zfs_vnops.c revision 297096
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24 * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
25 */
26
27/* Portions Copyright 2007 Jeremy Teo */
28/* Portions Copyright 2010 Robert Milkowski */
29
30#include <sys/types.h>
31#include <sys/param.h>
32#include <sys/time.h>
33#include <sys/systm.h>
34#include <sys/sysmacros.h>
35#include <sys/resource.h>
36#include <sys/vfs.h>
37#include <sys/vm.h>
38#include <sys/vnode.h>
39#include <sys/file.h>
40#include <sys/stat.h>
41#include <sys/kmem.h>
42#include <sys/taskq.h>
43#include <sys/uio.h>
44#include <sys/atomic.h>
45#include <sys/namei.h>
46#include <sys/mman.h>
47#include <sys/cmn_err.h>
48#include <sys/errno.h>
49#include <sys/unistd.h>
50#include <sys/zfs_dir.h>
51#include <sys/zfs_ioctl.h>
52#include <sys/fs/zfs.h>
53#include <sys/dmu.h>
54#include <sys/dmu_objset.h>
55#include <sys/spa.h>
56#include <sys/txg.h>
57#include <sys/dbuf.h>
58#include <sys/zap.h>
59#include <sys/sa.h>
60#include <sys/dirent.h>
61#include <sys/policy.h>
62#include <sys/sunddi.h>
63#include <sys/filio.h>
64#include <sys/sid.h>
65#include <sys/zfs_ctldir.h>
66#include <sys/zfs_fuid.h>
67#include <sys/zfs_sa.h>
68#include <sys/dnlc.h>
69#include <sys/zfs_rlock.h>
70#include <sys/extdirent.h>
71#include <sys/kidmap.h>
72#include <sys/bio.h>
73#include <sys/buf.h>
74#include <sys/sched.h>
75#include <sys/acl.h>
76#include <vm/vm_param.h>
77#include <vm/vm_pageout.h>
78
79/*
80 * Programming rules.
81 *
82 * Each vnode op performs some logical unit of work.  To do this, the ZPL must
83 * properly lock its in-core state, create a DMU transaction, do the work,
84 * record this work in the intent log (ZIL), commit the DMU transaction,
85 * and wait for the intent log to commit if it is a synchronous operation.
86 * Moreover, the vnode ops must work in both normal and log replay context.
87 * The ordering of events is important to avoid deadlocks and references
88 * to freed memory.  The example below illustrates the following Big Rules:
89 *
90 *  (1)	A check must be made in each zfs thread for a mounted file system.
91 *	This is done avoiding races using ZFS_ENTER(zfsvfs).
92 *	A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
93 *	must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
94 *	can return EIO from the calling function.
95 *
96 *  (2)	VN_RELE() should always be the last thing except for zil_commit()
97 *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
98 *	First, if it's the last reference, the vnode/znode
99 *	can be freed, so the zp may point to freed memory.  Second, the last
100 *	reference will call zfs_zinactive(), which may induce a lot of work --
101 *	pushing cached pages (which acquires range locks) and syncing out
102 *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
103 *	which could deadlock the system if you were already holding one.
104 *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
105 *
106 *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
107 *	as they can span dmu_tx_assign() calls.
108 *
109 *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
110 *      dmu_tx_assign().  This is critical because we don't want to block
111 *      while holding locks.
112 *
113 *	If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT.  This
114 *	reduces lock contention and CPU usage when we must wait (note that if
115 *	throughput is constrained by the storage, nearly every transaction
116 *	must wait).
117 *
118 *      Note, in particular, that if a lock is sometimes acquired before
119 *      the tx assigns, and sometimes after (e.g. z_lock), then failing
120 *      to use a non-blocking assign can deadlock the system.  The scenario:
121 *
122 *	Thread A has grabbed a lock before calling dmu_tx_assign().
123 *	Thread B is in an already-assigned tx, and blocks for this lock.
124 *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
125 *	forever, because the previous txg can't quiesce until B's tx commits.
126 *
127 *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
128 *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
129 *	calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
130 *	to indicate that this operation has already called dmu_tx_wait().
131 *	This will ensure that we don't retry forever, waiting a short bit
132 *	each time.
133 *
134 *  (5)	If the operation succeeded, generate the intent log entry for it
135 *	before dropping locks.  This ensures that the ordering of events
136 *	in the intent log matches the order in which they actually occurred.
137 *	During ZIL replay the zfs_log_* functions will update the sequence
138 *	number to indicate the zil transaction has replayed.
139 *
140 *  (6)	At the end of each vnode op, the DMU tx must always commit,
141 *	regardless of whether there were any errors.
142 *
143 *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
144 *	to ensure that synchronous semantics are provided when necessary.
145 *
146 * In general, this is how things should be ordered in each vnode op:
147 *
148 *	ZFS_ENTER(zfsvfs);		// exit if unmounted
149 * top:
150 *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
151 *	rw_enter(...);			// grab any other locks you need
152 *	tx = dmu_tx_create(...);	// get DMU tx
153 *	dmu_tx_hold_*();		// hold each object you might modify
154 *	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
155 *	if (error) {
156 *		rw_exit(...);		// drop locks
157 *		zfs_dirent_unlock(dl);	// unlock directory entry
158 *		VN_RELE(...);		// release held vnodes
159 *		if (error == ERESTART) {
160 *			waited = B_TRUE;
161 *			dmu_tx_wait(tx);
162 *			dmu_tx_abort(tx);
163 *			goto top;
164 *		}
165 *		dmu_tx_abort(tx);	// abort DMU tx
166 *		ZFS_EXIT(zfsvfs);	// finished in zfs
167 *		return (error);		// really out of space
168 *	}
169 *	error = do_real_work();		// do whatever this VOP does
170 *	if (error == 0)
171 *		zfs_log_*(...);		// on success, make ZIL entry
172 *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
173 *	rw_exit(...);			// drop locks
174 *	zfs_dirent_unlock(dl);		// unlock directory entry
175 *	VN_RELE(...);			// release held vnodes
176 *	zil_commit(zilog, foid);	// synchronous when necessary
177 *	ZFS_EXIT(zfsvfs);		// finished in zfs
178 *	return (error);			// done, report error
179 */
180
181/* ARGSUSED */
182static int
183zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
184{
185	znode_t	*zp = VTOZ(*vpp);
186	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
187
188	ZFS_ENTER(zfsvfs);
189	ZFS_VERIFY_ZP(zp);
190
191	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
192	    ((flag & FAPPEND) == 0)) {
193		ZFS_EXIT(zfsvfs);
194		return (SET_ERROR(EPERM));
195	}
196
197	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
198	    ZTOV(zp)->v_type == VREG &&
199	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
200		if (fs_vscan(*vpp, cr, 0) != 0) {
201			ZFS_EXIT(zfsvfs);
202			return (SET_ERROR(EACCES));
203		}
204	}
205
206	/* Keep a count of the synchronous opens in the znode */
207	if (flag & (FSYNC | FDSYNC))
208		atomic_inc_32(&zp->z_sync_cnt);
209
210	ZFS_EXIT(zfsvfs);
211	return (0);
212}
213
214/* ARGSUSED */
215static int
216zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
217    caller_context_t *ct)
218{
219	znode_t	*zp = VTOZ(vp);
220	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
221
222	/*
223	 * Clean up any locks held by this process on the vp.
224	 */
225	cleanlocks(vp, ddi_get_pid(), 0);
226	cleanshares(vp, ddi_get_pid());
227
228	ZFS_ENTER(zfsvfs);
229	ZFS_VERIFY_ZP(zp);
230
231	/* Decrement the synchronous opens in the znode */
232	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
233		atomic_dec_32(&zp->z_sync_cnt);
234
235	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
236	    ZTOV(zp)->v_type == VREG &&
237	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
238		VERIFY(fs_vscan(vp, cr, 1) == 0);
239
240	ZFS_EXIT(zfsvfs);
241	return (0);
242}
243
244/*
245 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
246 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
247 */
248static int
249zfs_holey(vnode_t *vp, u_long cmd, offset_t *off)
250{
251	znode_t	*zp = VTOZ(vp);
252	uint64_t noff = (uint64_t)*off; /* new offset */
253	uint64_t file_sz;
254	int error;
255	boolean_t hole;
256
257	file_sz = zp->z_size;
258	if (noff >= file_sz)  {
259		return (SET_ERROR(ENXIO));
260	}
261
262	if (cmd == _FIO_SEEK_HOLE)
263		hole = B_TRUE;
264	else
265		hole = B_FALSE;
266
267	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
268
269	if (error == ESRCH)
270		return (SET_ERROR(ENXIO));
271
272	/*
273	 * We could find a hole that begins after the logical end-of-file,
274	 * because dmu_offset_next() only works on whole blocks.  If the
275	 * EOF falls mid-block, then indicate that the "virtual hole"
276	 * at the end of the file begins at the logical EOF, rather than
277	 * at the end of the last block.
278	 */
279	if (noff > file_sz) {
280		ASSERT(hole);
281		noff = file_sz;
282	}
283
284	if (noff < *off)
285		return (error);
286	*off = noff;
287	return (error);
288}
289
290/* ARGSUSED */
291static int
292zfs_ioctl(vnode_t *vp, u_long com, intptr_t data, int flag, cred_t *cred,
293    int *rvalp, caller_context_t *ct)
294{
295	offset_t off;
296	offset_t ndata;
297	dmu_object_info_t doi;
298	int error;
299	zfsvfs_t *zfsvfs;
300	znode_t *zp;
301
302	switch (com) {
303	case _FIOFFS:
304	{
305		return (0);
306
307		/*
308		 * The following two ioctls are used by bfu.  Faking out,
309		 * necessary to avoid bfu errors.
310		 */
311	}
312	case _FIOGDIO:
313	case _FIOSDIO:
314	{
315		return (0);
316	}
317
318	case _FIO_SEEK_DATA:
319	case _FIO_SEEK_HOLE:
320	{
321#ifdef illumos
322		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
323			return (SET_ERROR(EFAULT));
324#else
325		off = *(offset_t *)data;
326#endif
327		zp = VTOZ(vp);
328		zfsvfs = zp->z_zfsvfs;
329		ZFS_ENTER(zfsvfs);
330		ZFS_VERIFY_ZP(zp);
331
332		/* offset parameter is in/out */
333		error = zfs_holey(vp, com, &off);
334		ZFS_EXIT(zfsvfs);
335		if (error)
336			return (error);
337#ifdef illumos
338		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
339			return (SET_ERROR(EFAULT));
340#else
341		*(offset_t *)data = off;
342#endif
343		return (0);
344	}
345#ifdef illumos
346	case _FIO_COUNT_FILLED:
347	{
348		/*
349		 * _FIO_COUNT_FILLED adds a new ioctl command which
350		 * exposes the number of filled blocks in a
351		 * ZFS object.
352		 */
353		zp = VTOZ(vp);
354		zfsvfs = zp->z_zfsvfs;
355		ZFS_ENTER(zfsvfs);
356		ZFS_VERIFY_ZP(zp);
357
358		/*
359		 * Wait for all dirty blocks for this object
360		 * to get synced out to disk, and the DMU info
361		 * updated.
362		 */
363		error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
364		if (error) {
365			ZFS_EXIT(zfsvfs);
366			return (error);
367		}
368
369		/*
370		 * Retrieve fill count from DMU object.
371		 */
372		error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
373		if (error) {
374			ZFS_EXIT(zfsvfs);
375			return (error);
376		}
377
378		ndata = doi.doi_fill_count;
379
380		ZFS_EXIT(zfsvfs);
381		if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
382			return (SET_ERROR(EFAULT));
383		return (0);
384	}
385#endif
386	}
387	return (SET_ERROR(ENOTTY));
388}
389
390static vm_page_t
391page_busy(vnode_t *vp, int64_t start, int64_t off, int64_t nbytes)
392{
393	vm_object_t obj;
394	vm_page_t pp;
395	int64_t end;
396
397	/*
398	 * At present vm_page_clear_dirty extends the cleared range to DEV_BSIZE
399	 * aligned boundaries, if the range is not aligned.  As a result a
400	 * DEV_BSIZE subrange with partially dirty data may get marked as clean.
401	 * It may happen that all DEV_BSIZE subranges are marked clean and thus
402	 * the whole page would be considred clean despite have some dirty data.
403	 * For this reason we should shrink the range to DEV_BSIZE aligned
404	 * boundaries before calling vm_page_clear_dirty.
405	 */
406	end = rounddown2(off + nbytes, DEV_BSIZE);
407	off = roundup2(off, DEV_BSIZE);
408	nbytes = end - off;
409
410	obj = vp->v_object;
411	zfs_vmobject_assert_wlocked(obj);
412
413	for (;;) {
414		if ((pp = vm_page_lookup(obj, OFF_TO_IDX(start))) != NULL &&
415		    pp->valid) {
416			if (vm_page_xbusied(pp)) {
417				/*
418				 * Reference the page before unlocking and
419				 * sleeping so that the page daemon is less
420				 * likely to reclaim it.
421				 */
422				vm_page_reference(pp);
423				vm_page_lock(pp);
424				zfs_vmobject_wunlock(obj);
425				vm_page_busy_sleep(pp, "zfsmwb");
426				zfs_vmobject_wlock(obj);
427				continue;
428			}
429			vm_page_sbusy(pp);
430		} else if (pp == NULL) {
431			pp = vm_page_alloc(obj, OFF_TO_IDX(start),
432			    VM_ALLOC_SYSTEM | VM_ALLOC_IFCACHED |
433			    VM_ALLOC_SBUSY);
434		} else {
435			ASSERT(pp != NULL && !pp->valid);
436			pp = NULL;
437		}
438
439		if (pp != NULL) {
440			ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
441			vm_object_pip_add(obj, 1);
442			pmap_remove_write(pp);
443			if (nbytes != 0)
444				vm_page_clear_dirty(pp, off, nbytes);
445		}
446		break;
447	}
448	return (pp);
449}
450
451static void
452page_unbusy(vm_page_t pp)
453{
454
455	vm_page_sunbusy(pp);
456	vm_object_pip_subtract(pp->object, 1);
457}
458
459static vm_page_t
460page_hold(vnode_t *vp, int64_t start)
461{
462	vm_object_t obj;
463	vm_page_t pp;
464
465	obj = vp->v_object;
466	zfs_vmobject_assert_wlocked(obj);
467
468	for (;;) {
469		if ((pp = vm_page_lookup(obj, OFF_TO_IDX(start))) != NULL &&
470		    pp->valid) {
471			if (vm_page_xbusied(pp)) {
472				/*
473				 * Reference the page before unlocking and
474				 * sleeping so that the page daemon is less
475				 * likely to reclaim it.
476				 */
477				vm_page_reference(pp);
478				vm_page_lock(pp);
479				zfs_vmobject_wunlock(obj);
480				vm_page_busy_sleep(pp, "zfsmwb");
481				zfs_vmobject_wlock(obj);
482				continue;
483			}
484
485			ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
486			vm_page_lock(pp);
487			vm_page_hold(pp);
488			vm_page_unlock(pp);
489
490		} else
491			pp = NULL;
492		break;
493	}
494	return (pp);
495}
496
497static void
498page_unhold(vm_page_t pp)
499{
500
501	vm_page_lock(pp);
502	vm_page_unhold(pp);
503	vm_page_unlock(pp);
504}
505
506/*
507 * When a file is memory mapped, we must keep the IO data synchronized
508 * between the DMU cache and the memory mapped pages.  What this means:
509 *
510 * On Write:	If we find a memory mapped page, we write to *both*
511 *		the page and the dmu buffer.
512 */
513static void
514update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid,
515    int segflg, dmu_tx_t *tx)
516{
517	vm_object_t obj;
518	struct sf_buf *sf;
519	caddr_t va;
520	int off;
521
522	ASSERT(segflg != UIO_NOCOPY);
523	ASSERT(vp->v_mount != NULL);
524	obj = vp->v_object;
525	ASSERT(obj != NULL);
526
527	off = start & PAGEOFFSET;
528	zfs_vmobject_wlock(obj);
529	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
530		vm_page_t pp;
531		int nbytes = imin(PAGESIZE - off, len);
532
533		if ((pp = page_busy(vp, start, off, nbytes)) != NULL) {
534			zfs_vmobject_wunlock(obj);
535
536			va = zfs_map_page(pp, &sf);
537			(void) dmu_read(os, oid, start+off, nbytes,
538			    va+off, DMU_READ_PREFETCH);;
539			zfs_unmap_page(sf);
540
541			zfs_vmobject_wlock(obj);
542			page_unbusy(pp);
543		}
544		len -= nbytes;
545		off = 0;
546	}
547	vm_object_pip_wakeupn(obj, 0);
548	zfs_vmobject_wunlock(obj);
549}
550
551/*
552 * Read with UIO_NOCOPY flag means that sendfile(2) requests
553 * ZFS to populate a range of page cache pages with data.
554 *
555 * NOTE: this function could be optimized to pre-allocate
556 * all pages in advance, drain exclusive busy on all of them,
557 * map them into contiguous KVA region and populate them
558 * in one single dmu_read() call.
559 */
560static int
561mappedread_sf(vnode_t *vp, int nbytes, uio_t *uio)
562{
563	znode_t *zp = VTOZ(vp);
564	objset_t *os = zp->z_zfsvfs->z_os;
565	struct sf_buf *sf;
566	vm_object_t obj;
567	vm_page_t pp;
568	int64_t start;
569	caddr_t va;
570	int len = nbytes;
571	int off;
572	int error = 0;
573
574	ASSERT(uio->uio_segflg == UIO_NOCOPY);
575	ASSERT(vp->v_mount != NULL);
576	obj = vp->v_object;
577	ASSERT(obj != NULL);
578	ASSERT((uio->uio_loffset & PAGEOFFSET) == 0);
579
580	zfs_vmobject_wlock(obj);
581	for (start = uio->uio_loffset; len > 0; start += PAGESIZE) {
582		int bytes = MIN(PAGESIZE, len);
583
584		pp = vm_page_grab(obj, OFF_TO_IDX(start), VM_ALLOC_SBUSY |
585		    VM_ALLOC_NORMAL | VM_ALLOC_IGN_SBUSY);
586		if (pp->valid == 0) {
587			zfs_vmobject_wunlock(obj);
588			va = zfs_map_page(pp, &sf);
589			error = dmu_read(os, zp->z_id, start, bytes, va,
590			    DMU_READ_PREFETCH);
591			if (bytes != PAGESIZE && error == 0)
592				bzero(va + bytes, PAGESIZE - bytes);
593			zfs_unmap_page(sf);
594			zfs_vmobject_wlock(obj);
595			vm_page_sunbusy(pp);
596			vm_page_lock(pp);
597			if (error) {
598				if (pp->wire_count == 0 && pp->valid == 0 &&
599				    !vm_page_busied(pp))
600					vm_page_free(pp);
601			} else {
602				pp->valid = VM_PAGE_BITS_ALL;
603				vm_page_activate(pp);
604			}
605			vm_page_unlock(pp);
606		} else {
607			ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
608			vm_page_sunbusy(pp);
609		}
610		if (error)
611			break;
612		uio->uio_resid -= bytes;
613		uio->uio_offset += bytes;
614		len -= bytes;
615	}
616	zfs_vmobject_wunlock(obj);
617	return (error);
618}
619
620/*
621 * When a file is memory mapped, we must keep the IO data synchronized
622 * between the DMU cache and the memory mapped pages.  What this means:
623 *
624 * On Read:	We "read" preferentially from memory mapped pages,
625 *		else we default from the dmu buffer.
626 *
627 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
628 *	 the file is memory mapped.
629 */
630static int
631mappedread(vnode_t *vp, int nbytes, uio_t *uio)
632{
633	znode_t *zp = VTOZ(vp);
634	vm_object_t obj;
635	int64_t start;
636	caddr_t va;
637	int len = nbytes;
638	int off;
639	int error = 0;
640
641	ASSERT(vp->v_mount != NULL);
642	obj = vp->v_object;
643	ASSERT(obj != NULL);
644
645	start = uio->uio_loffset;
646	off = start & PAGEOFFSET;
647	zfs_vmobject_wlock(obj);
648	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
649		vm_page_t pp;
650		uint64_t bytes = MIN(PAGESIZE - off, len);
651
652		if (pp = page_hold(vp, start)) {
653			struct sf_buf *sf;
654			caddr_t va;
655
656			zfs_vmobject_wunlock(obj);
657			va = zfs_map_page(pp, &sf);
658			error = uiomove(va + off, bytes, UIO_READ, uio);
659			zfs_unmap_page(sf);
660			zfs_vmobject_wlock(obj);
661			page_unhold(pp);
662		} else {
663			zfs_vmobject_wunlock(obj);
664			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
665			    uio, bytes);
666			zfs_vmobject_wlock(obj);
667		}
668		len -= bytes;
669		off = 0;
670		if (error)
671			break;
672	}
673	zfs_vmobject_wunlock(obj);
674	return (error);
675}
676
677offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
678
679/*
680 * Read bytes from specified file into supplied buffer.
681 *
682 *	IN:	vp	- vnode of file to be read from.
683 *		uio	- structure supplying read location, range info,
684 *			  and return buffer.
685 *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
686 *		cr	- credentials of caller.
687 *		ct	- caller context
688 *
689 *	OUT:	uio	- updated offset and range, buffer filled.
690 *
691 *	RETURN:	0 on success, error code on failure.
692 *
693 * Side Effects:
694 *	vp - atime updated if byte count > 0
695 */
696/* ARGSUSED */
697static int
698zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
699{
700	znode_t		*zp = VTOZ(vp);
701	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
702	ssize_t		n, nbytes;
703	int		error = 0;
704	rl_t		*rl;
705	xuio_t		*xuio = NULL;
706
707	ZFS_ENTER(zfsvfs);
708	ZFS_VERIFY_ZP(zp);
709
710	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
711		ZFS_EXIT(zfsvfs);
712		return (SET_ERROR(EACCES));
713	}
714
715	/*
716	 * Validate file offset
717	 */
718	if (uio->uio_loffset < (offset_t)0) {
719		ZFS_EXIT(zfsvfs);
720		return (SET_ERROR(EINVAL));
721	}
722
723	/*
724	 * Fasttrack empty reads
725	 */
726	if (uio->uio_resid == 0) {
727		ZFS_EXIT(zfsvfs);
728		return (0);
729	}
730
731	/*
732	 * Check for mandatory locks
733	 */
734	if (MANDMODE(zp->z_mode)) {
735		if (error = chklock(vp, FREAD,
736		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
737			ZFS_EXIT(zfsvfs);
738			return (error);
739		}
740	}
741
742	/*
743	 * If we're in FRSYNC mode, sync out this znode before reading it.
744	 */
745	if (zfsvfs->z_log &&
746	    (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
747		zil_commit(zfsvfs->z_log, zp->z_id);
748
749	/*
750	 * Lock the range against changes.
751	 */
752	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
753
754	/*
755	 * If we are reading past end-of-file we can skip
756	 * to the end; but we might still need to set atime.
757	 */
758	if (uio->uio_loffset >= zp->z_size) {
759		error = 0;
760		goto out;
761	}
762
763	ASSERT(uio->uio_loffset < zp->z_size);
764	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
765
766#ifdef illumos
767	if ((uio->uio_extflg == UIO_XUIO) &&
768	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
769		int nblk;
770		int blksz = zp->z_blksz;
771		uint64_t offset = uio->uio_loffset;
772
773		xuio = (xuio_t *)uio;
774		if ((ISP2(blksz))) {
775			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
776			    blksz)) / blksz;
777		} else {
778			ASSERT(offset + n <= blksz);
779			nblk = 1;
780		}
781		(void) dmu_xuio_init(xuio, nblk);
782
783		if (vn_has_cached_data(vp)) {
784			/*
785			 * For simplicity, we always allocate a full buffer
786			 * even if we only expect to read a portion of a block.
787			 */
788			while (--nblk >= 0) {
789				(void) dmu_xuio_add(xuio,
790				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
791				    blksz), 0, blksz);
792			}
793		}
794	}
795#endif	/* illumos */
796
797	while (n > 0) {
798		nbytes = MIN(n, zfs_read_chunk_size -
799		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
800
801#ifdef __FreeBSD__
802		if (uio->uio_segflg == UIO_NOCOPY)
803			error = mappedread_sf(vp, nbytes, uio);
804		else
805#endif /* __FreeBSD__ */
806		if (vn_has_cached_data(vp)) {
807			error = mappedread(vp, nbytes, uio);
808		} else {
809			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
810			    uio, nbytes);
811		}
812		if (error) {
813			/* convert checksum errors into IO errors */
814			if (error == ECKSUM)
815				error = SET_ERROR(EIO);
816			break;
817		}
818
819		n -= nbytes;
820	}
821out:
822	zfs_range_unlock(rl);
823
824	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
825	ZFS_EXIT(zfsvfs);
826	return (error);
827}
828
829/*
830 * Write the bytes to a file.
831 *
832 *	IN:	vp	- vnode of file to be written to.
833 *		uio	- structure supplying write location, range info,
834 *			  and data buffer.
835 *		ioflag	- FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
836 *			  set if in append mode.
837 *		cr	- credentials of caller.
838 *		ct	- caller context (NFS/CIFS fem monitor only)
839 *
840 *	OUT:	uio	- updated offset and range.
841 *
842 *	RETURN:	0 on success, error code on failure.
843 *
844 * Timestamps:
845 *	vp - ctime|mtime updated if byte count > 0
846 */
847
848/* ARGSUSED */
849static int
850zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
851{
852	znode_t		*zp = VTOZ(vp);
853	rlim64_t	limit = MAXOFFSET_T;
854	ssize_t		start_resid = uio->uio_resid;
855	ssize_t		tx_bytes;
856	uint64_t	end_size;
857	dmu_tx_t	*tx;
858	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
859	zilog_t		*zilog;
860	offset_t	woff;
861	ssize_t		n, nbytes;
862	rl_t		*rl;
863	int		max_blksz = zfsvfs->z_max_blksz;
864	int		error = 0;
865	arc_buf_t	*abuf;
866	iovec_t		*aiov = NULL;
867	xuio_t		*xuio = NULL;
868	int		i_iov = 0;
869	int		iovcnt = uio->uio_iovcnt;
870	iovec_t		*iovp = uio->uio_iov;
871	int		write_eof;
872	int		count = 0;
873	sa_bulk_attr_t	bulk[4];
874	uint64_t	mtime[2], ctime[2];
875
876	/*
877	 * Fasttrack empty write
878	 */
879	n = start_resid;
880	if (n == 0)
881		return (0);
882
883	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
884		limit = MAXOFFSET_T;
885
886	ZFS_ENTER(zfsvfs);
887	ZFS_VERIFY_ZP(zp);
888
889	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
890	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
891	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
892	    &zp->z_size, 8);
893	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
894	    &zp->z_pflags, 8);
895
896	/*
897	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
898	 * callers might not be able to detect properly that we are read-only,
899	 * so check it explicitly here.
900	 */
901	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
902		ZFS_EXIT(zfsvfs);
903		return (SET_ERROR(EROFS));
904	}
905
906	/*
907	 * If immutable or not appending then return EPERM
908	 */
909	if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
910	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
911	    (uio->uio_loffset < zp->z_size))) {
912		ZFS_EXIT(zfsvfs);
913		return (SET_ERROR(EPERM));
914	}
915
916	zilog = zfsvfs->z_log;
917
918	/*
919	 * Validate file offset
920	 */
921	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
922	if (woff < 0) {
923		ZFS_EXIT(zfsvfs);
924		return (SET_ERROR(EINVAL));
925	}
926
927	/*
928	 * Check for mandatory locks before calling zfs_range_lock()
929	 * in order to prevent a deadlock with locks set via fcntl().
930	 */
931	if (MANDMODE((mode_t)zp->z_mode) &&
932	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
933		ZFS_EXIT(zfsvfs);
934		return (error);
935	}
936
937#ifdef illumos
938	/*
939	 * Pre-fault the pages to ensure slow (eg NFS) pages
940	 * don't hold up txg.
941	 * Skip this if uio contains loaned arc_buf.
942	 */
943	if ((uio->uio_extflg == UIO_XUIO) &&
944	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
945		xuio = (xuio_t *)uio;
946	else
947		uio_prefaultpages(MIN(n, max_blksz), uio);
948#endif
949
950	/*
951	 * If in append mode, set the io offset pointer to eof.
952	 */
953	if (ioflag & FAPPEND) {
954		/*
955		 * Obtain an appending range lock to guarantee file append
956		 * semantics.  We reset the write offset once we have the lock.
957		 */
958		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
959		woff = rl->r_off;
960		if (rl->r_len == UINT64_MAX) {
961			/*
962			 * We overlocked the file because this write will cause
963			 * the file block size to increase.
964			 * Note that zp_size cannot change with this lock held.
965			 */
966			woff = zp->z_size;
967		}
968		uio->uio_loffset = woff;
969	} else {
970		/*
971		 * Note that if the file block size will change as a result of
972		 * this write, then this range lock will lock the entire file
973		 * so that we can re-write the block safely.
974		 */
975		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
976	}
977
978	if (vn_rlimit_fsize(vp, uio, uio->uio_td)) {
979		zfs_range_unlock(rl);
980		ZFS_EXIT(zfsvfs);
981		return (EFBIG);
982	}
983
984	if (woff >= limit) {
985		zfs_range_unlock(rl);
986		ZFS_EXIT(zfsvfs);
987		return (SET_ERROR(EFBIG));
988	}
989
990	if ((woff + n) > limit || woff > (limit - n))
991		n = limit - woff;
992
993	/* Will this write extend the file length? */
994	write_eof = (woff + n > zp->z_size);
995
996	end_size = MAX(zp->z_size, woff + n);
997
998	/*
999	 * Write the file in reasonable size chunks.  Each chunk is written
1000	 * in a separate transaction; this keeps the intent log records small
1001	 * and allows us to do more fine-grained space accounting.
1002	 */
1003	while (n > 0) {
1004		abuf = NULL;
1005		woff = uio->uio_loffset;
1006		if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
1007		    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
1008			if (abuf != NULL)
1009				dmu_return_arcbuf(abuf);
1010			error = SET_ERROR(EDQUOT);
1011			break;
1012		}
1013
1014		if (xuio && abuf == NULL) {
1015			ASSERT(i_iov < iovcnt);
1016			aiov = &iovp[i_iov];
1017			abuf = dmu_xuio_arcbuf(xuio, i_iov);
1018			dmu_xuio_clear(xuio, i_iov);
1019			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
1020			    iovec_t *, aiov, arc_buf_t *, abuf);
1021			ASSERT((aiov->iov_base == abuf->b_data) ||
1022			    ((char *)aiov->iov_base - (char *)abuf->b_data +
1023			    aiov->iov_len == arc_buf_size(abuf)));
1024			i_iov++;
1025		} else if (abuf == NULL && n >= max_blksz &&
1026		    woff >= zp->z_size &&
1027		    P2PHASE(woff, max_blksz) == 0 &&
1028		    zp->z_blksz == max_blksz) {
1029			/*
1030			 * This write covers a full block.  "Borrow" a buffer
1031			 * from the dmu so that we can fill it before we enter
1032			 * a transaction.  This avoids the possibility of
1033			 * holding up the transaction if the data copy hangs
1034			 * up on a pagefault (e.g., from an NFS server mapping).
1035			 */
1036			size_t cbytes;
1037
1038			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
1039			    max_blksz);
1040			ASSERT(abuf != NULL);
1041			ASSERT(arc_buf_size(abuf) == max_blksz);
1042			if (error = uiocopy(abuf->b_data, max_blksz,
1043			    UIO_WRITE, uio, &cbytes)) {
1044				dmu_return_arcbuf(abuf);
1045				break;
1046			}
1047			ASSERT(cbytes == max_blksz);
1048		}
1049
1050		/*
1051		 * Start a transaction.
1052		 */
1053		tx = dmu_tx_create(zfsvfs->z_os);
1054		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1055		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
1056		zfs_sa_upgrade_txholds(tx, zp);
1057		error = dmu_tx_assign(tx, TXG_WAIT);
1058		if (error) {
1059			dmu_tx_abort(tx);
1060			if (abuf != NULL)
1061				dmu_return_arcbuf(abuf);
1062			break;
1063		}
1064
1065		/*
1066		 * If zfs_range_lock() over-locked we grow the blocksize
1067		 * and then reduce the lock range.  This will only happen
1068		 * on the first iteration since zfs_range_reduce() will
1069		 * shrink down r_len to the appropriate size.
1070		 */
1071		if (rl->r_len == UINT64_MAX) {
1072			uint64_t new_blksz;
1073
1074			if (zp->z_blksz > max_blksz) {
1075				/*
1076				 * File's blocksize is already larger than the
1077				 * "recordsize" property.  Only let it grow to
1078				 * the next power of 2.
1079				 */
1080				ASSERT(!ISP2(zp->z_blksz));
1081				new_blksz = MIN(end_size,
1082				    1 << highbit64(zp->z_blksz));
1083			} else {
1084				new_blksz = MIN(end_size, max_blksz);
1085			}
1086			zfs_grow_blocksize(zp, new_blksz, tx);
1087			zfs_range_reduce(rl, woff, n);
1088		}
1089
1090		/*
1091		 * XXX - should we really limit each write to z_max_blksz?
1092		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
1093		 */
1094		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
1095
1096		if (woff + nbytes > zp->z_size)
1097			vnode_pager_setsize(vp, woff + nbytes);
1098
1099		if (abuf == NULL) {
1100			tx_bytes = uio->uio_resid;
1101			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
1102			    uio, nbytes, tx);
1103			tx_bytes -= uio->uio_resid;
1104		} else {
1105			tx_bytes = nbytes;
1106			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
1107			/*
1108			 * If this is not a full block write, but we are
1109			 * extending the file past EOF and this data starts
1110			 * block-aligned, use assign_arcbuf().  Otherwise,
1111			 * write via dmu_write().
1112			 */
1113			if (tx_bytes < max_blksz && (!write_eof ||
1114			    aiov->iov_base != abuf->b_data)) {
1115				ASSERT(xuio);
1116				dmu_write(zfsvfs->z_os, zp->z_id, woff,
1117				    aiov->iov_len, aiov->iov_base, tx);
1118				dmu_return_arcbuf(abuf);
1119				xuio_stat_wbuf_copied();
1120			} else {
1121				ASSERT(xuio || tx_bytes == max_blksz);
1122				dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
1123				    woff, abuf, tx);
1124			}
1125			ASSERT(tx_bytes <= uio->uio_resid);
1126			uioskip(uio, tx_bytes);
1127		}
1128		if (tx_bytes && vn_has_cached_data(vp)) {
1129			update_pages(vp, woff, tx_bytes, zfsvfs->z_os,
1130			    zp->z_id, uio->uio_segflg, tx);
1131		}
1132
1133		/*
1134		 * If we made no progress, we're done.  If we made even
1135		 * partial progress, update the znode and ZIL accordingly.
1136		 */
1137		if (tx_bytes == 0) {
1138			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
1139			    (void *)&zp->z_size, sizeof (uint64_t), tx);
1140			dmu_tx_commit(tx);
1141			ASSERT(error != 0);
1142			break;
1143		}
1144
1145		/*
1146		 * Clear Set-UID/Set-GID bits on successful write if not
1147		 * privileged and at least one of the excute bits is set.
1148		 *
1149		 * It would be nice to to this after all writes have
1150		 * been done, but that would still expose the ISUID/ISGID
1151		 * to another app after the partial write is committed.
1152		 *
1153		 * Note: we don't call zfs_fuid_map_id() here because
1154		 * user 0 is not an ephemeral uid.
1155		 */
1156		mutex_enter(&zp->z_acl_lock);
1157		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
1158		    (S_IXUSR >> 6))) != 0 &&
1159		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
1160		    secpolicy_vnode_setid_retain(vp, cr,
1161		    (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
1162			uint64_t newmode;
1163			zp->z_mode &= ~(S_ISUID | S_ISGID);
1164			newmode = zp->z_mode;
1165			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
1166			    (void *)&newmode, sizeof (uint64_t), tx);
1167		}
1168		mutex_exit(&zp->z_acl_lock);
1169
1170		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
1171		    B_TRUE);
1172
1173		/*
1174		 * Update the file size (zp_size) if it has changed;
1175		 * account for possible concurrent updates.
1176		 */
1177		while ((end_size = zp->z_size) < uio->uio_loffset) {
1178			(void) atomic_cas_64(&zp->z_size, end_size,
1179			    uio->uio_loffset);
1180			ASSERT(error == 0);
1181		}
1182		/*
1183		 * If we are replaying and eof is non zero then force
1184		 * the file size to the specified eof. Note, there's no
1185		 * concurrency during replay.
1186		 */
1187		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
1188			zp->z_size = zfsvfs->z_replay_eof;
1189
1190		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1191
1192		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
1193		dmu_tx_commit(tx);
1194
1195		if (error != 0)
1196			break;
1197		ASSERT(tx_bytes == nbytes);
1198		n -= nbytes;
1199
1200#ifdef illumos
1201		if (!xuio && n > 0)
1202			uio_prefaultpages(MIN(n, max_blksz), uio);
1203#endif
1204	}
1205
1206	zfs_range_unlock(rl);
1207
1208	/*
1209	 * If we're in replay mode, or we made no progress, return error.
1210	 * Otherwise, it's at least a partial write, so it's successful.
1211	 */
1212	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1213		ZFS_EXIT(zfsvfs);
1214		return (error);
1215	}
1216
1217	if (ioflag & (FSYNC | FDSYNC) ||
1218	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1219		zil_commit(zilog, zp->z_id);
1220
1221	ZFS_EXIT(zfsvfs);
1222	return (0);
1223}
1224
1225void
1226zfs_get_done(zgd_t *zgd, int error)
1227{
1228	znode_t *zp = zgd->zgd_private;
1229	objset_t *os = zp->z_zfsvfs->z_os;
1230
1231	if (zgd->zgd_db)
1232		dmu_buf_rele(zgd->zgd_db, zgd);
1233
1234	zfs_range_unlock(zgd->zgd_rl);
1235
1236	/*
1237	 * Release the vnode asynchronously as we currently have the
1238	 * txg stopped from syncing.
1239	 */
1240	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1241
1242	if (error == 0 && zgd->zgd_bp)
1243		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1244
1245	kmem_free(zgd, sizeof (zgd_t));
1246}
1247
1248#ifdef DEBUG
1249static int zil_fault_io = 0;
1250#endif
1251
1252/*
1253 * Get data to generate a TX_WRITE intent log record.
1254 */
1255int
1256zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1257{
1258	zfsvfs_t *zfsvfs = arg;
1259	objset_t *os = zfsvfs->z_os;
1260	znode_t *zp;
1261	uint64_t object = lr->lr_foid;
1262	uint64_t offset = lr->lr_offset;
1263	uint64_t size = lr->lr_length;
1264	blkptr_t *bp = &lr->lr_blkptr;
1265	dmu_buf_t *db;
1266	zgd_t *zgd;
1267	int error = 0;
1268
1269	ASSERT(zio != NULL);
1270	ASSERT(size != 0);
1271
1272	/*
1273	 * Nothing to do if the file has been removed
1274	 */
1275	if (zfs_zget(zfsvfs, object, &zp) != 0)
1276		return (SET_ERROR(ENOENT));
1277	if (zp->z_unlinked) {
1278		/*
1279		 * Release the vnode asynchronously as we currently have the
1280		 * txg stopped from syncing.
1281		 */
1282		VN_RELE_ASYNC(ZTOV(zp),
1283		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1284		return (SET_ERROR(ENOENT));
1285	}
1286
1287	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1288	zgd->zgd_zilog = zfsvfs->z_log;
1289	zgd->zgd_private = zp;
1290
1291	/*
1292	 * Write records come in two flavors: immediate and indirect.
1293	 * For small writes it's cheaper to store the data with the
1294	 * log record (immediate); for large writes it's cheaper to
1295	 * sync the data and get a pointer to it (indirect) so that
1296	 * we don't have to write the data twice.
1297	 */
1298	if (buf != NULL) { /* immediate write */
1299		zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1300		/* test for truncation needs to be done while range locked */
1301		if (offset >= zp->z_size) {
1302			error = SET_ERROR(ENOENT);
1303		} else {
1304			error = dmu_read(os, object, offset, size, buf,
1305			    DMU_READ_NO_PREFETCH);
1306		}
1307		ASSERT(error == 0 || error == ENOENT);
1308	} else { /* indirect write */
1309		/*
1310		 * Have to lock the whole block to ensure when it's
1311		 * written out and it's checksum is being calculated
1312		 * that no one can change the data. We need to re-check
1313		 * blocksize after we get the lock in case it's changed!
1314		 */
1315		for (;;) {
1316			uint64_t blkoff;
1317			size = zp->z_blksz;
1318			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1319			offset -= blkoff;
1320			zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1321			    RL_READER);
1322			if (zp->z_blksz == size)
1323				break;
1324			offset += blkoff;
1325			zfs_range_unlock(zgd->zgd_rl);
1326		}
1327		/* test for truncation needs to be done while range locked */
1328		if (lr->lr_offset >= zp->z_size)
1329			error = SET_ERROR(ENOENT);
1330#ifdef DEBUG
1331		if (zil_fault_io) {
1332			error = SET_ERROR(EIO);
1333			zil_fault_io = 0;
1334		}
1335#endif
1336		if (error == 0)
1337			error = dmu_buf_hold(os, object, offset, zgd, &db,
1338			    DMU_READ_NO_PREFETCH);
1339
1340		if (error == 0) {
1341			blkptr_t *obp = dmu_buf_get_blkptr(db);
1342			if (obp) {
1343				ASSERT(BP_IS_HOLE(bp));
1344				*bp = *obp;
1345			}
1346
1347			zgd->zgd_db = db;
1348			zgd->zgd_bp = bp;
1349
1350			ASSERT(db->db_offset == offset);
1351			ASSERT(db->db_size == size);
1352
1353			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1354			    zfs_get_done, zgd);
1355			ASSERT(error || lr->lr_length <= zp->z_blksz);
1356
1357			/*
1358			 * On success, we need to wait for the write I/O
1359			 * initiated by dmu_sync() to complete before we can
1360			 * release this dbuf.  We will finish everything up
1361			 * in the zfs_get_done() callback.
1362			 */
1363			if (error == 0)
1364				return (0);
1365
1366			if (error == EALREADY) {
1367				lr->lr_common.lrc_txtype = TX_WRITE2;
1368				error = 0;
1369			}
1370		}
1371	}
1372
1373	zfs_get_done(zgd, error);
1374
1375	return (error);
1376}
1377
1378/*ARGSUSED*/
1379static int
1380zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1381    caller_context_t *ct)
1382{
1383	znode_t *zp = VTOZ(vp);
1384	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1385	int error;
1386
1387	ZFS_ENTER(zfsvfs);
1388	ZFS_VERIFY_ZP(zp);
1389
1390	if (flag & V_ACE_MASK)
1391		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1392	else
1393		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1394
1395	ZFS_EXIT(zfsvfs);
1396	return (error);
1397}
1398
1399/*
1400 * If vnode is for a device return a specfs vnode instead.
1401 */
1402static int
1403specvp_check(vnode_t **vpp, cred_t *cr)
1404{
1405	int error = 0;
1406
1407	if (IS_DEVVP(*vpp)) {
1408		struct vnode *svp;
1409
1410		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1411		VN_RELE(*vpp);
1412		if (svp == NULL)
1413			error = SET_ERROR(ENOSYS);
1414		*vpp = svp;
1415	}
1416	return (error);
1417}
1418
1419
1420/*
1421 * Lookup an entry in a directory, or an extended attribute directory.
1422 * If it exists, return a held vnode reference for it.
1423 *
1424 *	IN:	dvp	- vnode of directory to search.
1425 *		nm	- name of entry to lookup.
1426 *		pnp	- full pathname to lookup [UNUSED].
1427 *		flags	- LOOKUP_XATTR set if looking for an attribute.
1428 *		rdir	- root directory vnode [UNUSED].
1429 *		cr	- credentials of caller.
1430 *		ct	- caller context
1431 *		direntflags - directory lookup flags
1432 *		realpnp - returned pathname.
1433 *
1434 *	OUT:	vpp	- vnode of located entry, NULL if not found.
1435 *
1436 *	RETURN:	0 on success, error code on failure.
1437 *
1438 * Timestamps:
1439 *	NA
1440 */
1441/* ARGSUSED */
1442static int
1443zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct componentname *cnp,
1444    int nameiop, cred_t *cr, kthread_t *td, int flags)
1445{
1446	znode_t *zdp = VTOZ(dvp);
1447	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1448	int	error = 0;
1449	int *direntflags = NULL;
1450	void *realpnp = NULL;
1451
1452	/* fast path */
1453	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1454
1455		if (dvp->v_type != VDIR) {
1456			return (SET_ERROR(ENOTDIR));
1457		} else if (zdp->z_sa_hdl == NULL) {
1458			return (SET_ERROR(EIO));
1459		}
1460
1461		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1462			error = zfs_fastaccesschk_execute(zdp, cr);
1463			if (!error) {
1464				*vpp = dvp;
1465				VN_HOLD(*vpp);
1466				return (0);
1467			}
1468			return (error);
1469		} else {
1470			vnode_t *tvp = dnlc_lookup(dvp, nm);
1471
1472			if (tvp) {
1473				error = zfs_fastaccesschk_execute(zdp, cr);
1474				if (error) {
1475					VN_RELE(tvp);
1476					return (error);
1477				}
1478				if (tvp == DNLC_NO_VNODE) {
1479					VN_RELE(tvp);
1480					return (SET_ERROR(ENOENT));
1481				} else {
1482					*vpp = tvp;
1483					return (specvp_check(vpp, cr));
1484				}
1485			}
1486		}
1487	}
1488
1489	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1490
1491	ZFS_ENTER(zfsvfs);
1492	ZFS_VERIFY_ZP(zdp);
1493
1494	*vpp = NULL;
1495
1496	if (flags & LOOKUP_XATTR) {
1497#ifdef TODO
1498		/*
1499		 * If the xattr property is off, refuse the lookup request.
1500		 */
1501		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1502			ZFS_EXIT(zfsvfs);
1503			return (SET_ERROR(EINVAL));
1504		}
1505#endif
1506
1507		/*
1508		 * We don't allow recursive attributes..
1509		 * Maybe someday we will.
1510		 */
1511		if (zdp->z_pflags & ZFS_XATTR) {
1512			ZFS_EXIT(zfsvfs);
1513			return (SET_ERROR(EINVAL));
1514		}
1515
1516		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1517			ZFS_EXIT(zfsvfs);
1518			return (error);
1519		}
1520
1521		/*
1522		 * Do we have permission to get into attribute directory?
1523		 */
1524
1525		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1526		    B_FALSE, cr)) {
1527			VN_RELE(*vpp);
1528			*vpp = NULL;
1529		}
1530
1531		ZFS_EXIT(zfsvfs);
1532		return (error);
1533	}
1534
1535	if (dvp->v_type != VDIR) {
1536		ZFS_EXIT(zfsvfs);
1537		return (SET_ERROR(ENOTDIR));
1538	}
1539
1540	/*
1541	 * Check accessibility of directory.
1542	 */
1543
1544	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1545		ZFS_EXIT(zfsvfs);
1546		return (error);
1547	}
1548
1549	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1550	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1551		ZFS_EXIT(zfsvfs);
1552		return (SET_ERROR(EILSEQ));
1553	}
1554
1555	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1556	if (error == 0)
1557		error = specvp_check(vpp, cr);
1558
1559	/* Translate errors and add SAVENAME when needed. */
1560	if (cnp->cn_flags & ISLASTCN) {
1561		switch (nameiop) {
1562		case CREATE:
1563		case RENAME:
1564			if (error == ENOENT) {
1565				error = EJUSTRETURN;
1566				cnp->cn_flags |= SAVENAME;
1567				break;
1568			}
1569			/* FALLTHROUGH */
1570		case DELETE:
1571			if (error == 0)
1572				cnp->cn_flags |= SAVENAME;
1573			break;
1574		}
1575	}
1576	if (error == 0 && (nm[0] != '.' || nm[1] != '\0')) {
1577		int ltype = 0;
1578
1579		if (cnp->cn_flags & ISDOTDOT) {
1580			ltype = VOP_ISLOCKED(dvp);
1581			VOP_UNLOCK(dvp, 0);
1582		}
1583		ZFS_EXIT(zfsvfs);
1584		error = vn_lock(*vpp, cnp->cn_lkflags);
1585		if (cnp->cn_flags & ISDOTDOT)
1586			vn_lock(dvp, ltype | LK_RETRY);
1587		if (error != 0) {
1588			VN_RELE(*vpp);
1589			*vpp = NULL;
1590			return (error);
1591		}
1592	} else {
1593		ZFS_EXIT(zfsvfs);
1594	}
1595
1596#ifdef FREEBSD_NAMECACHE
1597	/*
1598	 * Insert name into cache (as non-existent) if appropriate.
1599	 */
1600	if (error == ENOENT && (cnp->cn_flags & MAKEENTRY) != 0)
1601		cache_enter(dvp, *vpp, cnp);
1602	/*
1603	 * Insert name into cache if appropriate.
1604	 */
1605	if (error == 0 && (cnp->cn_flags & MAKEENTRY)) {
1606		if (!(cnp->cn_flags & ISLASTCN) ||
1607		    (nameiop != DELETE && nameiop != RENAME)) {
1608			cache_enter(dvp, *vpp, cnp);
1609		}
1610	}
1611#endif
1612
1613	return (error);
1614}
1615
1616/*
1617 * Attempt to create a new entry in a directory.  If the entry
1618 * already exists, truncate the file if permissible, else return
1619 * an error.  Return the vp of the created or trunc'd file.
1620 *
1621 *	IN:	dvp	- vnode of directory to put new file entry in.
1622 *		name	- name of new file entry.
1623 *		vap	- attributes of new file.
1624 *		excl	- flag indicating exclusive or non-exclusive mode.
1625 *		mode	- mode to open file with.
1626 *		cr	- credentials of caller.
1627 *		flag	- large file flag [UNUSED].
1628 *		ct	- caller context
1629 *		vsecp	- ACL to be set
1630 *
1631 *	OUT:	vpp	- vnode of created or trunc'd entry.
1632 *
1633 *	RETURN:	0 on success, error code on failure.
1634 *
1635 * Timestamps:
1636 *	dvp - ctime|mtime updated if new entry created
1637 *	 vp - ctime|mtime always, atime if new
1638 */
1639
1640/* ARGSUSED */
1641static int
1642zfs_create(vnode_t *dvp, char *name, vattr_t *vap, int excl, int mode,
1643    vnode_t **vpp, cred_t *cr, kthread_t *td)
1644{
1645	znode_t		*zp, *dzp = VTOZ(dvp);
1646	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1647	zilog_t		*zilog;
1648	objset_t	*os;
1649	zfs_dirlock_t	*dl;
1650	dmu_tx_t	*tx;
1651	int		error;
1652	ksid_t		*ksid;
1653	uid_t		uid;
1654	gid_t		gid = crgetgid(cr);
1655	zfs_acl_ids_t   acl_ids;
1656	boolean_t	fuid_dirtied;
1657	boolean_t	have_acl = B_FALSE;
1658	boolean_t	waited = B_FALSE;
1659	void		*vsecp = NULL;
1660	int		flag = 0;
1661
1662	/*
1663	 * If we have an ephemeral id, ACL, or XVATTR then
1664	 * make sure file system is at proper version
1665	 */
1666
1667	ksid = crgetsid(cr, KSID_OWNER);
1668	if (ksid)
1669		uid = ksid_getid(ksid);
1670	else
1671		uid = crgetuid(cr);
1672
1673	if (zfsvfs->z_use_fuids == B_FALSE &&
1674	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1675	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1676		return (SET_ERROR(EINVAL));
1677
1678	ZFS_ENTER(zfsvfs);
1679	ZFS_VERIFY_ZP(dzp);
1680	os = zfsvfs->z_os;
1681	zilog = zfsvfs->z_log;
1682
1683	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1684	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1685		ZFS_EXIT(zfsvfs);
1686		return (SET_ERROR(EILSEQ));
1687	}
1688
1689	if (vap->va_mask & AT_XVATTR) {
1690		if ((error = secpolicy_xvattr(dvp, (xvattr_t *)vap,
1691		    crgetuid(cr), cr, vap->va_type)) != 0) {
1692			ZFS_EXIT(zfsvfs);
1693			return (error);
1694		}
1695	}
1696
1697	getnewvnode_reserve(1);
1698
1699top:
1700	*vpp = NULL;
1701
1702	if ((vap->va_mode & S_ISVTX) && secpolicy_vnode_stky_modify(cr))
1703		vap->va_mode &= ~S_ISVTX;
1704
1705	if (*name == '\0') {
1706		/*
1707		 * Null component name refers to the directory itself.
1708		 */
1709		VN_HOLD(dvp);
1710		zp = dzp;
1711		dl = NULL;
1712		error = 0;
1713	} else {
1714		/* possible VN_HOLD(zp) */
1715		int zflg = 0;
1716
1717		if (flag & FIGNORECASE)
1718			zflg |= ZCILOOK;
1719
1720		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1721		    NULL, NULL);
1722		if (error) {
1723			if (have_acl)
1724				zfs_acl_ids_free(&acl_ids);
1725			if (strcmp(name, "..") == 0)
1726				error = SET_ERROR(EISDIR);
1727			getnewvnode_drop_reserve();
1728			ZFS_EXIT(zfsvfs);
1729			return (error);
1730		}
1731	}
1732
1733	if (zp == NULL) {
1734		uint64_t txtype;
1735
1736		/*
1737		 * Create a new file object and update the directory
1738		 * to reference it.
1739		 */
1740		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1741			if (have_acl)
1742				zfs_acl_ids_free(&acl_ids);
1743			goto out;
1744		}
1745
1746		/*
1747		 * We only support the creation of regular files in
1748		 * extended attribute directories.
1749		 */
1750
1751		if ((dzp->z_pflags & ZFS_XATTR) &&
1752		    (vap->va_type != VREG)) {
1753			if (have_acl)
1754				zfs_acl_ids_free(&acl_ids);
1755			error = SET_ERROR(EINVAL);
1756			goto out;
1757		}
1758
1759		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1760		    cr, vsecp, &acl_ids)) != 0)
1761			goto out;
1762		have_acl = B_TRUE;
1763
1764		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1765			zfs_acl_ids_free(&acl_ids);
1766			error = SET_ERROR(EDQUOT);
1767			goto out;
1768		}
1769
1770		tx = dmu_tx_create(os);
1771
1772		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1773		    ZFS_SA_BASE_ATTR_SIZE);
1774
1775		fuid_dirtied = zfsvfs->z_fuid_dirty;
1776		if (fuid_dirtied)
1777			zfs_fuid_txhold(zfsvfs, tx);
1778		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1779		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1780		if (!zfsvfs->z_use_sa &&
1781		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1782			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1783			    0, acl_ids.z_aclp->z_acl_bytes);
1784		}
1785		error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1786		if (error) {
1787			zfs_dirent_unlock(dl);
1788			if (error == ERESTART) {
1789				waited = B_TRUE;
1790				dmu_tx_wait(tx);
1791				dmu_tx_abort(tx);
1792				goto top;
1793			}
1794			zfs_acl_ids_free(&acl_ids);
1795			dmu_tx_abort(tx);
1796			getnewvnode_drop_reserve();
1797			ZFS_EXIT(zfsvfs);
1798			return (error);
1799		}
1800		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1801
1802		if (fuid_dirtied)
1803			zfs_fuid_sync(zfsvfs, tx);
1804
1805		(void) zfs_link_create(dl, zp, tx, ZNEW);
1806		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1807		if (flag & FIGNORECASE)
1808			txtype |= TX_CI;
1809		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1810		    vsecp, acl_ids.z_fuidp, vap);
1811		zfs_acl_ids_free(&acl_ids);
1812		dmu_tx_commit(tx);
1813	} else {
1814		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1815
1816		if (have_acl)
1817			zfs_acl_ids_free(&acl_ids);
1818		have_acl = B_FALSE;
1819
1820		/*
1821		 * A directory entry already exists for this name.
1822		 */
1823		/*
1824		 * Can't truncate an existing file if in exclusive mode.
1825		 */
1826		if (excl == EXCL) {
1827			error = SET_ERROR(EEXIST);
1828			goto out;
1829		}
1830		/*
1831		 * Can't open a directory for writing.
1832		 */
1833		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1834			error = SET_ERROR(EISDIR);
1835			goto out;
1836		}
1837		/*
1838		 * Verify requested access to file.
1839		 */
1840		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1841			goto out;
1842		}
1843
1844		mutex_enter(&dzp->z_lock);
1845		dzp->z_seq++;
1846		mutex_exit(&dzp->z_lock);
1847
1848		/*
1849		 * Truncate regular files if requested.
1850		 */
1851		if ((ZTOV(zp)->v_type == VREG) &&
1852		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1853			/* we can't hold any locks when calling zfs_freesp() */
1854			zfs_dirent_unlock(dl);
1855			dl = NULL;
1856			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1857			if (error == 0) {
1858				vnevent_create(ZTOV(zp), ct);
1859			}
1860		}
1861	}
1862out:
1863	getnewvnode_drop_reserve();
1864	if (dl)
1865		zfs_dirent_unlock(dl);
1866
1867	if (error) {
1868		if (zp)
1869			VN_RELE(ZTOV(zp));
1870	} else {
1871		*vpp = ZTOV(zp);
1872		error = specvp_check(vpp, cr);
1873	}
1874
1875	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1876		zil_commit(zilog, 0);
1877
1878	ZFS_EXIT(zfsvfs);
1879	return (error);
1880}
1881
1882/*
1883 * Remove an entry from a directory.
1884 *
1885 *	IN:	dvp	- vnode of directory to remove entry from.
1886 *		name	- name of entry to remove.
1887 *		cr	- credentials of caller.
1888 *		ct	- caller context
1889 *		flags	- case flags
1890 *
1891 *	RETURN:	0 on success, error code on failure.
1892 *
1893 * Timestamps:
1894 *	dvp - ctime|mtime
1895 *	 vp - ctime (if nlink > 0)
1896 */
1897
1898uint64_t null_xattr = 0;
1899
1900/*ARGSUSED*/
1901static int
1902zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1903    int flags)
1904{
1905	znode_t		*zp, *dzp = VTOZ(dvp);
1906	znode_t		*xzp;
1907	vnode_t		*vp;
1908	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1909	zilog_t		*zilog;
1910	uint64_t	acl_obj, xattr_obj;
1911	uint64_t	xattr_obj_unlinked = 0;
1912	uint64_t	obj = 0;
1913	zfs_dirlock_t	*dl;
1914	dmu_tx_t	*tx;
1915	boolean_t	may_delete_now, delete_now = FALSE;
1916	boolean_t	unlinked, toobig = FALSE;
1917	uint64_t	txtype;
1918	pathname_t	*realnmp = NULL;
1919	pathname_t	realnm;
1920	int		error;
1921	int		zflg = ZEXISTS;
1922	boolean_t	waited = B_FALSE;
1923
1924	ZFS_ENTER(zfsvfs);
1925	ZFS_VERIFY_ZP(dzp);
1926	zilog = zfsvfs->z_log;
1927
1928	if (flags & FIGNORECASE) {
1929		zflg |= ZCILOOK;
1930		pn_alloc(&realnm);
1931		realnmp = &realnm;
1932	}
1933
1934top:
1935	xattr_obj = 0;
1936	xzp = NULL;
1937	/*
1938	 * Attempt to lock directory; fail if entry doesn't exist.
1939	 */
1940	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1941	    NULL, realnmp)) {
1942		if (realnmp)
1943			pn_free(realnmp);
1944		ZFS_EXIT(zfsvfs);
1945		return (error);
1946	}
1947
1948	vp = ZTOV(zp);
1949
1950	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1951		goto out;
1952	}
1953
1954	/*
1955	 * Need to use rmdir for removing directories.
1956	 */
1957	if (vp->v_type == VDIR) {
1958		error = SET_ERROR(EPERM);
1959		goto out;
1960	}
1961
1962	vnevent_remove(vp, dvp, name, ct);
1963
1964	if (realnmp)
1965		dnlc_remove(dvp, realnmp->pn_buf);
1966	else
1967		dnlc_remove(dvp, name);
1968
1969	VI_LOCK(vp);
1970	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1971	VI_UNLOCK(vp);
1972
1973	/*
1974	 * We may delete the znode now, or we may put it in the unlinked set;
1975	 * it depends on whether we're the last link, and on whether there are
1976	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1977	 * allow for either case.
1978	 */
1979	obj = zp->z_id;
1980	tx = dmu_tx_create(zfsvfs->z_os);
1981	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1982	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1983	zfs_sa_upgrade_txholds(tx, zp);
1984	zfs_sa_upgrade_txholds(tx, dzp);
1985	if (may_delete_now) {
1986		toobig =
1987		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1988		/* if the file is too big, only hold_free a token amount */
1989		dmu_tx_hold_free(tx, zp->z_id, 0,
1990		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1991	}
1992
1993	/* are there any extended attributes? */
1994	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1995	    &xattr_obj, sizeof (xattr_obj));
1996	if (error == 0 && xattr_obj) {
1997		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1998		ASSERT0(error);
1999		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2000		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
2001	}
2002
2003	mutex_enter(&zp->z_lock);
2004	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
2005		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
2006	mutex_exit(&zp->z_lock);
2007
2008	/* charge as an update -- would be nice not to charge at all */
2009	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2010
2011	/*
2012	 * Mark this transaction as typically resulting in a net free of space
2013	 */
2014	dmu_tx_mark_netfree(tx);
2015
2016	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2017	if (error) {
2018		zfs_dirent_unlock(dl);
2019		VN_RELE(vp);
2020		if (xzp)
2021			VN_RELE(ZTOV(xzp));
2022		if (error == ERESTART) {
2023			waited = B_TRUE;
2024			dmu_tx_wait(tx);
2025			dmu_tx_abort(tx);
2026			goto top;
2027		}
2028		if (realnmp)
2029			pn_free(realnmp);
2030		dmu_tx_abort(tx);
2031		ZFS_EXIT(zfsvfs);
2032		return (error);
2033	}
2034
2035	/*
2036	 * Remove the directory entry.
2037	 */
2038	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
2039
2040	if (error) {
2041		dmu_tx_commit(tx);
2042		goto out;
2043	}
2044
2045	if (unlinked) {
2046		/*
2047		 * Hold z_lock so that we can make sure that the ACL obj
2048		 * hasn't changed.  Could have been deleted due to
2049		 * zfs_sa_upgrade().
2050		 */
2051		mutex_enter(&zp->z_lock);
2052		VI_LOCK(vp);
2053		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2054		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
2055		delete_now = may_delete_now && !toobig &&
2056		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
2057		    xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
2058		    acl_obj;
2059		VI_UNLOCK(vp);
2060	}
2061
2062	if (delete_now) {
2063#ifdef __FreeBSD__
2064		panic("zfs_remove: delete_now branch taken");
2065#endif
2066		if (xattr_obj_unlinked) {
2067			ASSERT3U(xzp->z_links, ==, 2);
2068			mutex_enter(&xzp->z_lock);
2069			xzp->z_unlinked = 1;
2070			xzp->z_links = 0;
2071			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
2072			    &xzp->z_links, sizeof (xzp->z_links), tx);
2073			ASSERT3U(error,  ==,  0);
2074			mutex_exit(&xzp->z_lock);
2075			zfs_unlinked_add(xzp, tx);
2076
2077			if (zp->z_is_sa)
2078				error = sa_remove(zp->z_sa_hdl,
2079				    SA_ZPL_XATTR(zfsvfs), tx);
2080			else
2081				error = sa_update(zp->z_sa_hdl,
2082				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
2083				    sizeof (uint64_t), tx);
2084			ASSERT0(error);
2085		}
2086		VI_LOCK(vp);
2087		vp->v_count--;
2088		ASSERT0(vp->v_count);
2089		VI_UNLOCK(vp);
2090		mutex_exit(&zp->z_lock);
2091		zfs_znode_delete(zp, tx);
2092	} else if (unlinked) {
2093		mutex_exit(&zp->z_lock);
2094		zfs_unlinked_add(zp, tx);
2095#ifdef __FreeBSD__
2096		vp->v_vflag |= VV_NOSYNC;
2097#endif
2098	}
2099
2100	txtype = TX_REMOVE;
2101	if (flags & FIGNORECASE)
2102		txtype |= TX_CI;
2103	zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
2104
2105	dmu_tx_commit(tx);
2106out:
2107	if (realnmp)
2108		pn_free(realnmp);
2109
2110	zfs_dirent_unlock(dl);
2111
2112	if (!delete_now)
2113		VN_RELE(vp);
2114	if (xzp)
2115		VN_RELE(ZTOV(xzp));
2116
2117	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2118		zil_commit(zilog, 0);
2119
2120	ZFS_EXIT(zfsvfs);
2121	return (error);
2122}
2123
2124/*
2125 * Create a new directory and insert it into dvp using the name
2126 * provided.  Return a pointer to the inserted directory.
2127 *
2128 *	IN:	dvp	- vnode of directory to add subdir to.
2129 *		dirname	- name of new directory.
2130 *		vap	- attributes of new directory.
2131 *		cr	- credentials of caller.
2132 *		ct	- caller context
2133 *		flags	- case flags
2134 *		vsecp	- ACL to be set
2135 *
2136 *	OUT:	vpp	- vnode of created directory.
2137 *
2138 *	RETURN:	0 on success, error code on failure.
2139 *
2140 * Timestamps:
2141 *	dvp - ctime|mtime updated
2142 *	 vp - ctime|mtime|atime updated
2143 */
2144/*ARGSUSED*/
2145static int
2146zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
2147    caller_context_t *ct, int flags, vsecattr_t *vsecp)
2148{
2149	znode_t		*zp, *dzp = VTOZ(dvp);
2150	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2151	zilog_t		*zilog;
2152	zfs_dirlock_t	*dl;
2153	uint64_t	txtype;
2154	dmu_tx_t	*tx;
2155	int		error;
2156	int		zf = ZNEW;
2157	ksid_t		*ksid;
2158	uid_t		uid;
2159	gid_t		gid = crgetgid(cr);
2160	zfs_acl_ids_t   acl_ids;
2161	boolean_t	fuid_dirtied;
2162	boolean_t	waited = B_FALSE;
2163
2164	ASSERT(vap->va_type == VDIR);
2165
2166	/*
2167	 * If we have an ephemeral id, ACL, or XVATTR then
2168	 * make sure file system is at proper version
2169	 */
2170
2171	ksid = crgetsid(cr, KSID_OWNER);
2172	if (ksid)
2173		uid = ksid_getid(ksid);
2174	else
2175		uid = crgetuid(cr);
2176	if (zfsvfs->z_use_fuids == B_FALSE &&
2177	    (vsecp || (vap->va_mask & AT_XVATTR) ||
2178	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
2179		return (SET_ERROR(EINVAL));
2180
2181	ZFS_ENTER(zfsvfs);
2182	ZFS_VERIFY_ZP(dzp);
2183	zilog = zfsvfs->z_log;
2184
2185	if (dzp->z_pflags & ZFS_XATTR) {
2186		ZFS_EXIT(zfsvfs);
2187		return (SET_ERROR(EINVAL));
2188	}
2189
2190	if (zfsvfs->z_utf8 && u8_validate(dirname,
2191	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2192		ZFS_EXIT(zfsvfs);
2193		return (SET_ERROR(EILSEQ));
2194	}
2195	if (flags & FIGNORECASE)
2196		zf |= ZCILOOK;
2197
2198	if (vap->va_mask & AT_XVATTR) {
2199		if ((error = secpolicy_xvattr(dvp, (xvattr_t *)vap,
2200		    crgetuid(cr), cr, vap->va_type)) != 0) {
2201			ZFS_EXIT(zfsvfs);
2202			return (error);
2203		}
2204	}
2205
2206	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
2207	    vsecp, &acl_ids)) != 0) {
2208		ZFS_EXIT(zfsvfs);
2209		return (error);
2210	}
2211
2212	getnewvnode_reserve(1);
2213
2214	/*
2215	 * First make sure the new directory doesn't exist.
2216	 *
2217	 * Existence is checked first to make sure we don't return
2218	 * EACCES instead of EEXIST which can cause some applications
2219	 * to fail.
2220	 */
2221top:
2222	*vpp = NULL;
2223
2224	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
2225	    NULL, NULL)) {
2226		zfs_acl_ids_free(&acl_ids);
2227		getnewvnode_drop_reserve();
2228		ZFS_EXIT(zfsvfs);
2229		return (error);
2230	}
2231
2232	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
2233		zfs_acl_ids_free(&acl_ids);
2234		zfs_dirent_unlock(dl);
2235		getnewvnode_drop_reserve();
2236		ZFS_EXIT(zfsvfs);
2237		return (error);
2238	}
2239
2240	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
2241		zfs_acl_ids_free(&acl_ids);
2242		zfs_dirent_unlock(dl);
2243		getnewvnode_drop_reserve();
2244		ZFS_EXIT(zfsvfs);
2245		return (SET_ERROR(EDQUOT));
2246	}
2247
2248	/*
2249	 * Add a new entry to the directory.
2250	 */
2251	tx = dmu_tx_create(zfsvfs->z_os);
2252	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
2253	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2254	fuid_dirtied = zfsvfs->z_fuid_dirty;
2255	if (fuid_dirtied)
2256		zfs_fuid_txhold(zfsvfs, tx);
2257	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2258		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2259		    acl_ids.z_aclp->z_acl_bytes);
2260	}
2261
2262	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2263	    ZFS_SA_BASE_ATTR_SIZE);
2264
2265	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2266	if (error) {
2267		zfs_dirent_unlock(dl);
2268		if (error == ERESTART) {
2269			waited = B_TRUE;
2270			dmu_tx_wait(tx);
2271			dmu_tx_abort(tx);
2272			goto top;
2273		}
2274		zfs_acl_ids_free(&acl_ids);
2275		dmu_tx_abort(tx);
2276		getnewvnode_drop_reserve();
2277		ZFS_EXIT(zfsvfs);
2278		return (error);
2279	}
2280
2281	/*
2282	 * Create new node.
2283	 */
2284	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2285
2286	if (fuid_dirtied)
2287		zfs_fuid_sync(zfsvfs, tx);
2288
2289	/*
2290	 * Now put new name in parent dir.
2291	 */
2292	(void) zfs_link_create(dl, zp, tx, ZNEW);
2293
2294	*vpp = ZTOV(zp);
2295
2296	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2297	if (flags & FIGNORECASE)
2298		txtype |= TX_CI;
2299	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2300	    acl_ids.z_fuidp, vap);
2301
2302	zfs_acl_ids_free(&acl_ids);
2303
2304	dmu_tx_commit(tx);
2305
2306	getnewvnode_drop_reserve();
2307
2308	zfs_dirent_unlock(dl);
2309
2310	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2311		zil_commit(zilog, 0);
2312
2313	ZFS_EXIT(zfsvfs);
2314	return (0);
2315}
2316
2317/*
2318 * Remove a directory subdir entry.  If the current working
2319 * directory is the same as the subdir to be removed, the
2320 * remove will fail.
2321 *
2322 *	IN:	dvp	- vnode of directory to remove from.
2323 *		name	- name of directory to be removed.
2324 *		cwd	- vnode of current working directory.
2325 *		cr	- credentials of caller.
2326 *		ct	- caller context
2327 *		flags	- case flags
2328 *
2329 *	RETURN:	0 on success, error code on failure.
2330 *
2331 * Timestamps:
2332 *	dvp - ctime|mtime updated
2333 */
2334/*ARGSUSED*/
2335static int
2336zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2337    caller_context_t *ct, int flags)
2338{
2339	znode_t		*dzp = VTOZ(dvp);
2340	znode_t		*zp;
2341	vnode_t		*vp;
2342	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2343	zilog_t		*zilog;
2344	zfs_dirlock_t	*dl;
2345	dmu_tx_t	*tx;
2346	int		error;
2347	int		zflg = ZEXISTS;
2348	boolean_t	waited = B_FALSE;
2349
2350	ZFS_ENTER(zfsvfs);
2351	ZFS_VERIFY_ZP(dzp);
2352	zilog = zfsvfs->z_log;
2353
2354	if (flags & FIGNORECASE)
2355		zflg |= ZCILOOK;
2356top:
2357	zp = NULL;
2358
2359	/*
2360	 * Attempt to lock directory; fail if entry doesn't exist.
2361	 */
2362	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2363	    NULL, NULL)) {
2364		ZFS_EXIT(zfsvfs);
2365		return (error);
2366	}
2367
2368	vp = ZTOV(zp);
2369
2370	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2371		goto out;
2372	}
2373
2374	if (vp->v_type != VDIR) {
2375		error = SET_ERROR(ENOTDIR);
2376		goto out;
2377	}
2378
2379	if (vp == cwd) {
2380		error = SET_ERROR(EINVAL);
2381		goto out;
2382	}
2383
2384	vnevent_rmdir(vp, dvp, name, ct);
2385
2386	/*
2387	 * Grab a lock on the directory to make sure that noone is
2388	 * trying to add (or lookup) entries while we are removing it.
2389	 */
2390	rw_enter(&zp->z_name_lock, RW_WRITER);
2391
2392	/*
2393	 * Grab a lock on the parent pointer to make sure we play well
2394	 * with the treewalk and directory rename code.
2395	 */
2396	rw_enter(&zp->z_parent_lock, RW_WRITER);
2397
2398	tx = dmu_tx_create(zfsvfs->z_os);
2399	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2400	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2401	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2402	zfs_sa_upgrade_txholds(tx, zp);
2403	zfs_sa_upgrade_txholds(tx, dzp);
2404	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2405	if (error) {
2406		rw_exit(&zp->z_parent_lock);
2407		rw_exit(&zp->z_name_lock);
2408		zfs_dirent_unlock(dl);
2409		VN_RELE(vp);
2410		if (error == ERESTART) {
2411			waited = B_TRUE;
2412			dmu_tx_wait(tx);
2413			dmu_tx_abort(tx);
2414			goto top;
2415		}
2416		dmu_tx_abort(tx);
2417		ZFS_EXIT(zfsvfs);
2418		return (error);
2419	}
2420
2421#ifdef FREEBSD_NAMECACHE
2422	cache_purge(dvp);
2423#endif
2424
2425	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2426
2427	if (error == 0) {
2428		uint64_t txtype = TX_RMDIR;
2429		if (flags & FIGNORECASE)
2430			txtype |= TX_CI;
2431		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2432	}
2433
2434	dmu_tx_commit(tx);
2435
2436	rw_exit(&zp->z_parent_lock);
2437	rw_exit(&zp->z_name_lock);
2438#ifdef FREEBSD_NAMECACHE
2439	cache_purge(vp);
2440#endif
2441out:
2442	zfs_dirent_unlock(dl);
2443
2444	VN_RELE(vp);
2445
2446	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2447		zil_commit(zilog, 0);
2448
2449	ZFS_EXIT(zfsvfs);
2450	return (error);
2451}
2452
2453/*
2454 * Read as many directory entries as will fit into the provided
2455 * buffer from the given directory cursor position (specified in
2456 * the uio structure).
2457 *
2458 *	IN:	vp	- vnode of directory to read.
2459 *		uio	- structure supplying read location, range info,
2460 *			  and return buffer.
2461 *		cr	- credentials of caller.
2462 *		ct	- caller context
2463 *		flags	- case flags
2464 *
2465 *	OUT:	uio	- updated offset and range, buffer filled.
2466 *		eofp	- set to true if end-of-file detected.
2467 *
2468 *	RETURN:	0 on success, error code on failure.
2469 *
2470 * Timestamps:
2471 *	vp - atime updated
2472 *
2473 * Note that the low 4 bits of the cookie returned by zap is always zero.
2474 * This allows us to use the low range for "special" directory entries:
2475 * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2476 * we use the offset 2 for the '.zfs' directory.
2477 */
2478/* ARGSUSED */
2479static int
2480zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, int *ncookies, u_long **cookies)
2481{
2482	znode_t		*zp = VTOZ(vp);
2483	iovec_t		*iovp;
2484	edirent_t	*eodp;
2485	dirent64_t	*odp;
2486	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2487	objset_t	*os;
2488	caddr_t		outbuf;
2489	size_t		bufsize;
2490	zap_cursor_t	zc;
2491	zap_attribute_t	zap;
2492	uint_t		bytes_wanted;
2493	uint64_t	offset; /* must be unsigned; checks for < 1 */
2494	uint64_t	parent;
2495	int		local_eof;
2496	int		outcount;
2497	int		error;
2498	uint8_t		prefetch;
2499	boolean_t	check_sysattrs;
2500	uint8_t		type;
2501	int		ncooks;
2502	u_long		*cooks = NULL;
2503	int		flags = 0;
2504
2505	ZFS_ENTER(zfsvfs);
2506	ZFS_VERIFY_ZP(zp);
2507
2508	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2509	    &parent, sizeof (parent))) != 0) {
2510		ZFS_EXIT(zfsvfs);
2511		return (error);
2512	}
2513
2514	/*
2515	 * If we are not given an eof variable,
2516	 * use a local one.
2517	 */
2518	if (eofp == NULL)
2519		eofp = &local_eof;
2520
2521	/*
2522	 * Check for valid iov_len.
2523	 */
2524	if (uio->uio_iov->iov_len <= 0) {
2525		ZFS_EXIT(zfsvfs);
2526		return (SET_ERROR(EINVAL));
2527	}
2528
2529	/*
2530	 * Quit if directory has been removed (posix)
2531	 */
2532	if ((*eofp = zp->z_unlinked) != 0) {
2533		ZFS_EXIT(zfsvfs);
2534		return (0);
2535	}
2536
2537	error = 0;
2538	os = zfsvfs->z_os;
2539	offset = uio->uio_loffset;
2540	prefetch = zp->z_zn_prefetch;
2541
2542	/*
2543	 * Initialize the iterator cursor.
2544	 */
2545	if (offset <= 3) {
2546		/*
2547		 * Start iteration from the beginning of the directory.
2548		 */
2549		zap_cursor_init(&zc, os, zp->z_id);
2550	} else {
2551		/*
2552		 * The offset is a serialized cursor.
2553		 */
2554		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2555	}
2556
2557	/*
2558	 * Get space to change directory entries into fs independent format.
2559	 */
2560	iovp = uio->uio_iov;
2561	bytes_wanted = iovp->iov_len;
2562	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2563		bufsize = bytes_wanted;
2564		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2565		odp = (struct dirent64 *)outbuf;
2566	} else {
2567		bufsize = bytes_wanted;
2568		outbuf = NULL;
2569		odp = (struct dirent64 *)iovp->iov_base;
2570	}
2571	eodp = (struct edirent *)odp;
2572
2573	if (ncookies != NULL) {
2574		/*
2575		 * Minimum entry size is dirent size and 1 byte for a file name.
2576		 */
2577		ncooks = uio->uio_resid / (sizeof(struct dirent) - sizeof(((struct dirent *)NULL)->d_name) + 1);
2578		cooks = malloc(ncooks * sizeof(u_long), M_TEMP, M_WAITOK);
2579		*cookies = cooks;
2580		*ncookies = ncooks;
2581	}
2582	/*
2583	 * If this VFS supports the system attribute view interface; and
2584	 * we're looking at an extended attribute directory; and we care
2585	 * about normalization conflicts on this vfs; then we must check
2586	 * for normalization conflicts with the sysattr name space.
2587	 */
2588#ifdef TODO
2589	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2590	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2591	    (flags & V_RDDIR_ENTFLAGS);
2592#else
2593	check_sysattrs = 0;
2594#endif
2595
2596	/*
2597	 * Transform to file-system independent format
2598	 */
2599	outcount = 0;
2600	while (outcount < bytes_wanted) {
2601		ino64_t objnum;
2602		ushort_t reclen;
2603		off64_t *next = NULL;
2604
2605		/*
2606		 * Special case `.', `..', and `.zfs'.
2607		 */
2608		if (offset == 0) {
2609			(void) strcpy(zap.za_name, ".");
2610			zap.za_normalization_conflict = 0;
2611			objnum = zp->z_id;
2612			type = DT_DIR;
2613		} else if (offset == 1) {
2614			(void) strcpy(zap.za_name, "..");
2615			zap.za_normalization_conflict = 0;
2616			objnum = parent;
2617			type = DT_DIR;
2618		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2619			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2620			zap.za_normalization_conflict = 0;
2621			objnum = ZFSCTL_INO_ROOT;
2622			type = DT_DIR;
2623		} else {
2624			/*
2625			 * Grab next entry.
2626			 */
2627			if (error = zap_cursor_retrieve(&zc, &zap)) {
2628				if ((*eofp = (error == ENOENT)) != 0)
2629					break;
2630				else
2631					goto update;
2632			}
2633
2634			if (zap.za_integer_length != 8 ||
2635			    zap.za_num_integers != 1) {
2636				cmn_err(CE_WARN, "zap_readdir: bad directory "
2637				    "entry, obj = %lld, offset = %lld\n",
2638				    (u_longlong_t)zp->z_id,
2639				    (u_longlong_t)offset);
2640				error = SET_ERROR(ENXIO);
2641				goto update;
2642			}
2643
2644			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2645			/*
2646			 * MacOS X can extract the object type here such as:
2647			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2648			 */
2649			type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2650
2651			if (check_sysattrs && !zap.za_normalization_conflict) {
2652#ifdef TODO
2653				zap.za_normalization_conflict =
2654				    xattr_sysattr_casechk(zap.za_name);
2655#else
2656				panic("%s:%u: TODO", __func__, __LINE__);
2657#endif
2658			}
2659		}
2660
2661		if (flags & V_RDDIR_ACCFILTER) {
2662			/*
2663			 * If we have no access at all, don't include
2664			 * this entry in the returned information
2665			 */
2666			znode_t	*ezp;
2667			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2668				goto skip_entry;
2669			if (!zfs_has_access(ezp, cr)) {
2670				VN_RELE(ZTOV(ezp));
2671				goto skip_entry;
2672			}
2673			VN_RELE(ZTOV(ezp));
2674		}
2675
2676		if (flags & V_RDDIR_ENTFLAGS)
2677			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2678		else
2679			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2680
2681		/*
2682		 * Will this entry fit in the buffer?
2683		 */
2684		if (outcount + reclen > bufsize) {
2685			/*
2686			 * Did we manage to fit anything in the buffer?
2687			 */
2688			if (!outcount) {
2689				error = SET_ERROR(EINVAL);
2690				goto update;
2691			}
2692			break;
2693		}
2694		if (flags & V_RDDIR_ENTFLAGS) {
2695			/*
2696			 * Add extended flag entry:
2697			 */
2698			eodp->ed_ino = objnum;
2699			eodp->ed_reclen = reclen;
2700			/* NOTE: ed_off is the offset for the *next* entry */
2701			next = &(eodp->ed_off);
2702			eodp->ed_eflags = zap.za_normalization_conflict ?
2703			    ED_CASE_CONFLICT : 0;
2704			(void) strncpy(eodp->ed_name, zap.za_name,
2705			    EDIRENT_NAMELEN(reclen));
2706			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2707		} else {
2708			/*
2709			 * Add normal entry:
2710			 */
2711			odp->d_ino = objnum;
2712			odp->d_reclen = reclen;
2713			odp->d_namlen = strlen(zap.za_name);
2714			(void) strlcpy(odp->d_name, zap.za_name, odp->d_namlen + 1);
2715			odp->d_type = type;
2716			odp = (dirent64_t *)((intptr_t)odp + reclen);
2717		}
2718		outcount += reclen;
2719
2720		ASSERT(outcount <= bufsize);
2721
2722		/* Prefetch znode */
2723		if (prefetch)
2724			dmu_prefetch(os, objnum, 0, 0, 0,
2725			    ZIO_PRIORITY_SYNC_READ);
2726
2727	skip_entry:
2728		/*
2729		 * Move to the next entry, fill in the previous offset.
2730		 */
2731		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2732			zap_cursor_advance(&zc);
2733			offset = zap_cursor_serialize(&zc);
2734		} else {
2735			offset += 1;
2736		}
2737
2738		if (cooks != NULL) {
2739			*cooks++ = offset;
2740			ncooks--;
2741			KASSERT(ncooks >= 0, ("ncookies=%d", ncooks));
2742		}
2743	}
2744	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2745
2746	/* Subtract unused cookies */
2747	if (ncookies != NULL)
2748		*ncookies -= ncooks;
2749
2750	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2751		iovp->iov_base += outcount;
2752		iovp->iov_len -= outcount;
2753		uio->uio_resid -= outcount;
2754	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2755		/*
2756		 * Reset the pointer.
2757		 */
2758		offset = uio->uio_loffset;
2759	}
2760
2761update:
2762	zap_cursor_fini(&zc);
2763	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2764		kmem_free(outbuf, bufsize);
2765
2766	if (error == ENOENT)
2767		error = 0;
2768
2769	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2770
2771	uio->uio_loffset = offset;
2772	ZFS_EXIT(zfsvfs);
2773	if (error != 0 && cookies != NULL) {
2774		free(*cookies, M_TEMP);
2775		*cookies = NULL;
2776		*ncookies = 0;
2777	}
2778	return (error);
2779}
2780
2781ulong_t zfs_fsync_sync_cnt = 4;
2782
2783static int
2784zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2785{
2786	znode_t	*zp = VTOZ(vp);
2787	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2788
2789	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2790
2791	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2792		ZFS_ENTER(zfsvfs);
2793		ZFS_VERIFY_ZP(zp);
2794		zil_commit(zfsvfs->z_log, zp->z_id);
2795		ZFS_EXIT(zfsvfs);
2796	}
2797	return (0);
2798}
2799
2800
2801/*
2802 * Get the requested file attributes and place them in the provided
2803 * vattr structure.
2804 *
2805 *	IN:	vp	- vnode of file.
2806 *		vap	- va_mask identifies requested attributes.
2807 *			  If AT_XVATTR set, then optional attrs are requested
2808 *		flags	- ATTR_NOACLCHECK (CIFS server context)
2809 *		cr	- credentials of caller.
2810 *		ct	- caller context
2811 *
2812 *	OUT:	vap	- attribute values.
2813 *
2814 *	RETURN:	0 (always succeeds).
2815 */
2816/* ARGSUSED */
2817static int
2818zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2819    caller_context_t *ct)
2820{
2821	znode_t *zp = VTOZ(vp);
2822	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2823	int	error = 0;
2824	uint32_t blksize;
2825	u_longlong_t nblocks;
2826	uint64_t links;
2827	uint64_t mtime[2], ctime[2], crtime[2], rdev;
2828	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2829	xoptattr_t *xoap = NULL;
2830	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2831	sa_bulk_attr_t bulk[4];
2832	int count = 0;
2833
2834	ZFS_ENTER(zfsvfs);
2835	ZFS_VERIFY_ZP(zp);
2836
2837	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2838
2839	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2840	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2841	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &crtime, 16);
2842	if (vp->v_type == VBLK || vp->v_type == VCHR)
2843		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_RDEV(zfsvfs), NULL,
2844		    &rdev, 8);
2845
2846	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2847		ZFS_EXIT(zfsvfs);
2848		return (error);
2849	}
2850
2851	/*
2852	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2853	 * Also, if we are the owner don't bother, since owner should
2854	 * always be allowed to read basic attributes of file.
2855	 */
2856	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2857	    (vap->va_uid != crgetuid(cr))) {
2858		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2859		    skipaclchk, cr)) {
2860			ZFS_EXIT(zfsvfs);
2861			return (error);
2862		}
2863	}
2864
2865	/*
2866	 * Return all attributes.  It's cheaper to provide the answer
2867	 * than to determine whether we were asked the question.
2868	 */
2869
2870	mutex_enter(&zp->z_lock);
2871	vap->va_type = IFTOVT(zp->z_mode);
2872	vap->va_mode = zp->z_mode & ~S_IFMT;
2873#ifdef illumos
2874	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2875#else
2876	vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
2877#endif
2878	vap->va_nodeid = zp->z_id;
2879	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2880		links = zp->z_links + 1;
2881	else
2882		links = zp->z_links;
2883	vap->va_nlink = MIN(links, LINK_MAX);	/* nlink_t limit! */
2884	vap->va_size = zp->z_size;
2885#ifdef illumos
2886	vap->va_rdev = vp->v_rdev;
2887#else
2888	if (vp->v_type == VBLK || vp->v_type == VCHR)
2889		vap->va_rdev = zfs_cmpldev(rdev);
2890#endif
2891	vap->va_seq = zp->z_seq;
2892	vap->va_flags = 0;	/* FreeBSD: Reset chflags(2) flags. */
2893	vap->va_filerev = zp->z_seq;
2894
2895	/*
2896	 * Add in any requested optional attributes and the create time.
2897	 * Also set the corresponding bits in the returned attribute bitmap.
2898	 */
2899	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2900		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2901			xoap->xoa_archive =
2902			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2903			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2904		}
2905
2906		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2907			xoap->xoa_readonly =
2908			    ((zp->z_pflags & ZFS_READONLY) != 0);
2909			XVA_SET_RTN(xvap, XAT_READONLY);
2910		}
2911
2912		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2913			xoap->xoa_system =
2914			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2915			XVA_SET_RTN(xvap, XAT_SYSTEM);
2916		}
2917
2918		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2919			xoap->xoa_hidden =
2920			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2921			XVA_SET_RTN(xvap, XAT_HIDDEN);
2922		}
2923
2924		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2925			xoap->xoa_nounlink =
2926			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2927			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2928		}
2929
2930		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2931			xoap->xoa_immutable =
2932			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2933			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2934		}
2935
2936		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2937			xoap->xoa_appendonly =
2938			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2939			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2940		}
2941
2942		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2943			xoap->xoa_nodump =
2944			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2945			XVA_SET_RTN(xvap, XAT_NODUMP);
2946		}
2947
2948		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2949			xoap->xoa_opaque =
2950			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2951			XVA_SET_RTN(xvap, XAT_OPAQUE);
2952		}
2953
2954		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2955			xoap->xoa_av_quarantined =
2956			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2957			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2958		}
2959
2960		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2961			xoap->xoa_av_modified =
2962			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2963			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2964		}
2965
2966		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2967		    vp->v_type == VREG) {
2968			zfs_sa_get_scanstamp(zp, xvap);
2969		}
2970
2971		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2972			uint64_t times[2];
2973
2974			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2975			    times, sizeof (times));
2976			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2977			XVA_SET_RTN(xvap, XAT_CREATETIME);
2978		}
2979
2980		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2981			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2982			XVA_SET_RTN(xvap, XAT_REPARSE);
2983		}
2984		if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2985			xoap->xoa_generation = zp->z_gen;
2986			XVA_SET_RTN(xvap, XAT_GEN);
2987		}
2988
2989		if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2990			xoap->xoa_offline =
2991			    ((zp->z_pflags & ZFS_OFFLINE) != 0);
2992			XVA_SET_RTN(xvap, XAT_OFFLINE);
2993		}
2994
2995		if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2996			xoap->xoa_sparse =
2997			    ((zp->z_pflags & ZFS_SPARSE) != 0);
2998			XVA_SET_RTN(xvap, XAT_SPARSE);
2999		}
3000	}
3001
3002	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
3003	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
3004	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
3005	ZFS_TIME_DECODE(&vap->va_birthtime, crtime);
3006
3007	mutex_exit(&zp->z_lock);
3008
3009	sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
3010	vap->va_blksize = blksize;
3011	vap->va_bytes = nblocks << 9;	/* nblocks * 512 */
3012
3013	if (zp->z_blksz == 0) {
3014		/*
3015		 * Block size hasn't been set; suggest maximal I/O transfers.
3016		 */
3017		vap->va_blksize = zfsvfs->z_max_blksz;
3018	}
3019
3020	ZFS_EXIT(zfsvfs);
3021	return (0);
3022}
3023
3024/*
3025 * Set the file attributes to the values contained in the
3026 * vattr structure.
3027 *
3028 *	IN:	vp	- vnode of file to be modified.
3029 *		vap	- new attribute values.
3030 *			  If AT_XVATTR set, then optional attrs are being set
3031 *		flags	- ATTR_UTIME set if non-default time values provided.
3032 *			- ATTR_NOACLCHECK (CIFS context only).
3033 *		cr	- credentials of caller.
3034 *		ct	- caller context
3035 *
3036 *	RETURN:	0 on success, error code on failure.
3037 *
3038 * Timestamps:
3039 *	vp - ctime updated, mtime updated if size changed.
3040 */
3041/* ARGSUSED */
3042static int
3043zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
3044    caller_context_t *ct)
3045{
3046	znode_t		*zp = VTOZ(vp);
3047	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3048	zilog_t		*zilog;
3049	dmu_tx_t	*tx;
3050	vattr_t		oldva;
3051	xvattr_t	tmpxvattr;
3052	uint_t		mask = vap->va_mask;
3053	uint_t		saved_mask = 0;
3054	uint64_t	saved_mode;
3055	int		trim_mask = 0;
3056	uint64_t	new_mode;
3057	uint64_t	new_uid, new_gid;
3058	uint64_t	xattr_obj;
3059	uint64_t	mtime[2], ctime[2];
3060	znode_t		*attrzp;
3061	int		need_policy = FALSE;
3062	int		err, err2;
3063	zfs_fuid_info_t *fuidp = NULL;
3064	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
3065	xoptattr_t	*xoap;
3066	zfs_acl_t	*aclp;
3067	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
3068	boolean_t	fuid_dirtied = B_FALSE;
3069	sa_bulk_attr_t	bulk[7], xattr_bulk[7];
3070	int		count = 0, xattr_count = 0;
3071
3072	if (mask == 0)
3073		return (0);
3074
3075	if (mask & AT_NOSET)
3076		return (SET_ERROR(EINVAL));
3077
3078	ZFS_ENTER(zfsvfs);
3079	ZFS_VERIFY_ZP(zp);
3080
3081	zilog = zfsvfs->z_log;
3082
3083	/*
3084	 * Make sure that if we have ephemeral uid/gid or xvattr specified
3085	 * that file system is at proper version level
3086	 */
3087
3088	if (zfsvfs->z_use_fuids == B_FALSE &&
3089	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
3090	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
3091	    (mask & AT_XVATTR))) {
3092		ZFS_EXIT(zfsvfs);
3093		return (SET_ERROR(EINVAL));
3094	}
3095
3096	if (mask & AT_SIZE && vp->v_type == VDIR) {
3097		ZFS_EXIT(zfsvfs);
3098		return (SET_ERROR(EISDIR));
3099	}
3100
3101	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
3102		ZFS_EXIT(zfsvfs);
3103		return (SET_ERROR(EINVAL));
3104	}
3105
3106	/*
3107	 * If this is an xvattr_t, then get a pointer to the structure of
3108	 * optional attributes.  If this is NULL, then we have a vattr_t.
3109	 */
3110	xoap = xva_getxoptattr(xvap);
3111
3112	xva_init(&tmpxvattr);
3113
3114	/*
3115	 * Immutable files can only alter immutable bit and atime
3116	 */
3117	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
3118	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
3119	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
3120		ZFS_EXIT(zfsvfs);
3121		return (SET_ERROR(EPERM));
3122	}
3123
3124	if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
3125		ZFS_EXIT(zfsvfs);
3126		return (SET_ERROR(EPERM));
3127	}
3128
3129	/*
3130	 * Verify timestamps doesn't overflow 32 bits.
3131	 * ZFS can handle large timestamps, but 32bit syscalls can't
3132	 * handle times greater than 2039.  This check should be removed
3133	 * once large timestamps are fully supported.
3134	 */
3135	if (mask & (AT_ATIME | AT_MTIME)) {
3136		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
3137		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
3138			ZFS_EXIT(zfsvfs);
3139			return (SET_ERROR(EOVERFLOW));
3140		}
3141	}
3142
3143top:
3144	attrzp = NULL;
3145	aclp = NULL;
3146
3147	/* Can this be moved to before the top label? */
3148	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
3149		ZFS_EXIT(zfsvfs);
3150		return (SET_ERROR(EROFS));
3151	}
3152
3153	/*
3154	 * First validate permissions
3155	 */
3156
3157	if (mask & AT_SIZE) {
3158		/*
3159		 * XXX - Note, we are not providing any open
3160		 * mode flags here (like FNDELAY), so we may
3161		 * block if there are locks present... this
3162		 * should be addressed in openat().
3163		 */
3164		/* XXX - would it be OK to generate a log record here? */
3165		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
3166		if (err) {
3167			ZFS_EXIT(zfsvfs);
3168			return (err);
3169		}
3170	}
3171
3172	if (mask & (AT_ATIME|AT_MTIME) ||
3173	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
3174	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
3175	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
3176	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
3177	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
3178	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
3179	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
3180		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
3181		    skipaclchk, cr);
3182	}
3183
3184	if (mask & (AT_UID|AT_GID)) {
3185		int	idmask = (mask & (AT_UID|AT_GID));
3186		int	take_owner;
3187		int	take_group;
3188
3189		/*
3190		 * NOTE: even if a new mode is being set,
3191		 * we may clear S_ISUID/S_ISGID bits.
3192		 */
3193
3194		if (!(mask & AT_MODE))
3195			vap->va_mode = zp->z_mode;
3196
3197		/*
3198		 * Take ownership or chgrp to group we are a member of
3199		 */
3200
3201		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
3202		take_group = (mask & AT_GID) &&
3203		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
3204
3205		/*
3206		 * If both AT_UID and AT_GID are set then take_owner and
3207		 * take_group must both be set in order to allow taking
3208		 * ownership.
3209		 *
3210		 * Otherwise, send the check through secpolicy_vnode_setattr()
3211		 *
3212		 */
3213
3214		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
3215		    ((idmask == AT_UID) && take_owner) ||
3216		    ((idmask == AT_GID) && take_group)) {
3217			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
3218			    skipaclchk, cr) == 0) {
3219				/*
3220				 * Remove setuid/setgid for non-privileged users
3221				 */
3222				secpolicy_setid_clear(vap, vp, cr);
3223				trim_mask = (mask & (AT_UID|AT_GID));
3224			} else {
3225				need_policy =  TRUE;
3226			}
3227		} else {
3228			need_policy =  TRUE;
3229		}
3230	}
3231
3232	mutex_enter(&zp->z_lock);
3233	oldva.va_mode = zp->z_mode;
3234	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
3235	if (mask & AT_XVATTR) {
3236		/*
3237		 * Update xvattr mask to include only those attributes
3238		 * that are actually changing.
3239		 *
3240		 * the bits will be restored prior to actually setting
3241		 * the attributes so the caller thinks they were set.
3242		 */
3243		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
3244			if (xoap->xoa_appendonly !=
3245			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
3246				need_policy = TRUE;
3247			} else {
3248				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
3249				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
3250			}
3251		}
3252
3253		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
3254			if (xoap->xoa_nounlink !=
3255			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
3256				need_policy = TRUE;
3257			} else {
3258				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
3259				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
3260			}
3261		}
3262
3263		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
3264			if (xoap->xoa_immutable !=
3265			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
3266				need_policy = TRUE;
3267			} else {
3268				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
3269				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
3270			}
3271		}
3272
3273		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
3274			if (xoap->xoa_nodump !=
3275			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
3276				need_policy = TRUE;
3277			} else {
3278				XVA_CLR_REQ(xvap, XAT_NODUMP);
3279				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
3280			}
3281		}
3282
3283		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
3284			if (xoap->xoa_av_modified !=
3285			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
3286				need_policy = TRUE;
3287			} else {
3288				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
3289				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
3290			}
3291		}
3292
3293		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
3294			if ((vp->v_type != VREG &&
3295			    xoap->xoa_av_quarantined) ||
3296			    xoap->xoa_av_quarantined !=
3297			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
3298				need_policy = TRUE;
3299			} else {
3300				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
3301				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
3302			}
3303		}
3304
3305		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
3306			mutex_exit(&zp->z_lock);
3307			ZFS_EXIT(zfsvfs);
3308			return (SET_ERROR(EPERM));
3309		}
3310
3311		if (need_policy == FALSE &&
3312		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
3313		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
3314			need_policy = TRUE;
3315		}
3316	}
3317
3318	mutex_exit(&zp->z_lock);
3319
3320	if (mask & AT_MODE) {
3321		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
3322			err = secpolicy_setid_setsticky_clear(vp, vap,
3323			    &oldva, cr);
3324			if (err) {
3325				ZFS_EXIT(zfsvfs);
3326				return (err);
3327			}
3328			trim_mask |= AT_MODE;
3329		} else {
3330			need_policy = TRUE;
3331		}
3332	}
3333
3334	if (need_policy) {
3335		/*
3336		 * If trim_mask is set then take ownership
3337		 * has been granted or write_acl is present and user
3338		 * has the ability to modify mode.  In that case remove
3339		 * UID|GID and or MODE from mask so that
3340		 * secpolicy_vnode_setattr() doesn't revoke it.
3341		 */
3342
3343		if (trim_mask) {
3344			saved_mask = vap->va_mask;
3345			vap->va_mask &= ~trim_mask;
3346			if (trim_mask & AT_MODE) {
3347				/*
3348				 * Save the mode, as secpolicy_vnode_setattr()
3349				 * will overwrite it with ova.va_mode.
3350				 */
3351				saved_mode = vap->va_mode;
3352			}
3353		}
3354		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3355		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3356		if (err) {
3357			ZFS_EXIT(zfsvfs);
3358			return (err);
3359		}
3360
3361		if (trim_mask) {
3362			vap->va_mask |= saved_mask;
3363			if (trim_mask & AT_MODE) {
3364				/*
3365				 * Recover the mode after
3366				 * secpolicy_vnode_setattr().
3367				 */
3368				vap->va_mode = saved_mode;
3369			}
3370		}
3371	}
3372
3373	/*
3374	 * secpolicy_vnode_setattr, or take ownership may have
3375	 * changed va_mask
3376	 */
3377	mask = vap->va_mask;
3378
3379	if ((mask & (AT_UID | AT_GID))) {
3380		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3381		    &xattr_obj, sizeof (xattr_obj));
3382
3383		if (err == 0 && xattr_obj) {
3384			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3385			if (err)
3386				goto out2;
3387		}
3388		if (mask & AT_UID) {
3389			new_uid = zfs_fuid_create(zfsvfs,
3390			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3391			if (new_uid != zp->z_uid &&
3392			    zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3393				if (attrzp)
3394					VN_RELE(ZTOV(attrzp));
3395				err = SET_ERROR(EDQUOT);
3396				goto out2;
3397			}
3398		}
3399
3400		if (mask & AT_GID) {
3401			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3402			    cr, ZFS_GROUP, &fuidp);
3403			if (new_gid != zp->z_gid &&
3404			    zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3405				if (attrzp)
3406					VN_RELE(ZTOV(attrzp));
3407				err = SET_ERROR(EDQUOT);
3408				goto out2;
3409			}
3410		}
3411	}
3412	tx = dmu_tx_create(zfsvfs->z_os);
3413
3414	if (mask & AT_MODE) {
3415		uint64_t pmode = zp->z_mode;
3416		uint64_t acl_obj;
3417		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3418
3419		if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3420		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3421			err = SET_ERROR(EPERM);
3422			goto out;
3423		}
3424
3425		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3426			goto out;
3427
3428		mutex_enter(&zp->z_lock);
3429		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3430			/*
3431			 * Are we upgrading ACL from old V0 format
3432			 * to V1 format?
3433			 */
3434			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3435			    zfs_znode_acl_version(zp) ==
3436			    ZFS_ACL_VERSION_INITIAL) {
3437				dmu_tx_hold_free(tx, acl_obj, 0,
3438				    DMU_OBJECT_END);
3439				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3440				    0, aclp->z_acl_bytes);
3441			} else {
3442				dmu_tx_hold_write(tx, acl_obj, 0,
3443				    aclp->z_acl_bytes);
3444			}
3445		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3446			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3447			    0, aclp->z_acl_bytes);
3448		}
3449		mutex_exit(&zp->z_lock);
3450		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3451	} else {
3452		if ((mask & AT_XVATTR) &&
3453		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3454			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3455		else
3456			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3457	}
3458
3459	if (attrzp) {
3460		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3461	}
3462
3463	fuid_dirtied = zfsvfs->z_fuid_dirty;
3464	if (fuid_dirtied)
3465		zfs_fuid_txhold(zfsvfs, tx);
3466
3467	zfs_sa_upgrade_txholds(tx, zp);
3468
3469	err = dmu_tx_assign(tx, TXG_WAIT);
3470	if (err)
3471		goto out;
3472
3473	count = 0;
3474	/*
3475	 * Set each attribute requested.
3476	 * We group settings according to the locks they need to acquire.
3477	 *
3478	 * Note: you cannot set ctime directly, although it will be
3479	 * updated as a side-effect of calling this function.
3480	 */
3481
3482
3483	if (mask & (AT_UID|AT_GID|AT_MODE))
3484		mutex_enter(&zp->z_acl_lock);
3485	mutex_enter(&zp->z_lock);
3486
3487	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3488	    &zp->z_pflags, sizeof (zp->z_pflags));
3489
3490	if (attrzp) {
3491		if (mask & (AT_UID|AT_GID|AT_MODE))
3492			mutex_enter(&attrzp->z_acl_lock);
3493		mutex_enter(&attrzp->z_lock);
3494		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3495		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3496		    sizeof (attrzp->z_pflags));
3497	}
3498
3499	if (mask & (AT_UID|AT_GID)) {
3500
3501		if (mask & AT_UID) {
3502			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3503			    &new_uid, sizeof (new_uid));
3504			zp->z_uid = new_uid;
3505			if (attrzp) {
3506				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3507				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3508				    sizeof (new_uid));
3509				attrzp->z_uid = new_uid;
3510			}
3511		}
3512
3513		if (mask & AT_GID) {
3514			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3515			    NULL, &new_gid, sizeof (new_gid));
3516			zp->z_gid = new_gid;
3517			if (attrzp) {
3518				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3519				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3520				    sizeof (new_gid));
3521				attrzp->z_gid = new_gid;
3522			}
3523		}
3524		if (!(mask & AT_MODE)) {
3525			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3526			    NULL, &new_mode, sizeof (new_mode));
3527			new_mode = zp->z_mode;
3528		}
3529		err = zfs_acl_chown_setattr(zp);
3530		ASSERT(err == 0);
3531		if (attrzp) {
3532			err = zfs_acl_chown_setattr(attrzp);
3533			ASSERT(err == 0);
3534		}
3535	}
3536
3537	if (mask & AT_MODE) {
3538		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3539		    &new_mode, sizeof (new_mode));
3540		zp->z_mode = new_mode;
3541		ASSERT3U((uintptr_t)aclp, !=, 0);
3542		err = zfs_aclset_common(zp, aclp, cr, tx);
3543		ASSERT0(err);
3544		if (zp->z_acl_cached)
3545			zfs_acl_free(zp->z_acl_cached);
3546		zp->z_acl_cached = aclp;
3547		aclp = NULL;
3548	}
3549
3550
3551	if (mask & AT_ATIME) {
3552		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3553		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3554		    &zp->z_atime, sizeof (zp->z_atime));
3555	}
3556
3557	if (mask & AT_MTIME) {
3558		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3559		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3560		    mtime, sizeof (mtime));
3561	}
3562
3563	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3564	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3565		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3566		    NULL, mtime, sizeof (mtime));
3567		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3568		    &ctime, sizeof (ctime));
3569		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3570		    B_TRUE);
3571	} else if (mask != 0) {
3572		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3573		    &ctime, sizeof (ctime));
3574		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3575		    B_TRUE);
3576		if (attrzp) {
3577			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3578			    SA_ZPL_CTIME(zfsvfs), NULL,
3579			    &ctime, sizeof (ctime));
3580			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3581			    mtime, ctime, B_TRUE);
3582		}
3583	}
3584	/*
3585	 * Do this after setting timestamps to prevent timestamp
3586	 * update from toggling bit
3587	 */
3588
3589	if (xoap && (mask & AT_XVATTR)) {
3590
3591		/*
3592		 * restore trimmed off masks
3593		 * so that return masks can be set for caller.
3594		 */
3595
3596		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3597			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3598		}
3599		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3600			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3601		}
3602		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3603			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3604		}
3605		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3606			XVA_SET_REQ(xvap, XAT_NODUMP);
3607		}
3608		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3609			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3610		}
3611		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3612			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3613		}
3614
3615		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3616			ASSERT(vp->v_type == VREG);
3617
3618		zfs_xvattr_set(zp, xvap, tx);
3619	}
3620
3621	if (fuid_dirtied)
3622		zfs_fuid_sync(zfsvfs, tx);
3623
3624	if (mask != 0)
3625		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3626
3627	mutex_exit(&zp->z_lock);
3628	if (mask & (AT_UID|AT_GID|AT_MODE))
3629		mutex_exit(&zp->z_acl_lock);
3630
3631	if (attrzp) {
3632		if (mask & (AT_UID|AT_GID|AT_MODE))
3633			mutex_exit(&attrzp->z_acl_lock);
3634		mutex_exit(&attrzp->z_lock);
3635	}
3636out:
3637	if (err == 0 && attrzp) {
3638		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3639		    xattr_count, tx);
3640		ASSERT(err2 == 0);
3641	}
3642
3643	if (attrzp)
3644		VN_RELE(ZTOV(attrzp));
3645
3646	if (aclp)
3647		zfs_acl_free(aclp);
3648
3649	if (fuidp) {
3650		zfs_fuid_info_free(fuidp);
3651		fuidp = NULL;
3652	}
3653
3654	if (err) {
3655		dmu_tx_abort(tx);
3656		if (err == ERESTART)
3657			goto top;
3658	} else {
3659		err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3660		dmu_tx_commit(tx);
3661	}
3662
3663out2:
3664	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3665		zil_commit(zilog, 0);
3666
3667	ZFS_EXIT(zfsvfs);
3668	return (err);
3669}
3670
3671typedef struct zfs_zlock {
3672	krwlock_t	*zl_rwlock;	/* lock we acquired */
3673	znode_t		*zl_znode;	/* znode we held */
3674	struct zfs_zlock *zl_next;	/* next in list */
3675} zfs_zlock_t;
3676
3677/*
3678 * Drop locks and release vnodes that were held by zfs_rename_lock().
3679 */
3680static void
3681zfs_rename_unlock(zfs_zlock_t **zlpp)
3682{
3683	zfs_zlock_t *zl;
3684
3685	while ((zl = *zlpp) != NULL) {
3686		if (zl->zl_znode != NULL)
3687			VN_RELE(ZTOV(zl->zl_znode));
3688		rw_exit(zl->zl_rwlock);
3689		*zlpp = zl->zl_next;
3690		kmem_free(zl, sizeof (*zl));
3691	}
3692}
3693
3694/*
3695 * Search back through the directory tree, using the ".." entries.
3696 * Lock each directory in the chain to prevent concurrent renames.
3697 * Fail any attempt to move a directory into one of its own descendants.
3698 * XXX - z_parent_lock can overlap with map or grow locks
3699 */
3700static int
3701zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3702{
3703	zfs_zlock_t	*zl;
3704	znode_t		*zp = tdzp;
3705	uint64_t	rootid = zp->z_zfsvfs->z_root;
3706	uint64_t	oidp = zp->z_id;
3707	krwlock_t	*rwlp = &szp->z_parent_lock;
3708	krw_t		rw = RW_WRITER;
3709
3710	/*
3711	 * First pass write-locks szp and compares to zp->z_id.
3712	 * Later passes read-lock zp and compare to zp->z_parent.
3713	 */
3714	do {
3715		if (!rw_tryenter(rwlp, rw)) {
3716			/*
3717			 * Another thread is renaming in this path.
3718			 * Note that if we are a WRITER, we don't have any
3719			 * parent_locks held yet.
3720			 */
3721			if (rw == RW_READER && zp->z_id > szp->z_id) {
3722				/*
3723				 * Drop our locks and restart
3724				 */
3725				zfs_rename_unlock(&zl);
3726				*zlpp = NULL;
3727				zp = tdzp;
3728				oidp = zp->z_id;
3729				rwlp = &szp->z_parent_lock;
3730				rw = RW_WRITER;
3731				continue;
3732			} else {
3733				/*
3734				 * Wait for other thread to drop its locks
3735				 */
3736				rw_enter(rwlp, rw);
3737			}
3738		}
3739
3740		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3741		zl->zl_rwlock = rwlp;
3742		zl->zl_znode = NULL;
3743		zl->zl_next = *zlpp;
3744		*zlpp = zl;
3745
3746		if (oidp == szp->z_id)		/* We're a descendant of szp */
3747			return (SET_ERROR(EINVAL));
3748
3749		if (oidp == rootid)		/* We've hit the top */
3750			return (0);
3751
3752		if (rw == RW_READER) {		/* i.e. not the first pass */
3753			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3754			if (error)
3755				return (error);
3756			zl->zl_znode = zp;
3757		}
3758		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3759		    &oidp, sizeof (oidp));
3760		rwlp = &zp->z_parent_lock;
3761		rw = RW_READER;
3762
3763	} while (zp->z_id != sdzp->z_id);
3764
3765	return (0);
3766}
3767
3768/*
3769 * Move an entry from the provided source directory to the target
3770 * directory.  Change the entry name as indicated.
3771 *
3772 *	IN:	sdvp	- Source directory containing the "old entry".
3773 *		snm	- Old entry name.
3774 *		tdvp	- Target directory to contain the "new entry".
3775 *		tnm	- New entry name.
3776 *		cr	- credentials of caller.
3777 *		ct	- caller context
3778 *		flags	- case flags
3779 *
3780 *	RETURN:	0 on success, error code on failure.
3781 *
3782 * Timestamps:
3783 *	sdvp,tdvp - ctime|mtime updated
3784 */
3785/*ARGSUSED*/
3786static int
3787zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3788    caller_context_t *ct, int flags)
3789{
3790	znode_t		*tdzp, *sdzp, *szp, *tzp;
3791	zfsvfs_t 	*zfsvfs;
3792	zilog_t		*zilog;
3793	vnode_t		*realvp;
3794	zfs_dirlock_t	*sdl, *tdl;
3795	dmu_tx_t	*tx;
3796	zfs_zlock_t	*zl;
3797	int		cmp, serr, terr;
3798	int		error = 0;
3799	int		zflg = 0;
3800	boolean_t	waited = B_FALSE;
3801
3802	tdzp = VTOZ(tdvp);
3803	ZFS_VERIFY_ZP(tdzp);
3804	zfsvfs = tdzp->z_zfsvfs;
3805	ZFS_ENTER(zfsvfs);
3806	zilog = zfsvfs->z_log;
3807	sdzp = VTOZ(sdvp);
3808
3809	/*
3810	 * In case sdzp is not valid, let's be sure to exit from the right
3811	 * zfsvfs_t.
3812	 */
3813	if (sdzp->z_sa_hdl == NULL) {
3814		ZFS_EXIT(zfsvfs);
3815		return (SET_ERROR(EIO));
3816	}
3817
3818	/*
3819	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3820	 * ctldir appear to have the same v_vfsp.
3821	 */
3822	if (sdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3823		ZFS_EXIT(zfsvfs);
3824		return (SET_ERROR(EXDEV));
3825	}
3826
3827	if (zfsvfs->z_utf8 && u8_validate(tnm,
3828	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3829		ZFS_EXIT(zfsvfs);
3830		return (SET_ERROR(EILSEQ));
3831	}
3832
3833	if (flags & FIGNORECASE)
3834		zflg |= ZCILOOK;
3835
3836top:
3837	szp = NULL;
3838	tzp = NULL;
3839	zl = NULL;
3840
3841	/*
3842	 * This is to prevent the creation of links into attribute space
3843	 * by renaming a linked file into/outof an attribute directory.
3844	 * See the comment in zfs_link() for why this is considered bad.
3845	 */
3846	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3847		ZFS_EXIT(zfsvfs);
3848		return (SET_ERROR(EINVAL));
3849	}
3850
3851	/*
3852	 * Lock source and target directory entries.  To prevent deadlock,
3853	 * a lock ordering must be defined.  We lock the directory with
3854	 * the smallest object id first, or if it's a tie, the one with
3855	 * the lexically first name.
3856	 */
3857	if (sdzp->z_id < tdzp->z_id) {
3858		cmp = -1;
3859	} else if (sdzp->z_id > tdzp->z_id) {
3860		cmp = 1;
3861	} else {
3862		/*
3863		 * First compare the two name arguments without
3864		 * considering any case folding.
3865		 */
3866		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3867
3868		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3869		ASSERT(error == 0 || !zfsvfs->z_utf8);
3870		if (cmp == 0) {
3871			/*
3872			 * POSIX: "If the old argument and the new argument
3873			 * both refer to links to the same existing file,
3874			 * the rename() function shall return successfully
3875			 * and perform no other action."
3876			 */
3877			ZFS_EXIT(zfsvfs);
3878			return (0);
3879		}
3880		/*
3881		 * If the file system is case-folding, then we may
3882		 * have some more checking to do.  A case-folding file
3883		 * system is either supporting mixed case sensitivity
3884		 * access or is completely case-insensitive.  Note
3885		 * that the file system is always case preserving.
3886		 *
3887		 * In mixed sensitivity mode case sensitive behavior
3888		 * is the default.  FIGNORECASE must be used to
3889		 * explicitly request case insensitive behavior.
3890		 *
3891		 * If the source and target names provided differ only
3892		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3893		 * we will treat this as a special case in the
3894		 * case-insensitive mode: as long as the source name
3895		 * is an exact match, we will allow this to proceed as
3896		 * a name-change request.
3897		 */
3898		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3899		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3900		    flags & FIGNORECASE)) &&
3901		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3902		    &error) == 0) {
3903			/*
3904			 * case preserving rename request, require exact
3905			 * name matches
3906			 */
3907			zflg |= ZCIEXACT;
3908			zflg &= ~ZCILOOK;
3909		}
3910	}
3911
3912	/*
3913	 * If the source and destination directories are the same, we should
3914	 * grab the z_name_lock of that directory only once.
3915	 */
3916	if (sdzp == tdzp) {
3917		zflg |= ZHAVELOCK;
3918		rw_enter(&sdzp->z_name_lock, RW_READER);
3919	}
3920
3921	if (cmp < 0) {
3922		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3923		    ZEXISTS | zflg, NULL, NULL);
3924		terr = zfs_dirent_lock(&tdl,
3925		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3926	} else {
3927		terr = zfs_dirent_lock(&tdl,
3928		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3929		serr = zfs_dirent_lock(&sdl,
3930		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3931		    NULL, NULL);
3932	}
3933
3934	if (serr) {
3935		/*
3936		 * Source entry invalid or not there.
3937		 */
3938		if (!terr) {
3939			zfs_dirent_unlock(tdl);
3940			if (tzp)
3941				VN_RELE(ZTOV(tzp));
3942		}
3943
3944		if (sdzp == tdzp)
3945			rw_exit(&sdzp->z_name_lock);
3946
3947		/*
3948		 * FreeBSD: In OpenSolaris they only check if rename source is
3949		 * ".." here, because "." is handled in their lookup. This is
3950		 * not the case for FreeBSD, so we check for "." explicitly.
3951		 */
3952		if (strcmp(snm, ".") == 0 || strcmp(snm, "..") == 0)
3953			serr = SET_ERROR(EINVAL);
3954		ZFS_EXIT(zfsvfs);
3955		return (serr);
3956	}
3957	if (terr) {
3958		zfs_dirent_unlock(sdl);
3959		VN_RELE(ZTOV(szp));
3960
3961		if (sdzp == tdzp)
3962			rw_exit(&sdzp->z_name_lock);
3963
3964		if (strcmp(tnm, "..") == 0)
3965			terr = SET_ERROR(EINVAL);
3966		ZFS_EXIT(zfsvfs);
3967		return (terr);
3968	}
3969
3970	/*
3971	 * Must have write access at the source to remove the old entry
3972	 * and write access at the target to create the new entry.
3973	 * Note that if target and source are the same, this can be
3974	 * done in a single check.
3975	 */
3976
3977	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3978		goto out;
3979
3980	if (ZTOV(szp)->v_type == VDIR) {
3981		/*
3982		 * Check to make sure rename is valid.
3983		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3984		 */
3985		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3986			goto out;
3987	}
3988
3989	/*
3990	 * Does target exist?
3991	 */
3992	if (tzp) {
3993		/*
3994		 * Source and target must be the same type.
3995		 */
3996		if (ZTOV(szp)->v_type == VDIR) {
3997			if (ZTOV(tzp)->v_type != VDIR) {
3998				error = SET_ERROR(ENOTDIR);
3999				goto out;
4000			}
4001		} else {
4002			if (ZTOV(tzp)->v_type == VDIR) {
4003				error = SET_ERROR(EISDIR);
4004				goto out;
4005			}
4006		}
4007		/*
4008		 * POSIX dictates that when the source and target
4009		 * entries refer to the same file object, rename
4010		 * must do nothing and exit without error.
4011		 */
4012		if (szp->z_id == tzp->z_id) {
4013			error = 0;
4014			goto out;
4015		}
4016	}
4017
4018	vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
4019	if (tzp)
4020		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
4021
4022	/*
4023	 * notify the target directory if it is not the same
4024	 * as source directory.
4025	 */
4026	if (tdvp != sdvp) {
4027		vnevent_rename_dest_dir(tdvp, ct);
4028	}
4029
4030	tx = dmu_tx_create(zfsvfs->z_os);
4031	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4032	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
4033	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
4034	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
4035	if (sdzp != tdzp) {
4036		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
4037		zfs_sa_upgrade_txholds(tx, tdzp);
4038	}
4039	if (tzp) {
4040		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
4041		zfs_sa_upgrade_txholds(tx, tzp);
4042	}
4043
4044	zfs_sa_upgrade_txholds(tx, szp);
4045	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
4046	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4047	if (error) {
4048		if (zl != NULL)
4049			zfs_rename_unlock(&zl);
4050		zfs_dirent_unlock(sdl);
4051		zfs_dirent_unlock(tdl);
4052
4053		if (sdzp == tdzp)
4054			rw_exit(&sdzp->z_name_lock);
4055
4056		VN_RELE(ZTOV(szp));
4057		if (tzp)
4058			VN_RELE(ZTOV(tzp));
4059		if (error == ERESTART) {
4060			waited = B_TRUE;
4061			dmu_tx_wait(tx);
4062			dmu_tx_abort(tx);
4063			goto top;
4064		}
4065		dmu_tx_abort(tx);
4066		ZFS_EXIT(zfsvfs);
4067		return (error);
4068	}
4069
4070	if (tzp)	/* Attempt to remove the existing target */
4071		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
4072
4073	if (error == 0) {
4074		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
4075		if (error == 0) {
4076			szp->z_pflags |= ZFS_AV_MODIFIED;
4077
4078			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
4079			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
4080			ASSERT0(error);
4081
4082			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
4083			if (error == 0) {
4084				zfs_log_rename(zilog, tx, TX_RENAME |
4085				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
4086				    sdl->dl_name, tdzp, tdl->dl_name, szp);
4087
4088				/*
4089				 * Update path information for the target vnode
4090				 */
4091				vn_renamepath(tdvp, ZTOV(szp), tnm,
4092				    strlen(tnm));
4093			} else {
4094				/*
4095				 * At this point, we have successfully created
4096				 * the target name, but have failed to remove
4097				 * the source name.  Since the create was done
4098				 * with the ZRENAMING flag, there are
4099				 * complications; for one, the link count is
4100				 * wrong.  The easiest way to deal with this
4101				 * is to remove the newly created target, and
4102				 * return the original error.  This must
4103				 * succeed; fortunately, it is very unlikely to
4104				 * fail, since we just created it.
4105				 */
4106				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
4107				    ZRENAMING, NULL), ==, 0);
4108			}
4109		}
4110#ifdef FREEBSD_NAMECACHE
4111		if (error == 0) {
4112			cache_purge(sdvp);
4113			cache_purge(tdvp);
4114			cache_purge(ZTOV(szp));
4115			if (tzp)
4116				cache_purge(ZTOV(tzp));
4117		}
4118#endif
4119	}
4120
4121	dmu_tx_commit(tx);
4122out:
4123	if (zl != NULL)
4124		zfs_rename_unlock(&zl);
4125
4126	zfs_dirent_unlock(sdl);
4127	zfs_dirent_unlock(tdl);
4128
4129	if (sdzp == tdzp)
4130		rw_exit(&sdzp->z_name_lock);
4131
4132
4133	VN_RELE(ZTOV(szp));
4134	if (tzp)
4135		VN_RELE(ZTOV(tzp));
4136
4137	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4138		zil_commit(zilog, 0);
4139
4140	ZFS_EXIT(zfsvfs);
4141
4142	return (error);
4143}
4144
4145/*
4146 * Insert the indicated symbolic reference entry into the directory.
4147 *
4148 *	IN:	dvp	- Directory to contain new symbolic link.
4149 *		link	- Name for new symlink entry.
4150 *		vap	- Attributes of new entry.
4151 *		cr	- credentials of caller.
4152 *		ct	- caller context
4153 *		flags	- case flags
4154 *
4155 *	RETURN:	0 on success, error code on failure.
4156 *
4157 * Timestamps:
4158 *	dvp - ctime|mtime updated
4159 */
4160/*ARGSUSED*/
4161static int
4162zfs_symlink(vnode_t *dvp, vnode_t **vpp, char *name, vattr_t *vap, char *link,
4163    cred_t *cr, kthread_t *td)
4164{
4165	znode_t		*zp, *dzp = VTOZ(dvp);
4166	zfs_dirlock_t	*dl;
4167	dmu_tx_t	*tx;
4168	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
4169	zilog_t		*zilog;
4170	uint64_t	len = strlen(link);
4171	int		error;
4172	int		zflg = ZNEW;
4173	zfs_acl_ids_t	acl_ids;
4174	boolean_t	fuid_dirtied;
4175	uint64_t	txtype = TX_SYMLINK;
4176	boolean_t	waited = B_FALSE;
4177	int		flags = 0;
4178
4179	ASSERT(vap->va_type == VLNK);
4180
4181	ZFS_ENTER(zfsvfs);
4182	ZFS_VERIFY_ZP(dzp);
4183	zilog = zfsvfs->z_log;
4184
4185	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
4186	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4187		ZFS_EXIT(zfsvfs);
4188		return (SET_ERROR(EILSEQ));
4189	}
4190	if (flags & FIGNORECASE)
4191		zflg |= ZCILOOK;
4192
4193	if (len > MAXPATHLEN) {
4194		ZFS_EXIT(zfsvfs);
4195		return (SET_ERROR(ENAMETOOLONG));
4196	}
4197
4198	if ((error = zfs_acl_ids_create(dzp, 0,
4199	    vap, cr, NULL, &acl_ids)) != 0) {
4200		ZFS_EXIT(zfsvfs);
4201		return (error);
4202	}
4203
4204	getnewvnode_reserve(1);
4205
4206top:
4207	/*
4208	 * Attempt to lock directory; fail if entry already exists.
4209	 */
4210	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
4211	if (error) {
4212		zfs_acl_ids_free(&acl_ids);
4213		getnewvnode_drop_reserve();
4214		ZFS_EXIT(zfsvfs);
4215		return (error);
4216	}
4217
4218	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4219		zfs_acl_ids_free(&acl_ids);
4220		zfs_dirent_unlock(dl);
4221		getnewvnode_drop_reserve();
4222		ZFS_EXIT(zfsvfs);
4223		return (error);
4224	}
4225
4226	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
4227		zfs_acl_ids_free(&acl_ids);
4228		zfs_dirent_unlock(dl);
4229		getnewvnode_drop_reserve();
4230		ZFS_EXIT(zfsvfs);
4231		return (SET_ERROR(EDQUOT));
4232	}
4233	tx = dmu_tx_create(zfsvfs->z_os);
4234	fuid_dirtied = zfsvfs->z_fuid_dirty;
4235	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
4236	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4237	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
4238	    ZFS_SA_BASE_ATTR_SIZE + len);
4239	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
4240	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
4241		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
4242		    acl_ids.z_aclp->z_acl_bytes);
4243	}
4244	if (fuid_dirtied)
4245		zfs_fuid_txhold(zfsvfs, tx);
4246	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4247	if (error) {
4248		zfs_dirent_unlock(dl);
4249		if (error == ERESTART) {
4250			waited = B_TRUE;
4251			dmu_tx_wait(tx);
4252			dmu_tx_abort(tx);
4253			goto top;
4254		}
4255		zfs_acl_ids_free(&acl_ids);
4256		dmu_tx_abort(tx);
4257		getnewvnode_drop_reserve();
4258		ZFS_EXIT(zfsvfs);
4259		return (error);
4260	}
4261
4262	/*
4263	 * Create a new object for the symlink.
4264	 * for version 4 ZPL datsets the symlink will be an SA attribute
4265	 */
4266	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
4267
4268	if (fuid_dirtied)
4269		zfs_fuid_sync(zfsvfs, tx);
4270
4271	mutex_enter(&zp->z_lock);
4272	if (zp->z_is_sa)
4273		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
4274		    link, len, tx);
4275	else
4276		zfs_sa_symlink(zp, link, len, tx);
4277	mutex_exit(&zp->z_lock);
4278
4279	zp->z_size = len;
4280	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
4281	    &zp->z_size, sizeof (zp->z_size), tx);
4282	/*
4283	 * Insert the new object into the directory.
4284	 */
4285	(void) zfs_link_create(dl, zp, tx, ZNEW);
4286
4287	if (flags & FIGNORECASE)
4288		txtype |= TX_CI;
4289	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
4290	*vpp = ZTOV(zp);
4291
4292	zfs_acl_ids_free(&acl_ids);
4293
4294	dmu_tx_commit(tx);
4295
4296	getnewvnode_drop_reserve();
4297
4298	zfs_dirent_unlock(dl);
4299
4300	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4301		zil_commit(zilog, 0);
4302
4303	ZFS_EXIT(zfsvfs);
4304	return (error);
4305}
4306
4307/*
4308 * Return, in the buffer contained in the provided uio structure,
4309 * the symbolic path referred to by vp.
4310 *
4311 *	IN:	vp	- vnode of symbolic link.
4312 *		uio	- structure to contain the link path.
4313 *		cr	- credentials of caller.
4314 *		ct	- caller context
4315 *
4316 *	OUT:	uio	- structure containing the link path.
4317 *
4318 *	RETURN:	0 on success, error code on failure.
4319 *
4320 * Timestamps:
4321 *	vp - atime updated
4322 */
4323/* ARGSUSED */
4324static int
4325zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
4326{
4327	znode_t		*zp = VTOZ(vp);
4328	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4329	int		error;
4330
4331	ZFS_ENTER(zfsvfs);
4332	ZFS_VERIFY_ZP(zp);
4333
4334	mutex_enter(&zp->z_lock);
4335	if (zp->z_is_sa)
4336		error = sa_lookup_uio(zp->z_sa_hdl,
4337		    SA_ZPL_SYMLINK(zfsvfs), uio);
4338	else
4339		error = zfs_sa_readlink(zp, uio);
4340	mutex_exit(&zp->z_lock);
4341
4342	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4343
4344	ZFS_EXIT(zfsvfs);
4345	return (error);
4346}
4347
4348/*
4349 * Insert a new entry into directory tdvp referencing svp.
4350 *
4351 *	IN:	tdvp	- Directory to contain new entry.
4352 *		svp	- vnode of new entry.
4353 *		name	- name of new entry.
4354 *		cr	- credentials of caller.
4355 *		ct	- caller context
4356 *
4357 *	RETURN:	0 on success, error code on failure.
4358 *
4359 * Timestamps:
4360 *	tdvp - ctime|mtime updated
4361 *	 svp - ctime updated
4362 */
4363/* ARGSUSED */
4364static int
4365zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4366    caller_context_t *ct, int flags)
4367{
4368	znode_t		*dzp = VTOZ(tdvp);
4369	znode_t		*tzp, *szp;
4370	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
4371	zilog_t		*zilog;
4372	zfs_dirlock_t	*dl;
4373	dmu_tx_t	*tx;
4374	vnode_t		*realvp;
4375	int		error;
4376	int		zf = ZNEW;
4377	uint64_t	parent;
4378	uid_t		owner;
4379	boolean_t	waited = B_FALSE;
4380
4381	ASSERT(tdvp->v_type == VDIR);
4382
4383	ZFS_ENTER(zfsvfs);
4384	ZFS_VERIFY_ZP(dzp);
4385	zilog = zfsvfs->z_log;
4386
4387	if (VOP_REALVP(svp, &realvp, ct) == 0)
4388		svp = realvp;
4389
4390	/*
4391	 * POSIX dictates that we return EPERM here.
4392	 * Better choices include ENOTSUP or EISDIR.
4393	 */
4394	if (svp->v_type == VDIR) {
4395		ZFS_EXIT(zfsvfs);
4396		return (SET_ERROR(EPERM));
4397	}
4398
4399	szp = VTOZ(svp);
4400	ZFS_VERIFY_ZP(szp);
4401
4402	if (szp->z_pflags & (ZFS_APPENDONLY | ZFS_IMMUTABLE | ZFS_READONLY)) {
4403		ZFS_EXIT(zfsvfs);
4404		return (SET_ERROR(EPERM));
4405	}
4406
4407	/*
4408	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4409	 * ctldir appear to have the same v_vfsp.
4410	 */
4411	if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4412		ZFS_EXIT(zfsvfs);
4413		return (SET_ERROR(EXDEV));
4414	}
4415
4416	/* Prevent links to .zfs/shares files */
4417
4418	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4419	    &parent, sizeof (uint64_t))) != 0) {
4420		ZFS_EXIT(zfsvfs);
4421		return (error);
4422	}
4423	if (parent == zfsvfs->z_shares_dir) {
4424		ZFS_EXIT(zfsvfs);
4425		return (SET_ERROR(EPERM));
4426	}
4427
4428	if (zfsvfs->z_utf8 && u8_validate(name,
4429	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4430		ZFS_EXIT(zfsvfs);
4431		return (SET_ERROR(EILSEQ));
4432	}
4433	if (flags & FIGNORECASE)
4434		zf |= ZCILOOK;
4435
4436	/*
4437	 * We do not support links between attributes and non-attributes
4438	 * because of the potential security risk of creating links
4439	 * into "normal" file space in order to circumvent restrictions
4440	 * imposed in attribute space.
4441	 */
4442	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4443		ZFS_EXIT(zfsvfs);
4444		return (SET_ERROR(EINVAL));
4445	}
4446
4447
4448	owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4449	if (owner != crgetuid(cr) && secpolicy_basic_link(svp, cr) != 0) {
4450		ZFS_EXIT(zfsvfs);
4451		return (SET_ERROR(EPERM));
4452	}
4453
4454	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4455		ZFS_EXIT(zfsvfs);
4456		return (error);
4457	}
4458
4459top:
4460	/*
4461	 * Attempt to lock directory; fail if entry already exists.
4462	 */
4463	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4464	if (error) {
4465		ZFS_EXIT(zfsvfs);
4466		return (error);
4467	}
4468
4469	tx = dmu_tx_create(zfsvfs->z_os);
4470	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4471	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4472	zfs_sa_upgrade_txholds(tx, szp);
4473	zfs_sa_upgrade_txholds(tx, dzp);
4474	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4475	if (error) {
4476		zfs_dirent_unlock(dl);
4477		if (error == ERESTART) {
4478			waited = B_TRUE;
4479			dmu_tx_wait(tx);
4480			dmu_tx_abort(tx);
4481			goto top;
4482		}
4483		dmu_tx_abort(tx);
4484		ZFS_EXIT(zfsvfs);
4485		return (error);
4486	}
4487
4488	error = zfs_link_create(dl, szp, tx, 0);
4489
4490	if (error == 0) {
4491		uint64_t txtype = TX_LINK;
4492		if (flags & FIGNORECASE)
4493			txtype |= TX_CI;
4494		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4495	}
4496
4497	dmu_tx_commit(tx);
4498
4499	zfs_dirent_unlock(dl);
4500
4501	if (error == 0) {
4502		vnevent_link(svp, ct);
4503	}
4504
4505	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4506		zil_commit(zilog, 0);
4507
4508	ZFS_EXIT(zfsvfs);
4509	return (error);
4510}
4511
4512#ifdef illumos
4513/*
4514 * zfs_null_putapage() is used when the file system has been force
4515 * unmounted. It just drops the pages.
4516 */
4517/* ARGSUSED */
4518static int
4519zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4520    size_t *lenp, int flags, cred_t *cr)
4521{
4522	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4523	return (0);
4524}
4525
4526/*
4527 * Push a page out to disk, klustering if possible.
4528 *
4529 *	IN:	vp	- file to push page to.
4530 *		pp	- page to push.
4531 *		flags	- additional flags.
4532 *		cr	- credentials of caller.
4533 *
4534 *	OUT:	offp	- start of range pushed.
4535 *		lenp	- len of range pushed.
4536 *
4537 *	RETURN:	0 on success, error code on failure.
4538 *
4539 * NOTE: callers must have locked the page to be pushed.  On
4540 * exit, the page (and all other pages in the kluster) must be
4541 * unlocked.
4542 */
4543/* ARGSUSED */
4544static int
4545zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4546    size_t *lenp, int flags, cred_t *cr)
4547{
4548	znode_t		*zp = VTOZ(vp);
4549	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4550	dmu_tx_t	*tx;
4551	u_offset_t	off, koff;
4552	size_t		len, klen;
4553	int		err;
4554
4555	off = pp->p_offset;
4556	len = PAGESIZE;
4557	/*
4558	 * If our blocksize is bigger than the page size, try to kluster
4559	 * multiple pages so that we write a full block (thus avoiding
4560	 * a read-modify-write).
4561	 */
4562	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4563		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4564		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4565		ASSERT(koff <= zp->z_size);
4566		if (koff + klen > zp->z_size)
4567			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4568		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4569	}
4570	ASSERT3U(btop(len), ==, btopr(len));
4571
4572	/*
4573	 * Can't push pages past end-of-file.
4574	 */
4575	if (off >= zp->z_size) {
4576		/* ignore all pages */
4577		err = 0;
4578		goto out;
4579	} else if (off + len > zp->z_size) {
4580		int npages = btopr(zp->z_size - off);
4581		page_t *trunc;
4582
4583		page_list_break(&pp, &trunc, npages);
4584		/* ignore pages past end of file */
4585		if (trunc)
4586			pvn_write_done(trunc, flags);
4587		len = zp->z_size - off;
4588	}
4589
4590	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4591	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4592		err = SET_ERROR(EDQUOT);
4593		goto out;
4594	}
4595	tx = dmu_tx_create(zfsvfs->z_os);
4596	dmu_tx_hold_write(tx, zp->z_id, off, len);
4597
4598	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4599	zfs_sa_upgrade_txholds(tx, zp);
4600	err = dmu_tx_assign(tx, TXG_WAIT);
4601	if (err != 0) {
4602		dmu_tx_abort(tx);
4603		goto out;
4604	}
4605
4606	if (zp->z_blksz <= PAGESIZE) {
4607		caddr_t va = zfs_map_page(pp, S_READ);
4608		ASSERT3U(len, <=, PAGESIZE);
4609		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4610		zfs_unmap_page(pp, va);
4611	} else {
4612		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4613	}
4614
4615	if (err == 0) {
4616		uint64_t mtime[2], ctime[2];
4617		sa_bulk_attr_t bulk[3];
4618		int count = 0;
4619
4620		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4621		    &mtime, 16);
4622		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4623		    &ctime, 16);
4624		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4625		    &zp->z_pflags, 8);
4626		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4627		    B_TRUE);
4628		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4629	}
4630	dmu_tx_commit(tx);
4631
4632out:
4633	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4634	if (offp)
4635		*offp = off;
4636	if (lenp)
4637		*lenp = len;
4638
4639	return (err);
4640}
4641
4642/*
4643 * Copy the portion of the file indicated from pages into the file.
4644 * The pages are stored in a page list attached to the files vnode.
4645 *
4646 *	IN:	vp	- vnode of file to push page data to.
4647 *		off	- position in file to put data.
4648 *		len	- amount of data to write.
4649 *		flags	- flags to control the operation.
4650 *		cr	- credentials of caller.
4651 *		ct	- caller context.
4652 *
4653 *	RETURN:	0 on success, error code on failure.
4654 *
4655 * Timestamps:
4656 *	vp - ctime|mtime updated
4657 */
4658/*ARGSUSED*/
4659static int
4660zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4661    caller_context_t *ct)
4662{
4663	znode_t		*zp = VTOZ(vp);
4664	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4665	page_t		*pp;
4666	size_t		io_len;
4667	u_offset_t	io_off;
4668	uint_t		blksz;
4669	rl_t		*rl;
4670	int		error = 0;
4671
4672	ZFS_ENTER(zfsvfs);
4673	ZFS_VERIFY_ZP(zp);
4674
4675	/*
4676	 * Align this request to the file block size in case we kluster.
4677	 * XXX - this can result in pretty aggresive locking, which can
4678	 * impact simultanious read/write access.  One option might be
4679	 * to break up long requests (len == 0) into block-by-block
4680	 * operations to get narrower locking.
4681	 */
4682	blksz = zp->z_blksz;
4683	if (ISP2(blksz))
4684		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4685	else
4686		io_off = 0;
4687	if (len > 0 && ISP2(blksz))
4688		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4689	else
4690		io_len = 0;
4691
4692	if (io_len == 0) {
4693		/*
4694		 * Search the entire vp list for pages >= io_off.
4695		 */
4696		rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4697		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4698		goto out;
4699	}
4700	rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4701
4702	if (off > zp->z_size) {
4703		/* past end of file */
4704		zfs_range_unlock(rl);
4705		ZFS_EXIT(zfsvfs);
4706		return (0);
4707	}
4708
4709	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4710
4711	for (off = io_off; io_off < off + len; io_off += io_len) {
4712		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4713			pp = page_lookup(vp, io_off,
4714			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4715		} else {
4716			pp = page_lookup_nowait(vp, io_off,
4717			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4718		}
4719
4720		if (pp != NULL && pvn_getdirty(pp, flags)) {
4721			int err;
4722
4723			/*
4724			 * Found a dirty page to push
4725			 */
4726			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4727			if (err)
4728				error = err;
4729		} else {
4730			io_len = PAGESIZE;
4731		}
4732	}
4733out:
4734	zfs_range_unlock(rl);
4735	if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4736		zil_commit(zfsvfs->z_log, zp->z_id);
4737	ZFS_EXIT(zfsvfs);
4738	return (error);
4739}
4740#endif	/* illumos */
4741
4742/*ARGSUSED*/
4743void
4744zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4745{
4746	znode_t	*zp = VTOZ(vp);
4747	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4748	int error;
4749
4750	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4751	if (zp->z_sa_hdl == NULL) {
4752		/*
4753		 * The fs has been unmounted, or we did a
4754		 * suspend/resume and this file no longer exists.
4755		 */
4756		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4757		vrecycle(vp);
4758		return;
4759	}
4760
4761	mutex_enter(&zp->z_lock);
4762	if (zp->z_unlinked) {
4763		/*
4764		 * Fast path to recycle a vnode of a removed file.
4765		 */
4766		mutex_exit(&zp->z_lock);
4767		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4768		vrecycle(vp);
4769		return;
4770	}
4771	mutex_exit(&zp->z_lock);
4772
4773	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4774		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4775
4776		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4777		zfs_sa_upgrade_txholds(tx, zp);
4778		error = dmu_tx_assign(tx, TXG_WAIT);
4779		if (error) {
4780			dmu_tx_abort(tx);
4781		} else {
4782			mutex_enter(&zp->z_lock);
4783			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4784			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4785			zp->z_atime_dirty = 0;
4786			mutex_exit(&zp->z_lock);
4787			dmu_tx_commit(tx);
4788		}
4789	}
4790	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4791}
4792
4793#ifdef illumos
4794/*
4795 * Bounds-check the seek operation.
4796 *
4797 *	IN:	vp	- vnode seeking within
4798 *		ooff	- old file offset
4799 *		noffp	- pointer to new file offset
4800 *		ct	- caller context
4801 *
4802 *	RETURN:	0 on success, EINVAL if new offset invalid.
4803 */
4804/* ARGSUSED */
4805static int
4806zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4807    caller_context_t *ct)
4808{
4809	if (vp->v_type == VDIR)
4810		return (0);
4811	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4812}
4813
4814/*
4815 * Pre-filter the generic locking function to trap attempts to place
4816 * a mandatory lock on a memory mapped file.
4817 */
4818static int
4819zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4820    flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4821{
4822	znode_t *zp = VTOZ(vp);
4823	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4824
4825	ZFS_ENTER(zfsvfs);
4826	ZFS_VERIFY_ZP(zp);
4827
4828	/*
4829	 * We are following the UFS semantics with respect to mapcnt
4830	 * here: If we see that the file is mapped already, then we will
4831	 * return an error, but we don't worry about races between this
4832	 * function and zfs_map().
4833	 */
4834	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4835		ZFS_EXIT(zfsvfs);
4836		return (SET_ERROR(EAGAIN));
4837	}
4838	ZFS_EXIT(zfsvfs);
4839	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4840}
4841
4842/*
4843 * If we can't find a page in the cache, we will create a new page
4844 * and fill it with file data.  For efficiency, we may try to fill
4845 * multiple pages at once (klustering) to fill up the supplied page
4846 * list.  Note that the pages to be filled are held with an exclusive
4847 * lock to prevent access by other threads while they are being filled.
4848 */
4849static int
4850zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4851    caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4852{
4853	znode_t *zp = VTOZ(vp);
4854	page_t *pp, *cur_pp;
4855	objset_t *os = zp->z_zfsvfs->z_os;
4856	u_offset_t io_off, total;
4857	size_t io_len;
4858	int err;
4859
4860	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4861		/*
4862		 * We only have a single page, don't bother klustering
4863		 */
4864		io_off = off;
4865		io_len = PAGESIZE;
4866		pp = page_create_va(vp, io_off, io_len,
4867		    PG_EXCL | PG_WAIT, seg, addr);
4868	} else {
4869		/*
4870		 * Try to find enough pages to fill the page list
4871		 */
4872		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4873		    &io_len, off, plsz, 0);
4874	}
4875	if (pp == NULL) {
4876		/*
4877		 * The page already exists, nothing to do here.
4878		 */
4879		*pl = NULL;
4880		return (0);
4881	}
4882
4883	/*
4884	 * Fill the pages in the kluster.
4885	 */
4886	cur_pp = pp;
4887	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4888		caddr_t va;
4889
4890		ASSERT3U(io_off, ==, cur_pp->p_offset);
4891		va = zfs_map_page(cur_pp, S_WRITE);
4892		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4893		    DMU_READ_PREFETCH);
4894		zfs_unmap_page(cur_pp, va);
4895		if (err) {
4896			/* On error, toss the entire kluster */
4897			pvn_read_done(pp, B_ERROR);
4898			/* convert checksum errors into IO errors */
4899			if (err == ECKSUM)
4900				err = SET_ERROR(EIO);
4901			return (err);
4902		}
4903		cur_pp = cur_pp->p_next;
4904	}
4905
4906	/*
4907	 * Fill in the page list array from the kluster starting
4908	 * from the desired offset `off'.
4909	 * NOTE: the page list will always be null terminated.
4910	 */
4911	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4912	ASSERT(pl == NULL || (*pl)->p_offset == off);
4913
4914	return (0);
4915}
4916
4917/*
4918 * Return pointers to the pages for the file region [off, off + len]
4919 * in the pl array.  If plsz is greater than len, this function may
4920 * also return page pointers from after the specified region
4921 * (i.e. the region [off, off + plsz]).  These additional pages are
4922 * only returned if they are already in the cache, or were created as
4923 * part of a klustered read.
4924 *
4925 *	IN:	vp	- vnode of file to get data from.
4926 *		off	- position in file to get data from.
4927 *		len	- amount of data to retrieve.
4928 *		plsz	- length of provided page list.
4929 *		seg	- segment to obtain pages for.
4930 *		addr	- virtual address of fault.
4931 *		rw	- mode of created pages.
4932 *		cr	- credentials of caller.
4933 *		ct	- caller context.
4934 *
4935 *	OUT:	protp	- protection mode of created pages.
4936 *		pl	- list of pages created.
4937 *
4938 *	RETURN:	0 on success, error code on failure.
4939 *
4940 * Timestamps:
4941 *	vp - atime updated
4942 */
4943/* ARGSUSED */
4944static int
4945zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4946    page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4947    enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4948{
4949	znode_t		*zp = VTOZ(vp);
4950	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4951	page_t		**pl0 = pl;
4952	int		err = 0;
4953
4954	/* we do our own caching, faultahead is unnecessary */
4955	if (pl == NULL)
4956		return (0);
4957	else if (len > plsz)
4958		len = plsz;
4959	else
4960		len = P2ROUNDUP(len, PAGESIZE);
4961	ASSERT(plsz >= len);
4962
4963	ZFS_ENTER(zfsvfs);
4964	ZFS_VERIFY_ZP(zp);
4965
4966	if (protp)
4967		*protp = PROT_ALL;
4968
4969	/*
4970	 * Loop through the requested range [off, off + len) looking
4971	 * for pages.  If we don't find a page, we will need to create
4972	 * a new page and fill it with data from the file.
4973	 */
4974	while (len > 0) {
4975		if (*pl = page_lookup(vp, off, SE_SHARED))
4976			*(pl+1) = NULL;
4977		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4978			goto out;
4979		while (*pl) {
4980			ASSERT3U((*pl)->p_offset, ==, off);
4981			off += PAGESIZE;
4982			addr += PAGESIZE;
4983			if (len > 0) {
4984				ASSERT3U(len, >=, PAGESIZE);
4985				len -= PAGESIZE;
4986			}
4987			ASSERT3U(plsz, >=, PAGESIZE);
4988			plsz -= PAGESIZE;
4989			pl++;
4990		}
4991	}
4992
4993	/*
4994	 * Fill out the page array with any pages already in the cache.
4995	 */
4996	while (plsz > 0 &&
4997	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4998			off += PAGESIZE;
4999			plsz -= PAGESIZE;
5000	}
5001out:
5002	if (err) {
5003		/*
5004		 * Release any pages we have previously locked.
5005		 */
5006		while (pl > pl0)
5007			page_unlock(*--pl);
5008	} else {
5009		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
5010	}
5011
5012	*pl = NULL;
5013
5014	ZFS_EXIT(zfsvfs);
5015	return (err);
5016}
5017
5018/*
5019 * Request a memory map for a section of a file.  This code interacts
5020 * with common code and the VM system as follows:
5021 *
5022 * - common code calls mmap(), which ends up in smmap_common()
5023 * - this calls VOP_MAP(), which takes you into (say) zfs
5024 * - zfs_map() calls as_map(), passing segvn_create() as the callback
5025 * - segvn_create() creates the new segment and calls VOP_ADDMAP()
5026 * - zfs_addmap() updates z_mapcnt
5027 */
5028/*ARGSUSED*/
5029static int
5030zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
5031    size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
5032    caller_context_t *ct)
5033{
5034	znode_t *zp = VTOZ(vp);
5035	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5036	segvn_crargs_t	vn_a;
5037	int		error;
5038
5039	ZFS_ENTER(zfsvfs);
5040	ZFS_VERIFY_ZP(zp);
5041
5042	if ((prot & PROT_WRITE) && (zp->z_pflags &
5043	    (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
5044		ZFS_EXIT(zfsvfs);
5045		return (SET_ERROR(EPERM));
5046	}
5047
5048	if ((prot & (PROT_READ | PROT_EXEC)) &&
5049	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
5050		ZFS_EXIT(zfsvfs);
5051		return (SET_ERROR(EACCES));
5052	}
5053
5054	if (vp->v_flag & VNOMAP) {
5055		ZFS_EXIT(zfsvfs);
5056		return (SET_ERROR(ENOSYS));
5057	}
5058
5059	if (off < 0 || len > MAXOFFSET_T - off) {
5060		ZFS_EXIT(zfsvfs);
5061		return (SET_ERROR(ENXIO));
5062	}
5063
5064	if (vp->v_type != VREG) {
5065		ZFS_EXIT(zfsvfs);
5066		return (SET_ERROR(ENODEV));
5067	}
5068
5069	/*
5070	 * If file is locked, disallow mapping.
5071	 */
5072	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
5073		ZFS_EXIT(zfsvfs);
5074		return (SET_ERROR(EAGAIN));
5075	}
5076
5077	as_rangelock(as);
5078	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
5079	if (error != 0) {
5080		as_rangeunlock(as);
5081		ZFS_EXIT(zfsvfs);
5082		return (error);
5083	}
5084
5085	vn_a.vp = vp;
5086	vn_a.offset = (u_offset_t)off;
5087	vn_a.type = flags & MAP_TYPE;
5088	vn_a.prot = prot;
5089	vn_a.maxprot = maxprot;
5090	vn_a.cred = cr;
5091	vn_a.amp = NULL;
5092	vn_a.flags = flags & ~MAP_TYPE;
5093	vn_a.szc = 0;
5094	vn_a.lgrp_mem_policy_flags = 0;
5095
5096	error = as_map(as, *addrp, len, segvn_create, &vn_a);
5097
5098	as_rangeunlock(as);
5099	ZFS_EXIT(zfsvfs);
5100	return (error);
5101}
5102
5103/* ARGSUSED */
5104static int
5105zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5106    size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
5107    caller_context_t *ct)
5108{
5109	uint64_t pages = btopr(len);
5110
5111	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
5112	return (0);
5113}
5114
5115/*
5116 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
5117 * more accurate mtime for the associated file.  Since we don't have a way of
5118 * detecting when the data was actually modified, we have to resort to
5119 * heuristics.  If an explicit msync() is done, then we mark the mtime when the
5120 * last page is pushed.  The problem occurs when the msync() call is omitted,
5121 * which by far the most common case:
5122 *
5123 *	open()
5124 *	mmap()
5125 *	<modify memory>
5126 *	munmap()
5127 *	close()
5128 *	<time lapse>
5129 *	putpage() via fsflush
5130 *
5131 * If we wait until fsflush to come along, we can have a modification time that
5132 * is some arbitrary point in the future.  In order to prevent this in the
5133 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
5134 * torn down.
5135 */
5136/* ARGSUSED */
5137static int
5138zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5139    size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
5140    caller_context_t *ct)
5141{
5142	uint64_t pages = btopr(len);
5143
5144	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
5145	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
5146
5147	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
5148	    vn_has_cached_data(vp))
5149		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
5150
5151	return (0);
5152}
5153
5154/*
5155 * Free or allocate space in a file.  Currently, this function only
5156 * supports the `F_FREESP' command.  However, this command is somewhat
5157 * misnamed, as its functionality includes the ability to allocate as
5158 * well as free space.
5159 *
5160 *	IN:	vp	- vnode of file to free data in.
5161 *		cmd	- action to take (only F_FREESP supported).
5162 *		bfp	- section of file to free/alloc.
5163 *		flag	- current file open mode flags.
5164 *		offset	- current file offset.
5165 *		cr	- credentials of caller [UNUSED].
5166 *		ct	- caller context.
5167 *
5168 *	RETURN:	0 on success, error code on failure.
5169 *
5170 * Timestamps:
5171 *	vp - ctime|mtime updated
5172 */
5173/* ARGSUSED */
5174static int
5175zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
5176    offset_t offset, cred_t *cr, caller_context_t *ct)
5177{
5178	znode_t		*zp = VTOZ(vp);
5179	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5180	uint64_t	off, len;
5181	int		error;
5182
5183	ZFS_ENTER(zfsvfs);
5184	ZFS_VERIFY_ZP(zp);
5185
5186	if (cmd != F_FREESP) {
5187		ZFS_EXIT(zfsvfs);
5188		return (SET_ERROR(EINVAL));
5189	}
5190
5191	/*
5192	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
5193	 * callers might not be able to detect properly that we are read-only,
5194	 * so check it explicitly here.
5195	 */
5196	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
5197		ZFS_EXIT(zfsvfs);
5198		return (SET_ERROR(EROFS));
5199	}
5200
5201	if (error = convoff(vp, bfp, 0, offset)) {
5202		ZFS_EXIT(zfsvfs);
5203		return (error);
5204	}
5205
5206	if (bfp->l_len < 0) {
5207		ZFS_EXIT(zfsvfs);
5208		return (SET_ERROR(EINVAL));
5209	}
5210
5211	off = bfp->l_start;
5212	len = bfp->l_len; /* 0 means from off to end of file */
5213
5214	error = zfs_freesp(zp, off, len, flag, TRUE);
5215
5216	ZFS_EXIT(zfsvfs);
5217	return (error);
5218}
5219#endif	/* illumos */
5220
5221CTASSERT(sizeof(struct zfid_short) <= sizeof(struct fid));
5222CTASSERT(sizeof(struct zfid_long) <= sizeof(struct fid));
5223
5224/*ARGSUSED*/
5225static int
5226zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
5227{
5228	znode_t		*zp = VTOZ(vp);
5229	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5230	uint32_t	gen;
5231	uint64_t	gen64;
5232	uint64_t	object = zp->z_id;
5233	zfid_short_t	*zfid;
5234	int		size, i, error;
5235
5236	ZFS_ENTER(zfsvfs);
5237	ZFS_VERIFY_ZP(zp);
5238
5239	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
5240	    &gen64, sizeof (uint64_t))) != 0) {
5241		ZFS_EXIT(zfsvfs);
5242		return (error);
5243	}
5244
5245	gen = (uint32_t)gen64;
5246
5247	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
5248
5249#ifdef illumos
5250	if (fidp->fid_len < size) {
5251		fidp->fid_len = size;
5252		ZFS_EXIT(zfsvfs);
5253		return (SET_ERROR(ENOSPC));
5254	}
5255#else
5256	fidp->fid_len = size;
5257#endif
5258
5259	zfid = (zfid_short_t *)fidp;
5260
5261	zfid->zf_len = size;
5262
5263	for (i = 0; i < sizeof (zfid->zf_object); i++)
5264		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
5265
5266	/* Must have a non-zero generation number to distinguish from .zfs */
5267	if (gen == 0)
5268		gen = 1;
5269	for (i = 0; i < sizeof (zfid->zf_gen); i++)
5270		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
5271
5272	if (size == LONG_FID_LEN) {
5273		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
5274		zfid_long_t	*zlfid;
5275
5276		zlfid = (zfid_long_t *)fidp;
5277
5278		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
5279			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
5280
5281		/* XXX - this should be the generation number for the objset */
5282		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
5283			zlfid->zf_setgen[i] = 0;
5284	}
5285
5286	ZFS_EXIT(zfsvfs);
5287	return (0);
5288}
5289
5290static int
5291zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
5292    caller_context_t *ct)
5293{
5294	znode_t		*zp, *xzp;
5295	zfsvfs_t	*zfsvfs;
5296	zfs_dirlock_t	*dl;
5297	int		error;
5298
5299	switch (cmd) {
5300	case _PC_LINK_MAX:
5301		*valp = INT_MAX;
5302		return (0);
5303
5304	case _PC_FILESIZEBITS:
5305		*valp = 64;
5306		return (0);
5307#ifdef illumos
5308	case _PC_XATTR_EXISTS:
5309		zp = VTOZ(vp);
5310		zfsvfs = zp->z_zfsvfs;
5311		ZFS_ENTER(zfsvfs);
5312		ZFS_VERIFY_ZP(zp);
5313		*valp = 0;
5314		error = zfs_dirent_lock(&dl, zp, "", &xzp,
5315		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
5316		if (error == 0) {
5317			zfs_dirent_unlock(dl);
5318			if (!zfs_dirempty(xzp))
5319				*valp = 1;
5320			VN_RELE(ZTOV(xzp));
5321		} else if (error == ENOENT) {
5322			/*
5323			 * If there aren't extended attributes, it's the
5324			 * same as having zero of them.
5325			 */
5326			error = 0;
5327		}
5328		ZFS_EXIT(zfsvfs);
5329		return (error);
5330
5331	case _PC_SATTR_ENABLED:
5332	case _PC_SATTR_EXISTS:
5333		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
5334		    (vp->v_type == VREG || vp->v_type == VDIR);
5335		return (0);
5336
5337	case _PC_ACCESS_FILTERING:
5338		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
5339		    vp->v_type == VDIR;
5340		return (0);
5341
5342	case _PC_ACL_ENABLED:
5343		*valp = _ACL_ACE_ENABLED;
5344		return (0);
5345#endif	/* illumos */
5346	case _PC_MIN_HOLE_SIZE:
5347		*valp = (int)SPA_MINBLOCKSIZE;
5348		return (0);
5349#ifdef illumos
5350	case _PC_TIMESTAMP_RESOLUTION:
5351		/* nanosecond timestamp resolution */
5352		*valp = 1L;
5353		return (0);
5354#endif
5355	case _PC_ACL_EXTENDED:
5356		*valp = 0;
5357		return (0);
5358
5359	case _PC_ACL_NFS4:
5360		*valp = 1;
5361		return (0);
5362
5363	case _PC_ACL_PATH_MAX:
5364		*valp = ACL_MAX_ENTRIES;
5365		return (0);
5366
5367	default:
5368		return (EOPNOTSUPP);
5369	}
5370}
5371
5372/*ARGSUSED*/
5373static int
5374zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5375    caller_context_t *ct)
5376{
5377	znode_t *zp = VTOZ(vp);
5378	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5379	int error;
5380	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5381
5382	ZFS_ENTER(zfsvfs);
5383	ZFS_VERIFY_ZP(zp);
5384	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5385	ZFS_EXIT(zfsvfs);
5386
5387	return (error);
5388}
5389
5390/*ARGSUSED*/
5391int
5392zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5393    caller_context_t *ct)
5394{
5395	znode_t *zp = VTOZ(vp);
5396	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5397	int error;
5398	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5399	zilog_t	*zilog = zfsvfs->z_log;
5400
5401	ZFS_ENTER(zfsvfs);
5402	ZFS_VERIFY_ZP(zp);
5403
5404	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5405
5406	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5407		zil_commit(zilog, 0);
5408
5409	ZFS_EXIT(zfsvfs);
5410	return (error);
5411}
5412
5413#ifdef illumos
5414/*
5415 * The smallest read we may consider to loan out an arcbuf.
5416 * This must be a power of 2.
5417 */
5418int zcr_blksz_min = (1 << 10);	/* 1K */
5419/*
5420 * If set to less than the file block size, allow loaning out of an
5421 * arcbuf for a partial block read.  This must be a power of 2.
5422 */
5423int zcr_blksz_max = (1 << 17);	/* 128K */
5424
5425/*ARGSUSED*/
5426static int
5427zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5428    caller_context_t *ct)
5429{
5430	znode_t	*zp = VTOZ(vp);
5431	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5432	int max_blksz = zfsvfs->z_max_blksz;
5433	uio_t *uio = &xuio->xu_uio;
5434	ssize_t size = uio->uio_resid;
5435	offset_t offset = uio->uio_loffset;
5436	int blksz;
5437	int fullblk, i;
5438	arc_buf_t *abuf;
5439	ssize_t maxsize;
5440	int preamble, postamble;
5441
5442	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5443		return (SET_ERROR(EINVAL));
5444
5445	ZFS_ENTER(zfsvfs);
5446	ZFS_VERIFY_ZP(zp);
5447	switch (ioflag) {
5448	case UIO_WRITE:
5449		/*
5450		 * Loan out an arc_buf for write if write size is bigger than
5451		 * max_blksz, and the file's block size is also max_blksz.
5452		 */
5453		blksz = max_blksz;
5454		if (size < blksz || zp->z_blksz != blksz) {
5455			ZFS_EXIT(zfsvfs);
5456			return (SET_ERROR(EINVAL));
5457		}
5458		/*
5459		 * Caller requests buffers for write before knowing where the
5460		 * write offset might be (e.g. NFS TCP write).
5461		 */
5462		if (offset == -1) {
5463			preamble = 0;
5464		} else {
5465			preamble = P2PHASE(offset, blksz);
5466			if (preamble) {
5467				preamble = blksz - preamble;
5468				size -= preamble;
5469			}
5470		}
5471
5472		postamble = P2PHASE(size, blksz);
5473		size -= postamble;
5474
5475		fullblk = size / blksz;
5476		(void) dmu_xuio_init(xuio,
5477		    (preamble != 0) + fullblk + (postamble != 0));
5478		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5479		    int, postamble, int,
5480		    (preamble != 0) + fullblk + (postamble != 0));
5481
5482		/*
5483		 * Have to fix iov base/len for partial buffers.  They
5484		 * currently represent full arc_buf's.
5485		 */
5486		if (preamble) {
5487			/* data begins in the middle of the arc_buf */
5488			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5489			    blksz);
5490			ASSERT(abuf);
5491			(void) dmu_xuio_add(xuio, abuf,
5492			    blksz - preamble, preamble);
5493		}
5494
5495		for (i = 0; i < fullblk; i++) {
5496			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5497			    blksz);
5498			ASSERT(abuf);
5499			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
5500		}
5501
5502		if (postamble) {
5503			/* data ends in the middle of the arc_buf */
5504			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5505			    blksz);
5506			ASSERT(abuf);
5507			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
5508		}
5509		break;
5510	case UIO_READ:
5511		/*
5512		 * Loan out an arc_buf for read if the read size is larger than
5513		 * the current file block size.  Block alignment is not
5514		 * considered.  Partial arc_buf will be loaned out for read.
5515		 */
5516		blksz = zp->z_blksz;
5517		if (blksz < zcr_blksz_min)
5518			blksz = zcr_blksz_min;
5519		if (blksz > zcr_blksz_max)
5520			blksz = zcr_blksz_max;
5521		/* avoid potential complexity of dealing with it */
5522		if (blksz > max_blksz) {
5523			ZFS_EXIT(zfsvfs);
5524			return (SET_ERROR(EINVAL));
5525		}
5526
5527		maxsize = zp->z_size - uio->uio_loffset;
5528		if (size > maxsize)
5529			size = maxsize;
5530
5531		if (size < blksz || vn_has_cached_data(vp)) {
5532			ZFS_EXIT(zfsvfs);
5533			return (SET_ERROR(EINVAL));
5534		}
5535		break;
5536	default:
5537		ZFS_EXIT(zfsvfs);
5538		return (SET_ERROR(EINVAL));
5539	}
5540
5541	uio->uio_extflg = UIO_XUIO;
5542	XUIO_XUZC_RW(xuio) = ioflag;
5543	ZFS_EXIT(zfsvfs);
5544	return (0);
5545}
5546
5547/*ARGSUSED*/
5548static int
5549zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5550{
5551	int i;
5552	arc_buf_t *abuf;
5553	int ioflag = XUIO_XUZC_RW(xuio);
5554
5555	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5556
5557	i = dmu_xuio_cnt(xuio);
5558	while (i-- > 0) {
5559		abuf = dmu_xuio_arcbuf(xuio, i);
5560		/*
5561		 * if abuf == NULL, it must be a write buffer
5562		 * that has been returned in zfs_write().
5563		 */
5564		if (abuf)
5565			dmu_return_arcbuf(abuf);
5566		ASSERT(abuf || ioflag == UIO_WRITE);
5567	}
5568
5569	dmu_xuio_fini(xuio);
5570	return (0);
5571}
5572
5573/*
5574 * Predeclare these here so that the compiler assumes that
5575 * this is an "old style" function declaration that does
5576 * not include arguments => we won't get type mismatch errors
5577 * in the initializations that follow.
5578 */
5579static int zfs_inval();
5580static int zfs_isdir();
5581
5582static int
5583zfs_inval()
5584{
5585	return (SET_ERROR(EINVAL));
5586}
5587
5588static int
5589zfs_isdir()
5590{
5591	return (SET_ERROR(EISDIR));
5592}
5593/*
5594 * Directory vnode operations template
5595 */
5596vnodeops_t *zfs_dvnodeops;
5597const fs_operation_def_t zfs_dvnodeops_template[] = {
5598	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5599	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5600	VOPNAME_READ,		{ .error = zfs_isdir },
5601	VOPNAME_WRITE,		{ .error = zfs_isdir },
5602	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5603	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5604	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5605	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5606	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5607	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5608	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5609	VOPNAME_LINK,		{ .vop_link = zfs_link },
5610	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5611	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
5612	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5613	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5614	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
5615	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5616	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5617	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5618	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5619	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5620	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5621	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5622	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5623	NULL,			NULL
5624};
5625
5626/*
5627 * Regular file vnode operations template
5628 */
5629vnodeops_t *zfs_fvnodeops;
5630const fs_operation_def_t zfs_fvnodeops_template[] = {
5631	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5632	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5633	VOPNAME_READ,		{ .vop_read = zfs_read },
5634	VOPNAME_WRITE,		{ .vop_write = zfs_write },
5635	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5636	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5637	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5638	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5639	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5640	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5641	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5642	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5643	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5644	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5645	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
5646	VOPNAME_SPACE,		{ .vop_space = zfs_space },
5647	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
5648	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
5649	VOPNAME_MAP,		{ .vop_map = zfs_map },
5650	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
5651	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
5652	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5653	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5654	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5655	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5656	VOPNAME_REQZCBUF,	{ .vop_reqzcbuf = zfs_reqzcbuf },
5657	VOPNAME_RETZCBUF,	{ .vop_retzcbuf = zfs_retzcbuf },
5658	NULL,			NULL
5659};
5660
5661/*
5662 * Symbolic link vnode operations template
5663 */
5664vnodeops_t *zfs_symvnodeops;
5665const fs_operation_def_t zfs_symvnodeops_template[] = {
5666	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5667	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5668	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5669	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5670	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5671	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5672	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5673	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5674	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5675	NULL,			NULL
5676};
5677
5678/*
5679 * special share hidden files vnode operations template
5680 */
5681vnodeops_t *zfs_sharevnodeops;
5682const fs_operation_def_t zfs_sharevnodeops_template[] = {
5683	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5684	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5685	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5686	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5687	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5688	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5689	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5690	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5691	NULL,			NULL
5692};
5693
5694/*
5695 * Extended attribute directory vnode operations template
5696 *
5697 * This template is identical to the directory vnodes
5698 * operation template except for restricted operations:
5699 *	VOP_MKDIR()
5700 *	VOP_SYMLINK()
5701 *
5702 * Note that there are other restrictions embedded in:
5703 *	zfs_create()	- restrict type to VREG
5704 *	zfs_link()	- no links into/out of attribute space
5705 *	zfs_rename()	- no moves into/out of attribute space
5706 */
5707vnodeops_t *zfs_xdvnodeops;
5708const fs_operation_def_t zfs_xdvnodeops_template[] = {
5709	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5710	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5711	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5712	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5713	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5714	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5715	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5716	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5717	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5718	VOPNAME_LINK,		{ .vop_link = zfs_link },
5719	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5720	VOPNAME_MKDIR,		{ .error = zfs_inval },
5721	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5722	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5723	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5724	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5725	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5726	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5727	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5728	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5729	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5730	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5731	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5732	NULL,			NULL
5733};
5734
5735/*
5736 * Error vnode operations template
5737 */
5738vnodeops_t *zfs_evnodeops;
5739const fs_operation_def_t zfs_evnodeops_template[] = {
5740	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5741	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5742	NULL,			NULL
5743};
5744#endif	/* illumos */
5745
5746static int
5747ioflags(int ioflags)
5748{
5749	int flags = 0;
5750
5751	if (ioflags & IO_APPEND)
5752		flags |= FAPPEND;
5753	if (ioflags & IO_NDELAY)
5754        	flags |= FNONBLOCK;
5755	if (ioflags & IO_SYNC)
5756		flags |= (FSYNC | FDSYNC | FRSYNC);
5757
5758	return (flags);
5759}
5760
5761static int
5762zfs_getpages(struct vnode *vp, vm_page_t *m, int count, int reqpage)
5763{
5764	znode_t *zp = VTOZ(vp);
5765	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5766	objset_t *os = zp->z_zfsvfs->z_os;
5767	vm_page_t mfirst, mlast, mreq;
5768	vm_object_t object;
5769	caddr_t va;
5770	struct sf_buf *sf;
5771	off_t startoff, endoff;
5772	int i, error;
5773	vm_pindex_t reqstart, reqend;
5774	int pcount, lsize, reqsize, size;
5775
5776	ZFS_ENTER(zfsvfs);
5777	ZFS_VERIFY_ZP(zp);
5778
5779	pcount = OFF_TO_IDX(round_page(count));
5780	mreq = m[reqpage];
5781	object = mreq->object;
5782	error = 0;
5783
5784	KASSERT(vp->v_object == object, ("mismatching object"));
5785
5786	if (pcount > 1 && zp->z_blksz > PAGESIZE) {
5787		startoff = rounddown(IDX_TO_OFF(mreq->pindex), zp->z_blksz);
5788		reqstart = OFF_TO_IDX(round_page(startoff));
5789		if (reqstart < m[0]->pindex)
5790			reqstart = 0;
5791		else
5792			reqstart = reqstart - m[0]->pindex;
5793		endoff = roundup(IDX_TO_OFF(mreq->pindex) + PAGE_SIZE,
5794		    zp->z_blksz);
5795		reqend = OFF_TO_IDX(trunc_page(endoff)) - 1;
5796		if (reqend > m[pcount - 1]->pindex)
5797			reqend = m[pcount - 1]->pindex;
5798		reqsize = reqend - m[reqstart]->pindex + 1;
5799		KASSERT(reqstart <= reqpage && reqpage < reqstart + reqsize,
5800		    ("reqpage beyond [reqstart, reqstart + reqsize[ bounds"));
5801	} else {
5802		reqstart = reqpage;
5803		reqsize = 1;
5804	}
5805	mfirst = m[reqstart];
5806	mlast = m[reqstart + reqsize - 1];
5807
5808	zfs_vmobject_wlock(object);
5809
5810	for (i = 0; i < reqstart; i++) {
5811		vm_page_lock(m[i]);
5812		vm_page_free(m[i]);
5813		vm_page_unlock(m[i]);
5814	}
5815	for (i = reqstart + reqsize; i < pcount; i++) {
5816		vm_page_lock(m[i]);
5817		vm_page_free(m[i]);
5818		vm_page_unlock(m[i]);
5819	}
5820
5821	if (mreq->valid && reqsize == 1) {
5822		if (mreq->valid != VM_PAGE_BITS_ALL)
5823			vm_page_zero_invalid(mreq, TRUE);
5824		zfs_vmobject_wunlock(object);
5825		ZFS_EXIT(zfsvfs);
5826		return (zfs_vm_pagerret_ok);
5827	}
5828
5829	PCPU_INC(cnt.v_vnodein);
5830	PCPU_ADD(cnt.v_vnodepgsin, reqsize);
5831
5832	if (IDX_TO_OFF(mreq->pindex) >= object->un_pager.vnp.vnp_size) {
5833		for (i = reqstart; i < reqstart + reqsize; i++) {
5834			if (i != reqpage) {
5835				vm_page_lock(m[i]);
5836				vm_page_free(m[i]);
5837				vm_page_unlock(m[i]);
5838			}
5839		}
5840		zfs_vmobject_wunlock(object);
5841		ZFS_EXIT(zfsvfs);
5842		return (zfs_vm_pagerret_bad);
5843	}
5844
5845	lsize = PAGE_SIZE;
5846	if (IDX_TO_OFF(mlast->pindex) + lsize > object->un_pager.vnp.vnp_size)
5847		lsize = object->un_pager.vnp.vnp_size - IDX_TO_OFF(mlast->pindex);
5848
5849	zfs_vmobject_wunlock(object);
5850
5851	for (i = reqstart; i < reqstart + reqsize; i++) {
5852		size = PAGE_SIZE;
5853		if (i == (reqstart + reqsize - 1))
5854			size = lsize;
5855		va = zfs_map_page(m[i], &sf);
5856		error = dmu_read(os, zp->z_id, IDX_TO_OFF(m[i]->pindex),
5857		    size, va, DMU_READ_PREFETCH);
5858		if (size != PAGE_SIZE)
5859			bzero(va + size, PAGE_SIZE - size);
5860		zfs_unmap_page(sf);
5861		if (error != 0)
5862			break;
5863	}
5864
5865	zfs_vmobject_wlock(object);
5866
5867	for (i = reqstart; i < reqstart + reqsize; i++) {
5868		if (!error)
5869			m[i]->valid = VM_PAGE_BITS_ALL;
5870		KASSERT(m[i]->dirty == 0, ("zfs_getpages: page %p is dirty", m[i]));
5871		if (i != reqpage)
5872			vm_page_readahead_finish(m[i]);
5873	}
5874
5875	zfs_vmobject_wunlock(object);
5876
5877	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
5878	ZFS_EXIT(zfsvfs);
5879	return (error ? zfs_vm_pagerret_error : zfs_vm_pagerret_ok);
5880}
5881
5882static int
5883zfs_freebsd_getpages(ap)
5884	struct vop_getpages_args /* {
5885		struct vnode *a_vp;
5886		vm_page_t *a_m;
5887		int a_count;
5888		int a_reqpage;
5889		vm_ooffset_t a_offset;
5890	} */ *ap;
5891{
5892
5893	return (zfs_getpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_reqpage));
5894}
5895
5896static int
5897zfs_putpages(struct vnode *vp, vm_page_t *ma, size_t len, int flags,
5898    int *rtvals)
5899{
5900	znode_t		*zp = VTOZ(vp);
5901	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5902	rl_t		*rl;
5903	dmu_tx_t	*tx;
5904	struct sf_buf	*sf;
5905	vm_object_t	object;
5906	vm_page_t	m;
5907	caddr_t		va;
5908	size_t		tocopy;
5909	size_t		lo_len;
5910	vm_ooffset_t	lo_off;
5911	vm_ooffset_t	off;
5912	uint_t		blksz;
5913	int		ncount;
5914	int		pcount;
5915	int		err;
5916	int		i;
5917
5918	ZFS_ENTER(zfsvfs);
5919	ZFS_VERIFY_ZP(zp);
5920
5921	object = vp->v_object;
5922	pcount = btoc(len);
5923	ncount = pcount;
5924
5925	KASSERT(ma[0]->object == object, ("mismatching object"));
5926	KASSERT(len > 0 && (len & PAGE_MASK) == 0, ("unexpected length"));
5927
5928	for (i = 0; i < pcount; i++)
5929		rtvals[i] = zfs_vm_pagerret_error;
5930
5931	off = IDX_TO_OFF(ma[0]->pindex);
5932	blksz = zp->z_blksz;
5933	lo_off = rounddown(off, blksz);
5934	lo_len = roundup(len + (off - lo_off), blksz);
5935	rl = zfs_range_lock(zp, lo_off, lo_len, RL_WRITER);
5936
5937	zfs_vmobject_wlock(object);
5938	if (len + off > object->un_pager.vnp.vnp_size) {
5939		if (object->un_pager.vnp.vnp_size > off) {
5940			int pgoff;
5941
5942			len = object->un_pager.vnp.vnp_size - off;
5943			ncount = btoc(len);
5944			if ((pgoff = (int)len & PAGE_MASK) != 0) {
5945				/*
5946				 * If the object is locked and the following
5947				 * conditions hold, then the page's dirty
5948				 * field cannot be concurrently changed by a
5949				 * pmap operation.
5950				 */
5951				m = ma[ncount - 1];
5952				vm_page_assert_sbusied(m);
5953				KASSERT(!pmap_page_is_write_mapped(m),
5954				    ("zfs_putpages: page %p is not read-only", m));
5955				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
5956				    pgoff);
5957			}
5958		} else {
5959			len = 0;
5960			ncount = 0;
5961		}
5962		if (ncount < pcount) {
5963			for (i = ncount; i < pcount; i++) {
5964				rtvals[i] = zfs_vm_pagerret_bad;
5965			}
5966		}
5967	}
5968	zfs_vmobject_wunlock(object);
5969
5970	if (ncount == 0)
5971		goto out;
5972
5973	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
5974	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
5975		goto out;
5976	}
5977
5978top:
5979	tx = dmu_tx_create(zfsvfs->z_os);
5980	dmu_tx_hold_write(tx, zp->z_id, off, len);
5981
5982	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
5983	zfs_sa_upgrade_txholds(tx, zp);
5984	err = dmu_tx_assign(tx, TXG_NOWAIT);
5985	if (err != 0) {
5986		if (err == ERESTART) {
5987			dmu_tx_wait(tx);
5988			dmu_tx_abort(tx);
5989			goto top;
5990		}
5991		dmu_tx_abort(tx);
5992		goto out;
5993	}
5994
5995	if (zp->z_blksz < PAGE_SIZE) {
5996		i = 0;
5997		for (i = 0; len > 0; off += tocopy, len -= tocopy, i++) {
5998			tocopy = len > PAGE_SIZE ? PAGE_SIZE : len;
5999			va = zfs_map_page(ma[i], &sf);
6000			dmu_write(zfsvfs->z_os, zp->z_id, off, tocopy, va, tx);
6001			zfs_unmap_page(sf);
6002		}
6003	} else {
6004		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, ma, tx);
6005	}
6006
6007	if (err == 0) {
6008		uint64_t mtime[2], ctime[2];
6009		sa_bulk_attr_t bulk[3];
6010		int count = 0;
6011
6012		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
6013		    &mtime, 16);
6014		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
6015		    &ctime, 16);
6016		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
6017		    &zp->z_pflags, 8);
6018		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
6019		    B_TRUE);
6020		(void)sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
6021		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
6022
6023		zfs_vmobject_wlock(object);
6024		for (i = 0; i < ncount; i++) {
6025			rtvals[i] = zfs_vm_pagerret_ok;
6026			vm_page_undirty(ma[i]);
6027		}
6028		zfs_vmobject_wunlock(object);
6029		PCPU_INC(cnt.v_vnodeout);
6030		PCPU_ADD(cnt.v_vnodepgsout, ncount);
6031	}
6032	dmu_tx_commit(tx);
6033
6034out:
6035	zfs_range_unlock(rl);
6036	if ((flags & (zfs_vm_pagerput_sync | zfs_vm_pagerput_inval)) != 0 ||
6037	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
6038		zil_commit(zfsvfs->z_log, zp->z_id);
6039	ZFS_EXIT(zfsvfs);
6040	return (rtvals[0]);
6041}
6042
6043int
6044zfs_freebsd_putpages(ap)
6045	struct vop_putpages_args /* {
6046		struct vnode *a_vp;
6047		vm_page_t *a_m;
6048		int a_count;
6049		int a_sync;
6050		int *a_rtvals;
6051		vm_ooffset_t a_offset;
6052	} */ *ap;
6053{
6054
6055	return (zfs_putpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_sync,
6056	    ap->a_rtvals));
6057}
6058
6059static int
6060zfs_freebsd_bmap(ap)
6061	struct vop_bmap_args /* {
6062		struct vnode *a_vp;
6063		daddr_t  a_bn;
6064		struct bufobj **a_bop;
6065		daddr_t *a_bnp;
6066		int *a_runp;
6067		int *a_runb;
6068	} */ *ap;
6069{
6070
6071	if (ap->a_bop != NULL)
6072		*ap->a_bop = &ap->a_vp->v_bufobj;
6073	if (ap->a_bnp != NULL)
6074		*ap->a_bnp = ap->a_bn;
6075	if (ap->a_runp != NULL)
6076		*ap->a_runp = 0;
6077	if (ap->a_runb != NULL)
6078		*ap->a_runb = 0;
6079
6080	return (0);
6081}
6082
6083static int
6084zfs_freebsd_open(ap)
6085	struct vop_open_args /* {
6086		struct vnode *a_vp;
6087		int a_mode;
6088		struct ucred *a_cred;
6089		struct thread *a_td;
6090	} */ *ap;
6091{
6092	vnode_t	*vp = ap->a_vp;
6093	znode_t *zp = VTOZ(vp);
6094	int error;
6095
6096	error = zfs_open(&vp, ap->a_mode, ap->a_cred, NULL);
6097	if (error == 0)
6098		vnode_create_vobject(vp, zp->z_size, ap->a_td);
6099	return (error);
6100}
6101
6102static int
6103zfs_freebsd_close(ap)
6104	struct vop_close_args /* {
6105		struct vnode *a_vp;
6106		int  a_fflag;
6107		struct ucred *a_cred;
6108		struct thread *a_td;
6109	} */ *ap;
6110{
6111
6112	return (zfs_close(ap->a_vp, ap->a_fflag, 1, 0, ap->a_cred, NULL));
6113}
6114
6115static int
6116zfs_freebsd_ioctl(ap)
6117	struct vop_ioctl_args /* {
6118		struct vnode *a_vp;
6119		u_long a_command;
6120		caddr_t a_data;
6121		int a_fflag;
6122		struct ucred *cred;
6123		struct thread *td;
6124	} */ *ap;
6125{
6126
6127	return (zfs_ioctl(ap->a_vp, ap->a_command, (intptr_t)ap->a_data,
6128	    ap->a_fflag, ap->a_cred, NULL, NULL));
6129}
6130
6131static int
6132zfs_freebsd_read(ap)
6133	struct vop_read_args /* {
6134		struct vnode *a_vp;
6135		struct uio *a_uio;
6136		int a_ioflag;
6137		struct ucred *a_cred;
6138	} */ *ap;
6139{
6140
6141	return (zfs_read(ap->a_vp, ap->a_uio, ioflags(ap->a_ioflag),
6142	    ap->a_cred, NULL));
6143}
6144
6145static int
6146zfs_freebsd_write(ap)
6147	struct vop_write_args /* {
6148		struct vnode *a_vp;
6149		struct uio *a_uio;
6150		int a_ioflag;
6151		struct ucred *a_cred;
6152	} */ *ap;
6153{
6154
6155	return (zfs_write(ap->a_vp, ap->a_uio, ioflags(ap->a_ioflag),
6156	    ap->a_cred, NULL));
6157}
6158
6159static int
6160zfs_freebsd_access(ap)
6161	struct vop_access_args /* {
6162		struct vnode *a_vp;
6163		accmode_t a_accmode;
6164		struct ucred *a_cred;
6165		struct thread *a_td;
6166	} */ *ap;
6167{
6168	vnode_t *vp = ap->a_vp;
6169	znode_t *zp = VTOZ(vp);
6170	accmode_t accmode;
6171	int error = 0;
6172
6173	/*
6174	 * ZFS itself only knowns about VREAD, VWRITE, VEXEC and VAPPEND,
6175	 */
6176	accmode = ap->a_accmode & (VREAD|VWRITE|VEXEC|VAPPEND);
6177	if (accmode != 0)
6178		error = zfs_access(ap->a_vp, accmode, 0, ap->a_cred, NULL);
6179
6180	/*
6181	 * VADMIN has to be handled by vaccess().
6182	 */
6183	if (error == 0) {
6184		accmode = ap->a_accmode & ~(VREAD|VWRITE|VEXEC|VAPPEND);
6185		if (accmode != 0) {
6186			error = vaccess(vp->v_type, zp->z_mode, zp->z_uid,
6187			    zp->z_gid, accmode, ap->a_cred, NULL);
6188		}
6189	}
6190
6191	/*
6192	 * For VEXEC, ensure that at least one execute bit is set for
6193	 * non-directories.
6194	 */
6195	if (error == 0 && (ap->a_accmode & VEXEC) != 0 && vp->v_type != VDIR &&
6196	    (zp->z_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0) {
6197		error = EACCES;
6198	}
6199
6200	return (error);
6201}
6202
6203static int
6204zfs_freebsd_lookup(ap)
6205	struct vop_lookup_args /* {
6206		struct vnode *a_dvp;
6207		struct vnode **a_vpp;
6208		struct componentname *a_cnp;
6209	} */ *ap;
6210{
6211	struct componentname *cnp = ap->a_cnp;
6212	char nm[NAME_MAX + 1];
6213
6214	ASSERT(cnp->cn_namelen < sizeof(nm));
6215	strlcpy(nm, cnp->cn_nameptr, MIN(cnp->cn_namelen + 1, sizeof(nm)));
6216
6217	return (zfs_lookup(ap->a_dvp, nm, ap->a_vpp, cnp, cnp->cn_nameiop,
6218	    cnp->cn_cred, cnp->cn_thread, 0));
6219}
6220
6221static int
6222zfs_freebsd_create(ap)
6223	struct vop_create_args /* {
6224		struct vnode *a_dvp;
6225		struct vnode **a_vpp;
6226		struct componentname *a_cnp;
6227		struct vattr *a_vap;
6228	} */ *ap;
6229{
6230	struct componentname *cnp = ap->a_cnp;
6231	vattr_t *vap = ap->a_vap;
6232	int error, mode;
6233
6234	ASSERT(cnp->cn_flags & SAVENAME);
6235
6236	vattr_init_mask(vap);
6237	mode = vap->va_mode & ALLPERMS;
6238
6239	error = zfs_create(ap->a_dvp, cnp->cn_nameptr, vap, !EXCL, mode,
6240	    ap->a_vpp, cnp->cn_cred, cnp->cn_thread);
6241#ifdef FREEBSD_NAMECACHE
6242	if (error == 0 && (cnp->cn_flags & MAKEENTRY) != 0)
6243		cache_enter(ap->a_dvp, *ap->a_vpp, cnp);
6244#endif
6245	return (error);
6246}
6247
6248static int
6249zfs_freebsd_remove(ap)
6250	struct vop_remove_args /* {
6251		struct vnode *a_dvp;
6252		struct vnode *a_vp;
6253		struct componentname *a_cnp;
6254	} */ *ap;
6255{
6256
6257	ASSERT(ap->a_cnp->cn_flags & SAVENAME);
6258
6259	return (zfs_remove(ap->a_dvp, ap->a_cnp->cn_nameptr,
6260	    ap->a_cnp->cn_cred, NULL, 0));
6261}
6262
6263static int
6264zfs_freebsd_mkdir(ap)
6265	struct vop_mkdir_args /* {
6266		struct vnode *a_dvp;
6267		struct vnode **a_vpp;
6268		struct componentname *a_cnp;
6269		struct vattr *a_vap;
6270	} */ *ap;
6271{
6272	vattr_t *vap = ap->a_vap;
6273
6274	ASSERT(ap->a_cnp->cn_flags & SAVENAME);
6275
6276	vattr_init_mask(vap);
6277
6278	return (zfs_mkdir(ap->a_dvp, ap->a_cnp->cn_nameptr, vap, ap->a_vpp,
6279	    ap->a_cnp->cn_cred, NULL, 0, NULL));
6280}
6281
6282static int
6283zfs_freebsd_rmdir(ap)
6284	struct vop_rmdir_args /* {
6285		struct vnode *a_dvp;
6286		struct vnode *a_vp;
6287		struct componentname *a_cnp;
6288	} */ *ap;
6289{
6290	struct componentname *cnp = ap->a_cnp;
6291
6292	ASSERT(cnp->cn_flags & SAVENAME);
6293
6294	return (zfs_rmdir(ap->a_dvp, cnp->cn_nameptr, NULL, cnp->cn_cred, NULL, 0));
6295}
6296
6297static int
6298zfs_freebsd_readdir(ap)
6299	struct vop_readdir_args /* {
6300		struct vnode *a_vp;
6301		struct uio *a_uio;
6302		struct ucred *a_cred;
6303		int *a_eofflag;
6304		int *a_ncookies;
6305		u_long **a_cookies;
6306	} */ *ap;
6307{
6308
6309	return (zfs_readdir(ap->a_vp, ap->a_uio, ap->a_cred, ap->a_eofflag,
6310	    ap->a_ncookies, ap->a_cookies));
6311}
6312
6313static int
6314zfs_freebsd_fsync(ap)
6315	struct vop_fsync_args /* {
6316		struct vnode *a_vp;
6317		int a_waitfor;
6318		struct thread *a_td;
6319	} */ *ap;
6320{
6321
6322	vop_stdfsync(ap);
6323	return (zfs_fsync(ap->a_vp, 0, ap->a_td->td_ucred, NULL));
6324}
6325
6326static int
6327zfs_freebsd_getattr(ap)
6328	struct vop_getattr_args /* {
6329		struct vnode *a_vp;
6330		struct vattr *a_vap;
6331		struct ucred *a_cred;
6332	} */ *ap;
6333{
6334	vattr_t *vap = ap->a_vap;
6335	xvattr_t xvap;
6336	u_long fflags = 0;
6337	int error;
6338
6339	xva_init(&xvap);
6340	xvap.xva_vattr = *vap;
6341	xvap.xva_vattr.va_mask |= AT_XVATTR;
6342
6343	/* Convert chflags into ZFS-type flags. */
6344	/* XXX: what about SF_SETTABLE?. */
6345	XVA_SET_REQ(&xvap, XAT_IMMUTABLE);
6346	XVA_SET_REQ(&xvap, XAT_APPENDONLY);
6347	XVA_SET_REQ(&xvap, XAT_NOUNLINK);
6348	XVA_SET_REQ(&xvap, XAT_NODUMP);
6349	XVA_SET_REQ(&xvap, XAT_READONLY);
6350	XVA_SET_REQ(&xvap, XAT_ARCHIVE);
6351	XVA_SET_REQ(&xvap, XAT_SYSTEM);
6352	XVA_SET_REQ(&xvap, XAT_HIDDEN);
6353	XVA_SET_REQ(&xvap, XAT_REPARSE);
6354	XVA_SET_REQ(&xvap, XAT_OFFLINE);
6355	XVA_SET_REQ(&xvap, XAT_SPARSE);
6356
6357	error = zfs_getattr(ap->a_vp, (vattr_t *)&xvap, 0, ap->a_cred, NULL);
6358	if (error != 0)
6359		return (error);
6360
6361	/* Convert ZFS xattr into chflags. */
6362#define	FLAG_CHECK(fflag, xflag, xfield)	do {			\
6363	if (XVA_ISSET_RTN(&xvap, (xflag)) && (xfield) != 0)		\
6364		fflags |= (fflag);					\
6365} while (0)
6366	FLAG_CHECK(SF_IMMUTABLE, XAT_IMMUTABLE,
6367	    xvap.xva_xoptattrs.xoa_immutable);
6368	FLAG_CHECK(SF_APPEND, XAT_APPENDONLY,
6369	    xvap.xva_xoptattrs.xoa_appendonly);
6370	FLAG_CHECK(SF_NOUNLINK, XAT_NOUNLINK,
6371	    xvap.xva_xoptattrs.xoa_nounlink);
6372	FLAG_CHECK(UF_ARCHIVE, XAT_ARCHIVE,
6373	    xvap.xva_xoptattrs.xoa_archive);
6374	FLAG_CHECK(UF_NODUMP, XAT_NODUMP,
6375	    xvap.xva_xoptattrs.xoa_nodump);
6376	FLAG_CHECK(UF_READONLY, XAT_READONLY,
6377	    xvap.xva_xoptattrs.xoa_readonly);
6378	FLAG_CHECK(UF_SYSTEM, XAT_SYSTEM,
6379	    xvap.xva_xoptattrs.xoa_system);
6380	FLAG_CHECK(UF_HIDDEN, XAT_HIDDEN,
6381	    xvap.xva_xoptattrs.xoa_hidden);
6382	FLAG_CHECK(UF_REPARSE, XAT_REPARSE,
6383	    xvap.xva_xoptattrs.xoa_reparse);
6384	FLAG_CHECK(UF_OFFLINE, XAT_OFFLINE,
6385	    xvap.xva_xoptattrs.xoa_offline);
6386	FLAG_CHECK(UF_SPARSE, XAT_SPARSE,
6387	    xvap.xva_xoptattrs.xoa_sparse);
6388
6389#undef	FLAG_CHECK
6390	*vap = xvap.xva_vattr;
6391	vap->va_flags = fflags;
6392	return (0);
6393}
6394
6395static int
6396zfs_freebsd_setattr(ap)
6397	struct vop_setattr_args /* {
6398		struct vnode *a_vp;
6399		struct vattr *a_vap;
6400		struct ucred *a_cred;
6401	} */ *ap;
6402{
6403	vnode_t *vp = ap->a_vp;
6404	vattr_t *vap = ap->a_vap;
6405	cred_t *cred = ap->a_cred;
6406	xvattr_t xvap;
6407	u_long fflags;
6408	uint64_t zflags;
6409
6410	vattr_init_mask(vap);
6411	vap->va_mask &= ~AT_NOSET;
6412
6413	xva_init(&xvap);
6414	xvap.xva_vattr = *vap;
6415
6416	zflags = VTOZ(vp)->z_pflags;
6417
6418	if (vap->va_flags != VNOVAL) {
6419		zfsvfs_t *zfsvfs = VTOZ(vp)->z_zfsvfs;
6420		int error;
6421
6422		if (zfsvfs->z_use_fuids == B_FALSE)
6423			return (EOPNOTSUPP);
6424
6425		fflags = vap->va_flags;
6426		/*
6427		 * XXX KDM
6428		 * We need to figure out whether it makes sense to allow
6429		 * UF_REPARSE through, since we don't really have other
6430		 * facilities to handle reparse points and zfs_setattr()
6431		 * doesn't currently allow setting that attribute anyway.
6432		 */
6433		if ((fflags & ~(SF_IMMUTABLE|SF_APPEND|SF_NOUNLINK|UF_ARCHIVE|
6434		     UF_NODUMP|UF_SYSTEM|UF_HIDDEN|UF_READONLY|UF_REPARSE|
6435		     UF_OFFLINE|UF_SPARSE)) != 0)
6436			return (EOPNOTSUPP);
6437		/*
6438		 * Unprivileged processes are not permitted to unset system
6439		 * flags, or modify flags if any system flags are set.
6440		 * Privileged non-jail processes may not modify system flags
6441		 * if securelevel > 0 and any existing system flags are set.
6442		 * Privileged jail processes behave like privileged non-jail
6443		 * processes if the security.jail.chflags_allowed sysctl is
6444		 * is non-zero; otherwise, they behave like unprivileged
6445		 * processes.
6446		 */
6447		if (secpolicy_fs_owner(vp->v_mount, cred) == 0 ||
6448		    priv_check_cred(cred, PRIV_VFS_SYSFLAGS, 0) == 0) {
6449			if (zflags &
6450			    (ZFS_IMMUTABLE | ZFS_APPENDONLY | ZFS_NOUNLINK)) {
6451				error = securelevel_gt(cred, 0);
6452				if (error != 0)
6453					return (error);
6454			}
6455		} else {
6456			/*
6457			 * Callers may only modify the file flags on objects they
6458			 * have VADMIN rights for.
6459			 */
6460			if ((error = VOP_ACCESS(vp, VADMIN, cred, curthread)) != 0)
6461				return (error);
6462			if (zflags &
6463			    (ZFS_IMMUTABLE | ZFS_APPENDONLY | ZFS_NOUNLINK)) {
6464				return (EPERM);
6465			}
6466			if (fflags &
6467			    (SF_IMMUTABLE | SF_APPEND | SF_NOUNLINK)) {
6468				return (EPERM);
6469			}
6470		}
6471
6472#define	FLAG_CHANGE(fflag, zflag, xflag, xfield)	do {		\
6473	if (((fflags & (fflag)) && !(zflags & (zflag))) ||		\
6474	    ((zflags & (zflag)) && !(fflags & (fflag)))) {		\
6475		XVA_SET_REQ(&xvap, (xflag));				\
6476		(xfield) = ((fflags & (fflag)) != 0);			\
6477	}								\
6478} while (0)
6479		/* Convert chflags into ZFS-type flags. */
6480		/* XXX: what about SF_SETTABLE?. */
6481		FLAG_CHANGE(SF_IMMUTABLE, ZFS_IMMUTABLE, XAT_IMMUTABLE,
6482		    xvap.xva_xoptattrs.xoa_immutable);
6483		FLAG_CHANGE(SF_APPEND, ZFS_APPENDONLY, XAT_APPENDONLY,
6484		    xvap.xva_xoptattrs.xoa_appendonly);
6485		FLAG_CHANGE(SF_NOUNLINK, ZFS_NOUNLINK, XAT_NOUNLINK,
6486		    xvap.xva_xoptattrs.xoa_nounlink);
6487		FLAG_CHANGE(UF_ARCHIVE, ZFS_ARCHIVE, XAT_ARCHIVE,
6488		    xvap.xva_xoptattrs.xoa_archive);
6489		FLAG_CHANGE(UF_NODUMP, ZFS_NODUMP, XAT_NODUMP,
6490		    xvap.xva_xoptattrs.xoa_nodump);
6491		FLAG_CHANGE(UF_READONLY, ZFS_READONLY, XAT_READONLY,
6492		    xvap.xva_xoptattrs.xoa_readonly);
6493		FLAG_CHANGE(UF_SYSTEM, ZFS_SYSTEM, XAT_SYSTEM,
6494		    xvap.xva_xoptattrs.xoa_system);
6495		FLAG_CHANGE(UF_HIDDEN, ZFS_HIDDEN, XAT_HIDDEN,
6496		    xvap.xva_xoptattrs.xoa_hidden);
6497		FLAG_CHANGE(UF_REPARSE, ZFS_REPARSE, XAT_REPARSE,
6498		    xvap.xva_xoptattrs.xoa_hidden);
6499		FLAG_CHANGE(UF_OFFLINE, ZFS_OFFLINE, XAT_OFFLINE,
6500		    xvap.xva_xoptattrs.xoa_offline);
6501		FLAG_CHANGE(UF_SPARSE, ZFS_SPARSE, XAT_SPARSE,
6502		    xvap.xva_xoptattrs.xoa_sparse);
6503#undef	FLAG_CHANGE
6504	}
6505	return (zfs_setattr(vp, (vattr_t *)&xvap, 0, cred, NULL));
6506}
6507
6508static int
6509zfs_freebsd_rename(ap)
6510	struct vop_rename_args  /* {
6511		struct vnode *a_fdvp;
6512		struct vnode *a_fvp;
6513		struct componentname *a_fcnp;
6514		struct vnode *a_tdvp;
6515		struct vnode *a_tvp;
6516		struct componentname *a_tcnp;
6517	} */ *ap;
6518{
6519	vnode_t *fdvp = ap->a_fdvp;
6520	vnode_t *fvp = ap->a_fvp;
6521	vnode_t *tdvp = ap->a_tdvp;
6522	vnode_t *tvp = ap->a_tvp;
6523	int error;
6524
6525	ASSERT(ap->a_fcnp->cn_flags & (SAVENAME|SAVESTART));
6526	ASSERT(ap->a_tcnp->cn_flags & (SAVENAME|SAVESTART));
6527
6528	/*
6529	 * Check for cross-device rename.
6530	 */
6531	if ((fdvp->v_mount != tdvp->v_mount) ||
6532	    (tvp && (fdvp->v_mount != tvp->v_mount)))
6533		error = EXDEV;
6534	else
6535		error = zfs_rename(fdvp, ap->a_fcnp->cn_nameptr, tdvp,
6536		    ap->a_tcnp->cn_nameptr, ap->a_fcnp->cn_cred, NULL, 0);
6537	if (tdvp == tvp)
6538		VN_RELE(tdvp);
6539	else
6540		VN_URELE(tdvp);
6541	if (tvp)
6542		VN_URELE(tvp);
6543	VN_RELE(fdvp);
6544	VN_RELE(fvp);
6545
6546	return (error);
6547}
6548
6549static int
6550zfs_freebsd_symlink(ap)
6551	struct vop_symlink_args /* {
6552		struct vnode *a_dvp;
6553		struct vnode **a_vpp;
6554		struct componentname *a_cnp;
6555		struct vattr *a_vap;
6556		char *a_target;
6557	} */ *ap;
6558{
6559	struct componentname *cnp = ap->a_cnp;
6560	vattr_t *vap = ap->a_vap;
6561
6562	ASSERT(cnp->cn_flags & SAVENAME);
6563
6564	vap->va_type = VLNK;	/* FreeBSD: Syscall only sets va_mode. */
6565	vattr_init_mask(vap);
6566
6567	return (zfs_symlink(ap->a_dvp, ap->a_vpp, cnp->cn_nameptr, vap,
6568	    ap->a_target, cnp->cn_cred, cnp->cn_thread));
6569}
6570
6571static int
6572zfs_freebsd_readlink(ap)
6573	struct vop_readlink_args /* {
6574		struct vnode *a_vp;
6575		struct uio *a_uio;
6576		struct ucred *a_cred;
6577	} */ *ap;
6578{
6579
6580	return (zfs_readlink(ap->a_vp, ap->a_uio, ap->a_cred, NULL));
6581}
6582
6583static int
6584zfs_freebsd_link(ap)
6585	struct vop_link_args /* {
6586		struct vnode *a_tdvp;
6587		struct vnode *a_vp;
6588		struct componentname *a_cnp;
6589	} */ *ap;
6590{
6591	struct componentname *cnp = ap->a_cnp;
6592	vnode_t *vp = ap->a_vp;
6593	vnode_t *tdvp = ap->a_tdvp;
6594
6595	if (tdvp->v_mount != vp->v_mount)
6596		return (EXDEV);
6597
6598	ASSERT(cnp->cn_flags & SAVENAME);
6599
6600	return (zfs_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_cred, NULL, 0));
6601}
6602
6603static int
6604zfs_freebsd_inactive(ap)
6605	struct vop_inactive_args /* {
6606		struct vnode *a_vp;
6607		struct thread *a_td;
6608	} */ *ap;
6609{
6610	vnode_t *vp = ap->a_vp;
6611
6612	zfs_inactive(vp, ap->a_td->td_ucred, NULL);
6613	return (0);
6614}
6615
6616static int
6617zfs_freebsd_reclaim(ap)
6618	struct vop_reclaim_args /* {
6619		struct vnode *a_vp;
6620		struct thread *a_td;
6621	} */ *ap;
6622{
6623	vnode_t	*vp = ap->a_vp;
6624	znode_t	*zp = VTOZ(vp);
6625	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
6626
6627	ASSERT(zp != NULL);
6628
6629	/* Destroy the vm object and flush associated pages. */
6630	vnode_destroy_vobject(vp);
6631
6632	/*
6633	 * z_teardown_inactive_lock protects from a race with
6634	 * zfs_znode_dmu_fini in zfsvfs_teardown during
6635	 * force unmount.
6636	 */
6637	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
6638	if (zp->z_sa_hdl == NULL)
6639		zfs_znode_free(zp);
6640	else
6641		zfs_zinactive(zp);
6642	rw_exit(&zfsvfs->z_teardown_inactive_lock);
6643
6644	vp->v_data = NULL;
6645	return (0);
6646}
6647
6648static int
6649zfs_freebsd_fid(ap)
6650	struct vop_fid_args /* {
6651		struct vnode *a_vp;
6652		struct fid *a_fid;
6653	} */ *ap;
6654{
6655
6656	return (zfs_fid(ap->a_vp, (void *)ap->a_fid, NULL));
6657}
6658
6659static int
6660zfs_freebsd_pathconf(ap)
6661	struct vop_pathconf_args /* {
6662		struct vnode *a_vp;
6663		int a_name;
6664		register_t *a_retval;
6665	} */ *ap;
6666{
6667	ulong_t val;
6668	int error;
6669
6670	error = zfs_pathconf(ap->a_vp, ap->a_name, &val, curthread->td_ucred, NULL);
6671	if (error == 0)
6672		*ap->a_retval = val;
6673	else if (error == EOPNOTSUPP)
6674		error = vop_stdpathconf(ap);
6675	return (error);
6676}
6677
6678static int
6679zfs_freebsd_fifo_pathconf(ap)
6680	struct vop_pathconf_args /* {
6681		struct vnode *a_vp;
6682		int a_name;
6683		register_t *a_retval;
6684	} */ *ap;
6685{
6686
6687	switch (ap->a_name) {
6688	case _PC_ACL_EXTENDED:
6689	case _PC_ACL_NFS4:
6690	case _PC_ACL_PATH_MAX:
6691	case _PC_MAC_PRESENT:
6692		return (zfs_freebsd_pathconf(ap));
6693	default:
6694		return (fifo_specops.vop_pathconf(ap));
6695	}
6696}
6697
6698/*
6699 * FreeBSD's extended attributes namespace defines file name prefix for ZFS'
6700 * extended attribute name:
6701 *
6702 *	NAMESPACE	PREFIX
6703 *	system		freebsd:system:
6704 *	user		(none, can be used to access ZFS fsattr(5) attributes
6705 *			created on Solaris)
6706 */
6707static int
6708zfs_create_attrname(int attrnamespace, const char *name, char *attrname,
6709    size_t size)
6710{
6711	const char *namespace, *prefix, *suffix;
6712
6713	/* We don't allow '/' character in attribute name. */
6714	if (strchr(name, '/') != NULL)
6715		return (EINVAL);
6716	/* We don't allow attribute names that start with "freebsd:" string. */
6717	if (strncmp(name, "freebsd:", 8) == 0)
6718		return (EINVAL);
6719
6720	bzero(attrname, size);
6721
6722	switch (attrnamespace) {
6723	case EXTATTR_NAMESPACE_USER:
6724#if 0
6725		prefix = "freebsd:";
6726		namespace = EXTATTR_NAMESPACE_USER_STRING;
6727		suffix = ":";
6728#else
6729		/*
6730		 * This is the default namespace by which we can access all
6731		 * attributes created on Solaris.
6732		 */
6733		prefix = namespace = suffix = "";
6734#endif
6735		break;
6736	case EXTATTR_NAMESPACE_SYSTEM:
6737		prefix = "freebsd:";
6738		namespace = EXTATTR_NAMESPACE_SYSTEM_STRING;
6739		suffix = ":";
6740		break;
6741	case EXTATTR_NAMESPACE_EMPTY:
6742	default:
6743		return (EINVAL);
6744	}
6745	if (snprintf(attrname, size, "%s%s%s%s", prefix, namespace, suffix,
6746	    name) >= size) {
6747		return (ENAMETOOLONG);
6748	}
6749	return (0);
6750}
6751
6752/*
6753 * Vnode operating to retrieve a named extended attribute.
6754 */
6755static int
6756zfs_getextattr(struct vop_getextattr_args *ap)
6757/*
6758vop_getextattr {
6759	IN struct vnode *a_vp;
6760	IN int a_attrnamespace;
6761	IN const char *a_name;
6762	INOUT struct uio *a_uio;
6763	OUT size_t *a_size;
6764	IN struct ucred *a_cred;
6765	IN struct thread *a_td;
6766};
6767*/
6768{
6769	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6770	struct thread *td = ap->a_td;
6771	struct nameidata nd;
6772	char attrname[255];
6773	struct vattr va;
6774	vnode_t *xvp = NULL, *vp;
6775	int error, flags;
6776
6777	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6778	    ap->a_cred, ap->a_td, VREAD);
6779	if (error != 0)
6780		return (error);
6781
6782	error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
6783	    sizeof(attrname));
6784	if (error != 0)
6785		return (error);
6786
6787	ZFS_ENTER(zfsvfs);
6788
6789	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6790	    LOOKUP_XATTR);
6791	if (error != 0) {
6792		ZFS_EXIT(zfsvfs);
6793		return (error);
6794	}
6795
6796	flags = FREAD;
6797	NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname,
6798	    xvp, td);
6799	error = vn_open_cred(&nd, &flags, 0, 0, ap->a_cred, NULL);
6800	vp = nd.ni_vp;
6801	NDFREE(&nd, NDF_ONLY_PNBUF);
6802	if (error != 0) {
6803		ZFS_EXIT(zfsvfs);
6804		if (error == ENOENT)
6805			error = ENOATTR;
6806		return (error);
6807	}
6808
6809	if (ap->a_size != NULL) {
6810		error = VOP_GETATTR(vp, &va, ap->a_cred);
6811		if (error == 0)
6812			*ap->a_size = (size_t)va.va_size;
6813	} else if (ap->a_uio != NULL)
6814		error = VOP_READ(vp, ap->a_uio, IO_UNIT, ap->a_cred);
6815
6816	VOP_UNLOCK(vp, 0);
6817	vn_close(vp, flags, ap->a_cred, td);
6818	ZFS_EXIT(zfsvfs);
6819
6820	return (error);
6821}
6822
6823/*
6824 * Vnode operation to remove a named attribute.
6825 */
6826int
6827zfs_deleteextattr(struct vop_deleteextattr_args *ap)
6828/*
6829vop_deleteextattr {
6830	IN struct vnode *a_vp;
6831	IN int a_attrnamespace;
6832	IN const char *a_name;
6833	IN struct ucred *a_cred;
6834	IN struct thread *a_td;
6835};
6836*/
6837{
6838	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6839	struct thread *td = ap->a_td;
6840	struct nameidata nd;
6841	char attrname[255];
6842	struct vattr va;
6843	vnode_t *xvp = NULL, *vp;
6844	int error, flags;
6845
6846	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6847	    ap->a_cred, ap->a_td, VWRITE);
6848	if (error != 0)
6849		return (error);
6850
6851	error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
6852	    sizeof(attrname));
6853	if (error != 0)
6854		return (error);
6855
6856	ZFS_ENTER(zfsvfs);
6857
6858	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6859	    LOOKUP_XATTR);
6860	if (error != 0) {
6861		ZFS_EXIT(zfsvfs);
6862		return (error);
6863	}
6864
6865	NDINIT_ATVP(&nd, DELETE, NOFOLLOW | LOCKPARENT | LOCKLEAF,
6866	    UIO_SYSSPACE, attrname, xvp, td);
6867	error = namei(&nd);
6868	vp = nd.ni_vp;
6869	if (error != 0) {
6870		ZFS_EXIT(zfsvfs);
6871		NDFREE(&nd, NDF_ONLY_PNBUF);
6872		if (error == ENOENT)
6873			error = ENOATTR;
6874		return (error);
6875	}
6876
6877	error = VOP_REMOVE(nd.ni_dvp, vp, &nd.ni_cnd);
6878	NDFREE(&nd, NDF_ONLY_PNBUF);
6879
6880	vput(nd.ni_dvp);
6881	if (vp == nd.ni_dvp)
6882		vrele(vp);
6883	else
6884		vput(vp);
6885	ZFS_EXIT(zfsvfs);
6886
6887	return (error);
6888}
6889
6890/*
6891 * Vnode operation to set a named attribute.
6892 */
6893static int
6894zfs_setextattr(struct vop_setextattr_args *ap)
6895/*
6896vop_setextattr {
6897	IN struct vnode *a_vp;
6898	IN int a_attrnamespace;
6899	IN const char *a_name;
6900	INOUT struct uio *a_uio;
6901	IN struct ucred *a_cred;
6902	IN struct thread *a_td;
6903};
6904*/
6905{
6906	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6907	struct thread *td = ap->a_td;
6908	struct nameidata nd;
6909	char attrname[255];
6910	struct vattr va;
6911	vnode_t *xvp = NULL, *vp;
6912	int error, flags;
6913
6914	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6915	    ap->a_cred, ap->a_td, VWRITE);
6916	if (error != 0)
6917		return (error);
6918
6919	error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
6920	    sizeof(attrname));
6921	if (error != 0)
6922		return (error);
6923
6924	ZFS_ENTER(zfsvfs);
6925
6926	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6927	    LOOKUP_XATTR | CREATE_XATTR_DIR);
6928	if (error != 0) {
6929		ZFS_EXIT(zfsvfs);
6930		return (error);
6931	}
6932
6933	flags = FFLAGS(O_WRONLY | O_CREAT);
6934	NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname,
6935	    xvp, td);
6936	error = vn_open_cred(&nd, &flags, 0600, 0, ap->a_cred, NULL);
6937	vp = nd.ni_vp;
6938	NDFREE(&nd, NDF_ONLY_PNBUF);
6939	if (error != 0) {
6940		ZFS_EXIT(zfsvfs);
6941		return (error);
6942	}
6943
6944	VATTR_NULL(&va);
6945	va.va_size = 0;
6946	error = VOP_SETATTR(vp, &va, ap->a_cred);
6947	if (error == 0)
6948		VOP_WRITE(vp, ap->a_uio, IO_UNIT, ap->a_cred);
6949
6950	VOP_UNLOCK(vp, 0);
6951	vn_close(vp, flags, ap->a_cred, td);
6952	ZFS_EXIT(zfsvfs);
6953
6954	return (error);
6955}
6956
6957/*
6958 * Vnode operation to retrieve extended attributes on a vnode.
6959 */
6960static int
6961zfs_listextattr(struct vop_listextattr_args *ap)
6962/*
6963vop_listextattr {
6964	IN struct vnode *a_vp;
6965	IN int a_attrnamespace;
6966	INOUT struct uio *a_uio;
6967	OUT size_t *a_size;
6968	IN struct ucred *a_cred;
6969	IN struct thread *a_td;
6970};
6971*/
6972{
6973	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6974	struct thread *td = ap->a_td;
6975	struct nameidata nd;
6976	char attrprefix[16];
6977	u_char dirbuf[sizeof(struct dirent)];
6978	struct dirent *dp;
6979	struct iovec aiov;
6980	struct uio auio, *uio = ap->a_uio;
6981	size_t *sizep = ap->a_size;
6982	size_t plen;
6983	vnode_t *xvp = NULL, *vp;
6984	int done, error, eof, pos;
6985
6986	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6987	    ap->a_cred, ap->a_td, VREAD);
6988	if (error != 0)
6989		return (error);
6990
6991	error = zfs_create_attrname(ap->a_attrnamespace, "", attrprefix,
6992	    sizeof(attrprefix));
6993	if (error != 0)
6994		return (error);
6995	plen = strlen(attrprefix);
6996
6997	ZFS_ENTER(zfsvfs);
6998
6999	if (sizep != NULL)
7000		*sizep = 0;
7001
7002	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
7003	    LOOKUP_XATTR);
7004	if (error != 0) {
7005		ZFS_EXIT(zfsvfs);
7006		/*
7007		 * ENOATTR means that the EA directory does not yet exist,
7008		 * i.e. there are no extended attributes there.
7009		 */
7010		if (error == ENOATTR)
7011			error = 0;
7012		return (error);
7013	}
7014
7015	NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW | LOCKLEAF | LOCKSHARED,
7016	    UIO_SYSSPACE, ".", xvp, td);
7017	error = namei(&nd);
7018	vp = nd.ni_vp;
7019	NDFREE(&nd, NDF_ONLY_PNBUF);
7020	if (error != 0) {
7021		ZFS_EXIT(zfsvfs);
7022		return (error);
7023	}
7024
7025	auio.uio_iov = &aiov;
7026	auio.uio_iovcnt = 1;
7027	auio.uio_segflg = UIO_SYSSPACE;
7028	auio.uio_td = td;
7029	auio.uio_rw = UIO_READ;
7030	auio.uio_offset = 0;
7031
7032	do {
7033		u_char nlen;
7034
7035		aiov.iov_base = (void *)dirbuf;
7036		aiov.iov_len = sizeof(dirbuf);
7037		auio.uio_resid = sizeof(dirbuf);
7038		error = VOP_READDIR(vp, &auio, ap->a_cred, &eof, NULL, NULL);
7039		done = sizeof(dirbuf) - auio.uio_resid;
7040		if (error != 0)
7041			break;
7042		for (pos = 0; pos < done;) {
7043			dp = (struct dirent *)(dirbuf + pos);
7044			pos += dp->d_reclen;
7045			/*
7046			 * XXX: Temporarily we also accept DT_UNKNOWN, as this
7047			 * is what we get when attribute was created on Solaris.
7048			 */
7049			if (dp->d_type != DT_REG && dp->d_type != DT_UNKNOWN)
7050				continue;
7051			if (plen == 0 && strncmp(dp->d_name, "freebsd:", 8) == 0)
7052				continue;
7053			else if (strncmp(dp->d_name, attrprefix, plen) != 0)
7054				continue;
7055			nlen = dp->d_namlen - plen;
7056			if (sizep != NULL)
7057				*sizep += 1 + nlen;
7058			else if (uio != NULL) {
7059				/*
7060				 * Format of extattr name entry is one byte for
7061				 * length and the rest for name.
7062				 */
7063				error = uiomove(&nlen, 1, uio->uio_rw, uio);
7064				if (error == 0) {
7065					error = uiomove(dp->d_name + plen, nlen,
7066					    uio->uio_rw, uio);
7067				}
7068				if (error != 0)
7069					break;
7070			}
7071		}
7072	} while (!eof && error == 0);
7073
7074	vput(vp);
7075	ZFS_EXIT(zfsvfs);
7076
7077	return (error);
7078}
7079
7080int
7081zfs_freebsd_getacl(ap)
7082	struct vop_getacl_args /* {
7083		struct vnode *vp;
7084		acl_type_t type;
7085		struct acl *aclp;
7086		struct ucred *cred;
7087		struct thread *td;
7088	} */ *ap;
7089{
7090	int		error;
7091	vsecattr_t      vsecattr;
7092
7093	if (ap->a_type != ACL_TYPE_NFS4)
7094		return (EINVAL);
7095
7096	vsecattr.vsa_mask = VSA_ACE | VSA_ACECNT;
7097	if (error = zfs_getsecattr(ap->a_vp, &vsecattr, 0, ap->a_cred, NULL))
7098		return (error);
7099
7100	error = acl_from_aces(ap->a_aclp, vsecattr.vsa_aclentp, vsecattr.vsa_aclcnt);
7101	if (vsecattr.vsa_aclentp != NULL)
7102		kmem_free(vsecattr.vsa_aclentp, vsecattr.vsa_aclentsz);
7103
7104	return (error);
7105}
7106
7107int
7108zfs_freebsd_setacl(ap)
7109	struct vop_setacl_args /* {
7110		struct vnode *vp;
7111		acl_type_t type;
7112		struct acl *aclp;
7113		struct ucred *cred;
7114		struct thread *td;
7115	} */ *ap;
7116{
7117	int		error;
7118	vsecattr_t      vsecattr;
7119	int		aclbsize;	/* size of acl list in bytes */
7120	aclent_t	*aaclp;
7121
7122	if (ap->a_type != ACL_TYPE_NFS4)
7123		return (EINVAL);
7124
7125	if (ap->a_aclp->acl_cnt < 1 || ap->a_aclp->acl_cnt > MAX_ACL_ENTRIES)
7126		return (EINVAL);
7127
7128	/*
7129	 * With NFSv4 ACLs, chmod(2) may need to add additional entries,
7130	 * splitting every entry into two and appending "canonical six"
7131	 * entries at the end.  Don't allow for setting an ACL that would
7132	 * cause chmod(2) to run out of ACL entries.
7133	 */
7134	if (ap->a_aclp->acl_cnt * 2 + 6 > ACL_MAX_ENTRIES)
7135		return (ENOSPC);
7136
7137	error = acl_nfs4_check(ap->a_aclp, ap->a_vp->v_type == VDIR);
7138	if (error != 0)
7139		return (error);
7140
7141	vsecattr.vsa_mask = VSA_ACE;
7142	aclbsize = ap->a_aclp->acl_cnt * sizeof(ace_t);
7143	vsecattr.vsa_aclentp = kmem_alloc(aclbsize, KM_SLEEP);
7144	aaclp = vsecattr.vsa_aclentp;
7145	vsecattr.vsa_aclentsz = aclbsize;
7146
7147	aces_from_acl(vsecattr.vsa_aclentp, &vsecattr.vsa_aclcnt, ap->a_aclp);
7148	error = zfs_setsecattr(ap->a_vp, &vsecattr, 0, ap->a_cred, NULL);
7149	kmem_free(aaclp, aclbsize);
7150
7151	return (error);
7152}
7153
7154int
7155zfs_freebsd_aclcheck(ap)
7156	struct vop_aclcheck_args /* {
7157		struct vnode *vp;
7158		acl_type_t type;
7159		struct acl *aclp;
7160		struct ucred *cred;
7161		struct thread *td;
7162	} */ *ap;
7163{
7164
7165	return (EOPNOTSUPP);
7166}
7167
7168struct vop_vector zfs_vnodeops;
7169struct vop_vector zfs_fifoops;
7170struct vop_vector zfs_shareops;
7171
7172struct vop_vector zfs_vnodeops = {
7173	.vop_default =		&default_vnodeops,
7174	.vop_inactive =		zfs_freebsd_inactive,
7175	.vop_reclaim =		zfs_freebsd_reclaim,
7176	.vop_access =		zfs_freebsd_access,
7177#ifdef FREEBSD_NAMECACHE
7178	.vop_lookup =		vfs_cache_lookup,
7179	.vop_cachedlookup =	zfs_freebsd_lookup,
7180#else
7181	.vop_lookup =		zfs_freebsd_lookup,
7182#endif
7183	.vop_getattr =		zfs_freebsd_getattr,
7184	.vop_setattr =		zfs_freebsd_setattr,
7185	.vop_create =		zfs_freebsd_create,
7186	.vop_mknod =		zfs_freebsd_create,
7187	.vop_mkdir =		zfs_freebsd_mkdir,
7188	.vop_readdir =		zfs_freebsd_readdir,
7189	.vop_fsync =		zfs_freebsd_fsync,
7190	.vop_open =		zfs_freebsd_open,
7191	.vop_close =		zfs_freebsd_close,
7192	.vop_rmdir =		zfs_freebsd_rmdir,
7193	.vop_ioctl =		zfs_freebsd_ioctl,
7194	.vop_link =		zfs_freebsd_link,
7195	.vop_symlink =		zfs_freebsd_symlink,
7196	.vop_readlink =		zfs_freebsd_readlink,
7197	.vop_read =		zfs_freebsd_read,
7198	.vop_write =		zfs_freebsd_write,
7199	.vop_remove =		zfs_freebsd_remove,
7200	.vop_rename =		zfs_freebsd_rename,
7201	.vop_pathconf =		zfs_freebsd_pathconf,
7202	.vop_bmap =		zfs_freebsd_bmap,
7203	.vop_fid =		zfs_freebsd_fid,
7204	.vop_getextattr =	zfs_getextattr,
7205	.vop_deleteextattr =	zfs_deleteextattr,
7206	.vop_setextattr =	zfs_setextattr,
7207	.vop_listextattr =	zfs_listextattr,
7208	.vop_getacl =		zfs_freebsd_getacl,
7209	.vop_setacl =		zfs_freebsd_setacl,
7210	.vop_aclcheck =		zfs_freebsd_aclcheck,
7211	.vop_getpages =		zfs_freebsd_getpages,
7212	.vop_putpages =		zfs_freebsd_putpages,
7213};
7214
7215struct vop_vector zfs_fifoops = {
7216	.vop_default =		&fifo_specops,
7217	.vop_fsync =		zfs_freebsd_fsync,
7218	.vop_access =		zfs_freebsd_access,
7219	.vop_getattr =		zfs_freebsd_getattr,
7220	.vop_inactive =		zfs_freebsd_inactive,
7221	.vop_read =		VOP_PANIC,
7222	.vop_reclaim =		zfs_freebsd_reclaim,
7223	.vop_setattr =		zfs_freebsd_setattr,
7224	.vop_write =		VOP_PANIC,
7225	.vop_pathconf = 	zfs_freebsd_fifo_pathconf,
7226	.vop_fid =		zfs_freebsd_fid,
7227	.vop_getacl =		zfs_freebsd_getacl,
7228	.vop_setacl =		zfs_freebsd_setacl,
7229	.vop_aclcheck =		zfs_freebsd_aclcheck,
7230};
7231
7232/*
7233 * special share hidden files vnode operations template
7234 */
7235struct vop_vector zfs_shareops = {
7236	.vop_default =		&default_vnodeops,
7237	.vop_access =		zfs_freebsd_access,
7238	.vop_inactive =		zfs_freebsd_inactive,
7239	.vop_reclaim =		zfs_freebsd_reclaim,
7240	.vop_fid =		zfs_freebsd_fid,
7241	.vop_pathconf =		zfs_freebsd_pathconf,
7242};
7243