64_t psize =
1048		    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1049		void *cbuf = zio_buf_alloc(psize);
1050
1051		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
1052	}
1053
1054	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1055		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1056		decode_embedded_bp_compressed(bp, zio->io_data);
1057	} else {
1058		ASSERT(!BP_IS_EMBEDDED(bp));
1059	}
1060
1061	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1062		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1063
1064	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1065		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1066
1067	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1068		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1069
1070	return (ZIO_PIPELINE_CONTINUE);
1071}
1072
1073static int
1074zio_write_bp_init(zio_t **ziop)
1075{
1076	zio_t *zio = *ziop;
1077	spa_t *spa = zio->io_spa;
1078	zio_prop_t *zp = &zio->io_prop;
1079	enum zio_compress compress = zp->zp_compress;
1080	blkptr_t *bp = zio->io_bp;
1081	uint64_t lsize = zio->io_size;
1082	uint64_t psize = lsize;
1083	int pass = 1;
1084
1085	/*
1086	 * If our children haven't all reached the ready stage,
1087	 * wait for them and then repeat this pipeline stage.
1088	 */
1089	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1090	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1091		return (ZIO_PIPELINE_STOP);
1092
1093	if (!IO_IS_ALLOCATING(zio))
1094		return (ZIO_PIPELINE_CONTINUE);
1095
1096	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1097
1098	if (zio->io_bp_override) {
1099		ASSERT(bp->blk_birth != zio->io_txg);
1100		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1101
1102		*bp = *zio->io_bp_override;
1103		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1104
1105		if (BP_IS_EMBEDDED(bp))
1106			return (ZIO_PIPELINE_CONTINUE);
1107
1108		/*
1109		 * If we've been overridden and nopwrite is set then
1110		 * set the flag accordingly to indicate that a nopwrite
1111		 * has already occurred.
1112		 */
1113		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1114			ASSERT(!zp->zp_dedup);
1115			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1116			return (ZIO_PIPELINE_CONTINUE);
1117		}
1118
1119		ASSERT(!zp->zp_nopwrite);
1120
1121		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1122			return (ZIO_PIPELINE_CONTINUE);
1123
1124		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1125		    zp->zp_dedup_verify);
1126
1127		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1128			BP_SET_DEDUP(bp, 1);
1129			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1130			return (ZIO_PIPELINE_CONTINUE);
1131		}
1132		zio->io_bp_override = NULL;
1133		BP_ZERO(bp);
1134	}
1135
1136	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1137		/*
1138		 * We're rewriting an existing block, which means we're
1139		 * working on behalf of spa_sync().  For spa_sync() to
1140		 * converge, it must eventually be the case that we don't
1141		 * have to allocate new blocks.  But compression changes
1142		 * the blocksize, which forces a reallocate, and makes
1143		 * convergence take longer.  Therefore, after the first
1144		 * few passes, stop compressing to ensure convergence.
1145		 */
1146		pass = spa_sync_pass(spa);
1147
1148		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1149		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1150		ASSERT(!BP_GET_DEDUP(bp));
1151
1152		if (pass >= zfs_sync_pass_dont_compress)
1153			compress = ZIO_COMPRESS_OFF;
1154
1155		/* Make sure someone doesn't change their mind on overwrites */
1156		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1157		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1158	}
1159
1160	if (compress != ZIO_COMPRESS_OFF) {
1161		metaslab_class_t *mc = spa_normal_class(spa);
1162		void *cbuf = zio_buf_alloc(lsize);
1163		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize,
1164		    (size_t)metaslab_class_get_minblocksize(mc));
1165		if (psize == 0 || psize == lsize) {
1166			compress = ZIO_COMPRESS_OFF;
1167			zio_buf_free(cbuf, lsize);
1168		} else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1169		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1170		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1171			encode_embedded_bp_compressed(bp,
1172			    cbuf, compress, lsize, psize);
1173			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1174			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1175			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1176			zio_buf_free(cbuf, lsize);
1177			bp->blk_birth = zio->io_txg;
1178			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1179			ASSERT(spa_feature_is_active(spa,
1180			    SPA_FEATURE_EMBEDDED_DATA));
1181			return (ZIO_PIPELINE_CONTINUE);
1182		} else {
1183			/*
1184			 * Round up compressed size to MINBLOCKSIZE and
1185			 * zero the tail.
1186			 */
1187			size_t rounded =
1188			    P2ROUNDUP(psize, (size_t)SPA_MINBLOCKSIZE);
1189			if (rounded > psize) {
1190				bzero((char *)cbuf + psize, rounded - psize);
1191				psize = rounded;
1192			}
1193			if (psize == lsize) {
1194				compress = ZIO_COMPRESS_OFF;
1195				zio_buf_free(cbuf, lsize);
1196			} else {
1197				zio_push_transform(zio, cbuf,
1198				    psize, lsize, NULL);
1199			}
1200		}
1201	}
1202
1203	/*
1204	 * The final pass of spa_sync() must be all rewrites, but the first
1205	 * few passes offer a trade-off: allocating blocks defers convergence,
1206	 * but newly allocated blocks are sequential, so they can be written
1207	 * to disk faster.  Therefore, we allow the first few passes of
1208	 * spa_sync() to allocate new blocks, but force rewrites after that.
1209	 * There should only be a handful of blocks after pass 1 in any case.
1210	 */
1211	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1212	    BP_GET_PSIZE(bp) == psize &&
1213	    pass >= zfs_sync_pass_rewrite) {
1214		ASSERT(psize != 0);
1215		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1216		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1217		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1218	} else {
1219		BP_ZERO(bp);
1220		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1221	}
1222
1223	if (psize == 0) {
1224		if (zio->io_bp_orig.blk_birth != 0 &&
1225		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1226			BP_SET_LSIZE(bp, lsize);
1227			BP_SET_TYPE(bp, zp->zp_type);
1228			BP_SET_LEVEL(bp, zp->zp_level);
1229			BP_SET_BIRTH(bp, zio->io_txg, 0);
1230		}
1231		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1232	} else {
1233		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1234		BP_SET_LSIZE(bp, lsize);
1235		BP_SET_TYPE(bp, zp->zp_type);
1236		BP_SET_LEVEL(bp, zp->zp_level);
1237		BP_SET_PSIZE(bp, psize);
1238		BP_SET_COMPRESS(bp, compress);
1239		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1240		BP_SET_DEDUP(bp, zp->zp_dedup);
1241		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1242		if (zp->zp_dedup) {
1243			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1244			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1245			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1246		}
1247		if (zp->zp_nopwrite) {
1248			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1249			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1250			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1251		}
1252	}
1253
1254	return (ZIO_PIPELINE_CONTINUE);
1255}
1256
1257static int
1258zio_free_bp_init(zio_t **ziop)
1259{
1260	zio_t *zio = *ziop;
1261	blkptr_t *bp = zio->io_bp;
1262
1263	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1264		if (BP_GET_DEDUP(bp))
1265			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1266	}
1267
1268	return (ZIO_PIPELINE_CONTINUE);
1269}
1270
1271/*
1272 * ==========================================================================
1273 * Execute the I/O pipeline
1274 * ==========================================================================
1275 */
1276
1277static void
1278zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1279{
1280	spa_t *spa = zio->io_spa;
1281	zio_type_t t = zio->io_type;
1282	int flags = (cutinline ? TQ_FRONT : 0);
1283
1284	ASSERT(q == ZIO_TASKQ_ISSUE || q == ZIO_TASKQ_INTERRUPT);
1285
1286	/*
1287	 * If we're a config writer or a probe, the normal issue and
1288	 * interrupt threads may all be blocked waiting for the config lock.
1289	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1290	 */
1291	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1292		t = ZIO_TYPE_NULL;
1293
1294	/*
1295	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1296	 */
1297	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1298		t = ZIO_TYPE_NULL;
1299
1300	/*
1301	 * If this is a high priority I/O, then use the high priority taskq if
1302	 * available.
1303	 */
1304	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1305	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1306		q++;
1307
1308	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1309
1310	/*
1311	 * NB: We are assuming that the zio can only be dispatched
1312	 * to a single taskq at a time.  It would be a grievous error
1313	 * to dispatch the zio to another taskq at the same time.
1314	 */
1315#if defined(illumos) || !defined(_KERNEL)
1316	ASSERT(zio->io_tqent.tqent_next == NULL);
1317#else
1318	ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
1319#endif
1320	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1321	    flags, &zio->io_tqent);
1322}
1323
1324static boolean_t
1325zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1326{
1327	kthread_t *executor = zio->io_executor;
1328	spa_t *spa = zio->io_spa;
1329
1330	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1331		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1332		uint_t i;
1333		for (i = 0; i < tqs->stqs_count; i++) {
1334			if (taskq_member(tqs->stqs_taskq[i], executor))
1335				return (B_TRUE);
1336		}
1337	}
1338
1339	return (B_FALSE);
1340}
1341
1342static int
1343zio_issue_async(zio_t **ziop)
1344{
1345	zio_t *zio = *ziop;
1346
1347	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1348
1349	return (ZIO_PIPELINE_STOP);
1350}
1351
1352void
1353zio_interrupt(zio_t *zio)
1354{
1355	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1356}
1357
1358/*
1359 * Execute the I/O pipeline until one of the following occurs:
1360 *
1361 *	(1) the I/O completes
1362 *	(2) the pipeline stalls waiting for dependent child I/Os
1363 *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1364 *	(4) the I/O is delegated by vdev-level caching or aggregation
1365 *	(5) the I/O is deferred due to vdev-level queueing
1366 *	(6) the I/O is handed off to another thread.
1367 *
1368 * In all cases, the pipeline stops whenever there's no CPU work; it never
1369 * burns a thread in cv_wait().
1370 *
1371 * There's no locking on io_stage because there's no legitimate way
1372 * for multiple threads to be attempting to process the same I/O.
1373 */
1374static zio_pipe_stage_t *zio_pipeline[];
1375
1376void
1377zio_execute(zio_t *zio)
1378{
1379	zio->io_executor = curthread;
1380
1381	while (zio->io_stage < ZIO_STAGE_DONE) {
1382		enum zio_stage pipeline = zio->io_pipeline;
1383		enum zio_stage stage = zio->io_stage;
1384		int rv;
1385
1386		ASSERT(!MUTEX_HELD(&zio->io_lock));
1387		ASSERT(ISP2(stage));
1388		ASSERT(zio->io_stall == NULL);
1389
1390		do {
1391			stage <<= 1;
1392		} while ((stage & pipeline) == 0);
1393
1394		ASSERT(stage <= ZIO_STAGE_DONE);
1395
1396		/*
1397		 * If we are in interrupt context and this pipeline stage
1398		 * will grab a config lock that is held across I/O,
1399		 * or may wait for an I/O that needs an interrupt thread
1400		 * to complete, issue async to avoid deadlock.
1401		 *
1402		 * For VDEV_IO_START, we cut in line so that the io will
1403		 * be sent to disk promptly.
1404		 */
1405		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1406		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1407			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1408			    zio_requeue_io_start_cut_in_line : B_FALSE;
1409			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1410			return;
1411		}
1412
1413		zio->io_stage = stage;
1414		rv = zio_pipeline[highbit64(stage) - 1](&zio);
1415
1416		if (rv == ZIO_PIPELINE_STOP)
1417			return;
1418
1419		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1420	}
1421}
1422
1423/*
1424 * ==========================================================================
1425 * Initiate I/O, either sync or async
1426 * ==========================================================================
1427 */
1428int
1429zio_wait(zio_t *zio)
1430{
1431	int error;
1432
1433	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1434	ASSERT(zio->io_executor == NULL);
1435
1436	zio->io_waiter = curthread;
1437
1438	zio_execute(zio);
1439
1440	mutex_enter(&zio->io_lock);
1441	while (zio->io_executor != NULL)
1442		cv_wait(&zio->io_cv, &zio->io_lock);
1443	mutex_exit(&zio->io_lock);
1444
1445	error = zio->io_error;
1446	zio_destroy(zio);
1447
1448	return (error);
1449}
1450
1451void
1452zio_nowait(zio_t *zio)
1453{
1454	ASSERT(zio->io_executor == NULL);
1455
1456	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1457	    zio_unique_parent(zio) == NULL) {
1458		/*
1459		 * This is a logical async I/O with no parent to wait for it.
1460		 * We add it to the spa_async_root_zio "Godfather" I/O which
1461		 * will ensure they complete prior to unloading the pool.
1462		 */
1463		spa_t *spa = zio->io_spa;
1464
1465		zio_add_child(spa->spa_async_zio_root, zio);
1466	}
1467
1468	zio_execute(zio);
1469}
1470
1471/*
1472 * ==========================================================================
1473 * Reexecute or suspend/resume failed I/O
1474 * ==========================================================================
1475 */
1476
1477static void
1478zio_reexecute(zio_t *pio)
1479{
1480	zio_t *cio, *cio_next;
1481
1482	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1483	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1484	ASSERT(pio->io_gang_leader == NULL);
1485	ASSERT(pio->io_gang_tree == NULL);
1486
1487	pio->io_flags = pio->io_orig_flags;
1488	pio->io_stage = pio->io_orig_stage;
1489	pio->io_pipeline = pio->io_orig_pipeline;
1490	pio->io_reexecute = 0;
1491	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1492	pio->io_error = 0;
1493	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1494		pio->io_state[w] = 0;
1495	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1496		pio->io_child_error[c] = 0;
1497
1498	if (IO_IS_ALLOCATING(pio))
1499		BP_ZERO(pio->io_bp);
1500
1501	/*
1502	 * As we reexecute pio's children, new children could be created.
1503	 * New children go to the head of pio's io_child_list, however,
1504	 * so we will (correctly) not reexecute them.  The key is that
1505	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1506	 * cannot be affected by any side effects of reexecuting 'cio'.
1507	 */
1508	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1509		cio_next = zio_walk_children(pio);
1510		mutex_enter(&pio->io_lock);
1511		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1512			pio->io_children[cio->io_child_type][w]++;
1513		mutex_exit(&pio->io_lock);
1514		zio_reexecute(cio);
1515	}
1516
1517	/*
1518	 * Now that all children have been reexecuted, execute the parent.
1519	 * We don't reexecute "The Godfather" I/O here as it's the
1520	 * responsibility of the caller to wait on him.
1521	 */
1522	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1523		zio_execute(pio);
1524}
1525
1526void
1527zio_suspend(spa_t *spa, zio_t *zio)
1528{
1529	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1530		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1531		    "failure and the failure mode property for this pool "
1532		    "is set to panic.", spa_name(spa));
1533
1534	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1535
1536	mutex_enter(&spa->spa_suspend_lock);
1537
1538	if (spa->spa_suspend_zio_root == NULL)
1539		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1540		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1541		    ZIO_FLAG_GODFATHER);
1542
1543	spa->spa_suspended = B_TRUE;
1544
1545	if (zio != NULL) {
1546		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1547		ASSERT(zio != spa->spa_suspend_zio_root);
1548		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1549		ASSERT(zio_unique_parent(zio) == NULL);
1550		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1551		zio_add_child(spa->spa_suspend_zio_root, zio);
1552	}
1553
1554	mutex_exit(&spa->spa_suspend_lock);
1555}
1556
1557int
1558zio_resume(spa_t *spa)
1559{
1560	zio_t *pio;
1561
1562	/*
1563	 * Reexecute all previously suspended i/o.
1564	 */
1565	mutex_enter(&spa->spa_suspend_lock);
1566	spa->spa_suspended = B_FALSE;
1567	cv_broadcast(&spa->spa_suspend_cv);
1568	pio = spa->spa_suspend_zio_root;
1569	spa->spa_suspend_zio_root = NULL;
1570	mutex_exit(&spa->spa_suspend_lock);
1571
1572	if (pio == NULL)
1573		return (0);
1574
1575	zio_reexecute(pio);
1576	return (zio_wait(pio));
1577}
1578
1579void
1580zio_resume_wait(spa_t *spa)
1581{
1582	mutex_enter(&spa->spa_suspend_lock);
1583	while (spa_suspended(spa))
1584		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1585	mutex_exit(&spa->spa_suspend_lock);
1586}
1587
1588/*
1589 * ==========================================================================
1590 * Gang blocks.
1591 *
1592 * A gang block is a collection of small blocks that looks to the DMU
1593 * like one large block.  When zio_dva_allocate() cannot find a block
1594 * of the requested size, due to either severe fragmentation or the pool
1595 * being nearly full, it calls zio_write_gang_block() to construct the
1596 * block from smaller fragments.
1597 *
1598 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1599 * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1600 * an indirect block: it's an array of block pointers.  It consumes
1601 * only one sector and hence is allocatable regardless of fragmentation.
1602 * The gang header's bps point to its gang members, which hold the data.
1603 *
1604 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1605 * as the verifier to ensure uniqueness of the SHA256 checksum.
1606 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1607 * not the gang header.  This ensures that data block signatures (needed for
1608 * deduplication) are independent of how the block is physically stored.
1609 *
1610 * Gang blocks can be nested: a gang member may itself be a gang block.
1611 * Thus every gang block is a tree in which root and all interior nodes are
1612 * gang headers, and the leaves are normal blocks that contain user data.
1613 * The root of the gang tree is called the gang leader.
1614 *
1615 * To perform any operation (read, rewrite, free, claim) on a gang block,
1616 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1617 * in the io_gang_tree field of the original logical i/o by recursively
1618 * reading the gang leader and all gang headers below it.  This yields
1619 * an in-core tree containing the contents of every gang header and the
1620 * bps for every constituent of the gang block.
1621 *
1622 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1623 * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1624 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1625 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1626 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1627 * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1628 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1629 * of the gang header plus zio_checksum_compute() of the data to update the
1630 * gang header's blk_cksum as described above.
1631 *
1632 * The two-phase assemble/issue model solves the problem of partial failure --
1633 * what if you'd freed part of a gang block but then couldn't read the
1634 * gang header for another part?  Assembling the entire gang tree first
1635 * ensures that all the necessary gang header I/O has succeeded before
1636 * starting the actual work of free, claim, or write.  Once the gang tree
1637 * is assembled, free and claim are in-memory operations that cannot fail.
1638 *
1639 * In the event that a gang write fails, zio_dva_unallocate() walks the
1640 * gang tree to immediately free (i.e. insert back into the space map)
1641 * everything we've allocated.  This ensures that we don't get ENOSPC
1642 * errors during repeated suspend/resume cycles due to a flaky device.
1643 *
1644 * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1645 * the gang tree, we won't modify the block, so we can safely defer the free
1646 * (knowing that the block is still intact).  If we *can* assemble the gang
1647 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1648 * each constituent bp and we can allocate a new block on the next sync pass.
1649 *
1650 * In all cases, the gang tree allows complete recovery from partial failure.
1651 * ==========================================================================
1652 */
1653
1654static zio_t *
1655zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1656{
1657	if (gn != NULL)
1658		return (pio);
1659
1660	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1661	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1662	    &pio->io_bookmark));
1663}
1664
1665zio_t *
1666zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1667{
1668	zio_t *zio;
1669
1670	if (gn != NULL) {
1671		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1672		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1673		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1674		/*
1675		 * As we rewrite each gang header, the pipeline will compute
1676		 * a new gang block header checksum for it; but no one will
1677		 * compute a new data checksum, so we do that here.  The one
1678		 * exception is the gang leader: the pipeline already computed
1679		 * its data checksum because that stage precedes gang assembly.
1680		 * (Presently, nothing actually uses interior data checksums;
1681		 * this is just good hygiene.)
1682		 */
1683		if (gn != pio->io_gang_leader->io_gang_tree) {
1684			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1685			    data, BP_GET_PSIZE(bp));
1686		}
1687		/*
1688		 * If we are here to damage data for testing purposes,
1689		 * leave the GBH alone so that we can detect the damage.
1690		 */
1691		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1692			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1693	} else {
1694		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1695		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1696		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1697	}
1698
1699	return (zio);
1700}
1701
1702/* ARGSUSED */
1703zio_t *
1704zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1705{
1706	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1707	    BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp),
1708	    ZIO_GANG_CHILD_FLAGS(pio)));
1709}
1710
1711/* ARGSUSED */
1712zio_t *
1713zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1714{
1715	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1716	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1717}
1718
1719static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1720	NULL,
1721	zio_read_gang,
1722	zio_rewrite_gang,
1723	zio_free_gang,
1724	zio_claim_gang,
1725	NULL
1726};
1727
1728static void zio_gang_tree_assemble_done(zio_t *zio);
1729
1730static zio_gang_node_t *
1731zio_gang_node_alloc(zio_gang_node_t **gnpp)
1732{
1733	zio_gang_node_t *gn;
1734
1735	ASSERT(*gnpp == NULL);
1736
1737	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1738	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1739	*gnpp = gn;
1740
1741	return (gn);
1742}
1743
1744static void
1745zio_gang_node_free(zio_gang_node_t **gnpp)
1746{
1747	zio_gang_node_t *gn = *gnpp;
1748
1749	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1750		ASSERT(gn->gn_child[g] == NULL);
1751
1752	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1753	kmem_free(gn, sizeof (*gn));
1754	*gnpp = NULL;
1755}
1756
1757static void
1758zio_gang_tree_free(zio_gang_node_t **gnpp)
1759{
1760	zio_gang_node_t *gn = *gnpp;
1761
1762	if (gn == NULL)
1763		return;
1764
1765	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1766		zio_gang_tree_free(&gn->gn_child[g]);
1767
1768	zio_gang_node_free(gnpp);
1769}
1770
1771static void
1772zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1773{
1774	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1775
1776	ASSERT(gio->io_gang_leader == gio);
1777	ASSERT(BP_IS_GANG(bp));
1778
1779	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1780	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1781	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1782}
1783
1784static void
1785zio_gang_tree_assemble_done(zio_t *zio)
1786{
1787	zio_t *gio = zio->io_gang_leader;
1788	zio_gang_node_t *gn = zio->io_private;
1789	blkptr_t *bp = zio->io_bp;
1790
1791	ASSERT(gio == zio_unique_parent(zio));
1792	ASSERT(zio->io_child_count == 0);
1793
1794	if (zio->io_error)
1795		return;
1796
1797	if (BP_SHOULD_BYTESWAP(bp))
1798		byteswap_uint64_array(zio->io_data, zio->io_size);
1799
1800	ASSERT(zio->io_data == gn->gn_gbh);
1801	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1802	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1803
1804	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1805		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1806		if (!BP_IS_GANG(gbp))
1807			continue;
1808		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1809	}
1810}
1811
1812static void
1813zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1814{
1815	zio_t *gio = pio->io_gang_leader;
1816	zio_t *zio;
1817
1818	ASSERT(BP_IS_GANG(bp) == !!gn);
1819	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1820	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1821
1822	/*
1823	 * If you're a gang header, your data is in gn->gn_gbh.
1824	 * If you're a gang member, your data is in 'data' and gn == NULL.
1825	 */
1826	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1827
1828	if (gn != NULL) {
1829		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1830
1831		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1832			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1833			if (BP_IS_HOLE(gbp))
1834				continue;
1835			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1836			data = (char *)data + BP_GET_PSIZE(gbp);
1837		}
1838	}
1839
1840	if (gn == gio->io_gang_tree && gio->io_data != NULL)
1841		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1842
1843	if (zio != pio)
1844		zio_nowait(zio);
1845}
1846
1847static int
1848zio_gang_assemble(zio_t **ziop)
1849{
1850	zio_t *zio = *ziop;
1851	blkptr_t *bp = zio->io_bp;
1852
1853	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1854	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1855
1856	zio->io_gang_leader = zio;
1857
1858	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1859
1860	return (ZIO_PIPELINE_CONTINUE);
1861}
1862
1863static int
1864zio_gang_issue(zio_t **ziop)
1865{
1866	zio_t *zio = *ziop;
1867	blkptr_t *bp = zio->io_bp;
1868
1869	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1870		return (ZIO_PIPELINE_STOP);
1871
1872	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1873	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1874
1875	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1876		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1877	else
1878		zio_gang_tree_free(&zio->io_gang_tree);
1879
1880	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1881
1882	return (ZIO_PIPELINE_CONTINUE);
1883}
1884
1885static void
1886zio_write_gang_member_ready(zio_t *zio)
1887{
1888	zio_t *pio = zio_unique_parent(zio);
1889	zio_t *gio = zio->io_gang_leader;
1890	dva_t *cdva = zio->io_bp->blk_dva;
1891	dva_t *pdva = pio->io_bp->blk_dva;
1892	uint64_t asize;
1893
1894	if (BP_IS_HOLE(zio->io_bp))
1895		return;
1896
1897	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1898
1899	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1900	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1901	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1902	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1903	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1904
1905	mutex_enter(&pio->io_lock);
1906	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1907		ASSERT(DVA_GET_GANG(&pdva[d]));
1908		asize = DVA_GET_ASIZE(&pdva[d]);
1909		asize += DVA_GET_ASIZE(&cdva[d]);
1910		DVA_SET_ASIZE(&pdva[d], asize);
1911	}
1912	mutex_exit(&pio->io_lock);
1913}
1914
1915static int
1916zio_write_gang_block(zio_t *pio)
1917{
1918	spa_t *spa = pio->io_spa;
1919	blkptr_t *bp = pio->io_bp;
1920	zio_t *gio = pio->io_gang_leader;
1921	zio_t *zio;
1922	zio_gang_node_t *gn, **gnpp;
1923	zio_gbh_phys_t *gbh;
1924	uint64_t txg = pio->io_txg;
1925	uint64_t resid = pio->io_size;
1926	uint64_t lsize;
1927	int copies = gio->io_prop.zp_copies;
1928	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1929	zio_prop_t zp;
1930	int error;
1931
1932	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1933	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1934	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1935	if (error) {
1936		pio->io_error = error;
1937		return (ZIO_PIPELINE_CONTINUE);
1938	}
1939
1940	if (pio == gio) {
1941		gnpp = &gio->io_gang_tree;
1942	} else {
1943		gnpp = pio->io_private;
1944		ASSERT(pio->io_ready == zio_write_gang_member_ready);
1945	}
1946
1947	gn = zio_gang_node_alloc(gnpp);
1948	gbh = gn->gn_gbh;
1949	bzero(gbh, SPA_GANGBLOCKSIZE);
1950
1951	/*
1952	 * Create the gang header.
1953	 */
1954	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1955	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1956
1957	/*
1958	 * Create and nowait the gang children.
1959	 */
1960	for (int g = 0; resid != 0; resid -= lsize, g++) {
1961		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1962		    SPA_MINBLOCKSIZE);
1963		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1964
1965		zp.zp_checksum = gio->io_prop.zp_checksum;
1966		zp.zp_compress = ZIO_COMPRESS_OFF;
1967		zp.zp_type = DMU_OT_NONE;
1968		zp.zp_level = 0;
1969		zp.zp_copies = gio->io_prop.zp_copies;
1970		zp.zp_dedup = B_FALSE;
1971		zp.zp_dedup_verify = B_FALSE;
1972		zp.zp_nopwrite = B_FALSE;
1973
1974		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1975		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1976		    zio_write_gang_member_ready, NULL, NULL, &gn->gn_child[g],
1977		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1978		    &pio->io_bookmark));
1979	}
1980
1981	/*
1982	 * Set pio's pipeline to just wait for zio to finish.
1983	 */
1984	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1985
1986	zio_nowait(zio);
1987
1988	return (ZIO_PIPELINE_CONTINUE);
1989}
1990
1991/*
1992 * The zio_nop_write stage in the pipeline determines if allocating
1993 * a new bp is necessary.  By leveraging a cryptographically secure checksum,
1994 * such as SHA256, we can compare the checksums of the new data and the old
1995 * to determine if allocating a new block is required.  The nopwrite
1996 * feature can handle writes in either syncing or open context (i.e. zil
1997 * writes) and as a result is mutually exclusive with dedup.
1998 */
1999static int
2000zio_nop_write(zio_t **ziop)
2001{
2002	zio_t *zio = *ziop;
2003	blkptr_t *bp = zio->io_bp;
2004	blkptr_t *bp_orig = &zio->io_bp_orig;
2005	zio_prop_t *zp = &zio->io_prop;
2006
2007	ASSERT(BP_GET_LEVEL(bp) == 0);
2008	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2009	ASSERT(zp->zp_nopwrite);
2010	ASSERT(!zp->zp_dedup);
2011	ASSERT(zio->io_bp_override == NULL);
2012	ASSERT(IO_IS_ALLOCATING(zio));
2013
2014	/*
2015	 * Check to see if the original bp and the new bp have matching
2016	 * characteristics (i.e. same checksum, compression algorithms, etc).
2017	 * If they don't then just continue with the pipeline which will
2018	 * allocate a new bp.
2019	 */
2020	if (BP_IS_HOLE(bp_orig) ||
2021	    !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
2022	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2023	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2024	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2025	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2026		return (ZIO_PIPELINE_CONTINUE);
2027
2028	/*
2029	 * If the checksums match then reset the pipeline so that we
2030	 * avoid allocating a new bp and issuing any I/O.
2031	 */
2032	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2033		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
2034		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2035		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2036		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2037		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2038		    sizeof (uint64_t)) == 0);
2039
2040		*bp = *bp_orig;
2041		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2042		zio->io_flags |= ZIO_FLAG_NOPWRITE;
2043	}
2044
2045	return (ZIO_PIPELINE_CONTINUE);
2046}
2047
2048/*
2049 * ==========================================================================
2050 * Dedup
2051 * ==========================================================================
2052 */
2053static void
2054zio_ddt_child_read_done(zio_t *zio)
2055{
2056	blkptr_t *bp = zio->io_bp;
2057	ddt_entry_t *dde = zio->io_private;
2058	ddt_phys_t *ddp;
2059	zio_t *pio = zio_unique_parent(zio);
2060
2061	mutex_enter(&pio->io_lock);
2062	ddp = ddt_phys_select(dde, bp);
2063	if (zio->io_error == 0)
2064		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
2065	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
2066		dde->dde_repair_data = zio->io_data;
2067	else
2068		zio_buf_free(zio->io_data, zio->io_size);
2069	mutex_exit(&pio->io_lock);
2070}
2071
2072static int
2073zio_ddt_read_start(zio_t **ziop)
2074{
2075	zio_t *zio = *ziop;
2076	blkptr_t *bp = zio->io_bp;
2077
2078	ASSERT(BP_GET_DEDUP(bp));
2079	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2080	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2081
2082	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2083		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2084		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2085		ddt_phys_t *ddp = dde->dde_phys;
2086		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2087		blkptr_t blk;
2088
2089		ASSERT(zio->io_vsd == NULL);
2090		zio->io_vsd = dde;
2091
2092		if (ddp_self == NULL)
2093			return (ZIO_PIPELINE_CONTINUE);
2094
2095		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2096			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2097				continue;
2098			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2099			    &blk);
2100			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2101			    zio_buf_alloc(zio->io_size), zio->io_size,
2102			    zio_ddt_child_read_done, dde, zio->io_priority,
2103			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
2104			    &zio->io_bookmark));
2105		}
2106		return (ZIO_PIPELINE_CONTINUE);
2107	}
2108
2109	zio_nowait(zio_read(zio, zio->io_spa, bp,
2110	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
2111	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2112
2113	return (ZIO_PIPELINE_CONTINUE);
2114}
2115
2116static int
2117zio_ddt_read_done(zio_t **ziop)
2118{
2119	zio_t *zio = *ziop;
2120	blkptr_t *bp = zio->io_bp;
2121
2122	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2123		return (ZIO_PIPELINE_STOP);
2124
2125	ASSERT(BP_GET_DEDUP(bp));
2126	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2127	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2128
2129	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2130		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2131		ddt_entry_t *dde = zio->io_vsd;
2132		if (ddt == NULL) {
2133			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2134			return (ZIO_PIPELINE_CONTINUE);
2135		}
2136		if (dde == NULL) {
2137			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2138			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2139			return (ZIO_PIPELINE_STOP);
2140		}
2141		if (dde->dde_repair_data != NULL) {
2142			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2143			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2144		}
2145		ddt_repair_done(ddt, dde);
2146		zio->io_vsd = NULL;
2147	}
2148
2149	ASSERT(zio->io_vsd == NULL);
2150
2151	return (ZIO_PIPELINE_CONTINUE);
2152}
2153
2154static boolean_t
2155zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2156{
2157	spa_t *spa = zio->io_spa;
2158
2159	/*
2160	 * Note: we compare the original data, not the transformed data,
2161	 * because when zio->io_bp is an override bp, we will not have
2162	 * pushed the I/O transforms.  That's an important optimization
2163	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2164	 */
2165	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2166		zio_t *lio = dde->dde_lead_zio[p];
2167
2168		if (lio != NULL) {
2169			return (lio->io_orig_size != zio->io_orig_size ||
2170			    bcmp(zio->io_orig_data, lio->io_orig_data,
2171			    zio->io_orig_size) != 0);
2172		}
2173	}
2174
2175	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2176		ddt_phys_t *ddp = &dde->dde_phys[p];
2177
2178		if (ddp->ddp_phys_birth != 0) {
2179			arc_buf_t *abuf = NULL;
2180			uint32_t aflags = ARC_WAIT;
2181			blkptr_t blk = *zio->io_bp;
2182			int error;
2183
2184			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2185
2186			ddt_exit(ddt);
2187
2188			error = arc_read(NULL, spa, &blk,
2189			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2190			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2191			    &aflags, &zio->io_bookmark);
2192
2193			if (error == 0) {
2194				if (arc_buf_size(abuf) != zio->io_orig_size ||
2195				    bcmp(abuf->b_data, zio->io_orig_data,
2196				    zio->io_orig_size) != 0)
2197					error = SET_ERROR(EEXIST);
2198				VERIFY(arc_buf_remove_ref(abuf, &abuf));
2199			}
2200
2201			ddt_enter(ddt);
2202			return (error != 0);
2203		}
2204	}
2205
2206	return (B_FALSE);
2207}
2208
2209static void
2210zio_ddt_child_write_ready(zio_t *zio)
2211{
2212	int p = zio->io_prop.zp_copies;
2213	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2214	ddt_entry_t *dde = zio->io_private;
2215	ddt_phys_t *ddp = &dde->dde_phys[p];
2216	zio_t *pio;
2217
2218	if (zio->io_error)
2219		return;
2220
2221	ddt_enter(ddt);
2222
2223	ASSERT(dde->dde_lead_zio[p] == zio);
2224
2225	ddt_phys_fill(ddp, zio->io_bp);
2226
2227	while ((pio = zio_walk_parents(zio)) != NULL)
2228		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2229
2230	ddt_exit(ddt);
2231}
2232
2233static void
2234zio_ddt_child_write_done(zio_t *zio)
2235{
2236	int p = zio->io_prop.zp_copies;
2237	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2238	ddt_entry_t *dde = zio->io_private;
2239	ddt_phys_t *ddp = &dde->dde_phys[p];
2240
2241	ddt_enter(ddt);
2242
2243	ASSERT(ddp->ddp_refcnt == 0);
2244	ASSERT(dde->dde_lead_zio[p] == zio);
2245	dde->dde_lead_zio[p] = NULL;
2246
2247	if (zio->io_error == 0) {
2248		while (zio_walk_parents(zio) != NULL)
2249			ddt_phys_addref(ddp);
2250	} else {
2251		ddt_phys_clear(ddp);
2252	}
2253
2254	ddt_exit(ddt);
2255}
2256
2257static void
2258zio_ddt_ditto_write_done(zio_t *zio)
2259{
2260	int p = DDT_PHYS_DITTO;
2261	zio_prop_t *zp = &zio->io_prop;
2262	blkptr_t *bp = zio->io_bp;
2263	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2264	ddt_entry_t *dde = zio->io_private;
2265	ddt_phys_t *ddp = &dde->dde_phys[p];
2266	ddt_key_t *ddk = &dde->dde_key;
2267
2268	ddt_enter(ddt);
2269
2270	ASSERT(ddp->ddp_refcnt == 0);
2271	ASSERT(dde->dde_lead_zio[p] == zio);
2272	dde->dde_lead_zio[p] = NULL;
2273
2274	if (zio->io_error == 0) {
2275		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2276		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2277		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2278		if (ddp->ddp_phys_birth != 0)
2279			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2280		ddt_phys_fill(ddp, bp);
2281	}
2282
2283	ddt_exit(ddt);
2284}
2285
2286static int
2287zio_ddt_write(zio_t **ziop)
2288{
2289	zio_t *zio = *ziop;
2290	spa_t *spa = zio->io_spa;
2291	blkptr_t *bp = zio->io_bp;
2292	uint64_t txg = zio->io_txg;
2293	zio_prop_t *zp = &zio->io_prop;
2294	int p = zp->zp_copies;
2295	int ditto_copies;
2296	zio_t *cio = NULL;
2297	zio_t *dio = NULL;
2298	ddt_t *ddt = ddt_select(spa, bp);
2299	ddt_entry_t *dde;
2300	ddt_phys_t *ddp;
2301
2302	ASSERT(BP_GET_DEDUP(bp));
2303	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2304	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2305
2306	ddt_enter(ddt);
2307	dde = ddt_lookup(ddt, bp, B_TRUE);
2308	ddp = &dde->dde_phys[p];
2309
2310	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2311		/*
2312		 * If we're using a weak checksum, upgrade to a strong checksum
2313		 * and try again.  If we're already using a strong checksum,
2314		 * we can't resolve it, so just convert to an ordinary write.
2315		 * (And automatically e-mail a paper to Nature?)
2316		 */
2317		if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2318			zp->zp_checksum = spa_dedup_checksum(spa);
2319			zio_pop_transforms(zio);
2320			zio->io_stage = ZIO_STAGE_OPEN;
2321			BP_ZERO(bp);
2322		} else {
2323			zp->zp_dedup = B_FALSE;
2324		}
2325		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2326		ddt_exit(ddt);
2327		return (ZIO_PIPELINE_CONTINUE);
2328	}
2329
2330	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2331	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2332
2333	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2334	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2335		zio_prop_t czp = *zp;
2336
2337		czp.zp_copies = ditto_copies;
2338
2339		/*
2340		 * If we arrived here with an override bp, we won't have run
2341		 * the transform stack, so we won't have the data we need to
2342		 * generate a child i/o.  So, toss the override bp and restart.
2343		 * This is safe, because using the override bp is just an
2344		 * optimization; and it's rare, so the cost doesn't matter.
2345		 */
2346		if (zio->io_bp_override) {
2347			zio_pop_transforms(zio);
2348			zio->io_stage = ZIO_STAGE_OPEN;
2349			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2350			zio->io_bp_override = NULL;
2351			BP_ZERO(bp);
2352			ddt_exit(ddt);
2353			return (ZIO_PIPELINE_CONTINUE);
2354		}
2355
2356		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2357		    zio->io_orig_size, &czp, NULL, NULL,
2358		    zio_ddt_ditto_write_done, dde, zio->io_priority,
2359		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2360
2361		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2362		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2363	}
2364
2365	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2366		if (ddp->ddp_phys_birth != 0)
2367			ddt_bp_fill(ddp, bp, txg);
2368		if (dde->dde_lead_zio[p] != NULL)
2369			zio_add_child(zio, dde->dde_lead_zio[p]);
2370		else
2371			ddt_phys_addref(ddp);
2372	} else if (zio->io_bp_override) {
2373		ASSERT(bp->blk_birth == txg);
2374		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2375		ddt_phys_fill(ddp, bp);
2376		ddt_phys_addref(ddp);
2377	} else {
2378		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2379		    zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL,
2380		    zio_ddt_child_write_done, dde, zio->io_priority,
2381		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2382
2383		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2384		dde->dde_lead_zio[p] = cio;
2385	}
2386
2387	ddt_exit(ddt);
2388
2389	if (cio)
2390		zio_nowait(cio);
2391	if (dio)
2392		zio_nowait(dio);
2393
2394	return (ZIO_PIPELINE_CONTINUE);
2395}
2396
2397ddt_entry_t *freedde; /* for debugging */
2398
2399static int
2400zio_ddt_free(zio_t **ziop)
2401{
2402	zio_t *zio = *ziop;
2403	spa_t *spa = zio->io_spa;
2404	blkptr_t *bp = zio->io_bp;
2405	ddt_t *ddt = ddt_select(spa, bp);
2406	ddt_entry_t *dde;
2407	ddt_phys_t *ddp;
2408
2409	ASSERT(BP_GET_DEDUP(bp));
2410	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2411
2412	ddt_enter(ddt);
2413	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2414	ddp = ddt_phys_select(dde, bp);
2415	ddt_phys_decref(ddp);
2416	ddt_exit(ddt);
2417
2418	return (ZIO_PIPELINE_CONTINUE);
2419}
2420
2421/*
2422 * ==========================================================================
2423 * Allocate and free blocks
2424 * ==========================================================================
2425 */
2426static int
2427zio_dva_allocate(zio_t **ziop)
2428{
2429	zio_t *zio = *ziop;
2430	spa_t *spa = zio->io_spa;
2431	metaslab_class_t *mc = spa_normal_class(spa);
2432	blkptr_t *bp = zio->io_bp;
2433	int error;
2434	int flags = 0;
2435
2436	if (zio->io_gang_leader == NULL) {
2437		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2438		zio->io_gang_leader = zio;
2439	}
2440
2441	ASSERT(BP_IS_HOLE(bp));
2442	ASSERT0(BP_GET_NDVAS(bp));
2443	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2444	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2445	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2446
2447	/*
2448	 * The dump device does not support gang blocks so allocation on
2449	 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2450	 * the "fast" gang feature.
2451	 */
2452	flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2453	flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2454	    METASLAB_GANG_CHILD : 0;
2455	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2456	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2457
2458	if (error) {
2459		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2460		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2461		    error);
2462		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2463			return (zio_write_gang_block(zio));
2464		zio->io_error = error;
2465	}
2466
2467	return (ZIO_PIPELINE_CONTINUE);
2468}
2469
2470static int
2471zio_dva_free(zio_t **ziop)
2472{
2473	zio_t *zio = *ziop;
2474
2475	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2476
2477	return (ZIO_PIPELINE_CONTINUE);
2478}
2479
2480static int
2481zio_dva_claim(zio_t **ziop)
2482{
2483	zio_t *zio = *ziop;
2484	int error;
2485
2486	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2487	if (error)
2488		zio->io_error = error;
2489
2490	return (ZIO_PIPELINE_CONTINUE);
2491}
2492
2493/*
2494 * Undo an allocation.  This is used by zio_done() when an I/O fails
2495 * and we want to give back the block we just allocated.
2496 * This handles both normal blocks and gang blocks.
2497 */
2498static void
2499zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2500{
2501	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2502	ASSERT(zio->io_bp_override == NULL);
2503
2504	if (!BP_IS_HOLE(bp))
2505		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2506
2507	if (gn != NULL) {
2508		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2509			zio_dva_unallocate(zio, gn->gn_child[g],
2510			    &gn->gn_gbh->zg_blkptr[g]);
2511		}
2512	}
2513}
2514
2515/*
2516 * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2517 */
2518int
2519zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2520    uint64_t size, boolean_t use_slog)
2521{
2522	int error = 1;
2523
2524	ASSERT(txg > spa_syncing_txg(spa));
2525
2526	/*
2527	 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2528	 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2529	 * when allocating them.
2530	 */
2531	if (use_slog) {
2532		error = metaslab_alloc(spa, spa_log_class(spa), size,
2533		    new_bp, 1, txg, old_bp,
2534		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2535	}
2536
2537	if (error) {
2538		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2539		    new_bp, 1, txg, old_bp,
2540		    METASLAB_HINTBP_AVOID);
2541	}
2542
2543	if (error == 0) {
2544		BP_SET_LSIZE(new_bp, size);
2545		BP_SET_PSIZE(new_bp, size);
2546		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2547		BP_SET_CHECKSUM(new_bp,
2548		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2549		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2550		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2551		BP_SET_LEVEL(new_bp, 0);
2552		BP_SET_DEDUP(new_bp, 0);
2553		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2554	}
2555
2556	return (error);
2557}
2558
2559/*
2560 * Free an intent log block.
2561 */
2562void
2563zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2564{
2565	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2566	ASSERT(!BP_IS_GANG(bp));
2567
2568	zio_free(spa, txg, bp);
2569}
2570
2571/*
2572 * ==========================================================================
2573 * Read, write and delete to physical devices
2574 * ==========================================================================
2575 */
2576static int
2577zio_vdev_io_start(zio_t **ziop)
2578{
2579	zio_t *zio = *ziop;
2580	vdev_t *vd = zio->io_vd;
2581	uint64_t align;
2582	spa_t *spa = zio->io_spa;
2583
2584	ASSERT(zio->io_error == 0);
2585	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2586
2587	if (vd == NULL) {
2588		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2589			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2590
2591		/*
2592		 * The mirror_ops handle multiple DVAs in a single BP.
2593		 */
2594		return (vdev_mirror_ops.vdev_op_io_start(zio));
2595	}
2596
2597	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_FREE) {
2598		trim_map_free(vd, zio->io_offset, zio->io_size, zio->io_txg);
2599		return (ZIO_PIPELINE_CONTINUE);
2600	}
2601
2602	/*
2603	 * We keep track of time-sensitive I/Os so that the scan thread
2604	 * can quickly react to certain workloads.  In particular, we care
2605	 * about non-scrubbing, top-level reads and writes with the following
2606	 * characteristics:
2607	 * 	- synchronous writes of user data to non-slog devices
2608	 *	- any reads of user data
2609	 * When these conditions are met, adjust the timestamp of spa_last_io
2610	 * which allows the scan thread to adjust its workload accordingly.
2611	 */
2612	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2613	    vd == vd->vdev_top && !vd->vdev_islog &&
2614	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2615	    zio->io_txg != spa_syncing_txg(spa)) {
2616		uint64_t old = spa->spa_last_io;
2617		uint64_t new = ddi_get_lbolt64();
2618		if (old != new)
2619			(void) atomic_cas_64(&spa->spa_last_io, old, new);
2620	}
2621
2622	align = 1ULL << vd->vdev_top->vdev_ashift;
2623
2624	if (P2PHASE(zio->io_size, align) != 0) {
2625		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2626		char *abuf = NULL;
2627		if (zio->io_type == ZIO_TYPE_READ ||
2628		    zio->io_type == ZIO_TYPE_WRITE)
2629			abuf = zio_buf_alloc(asize);
2630		ASSERT(vd == vd->vdev_top);
2631		if (zio->io_type == ZIO_TYPE_WRITE) {
2632			bcopy(zio->io_data, abuf, zio->io_size);
2633			bzero(abuf + zio->io_size, asize - zio->io_size);
2634		}
2635		zio_push_transform(zio, abuf, asize, abuf ? asize : 0,
2636		    zio_subblock);
2637	}
2638
2639	ASSERT(P2PHASE(zio->io_offset, align) == 0);
2640	ASSERT(P2PHASE(zio->io_size, align) == 0);
2641	VERIFY(zio->io_type == ZIO_TYPE_READ || spa_writeable(spa));
2642
2643	/*
2644	 * If this is a repair I/O, and there's no self-healing involved --
2645	 * that is, we're just resilvering what we expect to resilver --
2646	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2647	 * This prevents spurious resilvering with nested replication.
2648	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2649	 * A is out of date, we'll read from C+D, then use the data to
2650	 * resilver A+B -- but we don't actually want to resilver B, just A.
2651	 * The top-level mirror has no way to know this, so instead we just
2652	 * discard unnecessary repairs as we work our way down the vdev tree.
2653	 * The same logic applies to any form of nested replication:
2654	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2655	 */
2656	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2657	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2658	    zio->io_txg != 0 &&	/* not a delegated i/o */
2659	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2660		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2661		zio_vdev_io_bypass(zio);
2662		return (ZIO_PIPELINE_CONTINUE);
2663	}
2664
2665	if (vd->vdev_ops->vdev_op_leaf &&
2666	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2667
2668		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
2669			return (ZIO_PIPELINE_CONTINUE);
2670
2671		if ((zio = vdev_queue_io(zio)) == NULL)
2672			return (ZIO_PIPELINE_STOP);
2673		*ziop = zio;
2674
2675		if (!vdev_accessible(vd, zio)) {
2676			zio->io_error = SET_ERROR(ENXIO);
2677			zio_interrupt(zio);
2678			return (ZIO_PIPELINE_STOP);
2679		}
2680	}
2681
2682	/*
2683	 * Note that we ignore repair writes for TRIM because they can conflict
2684	 * with normal writes. This isn't an issue because, by definition, we
2685	 * only repair blocks that aren't freed.
2686	 */
2687	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_WRITE &&
2688	    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2689		if (!trim_map_write_start(zio))
2690			return (ZIO_PIPELINE_STOP);
2691	}
2692
2693	return (vd->vdev_ops->vdev_op_io_start(zio));
2694}
2695
2696static int
2697zio_vdev_io_done(zio_t **ziop)
2698{
2699	zio_t *zio = *ziop;
2700	vdev_t *vd = zio->io_vd;
2701	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2702	boolean_t unexpected_error = B_FALSE;
2703
2704	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2705		return (ZIO_PIPELINE_STOP);
2706
2707	ASSERT(zio->io_type == ZIO_TYPE_READ ||
2708	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_FREE);
2709
2710	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2711	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2712
2713		if (zio->io_type == ZIO_TYPE_WRITE &&
2714		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR))
2715			trim_map_write_done(zio);
2716
2717		vdev_queue_io_done(zio);
2718
2719		if (zio->io_type == ZIO_TYPE_WRITE)
2720			vdev_cache_write(zio);
2721
2722		if (zio_injection_enabled && zio->io_error == 0)
2723			zio->io_error = zio_handle_device_injection(vd,
2724			    zio, EIO);
2725
2726		if (zio_injection_enabled && zio->io_error == 0)
2727			zio->io_error = zio_handle_label_injection(zio, EIO);
2728
2729		if (zio->io_error) {
2730			if (!vdev_accessible(vd, zio)) {
2731				zio->io_error = SET_ERROR(ENXIO);
2732			} else {
2733				unexpected_error = B_TRUE;
2734			}
2735		}
2736	}
2737
2738	ops->vdev_op_io_done(zio);
2739
2740	if (unexpected_error)
2741		VERIFY(vdev_probe(vd, zio) == NULL);
2742
2743	return (ZIO_PIPELINE_CONTINUE);
2744}
2745
2746/*
2747 * For non-raidz ZIOs, we can just copy aside the bad data read from the
2748 * disk, and use that to finish the checksum ereport later.
2749 */
2750static void
2751zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2752    const void *good_buf)
2753{
2754	/* no processing needed */
2755	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2756}
2757
2758/*ARGSUSED*/
2759void
2760zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2761{
2762	void *buf = zio_buf_alloc(zio->io_size);
2763
2764	bcopy(zio->io_data, buf, zio->io_size);
2765
2766	zcr->zcr_cbinfo = zio->io_size;
2767	zcr->zcr_cbdata = buf;
2768	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2769	zcr->zcr_free = zio_buf_free;
2770}
2771
2772static int
2773zio_vdev_io_assess(zio_t **ziop)
2774{
2775	zio_t *zio = *ziop;
2776	vdev_t *vd = zio->io_vd;
2777
2778	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2779		return (ZIO_PIPELINE_STOP);
2780
2781	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2782		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2783
2784	if (zio->io_vsd != NULL) {
2785		zio->io_vsd_ops->vsd_free(zio);
2786		zio->io_vsd = NULL;
2787	}
2788
2789	if (zio_injection_enabled && zio->io_error == 0)
2790		zio->io_error = zio_handle_fault_injection(zio, EIO);
2791
2792	if (zio->io_type == ZIO_TYPE_IOCTL && zio->io_cmd == DKIOCTRIM)
2793		switch (zio->io_error) {
2794		case 0:
2795			ZIO_TRIM_STAT_INCR(bytes, zio->io_size);
2796			ZIO_TRIM_STAT_BUMP(success);
2797			break;
2798		case EOPNOTSUPP:
2799			ZIO_TRIM_STAT_BUMP(unsupported);
2800			break;
2801		default:
2802			ZIO_TRIM_STAT_BUMP(failed);
2803			break;
2804		}
2805
2806	/*
2807	 * If the I/O failed, determine whether we should attempt to retry it.
2808	 *
2809	 * On retry, we cut in line in the issue queue, since we don't want
2810	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2811	 */
2812	if (zio->io_error && vd == NULL &&
2813	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2814		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
2815		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
2816		zio->io_error = 0;
2817		zio->io_flags |= ZIO_FLAG_IO_RETRY |
2818		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2819		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2820		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2821		    zio_requeue_io_start_cut_in_line);
2822		return (ZIO_PIPELINE_STOP);
2823	}
2824
2825	/*
2826	 * If we got an error on a leaf device, convert it to ENXIO
2827	 * if the device is not accessible at all.
2828	 */
2829	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2830	    !vdev_accessible(vd, zio))
2831		zio->io_error = SET_ERROR(ENXIO);
2832
2833	/*
2834	 * If we can't write to an interior vdev (mirror or RAID-Z),
2835	 * set vdev_cant_write so that we stop trying to allocate from it.
2836	 */
2837	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2838	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2839		vd->vdev_cant_write = B_TRUE;
2840	}
2841
2842	if (zio->io_error)
2843		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2844
2845	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2846	    zio->io_physdone != NULL) {
2847		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
2848		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
2849		zio->io_physdone(zio->io_logical);
2850	}
2851
2852	return (ZIO_PIPELINE_CONTINUE);
2853}
2854
2855void
2856zio_vdev_io_reissue(zio_t *zio)
2857{
2858	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2859	ASSERT(zio->io_error == 0);
2860
2861	zio->io_stage >>= 1;
2862}
2863
2864void
2865zio_vdev_io_redone(zio_t *zio)
2866{
2867	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2868
2869	zio->io_stage >>= 1;
2870}
2871
2872void
2873zio_vdev_io_bypass(zio_t *zio)
2874{
2875	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2876	ASSERT(zio->io_error == 0);
2877
2878	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2879	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2880}
2881
2882/*
2883 * ==========================================================================
2884 * Generate and verify checksums
2885 * ==========================================================================
2886 */
2887static int
2888zio_checksum_generate(zio_t **ziop)
2889{
2890	zio_t *zio = *ziop;
2891	blkptr_t *bp = zio->io_bp;
2892	enum zio_checksum checksum;
2893
2894	if (bp == NULL) {
2895		/*
2896		 * This is zio_write_phys().
2897		 * We're either generating a label checksum, or none at all.
2898		 */
2899		checksum = zio->io_prop.zp_checksum;
2900
2901		if (checksum == ZIO_CHECKSUM_OFF)
2902			return (ZIO_PIPELINE_CONTINUE);
2903
2904		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2905	} else {
2906		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2907			ASSERT(!IO_IS_ALLOCATING(zio));
2908			checksum = ZIO_CHECKSUM_GANG_HEADER;
2909		} else {
2910			checksum = BP_GET_CHECKSUM(bp);
2911		}
2912	}
2913
2914	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2915
2916	return (ZIO_PIPELINE_CONTINUE);
2917}
2918
2919static int
2920zio_checksum_verify(zio_t **ziop)
2921{
2922	zio_t *zio = *ziop;
2923	zio_bad_cksum_t info;
2924	blkptr_t *bp = zio->io_bp;
2925	int error;
2926
2927	ASSERT(zio->io_vd != NULL);
2928
2929	if (bp == NULL) {
2930		/*
2931		 * This is zio_read_phys().
2932		 * We're either verifying a label checksum, or nothing at all.
2933		 */
2934		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2935			return (ZIO_PIPELINE_CONTINUE);
2936
2937		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2938	}
2939
2940	if ((error = zio_checksum_error(zio, &info)) != 0) {
2941		zio->io_error = error;
2942		if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2943			zfs_ereport_start_checksum(zio->io_spa,
2944			    zio->io_vd, zio, zio->io_offset,
2945			    zio->io_size, NULL, &info);
2946		}
2947	}
2948
2949	return (ZIO_PIPELINE_CONTINUE);
2950}
2951
2952/*
2953 * Called by RAID-Z to ensure we don't compute the checksum twice.
2954 */
2955void
2956zio_checksum_verified(zio_t *zio)
2957{
2958	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2959}
2960
2961/*
2962 * ==========================================================================
2963 * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2964 * An error of 0 indicates success.  ENXIO indicates whole-device failure,
2965 * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2966 * indicate errors that are specific to one I/O, and most likely permanent.
2967 * Any other error is presumed to be worse because we weren't expecting it.
2968 * ==========================================================================
2969 */
2970int
2971zio_worst_error(int e1, int e2)
2972{
2973	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2974	int r1, r2;
2975
2976	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2977		if (e1 == zio_error_rank[r1])
2978			break;
2979
2980	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2981		if (e2 == zio_error_rank[r2])
2982			break;
2983
2984	return (r1 > r2 ? e1 : e2);
2985}
2986
2987/*
2988 * ==========================================================================
2989 * I/O completion
2990 * ==========================================================================
2991 */
2992static int
2993zio_ready(zio_t **ziop)
2994{
2995	zio_t *zio = *ziop;
2996	blkptr_t *bp = zio->io_bp;
2997	zio_t *pio, *pio_next;
2998
2999	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
3000	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
3001		return (ZIO_PIPELINE_STOP);
3002
3003	if (zio->io_ready) {
3004		ASSERT(IO_IS_ALLOCATING(zio));
3005		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3006		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
3007		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3008
3009		zio->io_ready(zio);
3010	}
3011
3012	if (bp != NULL && bp != &zio->io_bp_copy)
3013		zio->io_bp_copy = *bp;
3014
3015	if (zio->io_error)
3016		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3017
3018	mutex_enter(&zio->io_lock);
3019	zio->io_state[ZIO_WAIT_READY] = 1;
3020	pio = zio_walk_parents(zio);
3021	mutex_exit(&zio->io_lock);
3022
3023	/*
3024	 * As we notify zio's parents, new parents could be added.
3025	 * New parents go to the head of zio's io_parent_list, however,
3026	 * so we will (correctly) not notify them.  The remainder of zio's
3027	 * io_parent_list, from 'pio_next' onward, cannot change because
3028	 * all parents must wait for us to be done before they can be done.
3029	 */
3030	for (; pio != NULL; pio = pio_next) {
3031		pio_next = zio_walk_parents(zio);
3032		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3033	}
3034
3035	if (zio->io_flags & ZIO_FLAG_NODATA) {
3036		if (BP_IS_GANG(bp)) {
3037			zio->io_flags &= ~ZIO_FLAG_NODATA;
3038		} else {
3039			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
3040			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3041		}
3042	}
3043
3044	if (zio_injection_enabled &&
3045	    zio->io_spa->spa_syncing_txg == zio->io_txg)
3046		zio_handle_ignored_writes(zio);
3047
3048	return (ZIO_PIPELINE_CONTINUE);
3049}
3050
3051static int
3052zio_done(zio_t **ziop)
3053{
3054	zio_t *zio = *ziop;
3055	spa_t *spa = zio->io_spa;
3056	zio_t *lio = zio->io_logical;
3057	blkptr_t *bp = zio->io_bp;
3058	vdev_t *vd = zio->io_vd;
3059	uint64_t psize = zio->io_size;
3060	zio_t *pio, *pio_next;
3061
3062	/*
3063	 * If our children haven't all completed,
3064	 * wait for them and then repeat this pipeline stage.
3065	 */
3066	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
3067	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
3068	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
3069	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
3070		return (ZIO_PIPELINE_STOP);
3071
3072	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3073		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3074			ASSERT(zio->io_children[c][w] == 0);
3075
3076	if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3077		ASSERT(bp->blk_pad[0] == 0);
3078		ASSERT(bp->blk_pad[1] == 0);
3079		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3080		    (bp == zio_unique_parent(zio)->io_bp));
3081		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3082		    zio->io_bp_override == NULL &&
3083		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3084			ASSERT(!BP_SHOULD_BYTESWAP(bp));
3085			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3086			ASSERT(BP_COUNT_GANG(bp) == 0 ||
3087			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3088		}
3089		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3090			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3091	}
3092
3093	/*
3094	 * If there were child vdev/gang/ddt errors, they apply to us now.
3095	 */
3096	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3097	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3098	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3099
3100	/*
3101	 * If the I/O on the transformed data was successful, generate any
3102	 * checksum reports now while we still have the transformed data.
3103	 */
3104	if (zio->io_error == 0) {
3105		while (zio->io_cksum_report != NULL) {
3106			zio_cksum_report_t *zcr = zio->io_cksum_report;
3107			uint64_t align = zcr->zcr_align;
3108			uint64_t asize = P2ROUNDUP(psize, align);
3109			char *abuf = zio->io_data;
3110
3111			if (asize != psize) {
3112				abuf = zio_buf_alloc(asize);
3113				bcopy(zio->io_data, abuf, psize);
3114				bzero(abuf + psize, asize - psize);
3115			}
3116
3117			zio->io_cksum_report = zcr->zcr_next;
3118			zcr->zcr_next = NULL;
3119			zcr->zcr_finish(zcr, abuf);
3120			zfs_ereport_free_checksum(zcr);
3121
3122			if (asize != psize)
3123				zio_buf_free(abuf, asize);
3124		}
3125	}
3126
3127	zio_pop_transforms(zio);	/* note: may set zio->io_error */
3128
3129	vdev_stat_update(zio, psize);
3130
3131	if (zio->io_error) {
3132		/*
3133		 * If this I/O is attached to a particular vdev,
3134		 * generate an error message describing the I/O failure
3135		 * at the block level.  We ignore these errors if the
3136		 * device is currently unavailable.
3137		 */
3138		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3139			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3140
3141		if ((zio->io_error == EIO || !(zio->io_flags &
3142		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3143		    zio == lio) {
3144			/*
3145			 * For logical I/O requests, tell the SPA to log the
3146			 * error and generate a logical data ereport.
3147			 */
3148			spa_log_error(spa, zio);
3149			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3150			    0, 0);
3151		}
3152	}
3153
3154	if (zio->io_error && zio == lio) {
3155		/*
3156		 * Determine whether zio should be reexecuted.  This will
3157		 * propagate all the way to the root via zio_notify_parent().
3158		 */
3159		ASSERT(vd == NULL && bp != NULL);
3160		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3161
3162		if (IO_IS_ALLOCATING(zio) &&
3163		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3164			if (zio->io_error != ENOSPC)
3165				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3166			else
3167				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3168		}
3169
3170		if ((zio->io_type == ZIO_TYPE_READ ||
3171		    zio->io_type == ZIO_TYPE_FREE) &&
3172		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3173		    zio->io_error == ENXIO &&
3174		    spa_load_state(spa) == SPA_LOAD_NONE &&
3175		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3176			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3177
3178		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3179			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3180
3181		/*
3182		 * Here is a possibly good place to attempt to do
3183		 * either combinatorial reconstruction or error correction
3184		 * based on checksums.  It also might be a good place
3185		 * to send out preliminary ereports before we suspend
3186		 * processing.
3187		 */
3188	}
3189
3190	/*
3191	 * If there were logical child errors, they apply to us now.
3192	 * We defer this until now to avoid conflating logical child
3193	 * errors with errors that happened to the zio itself when
3194	 * updating vdev stats and reporting FMA events above.
3195	 */
3196	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3197
3198	if ((zio->io_error || zio->io_reexecute) &&
3199	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3200	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3201		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3202
3203	zio_gang_tree_free(&zio->io_gang_tree);
3204
3205	/*
3206	 * Godfather I/Os should never suspend.
3207	 */
3208	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3209	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3210		zio->io_reexecute = 0;
3211
3212	if (zio->io_reexecute) {
3213		/*
3214		 * This is a logical I/O that wants to reexecute.
3215		 *
3216		 * Reexecute is top-down.  When an i/o fails, if it's not
3217		 * the root, it simply notifies its parent and sticks around.
3218		 * The parent, seeing that it still has children in zio_done(),
3219		 * does the same.  This percolates all the way up to the root.
3220		 * The root i/o will reexecute or suspend the entire tree.
3221		 *
3222		 * This approach ensures that zio_reexecute() honors
3223		 * all the original i/o dependency relationships, e.g.
3224		 * parents not executing until children are ready.
3225		 */
3226		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3227
3228		zio->io_gang_leader = NULL;
3229
3230		mutex_enter(&zio->io_lock);
3231		zio->io_state[ZIO_WAIT_DONE] = 1;
3232		mutex_exit(&zio->io_lock);
3233
3234		/*
3235		 * "The Godfather" I/O monitors its children but is
3236		 * not a true parent to them. It will track them through
3237		 * the pipeline but severs its ties whenever they get into
3238		 * trouble (e.g. suspended). This allows "The Godfather"
3239		 * I/O to return status without blocking.
3240		 */
3241		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3242			zio_link_t *zl = zio->io_walk_link;
3243			pio_next = zio_walk_parents(zio);
3244
3245			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3246			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3247				zio_remove_child(pio, zio, zl);
3248				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3249			}
3250		}
3251
3252		if ((pio = zio_unique_parent(zio)) != NULL) {
3253			/*
3254			 * We're not a root i/o, so there's nothing to do
3255			 * but notify our parent.  Don't propagate errors
3256			 * upward since we haven't permanently failed yet.
3257			 */
3258			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3259			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3260			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3261		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3262			/*
3263			 * We'd fail again if we reexecuted now, so suspend
3264			 * until conditions improve (e.g. device comes online).
3265			 */
3266			zio_suspend(spa, zio);
3267		} else {
3268			/*
3269			 * Reexecution is potentially a huge amount of work.
3270			 * Hand it off to the otherwise-unused claim taskq.
3271			 */
3272#if defined(illumos) || !defined(_KERNEL)
3273			ASSERT(zio->io_tqent.tqent_next == NULL);
3274#else
3275			ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
3276#endif
3277			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3278			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3279			    0, &zio->io_tqent);
3280		}
3281		return (ZIO_PIPELINE_STOP);
3282	}
3283
3284	ASSERT(zio->io_child_count == 0);
3285	ASSERT(zio->io_reexecute == 0);
3286	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3287
3288	/*
3289	 * Report any checksum errors, since the I/O is complete.
3290	 */
3291	while (zio->io_cksum_report != NULL) {
3292		zio_cksum_report_t *zcr = zio->io_cksum_report;
3293		zio->io_cksum_report = zcr->zcr_next;
3294		zcr->zcr_next = NULL;
3295		zcr->zcr_finish(zcr, NULL);
3296		zfs_ereport_free_checksum(zcr);
3297	}
3298
3299	/*
3300	 * It is the responsibility of the done callback to ensure that this
3301	 * particular zio is no longer discoverable for adoption, and as
3302	 * such, cannot acquire any new parents.
3303	 */
3304	if (zio->io_done)
3305		zio->io_done(zio);
3306
3307	mutex_enter(&zio->io_lock);
3308	zio->io_state[ZIO_WAIT_DONE] = 1;
3309	mutex_exit(&zio->io_lock);
3310
3311	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3312		zio_link_t *zl = zio->io_walk_link;
3313		pio_next = zio_walk_parents(zio);
3314		zio_remove_child(pio, zio, zl);
3315		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3316	}
3317
3318	if (zio->io_waiter != NULL) {
3319		mutex_enter(&zio->io_lock);
3320		zio->io_executor = NULL;
3321		cv_broadcast(&zio->io_cv);
3322		mutex_exit(&zio->io_lock);
3323	} else {
3324		zio_destroy(zio);
3325	}
3326
3327	return (ZIO_PIPELINE_STOP);
3328}
3329
3330/*
3331 * ==========================================================================
3332 * I/O pipeline definition
3333 * ==========================================================================
3334 */
3335static zio_pipe_stage_t *zio_pipeline[] = {
3336	NULL,
3337	zio_read_bp_init,
3338	zio_free_bp_init,
3339	zio_issue_async,
3340	zio_write_bp_init,
3341	zio_checksum_generate,
3342	zio_nop_write,
3343	zio_ddt_read_start,
3344	zio_ddt_read_done,
3345	zio_ddt_write,
3346	zio_ddt_free,
3347	zio_gang_assemble,
3348	zio_gang_issue,
3349	zio_dva_allocate,
3350	zio_dva_free,
3351	zio_dva_claim,
3352	zio_ready,
3353	zio_vdev_io_start,
3354	zio_vdev_io_done,
3355	zio_vdev_io_assess,
3356	zio_checksum_verify,
3357	zio_done
3358};
3359
3360/* dnp is the dnode for zb1->zb_object */
3361boolean_t
3362zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_phys_t *zb1,
3363    const zbookmark_phys_t *zb2)
3364{
3365	uint64_t zb1nextL0, zb2thisobj;
3366
3367	ASSERT(zb1->zb_objset == zb2->zb_objset);
3368	ASSERT(zb2->zb_level == 0);
3369
3370	/* The objset_phys_t isn't before anything. */
3371	if (dnp == NULL)
3372		return (B_FALSE);
3373
3374	zb1nextL0 = (zb1->zb_blkid + 1) <<
3375	    ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3376
3377	zb2thisobj = zb2->zb_object ? zb2->zb_object :
3378	    zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3379
3380	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3381		uint64_t nextobj = zb1nextL0 *
3382		    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3383		return (nextobj <= zb2thisobj);
3384	}
3385
3386	if (zb1->zb_object < zb2thisobj)
3387		return (B_TRUE);
3388	if (zb1->zb_object > zb2thisobj)
3389		return (B_FALSE);
3390	if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3391		return (B_FALSE);
3392	return (zb1nextL0 <= zb2->zb_blkid);
3393}
3394