zil.c revision 224526
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 by Delphix. All rights reserved.
24 */
25
26/* Portions Copyright 2010 Robert Milkowski */
27
28#include <sys/zfs_context.h>
29#include <sys/spa.h>
30#include <sys/dmu.h>
31#include <sys/zap.h>
32#include <sys/arc.h>
33#include <sys/stat.h>
34#include <sys/resource.h>
35#include <sys/zil.h>
36#include <sys/zil_impl.h>
37#include <sys/dsl_dataset.h>
38#include <sys/vdev_impl.h>
39#include <sys/dmu_tx.h>
40#include <sys/dsl_pool.h>
41
42/*
43 * The zfs intent log (ZIL) saves transaction records of system calls
44 * that change the file system in memory with enough information
45 * to be able to replay them. These are stored in memory until
46 * either the DMU transaction group (txg) commits them to the stable pool
47 * and they can be discarded, or they are flushed to the stable log
48 * (also in the pool) due to a fsync, O_DSYNC or other synchronous
49 * requirement. In the event of a panic or power fail then those log
50 * records (transactions) are replayed.
51 *
52 * There is one ZIL per file system. Its on-disk (pool) format consists
53 * of 3 parts:
54 *
55 * 	- ZIL header
56 * 	- ZIL blocks
57 * 	- ZIL records
58 *
59 * A log record holds a system call transaction. Log blocks can
60 * hold many log records and the blocks are chained together.
61 * Each ZIL block contains a block pointer (blkptr_t) to the next
62 * ZIL block in the chain. The ZIL header points to the first
63 * block in the chain. Note there is not a fixed place in the pool
64 * to hold blocks. They are dynamically allocated and freed as
65 * needed from the blocks available. Figure X shows the ZIL structure:
66 */
67
68/*
69 * This global ZIL switch affects all pools
70 */
71int zil_replay_disable = 0;    /* disable intent logging replay */
72SYSCTL_DECL(_vfs_zfs);
73TUNABLE_INT("vfs.zfs.zil_replay_disable", &zil_replay_disable);
74SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_replay_disable, CTLFLAG_RW,
75    &zil_replay_disable, 0, "Disable intent logging replay");
76
77/*
78 * Tunable parameter for debugging or performance analysis.  Setting
79 * zfs_nocacheflush will cause corruption on power loss if a volatile
80 * out-of-order write cache is enabled.
81 */
82boolean_t zfs_nocacheflush = B_FALSE;
83TUNABLE_INT("vfs.zfs.cache_flush_disable", &zfs_nocacheflush);
84SYSCTL_INT(_vfs_zfs, OID_AUTO, cache_flush_disable, CTLFLAG_RDTUN,
85    &zfs_nocacheflush, 0, "Disable cache flush");
86
87static kmem_cache_t *zil_lwb_cache;
88
89static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
90
91#define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
92    sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
93
94
95/*
96 * ziltest is by and large an ugly hack, but very useful in
97 * checking replay without tedious work.
98 * When running ziltest we want to keep all itx's and so maintain
99 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
100 * We subtract TXG_CONCURRENT_STATES to allow for common code.
101 */
102#define	ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
103
104static int
105zil_bp_compare(const void *x1, const void *x2)
106{
107	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
108	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
109
110	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
111		return (-1);
112	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
113		return (1);
114
115	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
116		return (-1);
117	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
118		return (1);
119
120	return (0);
121}
122
123static void
124zil_bp_tree_init(zilog_t *zilog)
125{
126	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
127	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
128}
129
130static void
131zil_bp_tree_fini(zilog_t *zilog)
132{
133	avl_tree_t *t = &zilog->zl_bp_tree;
134	zil_bp_node_t *zn;
135	void *cookie = NULL;
136
137	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
138		kmem_free(zn, sizeof (zil_bp_node_t));
139
140	avl_destroy(t);
141}
142
143int
144zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
145{
146	avl_tree_t *t = &zilog->zl_bp_tree;
147	const dva_t *dva = BP_IDENTITY(bp);
148	zil_bp_node_t *zn;
149	avl_index_t where;
150
151	if (avl_find(t, dva, &where) != NULL)
152		return (EEXIST);
153
154	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
155	zn->zn_dva = *dva;
156	avl_insert(t, zn, where);
157
158	return (0);
159}
160
161static zil_header_t *
162zil_header_in_syncing_context(zilog_t *zilog)
163{
164	return ((zil_header_t *)zilog->zl_header);
165}
166
167static void
168zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
169{
170	zio_cksum_t *zc = &bp->blk_cksum;
171
172	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
173	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
174	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
175	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
176}
177
178/*
179 * Read a log block and make sure it's valid.
180 */
181static int
182zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
183    char **end)
184{
185	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
186	uint32_t aflags = ARC_WAIT;
187	arc_buf_t *abuf = NULL;
188	zbookmark_t zb;
189	int error;
190
191	if (zilog->zl_header->zh_claim_txg == 0)
192		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
193
194	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
195		zio_flags |= ZIO_FLAG_SPECULATIVE;
196
197	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
198	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
199
200	error = dsl_read_nolock(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
201	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
202
203	if (error == 0) {
204		zio_cksum_t cksum = bp->blk_cksum;
205
206		/*
207		 * Validate the checksummed log block.
208		 *
209		 * Sequence numbers should be... sequential.  The checksum
210		 * verifier for the next block should be bp's checksum plus 1.
211		 *
212		 * Also check the log chain linkage and size used.
213		 */
214		cksum.zc_word[ZIL_ZC_SEQ]++;
215
216		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
217			zil_chain_t *zilc = abuf->b_data;
218			char *lr = (char *)(zilc + 1);
219			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
220
221			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
222			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
223				error = ECKSUM;
224			} else {
225				bcopy(lr, dst, len);
226				*end = (char *)dst + len;
227				*nbp = zilc->zc_next_blk;
228			}
229		} else {
230			char *lr = abuf->b_data;
231			uint64_t size = BP_GET_LSIZE(bp);
232			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
233
234			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
235			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
236			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
237				error = ECKSUM;
238			} else {
239				bcopy(lr, dst, zilc->zc_nused);
240				*end = (char *)dst + zilc->zc_nused;
241				*nbp = zilc->zc_next_blk;
242			}
243		}
244
245		VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
246	}
247
248	return (error);
249}
250
251/*
252 * Read a TX_WRITE log data block.
253 */
254static int
255zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
256{
257	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
258	const blkptr_t *bp = &lr->lr_blkptr;
259	uint32_t aflags = ARC_WAIT;
260	arc_buf_t *abuf = NULL;
261	zbookmark_t zb;
262	int error;
263
264	if (BP_IS_HOLE(bp)) {
265		if (wbuf != NULL)
266			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
267		return (0);
268	}
269
270	if (zilog->zl_header->zh_claim_txg == 0)
271		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
272
273	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
274	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
275
276	error = arc_read_nolock(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
277	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
278
279	if (error == 0) {
280		if (wbuf != NULL)
281			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
282		(void) arc_buf_remove_ref(abuf, &abuf);
283	}
284
285	return (error);
286}
287
288/*
289 * Parse the intent log, and call parse_func for each valid record within.
290 */
291int
292zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
293    zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
294{
295	const zil_header_t *zh = zilog->zl_header;
296	boolean_t claimed = !!zh->zh_claim_txg;
297	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
298	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
299	uint64_t max_blk_seq = 0;
300	uint64_t max_lr_seq = 0;
301	uint64_t blk_count = 0;
302	uint64_t lr_count = 0;
303	blkptr_t blk, next_blk;
304	char *lrbuf, *lrp;
305	int error = 0;
306
307	/*
308	 * Old logs didn't record the maximum zh_claim_lr_seq.
309	 */
310	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
311		claim_lr_seq = UINT64_MAX;
312
313	/*
314	 * Starting at the block pointed to by zh_log we read the log chain.
315	 * For each block in the chain we strongly check that block to
316	 * ensure its validity.  We stop when an invalid block is found.
317	 * For each block pointer in the chain we call parse_blk_func().
318	 * For each record in each valid block we call parse_lr_func().
319	 * If the log has been claimed, stop if we encounter a sequence
320	 * number greater than the highest claimed sequence number.
321	 */
322	lrbuf = zio_buf_alloc(SPA_MAXBLOCKSIZE);
323	zil_bp_tree_init(zilog);
324
325	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
326		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
327		int reclen;
328		char *end;
329
330		if (blk_seq > claim_blk_seq)
331			break;
332		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
333			break;
334		ASSERT3U(max_blk_seq, <, blk_seq);
335		max_blk_seq = blk_seq;
336		blk_count++;
337
338		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
339			break;
340
341		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
342		if (error)
343			break;
344
345		for (lrp = lrbuf; lrp < end; lrp += reclen) {
346			lr_t *lr = (lr_t *)lrp;
347			reclen = lr->lrc_reclen;
348			ASSERT3U(reclen, >=, sizeof (lr_t));
349			if (lr->lrc_seq > claim_lr_seq)
350				goto done;
351			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
352				goto done;
353			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
354			max_lr_seq = lr->lrc_seq;
355			lr_count++;
356		}
357	}
358done:
359	zilog->zl_parse_error = error;
360	zilog->zl_parse_blk_seq = max_blk_seq;
361	zilog->zl_parse_lr_seq = max_lr_seq;
362	zilog->zl_parse_blk_count = blk_count;
363	zilog->zl_parse_lr_count = lr_count;
364
365	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
366	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
367
368	zil_bp_tree_fini(zilog);
369	zio_buf_free(lrbuf, SPA_MAXBLOCKSIZE);
370
371	return (error);
372}
373
374static int
375zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
376{
377	/*
378	 * Claim log block if not already committed and not already claimed.
379	 * If tx == NULL, just verify that the block is claimable.
380	 */
381	if (bp->blk_birth < first_txg || zil_bp_tree_add(zilog, bp) != 0)
382		return (0);
383
384	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
385	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
386	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
387}
388
389static int
390zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
391{
392	lr_write_t *lr = (lr_write_t *)lrc;
393	int error;
394
395	if (lrc->lrc_txtype != TX_WRITE)
396		return (0);
397
398	/*
399	 * If the block is not readable, don't claim it.  This can happen
400	 * in normal operation when a log block is written to disk before
401	 * some of the dmu_sync() blocks it points to.  In this case, the
402	 * transaction cannot have been committed to anyone (we would have
403	 * waited for all writes to be stable first), so it is semantically
404	 * correct to declare this the end of the log.
405	 */
406	if (lr->lr_blkptr.blk_birth >= first_txg &&
407	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
408		return (error);
409	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
410}
411
412/* ARGSUSED */
413static int
414zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
415{
416	zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
417
418	return (0);
419}
420
421static int
422zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
423{
424	lr_write_t *lr = (lr_write_t *)lrc;
425	blkptr_t *bp = &lr->lr_blkptr;
426
427	/*
428	 * If we previously claimed it, we need to free it.
429	 */
430	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
431	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0)
432		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
433
434	return (0);
435}
436
437static lwb_t *
438zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg)
439{
440	lwb_t *lwb;
441
442	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
443	lwb->lwb_zilog = zilog;
444	lwb->lwb_blk = *bp;
445	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
446	lwb->lwb_max_txg = txg;
447	lwb->lwb_zio = NULL;
448	lwb->lwb_tx = NULL;
449	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
450		lwb->lwb_nused = sizeof (zil_chain_t);
451		lwb->lwb_sz = BP_GET_LSIZE(bp);
452	} else {
453		lwb->lwb_nused = 0;
454		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
455	}
456
457	mutex_enter(&zilog->zl_lock);
458	list_insert_tail(&zilog->zl_lwb_list, lwb);
459	mutex_exit(&zilog->zl_lock);
460
461	return (lwb);
462}
463
464/*
465 * Create an on-disk intent log.
466 */
467static lwb_t *
468zil_create(zilog_t *zilog)
469{
470	const zil_header_t *zh = zilog->zl_header;
471	lwb_t *lwb = NULL;
472	uint64_t txg = 0;
473	dmu_tx_t *tx = NULL;
474	blkptr_t blk;
475	int error = 0;
476
477	/*
478	 * Wait for any previous destroy to complete.
479	 */
480	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
481
482	ASSERT(zh->zh_claim_txg == 0);
483	ASSERT(zh->zh_replay_seq == 0);
484
485	blk = zh->zh_log;
486
487	/*
488	 * Allocate an initial log block if:
489	 *    - there isn't one already
490	 *    - the existing block is the wrong endianess
491	 */
492	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
493		tx = dmu_tx_create(zilog->zl_os);
494		VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
495		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
496		txg = dmu_tx_get_txg(tx);
497
498		if (!BP_IS_HOLE(&blk)) {
499			zio_free_zil(zilog->zl_spa, txg, &blk);
500			BP_ZERO(&blk);
501		}
502
503		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
504		    ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
505
506		if (error == 0)
507			zil_init_log_chain(zilog, &blk);
508	}
509
510	/*
511	 * Allocate a log write buffer (lwb) for the first log block.
512	 */
513	if (error == 0)
514		lwb = zil_alloc_lwb(zilog, &blk, txg);
515
516	/*
517	 * If we just allocated the first log block, commit our transaction
518	 * and wait for zil_sync() to stuff the block poiner into zh_log.
519	 * (zh is part of the MOS, so we cannot modify it in open context.)
520	 */
521	if (tx != NULL) {
522		dmu_tx_commit(tx);
523		txg_wait_synced(zilog->zl_dmu_pool, txg);
524	}
525
526	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
527
528	return (lwb);
529}
530
531/*
532 * In one tx, free all log blocks and clear the log header.
533 * If keep_first is set, then we're replaying a log with no content.
534 * We want to keep the first block, however, so that the first
535 * synchronous transaction doesn't require a txg_wait_synced()
536 * in zil_create().  We don't need to txg_wait_synced() here either
537 * when keep_first is set, because both zil_create() and zil_destroy()
538 * will wait for any in-progress destroys to complete.
539 */
540void
541zil_destroy(zilog_t *zilog, boolean_t keep_first)
542{
543	const zil_header_t *zh = zilog->zl_header;
544	lwb_t *lwb;
545	dmu_tx_t *tx;
546	uint64_t txg;
547
548	/*
549	 * Wait for any previous destroy to complete.
550	 */
551	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
552
553	zilog->zl_old_header = *zh;		/* debugging aid */
554
555	if (BP_IS_HOLE(&zh->zh_log))
556		return;
557
558	tx = dmu_tx_create(zilog->zl_os);
559	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
560	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
561	txg = dmu_tx_get_txg(tx);
562
563	mutex_enter(&zilog->zl_lock);
564
565	ASSERT3U(zilog->zl_destroy_txg, <, txg);
566	zilog->zl_destroy_txg = txg;
567	zilog->zl_keep_first = keep_first;
568
569	if (!list_is_empty(&zilog->zl_lwb_list)) {
570		ASSERT(zh->zh_claim_txg == 0);
571		VERIFY(!keep_first);
572		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
573			list_remove(&zilog->zl_lwb_list, lwb);
574			if (lwb->lwb_buf != NULL)
575				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
576			zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
577			kmem_cache_free(zil_lwb_cache, lwb);
578		}
579	} else if (!keep_first) {
580		(void) zil_parse(zilog, zil_free_log_block,
581		    zil_free_log_record, tx, zh->zh_claim_txg);
582	}
583	mutex_exit(&zilog->zl_lock);
584
585	dmu_tx_commit(tx);
586}
587
588int
589zil_claim(const char *osname, void *txarg)
590{
591	dmu_tx_t *tx = txarg;
592	uint64_t first_txg = dmu_tx_get_txg(tx);
593	zilog_t *zilog;
594	zil_header_t *zh;
595	objset_t *os;
596	int error;
597
598	error = dmu_objset_hold(osname, FTAG, &os);
599	if (error) {
600		cmn_err(CE_WARN, "can't open objset for %s", osname);
601		return (0);
602	}
603
604	zilog = dmu_objset_zil(os);
605	zh = zil_header_in_syncing_context(zilog);
606
607	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
608		if (!BP_IS_HOLE(&zh->zh_log))
609			zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
610		BP_ZERO(&zh->zh_log);
611		dsl_dataset_dirty(dmu_objset_ds(os), tx);
612		dmu_objset_rele(os, FTAG);
613		return (0);
614	}
615
616	/*
617	 * Claim all log blocks if we haven't already done so, and remember
618	 * the highest claimed sequence number.  This ensures that if we can
619	 * read only part of the log now (e.g. due to a missing device),
620	 * but we can read the entire log later, we will not try to replay
621	 * or destroy beyond the last block we successfully claimed.
622	 */
623	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
624	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
625		(void) zil_parse(zilog, zil_claim_log_block,
626		    zil_claim_log_record, tx, first_txg);
627		zh->zh_claim_txg = first_txg;
628		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
629		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
630		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
631			zh->zh_flags |= ZIL_REPLAY_NEEDED;
632		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
633		dsl_dataset_dirty(dmu_objset_ds(os), tx);
634	}
635
636	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
637	dmu_objset_rele(os, FTAG);
638	return (0);
639}
640
641/*
642 * Check the log by walking the log chain.
643 * Checksum errors are ok as they indicate the end of the chain.
644 * Any other error (no device or read failure) returns an error.
645 */
646int
647zil_check_log_chain(const char *osname, void *tx)
648{
649	zilog_t *zilog;
650	objset_t *os;
651	blkptr_t *bp;
652	int error;
653
654	ASSERT(tx == NULL);
655
656	error = dmu_objset_hold(osname, FTAG, &os);
657	if (error) {
658		cmn_err(CE_WARN, "can't open objset for %s", osname);
659		return (0);
660	}
661
662	zilog = dmu_objset_zil(os);
663	bp = (blkptr_t *)&zilog->zl_header->zh_log;
664
665	/*
666	 * Check the first block and determine if it's on a log device
667	 * which may have been removed or faulted prior to loading this
668	 * pool.  If so, there's no point in checking the rest of the log
669	 * as its content should have already been synced to the pool.
670	 */
671	if (!BP_IS_HOLE(bp)) {
672		vdev_t *vd;
673		boolean_t valid = B_TRUE;
674
675		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
676		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
677		if (vd->vdev_islog && vdev_is_dead(vd))
678			valid = vdev_log_state_valid(vd);
679		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
680
681		if (!valid) {
682			dmu_objset_rele(os, FTAG);
683			return (0);
684		}
685	}
686
687	/*
688	 * Because tx == NULL, zil_claim_log_block() will not actually claim
689	 * any blocks, but just determine whether it is possible to do so.
690	 * In addition to checking the log chain, zil_claim_log_block()
691	 * will invoke zio_claim() with a done func of spa_claim_notify(),
692	 * which will update spa_max_claim_txg.  See spa_load() for details.
693	 */
694	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
695	    zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
696
697	dmu_objset_rele(os, FTAG);
698
699	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
700}
701
702static int
703zil_vdev_compare(const void *x1, const void *x2)
704{
705	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
706	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
707
708	if (v1 < v2)
709		return (-1);
710	if (v1 > v2)
711		return (1);
712
713	return (0);
714}
715
716void
717zil_add_block(zilog_t *zilog, const blkptr_t *bp)
718{
719	avl_tree_t *t = &zilog->zl_vdev_tree;
720	avl_index_t where;
721	zil_vdev_node_t *zv, zvsearch;
722	int ndvas = BP_GET_NDVAS(bp);
723	int i;
724
725	if (zfs_nocacheflush)
726		return;
727
728	ASSERT(zilog->zl_writer);
729
730	/*
731	 * Even though we're zl_writer, we still need a lock because the
732	 * zl_get_data() callbacks may have dmu_sync() done callbacks
733	 * that will run concurrently.
734	 */
735	mutex_enter(&zilog->zl_vdev_lock);
736	for (i = 0; i < ndvas; i++) {
737		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
738		if (avl_find(t, &zvsearch, &where) == NULL) {
739			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
740			zv->zv_vdev = zvsearch.zv_vdev;
741			avl_insert(t, zv, where);
742		}
743	}
744	mutex_exit(&zilog->zl_vdev_lock);
745}
746
747static void
748zil_flush_vdevs(zilog_t *zilog)
749{
750	spa_t *spa = zilog->zl_spa;
751	avl_tree_t *t = &zilog->zl_vdev_tree;
752	void *cookie = NULL;
753	zil_vdev_node_t *zv;
754	zio_t *zio;
755
756	ASSERT(zilog->zl_writer);
757
758	/*
759	 * We don't need zl_vdev_lock here because we're the zl_writer,
760	 * and all zl_get_data() callbacks are done.
761	 */
762	if (avl_numnodes(t) == 0)
763		return;
764
765	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
766
767	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
768
769	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
770		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
771		if (vd != NULL)
772			zio_flush(zio, vd);
773		kmem_free(zv, sizeof (*zv));
774	}
775
776	/*
777	 * Wait for all the flushes to complete.  Not all devices actually
778	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
779	 */
780	(void) zio_wait(zio);
781
782	spa_config_exit(spa, SCL_STATE, FTAG);
783}
784
785/*
786 * Function called when a log block write completes
787 */
788static void
789zil_lwb_write_done(zio_t *zio)
790{
791	lwb_t *lwb = zio->io_private;
792	zilog_t *zilog = lwb->lwb_zilog;
793	dmu_tx_t *tx = lwb->lwb_tx;
794
795	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
796	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
797	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
798	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
799	ASSERT(!BP_IS_GANG(zio->io_bp));
800	ASSERT(!BP_IS_HOLE(zio->io_bp));
801	ASSERT(zio->io_bp->blk_fill == 0);
802
803	/*
804	 * Ensure the lwb buffer pointer is cleared before releasing
805	 * the txg. If we have had an allocation failure and
806	 * the txg is waiting to sync then we want want zil_sync()
807	 * to remove the lwb so that it's not picked up as the next new
808	 * one in zil_commit_writer(). zil_sync() will only remove
809	 * the lwb if lwb_buf is null.
810	 */
811	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
812	mutex_enter(&zilog->zl_lock);
813	lwb->lwb_buf = NULL;
814	lwb->lwb_tx = NULL;
815	mutex_exit(&zilog->zl_lock);
816
817	/*
818	 * Now that we've written this log block, we have a stable pointer
819	 * to the next block in the chain, so it's OK to let the txg in
820	 * which we allocated the next block sync.
821	 */
822	dmu_tx_commit(tx);
823}
824
825/*
826 * Initialize the io for a log block.
827 */
828static void
829zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
830{
831	zbookmark_t zb;
832
833	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
834	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
835	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
836
837	if (zilog->zl_root_zio == NULL) {
838		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
839		    ZIO_FLAG_CANFAIL);
840	}
841	if (lwb->lwb_zio == NULL) {
842		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
843		    0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
844		    zil_lwb_write_done, lwb, ZIO_PRIORITY_LOG_WRITE,
845		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
846	}
847}
848
849/*
850 * Define a limited set of intent log block sizes.
851 * These must be a multiple of 4KB. Note only the amount used (again
852 * aligned to 4KB) actually gets written. However, we can't always just
853 * allocate SPA_MAXBLOCKSIZE as the slog space could be exhausted.
854 */
855uint64_t zil_block_buckets[] = {
856    4096,		/* non TX_WRITE */
857    8192+4096,		/* data base */
858    32*1024 + 4096, 	/* NFS writes */
859    UINT64_MAX
860};
861
862/*
863 * Use the slog as long as the logbias is 'latency' and the current commit size
864 * is less than the limit or the total list size is less than 2X the limit.
865 * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX.
866 */
867uint64_t zil_slog_limit = 1024 * 1024;
868#define	USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \
869	(((zilog)->zl_cur_used < zil_slog_limit) || \
870	((zilog)->zl_itx_list_sz < (zil_slog_limit << 1))))
871
872/*
873 * Start a log block write and advance to the next log block.
874 * Calls are serialized.
875 */
876static lwb_t *
877zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
878{
879	lwb_t *nlwb = NULL;
880	zil_chain_t *zilc;
881	spa_t *spa = zilog->zl_spa;
882	blkptr_t *bp;
883	dmu_tx_t *tx;
884	uint64_t txg;
885	uint64_t zil_blksz, wsz;
886	int i, error;
887
888	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
889		zilc = (zil_chain_t *)lwb->lwb_buf;
890		bp = &zilc->zc_next_blk;
891	} else {
892		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
893		bp = &zilc->zc_next_blk;
894	}
895
896	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
897
898	/*
899	 * Allocate the next block and save its address in this block
900	 * before writing it in order to establish the log chain.
901	 * Note that if the allocation of nlwb synced before we wrote
902	 * the block that points at it (lwb), we'd leak it if we crashed.
903	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
904	 * We dirty the dataset to ensure that zil_sync() will be called
905	 * to clean up in the event of allocation failure or I/O failure.
906	 */
907	tx = dmu_tx_create(zilog->zl_os);
908	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
909	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
910	txg = dmu_tx_get_txg(tx);
911
912	lwb->lwb_tx = tx;
913
914	/*
915	 * Log blocks are pre-allocated. Here we select the size of the next
916	 * block, based on size used in the last block.
917	 * - first find the smallest bucket that will fit the block from a
918	 *   limited set of block sizes. This is because it's faster to write
919	 *   blocks allocated from the same metaslab as they are adjacent or
920	 *   close.
921	 * - next find the maximum from the new suggested size and an array of
922	 *   previous sizes. This lessens a picket fence effect of wrongly
923	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
924	 *   requests.
925	 *
926	 * Note we only write what is used, but we can't just allocate
927	 * the maximum block size because we can exhaust the available
928	 * pool log space.
929	 */
930	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
931	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
932		continue;
933	zil_blksz = zil_block_buckets[i];
934	if (zil_blksz == UINT64_MAX)
935		zil_blksz = SPA_MAXBLOCKSIZE;
936	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
937	for (i = 0; i < ZIL_PREV_BLKS; i++)
938		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
939	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
940
941	BP_ZERO(bp);
942	/* pass the old blkptr in order to spread log blocks across devs */
943	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz,
944	    USE_SLOG(zilog));
945	if (!error) {
946		ASSERT3U(bp->blk_birth, ==, txg);
947		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
948		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
949
950		/*
951		 * Allocate a new log write buffer (lwb).
952		 */
953		nlwb = zil_alloc_lwb(zilog, bp, txg);
954
955		/* Record the block for later vdev flushing */
956		zil_add_block(zilog, &lwb->lwb_blk);
957	}
958
959	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
960		/* For Slim ZIL only write what is used. */
961		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
962		ASSERT3U(wsz, <=, lwb->lwb_sz);
963		zio_shrink(lwb->lwb_zio, wsz);
964
965	} else {
966		wsz = lwb->lwb_sz;
967	}
968
969	zilc->zc_pad = 0;
970	zilc->zc_nused = lwb->lwb_nused;
971	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
972
973	/*
974	 * clear unused data for security
975	 */
976	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
977
978	zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
979
980	/*
981	 * If there was an allocation failure then nlwb will be null which
982	 * forces a txg_wait_synced().
983	 */
984	return (nlwb);
985}
986
987static lwb_t *
988zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
989{
990	lr_t *lrc = &itx->itx_lr; /* common log record */
991	lr_write_t *lrw = (lr_write_t *)lrc;
992	char *lr_buf;
993	uint64_t txg = lrc->lrc_txg;
994	uint64_t reclen = lrc->lrc_reclen;
995	uint64_t dlen = 0;
996
997	if (lwb == NULL)
998		return (NULL);
999
1000	ASSERT(lwb->lwb_buf != NULL);
1001
1002	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1003		dlen = P2ROUNDUP_TYPED(
1004		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1005
1006	zilog->zl_cur_used += (reclen + dlen);
1007
1008	zil_lwb_write_init(zilog, lwb);
1009
1010	/*
1011	 * If this record won't fit in the current log block, start a new one.
1012	 */
1013	if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1014		lwb = zil_lwb_write_start(zilog, lwb);
1015		if (lwb == NULL)
1016			return (NULL);
1017		zil_lwb_write_init(zilog, lwb);
1018		ASSERT(LWB_EMPTY(lwb));
1019		if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1020			txg_wait_synced(zilog->zl_dmu_pool, txg);
1021			return (lwb);
1022		}
1023	}
1024
1025	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1026	bcopy(lrc, lr_buf, reclen);
1027	lrc = (lr_t *)lr_buf;
1028	lrw = (lr_write_t *)lrc;
1029
1030	/*
1031	 * If it's a write, fetch the data or get its blkptr as appropriate.
1032	 */
1033	if (lrc->lrc_txtype == TX_WRITE) {
1034		if (txg > spa_freeze_txg(zilog->zl_spa))
1035			txg_wait_synced(zilog->zl_dmu_pool, txg);
1036		if (itx->itx_wr_state != WR_COPIED) {
1037			char *dbuf;
1038			int error;
1039
1040			if (dlen) {
1041				ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1042				dbuf = lr_buf + reclen;
1043				lrw->lr_common.lrc_reclen += dlen;
1044			} else {
1045				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1046				dbuf = NULL;
1047			}
1048			error = zilog->zl_get_data(
1049			    itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1050			if (error == EIO) {
1051				txg_wait_synced(zilog->zl_dmu_pool, txg);
1052				return (lwb);
1053			}
1054			if (error) {
1055				ASSERT(error == ENOENT || error == EEXIST ||
1056				    error == EALREADY);
1057				return (lwb);
1058			}
1059		}
1060	}
1061
1062	/*
1063	 * We're actually making an entry, so update lrc_seq to be the
1064	 * log record sequence number.  Note that this is generally not
1065	 * equal to the itx sequence number because not all transactions
1066	 * are synchronous, and sometimes spa_sync() gets there first.
1067	 */
1068	lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1069	lwb->lwb_nused += reclen + dlen;
1070	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1071	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1072	ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0);
1073
1074	return (lwb);
1075}
1076
1077itx_t *
1078zil_itx_create(uint64_t txtype, size_t lrsize)
1079{
1080	itx_t *itx;
1081
1082	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1083
1084	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1085	itx->itx_lr.lrc_txtype = txtype;
1086	itx->itx_lr.lrc_reclen = lrsize;
1087	itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1088	itx->itx_lr.lrc_seq = 0;	/* defensive */
1089	itx->itx_sync = B_TRUE;		/* default is synchronous */
1090
1091	return (itx);
1092}
1093
1094void
1095zil_itx_destroy(itx_t *itx)
1096{
1097	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1098}
1099
1100/*
1101 * Free up the sync and async itxs. The itxs_t has already been detached
1102 * so no locks are needed.
1103 */
1104static void
1105zil_itxg_clean(itxs_t *itxs)
1106{
1107	itx_t *itx;
1108	list_t *list;
1109	avl_tree_t *t;
1110	void *cookie;
1111	itx_async_node_t *ian;
1112
1113	list = &itxs->i_sync_list;
1114	while ((itx = list_head(list)) != NULL) {
1115		list_remove(list, itx);
1116		kmem_free(itx, offsetof(itx_t, itx_lr) +
1117		    itx->itx_lr.lrc_reclen);
1118	}
1119
1120	cookie = NULL;
1121	t = &itxs->i_async_tree;
1122	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1123		list = &ian->ia_list;
1124		while ((itx = list_head(list)) != NULL) {
1125			list_remove(list, itx);
1126			kmem_free(itx, offsetof(itx_t, itx_lr) +
1127			    itx->itx_lr.lrc_reclen);
1128		}
1129		list_destroy(list);
1130		kmem_free(ian, sizeof (itx_async_node_t));
1131	}
1132	avl_destroy(t);
1133
1134	kmem_free(itxs, sizeof (itxs_t));
1135}
1136
1137static int
1138zil_aitx_compare(const void *x1, const void *x2)
1139{
1140	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1141	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1142
1143	if (o1 < o2)
1144		return (-1);
1145	if (o1 > o2)
1146		return (1);
1147
1148	return (0);
1149}
1150
1151/*
1152 * Remove all async itx with the given oid.
1153 */
1154static void
1155zil_remove_async(zilog_t *zilog, uint64_t oid)
1156{
1157	uint64_t otxg, txg;
1158	itx_async_node_t *ian;
1159	avl_tree_t *t;
1160	avl_index_t where;
1161	list_t clean_list;
1162	itx_t *itx;
1163
1164	ASSERT(oid != 0);
1165	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1166
1167	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1168		otxg = ZILTEST_TXG;
1169	else
1170		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1171
1172	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1173		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1174
1175		mutex_enter(&itxg->itxg_lock);
1176		if (itxg->itxg_txg != txg) {
1177			mutex_exit(&itxg->itxg_lock);
1178			continue;
1179		}
1180
1181		/*
1182		 * Locate the object node and append its list.
1183		 */
1184		t = &itxg->itxg_itxs->i_async_tree;
1185		ian = avl_find(t, &oid, &where);
1186		if (ian != NULL)
1187			list_move_tail(&clean_list, &ian->ia_list);
1188		mutex_exit(&itxg->itxg_lock);
1189	}
1190	while ((itx = list_head(&clean_list)) != NULL) {
1191		list_remove(&clean_list, itx);
1192		kmem_free(itx, offsetof(itx_t, itx_lr) +
1193		    itx->itx_lr.lrc_reclen);
1194	}
1195	list_destroy(&clean_list);
1196}
1197
1198void
1199zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1200{
1201	uint64_t txg;
1202	itxg_t *itxg;
1203	itxs_t *itxs, *clean = NULL;
1204
1205	/*
1206	 * Object ids can be re-instantiated in the next txg so
1207	 * remove any async transactions to avoid future leaks.
1208	 * This can happen if a fsync occurs on the re-instantiated
1209	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1210	 * the new file data and flushes a write record for the old object.
1211	 */
1212	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1213		zil_remove_async(zilog, itx->itx_oid);
1214
1215	/*
1216	 * Ensure the data of a renamed file is committed before the rename.
1217	 */
1218	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1219		zil_async_to_sync(zilog, itx->itx_oid);
1220
1221	if (spa_freeze_txg(zilog->zl_spa) !=  UINT64_MAX)
1222		txg = ZILTEST_TXG;
1223	else
1224		txg = dmu_tx_get_txg(tx);
1225
1226	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1227	mutex_enter(&itxg->itxg_lock);
1228	itxs = itxg->itxg_itxs;
1229	if (itxg->itxg_txg != txg) {
1230		if (itxs != NULL) {
1231			/*
1232			 * The zil_clean callback hasn't got around to cleaning
1233			 * this itxg. Save the itxs for release below.
1234			 * This should be rare.
1235			 */
1236			atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1237			itxg->itxg_sod = 0;
1238			clean = itxg->itxg_itxs;
1239		}
1240		ASSERT(itxg->itxg_sod == 0);
1241		itxg->itxg_txg = txg;
1242		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1243
1244		list_create(&itxs->i_sync_list, sizeof (itx_t),
1245		    offsetof(itx_t, itx_node));
1246		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1247		    sizeof (itx_async_node_t),
1248		    offsetof(itx_async_node_t, ia_node));
1249	}
1250	if (itx->itx_sync) {
1251		list_insert_tail(&itxs->i_sync_list, itx);
1252		atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1253		itxg->itxg_sod += itx->itx_sod;
1254	} else {
1255		avl_tree_t *t = &itxs->i_async_tree;
1256		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1257		itx_async_node_t *ian;
1258		avl_index_t where;
1259
1260		ian = avl_find(t, &foid, &where);
1261		if (ian == NULL) {
1262			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1263			list_create(&ian->ia_list, sizeof (itx_t),
1264			    offsetof(itx_t, itx_node));
1265			ian->ia_foid = foid;
1266			avl_insert(t, ian, where);
1267		}
1268		list_insert_tail(&ian->ia_list, itx);
1269	}
1270
1271	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1272	mutex_exit(&itxg->itxg_lock);
1273
1274	/* Release the old itxs now we've dropped the lock */
1275	if (clean != NULL)
1276		zil_itxg_clean(clean);
1277}
1278
1279/*
1280 * If there are any in-memory intent log transactions which have now been
1281 * synced then start up a taskq to free them.
1282 */
1283void
1284zil_clean(zilog_t *zilog, uint64_t synced_txg)
1285{
1286	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1287	itxs_t *clean_me;
1288
1289	mutex_enter(&itxg->itxg_lock);
1290	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1291		mutex_exit(&itxg->itxg_lock);
1292		return;
1293	}
1294	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1295	ASSERT(itxg->itxg_txg != 0);
1296	ASSERT(zilog->zl_clean_taskq != NULL);
1297	atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1298	itxg->itxg_sod = 0;
1299	clean_me = itxg->itxg_itxs;
1300	itxg->itxg_itxs = NULL;
1301	itxg->itxg_txg = 0;
1302	mutex_exit(&itxg->itxg_lock);
1303	/*
1304	 * Preferably start a task queue to free up the old itxs but
1305	 * if taskq_dispatch can't allocate resources to do that then
1306	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1307	 * created a bad performance problem.
1308	 */
1309	if (taskq_dispatch(zilog->zl_clean_taskq,
1310	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1311		zil_itxg_clean(clean_me);
1312}
1313
1314/*
1315 * Get the list of itxs to commit into zl_itx_commit_list.
1316 */
1317static void
1318zil_get_commit_list(zilog_t *zilog)
1319{
1320	uint64_t otxg, txg;
1321	list_t *commit_list = &zilog->zl_itx_commit_list;
1322	uint64_t push_sod = 0;
1323
1324	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1325		otxg = ZILTEST_TXG;
1326	else
1327		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1328
1329	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1330		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1331
1332		mutex_enter(&itxg->itxg_lock);
1333		if (itxg->itxg_txg != txg) {
1334			mutex_exit(&itxg->itxg_lock);
1335			continue;
1336		}
1337
1338		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1339		push_sod += itxg->itxg_sod;
1340		itxg->itxg_sod = 0;
1341
1342		mutex_exit(&itxg->itxg_lock);
1343	}
1344	atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1345}
1346
1347/*
1348 * Move the async itxs for a specified object to commit into sync lists.
1349 */
1350static void
1351zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1352{
1353	uint64_t otxg, txg;
1354	itx_async_node_t *ian;
1355	avl_tree_t *t;
1356	avl_index_t where;
1357
1358	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1359		otxg = ZILTEST_TXG;
1360	else
1361		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1362
1363	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1364		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1365
1366		mutex_enter(&itxg->itxg_lock);
1367		if (itxg->itxg_txg != txg) {
1368			mutex_exit(&itxg->itxg_lock);
1369			continue;
1370		}
1371
1372		/*
1373		 * If a foid is specified then find that node and append its
1374		 * list. Otherwise walk the tree appending all the lists
1375		 * to the sync list. We add to the end rather than the
1376		 * beginning to ensure the create has happened.
1377		 */
1378		t = &itxg->itxg_itxs->i_async_tree;
1379		if (foid != 0) {
1380			ian = avl_find(t, &foid, &where);
1381			if (ian != NULL) {
1382				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1383				    &ian->ia_list);
1384			}
1385		} else {
1386			void *cookie = NULL;
1387
1388			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1389				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1390				    &ian->ia_list);
1391				list_destroy(&ian->ia_list);
1392				kmem_free(ian, sizeof (itx_async_node_t));
1393			}
1394		}
1395		mutex_exit(&itxg->itxg_lock);
1396	}
1397}
1398
1399static void
1400zil_commit_writer(zilog_t *zilog)
1401{
1402	uint64_t txg;
1403	itx_t *itx;
1404	lwb_t *lwb;
1405	spa_t *spa = zilog->zl_spa;
1406	int error = 0;
1407
1408	ASSERT(zilog->zl_root_zio == NULL);
1409
1410	mutex_exit(&zilog->zl_lock);
1411
1412	zil_get_commit_list(zilog);
1413
1414	/*
1415	 * Return if there's nothing to commit before we dirty the fs by
1416	 * calling zil_create().
1417	 */
1418	if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1419		mutex_enter(&zilog->zl_lock);
1420		return;
1421	}
1422
1423	if (zilog->zl_suspend) {
1424		lwb = NULL;
1425	} else {
1426		lwb = list_tail(&zilog->zl_lwb_list);
1427		if (lwb == NULL)
1428			lwb = zil_create(zilog);
1429	}
1430
1431	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1432	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1433		txg = itx->itx_lr.lrc_txg;
1434		ASSERT(txg);
1435
1436		if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1437			lwb = zil_lwb_commit(zilog, itx, lwb);
1438		list_remove(&zilog->zl_itx_commit_list, itx);
1439		kmem_free(itx, offsetof(itx_t, itx_lr)
1440		    + itx->itx_lr.lrc_reclen);
1441	}
1442	DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1443
1444	/* write the last block out */
1445	if (lwb != NULL && lwb->lwb_zio != NULL)
1446		lwb = zil_lwb_write_start(zilog, lwb);
1447
1448	zilog->zl_cur_used = 0;
1449
1450	/*
1451	 * Wait if necessary for the log blocks to be on stable storage.
1452	 */
1453	if (zilog->zl_root_zio) {
1454		error = zio_wait(zilog->zl_root_zio);
1455		zilog->zl_root_zio = NULL;
1456		zil_flush_vdevs(zilog);
1457	}
1458
1459	if (error || lwb == NULL)
1460		txg_wait_synced(zilog->zl_dmu_pool, 0);
1461
1462	mutex_enter(&zilog->zl_lock);
1463
1464	/*
1465	 * Remember the highest committed log sequence number for ztest.
1466	 * We only update this value when all the log writes succeeded,
1467	 * because ztest wants to ASSERT that it got the whole log chain.
1468	 */
1469	if (error == 0 && lwb != NULL)
1470		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1471}
1472
1473/*
1474 * Commit zfs transactions to stable storage.
1475 * If foid is 0 push out all transactions, otherwise push only those
1476 * for that object or might reference that object.
1477 *
1478 * itxs are committed in batches. In a heavily stressed zil there will be
1479 * a commit writer thread who is writing out a bunch of itxs to the log
1480 * for a set of committing threads (cthreads) in the same batch as the writer.
1481 * Those cthreads are all waiting on the same cv for that batch.
1482 *
1483 * There will also be a different and growing batch of threads that are
1484 * waiting to commit (qthreads). When the committing batch completes
1485 * a transition occurs such that the cthreads exit and the qthreads become
1486 * cthreads. One of the new cthreads becomes the writer thread for the
1487 * batch. Any new threads arriving become new qthreads.
1488 *
1489 * Only 2 condition variables are needed and there's no transition
1490 * between the two cvs needed. They just flip-flop between qthreads
1491 * and cthreads.
1492 *
1493 * Using this scheme we can efficiently wakeup up only those threads
1494 * that have been committed.
1495 */
1496void
1497zil_commit(zilog_t *zilog, uint64_t foid)
1498{
1499	uint64_t mybatch;
1500
1501	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1502		return;
1503
1504	/* move the async itxs for the foid to the sync queues */
1505	zil_async_to_sync(zilog, foid);
1506
1507	mutex_enter(&zilog->zl_lock);
1508	mybatch = zilog->zl_next_batch;
1509	while (zilog->zl_writer) {
1510		cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1511		if (mybatch <= zilog->zl_com_batch) {
1512			mutex_exit(&zilog->zl_lock);
1513			return;
1514		}
1515	}
1516
1517	zilog->zl_next_batch++;
1518	zilog->zl_writer = B_TRUE;
1519	zil_commit_writer(zilog);
1520	zilog->zl_com_batch = mybatch;
1521	zilog->zl_writer = B_FALSE;
1522	mutex_exit(&zilog->zl_lock);
1523
1524	/* wake up one thread to become the next writer */
1525	cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1526
1527	/* wake up all threads waiting for this batch to be committed */
1528	cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1529}
1530
1531/*
1532 * Called in syncing context to free committed log blocks and update log header.
1533 */
1534void
1535zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1536{
1537	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1538	uint64_t txg = dmu_tx_get_txg(tx);
1539	spa_t *spa = zilog->zl_spa;
1540	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1541	lwb_t *lwb;
1542
1543	/*
1544	 * We don't zero out zl_destroy_txg, so make sure we don't try
1545	 * to destroy it twice.
1546	 */
1547	if (spa_sync_pass(spa) != 1)
1548		return;
1549
1550	mutex_enter(&zilog->zl_lock);
1551
1552	ASSERT(zilog->zl_stop_sync == 0);
1553
1554	if (*replayed_seq != 0) {
1555		ASSERT(zh->zh_replay_seq < *replayed_seq);
1556		zh->zh_replay_seq = *replayed_seq;
1557		*replayed_seq = 0;
1558	}
1559
1560	if (zilog->zl_destroy_txg == txg) {
1561		blkptr_t blk = zh->zh_log;
1562
1563		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1564
1565		bzero(zh, sizeof (zil_header_t));
1566		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1567
1568		if (zilog->zl_keep_first) {
1569			/*
1570			 * If this block was part of log chain that couldn't
1571			 * be claimed because a device was missing during
1572			 * zil_claim(), but that device later returns,
1573			 * then this block could erroneously appear valid.
1574			 * To guard against this, assign a new GUID to the new
1575			 * log chain so it doesn't matter what blk points to.
1576			 */
1577			zil_init_log_chain(zilog, &blk);
1578			zh->zh_log = blk;
1579		}
1580	}
1581
1582	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1583		zh->zh_log = lwb->lwb_blk;
1584		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1585			break;
1586		list_remove(&zilog->zl_lwb_list, lwb);
1587		zio_free_zil(spa, txg, &lwb->lwb_blk);
1588		kmem_cache_free(zil_lwb_cache, lwb);
1589
1590		/*
1591		 * If we don't have anything left in the lwb list then
1592		 * we've had an allocation failure and we need to zero
1593		 * out the zil_header blkptr so that we don't end
1594		 * up freeing the same block twice.
1595		 */
1596		if (list_head(&zilog->zl_lwb_list) == NULL)
1597			BP_ZERO(&zh->zh_log);
1598	}
1599	mutex_exit(&zilog->zl_lock);
1600}
1601
1602void
1603zil_init(void)
1604{
1605	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1606	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1607}
1608
1609void
1610zil_fini(void)
1611{
1612	kmem_cache_destroy(zil_lwb_cache);
1613}
1614
1615void
1616zil_set_sync(zilog_t *zilog, uint64_t sync)
1617{
1618	zilog->zl_sync = sync;
1619}
1620
1621void
1622zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1623{
1624	zilog->zl_logbias = logbias;
1625}
1626
1627zilog_t *
1628zil_alloc(objset_t *os, zil_header_t *zh_phys)
1629{
1630	zilog_t *zilog;
1631
1632	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1633
1634	zilog->zl_header = zh_phys;
1635	zilog->zl_os = os;
1636	zilog->zl_spa = dmu_objset_spa(os);
1637	zilog->zl_dmu_pool = dmu_objset_pool(os);
1638	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1639	zilog->zl_logbias = dmu_objset_logbias(os);
1640	zilog->zl_sync = dmu_objset_syncprop(os);
1641	zilog->zl_next_batch = 1;
1642
1643	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1644
1645	for (int i = 0; i < TXG_SIZE; i++) {
1646		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1647		    MUTEX_DEFAULT, NULL);
1648	}
1649
1650	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1651	    offsetof(lwb_t, lwb_node));
1652
1653	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1654	    offsetof(itx_t, itx_node));
1655
1656	mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1657
1658	avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1659	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1660
1661	cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1662	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1663	cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1664	cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1665
1666	return (zilog);
1667}
1668
1669void
1670zil_free(zilog_t *zilog)
1671{
1672	zilog->zl_stop_sync = 1;
1673
1674	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1675	list_destroy(&zilog->zl_lwb_list);
1676
1677	avl_destroy(&zilog->zl_vdev_tree);
1678	mutex_destroy(&zilog->zl_vdev_lock);
1679
1680	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1681	list_destroy(&zilog->zl_itx_commit_list);
1682
1683	for (int i = 0; i < TXG_SIZE; i++) {
1684		/*
1685		 * It's possible for an itx to be generated that doesn't dirty
1686		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1687		 * callback to remove the entry. We remove those here.
1688		 *
1689		 * Also free up the ziltest itxs.
1690		 */
1691		if (zilog->zl_itxg[i].itxg_itxs)
1692			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1693		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1694	}
1695
1696	mutex_destroy(&zilog->zl_lock);
1697
1698	cv_destroy(&zilog->zl_cv_writer);
1699	cv_destroy(&zilog->zl_cv_suspend);
1700	cv_destroy(&zilog->zl_cv_batch[0]);
1701	cv_destroy(&zilog->zl_cv_batch[1]);
1702
1703	kmem_free(zilog, sizeof (zilog_t));
1704}
1705
1706/*
1707 * Open an intent log.
1708 */
1709zilog_t *
1710zil_open(objset_t *os, zil_get_data_t *get_data)
1711{
1712	zilog_t *zilog = dmu_objset_zil(os);
1713
1714	ASSERT(zilog->zl_clean_taskq == NULL);
1715	ASSERT(zilog->zl_get_data == NULL);
1716	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1717
1718	zilog->zl_get_data = get_data;
1719	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1720	    2, 2, TASKQ_PREPOPULATE);
1721
1722	return (zilog);
1723}
1724
1725/*
1726 * Close an intent log.
1727 */
1728void
1729zil_close(zilog_t *zilog)
1730{
1731	lwb_t *lwb;
1732	uint64_t txg = 0;
1733
1734	zil_commit(zilog, 0); /* commit all itx */
1735
1736	/*
1737	 * The lwb_max_txg for the stubby lwb will reflect the last activity
1738	 * for the zil.  After a txg_wait_synced() on the txg we know all the
1739	 * callbacks have occurred that may clean the zil.  Only then can we
1740	 * destroy the zl_clean_taskq.
1741	 */
1742	mutex_enter(&zilog->zl_lock);
1743	lwb = list_tail(&zilog->zl_lwb_list);
1744	if (lwb != NULL)
1745		txg = lwb->lwb_max_txg;
1746	mutex_exit(&zilog->zl_lock);
1747	if (txg)
1748		txg_wait_synced(zilog->zl_dmu_pool, txg);
1749
1750	taskq_destroy(zilog->zl_clean_taskq);
1751	zilog->zl_clean_taskq = NULL;
1752	zilog->zl_get_data = NULL;
1753
1754	/*
1755	 * We should have only one LWB left on the list; remove it now.
1756	 */
1757	mutex_enter(&zilog->zl_lock);
1758	lwb = list_head(&zilog->zl_lwb_list);
1759	if (lwb != NULL) {
1760		ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1761		list_remove(&zilog->zl_lwb_list, lwb);
1762		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1763		kmem_cache_free(zil_lwb_cache, lwb);
1764	}
1765	mutex_exit(&zilog->zl_lock);
1766}
1767
1768/*
1769 * Suspend an intent log.  While in suspended mode, we still honor
1770 * synchronous semantics, but we rely on txg_wait_synced() to do it.
1771 * We suspend the log briefly when taking a snapshot so that the snapshot
1772 * contains all the data it's supposed to, and has an empty intent log.
1773 */
1774int
1775zil_suspend(zilog_t *zilog)
1776{
1777	const zil_header_t *zh = zilog->zl_header;
1778
1779	mutex_enter(&zilog->zl_lock);
1780	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
1781		mutex_exit(&zilog->zl_lock);
1782		return (EBUSY);
1783	}
1784	if (zilog->zl_suspend++ != 0) {
1785		/*
1786		 * Someone else already began a suspend.
1787		 * Just wait for them to finish.
1788		 */
1789		while (zilog->zl_suspending)
1790			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1791		mutex_exit(&zilog->zl_lock);
1792		return (0);
1793	}
1794	zilog->zl_suspending = B_TRUE;
1795	mutex_exit(&zilog->zl_lock);
1796
1797	zil_commit(zilog, 0);
1798
1799	zil_destroy(zilog, B_FALSE);
1800
1801	mutex_enter(&zilog->zl_lock);
1802	zilog->zl_suspending = B_FALSE;
1803	cv_broadcast(&zilog->zl_cv_suspend);
1804	mutex_exit(&zilog->zl_lock);
1805
1806	return (0);
1807}
1808
1809void
1810zil_resume(zilog_t *zilog)
1811{
1812	mutex_enter(&zilog->zl_lock);
1813	ASSERT(zilog->zl_suspend != 0);
1814	zilog->zl_suspend--;
1815	mutex_exit(&zilog->zl_lock);
1816}
1817
1818typedef struct zil_replay_arg {
1819	zil_replay_func_t **zr_replay;
1820	void		*zr_arg;
1821	boolean_t	zr_byteswap;
1822	char		*zr_lr;
1823} zil_replay_arg_t;
1824
1825static int
1826zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
1827{
1828	char name[MAXNAMELEN];
1829
1830	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
1831
1832	dmu_objset_name(zilog->zl_os, name);
1833
1834	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
1835	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
1836	    (u_longlong_t)lr->lrc_seq,
1837	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
1838	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
1839
1840	return (error);
1841}
1842
1843static int
1844zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
1845{
1846	zil_replay_arg_t *zr = zra;
1847	const zil_header_t *zh = zilog->zl_header;
1848	uint64_t reclen = lr->lrc_reclen;
1849	uint64_t txtype = lr->lrc_txtype;
1850	int error = 0;
1851
1852	zilog->zl_replaying_seq = lr->lrc_seq;
1853
1854	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
1855		return (0);
1856
1857	if (lr->lrc_txg < claim_txg)		/* already committed */
1858		return (0);
1859
1860	/* Strip case-insensitive bit, still present in log record */
1861	txtype &= ~TX_CI;
1862
1863	if (txtype == 0 || txtype >= TX_MAX_TYPE)
1864		return (zil_replay_error(zilog, lr, EINVAL));
1865
1866	/*
1867	 * If this record type can be logged out of order, the object
1868	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
1869	 */
1870	if (TX_OOO(txtype)) {
1871		error = dmu_object_info(zilog->zl_os,
1872		    ((lr_ooo_t *)lr)->lr_foid, NULL);
1873		if (error == ENOENT || error == EEXIST)
1874			return (0);
1875	}
1876
1877	/*
1878	 * Make a copy of the data so we can revise and extend it.
1879	 */
1880	bcopy(lr, zr->zr_lr, reclen);
1881
1882	/*
1883	 * If this is a TX_WRITE with a blkptr, suck in the data.
1884	 */
1885	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
1886		error = zil_read_log_data(zilog, (lr_write_t *)lr,
1887		    zr->zr_lr + reclen);
1888		if (error)
1889			return (zil_replay_error(zilog, lr, error));
1890	}
1891
1892	/*
1893	 * The log block containing this lr may have been byteswapped
1894	 * so that we can easily examine common fields like lrc_txtype.
1895	 * However, the log is a mix of different record types, and only the
1896	 * replay vectors know how to byteswap their records.  Therefore, if
1897	 * the lr was byteswapped, undo it before invoking the replay vector.
1898	 */
1899	if (zr->zr_byteswap)
1900		byteswap_uint64_array(zr->zr_lr, reclen);
1901
1902	/*
1903	 * We must now do two things atomically: replay this log record,
1904	 * and update the log header sequence number to reflect the fact that
1905	 * we did so. At the end of each replay function the sequence number
1906	 * is updated if we are in replay mode.
1907	 */
1908	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
1909	if (error) {
1910		/*
1911		 * The DMU's dnode layer doesn't see removes until the txg
1912		 * commits, so a subsequent claim can spuriously fail with
1913		 * EEXIST. So if we receive any error we try syncing out
1914		 * any removes then retry the transaction.  Note that we
1915		 * specify B_FALSE for byteswap now, so we don't do it twice.
1916		 */
1917		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
1918		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
1919		if (error)
1920			return (zil_replay_error(zilog, lr, error));
1921	}
1922	return (0);
1923}
1924
1925/* ARGSUSED */
1926static int
1927zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
1928{
1929	zilog->zl_replay_blks++;
1930
1931	return (0);
1932}
1933
1934/*
1935 * If this dataset has a non-empty intent log, replay it and destroy it.
1936 */
1937void
1938zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
1939{
1940	zilog_t *zilog = dmu_objset_zil(os);
1941	const zil_header_t *zh = zilog->zl_header;
1942	zil_replay_arg_t zr;
1943
1944	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
1945		zil_destroy(zilog, B_TRUE);
1946		return;
1947	}
1948	//printf("ZFS: Replaying ZIL on %s...\n", os->os->os_spa->spa_name);
1949
1950	zr.zr_replay = replay_func;
1951	zr.zr_arg = arg;
1952	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
1953	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
1954
1955	/*
1956	 * Wait for in-progress removes to sync before starting replay.
1957	 */
1958	txg_wait_synced(zilog->zl_dmu_pool, 0);
1959
1960	zilog->zl_replay = B_TRUE;
1961	zilog->zl_replay_time = ddi_get_lbolt();
1962	ASSERT(zilog->zl_replay_blks == 0);
1963	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
1964	    zh->zh_claim_txg);
1965	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
1966
1967	zil_destroy(zilog, B_FALSE);
1968	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
1969	zilog->zl_replay = B_FALSE;
1970	//printf("ZFS: Replay of ZIL on %s finished.\n", os->os->os_spa->spa_name);
1971}
1972
1973boolean_t
1974zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
1975{
1976	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1977		return (B_TRUE);
1978
1979	if (zilog->zl_replay) {
1980		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1981		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
1982		    zilog->zl_replaying_seq;
1983		return (B_TRUE);
1984	}
1985
1986	return (B_FALSE);
1987}
1988
1989/* ARGSUSED */
1990int
1991zil_vdev_offline(const char *osname, void *arg)
1992{
1993	objset_t *os;
1994	zilog_t *zilog;
1995	int error;
1996
1997	error = dmu_objset_hold(osname, FTAG, &os);
1998	if (error)
1999		return (error);
2000
2001	zilog = dmu_objset_zil(os);
2002	if (zil_suspend(zilog) != 0)
2003		error = EEXIST;
2004	else
2005		zil_resume(zilog);
2006	dmu_objset_rele(os, FTAG);
2007	return (error);
2008}
2009