zfs_vnops.c revision 297083
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24 * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
25 */
26
27/* Portions Copyright 2007 Jeremy Teo */
28/* Portions Copyright 2010 Robert Milkowski */
29
30#include <sys/types.h>
31#include <sys/param.h>
32#include <sys/time.h>
33#include <sys/systm.h>
34#include <sys/sysmacros.h>
35#include <sys/resource.h>
36#include <sys/vfs.h>
37#include <sys/vm.h>
38#include <sys/vnode.h>
39#include <sys/file.h>
40#include <sys/stat.h>
41#include <sys/kmem.h>
42#include <sys/taskq.h>
43#include <sys/uio.h>
44#include <sys/atomic.h>
45#include <sys/namei.h>
46#include <sys/mman.h>
47#include <sys/cmn_err.h>
48#include <sys/errno.h>
49#include <sys/unistd.h>
50#include <sys/zfs_dir.h>
51#include <sys/zfs_ioctl.h>
52#include <sys/fs/zfs.h>
53#include <sys/dmu.h>
54#include <sys/dmu_objset.h>
55#include <sys/spa.h>
56#include <sys/txg.h>
57#include <sys/dbuf.h>
58#include <sys/zap.h>
59#include <sys/sa.h>
60#include <sys/dirent.h>
61#include <sys/policy.h>
62#include <sys/sunddi.h>
63#include <sys/filio.h>
64#include <sys/sid.h>
65#include <sys/zfs_ctldir.h>
66#include <sys/zfs_fuid.h>
67#include <sys/zfs_sa.h>
68#include <sys/dnlc.h>
69#include <sys/zfs_rlock.h>
70#include <sys/extdirent.h>
71#include <sys/kidmap.h>
72#include <sys/bio.h>
73#include <sys/buf.h>
74#include <sys/sched.h>
75#include <sys/acl.h>
76#include <vm/vm_param.h>
77#include <vm/vm_pageout.h>
78
79/*
80 * Programming rules.
81 *
82 * Each vnode op performs some logical unit of work.  To do this, the ZPL must
83 * properly lock its in-core state, create a DMU transaction, do the work,
84 * record this work in the intent log (ZIL), commit the DMU transaction,
85 * and wait for the intent log to commit if it is a synchronous operation.
86 * Moreover, the vnode ops must work in both normal and log replay context.
87 * The ordering of events is important to avoid deadlocks and references
88 * to freed memory.  The example below illustrates the following Big Rules:
89 *
90 *  (1)	A check must be made in each zfs thread for a mounted file system.
91 *	This is done avoiding races using ZFS_ENTER(zfsvfs).
92 *	A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
93 *	must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
94 *	can return EIO from the calling function.
95 *
96 *  (2)	VN_RELE() should always be the last thing except for zil_commit()
97 *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
98 *	First, if it's the last reference, the vnode/znode
99 *	can be freed, so the zp may point to freed memory.  Second, the last
100 *	reference will call zfs_zinactive(), which may induce a lot of work --
101 *	pushing cached pages (which acquires range locks) and syncing out
102 *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
103 *	which could deadlock the system if you were already holding one.
104 *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
105 *
106 *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
107 *	as they can span dmu_tx_assign() calls.
108 *
109 *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
110 *      dmu_tx_assign().  This is critical because we don't want to block
111 *      while holding locks.
112 *
113 *	If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT.  This
114 *	reduces lock contention and CPU usage when we must wait (note that if
115 *	throughput is constrained by the storage, nearly every transaction
116 *	must wait).
117 *
118 *      Note, in particular, that if a lock is sometimes acquired before
119 *      the tx assigns, and sometimes after (e.g. z_lock), then failing
120 *      to use a non-blocking assign can deadlock the system.  The scenario:
121 *
122 *	Thread A has grabbed a lock before calling dmu_tx_assign().
123 *	Thread B is in an already-assigned tx, and blocks for this lock.
124 *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
125 *	forever, because the previous txg can't quiesce until B's tx commits.
126 *
127 *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
128 *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
129 *	calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
130 *	to indicate that this operation has already called dmu_tx_wait().
131 *	This will ensure that we don't retry forever, waiting a short bit
132 *	each time.
133 *
134 *  (5)	If the operation succeeded, generate the intent log entry for it
135 *	before dropping locks.  This ensures that the ordering of events
136 *	in the intent log matches the order in which they actually occurred.
137 *	During ZIL replay the zfs_log_* functions will update the sequence
138 *	number to indicate the zil transaction has replayed.
139 *
140 *  (6)	At the end of each vnode op, the DMU tx must always commit,
141 *	regardless of whether there were any errors.
142 *
143 *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
144 *	to ensure that synchronous semantics are provided when necessary.
145 *
146 * In general, this is how things should be ordered in each vnode op:
147 *
148 *	ZFS_ENTER(zfsvfs);		// exit if unmounted
149 * top:
150 *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
151 *	rw_enter(...);			// grab any other locks you need
152 *	tx = dmu_tx_create(...);	// get DMU tx
153 *	dmu_tx_hold_*();		// hold each object you might modify
154 *	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
155 *	if (error) {
156 *		rw_exit(...);		// drop locks
157 *		zfs_dirent_unlock(dl);	// unlock directory entry
158 *		VN_RELE(...);		// release held vnodes
159 *		if (error == ERESTART) {
160 *			waited = B_TRUE;
161 *			dmu_tx_wait(tx);
162 *			dmu_tx_abort(tx);
163 *			goto top;
164 *		}
165 *		dmu_tx_abort(tx);	// abort DMU tx
166 *		ZFS_EXIT(zfsvfs);	// finished in zfs
167 *		return (error);		// really out of space
168 *	}
169 *	error = do_real_work();		// do whatever this VOP does
170 *	if (error == 0)
171 *		zfs_log_*(...);		// on success, make ZIL entry
172 *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
173 *	rw_exit(...);			// drop locks
174 *	zfs_dirent_unlock(dl);		// unlock directory entry
175 *	VN_RELE(...);			// release held vnodes
176 *	zil_commit(zilog, foid);	// synchronous when necessary
177 *	ZFS_EXIT(zfsvfs);		// finished in zfs
178 *	return (error);			// done, report error
179 */
180
181/* ARGSUSED */
182static int
183zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
184{
185	znode_t	*zp = VTOZ(*vpp);
186	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
187
188	ZFS_ENTER(zfsvfs);
189	ZFS_VERIFY_ZP(zp);
190
191	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
192	    ((flag & FAPPEND) == 0)) {
193		ZFS_EXIT(zfsvfs);
194		return (SET_ERROR(EPERM));
195	}
196
197	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
198	    ZTOV(zp)->v_type == VREG &&
199	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
200		if (fs_vscan(*vpp, cr, 0) != 0) {
201			ZFS_EXIT(zfsvfs);
202			return (SET_ERROR(EACCES));
203		}
204	}
205
206	/* Keep a count of the synchronous opens in the znode */
207	if (flag & (FSYNC | FDSYNC))
208		atomic_inc_32(&zp->z_sync_cnt);
209
210	ZFS_EXIT(zfsvfs);
211	return (0);
212}
213
214/* ARGSUSED */
215static int
216zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
217    caller_context_t *ct)
218{
219	znode_t	*zp = VTOZ(vp);
220	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
221
222	/*
223	 * Clean up any locks held by this process on the vp.
224	 */
225	cleanlocks(vp, ddi_get_pid(), 0);
226	cleanshares(vp, ddi_get_pid());
227
228	ZFS_ENTER(zfsvfs);
229	ZFS_VERIFY_ZP(zp);
230
231	/* Decrement the synchronous opens in the znode */
232	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
233		atomic_dec_32(&zp->z_sync_cnt);
234
235	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
236	    ZTOV(zp)->v_type == VREG &&
237	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
238		VERIFY(fs_vscan(vp, cr, 1) == 0);
239
240	ZFS_EXIT(zfsvfs);
241	return (0);
242}
243
244/*
245 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
246 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
247 */
248static int
249zfs_holey(vnode_t *vp, u_long cmd, offset_t *off)
250{
251	znode_t	*zp = VTOZ(vp);
252	uint64_t noff = (uint64_t)*off; /* new offset */
253	uint64_t file_sz;
254	int error;
255	boolean_t hole;
256
257	file_sz = zp->z_size;
258	if (noff >= file_sz)  {
259		return (SET_ERROR(ENXIO));
260	}
261
262	if (cmd == _FIO_SEEK_HOLE)
263		hole = B_TRUE;
264	else
265		hole = B_FALSE;
266
267	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
268
269	if (error == ESRCH)
270		return (SET_ERROR(ENXIO));
271
272	/*
273	 * We could find a hole that begins after the logical end-of-file,
274	 * because dmu_offset_next() only works on whole blocks.  If the
275	 * EOF falls mid-block, then indicate that the "virtual hole"
276	 * at the end of the file begins at the logical EOF, rather than
277	 * at the end of the last block.
278	 */
279	if (noff > file_sz) {
280		ASSERT(hole);
281		noff = file_sz;
282	}
283
284	if (noff < *off)
285		return (error);
286	*off = noff;
287	return (error);
288}
289
290/* ARGSUSED */
291static int
292zfs_ioctl(vnode_t *vp, u_long com, intptr_t data, int flag, cred_t *cred,
293    int *rvalp, caller_context_t *ct)
294{
295	offset_t off;
296	offset_t ndata;
297	dmu_object_info_t doi;
298	int error;
299	zfsvfs_t *zfsvfs;
300	znode_t *zp;
301
302	switch (com) {
303	case _FIOFFS:
304	{
305		return (0);
306
307		/*
308		 * The following two ioctls are used by bfu.  Faking out,
309		 * necessary to avoid bfu errors.
310		 */
311	}
312	case _FIOGDIO:
313	case _FIOSDIO:
314	{
315		return (0);
316	}
317
318	case _FIO_SEEK_DATA:
319	case _FIO_SEEK_HOLE:
320	{
321#ifdef illumos
322		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
323			return (SET_ERROR(EFAULT));
324#else
325		off = *(offset_t *)data;
326#endif
327		zp = VTOZ(vp);
328		zfsvfs = zp->z_zfsvfs;
329		ZFS_ENTER(zfsvfs);
330		ZFS_VERIFY_ZP(zp);
331
332		/* offset parameter is in/out */
333		error = zfs_holey(vp, com, &off);
334		ZFS_EXIT(zfsvfs);
335		if (error)
336			return (error);
337#ifdef illumos
338		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
339			return (SET_ERROR(EFAULT));
340#else
341		*(offset_t *)data = off;
342#endif
343		return (0);
344	}
345#ifdef illumos
346	case _FIO_COUNT_FILLED:
347	{
348		/*
349		 * _FIO_COUNT_FILLED adds a new ioctl command which
350		 * exposes the number of filled blocks in a
351		 * ZFS object.
352		 */
353		zp = VTOZ(vp);
354		zfsvfs = zp->z_zfsvfs;
355		ZFS_ENTER(zfsvfs);
356		ZFS_VERIFY_ZP(zp);
357
358		/*
359		 * Wait for all dirty blocks for this object
360		 * to get synced out to disk, and the DMU info
361		 * updated.
362		 */
363		error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
364		if (error) {
365			ZFS_EXIT(zfsvfs);
366			return (error);
367		}
368
369		/*
370		 * Retrieve fill count from DMU object.
371		 */
372		error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
373		if (error) {
374			ZFS_EXIT(zfsvfs);
375			return (error);
376		}
377
378		ndata = doi.doi_fill_count;
379
380		ZFS_EXIT(zfsvfs);
381		if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
382			return (SET_ERROR(EFAULT));
383		return (0);
384	}
385#endif
386	}
387	return (SET_ERROR(ENOTTY));
388}
389
390static vm_page_t
391page_busy(vnode_t *vp, int64_t start, int64_t off, int64_t nbytes)
392{
393	vm_object_t obj;
394	vm_page_t pp;
395	int64_t end;
396
397	/*
398	 * At present vm_page_clear_dirty extends the cleared range to DEV_BSIZE
399	 * aligned boundaries, if the range is not aligned.  As a result a
400	 * DEV_BSIZE subrange with partially dirty data may get marked as clean.
401	 * It may happen that all DEV_BSIZE subranges are marked clean and thus
402	 * the whole page would be considred clean despite have some dirty data.
403	 * For this reason we should shrink the range to DEV_BSIZE aligned
404	 * boundaries before calling vm_page_clear_dirty.
405	 */
406	end = rounddown2(off + nbytes, DEV_BSIZE);
407	off = roundup2(off, DEV_BSIZE);
408	nbytes = end - off;
409
410	obj = vp->v_object;
411	zfs_vmobject_assert_wlocked(obj);
412
413	for (;;) {
414		if ((pp = vm_page_lookup(obj, OFF_TO_IDX(start))) != NULL &&
415		    pp->valid) {
416			if (vm_page_xbusied(pp)) {
417				/*
418				 * Reference the page before unlocking and
419				 * sleeping so that the page daemon is less
420				 * likely to reclaim it.
421				 */
422				vm_page_reference(pp);
423				vm_page_lock(pp);
424				zfs_vmobject_wunlock(obj);
425				vm_page_busy_sleep(pp, "zfsmwb");
426				zfs_vmobject_wlock(obj);
427				continue;
428			}
429			vm_page_sbusy(pp);
430		} else if (pp == NULL) {
431			pp = vm_page_alloc(obj, OFF_TO_IDX(start),
432			    VM_ALLOC_SYSTEM | VM_ALLOC_IFCACHED |
433			    VM_ALLOC_SBUSY);
434		} else {
435			ASSERT(pp != NULL && !pp->valid);
436			pp = NULL;
437		}
438
439		if (pp != NULL) {
440			ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
441			vm_object_pip_add(obj, 1);
442			pmap_remove_write(pp);
443			if (nbytes != 0)
444				vm_page_clear_dirty(pp, off, nbytes);
445		}
446		break;
447	}
448	return (pp);
449}
450
451static void
452page_unbusy(vm_page_t pp)
453{
454
455	vm_page_sunbusy(pp);
456	vm_object_pip_subtract(pp->object, 1);
457}
458
459static vm_page_t
460page_hold(vnode_t *vp, int64_t start)
461{
462	vm_object_t obj;
463	vm_page_t pp;
464
465	obj = vp->v_object;
466	zfs_vmobject_assert_wlocked(obj);
467
468	for (;;) {
469		if ((pp = vm_page_lookup(obj, OFF_TO_IDX(start))) != NULL &&
470		    pp->valid) {
471			if (vm_page_xbusied(pp)) {
472				/*
473				 * Reference the page before unlocking and
474				 * sleeping so that the page daemon is less
475				 * likely to reclaim it.
476				 */
477				vm_page_reference(pp);
478				vm_page_lock(pp);
479				zfs_vmobject_wunlock(obj);
480				vm_page_busy_sleep(pp, "zfsmwb");
481				zfs_vmobject_wlock(obj);
482				continue;
483			}
484
485			ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
486			vm_page_lock(pp);
487			vm_page_hold(pp);
488			vm_page_unlock(pp);
489
490		} else
491			pp = NULL;
492		break;
493	}
494	return (pp);
495}
496
497static void
498page_unhold(vm_page_t pp)
499{
500
501	vm_page_lock(pp);
502	vm_page_unhold(pp);
503	vm_page_unlock(pp);
504}
505
506/*
507 * When a file is memory mapped, we must keep the IO data synchronized
508 * between the DMU cache and the memory mapped pages.  What this means:
509 *
510 * On Write:	If we find a memory mapped page, we write to *both*
511 *		the page and the dmu buffer.
512 */
513static void
514update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid,
515    int segflg, dmu_tx_t *tx)
516{
517	vm_object_t obj;
518	struct sf_buf *sf;
519	caddr_t va;
520	int off;
521
522	ASSERT(segflg != UIO_NOCOPY);
523	ASSERT(vp->v_mount != NULL);
524	obj = vp->v_object;
525	ASSERT(obj != NULL);
526
527	off = start & PAGEOFFSET;
528	zfs_vmobject_wlock(obj);
529	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
530		vm_page_t pp;
531		int nbytes = imin(PAGESIZE - off, len);
532
533		if ((pp = page_busy(vp, start, off, nbytes)) != NULL) {
534			zfs_vmobject_wunlock(obj);
535
536			va = zfs_map_page(pp, &sf);
537			(void) dmu_read(os, oid, start+off, nbytes,
538			    va+off, DMU_READ_PREFETCH);;
539			zfs_unmap_page(sf);
540
541			zfs_vmobject_wlock(obj);
542			page_unbusy(pp);
543		}
544		len -= nbytes;
545		off = 0;
546	}
547	vm_object_pip_wakeupn(obj, 0);
548	zfs_vmobject_wunlock(obj);
549}
550
551/*
552 * Read with UIO_NOCOPY flag means that sendfile(2) requests
553 * ZFS to populate a range of page cache pages with data.
554 *
555 * NOTE: this function could be optimized to pre-allocate
556 * all pages in advance, drain exclusive busy on all of them,
557 * map them into contiguous KVA region and populate them
558 * in one single dmu_read() call.
559 */
560static int
561mappedread_sf(vnode_t *vp, int nbytes, uio_t *uio)
562{
563	znode_t *zp = VTOZ(vp);
564	objset_t *os = zp->z_zfsvfs->z_os;
565	struct sf_buf *sf;
566	vm_object_t obj;
567	vm_page_t pp;
568	int64_t start;
569	caddr_t va;
570	int len = nbytes;
571	int off;
572	int error = 0;
573
574	ASSERT(uio->uio_segflg == UIO_NOCOPY);
575	ASSERT(vp->v_mount != NULL);
576	obj = vp->v_object;
577	ASSERT(obj != NULL);
578	ASSERT((uio->uio_loffset & PAGEOFFSET) == 0);
579
580	zfs_vmobject_wlock(obj);
581	for (start = uio->uio_loffset; len > 0; start += PAGESIZE) {
582		int bytes = MIN(PAGESIZE, len);
583
584		pp = vm_page_grab(obj, OFF_TO_IDX(start), VM_ALLOC_SBUSY |
585		    VM_ALLOC_NORMAL | VM_ALLOC_IGN_SBUSY);
586		if (pp->valid == 0) {
587			zfs_vmobject_wunlock(obj);
588			va = zfs_map_page(pp, &sf);
589			error = dmu_read(os, zp->z_id, start, bytes, va,
590			    DMU_READ_PREFETCH);
591			if (bytes != PAGESIZE && error == 0)
592				bzero(va + bytes, PAGESIZE - bytes);
593			zfs_unmap_page(sf);
594			zfs_vmobject_wlock(obj);
595			vm_page_sunbusy(pp);
596			vm_page_lock(pp);
597			if (error) {
598				if (pp->wire_count == 0 && pp->valid == 0 &&
599				    !vm_page_busied(pp))
600					vm_page_free(pp);
601			} else {
602				pp->valid = VM_PAGE_BITS_ALL;
603				vm_page_activate(pp);
604			}
605			vm_page_unlock(pp);
606		} else {
607			ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
608			vm_page_sunbusy(pp);
609		}
610		if (error)
611			break;
612		uio->uio_resid -= bytes;
613		uio->uio_offset += bytes;
614		len -= bytes;
615	}
616	zfs_vmobject_wunlock(obj);
617	return (error);
618}
619
620/*
621 * When a file is memory mapped, we must keep the IO data synchronized
622 * between the DMU cache and the memory mapped pages.  What this means:
623 *
624 * On Read:	We "read" preferentially from memory mapped pages,
625 *		else we default from the dmu buffer.
626 *
627 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
628 *	 the file is memory mapped.
629 */
630static int
631mappedread(vnode_t *vp, int nbytes, uio_t *uio)
632{
633	znode_t *zp = VTOZ(vp);
634	vm_object_t obj;
635	int64_t start;
636	caddr_t va;
637	int len = nbytes;
638	int off;
639	int error = 0;
640
641	ASSERT(vp->v_mount != NULL);
642	obj = vp->v_object;
643	ASSERT(obj != NULL);
644
645	start = uio->uio_loffset;
646	off = start & PAGEOFFSET;
647	zfs_vmobject_wlock(obj);
648	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
649		vm_page_t pp;
650		uint64_t bytes = MIN(PAGESIZE - off, len);
651
652		if (pp = page_hold(vp, start)) {
653			struct sf_buf *sf;
654			caddr_t va;
655
656			zfs_vmobject_wunlock(obj);
657			va = zfs_map_page(pp, &sf);
658			error = uiomove(va + off, bytes, UIO_READ, uio);
659			zfs_unmap_page(sf);
660			zfs_vmobject_wlock(obj);
661			page_unhold(pp);
662		} else {
663			zfs_vmobject_wunlock(obj);
664			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
665			    uio, bytes);
666			zfs_vmobject_wlock(obj);
667		}
668		len -= bytes;
669		off = 0;
670		if (error)
671			break;
672	}
673	zfs_vmobject_wunlock(obj);
674	return (error);
675}
676
677offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
678
679/*
680 * Read bytes from specified file into supplied buffer.
681 *
682 *	IN:	vp	- vnode of file to be read from.
683 *		uio	- structure supplying read location, range info,
684 *			  and return buffer.
685 *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
686 *		cr	- credentials of caller.
687 *		ct	- caller context
688 *
689 *	OUT:	uio	- updated offset and range, buffer filled.
690 *
691 *	RETURN:	0 on success, error code on failure.
692 *
693 * Side Effects:
694 *	vp - atime updated if byte count > 0
695 */
696/* ARGSUSED */
697static int
698zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
699{
700	znode_t		*zp = VTOZ(vp);
701	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
702	ssize_t		n, nbytes;
703	int		error = 0;
704	rl_t		*rl;
705	xuio_t		*xuio = NULL;
706
707	ZFS_ENTER(zfsvfs);
708	ZFS_VERIFY_ZP(zp);
709
710	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
711		ZFS_EXIT(zfsvfs);
712		return (SET_ERROR(EACCES));
713	}
714
715	/*
716	 * Validate file offset
717	 */
718	if (uio->uio_loffset < (offset_t)0) {
719		ZFS_EXIT(zfsvfs);
720		return (SET_ERROR(EINVAL));
721	}
722
723	/*
724	 * Fasttrack empty reads
725	 */
726	if (uio->uio_resid == 0) {
727		ZFS_EXIT(zfsvfs);
728		return (0);
729	}
730
731	/*
732	 * Check for mandatory locks
733	 */
734	if (MANDMODE(zp->z_mode)) {
735		if (error = chklock(vp, FREAD,
736		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
737			ZFS_EXIT(zfsvfs);
738			return (error);
739		}
740	}
741
742	/*
743	 * If we're in FRSYNC mode, sync out this znode before reading it.
744	 */
745	if (zfsvfs->z_log &&
746	    (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
747		zil_commit(zfsvfs->z_log, zp->z_id);
748
749	/*
750	 * Lock the range against changes.
751	 */
752	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
753
754	/*
755	 * If we are reading past end-of-file we can skip
756	 * to the end; but we might still need to set atime.
757	 */
758	if (uio->uio_loffset >= zp->z_size) {
759		error = 0;
760		goto out;
761	}
762
763	ASSERT(uio->uio_loffset < zp->z_size);
764	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
765
766#ifdef illumos
767	if ((uio->uio_extflg == UIO_XUIO) &&
768	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
769		int nblk;
770		int blksz = zp->z_blksz;
771		uint64_t offset = uio->uio_loffset;
772
773		xuio = (xuio_t *)uio;
774		if ((ISP2(blksz))) {
775			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
776			    blksz)) / blksz;
777		} else {
778			ASSERT(offset + n <= blksz);
779			nblk = 1;
780		}
781		(void) dmu_xuio_init(xuio, nblk);
782
783		if (vn_has_cached_data(vp)) {
784			/*
785			 * For simplicity, we always allocate a full buffer
786			 * even if we only expect to read a portion of a block.
787			 */
788			while (--nblk >= 0) {
789				(void) dmu_xuio_add(xuio,
790				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
791				    blksz), 0, blksz);
792			}
793		}
794	}
795#endif	/* illumos */
796
797	while (n > 0) {
798		nbytes = MIN(n, zfs_read_chunk_size -
799		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
800
801#ifdef __FreeBSD__
802		if (uio->uio_segflg == UIO_NOCOPY)
803			error = mappedread_sf(vp, nbytes, uio);
804		else
805#endif /* __FreeBSD__ */
806		if (vn_has_cached_data(vp)) {
807			error = mappedread(vp, nbytes, uio);
808		} else {
809			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
810			    uio, nbytes);
811		}
812		if (error) {
813			/* convert checksum errors into IO errors */
814			if (error == ECKSUM)
815				error = SET_ERROR(EIO);
816			break;
817		}
818
819		n -= nbytes;
820	}
821out:
822	zfs_range_unlock(rl);
823
824	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
825	ZFS_EXIT(zfsvfs);
826	return (error);
827}
828
829/*
830 * Write the bytes to a file.
831 *
832 *	IN:	vp	- vnode of file to be written to.
833 *		uio	- structure supplying write location, range info,
834 *			  and data buffer.
835 *		ioflag	- FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
836 *			  set if in append mode.
837 *		cr	- credentials of caller.
838 *		ct	- caller context (NFS/CIFS fem monitor only)
839 *
840 *	OUT:	uio	- updated offset and range.
841 *
842 *	RETURN:	0 on success, error code on failure.
843 *
844 * Timestamps:
845 *	vp - ctime|mtime updated if byte count > 0
846 */
847
848/* ARGSUSED */
849static int
850zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
851{
852	znode_t		*zp = VTOZ(vp);
853	rlim64_t	limit = MAXOFFSET_T;
854	ssize_t		start_resid = uio->uio_resid;
855	ssize_t		tx_bytes;
856	uint64_t	end_size;
857	dmu_tx_t	*tx;
858	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
859	zilog_t		*zilog;
860	offset_t	woff;
861	ssize_t		n, nbytes;
862	rl_t		*rl;
863	int		max_blksz = zfsvfs->z_max_blksz;
864	int		error = 0;
865	arc_buf_t	*abuf;
866	iovec_t		*aiov = NULL;
867	xuio_t		*xuio = NULL;
868	int		i_iov = 0;
869	int		iovcnt = uio->uio_iovcnt;
870	iovec_t		*iovp = uio->uio_iov;
871	int		write_eof;
872	int		count = 0;
873	sa_bulk_attr_t	bulk[4];
874	uint64_t	mtime[2], ctime[2];
875
876	/*
877	 * Fasttrack empty write
878	 */
879	n = start_resid;
880	if (n == 0)
881		return (0);
882
883	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
884		limit = MAXOFFSET_T;
885
886	ZFS_ENTER(zfsvfs);
887	ZFS_VERIFY_ZP(zp);
888
889	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
890	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
891	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
892	    &zp->z_size, 8);
893	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
894	    &zp->z_pflags, 8);
895
896	/*
897	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
898	 * callers might not be able to detect properly that we are read-only,
899	 * so check it explicitly here.
900	 */
901	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
902		ZFS_EXIT(zfsvfs);
903		return (SET_ERROR(EROFS));
904	}
905
906	/*
907	 * If immutable or not appending then return EPERM
908	 */
909	if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
910	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
911	    (uio->uio_loffset < zp->z_size))) {
912		ZFS_EXIT(zfsvfs);
913		return (SET_ERROR(EPERM));
914	}
915
916	zilog = zfsvfs->z_log;
917
918	/*
919	 * Validate file offset
920	 */
921	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
922	if (woff < 0) {
923		ZFS_EXIT(zfsvfs);
924		return (SET_ERROR(EINVAL));
925	}
926
927	/*
928	 * Check for mandatory locks before calling zfs_range_lock()
929	 * in order to prevent a deadlock with locks set via fcntl().
930	 */
931	if (MANDMODE((mode_t)zp->z_mode) &&
932	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
933		ZFS_EXIT(zfsvfs);
934		return (error);
935	}
936
937#ifdef illumos
938	/*
939	 * Pre-fault the pages to ensure slow (eg NFS) pages
940	 * don't hold up txg.
941	 * Skip this if uio contains loaned arc_buf.
942	 */
943	if ((uio->uio_extflg == UIO_XUIO) &&
944	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
945		xuio = (xuio_t *)uio;
946	else
947		uio_prefaultpages(MIN(n, max_blksz), uio);
948#endif
949
950	/*
951	 * If in append mode, set the io offset pointer to eof.
952	 */
953	if (ioflag & FAPPEND) {
954		/*
955		 * Obtain an appending range lock to guarantee file append
956		 * semantics.  We reset the write offset once we have the lock.
957		 */
958		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
959		woff = rl->r_off;
960		if (rl->r_len == UINT64_MAX) {
961			/*
962			 * We overlocked the file because this write will cause
963			 * the file block size to increase.
964			 * Note that zp_size cannot change with this lock held.
965			 */
966			woff = zp->z_size;
967		}
968		uio->uio_loffset = woff;
969	} else {
970		/*
971		 * Note that if the file block size will change as a result of
972		 * this write, then this range lock will lock the entire file
973		 * so that we can re-write the block safely.
974		 */
975		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
976	}
977
978	if (vn_rlimit_fsize(vp, uio, uio->uio_td)) {
979		zfs_range_unlock(rl);
980		ZFS_EXIT(zfsvfs);
981		return (EFBIG);
982	}
983
984	if (woff >= limit) {
985		zfs_range_unlock(rl);
986		ZFS_EXIT(zfsvfs);
987		return (SET_ERROR(EFBIG));
988	}
989
990	if ((woff + n) > limit || woff > (limit - n))
991		n = limit - woff;
992
993	/* Will this write extend the file length? */
994	write_eof = (woff + n > zp->z_size);
995
996	end_size = MAX(zp->z_size, woff + n);
997
998	/*
999	 * Write the file in reasonable size chunks.  Each chunk is written
1000	 * in a separate transaction; this keeps the intent log records small
1001	 * and allows us to do more fine-grained space accounting.
1002	 */
1003	while (n > 0) {
1004		abuf = NULL;
1005		woff = uio->uio_loffset;
1006		if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
1007		    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
1008			if (abuf != NULL)
1009				dmu_return_arcbuf(abuf);
1010			error = SET_ERROR(EDQUOT);
1011			break;
1012		}
1013
1014		if (xuio && abuf == NULL) {
1015			ASSERT(i_iov < iovcnt);
1016			aiov = &iovp[i_iov];
1017			abuf = dmu_xuio_arcbuf(xuio, i_iov);
1018			dmu_xuio_clear(xuio, i_iov);
1019			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
1020			    iovec_t *, aiov, arc_buf_t *, abuf);
1021			ASSERT((aiov->iov_base == abuf->b_data) ||
1022			    ((char *)aiov->iov_base - (char *)abuf->b_data +
1023			    aiov->iov_len == arc_buf_size(abuf)));
1024			i_iov++;
1025		} else if (abuf == NULL && n >= max_blksz &&
1026		    woff >= zp->z_size &&
1027		    P2PHASE(woff, max_blksz) == 0 &&
1028		    zp->z_blksz == max_blksz) {
1029			/*
1030			 * This write covers a full block.  "Borrow" a buffer
1031			 * from the dmu so that we can fill it before we enter
1032			 * a transaction.  This avoids the possibility of
1033			 * holding up the transaction if the data copy hangs
1034			 * up on a pagefault (e.g., from an NFS server mapping).
1035			 */
1036			size_t cbytes;
1037
1038			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
1039			    max_blksz);
1040			ASSERT(abuf != NULL);
1041			ASSERT(arc_buf_size(abuf) == max_blksz);
1042			if (error = uiocopy(abuf->b_data, max_blksz,
1043			    UIO_WRITE, uio, &cbytes)) {
1044				dmu_return_arcbuf(abuf);
1045				break;
1046			}
1047			ASSERT(cbytes == max_blksz);
1048		}
1049
1050		/*
1051		 * Start a transaction.
1052		 */
1053		tx = dmu_tx_create(zfsvfs->z_os);
1054		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1055		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
1056		zfs_sa_upgrade_txholds(tx, zp);
1057		error = dmu_tx_assign(tx, TXG_WAIT);
1058		if (error) {
1059			dmu_tx_abort(tx);
1060			if (abuf != NULL)
1061				dmu_return_arcbuf(abuf);
1062			break;
1063		}
1064
1065		/*
1066		 * If zfs_range_lock() over-locked we grow the blocksize
1067		 * and then reduce the lock range.  This will only happen
1068		 * on the first iteration since zfs_range_reduce() will
1069		 * shrink down r_len to the appropriate size.
1070		 */
1071		if (rl->r_len == UINT64_MAX) {
1072			uint64_t new_blksz;
1073
1074			if (zp->z_blksz > max_blksz) {
1075				/*
1076				 * File's blocksize is already larger than the
1077				 * "recordsize" property.  Only let it grow to
1078				 * the next power of 2.
1079				 */
1080				ASSERT(!ISP2(zp->z_blksz));
1081				new_blksz = MIN(end_size,
1082				    1 << highbit64(zp->z_blksz));
1083			} else {
1084				new_blksz = MIN(end_size, max_blksz);
1085			}
1086			zfs_grow_blocksize(zp, new_blksz, tx);
1087			zfs_range_reduce(rl, woff, n);
1088		}
1089
1090		/*
1091		 * XXX - should we really limit each write to z_max_blksz?
1092		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
1093		 */
1094		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
1095
1096		if (woff + nbytes > zp->z_size)
1097			vnode_pager_setsize(vp, woff + nbytes);
1098
1099		if (abuf == NULL) {
1100			tx_bytes = uio->uio_resid;
1101			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
1102			    uio, nbytes, tx);
1103			tx_bytes -= uio->uio_resid;
1104		} else {
1105			tx_bytes = nbytes;
1106			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
1107			/*
1108			 * If this is not a full block write, but we are
1109			 * extending the file past EOF and this data starts
1110			 * block-aligned, use assign_arcbuf().  Otherwise,
1111			 * write via dmu_write().
1112			 */
1113			if (tx_bytes < max_blksz && (!write_eof ||
1114			    aiov->iov_base != abuf->b_data)) {
1115				ASSERT(xuio);
1116				dmu_write(zfsvfs->z_os, zp->z_id, woff,
1117				    aiov->iov_len, aiov->iov_base, tx);
1118				dmu_return_arcbuf(abuf);
1119				xuio_stat_wbuf_copied();
1120			} else {
1121				ASSERT(xuio || tx_bytes == max_blksz);
1122				dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
1123				    woff, abuf, tx);
1124			}
1125			ASSERT(tx_bytes <= uio->uio_resid);
1126			uioskip(uio, tx_bytes);
1127		}
1128		if (tx_bytes && vn_has_cached_data(vp)) {
1129			update_pages(vp, woff, tx_bytes, zfsvfs->z_os,
1130			    zp->z_id, uio->uio_segflg, tx);
1131		}
1132
1133		/*
1134		 * If we made no progress, we're done.  If we made even
1135		 * partial progress, update the znode and ZIL accordingly.
1136		 */
1137		if (tx_bytes == 0) {
1138			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
1139			    (void *)&zp->z_size, sizeof (uint64_t), tx);
1140			dmu_tx_commit(tx);
1141			ASSERT(error != 0);
1142			break;
1143		}
1144
1145		/*
1146		 * Clear Set-UID/Set-GID bits on successful write if not
1147		 * privileged and at least one of the excute bits is set.
1148		 *
1149		 * It would be nice to to this after all writes have
1150		 * been done, but that would still expose the ISUID/ISGID
1151		 * to another app after the partial write is committed.
1152		 *
1153		 * Note: we don't call zfs_fuid_map_id() here because
1154		 * user 0 is not an ephemeral uid.
1155		 */
1156		mutex_enter(&zp->z_acl_lock);
1157		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
1158		    (S_IXUSR >> 6))) != 0 &&
1159		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
1160		    secpolicy_vnode_setid_retain(vp, cr,
1161		    (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
1162			uint64_t newmode;
1163			zp->z_mode &= ~(S_ISUID | S_ISGID);
1164			newmode = zp->z_mode;
1165			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
1166			    (void *)&newmode, sizeof (uint64_t), tx);
1167		}
1168		mutex_exit(&zp->z_acl_lock);
1169
1170		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
1171		    B_TRUE);
1172
1173		/*
1174		 * Update the file size (zp_size) if it has changed;
1175		 * account for possible concurrent updates.
1176		 */
1177		while ((end_size = zp->z_size) < uio->uio_loffset) {
1178			(void) atomic_cas_64(&zp->z_size, end_size,
1179			    uio->uio_loffset);
1180			ASSERT(error == 0);
1181		}
1182		/*
1183		 * If we are replaying and eof is non zero then force
1184		 * the file size to the specified eof. Note, there's no
1185		 * concurrency during replay.
1186		 */
1187		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
1188			zp->z_size = zfsvfs->z_replay_eof;
1189
1190		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1191
1192		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
1193		dmu_tx_commit(tx);
1194
1195		if (error != 0)
1196			break;
1197		ASSERT(tx_bytes == nbytes);
1198		n -= nbytes;
1199
1200#ifdef illumos
1201		if (!xuio && n > 0)
1202			uio_prefaultpages(MIN(n, max_blksz), uio);
1203#endif
1204	}
1205
1206	zfs_range_unlock(rl);
1207
1208	/*
1209	 * If we're in replay mode, or we made no progress, return error.
1210	 * Otherwise, it's at least a partial write, so it's successful.
1211	 */
1212	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1213		ZFS_EXIT(zfsvfs);
1214		return (error);
1215	}
1216
1217	if (ioflag & (FSYNC | FDSYNC) ||
1218	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1219		zil_commit(zilog, zp->z_id);
1220
1221	ZFS_EXIT(zfsvfs);
1222	return (0);
1223}
1224
1225void
1226zfs_get_done(zgd_t *zgd, int error)
1227{
1228	znode_t *zp = zgd->zgd_private;
1229	objset_t *os = zp->z_zfsvfs->z_os;
1230
1231	if (zgd->zgd_db)
1232		dmu_buf_rele(zgd->zgd_db, zgd);
1233
1234	zfs_range_unlock(zgd->zgd_rl);
1235
1236	/*
1237	 * Release the vnode asynchronously as we currently have the
1238	 * txg stopped from syncing.
1239	 */
1240	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1241
1242	if (error == 0 && zgd->zgd_bp)
1243		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1244
1245	kmem_free(zgd, sizeof (zgd_t));
1246}
1247
1248#ifdef DEBUG
1249static int zil_fault_io = 0;
1250#endif
1251
1252/*
1253 * Get data to generate a TX_WRITE intent log record.
1254 */
1255int
1256zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1257{
1258	zfsvfs_t *zfsvfs = arg;
1259	objset_t *os = zfsvfs->z_os;
1260	znode_t *zp;
1261	uint64_t object = lr->lr_foid;
1262	uint64_t offset = lr->lr_offset;
1263	uint64_t size = lr->lr_length;
1264	blkptr_t *bp = &lr->lr_blkptr;
1265	dmu_buf_t *db;
1266	zgd_t *zgd;
1267	int error = 0;
1268
1269	ASSERT(zio != NULL);
1270	ASSERT(size != 0);
1271
1272	/*
1273	 * Nothing to do if the file has been removed
1274	 */
1275	if (zfs_zget(zfsvfs, object, &zp) != 0)
1276		return (SET_ERROR(ENOENT));
1277	if (zp->z_unlinked) {
1278		/*
1279		 * Release the vnode asynchronously as we currently have the
1280		 * txg stopped from syncing.
1281		 */
1282		VN_RELE_ASYNC(ZTOV(zp),
1283		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1284		return (SET_ERROR(ENOENT));
1285	}
1286
1287	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1288	zgd->zgd_zilog = zfsvfs->z_log;
1289	zgd->zgd_private = zp;
1290
1291	/*
1292	 * Write records come in two flavors: immediate and indirect.
1293	 * For small writes it's cheaper to store the data with the
1294	 * log record (immediate); for large writes it's cheaper to
1295	 * sync the data and get a pointer to it (indirect) so that
1296	 * we don't have to write the data twice.
1297	 */
1298	if (buf != NULL) { /* immediate write */
1299		zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1300		/* test for truncation needs to be done while range locked */
1301		if (offset >= zp->z_size) {
1302			error = SET_ERROR(ENOENT);
1303		} else {
1304			error = dmu_read(os, object, offset, size, buf,
1305			    DMU_READ_NO_PREFETCH);
1306		}
1307		ASSERT(error == 0 || error == ENOENT);
1308	} else { /* indirect write */
1309		/*
1310		 * Have to lock the whole block to ensure when it's
1311		 * written out and it's checksum is being calculated
1312		 * that no one can change the data. We need to re-check
1313		 * blocksize after we get the lock in case it's changed!
1314		 */
1315		for (;;) {
1316			uint64_t blkoff;
1317			size = zp->z_blksz;
1318			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1319			offset -= blkoff;
1320			zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1321			    RL_READER);
1322			if (zp->z_blksz == size)
1323				break;
1324			offset += blkoff;
1325			zfs_range_unlock(zgd->zgd_rl);
1326		}
1327		/* test for truncation needs to be done while range locked */
1328		if (lr->lr_offset >= zp->z_size)
1329			error = SET_ERROR(ENOENT);
1330#ifdef DEBUG
1331		if (zil_fault_io) {
1332			error = SET_ERROR(EIO);
1333			zil_fault_io = 0;
1334		}
1335#endif
1336		if (error == 0)
1337			error = dmu_buf_hold(os, object, offset, zgd, &db,
1338			    DMU_READ_NO_PREFETCH);
1339
1340		if (error == 0) {
1341			blkptr_t *obp = dmu_buf_get_blkptr(db);
1342			if (obp) {
1343				ASSERT(BP_IS_HOLE(bp));
1344				*bp = *obp;
1345			}
1346
1347			zgd->zgd_db = db;
1348			zgd->zgd_bp = bp;
1349
1350			ASSERT(db->db_offset == offset);
1351			ASSERT(db->db_size == size);
1352
1353			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1354			    zfs_get_done, zgd);
1355			ASSERT(error || lr->lr_length <= zp->z_blksz);
1356
1357			/*
1358			 * On success, we need to wait for the write I/O
1359			 * initiated by dmu_sync() to complete before we can
1360			 * release this dbuf.  We will finish everything up
1361			 * in the zfs_get_done() callback.
1362			 */
1363			if (error == 0)
1364				return (0);
1365
1366			if (error == EALREADY) {
1367				lr->lr_common.lrc_txtype = TX_WRITE2;
1368				error = 0;
1369			}
1370		}
1371	}
1372
1373	zfs_get_done(zgd, error);
1374
1375	return (error);
1376}
1377
1378/*ARGSUSED*/
1379static int
1380zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1381    caller_context_t *ct)
1382{
1383	znode_t *zp = VTOZ(vp);
1384	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1385	int error;
1386
1387	ZFS_ENTER(zfsvfs);
1388	ZFS_VERIFY_ZP(zp);
1389
1390	if (flag & V_ACE_MASK)
1391		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1392	else
1393		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1394
1395	ZFS_EXIT(zfsvfs);
1396	return (error);
1397}
1398
1399/*
1400 * If vnode is for a device return a specfs vnode instead.
1401 */
1402static int
1403specvp_check(vnode_t **vpp, cred_t *cr)
1404{
1405	int error = 0;
1406
1407	if (IS_DEVVP(*vpp)) {
1408		struct vnode *svp;
1409
1410		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1411		VN_RELE(*vpp);
1412		if (svp == NULL)
1413			error = SET_ERROR(ENOSYS);
1414		*vpp = svp;
1415	}
1416	return (error);
1417}
1418
1419
1420/*
1421 * Lookup an entry in a directory, or an extended attribute directory.
1422 * If it exists, return a held vnode reference for it.
1423 *
1424 *	IN:	dvp	- vnode of directory to search.
1425 *		nm	- name of entry to lookup.
1426 *		pnp	- full pathname to lookup [UNUSED].
1427 *		flags	- LOOKUP_XATTR set if looking for an attribute.
1428 *		rdir	- root directory vnode [UNUSED].
1429 *		cr	- credentials of caller.
1430 *		ct	- caller context
1431 *		direntflags - directory lookup flags
1432 *		realpnp - returned pathname.
1433 *
1434 *	OUT:	vpp	- vnode of located entry, NULL if not found.
1435 *
1436 *	RETURN:	0 on success, error code on failure.
1437 *
1438 * Timestamps:
1439 *	NA
1440 */
1441/* ARGSUSED */
1442static int
1443zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct componentname *cnp,
1444    int nameiop, cred_t *cr, kthread_t *td, int flags)
1445{
1446	znode_t *zdp = VTOZ(dvp);
1447	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1448	int	error = 0;
1449	int *direntflags = NULL;
1450	void *realpnp = NULL;
1451
1452	/* fast path */
1453	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1454
1455		if (dvp->v_type != VDIR) {
1456			return (SET_ERROR(ENOTDIR));
1457		} else if (zdp->z_sa_hdl == NULL) {
1458			return (SET_ERROR(EIO));
1459		}
1460
1461		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1462			error = zfs_fastaccesschk_execute(zdp, cr);
1463			if (!error) {
1464				*vpp = dvp;
1465				VN_HOLD(*vpp);
1466				return (0);
1467			}
1468			return (error);
1469		} else {
1470			vnode_t *tvp = dnlc_lookup(dvp, nm);
1471
1472			if (tvp) {
1473				error = zfs_fastaccesschk_execute(zdp, cr);
1474				if (error) {
1475					VN_RELE(tvp);
1476					return (error);
1477				}
1478				if (tvp == DNLC_NO_VNODE) {
1479					VN_RELE(tvp);
1480					return (SET_ERROR(ENOENT));
1481				} else {
1482					*vpp = tvp;
1483					return (specvp_check(vpp, cr));
1484				}
1485			}
1486		}
1487	}
1488
1489	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1490
1491	ZFS_ENTER(zfsvfs);
1492	ZFS_VERIFY_ZP(zdp);
1493
1494	*vpp = NULL;
1495
1496	if (flags & LOOKUP_XATTR) {
1497#ifdef TODO
1498		/*
1499		 * If the xattr property is off, refuse the lookup request.
1500		 */
1501		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1502			ZFS_EXIT(zfsvfs);
1503			return (SET_ERROR(EINVAL));
1504		}
1505#endif
1506
1507		/*
1508		 * We don't allow recursive attributes..
1509		 * Maybe someday we will.
1510		 */
1511		if (zdp->z_pflags & ZFS_XATTR) {
1512			ZFS_EXIT(zfsvfs);
1513			return (SET_ERROR(EINVAL));
1514		}
1515
1516		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1517			ZFS_EXIT(zfsvfs);
1518			return (error);
1519		}
1520
1521		/*
1522		 * Do we have permission to get into attribute directory?
1523		 */
1524
1525		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1526		    B_FALSE, cr)) {
1527			VN_RELE(*vpp);
1528			*vpp = NULL;
1529		}
1530
1531		ZFS_EXIT(zfsvfs);
1532		return (error);
1533	}
1534
1535	if (dvp->v_type != VDIR) {
1536		ZFS_EXIT(zfsvfs);
1537		return (SET_ERROR(ENOTDIR));
1538	}
1539
1540	/*
1541	 * Check accessibility of directory.
1542	 */
1543
1544	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1545		ZFS_EXIT(zfsvfs);
1546		return (error);
1547	}
1548
1549	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1550	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1551		ZFS_EXIT(zfsvfs);
1552		return (SET_ERROR(EILSEQ));
1553	}
1554
1555	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1556	if (error == 0)
1557		error = specvp_check(vpp, cr);
1558
1559	/* Translate errors and add SAVENAME when needed. */
1560	if (cnp->cn_flags & ISLASTCN) {
1561		switch (nameiop) {
1562		case CREATE:
1563		case RENAME:
1564			if (error == ENOENT) {
1565				error = EJUSTRETURN;
1566				cnp->cn_flags |= SAVENAME;
1567				break;
1568			}
1569			/* FALLTHROUGH */
1570		case DELETE:
1571			if (error == 0)
1572				cnp->cn_flags |= SAVENAME;
1573			break;
1574		}
1575	}
1576	if (error == 0 && (nm[0] != '.' || nm[1] != '\0')) {
1577		int ltype = 0;
1578
1579		if (cnp->cn_flags & ISDOTDOT) {
1580			ltype = VOP_ISLOCKED(dvp);
1581			VOP_UNLOCK(dvp, 0);
1582		}
1583		ZFS_EXIT(zfsvfs);
1584		error = vn_lock(*vpp, cnp->cn_lkflags);
1585		if (cnp->cn_flags & ISDOTDOT)
1586			vn_lock(dvp, ltype | LK_RETRY);
1587		if (error != 0) {
1588			VN_RELE(*vpp);
1589			*vpp = NULL;
1590			return (error);
1591		}
1592	} else {
1593		ZFS_EXIT(zfsvfs);
1594	}
1595
1596#ifdef FREEBSD_NAMECACHE
1597	/*
1598	 * Insert name into cache (as non-existent) if appropriate.
1599	 */
1600	if (error == ENOENT && (cnp->cn_flags & MAKEENTRY) != 0)
1601		cache_enter(dvp, *vpp, cnp);
1602	/*
1603	 * Insert name into cache if appropriate.
1604	 */
1605	if (error == 0 && (cnp->cn_flags & MAKEENTRY)) {
1606		if (!(cnp->cn_flags & ISLASTCN) ||
1607		    (nameiop != DELETE && nameiop != RENAME)) {
1608			cache_enter(dvp, *vpp, cnp);
1609		}
1610	}
1611#endif
1612
1613	return (error);
1614}
1615
1616/*
1617 * Attempt to create a new entry in a directory.  If the entry
1618 * already exists, truncate the file if permissible, else return
1619 * an error.  Return the vp of the created or trunc'd file.
1620 *
1621 *	IN:	dvp	- vnode of directory to put new file entry in.
1622 *		name	- name of new file entry.
1623 *		vap	- attributes of new file.
1624 *		excl	- flag indicating exclusive or non-exclusive mode.
1625 *		mode	- mode to open file with.
1626 *		cr	- credentials of caller.
1627 *		flag	- large file flag [UNUSED].
1628 *		ct	- caller context
1629 *		vsecp	- ACL to be set
1630 *
1631 *	OUT:	vpp	- vnode of created or trunc'd entry.
1632 *
1633 *	RETURN:	0 on success, error code on failure.
1634 *
1635 * Timestamps:
1636 *	dvp - ctime|mtime updated if new entry created
1637 *	 vp - ctime|mtime always, atime if new
1638 */
1639
1640/* ARGSUSED */
1641static int
1642zfs_create(vnode_t *dvp, char *name, vattr_t *vap, int excl, int mode,
1643    vnode_t **vpp, cred_t *cr, kthread_t *td)
1644{
1645	znode_t		*zp, *dzp = VTOZ(dvp);
1646	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1647	zilog_t		*zilog;
1648	objset_t	*os;
1649	zfs_dirlock_t	*dl;
1650	dmu_tx_t	*tx;
1651	int		error;
1652	ksid_t		*ksid;
1653	uid_t		uid;
1654	gid_t		gid = crgetgid(cr);
1655	zfs_acl_ids_t   acl_ids;
1656	boolean_t	fuid_dirtied;
1657	boolean_t	have_acl = B_FALSE;
1658	boolean_t	waited = B_FALSE;
1659	void		*vsecp = NULL;
1660	int		flag = 0;
1661
1662	/*
1663	 * If we have an ephemeral id, ACL, or XVATTR then
1664	 * make sure file system is at proper version
1665	 */
1666
1667	ksid = crgetsid(cr, KSID_OWNER);
1668	if (ksid)
1669		uid = ksid_getid(ksid);
1670	else
1671		uid = crgetuid(cr);
1672
1673	if (zfsvfs->z_use_fuids == B_FALSE &&
1674	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1675	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1676		return (SET_ERROR(EINVAL));
1677
1678	ZFS_ENTER(zfsvfs);
1679	ZFS_VERIFY_ZP(dzp);
1680	os = zfsvfs->z_os;
1681	zilog = zfsvfs->z_log;
1682
1683	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1684	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1685		ZFS_EXIT(zfsvfs);
1686		return (SET_ERROR(EILSEQ));
1687	}
1688
1689	if (vap->va_mask & AT_XVATTR) {
1690		if ((error = secpolicy_xvattr(dvp, (xvattr_t *)vap,
1691		    crgetuid(cr), cr, vap->va_type)) != 0) {
1692			ZFS_EXIT(zfsvfs);
1693			return (error);
1694		}
1695	}
1696
1697	getnewvnode_reserve(1);
1698
1699top:
1700	*vpp = NULL;
1701
1702	if ((vap->va_mode & S_ISVTX) && secpolicy_vnode_stky_modify(cr))
1703		vap->va_mode &= ~S_ISVTX;
1704
1705	if (*name == '\0') {
1706		/*
1707		 * Null component name refers to the directory itself.
1708		 */
1709		VN_HOLD(dvp);
1710		zp = dzp;
1711		dl = NULL;
1712		error = 0;
1713	} else {
1714		/* possible VN_HOLD(zp) */
1715		int zflg = 0;
1716
1717		if (flag & FIGNORECASE)
1718			zflg |= ZCILOOK;
1719
1720		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1721		    NULL, NULL);
1722		if (error) {
1723			if (have_acl)
1724				zfs_acl_ids_free(&acl_ids);
1725			if (strcmp(name, "..") == 0)
1726				error = SET_ERROR(EISDIR);
1727			getnewvnode_drop_reserve();
1728			ZFS_EXIT(zfsvfs);
1729			return (error);
1730		}
1731	}
1732
1733	if (zp == NULL) {
1734		uint64_t txtype;
1735
1736		/*
1737		 * Create a new file object and update the directory
1738		 * to reference it.
1739		 */
1740		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1741			if (have_acl)
1742				zfs_acl_ids_free(&acl_ids);
1743			goto out;
1744		}
1745
1746		/*
1747		 * We only support the creation of regular files in
1748		 * extended attribute directories.
1749		 */
1750
1751		if ((dzp->z_pflags & ZFS_XATTR) &&
1752		    (vap->va_type != VREG)) {
1753			if (have_acl)
1754				zfs_acl_ids_free(&acl_ids);
1755			error = SET_ERROR(EINVAL);
1756			goto out;
1757		}
1758
1759		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1760		    cr, vsecp, &acl_ids)) != 0)
1761			goto out;
1762		have_acl = B_TRUE;
1763
1764		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1765			zfs_acl_ids_free(&acl_ids);
1766			error = SET_ERROR(EDQUOT);
1767			goto out;
1768		}
1769
1770		tx = dmu_tx_create(os);
1771
1772		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1773		    ZFS_SA_BASE_ATTR_SIZE);
1774
1775		fuid_dirtied = zfsvfs->z_fuid_dirty;
1776		if (fuid_dirtied)
1777			zfs_fuid_txhold(zfsvfs, tx);
1778		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1779		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1780		if (!zfsvfs->z_use_sa &&
1781		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1782			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1783			    0, acl_ids.z_aclp->z_acl_bytes);
1784		}
1785		error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1786		if (error) {
1787			zfs_dirent_unlock(dl);
1788			if (error == ERESTART) {
1789				waited = B_TRUE;
1790				dmu_tx_wait(tx);
1791				dmu_tx_abort(tx);
1792				goto top;
1793			}
1794			zfs_acl_ids_free(&acl_ids);
1795			dmu_tx_abort(tx);
1796			getnewvnode_drop_reserve();
1797			ZFS_EXIT(zfsvfs);
1798			return (error);
1799		}
1800		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1801
1802		if (fuid_dirtied)
1803			zfs_fuid_sync(zfsvfs, tx);
1804
1805		(void) zfs_link_create(dl, zp, tx, ZNEW);
1806		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1807		if (flag & FIGNORECASE)
1808			txtype |= TX_CI;
1809		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1810		    vsecp, acl_ids.z_fuidp, vap);
1811		zfs_acl_ids_free(&acl_ids);
1812		dmu_tx_commit(tx);
1813	} else {
1814		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1815
1816		if (have_acl)
1817			zfs_acl_ids_free(&acl_ids);
1818		have_acl = B_FALSE;
1819
1820		/*
1821		 * A directory entry already exists for this name.
1822		 */
1823		/*
1824		 * Can't truncate an existing file if in exclusive mode.
1825		 */
1826		if (excl == EXCL) {
1827			error = SET_ERROR(EEXIST);
1828			goto out;
1829		}
1830		/*
1831		 * Can't open a directory for writing.
1832		 */
1833		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1834			error = SET_ERROR(EISDIR);
1835			goto out;
1836		}
1837		/*
1838		 * Verify requested access to file.
1839		 */
1840		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1841			goto out;
1842		}
1843
1844		mutex_enter(&dzp->z_lock);
1845		dzp->z_seq++;
1846		mutex_exit(&dzp->z_lock);
1847
1848		/*
1849		 * Truncate regular files if requested.
1850		 */
1851		if ((ZTOV(zp)->v_type == VREG) &&
1852		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1853			/* we can't hold any locks when calling zfs_freesp() */
1854			zfs_dirent_unlock(dl);
1855			dl = NULL;
1856			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1857			if (error == 0) {
1858				vnevent_create(ZTOV(zp), ct);
1859			}
1860		}
1861	}
1862out:
1863	getnewvnode_drop_reserve();
1864	if (dl)
1865		zfs_dirent_unlock(dl);
1866
1867	if (error) {
1868		if (zp)
1869			VN_RELE(ZTOV(zp));
1870	} else {
1871		*vpp = ZTOV(zp);
1872		error = specvp_check(vpp, cr);
1873	}
1874
1875	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1876		zil_commit(zilog, 0);
1877
1878	ZFS_EXIT(zfsvfs);
1879	return (error);
1880}
1881
1882/*
1883 * Remove an entry from a directory.
1884 *
1885 *	IN:	dvp	- vnode of directory to remove entry from.
1886 *		name	- name of entry to remove.
1887 *		cr	- credentials of caller.
1888 *		ct	- caller context
1889 *		flags	- case flags
1890 *
1891 *	RETURN:	0 on success, error code on failure.
1892 *
1893 * Timestamps:
1894 *	dvp - ctime|mtime
1895 *	 vp - ctime (if nlink > 0)
1896 */
1897
1898uint64_t null_xattr = 0;
1899
1900/*ARGSUSED*/
1901static int
1902zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1903    int flags)
1904{
1905	znode_t		*zp, *dzp = VTOZ(dvp);
1906	znode_t		*xzp;
1907	vnode_t		*vp;
1908	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1909	zilog_t		*zilog;
1910	uint64_t	acl_obj, xattr_obj;
1911	uint64_t	xattr_obj_unlinked = 0;
1912	uint64_t	obj = 0;
1913	zfs_dirlock_t	*dl;
1914	dmu_tx_t	*tx;
1915	boolean_t	may_delete_now, delete_now = FALSE;
1916	boolean_t	unlinked, toobig = FALSE;
1917	uint64_t	txtype;
1918	pathname_t	*realnmp = NULL;
1919	pathname_t	realnm;
1920	int		error;
1921	int		zflg = ZEXISTS;
1922	boolean_t	waited = B_FALSE;
1923
1924	ZFS_ENTER(zfsvfs);
1925	ZFS_VERIFY_ZP(dzp);
1926	zilog = zfsvfs->z_log;
1927
1928	if (flags & FIGNORECASE) {
1929		zflg |= ZCILOOK;
1930		pn_alloc(&realnm);
1931		realnmp = &realnm;
1932	}
1933
1934top:
1935	xattr_obj = 0;
1936	xzp = NULL;
1937	/*
1938	 * Attempt to lock directory; fail if entry doesn't exist.
1939	 */
1940	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1941	    NULL, realnmp)) {
1942		if (realnmp)
1943			pn_free(realnmp);
1944		ZFS_EXIT(zfsvfs);
1945		return (error);
1946	}
1947
1948	vp = ZTOV(zp);
1949
1950	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1951		goto out;
1952	}
1953
1954	/*
1955	 * Need to use rmdir for removing directories.
1956	 */
1957	if (vp->v_type == VDIR) {
1958		error = SET_ERROR(EPERM);
1959		goto out;
1960	}
1961
1962	vnevent_remove(vp, dvp, name, ct);
1963
1964	if (realnmp)
1965		dnlc_remove(dvp, realnmp->pn_buf);
1966	else
1967		dnlc_remove(dvp, name);
1968
1969	VI_LOCK(vp);
1970	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1971	VI_UNLOCK(vp);
1972
1973	/*
1974	 * We may delete the znode now, or we may put it in the unlinked set;
1975	 * it depends on whether we're the last link, and on whether there are
1976	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1977	 * allow for either case.
1978	 */
1979	obj = zp->z_id;
1980	tx = dmu_tx_create(zfsvfs->z_os);
1981	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1982	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1983	zfs_sa_upgrade_txholds(tx, zp);
1984	zfs_sa_upgrade_txholds(tx, dzp);
1985	if (may_delete_now) {
1986		toobig =
1987		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1988		/* if the file is too big, only hold_free a token amount */
1989		dmu_tx_hold_free(tx, zp->z_id, 0,
1990		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1991	}
1992
1993	/* are there any extended attributes? */
1994	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1995	    &xattr_obj, sizeof (xattr_obj));
1996	if (error == 0 && xattr_obj) {
1997		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1998		ASSERT0(error);
1999		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2000		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
2001	}
2002
2003	mutex_enter(&zp->z_lock);
2004	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
2005		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
2006	mutex_exit(&zp->z_lock);
2007
2008	/* charge as an update -- would be nice not to charge at all */
2009	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2010
2011	/*
2012	 * Mark this transaction as typically resulting in a net free of
2013	 * space, unless object removal will be delayed indefinitely
2014	 * (due to active holds on the vnode due to the file being open).
2015	 */
2016	if (may_delete_now)
2017		dmu_tx_mark_netfree(tx);
2018
2019	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2020	if (error) {
2021		zfs_dirent_unlock(dl);
2022		VN_RELE(vp);
2023		if (xzp)
2024			VN_RELE(ZTOV(xzp));
2025		if (error == ERESTART) {
2026			waited = B_TRUE;
2027			dmu_tx_wait(tx);
2028			dmu_tx_abort(tx);
2029			goto top;
2030		}
2031		if (realnmp)
2032			pn_free(realnmp);
2033		dmu_tx_abort(tx);
2034		ZFS_EXIT(zfsvfs);
2035		return (error);
2036	}
2037
2038	/*
2039	 * Remove the directory entry.
2040	 */
2041	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
2042
2043	if (error) {
2044		dmu_tx_commit(tx);
2045		goto out;
2046	}
2047
2048	if (unlinked) {
2049		/*
2050		 * Hold z_lock so that we can make sure that the ACL obj
2051		 * hasn't changed.  Could have been deleted due to
2052		 * zfs_sa_upgrade().
2053		 */
2054		mutex_enter(&zp->z_lock);
2055		VI_LOCK(vp);
2056		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2057		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
2058		delete_now = may_delete_now && !toobig &&
2059		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
2060		    xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
2061		    acl_obj;
2062		VI_UNLOCK(vp);
2063	}
2064
2065	if (delete_now) {
2066#ifdef __FreeBSD__
2067		panic("zfs_remove: delete_now branch taken");
2068#endif
2069		if (xattr_obj_unlinked) {
2070			ASSERT3U(xzp->z_links, ==, 2);
2071			mutex_enter(&xzp->z_lock);
2072			xzp->z_unlinked = 1;
2073			xzp->z_links = 0;
2074			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
2075			    &xzp->z_links, sizeof (xzp->z_links), tx);
2076			ASSERT3U(error,  ==,  0);
2077			mutex_exit(&xzp->z_lock);
2078			zfs_unlinked_add(xzp, tx);
2079
2080			if (zp->z_is_sa)
2081				error = sa_remove(zp->z_sa_hdl,
2082				    SA_ZPL_XATTR(zfsvfs), tx);
2083			else
2084				error = sa_update(zp->z_sa_hdl,
2085				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
2086				    sizeof (uint64_t), tx);
2087			ASSERT0(error);
2088		}
2089		VI_LOCK(vp);
2090		vp->v_count--;
2091		ASSERT0(vp->v_count);
2092		VI_UNLOCK(vp);
2093		mutex_exit(&zp->z_lock);
2094		zfs_znode_delete(zp, tx);
2095	} else if (unlinked) {
2096		mutex_exit(&zp->z_lock);
2097		zfs_unlinked_add(zp, tx);
2098#ifdef __FreeBSD__
2099		vp->v_vflag |= VV_NOSYNC;
2100#endif
2101	}
2102
2103	txtype = TX_REMOVE;
2104	if (flags & FIGNORECASE)
2105		txtype |= TX_CI;
2106	zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
2107
2108	dmu_tx_commit(tx);
2109out:
2110	if (realnmp)
2111		pn_free(realnmp);
2112
2113	zfs_dirent_unlock(dl);
2114
2115	if (!delete_now)
2116		VN_RELE(vp);
2117	if (xzp)
2118		VN_RELE(ZTOV(xzp));
2119
2120	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2121		zil_commit(zilog, 0);
2122
2123	ZFS_EXIT(zfsvfs);
2124	return (error);
2125}
2126
2127/*
2128 * Create a new directory and insert it into dvp using the name
2129 * provided.  Return a pointer to the inserted directory.
2130 *
2131 *	IN:	dvp	- vnode of directory to add subdir to.
2132 *		dirname	- name of new directory.
2133 *		vap	- attributes of new directory.
2134 *		cr	- credentials of caller.
2135 *		ct	- caller context
2136 *		flags	- case flags
2137 *		vsecp	- ACL to be set
2138 *
2139 *	OUT:	vpp	- vnode of created directory.
2140 *
2141 *	RETURN:	0 on success, error code on failure.
2142 *
2143 * Timestamps:
2144 *	dvp - ctime|mtime updated
2145 *	 vp - ctime|mtime|atime updated
2146 */
2147/*ARGSUSED*/
2148static int
2149zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
2150    caller_context_t *ct, int flags, vsecattr_t *vsecp)
2151{
2152	znode_t		*zp, *dzp = VTOZ(dvp);
2153	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2154	zilog_t		*zilog;
2155	zfs_dirlock_t	*dl;
2156	uint64_t	txtype;
2157	dmu_tx_t	*tx;
2158	int		error;
2159	int		zf = ZNEW;
2160	ksid_t		*ksid;
2161	uid_t		uid;
2162	gid_t		gid = crgetgid(cr);
2163	zfs_acl_ids_t   acl_ids;
2164	boolean_t	fuid_dirtied;
2165	boolean_t	waited = B_FALSE;
2166
2167	ASSERT(vap->va_type == VDIR);
2168
2169	/*
2170	 * If we have an ephemeral id, ACL, or XVATTR then
2171	 * make sure file system is at proper version
2172	 */
2173
2174	ksid = crgetsid(cr, KSID_OWNER);
2175	if (ksid)
2176		uid = ksid_getid(ksid);
2177	else
2178		uid = crgetuid(cr);
2179	if (zfsvfs->z_use_fuids == B_FALSE &&
2180	    (vsecp || (vap->va_mask & AT_XVATTR) ||
2181	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
2182		return (SET_ERROR(EINVAL));
2183
2184	ZFS_ENTER(zfsvfs);
2185	ZFS_VERIFY_ZP(dzp);
2186	zilog = zfsvfs->z_log;
2187
2188	if (dzp->z_pflags & ZFS_XATTR) {
2189		ZFS_EXIT(zfsvfs);
2190		return (SET_ERROR(EINVAL));
2191	}
2192
2193	if (zfsvfs->z_utf8 && u8_validate(dirname,
2194	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2195		ZFS_EXIT(zfsvfs);
2196		return (SET_ERROR(EILSEQ));
2197	}
2198	if (flags & FIGNORECASE)
2199		zf |= ZCILOOK;
2200
2201	if (vap->va_mask & AT_XVATTR) {
2202		if ((error = secpolicy_xvattr(dvp, (xvattr_t *)vap,
2203		    crgetuid(cr), cr, vap->va_type)) != 0) {
2204			ZFS_EXIT(zfsvfs);
2205			return (error);
2206		}
2207	}
2208
2209	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
2210	    vsecp, &acl_ids)) != 0) {
2211		ZFS_EXIT(zfsvfs);
2212		return (error);
2213	}
2214
2215	getnewvnode_reserve(1);
2216
2217	/*
2218	 * First make sure the new directory doesn't exist.
2219	 *
2220	 * Existence is checked first to make sure we don't return
2221	 * EACCES instead of EEXIST which can cause some applications
2222	 * to fail.
2223	 */
2224top:
2225	*vpp = NULL;
2226
2227	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
2228	    NULL, NULL)) {
2229		zfs_acl_ids_free(&acl_ids);
2230		getnewvnode_drop_reserve();
2231		ZFS_EXIT(zfsvfs);
2232		return (error);
2233	}
2234
2235	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
2236		zfs_acl_ids_free(&acl_ids);
2237		zfs_dirent_unlock(dl);
2238		getnewvnode_drop_reserve();
2239		ZFS_EXIT(zfsvfs);
2240		return (error);
2241	}
2242
2243	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
2244		zfs_acl_ids_free(&acl_ids);
2245		zfs_dirent_unlock(dl);
2246		getnewvnode_drop_reserve();
2247		ZFS_EXIT(zfsvfs);
2248		return (SET_ERROR(EDQUOT));
2249	}
2250
2251	/*
2252	 * Add a new entry to the directory.
2253	 */
2254	tx = dmu_tx_create(zfsvfs->z_os);
2255	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
2256	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2257	fuid_dirtied = zfsvfs->z_fuid_dirty;
2258	if (fuid_dirtied)
2259		zfs_fuid_txhold(zfsvfs, tx);
2260	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2261		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2262		    acl_ids.z_aclp->z_acl_bytes);
2263	}
2264
2265	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2266	    ZFS_SA_BASE_ATTR_SIZE);
2267
2268	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2269	if (error) {
2270		zfs_dirent_unlock(dl);
2271		if (error == ERESTART) {
2272			waited = B_TRUE;
2273			dmu_tx_wait(tx);
2274			dmu_tx_abort(tx);
2275			goto top;
2276		}
2277		zfs_acl_ids_free(&acl_ids);
2278		dmu_tx_abort(tx);
2279		getnewvnode_drop_reserve();
2280		ZFS_EXIT(zfsvfs);
2281		return (error);
2282	}
2283
2284	/*
2285	 * Create new node.
2286	 */
2287	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2288
2289	if (fuid_dirtied)
2290		zfs_fuid_sync(zfsvfs, tx);
2291
2292	/*
2293	 * Now put new name in parent dir.
2294	 */
2295	(void) zfs_link_create(dl, zp, tx, ZNEW);
2296
2297	*vpp = ZTOV(zp);
2298
2299	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2300	if (flags & FIGNORECASE)
2301		txtype |= TX_CI;
2302	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2303	    acl_ids.z_fuidp, vap);
2304
2305	zfs_acl_ids_free(&acl_ids);
2306
2307	dmu_tx_commit(tx);
2308
2309	getnewvnode_drop_reserve();
2310
2311	zfs_dirent_unlock(dl);
2312
2313	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2314		zil_commit(zilog, 0);
2315
2316	ZFS_EXIT(zfsvfs);
2317	return (0);
2318}
2319
2320/*
2321 * Remove a directory subdir entry.  If the current working
2322 * directory is the same as the subdir to be removed, the
2323 * remove will fail.
2324 *
2325 *	IN:	dvp	- vnode of directory to remove from.
2326 *		name	- name of directory to be removed.
2327 *		cwd	- vnode of current working directory.
2328 *		cr	- credentials of caller.
2329 *		ct	- caller context
2330 *		flags	- case flags
2331 *
2332 *	RETURN:	0 on success, error code on failure.
2333 *
2334 * Timestamps:
2335 *	dvp - ctime|mtime updated
2336 */
2337/*ARGSUSED*/
2338static int
2339zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2340    caller_context_t *ct, int flags)
2341{
2342	znode_t		*dzp = VTOZ(dvp);
2343	znode_t		*zp;
2344	vnode_t		*vp;
2345	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2346	zilog_t		*zilog;
2347	zfs_dirlock_t	*dl;
2348	dmu_tx_t	*tx;
2349	int		error;
2350	int		zflg = ZEXISTS;
2351	boolean_t	waited = B_FALSE;
2352
2353	ZFS_ENTER(zfsvfs);
2354	ZFS_VERIFY_ZP(dzp);
2355	zilog = zfsvfs->z_log;
2356
2357	if (flags & FIGNORECASE)
2358		zflg |= ZCILOOK;
2359top:
2360	zp = NULL;
2361
2362	/*
2363	 * Attempt to lock directory; fail if entry doesn't exist.
2364	 */
2365	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2366	    NULL, NULL)) {
2367		ZFS_EXIT(zfsvfs);
2368		return (error);
2369	}
2370
2371	vp = ZTOV(zp);
2372
2373	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2374		goto out;
2375	}
2376
2377	if (vp->v_type != VDIR) {
2378		error = SET_ERROR(ENOTDIR);
2379		goto out;
2380	}
2381
2382	if (vp == cwd) {
2383		error = SET_ERROR(EINVAL);
2384		goto out;
2385	}
2386
2387	vnevent_rmdir(vp, dvp, name, ct);
2388
2389	/*
2390	 * Grab a lock on the directory to make sure that noone is
2391	 * trying to add (or lookup) entries while we are removing it.
2392	 */
2393	rw_enter(&zp->z_name_lock, RW_WRITER);
2394
2395	/*
2396	 * Grab a lock on the parent pointer to make sure we play well
2397	 * with the treewalk and directory rename code.
2398	 */
2399	rw_enter(&zp->z_parent_lock, RW_WRITER);
2400
2401	tx = dmu_tx_create(zfsvfs->z_os);
2402	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2403	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2404	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2405	zfs_sa_upgrade_txholds(tx, zp);
2406	zfs_sa_upgrade_txholds(tx, dzp);
2407	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2408	if (error) {
2409		rw_exit(&zp->z_parent_lock);
2410		rw_exit(&zp->z_name_lock);
2411		zfs_dirent_unlock(dl);
2412		VN_RELE(vp);
2413		if (error == ERESTART) {
2414			waited = B_TRUE;
2415			dmu_tx_wait(tx);
2416			dmu_tx_abort(tx);
2417			goto top;
2418		}
2419		dmu_tx_abort(tx);
2420		ZFS_EXIT(zfsvfs);
2421		return (error);
2422	}
2423
2424#ifdef FREEBSD_NAMECACHE
2425	cache_purge(dvp);
2426#endif
2427
2428	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2429
2430	if (error == 0) {
2431		uint64_t txtype = TX_RMDIR;
2432		if (flags & FIGNORECASE)
2433			txtype |= TX_CI;
2434		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2435	}
2436
2437	dmu_tx_commit(tx);
2438
2439	rw_exit(&zp->z_parent_lock);
2440	rw_exit(&zp->z_name_lock);
2441#ifdef FREEBSD_NAMECACHE
2442	cache_purge(vp);
2443#endif
2444out:
2445	zfs_dirent_unlock(dl);
2446
2447	VN_RELE(vp);
2448
2449	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2450		zil_commit(zilog, 0);
2451
2452	ZFS_EXIT(zfsvfs);
2453	return (error);
2454}
2455
2456/*
2457 * Read as many directory entries as will fit into the provided
2458 * buffer from the given directory cursor position (specified in
2459 * the uio structure).
2460 *
2461 *	IN:	vp	- vnode of directory to read.
2462 *		uio	- structure supplying read location, range info,
2463 *			  and return buffer.
2464 *		cr	- credentials of caller.
2465 *		ct	- caller context
2466 *		flags	- case flags
2467 *
2468 *	OUT:	uio	- updated offset and range, buffer filled.
2469 *		eofp	- set to true if end-of-file detected.
2470 *
2471 *	RETURN:	0 on success, error code on failure.
2472 *
2473 * Timestamps:
2474 *	vp - atime updated
2475 *
2476 * Note that the low 4 bits of the cookie returned by zap is always zero.
2477 * This allows us to use the low range for "special" directory entries:
2478 * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2479 * we use the offset 2 for the '.zfs' directory.
2480 */
2481/* ARGSUSED */
2482static int
2483zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, int *ncookies, u_long **cookies)
2484{
2485	znode_t		*zp = VTOZ(vp);
2486	iovec_t		*iovp;
2487	edirent_t	*eodp;
2488	dirent64_t	*odp;
2489	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2490	objset_t	*os;
2491	caddr_t		outbuf;
2492	size_t		bufsize;
2493	zap_cursor_t	zc;
2494	zap_attribute_t	zap;
2495	uint_t		bytes_wanted;
2496	uint64_t	offset; /* must be unsigned; checks for < 1 */
2497	uint64_t	parent;
2498	int		local_eof;
2499	int		outcount;
2500	int		error;
2501	uint8_t		prefetch;
2502	boolean_t	check_sysattrs;
2503	uint8_t		type;
2504	int		ncooks;
2505	u_long		*cooks = NULL;
2506	int		flags = 0;
2507
2508	ZFS_ENTER(zfsvfs);
2509	ZFS_VERIFY_ZP(zp);
2510
2511	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2512	    &parent, sizeof (parent))) != 0) {
2513		ZFS_EXIT(zfsvfs);
2514		return (error);
2515	}
2516
2517	/*
2518	 * If we are not given an eof variable,
2519	 * use a local one.
2520	 */
2521	if (eofp == NULL)
2522		eofp = &local_eof;
2523
2524	/*
2525	 * Check for valid iov_len.
2526	 */
2527	if (uio->uio_iov->iov_len <= 0) {
2528		ZFS_EXIT(zfsvfs);
2529		return (SET_ERROR(EINVAL));
2530	}
2531
2532	/*
2533	 * Quit if directory has been removed (posix)
2534	 */
2535	if ((*eofp = zp->z_unlinked) != 0) {
2536		ZFS_EXIT(zfsvfs);
2537		return (0);
2538	}
2539
2540	error = 0;
2541	os = zfsvfs->z_os;
2542	offset = uio->uio_loffset;
2543	prefetch = zp->z_zn_prefetch;
2544
2545	/*
2546	 * Initialize the iterator cursor.
2547	 */
2548	if (offset <= 3) {
2549		/*
2550		 * Start iteration from the beginning of the directory.
2551		 */
2552		zap_cursor_init(&zc, os, zp->z_id);
2553	} else {
2554		/*
2555		 * The offset is a serialized cursor.
2556		 */
2557		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2558	}
2559
2560	/*
2561	 * Get space to change directory entries into fs independent format.
2562	 */
2563	iovp = uio->uio_iov;
2564	bytes_wanted = iovp->iov_len;
2565	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2566		bufsize = bytes_wanted;
2567		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2568		odp = (struct dirent64 *)outbuf;
2569	} else {
2570		bufsize = bytes_wanted;
2571		outbuf = NULL;
2572		odp = (struct dirent64 *)iovp->iov_base;
2573	}
2574	eodp = (struct edirent *)odp;
2575
2576	if (ncookies != NULL) {
2577		/*
2578		 * Minimum entry size is dirent size and 1 byte for a file name.
2579		 */
2580		ncooks = uio->uio_resid / (sizeof(struct dirent) - sizeof(((struct dirent *)NULL)->d_name) + 1);
2581		cooks = malloc(ncooks * sizeof(u_long), M_TEMP, M_WAITOK);
2582		*cookies = cooks;
2583		*ncookies = ncooks;
2584	}
2585	/*
2586	 * If this VFS supports the system attribute view interface; and
2587	 * we're looking at an extended attribute directory; and we care
2588	 * about normalization conflicts on this vfs; then we must check
2589	 * for normalization conflicts with the sysattr name space.
2590	 */
2591#ifdef TODO
2592	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2593	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2594	    (flags & V_RDDIR_ENTFLAGS);
2595#else
2596	check_sysattrs = 0;
2597#endif
2598
2599	/*
2600	 * Transform to file-system independent format
2601	 */
2602	outcount = 0;
2603	while (outcount < bytes_wanted) {
2604		ino64_t objnum;
2605		ushort_t reclen;
2606		off64_t *next = NULL;
2607
2608		/*
2609		 * Special case `.', `..', and `.zfs'.
2610		 */
2611		if (offset == 0) {
2612			(void) strcpy(zap.za_name, ".");
2613			zap.za_normalization_conflict = 0;
2614			objnum = zp->z_id;
2615			type = DT_DIR;
2616		} else if (offset == 1) {
2617			(void) strcpy(zap.za_name, "..");
2618			zap.za_normalization_conflict = 0;
2619			objnum = parent;
2620			type = DT_DIR;
2621		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2622			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2623			zap.za_normalization_conflict = 0;
2624			objnum = ZFSCTL_INO_ROOT;
2625			type = DT_DIR;
2626		} else {
2627			/*
2628			 * Grab next entry.
2629			 */
2630			if (error = zap_cursor_retrieve(&zc, &zap)) {
2631				if ((*eofp = (error == ENOENT)) != 0)
2632					break;
2633				else
2634					goto update;
2635			}
2636
2637			if (zap.za_integer_length != 8 ||
2638			    zap.za_num_integers != 1) {
2639				cmn_err(CE_WARN, "zap_readdir: bad directory "
2640				    "entry, obj = %lld, offset = %lld\n",
2641				    (u_longlong_t)zp->z_id,
2642				    (u_longlong_t)offset);
2643				error = SET_ERROR(ENXIO);
2644				goto update;
2645			}
2646
2647			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2648			/*
2649			 * MacOS X can extract the object type here such as:
2650			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2651			 */
2652			type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2653
2654			if (check_sysattrs && !zap.za_normalization_conflict) {
2655#ifdef TODO
2656				zap.za_normalization_conflict =
2657				    xattr_sysattr_casechk(zap.za_name);
2658#else
2659				panic("%s:%u: TODO", __func__, __LINE__);
2660#endif
2661			}
2662		}
2663
2664		if (flags & V_RDDIR_ACCFILTER) {
2665			/*
2666			 * If we have no access at all, don't include
2667			 * this entry in the returned information
2668			 */
2669			znode_t	*ezp;
2670			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2671				goto skip_entry;
2672			if (!zfs_has_access(ezp, cr)) {
2673				VN_RELE(ZTOV(ezp));
2674				goto skip_entry;
2675			}
2676			VN_RELE(ZTOV(ezp));
2677		}
2678
2679		if (flags & V_RDDIR_ENTFLAGS)
2680			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2681		else
2682			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2683
2684		/*
2685		 * Will this entry fit in the buffer?
2686		 */
2687		if (outcount + reclen > bufsize) {
2688			/*
2689			 * Did we manage to fit anything in the buffer?
2690			 */
2691			if (!outcount) {
2692				error = SET_ERROR(EINVAL);
2693				goto update;
2694			}
2695			break;
2696		}
2697		if (flags & V_RDDIR_ENTFLAGS) {
2698			/*
2699			 * Add extended flag entry:
2700			 */
2701			eodp->ed_ino = objnum;
2702			eodp->ed_reclen = reclen;
2703			/* NOTE: ed_off is the offset for the *next* entry */
2704			next = &(eodp->ed_off);
2705			eodp->ed_eflags = zap.za_normalization_conflict ?
2706			    ED_CASE_CONFLICT : 0;
2707			(void) strncpy(eodp->ed_name, zap.za_name,
2708			    EDIRENT_NAMELEN(reclen));
2709			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2710		} else {
2711			/*
2712			 * Add normal entry:
2713			 */
2714			odp->d_ino = objnum;
2715			odp->d_reclen = reclen;
2716			odp->d_namlen = strlen(zap.za_name);
2717			(void) strlcpy(odp->d_name, zap.za_name, odp->d_namlen + 1);
2718			odp->d_type = type;
2719			odp = (dirent64_t *)((intptr_t)odp + reclen);
2720		}
2721		outcount += reclen;
2722
2723		ASSERT(outcount <= bufsize);
2724
2725		/* Prefetch znode */
2726		if (prefetch)
2727			dmu_prefetch(os, objnum, 0, 0, 0,
2728			    ZIO_PRIORITY_SYNC_READ);
2729
2730	skip_entry:
2731		/*
2732		 * Move to the next entry, fill in the previous offset.
2733		 */
2734		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2735			zap_cursor_advance(&zc);
2736			offset = zap_cursor_serialize(&zc);
2737		} else {
2738			offset += 1;
2739		}
2740
2741		if (cooks != NULL) {
2742			*cooks++ = offset;
2743			ncooks--;
2744			KASSERT(ncooks >= 0, ("ncookies=%d", ncooks));
2745		}
2746	}
2747	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2748
2749	/* Subtract unused cookies */
2750	if (ncookies != NULL)
2751		*ncookies -= ncooks;
2752
2753	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2754		iovp->iov_base += outcount;
2755		iovp->iov_len -= outcount;
2756		uio->uio_resid -= outcount;
2757	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2758		/*
2759		 * Reset the pointer.
2760		 */
2761		offset = uio->uio_loffset;
2762	}
2763
2764update:
2765	zap_cursor_fini(&zc);
2766	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2767		kmem_free(outbuf, bufsize);
2768
2769	if (error == ENOENT)
2770		error = 0;
2771
2772	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2773
2774	uio->uio_loffset = offset;
2775	ZFS_EXIT(zfsvfs);
2776	if (error != 0 && cookies != NULL) {
2777		free(*cookies, M_TEMP);
2778		*cookies = NULL;
2779		*ncookies = 0;
2780	}
2781	return (error);
2782}
2783
2784ulong_t zfs_fsync_sync_cnt = 4;
2785
2786static int
2787zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2788{
2789	znode_t	*zp = VTOZ(vp);
2790	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2791
2792	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2793
2794	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2795		ZFS_ENTER(zfsvfs);
2796		ZFS_VERIFY_ZP(zp);
2797		zil_commit(zfsvfs->z_log, zp->z_id);
2798		ZFS_EXIT(zfsvfs);
2799	}
2800	return (0);
2801}
2802
2803
2804/*
2805 * Get the requested file attributes and place them in the provided
2806 * vattr structure.
2807 *
2808 *	IN:	vp	- vnode of file.
2809 *		vap	- va_mask identifies requested attributes.
2810 *			  If AT_XVATTR set, then optional attrs are requested
2811 *		flags	- ATTR_NOACLCHECK (CIFS server context)
2812 *		cr	- credentials of caller.
2813 *		ct	- caller context
2814 *
2815 *	OUT:	vap	- attribute values.
2816 *
2817 *	RETURN:	0 (always succeeds).
2818 */
2819/* ARGSUSED */
2820static int
2821zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2822    caller_context_t *ct)
2823{
2824	znode_t *zp = VTOZ(vp);
2825	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2826	int	error = 0;
2827	uint32_t blksize;
2828	u_longlong_t nblocks;
2829	uint64_t links;
2830	uint64_t mtime[2], ctime[2], crtime[2], rdev;
2831	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2832	xoptattr_t *xoap = NULL;
2833	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2834	sa_bulk_attr_t bulk[4];
2835	int count = 0;
2836
2837	ZFS_ENTER(zfsvfs);
2838	ZFS_VERIFY_ZP(zp);
2839
2840	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2841
2842	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2843	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2844	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &crtime, 16);
2845	if (vp->v_type == VBLK || vp->v_type == VCHR)
2846		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_RDEV(zfsvfs), NULL,
2847		    &rdev, 8);
2848
2849	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2850		ZFS_EXIT(zfsvfs);
2851		return (error);
2852	}
2853
2854	/*
2855	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2856	 * Also, if we are the owner don't bother, since owner should
2857	 * always be allowed to read basic attributes of file.
2858	 */
2859	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2860	    (vap->va_uid != crgetuid(cr))) {
2861		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2862		    skipaclchk, cr)) {
2863			ZFS_EXIT(zfsvfs);
2864			return (error);
2865		}
2866	}
2867
2868	/*
2869	 * Return all attributes.  It's cheaper to provide the answer
2870	 * than to determine whether we were asked the question.
2871	 */
2872
2873	mutex_enter(&zp->z_lock);
2874	vap->va_type = IFTOVT(zp->z_mode);
2875	vap->va_mode = zp->z_mode & ~S_IFMT;
2876#ifdef illumos
2877	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2878#else
2879	vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
2880#endif
2881	vap->va_nodeid = zp->z_id;
2882	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2883		links = zp->z_links + 1;
2884	else
2885		links = zp->z_links;
2886	vap->va_nlink = MIN(links, LINK_MAX);	/* nlink_t limit! */
2887	vap->va_size = zp->z_size;
2888#ifdef illumos
2889	vap->va_rdev = vp->v_rdev;
2890#else
2891	if (vp->v_type == VBLK || vp->v_type == VCHR)
2892		vap->va_rdev = zfs_cmpldev(rdev);
2893#endif
2894	vap->va_seq = zp->z_seq;
2895	vap->va_flags = 0;	/* FreeBSD: Reset chflags(2) flags. */
2896	vap->va_filerev = zp->z_seq;
2897
2898	/*
2899	 * Add in any requested optional attributes and the create time.
2900	 * Also set the corresponding bits in the returned attribute bitmap.
2901	 */
2902	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2903		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2904			xoap->xoa_archive =
2905			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2906			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2907		}
2908
2909		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2910			xoap->xoa_readonly =
2911			    ((zp->z_pflags & ZFS_READONLY) != 0);
2912			XVA_SET_RTN(xvap, XAT_READONLY);
2913		}
2914
2915		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2916			xoap->xoa_system =
2917			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2918			XVA_SET_RTN(xvap, XAT_SYSTEM);
2919		}
2920
2921		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2922			xoap->xoa_hidden =
2923			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2924			XVA_SET_RTN(xvap, XAT_HIDDEN);
2925		}
2926
2927		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2928			xoap->xoa_nounlink =
2929			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2930			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2931		}
2932
2933		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2934			xoap->xoa_immutable =
2935			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2936			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2937		}
2938
2939		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2940			xoap->xoa_appendonly =
2941			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2942			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2943		}
2944
2945		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2946			xoap->xoa_nodump =
2947			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2948			XVA_SET_RTN(xvap, XAT_NODUMP);
2949		}
2950
2951		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2952			xoap->xoa_opaque =
2953			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2954			XVA_SET_RTN(xvap, XAT_OPAQUE);
2955		}
2956
2957		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2958			xoap->xoa_av_quarantined =
2959			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2960			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2961		}
2962
2963		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2964			xoap->xoa_av_modified =
2965			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2966			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2967		}
2968
2969		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2970		    vp->v_type == VREG) {
2971			zfs_sa_get_scanstamp(zp, xvap);
2972		}
2973
2974		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2975			uint64_t times[2];
2976
2977			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2978			    times, sizeof (times));
2979			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2980			XVA_SET_RTN(xvap, XAT_CREATETIME);
2981		}
2982
2983		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2984			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2985			XVA_SET_RTN(xvap, XAT_REPARSE);
2986		}
2987		if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2988			xoap->xoa_generation = zp->z_gen;
2989			XVA_SET_RTN(xvap, XAT_GEN);
2990		}
2991
2992		if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2993			xoap->xoa_offline =
2994			    ((zp->z_pflags & ZFS_OFFLINE) != 0);
2995			XVA_SET_RTN(xvap, XAT_OFFLINE);
2996		}
2997
2998		if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2999			xoap->xoa_sparse =
3000			    ((zp->z_pflags & ZFS_SPARSE) != 0);
3001			XVA_SET_RTN(xvap, XAT_SPARSE);
3002		}
3003	}
3004
3005	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
3006	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
3007	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
3008	ZFS_TIME_DECODE(&vap->va_birthtime, crtime);
3009
3010	mutex_exit(&zp->z_lock);
3011
3012	sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
3013	vap->va_blksize = blksize;
3014	vap->va_bytes = nblocks << 9;	/* nblocks * 512 */
3015
3016	if (zp->z_blksz == 0) {
3017		/*
3018		 * Block size hasn't been set; suggest maximal I/O transfers.
3019		 */
3020		vap->va_blksize = zfsvfs->z_max_blksz;
3021	}
3022
3023	ZFS_EXIT(zfsvfs);
3024	return (0);
3025}
3026
3027/*
3028 * Set the file attributes to the values contained in the
3029 * vattr structure.
3030 *
3031 *	IN:	vp	- vnode of file to be modified.
3032 *		vap	- new attribute values.
3033 *			  If AT_XVATTR set, then optional attrs are being set
3034 *		flags	- ATTR_UTIME set if non-default time values provided.
3035 *			- ATTR_NOACLCHECK (CIFS context only).
3036 *		cr	- credentials of caller.
3037 *		ct	- caller context
3038 *
3039 *	RETURN:	0 on success, error code on failure.
3040 *
3041 * Timestamps:
3042 *	vp - ctime updated, mtime updated if size changed.
3043 */
3044/* ARGSUSED */
3045static int
3046zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
3047    caller_context_t *ct)
3048{
3049	znode_t		*zp = VTOZ(vp);
3050	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3051	zilog_t		*zilog;
3052	dmu_tx_t	*tx;
3053	vattr_t		oldva;
3054	xvattr_t	tmpxvattr;
3055	uint_t		mask = vap->va_mask;
3056	uint_t		saved_mask = 0;
3057	uint64_t	saved_mode;
3058	int		trim_mask = 0;
3059	uint64_t	new_mode;
3060	uint64_t	new_uid, new_gid;
3061	uint64_t	xattr_obj;
3062	uint64_t	mtime[2], ctime[2];
3063	znode_t		*attrzp;
3064	int		need_policy = FALSE;
3065	int		err, err2;
3066	zfs_fuid_info_t *fuidp = NULL;
3067	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
3068	xoptattr_t	*xoap;
3069	zfs_acl_t	*aclp;
3070	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
3071	boolean_t	fuid_dirtied = B_FALSE;
3072	sa_bulk_attr_t	bulk[7], xattr_bulk[7];
3073	int		count = 0, xattr_count = 0;
3074
3075	if (mask == 0)
3076		return (0);
3077
3078	if (mask & AT_NOSET)
3079		return (SET_ERROR(EINVAL));
3080
3081	ZFS_ENTER(zfsvfs);
3082	ZFS_VERIFY_ZP(zp);
3083
3084	zilog = zfsvfs->z_log;
3085
3086	/*
3087	 * Make sure that if we have ephemeral uid/gid or xvattr specified
3088	 * that file system is at proper version level
3089	 */
3090
3091	if (zfsvfs->z_use_fuids == B_FALSE &&
3092	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
3093	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
3094	    (mask & AT_XVATTR))) {
3095		ZFS_EXIT(zfsvfs);
3096		return (SET_ERROR(EINVAL));
3097	}
3098
3099	if (mask & AT_SIZE && vp->v_type == VDIR) {
3100		ZFS_EXIT(zfsvfs);
3101		return (SET_ERROR(EISDIR));
3102	}
3103
3104	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
3105		ZFS_EXIT(zfsvfs);
3106		return (SET_ERROR(EINVAL));
3107	}
3108
3109	/*
3110	 * If this is an xvattr_t, then get a pointer to the structure of
3111	 * optional attributes.  If this is NULL, then we have a vattr_t.
3112	 */
3113	xoap = xva_getxoptattr(xvap);
3114
3115	xva_init(&tmpxvattr);
3116
3117	/*
3118	 * Immutable files can only alter immutable bit and atime
3119	 */
3120	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
3121	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
3122	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
3123		ZFS_EXIT(zfsvfs);
3124		return (SET_ERROR(EPERM));
3125	}
3126
3127	if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
3128		ZFS_EXIT(zfsvfs);
3129		return (SET_ERROR(EPERM));
3130	}
3131
3132	/*
3133	 * Verify timestamps doesn't overflow 32 bits.
3134	 * ZFS can handle large timestamps, but 32bit syscalls can't
3135	 * handle times greater than 2039.  This check should be removed
3136	 * once large timestamps are fully supported.
3137	 */
3138	if (mask & (AT_ATIME | AT_MTIME)) {
3139		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
3140		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
3141			ZFS_EXIT(zfsvfs);
3142			return (SET_ERROR(EOVERFLOW));
3143		}
3144	}
3145
3146top:
3147	attrzp = NULL;
3148	aclp = NULL;
3149
3150	/* Can this be moved to before the top label? */
3151	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
3152		ZFS_EXIT(zfsvfs);
3153		return (SET_ERROR(EROFS));
3154	}
3155
3156	/*
3157	 * First validate permissions
3158	 */
3159
3160	if (mask & AT_SIZE) {
3161		/*
3162		 * XXX - Note, we are not providing any open
3163		 * mode flags here (like FNDELAY), so we may
3164		 * block if there are locks present... this
3165		 * should be addressed in openat().
3166		 */
3167		/* XXX - would it be OK to generate a log record here? */
3168		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
3169		if (err) {
3170			ZFS_EXIT(zfsvfs);
3171			return (err);
3172		}
3173	}
3174
3175	if (mask & (AT_ATIME|AT_MTIME) ||
3176	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
3177	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
3178	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
3179	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
3180	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
3181	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
3182	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
3183		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
3184		    skipaclchk, cr);
3185	}
3186
3187	if (mask & (AT_UID|AT_GID)) {
3188		int	idmask = (mask & (AT_UID|AT_GID));
3189		int	take_owner;
3190		int	take_group;
3191
3192		/*
3193		 * NOTE: even if a new mode is being set,
3194		 * we may clear S_ISUID/S_ISGID bits.
3195		 */
3196
3197		if (!(mask & AT_MODE))
3198			vap->va_mode = zp->z_mode;
3199
3200		/*
3201		 * Take ownership or chgrp to group we are a member of
3202		 */
3203
3204		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
3205		take_group = (mask & AT_GID) &&
3206		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
3207
3208		/*
3209		 * If both AT_UID and AT_GID are set then take_owner and
3210		 * take_group must both be set in order to allow taking
3211		 * ownership.
3212		 *
3213		 * Otherwise, send the check through secpolicy_vnode_setattr()
3214		 *
3215		 */
3216
3217		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
3218		    ((idmask == AT_UID) && take_owner) ||
3219		    ((idmask == AT_GID) && take_group)) {
3220			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
3221			    skipaclchk, cr) == 0) {
3222				/*
3223				 * Remove setuid/setgid for non-privileged users
3224				 */
3225				secpolicy_setid_clear(vap, vp, cr);
3226				trim_mask = (mask & (AT_UID|AT_GID));
3227			} else {
3228				need_policy =  TRUE;
3229			}
3230		} else {
3231			need_policy =  TRUE;
3232		}
3233	}
3234
3235	mutex_enter(&zp->z_lock);
3236	oldva.va_mode = zp->z_mode;
3237	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
3238	if (mask & AT_XVATTR) {
3239		/*
3240		 * Update xvattr mask to include only those attributes
3241		 * that are actually changing.
3242		 *
3243		 * the bits will be restored prior to actually setting
3244		 * the attributes so the caller thinks they were set.
3245		 */
3246		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
3247			if (xoap->xoa_appendonly !=
3248			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
3249				need_policy = TRUE;
3250			} else {
3251				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
3252				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
3253			}
3254		}
3255
3256		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
3257			if (xoap->xoa_nounlink !=
3258			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
3259				need_policy = TRUE;
3260			} else {
3261				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
3262				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
3263			}
3264		}
3265
3266		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
3267			if (xoap->xoa_immutable !=
3268			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
3269				need_policy = TRUE;
3270			} else {
3271				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
3272				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
3273			}
3274		}
3275
3276		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
3277			if (xoap->xoa_nodump !=
3278			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
3279				need_policy = TRUE;
3280			} else {
3281				XVA_CLR_REQ(xvap, XAT_NODUMP);
3282				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
3283			}
3284		}
3285
3286		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
3287			if (xoap->xoa_av_modified !=
3288			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
3289				need_policy = TRUE;
3290			} else {
3291				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
3292				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
3293			}
3294		}
3295
3296		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
3297			if ((vp->v_type != VREG &&
3298			    xoap->xoa_av_quarantined) ||
3299			    xoap->xoa_av_quarantined !=
3300			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
3301				need_policy = TRUE;
3302			} else {
3303				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
3304				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
3305			}
3306		}
3307
3308		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
3309			mutex_exit(&zp->z_lock);
3310			ZFS_EXIT(zfsvfs);
3311			return (SET_ERROR(EPERM));
3312		}
3313
3314		if (need_policy == FALSE &&
3315		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
3316		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
3317			need_policy = TRUE;
3318		}
3319	}
3320
3321	mutex_exit(&zp->z_lock);
3322
3323	if (mask & AT_MODE) {
3324		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
3325			err = secpolicy_setid_setsticky_clear(vp, vap,
3326			    &oldva, cr);
3327			if (err) {
3328				ZFS_EXIT(zfsvfs);
3329				return (err);
3330			}
3331			trim_mask |= AT_MODE;
3332		} else {
3333			need_policy = TRUE;
3334		}
3335	}
3336
3337	if (need_policy) {
3338		/*
3339		 * If trim_mask is set then take ownership
3340		 * has been granted or write_acl is present and user
3341		 * has the ability to modify mode.  In that case remove
3342		 * UID|GID and or MODE from mask so that
3343		 * secpolicy_vnode_setattr() doesn't revoke it.
3344		 */
3345
3346		if (trim_mask) {
3347			saved_mask = vap->va_mask;
3348			vap->va_mask &= ~trim_mask;
3349			if (trim_mask & AT_MODE) {
3350				/*
3351				 * Save the mode, as secpolicy_vnode_setattr()
3352				 * will overwrite it with ova.va_mode.
3353				 */
3354				saved_mode = vap->va_mode;
3355			}
3356		}
3357		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3358		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3359		if (err) {
3360			ZFS_EXIT(zfsvfs);
3361			return (err);
3362		}
3363
3364		if (trim_mask) {
3365			vap->va_mask |= saved_mask;
3366			if (trim_mask & AT_MODE) {
3367				/*
3368				 * Recover the mode after
3369				 * secpolicy_vnode_setattr().
3370				 */
3371				vap->va_mode = saved_mode;
3372			}
3373		}
3374	}
3375
3376	/*
3377	 * secpolicy_vnode_setattr, or take ownership may have
3378	 * changed va_mask
3379	 */
3380	mask = vap->va_mask;
3381
3382	if ((mask & (AT_UID | AT_GID))) {
3383		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3384		    &xattr_obj, sizeof (xattr_obj));
3385
3386		if (err == 0 && xattr_obj) {
3387			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3388			if (err)
3389				goto out2;
3390		}
3391		if (mask & AT_UID) {
3392			new_uid = zfs_fuid_create(zfsvfs,
3393			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3394			if (new_uid != zp->z_uid &&
3395			    zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3396				if (attrzp)
3397					VN_RELE(ZTOV(attrzp));
3398				err = SET_ERROR(EDQUOT);
3399				goto out2;
3400			}
3401		}
3402
3403		if (mask & AT_GID) {
3404			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3405			    cr, ZFS_GROUP, &fuidp);
3406			if (new_gid != zp->z_gid &&
3407			    zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3408				if (attrzp)
3409					VN_RELE(ZTOV(attrzp));
3410				err = SET_ERROR(EDQUOT);
3411				goto out2;
3412			}
3413		}
3414	}
3415	tx = dmu_tx_create(zfsvfs->z_os);
3416
3417	if (mask & AT_MODE) {
3418		uint64_t pmode = zp->z_mode;
3419		uint64_t acl_obj;
3420		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3421
3422		if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3423		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3424			err = SET_ERROR(EPERM);
3425			goto out;
3426		}
3427
3428		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3429			goto out;
3430
3431		mutex_enter(&zp->z_lock);
3432		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3433			/*
3434			 * Are we upgrading ACL from old V0 format
3435			 * to V1 format?
3436			 */
3437			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3438			    zfs_znode_acl_version(zp) ==
3439			    ZFS_ACL_VERSION_INITIAL) {
3440				dmu_tx_hold_free(tx, acl_obj, 0,
3441				    DMU_OBJECT_END);
3442				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3443				    0, aclp->z_acl_bytes);
3444			} else {
3445				dmu_tx_hold_write(tx, acl_obj, 0,
3446				    aclp->z_acl_bytes);
3447			}
3448		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3449			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3450			    0, aclp->z_acl_bytes);
3451		}
3452		mutex_exit(&zp->z_lock);
3453		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3454	} else {
3455		if ((mask & AT_XVATTR) &&
3456		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3457			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3458		else
3459			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3460	}
3461
3462	if (attrzp) {
3463		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3464	}
3465
3466	fuid_dirtied = zfsvfs->z_fuid_dirty;
3467	if (fuid_dirtied)
3468		zfs_fuid_txhold(zfsvfs, tx);
3469
3470	zfs_sa_upgrade_txholds(tx, zp);
3471
3472	err = dmu_tx_assign(tx, TXG_WAIT);
3473	if (err)
3474		goto out;
3475
3476	count = 0;
3477	/*
3478	 * Set each attribute requested.
3479	 * We group settings according to the locks they need to acquire.
3480	 *
3481	 * Note: you cannot set ctime directly, although it will be
3482	 * updated as a side-effect of calling this function.
3483	 */
3484
3485
3486	if (mask & (AT_UID|AT_GID|AT_MODE))
3487		mutex_enter(&zp->z_acl_lock);
3488	mutex_enter(&zp->z_lock);
3489
3490	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3491	    &zp->z_pflags, sizeof (zp->z_pflags));
3492
3493	if (attrzp) {
3494		if (mask & (AT_UID|AT_GID|AT_MODE))
3495			mutex_enter(&attrzp->z_acl_lock);
3496		mutex_enter(&attrzp->z_lock);
3497		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3498		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3499		    sizeof (attrzp->z_pflags));
3500	}
3501
3502	if (mask & (AT_UID|AT_GID)) {
3503
3504		if (mask & AT_UID) {
3505			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3506			    &new_uid, sizeof (new_uid));
3507			zp->z_uid = new_uid;
3508			if (attrzp) {
3509				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3510				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3511				    sizeof (new_uid));
3512				attrzp->z_uid = new_uid;
3513			}
3514		}
3515
3516		if (mask & AT_GID) {
3517			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3518			    NULL, &new_gid, sizeof (new_gid));
3519			zp->z_gid = new_gid;
3520			if (attrzp) {
3521				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3522				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3523				    sizeof (new_gid));
3524				attrzp->z_gid = new_gid;
3525			}
3526		}
3527		if (!(mask & AT_MODE)) {
3528			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3529			    NULL, &new_mode, sizeof (new_mode));
3530			new_mode = zp->z_mode;
3531		}
3532		err = zfs_acl_chown_setattr(zp);
3533		ASSERT(err == 0);
3534		if (attrzp) {
3535			err = zfs_acl_chown_setattr(attrzp);
3536			ASSERT(err == 0);
3537		}
3538	}
3539
3540	if (mask & AT_MODE) {
3541		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3542		    &new_mode, sizeof (new_mode));
3543		zp->z_mode = new_mode;
3544		ASSERT3U((uintptr_t)aclp, !=, 0);
3545		err = zfs_aclset_common(zp, aclp, cr, tx);
3546		ASSERT0(err);
3547		if (zp->z_acl_cached)
3548			zfs_acl_free(zp->z_acl_cached);
3549		zp->z_acl_cached = aclp;
3550		aclp = NULL;
3551	}
3552
3553
3554	if (mask & AT_ATIME) {
3555		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3556		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3557		    &zp->z_atime, sizeof (zp->z_atime));
3558	}
3559
3560	if (mask & AT_MTIME) {
3561		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3562		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3563		    mtime, sizeof (mtime));
3564	}
3565
3566	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3567	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3568		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3569		    NULL, mtime, sizeof (mtime));
3570		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3571		    &ctime, sizeof (ctime));
3572		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3573		    B_TRUE);
3574	} else if (mask != 0) {
3575		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3576		    &ctime, sizeof (ctime));
3577		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3578		    B_TRUE);
3579		if (attrzp) {
3580			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3581			    SA_ZPL_CTIME(zfsvfs), NULL,
3582			    &ctime, sizeof (ctime));
3583			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3584			    mtime, ctime, B_TRUE);
3585		}
3586	}
3587	/*
3588	 * Do this after setting timestamps to prevent timestamp
3589	 * update from toggling bit
3590	 */
3591
3592	if (xoap && (mask & AT_XVATTR)) {
3593
3594		/*
3595		 * restore trimmed off masks
3596		 * so that return masks can be set for caller.
3597		 */
3598
3599		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3600			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3601		}
3602		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3603			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3604		}
3605		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3606			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3607		}
3608		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3609			XVA_SET_REQ(xvap, XAT_NODUMP);
3610		}
3611		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3612			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3613		}
3614		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3615			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3616		}
3617
3618		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3619			ASSERT(vp->v_type == VREG);
3620
3621		zfs_xvattr_set(zp, xvap, tx);
3622	}
3623
3624	if (fuid_dirtied)
3625		zfs_fuid_sync(zfsvfs, tx);
3626
3627	if (mask != 0)
3628		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3629
3630	mutex_exit(&zp->z_lock);
3631	if (mask & (AT_UID|AT_GID|AT_MODE))
3632		mutex_exit(&zp->z_acl_lock);
3633
3634	if (attrzp) {
3635		if (mask & (AT_UID|AT_GID|AT_MODE))
3636			mutex_exit(&attrzp->z_acl_lock);
3637		mutex_exit(&attrzp->z_lock);
3638	}
3639out:
3640	if (err == 0 && attrzp) {
3641		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3642		    xattr_count, tx);
3643		ASSERT(err2 == 0);
3644	}
3645
3646	if (attrzp)
3647		VN_RELE(ZTOV(attrzp));
3648
3649	if (aclp)
3650		zfs_acl_free(aclp);
3651
3652	if (fuidp) {
3653		zfs_fuid_info_free(fuidp);
3654		fuidp = NULL;
3655	}
3656
3657	if (err) {
3658		dmu_tx_abort(tx);
3659		if (err == ERESTART)
3660			goto top;
3661	} else {
3662		err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3663		dmu_tx_commit(tx);
3664	}
3665
3666out2:
3667	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3668		zil_commit(zilog, 0);
3669
3670	ZFS_EXIT(zfsvfs);
3671	return (err);
3672}
3673
3674typedef struct zfs_zlock {
3675	krwlock_t	*zl_rwlock;	/* lock we acquired */
3676	znode_t		*zl_znode;	/* znode we held */
3677	struct zfs_zlock *zl_next;	/* next in list */
3678} zfs_zlock_t;
3679
3680/*
3681 * Drop locks and release vnodes that were held by zfs_rename_lock().
3682 */
3683static void
3684zfs_rename_unlock(zfs_zlock_t **zlpp)
3685{
3686	zfs_zlock_t *zl;
3687
3688	while ((zl = *zlpp) != NULL) {
3689		if (zl->zl_znode != NULL)
3690			VN_RELE(ZTOV(zl->zl_znode));
3691		rw_exit(zl->zl_rwlock);
3692		*zlpp = zl->zl_next;
3693		kmem_free(zl, sizeof (*zl));
3694	}
3695}
3696
3697/*
3698 * Search back through the directory tree, using the ".." entries.
3699 * Lock each directory in the chain to prevent concurrent renames.
3700 * Fail any attempt to move a directory into one of its own descendants.
3701 * XXX - z_parent_lock can overlap with map or grow locks
3702 */
3703static int
3704zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3705{
3706	zfs_zlock_t	*zl;
3707	znode_t		*zp = tdzp;
3708	uint64_t	rootid = zp->z_zfsvfs->z_root;
3709	uint64_t	oidp = zp->z_id;
3710	krwlock_t	*rwlp = &szp->z_parent_lock;
3711	krw_t		rw = RW_WRITER;
3712
3713	/*
3714	 * First pass write-locks szp and compares to zp->z_id.
3715	 * Later passes read-lock zp and compare to zp->z_parent.
3716	 */
3717	do {
3718		if (!rw_tryenter(rwlp, rw)) {
3719			/*
3720			 * Another thread is renaming in this path.
3721			 * Note that if we are a WRITER, we don't have any
3722			 * parent_locks held yet.
3723			 */
3724			if (rw == RW_READER && zp->z_id > szp->z_id) {
3725				/*
3726				 * Drop our locks and restart
3727				 */
3728				zfs_rename_unlock(&zl);
3729				*zlpp = NULL;
3730				zp = tdzp;
3731				oidp = zp->z_id;
3732				rwlp = &szp->z_parent_lock;
3733				rw = RW_WRITER;
3734				continue;
3735			} else {
3736				/*
3737				 * Wait for other thread to drop its locks
3738				 */
3739				rw_enter(rwlp, rw);
3740			}
3741		}
3742
3743		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3744		zl->zl_rwlock = rwlp;
3745		zl->zl_znode = NULL;
3746		zl->zl_next = *zlpp;
3747		*zlpp = zl;
3748
3749		if (oidp == szp->z_id)		/* We're a descendant of szp */
3750			return (SET_ERROR(EINVAL));
3751
3752		if (oidp == rootid)		/* We've hit the top */
3753			return (0);
3754
3755		if (rw == RW_READER) {		/* i.e. not the first pass */
3756			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3757			if (error)
3758				return (error);
3759			zl->zl_znode = zp;
3760		}
3761		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3762		    &oidp, sizeof (oidp));
3763		rwlp = &zp->z_parent_lock;
3764		rw = RW_READER;
3765
3766	} while (zp->z_id != sdzp->z_id);
3767
3768	return (0);
3769}
3770
3771/*
3772 * Move an entry from the provided source directory to the target
3773 * directory.  Change the entry name as indicated.
3774 *
3775 *	IN:	sdvp	- Source directory containing the "old entry".
3776 *		snm	- Old entry name.
3777 *		tdvp	- Target directory to contain the "new entry".
3778 *		tnm	- New entry name.
3779 *		cr	- credentials of caller.
3780 *		ct	- caller context
3781 *		flags	- case flags
3782 *
3783 *	RETURN:	0 on success, error code on failure.
3784 *
3785 * Timestamps:
3786 *	sdvp,tdvp - ctime|mtime updated
3787 */
3788/*ARGSUSED*/
3789static int
3790zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3791    caller_context_t *ct, int flags)
3792{
3793	znode_t		*tdzp, *sdzp, *szp, *tzp;
3794	zfsvfs_t 	*zfsvfs;
3795	zilog_t		*zilog;
3796	vnode_t		*realvp;
3797	zfs_dirlock_t	*sdl, *tdl;
3798	dmu_tx_t	*tx;
3799	zfs_zlock_t	*zl;
3800	int		cmp, serr, terr;
3801	int		error = 0;
3802	int		zflg = 0;
3803	boolean_t	waited = B_FALSE;
3804
3805	tdzp = VTOZ(tdvp);
3806	ZFS_VERIFY_ZP(tdzp);
3807	zfsvfs = tdzp->z_zfsvfs;
3808	ZFS_ENTER(zfsvfs);
3809	zilog = zfsvfs->z_log;
3810	sdzp = VTOZ(sdvp);
3811
3812	/*
3813	 * In case sdzp is not valid, let's be sure to exit from the right
3814	 * zfsvfs_t.
3815	 */
3816	if (sdzp->z_sa_hdl == NULL) {
3817		ZFS_EXIT(zfsvfs);
3818		return (SET_ERROR(EIO));
3819	}
3820
3821	/*
3822	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3823	 * ctldir appear to have the same v_vfsp.
3824	 */
3825	if (sdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3826		ZFS_EXIT(zfsvfs);
3827		return (SET_ERROR(EXDEV));
3828	}
3829
3830	if (zfsvfs->z_utf8 && u8_validate(tnm,
3831	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3832		ZFS_EXIT(zfsvfs);
3833		return (SET_ERROR(EILSEQ));
3834	}
3835
3836	if (flags & FIGNORECASE)
3837		zflg |= ZCILOOK;
3838
3839top:
3840	szp = NULL;
3841	tzp = NULL;
3842	zl = NULL;
3843
3844	/*
3845	 * This is to prevent the creation of links into attribute space
3846	 * by renaming a linked file into/outof an attribute directory.
3847	 * See the comment in zfs_link() for why this is considered bad.
3848	 */
3849	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3850		ZFS_EXIT(zfsvfs);
3851		return (SET_ERROR(EINVAL));
3852	}
3853
3854	/*
3855	 * Lock source and target directory entries.  To prevent deadlock,
3856	 * a lock ordering must be defined.  We lock the directory with
3857	 * the smallest object id first, or if it's a tie, the one with
3858	 * the lexically first name.
3859	 */
3860	if (sdzp->z_id < tdzp->z_id) {
3861		cmp = -1;
3862	} else if (sdzp->z_id > tdzp->z_id) {
3863		cmp = 1;
3864	} else {
3865		/*
3866		 * First compare the two name arguments without
3867		 * considering any case folding.
3868		 */
3869		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3870
3871		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3872		ASSERT(error == 0 || !zfsvfs->z_utf8);
3873		if (cmp == 0) {
3874			/*
3875			 * POSIX: "If the old argument and the new argument
3876			 * both refer to links to the same existing file,
3877			 * the rename() function shall return successfully
3878			 * and perform no other action."
3879			 */
3880			ZFS_EXIT(zfsvfs);
3881			return (0);
3882		}
3883		/*
3884		 * If the file system is case-folding, then we may
3885		 * have some more checking to do.  A case-folding file
3886		 * system is either supporting mixed case sensitivity
3887		 * access or is completely case-insensitive.  Note
3888		 * that the file system is always case preserving.
3889		 *
3890		 * In mixed sensitivity mode case sensitive behavior
3891		 * is the default.  FIGNORECASE must be used to
3892		 * explicitly request case insensitive behavior.
3893		 *
3894		 * If the source and target names provided differ only
3895		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3896		 * we will treat this as a special case in the
3897		 * case-insensitive mode: as long as the source name
3898		 * is an exact match, we will allow this to proceed as
3899		 * a name-change request.
3900		 */
3901		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3902		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3903		    flags & FIGNORECASE)) &&
3904		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3905		    &error) == 0) {
3906			/*
3907			 * case preserving rename request, require exact
3908			 * name matches
3909			 */
3910			zflg |= ZCIEXACT;
3911			zflg &= ~ZCILOOK;
3912		}
3913	}
3914
3915	/*
3916	 * If the source and destination directories are the same, we should
3917	 * grab the z_name_lock of that directory only once.
3918	 */
3919	if (sdzp == tdzp) {
3920		zflg |= ZHAVELOCK;
3921		rw_enter(&sdzp->z_name_lock, RW_READER);
3922	}
3923
3924	if (cmp < 0) {
3925		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3926		    ZEXISTS | zflg, NULL, NULL);
3927		terr = zfs_dirent_lock(&tdl,
3928		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3929	} else {
3930		terr = zfs_dirent_lock(&tdl,
3931		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3932		serr = zfs_dirent_lock(&sdl,
3933		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3934		    NULL, NULL);
3935	}
3936
3937	if (serr) {
3938		/*
3939		 * Source entry invalid or not there.
3940		 */
3941		if (!terr) {
3942			zfs_dirent_unlock(tdl);
3943			if (tzp)
3944				VN_RELE(ZTOV(tzp));
3945		}
3946
3947		if (sdzp == tdzp)
3948			rw_exit(&sdzp->z_name_lock);
3949
3950		/*
3951		 * FreeBSD: In OpenSolaris they only check if rename source is
3952		 * ".." here, because "." is handled in their lookup. This is
3953		 * not the case for FreeBSD, so we check for "." explicitly.
3954		 */
3955		if (strcmp(snm, ".") == 0 || strcmp(snm, "..") == 0)
3956			serr = SET_ERROR(EINVAL);
3957		ZFS_EXIT(zfsvfs);
3958		return (serr);
3959	}
3960	if (terr) {
3961		zfs_dirent_unlock(sdl);
3962		VN_RELE(ZTOV(szp));
3963
3964		if (sdzp == tdzp)
3965			rw_exit(&sdzp->z_name_lock);
3966
3967		if (strcmp(tnm, "..") == 0)
3968			terr = SET_ERROR(EINVAL);
3969		ZFS_EXIT(zfsvfs);
3970		return (terr);
3971	}
3972
3973	/*
3974	 * Must have write access at the source to remove the old entry
3975	 * and write access at the target to create the new entry.
3976	 * Note that if target and source are the same, this can be
3977	 * done in a single check.
3978	 */
3979
3980	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3981		goto out;
3982
3983	if (ZTOV(szp)->v_type == VDIR) {
3984		/*
3985		 * Check to make sure rename is valid.
3986		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3987		 */
3988		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3989			goto out;
3990	}
3991
3992	/*
3993	 * Does target exist?
3994	 */
3995	if (tzp) {
3996		/*
3997		 * Source and target must be the same type.
3998		 */
3999		if (ZTOV(szp)->v_type == VDIR) {
4000			if (ZTOV(tzp)->v_type != VDIR) {
4001				error = SET_ERROR(ENOTDIR);
4002				goto out;
4003			}
4004		} else {
4005			if (ZTOV(tzp)->v_type == VDIR) {
4006				error = SET_ERROR(EISDIR);
4007				goto out;
4008			}
4009		}
4010		/*
4011		 * POSIX dictates that when the source and target
4012		 * entries refer to the same file object, rename
4013		 * must do nothing and exit without error.
4014		 */
4015		if (szp->z_id == tzp->z_id) {
4016			error = 0;
4017			goto out;
4018		}
4019	}
4020
4021	vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
4022	if (tzp)
4023		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
4024
4025	/*
4026	 * notify the target directory if it is not the same
4027	 * as source directory.
4028	 */
4029	if (tdvp != sdvp) {
4030		vnevent_rename_dest_dir(tdvp, ct);
4031	}
4032
4033	tx = dmu_tx_create(zfsvfs->z_os);
4034	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4035	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
4036	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
4037	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
4038	if (sdzp != tdzp) {
4039		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
4040		zfs_sa_upgrade_txholds(tx, tdzp);
4041	}
4042	if (tzp) {
4043		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
4044		zfs_sa_upgrade_txholds(tx, tzp);
4045	}
4046
4047	zfs_sa_upgrade_txholds(tx, szp);
4048	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
4049	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4050	if (error) {
4051		if (zl != NULL)
4052			zfs_rename_unlock(&zl);
4053		zfs_dirent_unlock(sdl);
4054		zfs_dirent_unlock(tdl);
4055
4056		if (sdzp == tdzp)
4057			rw_exit(&sdzp->z_name_lock);
4058
4059		VN_RELE(ZTOV(szp));
4060		if (tzp)
4061			VN_RELE(ZTOV(tzp));
4062		if (error == ERESTART) {
4063			waited = B_TRUE;
4064			dmu_tx_wait(tx);
4065			dmu_tx_abort(tx);
4066			goto top;
4067		}
4068		dmu_tx_abort(tx);
4069		ZFS_EXIT(zfsvfs);
4070		return (error);
4071	}
4072
4073	if (tzp)	/* Attempt to remove the existing target */
4074		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
4075
4076	if (error == 0) {
4077		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
4078		if (error == 0) {
4079			szp->z_pflags |= ZFS_AV_MODIFIED;
4080
4081			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
4082			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
4083			ASSERT0(error);
4084
4085			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
4086			if (error == 0) {
4087				zfs_log_rename(zilog, tx, TX_RENAME |
4088				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
4089				    sdl->dl_name, tdzp, tdl->dl_name, szp);
4090
4091				/*
4092				 * Update path information for the target vnode
4093				 */
4094				vn_renamepath(tdvp, ZTOV(szp), tnm,
4095				    strlen(tnm));
4096			} else {
4097				/*
4098				 * At this point, we have successfully created
4099				 * the target name, but have failed to remove
4100				 * the source name.  Since the create was done
4101				 * with the ZRENAMING flag, there are
4102				 * complications; for one, the link count is
4103				 * wrong.  The easiest way to deal with this
4104				 * is to remove the newly created target, and
4105				 * return the original error.  This must
4106				 * succeed; fortunately, it is very unlikely to
4107				 * fail, since we just created it.
4108				 */
4109				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
4110				    ZRENAMING, NULL), ==, 0);
4111			}
4112		}
4113#ifdef FREEBSD_NAMECACHE
4114		if (error == 0) {
4115			cache_purge(sdvp);
4116			cache_purge(tdvp);
4117			cache_purge(ZTOV(szp));
4118			if (tzp)
4119				cache_purge(ZTOV(tzp));
4120		}
4121#endif
4122	}
4123
4124	dmu_tx_commit(tx);
4125out:
4126	if (zl != NULL)
4127		zfs_rename_unlock(&zl);
4128
4129	zfs_dirent_unlock(sdl);
4130	zfs_dirent_unlock(tdl);
4131
4132	if (sdzp == tdzp)
4133		rw_exit(&sdzp->z_name_lock);
4134
4135
4136	VN_RELE(ZTOV(szp));
4137	if (tzp)
4138		VN_RELE(ZTOV(tzp));
4139
4140	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4141		zil_commit(zilog, 0);
4142
4143	ZFS_EXIT(zfsvfs);
4144
4145	return (error);
4146}
4147
4148/*
4149 * Insert the indicated symbolic reference entry into the directory.
4150 *
4151 *	IN:	dvp	- Directory to contain new symbolic link.
4152 *		link	- Name for new symlink entry.
4153 *		vap	- Attributes of new entry.
4154 *		cr	- credentials of caller.
4155 *		ct	- caller context
4156 *		flags	- case flags
4157 *
4158 *	RETURN:	0 on success, error code on failure.
4159 *
4160 * Timestamps:
4161 *	dvp - ctime|mtime updated
4162 */
4163/*ARGSUSED*/
4164static int
4165zfs_symlink(vnode_t *dvp, vnode_t **vpp, char *name, vattr_t *vap, char *link,
4166    cred_t *cr, kthread_t *td)
4167{
4168	znode_t		*zp, *dzp = VTOZ(dvp);
4169	zfs_dirlock_t	*dl;
4170	dmu_tx_t	*tx;
4171	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
4172	zilog_t		*zilog;
4173	uint64_t	len = strlen(link);
4174	int		error;
4175	int		zflg = ZNEW;
4176	zfs_acl_ids_t	acl_ids;
4177	boolean_t	fuid_dirtied;
4178	uint64_t	txtype = TX_SYMLINK;
4179	boolean_t	waited = B_FALSE;
4180	int		flags = 0;
4181
4182	ASSERT(vap->va_type == VLNK);
4183
4184	ZFS_ENTER(zfsvfs);
4185	ZFS_VERIFY_ZP(dzp);
4186	zilog = zfsvfs->z_log;
4187
4188	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
4189	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4190		ZFS_EXIT(zfsvfs);
4191		return (SET_ERROR(EILSEQ));
4192	}
4193	if (flags & FIGNORECASE)
4194		zflg |= ZCILOOK;
4195
4196	if (len > MAXPATHLEN) {
4197		ZFS_EXIT(zfsvfs);
4198		return (SET_ERROR(ENAMETOOLONG));
4199	}
4200
4201	if ((error = zfs_acl_ids_create(dzp, 0,
4202	    vap, cr, NULL, &acl_ids)) != 0) {
4203		ZFS_EXIT(zfsvfs);
4204		return (error);
4205	}
4206
4207	getnewvnode_reserve(1);
4208
4209top:
4210	/*
4211	 * Attempt to lock directory; fail if entry already exists.
4212	 */
4213	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
4214	if (error) {
4215		zfs_acl_ids_free(&acl_ids);
4216		getnewvnode_drop_reserve();
4217		ZFS_EXIT(zfsvfs);
4218		return (error);
4219	}
4220
4221	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4222		zfs_acl_ids_free(&acl_ids);
4223		zfs_dirent_unlock(dl);
4224		getnewvnode_drop_reserve();
4225		ZFS_EXIT(zfsvfs);
4226		return (error);
4227	}
4228
4229	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
4230		zfs_acl_ids_free(&acl_ids);
4231		zfs_dirent_unlock(dl);
4232		getnewvnode_drop_reserve();
4233		ZFS_EXIT(zfsvfs);
4234		return (SET_ERROR(EDQUOT));
4235	}
4236	tx = dmu_tx_create(zfsvfs->z_os);
4237	fuid_dirtied = zfsvfs->z_fuid_dirty;
4238	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
4239	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4240	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
4241	    ZFS_SA_BASE_ATTR_SIZE + len);
4242	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
4243	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
4244		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
4245		    acl_ids.z_aclp->z_acl_bytes);
4246	}
4247	if (fuid_dirtied)
4248		zfs_fuid_txhold(zfsvfs, tx);
4249	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4250	if (error) {
4251		zfs_dirent_unlock(dl);
4252		if (error == ERESTART) {
4253			waited = B_TRUE;
4254			dmu_tx_wait(tx);
4255			dmu_tx_abort(tx);
4256			goto top;
4257		}
4258		zfs_acl_ids_free(&acl_ids);
4259		dmu_tx_abort(tx);
4260		getnewvnode_drop_reserve();
4261		ZFS_EXIT(zfsvfs);
4262		return (error);
4263	}
4264
4265	/*
4266	 * Create a new object for the symlink.
4267	 * for version 4 ZPL datsets the symlink will be an SA attribute
4268	 */
4269	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
4270
4271	if (fuid_dirtied)
4272		zfs_fuid_sync(zfsvfs, tx);
4273
4274	mutex_enter(&zp->z_lock);
4275	if (zp->z_is_sa)
4276		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
4277		    link, len, tx);
4278	else
4279		zfs_sa_symlink(zp, link, len, tx);
4280	mutex_exit(&zp->z_lock);
4281
4282	zp->z_size = len;
4283	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
4284	    &zp->z_size, sizeof (zp->z_size), tx);
4285	/*
4286	 * Insert the new object into the directory.
4287	 */
4288	(void) zfs_link_create(dl, zp, tx, ZNEW);
4289
4290	if (flags & FIGNORECASE)
4291		txtype |= TX_CI;
4292	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
4293	*vpp = ZTOV(zp);
4294
4295	zfs_acl_ids_free(&acl_ids);
4296
4297	dmu_tx_commit(tx);
4298
4299	getnewvnode_drop_reserve();
4300
4301	zfs_dirent_unlock(dl);
4302
4303	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4304		zil_commit(zilog, 0);
4305
4306	ZFS_EXIT(zfsvfs);
4307	return (error);
4308}
4309
4310/*
4311 * Return, in the buffer contained in the provided uio structure,
4312 * the symbolic path referred to by vp.
4313 *
4314 *	IN:	vp	- vnode of symbolic link.
4315 *		uio	- structure to contain the link path.
4316 *		cr	- credentials of caller.
4317 *		ct	- caller context
4318 *
4319 *	OUT:	uio	- structure containing the link path.
4320 *
4321 *	RETURN:	0 on success, error code on failure.
4322 *
4323 * Timestamps:
4324 *	vp - atime updated
4325 */
4326/* ARGSUSED */
4327static int
4328zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
4329{
4330	znode_t		*zp = VTOZ(vp);
4331	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4332	int		error;
4333
4334	ZFS_ENTER(zfsvfs);
4335	ZFS_VERIFY_ZP(zp);
4336
4337	mutex_enter(&zp->z_lock);
4338	if (zp->z_is_sa)
4339		error = sa_lookup_uio(zp->z_sa_hdl,
4340		    SA_ZPL_SYMLINK(zfsvfs), uio);
4341	else
4342		error = zfs_sa_readlink(zp, uio);
4343	mutex_exit(&zp->z_lock);
4344
4345	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4346
4347	ZFS_EXIT(zfsvfs);
4348	return (error);
4349}
4350
4351/*
4352 * Insert a new entry into directory tdvp referencing svp.
4353 *
4354 *	IN:	tdvp	- Directory to contain new entry.
4355 *		svp	- vnode of new entry.
4356 *		name	- name of new entry.
4357 *		cr	- credentials of caller.
4358 *		ct	- caller context
4359 *
4360 *	RETURN:	0 on success, error code on failure.
4361 *
4362 * Timestamps:
4363 *	tdvp - ctime|mtime updated
4364 *	 svp - ctime updated
4365 */
4366/* ARGSUSED */
4367static int
4368zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4369    caller_context_t *ct, int flags)
4370{
4371	znode_t		*dzp = VTOZ(tdvp);
4372	znode_t		*tzp, *szp;
4373	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
4374	zilog_t		*zilog;
4375	zfs_dirlock_t	*dl;
4376	dmu_tx_t	*tx;
4377	vnode_t		*realvp;
4378	int		error;
4379	int		zf = ZNEW;
4380	uint64_t	parent;
4381	uid_t		owner;
4382	boolean_t	waited = B_FALSE;
4383
4384	ASSERT(tdvp->v_type == VDIR);
4385
4386	ZFS_ENTER(zfsvfs);
4387	ZFS_VERIFY_ZP(dzp);
4388	zilog = zfsvfs->z_log;
4389
4390	if (VOP_REALVP(svp, &realvp, ct) == 0)
4391		svp = realvp;
4392
4393	/*
4394	 * POSIX dictates that we return EPERM here.
4395	 * Better choices include ENOTSUP or EISDIR.
4396	 */
4397	if (svp->v_type == VDIR) {
4398		ZFS_EXIT(zfsvfs);
4399		return (SET_ERROR(EPERM));
4400	}
4401
4402	szp = VTOZ(svp);
4403	ZFS_VERIFY_ZP(szp);
4404
4405	/*
4406	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4407	 * ctldir appear to have the same v_vfsp.
4408	 */
4409	if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4410		ZFS_EXIT(zfsvfs);
4411		return (SET_ERROR(EXDEV));
4412	}
4413
4414	/* Prevent links to .zfs/shares files */
4415
4416	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4417	    &parent, sizeof (uint64_t))) != 0) {
4418		ZFS_EXIT(zfsvfs);
4419		return (error);
4420	}
4421	if (parent == zfsvfs->z_shares_dir) {
4422		ZFS_EXIT(zfsvfs);
4423		return (SET_ERROR(EPERM));
4424	}
4425
4426	if (zfsvfs->z_utf8 && u8_validate(name,
4427	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4428		ZFS_EXIT(zfsvfs);
4429		return (SET_ERROR(EILSEQ));
4430	}
4431	if (flags & FIGNORECASE)
4432		zf |= ZCILOOK;
4433
4434	/*
4435	 * We do not support links between attributes and non-attributes
4436	 * because of the potential security risk of creating links
4437	 * into "normal" file space in order to circumvent restrictions
4438	 * imposed in attribute space.
4439	 */
4440	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4441		ZFS_EXIT(zfsvfs);
4442		return (SET_ERROR(EINVAL));
4443	}
4444
4445
4446	owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4447	if (owner != crgetuid(cr) && secpolicy_basic_link(svp, cr) != 0) {
4448		ZFS_EXIT(zfsvfs);
4449		return (SET_ERROR(EPERM));
4450	}
4451
4452	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4453		ZFS_EXIT(zfsvfs);
4454		return (error);
4455	}
4456
4457top:
4458	/*
4459	 * Attempt to lock directory; fail if entry already exists.
4460	 */
4461	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4462	if (error) {
4463		ZFS_EXIT(zfsvfs);
4464		return (error);
4465	}
4466
4467	tx = dmu_tx_create(zfsvfs->z_os);
4468	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4469	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4470	zfs_sa_upgrade_txholds(tx, szp);
4471	zfs_sa_upgrade_txholds(tx, dzp);
4472	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4473	if (error) {
4474		zfs_dirent_unlock(dl);
4475		if (error == ERESTART) {
4476			waited = B_TRUE;
4477			dmu_tx_wait(tx);
4478			dmu_tx_abort(tx);
4479			goto top;
4480		}
4481		dmu_tx_abort(tx);
4482		ZFS_EXIT(zfsvfs);
4483		return (error);
4484	}
4485
4486	error = zfs_link_create(dl, szp, tx, 0);
4487
4488	if (error == 0) {
4489		uint64_t txtype = TX_LINK;
4490		if (flags & FIGNORECASE)
4491			txtype |= TX_CI;
4492		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4493	}
4494
4495	dmu_tx_commit(tx);
4496
4497	zfs_dirent_unlock(dl);
4498
4499	if (error == 0) {
4500		vnevent_link(svp, ct);
4501	}
4502
4503	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4504		zil_commit(zilog, 0);
4505
4506	ZFS_EXIT(zfsvfs);
4507	return (error);
4508}
4509
4510#ifdef illumos
4511/*
4512 * zfs_null_putapage() is used when the file system has been force
4513 * unmounted. It just drops the pages.
4514 */
4515/* ARGSUSED */
4516static int
4517zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4518    size_t *lenp, int flags, cred_t *cr)
4519{
4520	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4521	return (0);
4522}
4523
4524/*
4525 * Push a page out to disk, klustering if possible.
4526 *
4527 *	IN:	vp	- file to push page to.
4528 *		pp	- page to push.
4529 *		flags	- additional flags.
4530 *		cr	- credentials of caller.
4531 *
4532 *	OUT:	offp	- start of range pushed.
4533 *		lenp	- len of range pushed.
4534 *
4535 *	RETURN:	0 on success, error code on failure.
4536 *
4537 * NOTE: callers must have locked the page to be pushed.  On
4538 * exit, the page (and all other pages in the kluster) must be
4539 * unlocked.
4540 */
4541/* ARGSUSED */
4542static int
4543zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4544    size_t *lenp, int flags, cred_t *cr)
4545{
4546	znode_t		*zp = VTOZ(vp);
4547	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4548	dmu_tx_t	*tx;
4549	u_offset_t	off, koff;
4550	size_t		len, klen;
4551	int		err;
4552
4553	off = pp->p_offset;
4554	len = PAGESIZE;
4555	/*
4556	 * If our blocksize is bigger than the page size, try to kluster
4557	 * multiple pages so that we write a full block (thus avoiding
4558	 * a read-modify-write).
4559	 */
4560	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4561		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4562		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4563		ASSERT(koff <= zp->z_size);
4564		if (koff + klen > zp->z_size)
4565			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4566		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4567	}
4568	ASSERT3U(btop(len), ==, btopr(len));
4569
4570	/*
4571	 * Can't push pages past end-of-file.
4572	 */
4573	if (off >= zp->z_size) {
4574		/* ignore all pages */
4575		err = 0;
4576		goto out;
4577	} else if (off + len > zp->z_size) {
4578		int npages = btopr(zp->z_size - off);
4579		page_t *trunc;
4580
4581		page_list_break(&pp, &trunc, npages);
4582		/* ignore pages past end of file */
4583		if (trunc)
4584			pvn_write_done(trunc, flags);
4585		len = zp->z_size - off;
4586	}
4587
4588	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4589	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4590		err = SET_ERROR(EDQUOT);
4591		goto out;
4592	}
4593	tx = dmu_tx_create(zfsvfs->z_os);
4594	dmu_tx_hold_write(tx, zp->z_id, off, len);
4595
4596	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4597	zfs_sa_upgrade_txholds(tx, zp);
4598	err = dmu_tx_assign(tx, TXG_WAIT);
4599	if (err != 0) {
4600		dmu_tx_abort(tx);
4601		goto out;
4602	}
4603
4604	if (zp->z_blksz <= PAGESIZE) {
4605		caddr_t va = zfs_map_page(pp, S_READ);
4606		ASSERT3U(len, <=, PAGESIZE);
4607		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4608		zfs_unmap_page(pp, va);
4609	} else {
4610		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4611	}
4612
4613	if (err == 0) {
4614		uint64_t mtime[2], ctime[2];
4615		sa_bulk_attr_t bulk[3];
4616		int count = 0;
4617
4618		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4619		    &mtime, 16);
4620		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4621		    &ctime, 16);
4622		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4623		    &zp->z_pflags, 8);
4624		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4625		    B_TRUE);
4626		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4627	}
4628	dmu_tx_commit(tx);
4629
4630out:
4631	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4632	if (offp)
4633		*offp = off;
4634	if (lenp)
4635		*lenp = len;
4636
4637	return (err);
4638}
4639
4640/*
4641 * Copy the portion of the file indicated from pages into the file.
4642 * The pages are stored in a page list attached to the files vnode.
4643 *
4644 *	IN:	vp	- vnode of file to push page data to.
4645 *		off	- position in file to put data.
4646 *		len	- amount of data to write.
4647 *		flags	- flags to control the operation.
4648 *		cr	- credentials of caller.
4649 *		ct	- caller context.
4650 *
4651 *	RETURN:	0 on success, error code on failure.
4652 *
4653 * Timestamps:
4654 *	vp - ctime|mtime updated
4655 */
4656/*ARGSUSED*/
4657static int
4658zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4659    caller_context_t *ct)
4660{
4661	znode_t		*zp = VTOZ(vp);
4662	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4663	page_t		*pp;
4664	size_t		io_len;
4665	u_offset_t	io_off;
4666	uint_t		blksz;
4667	rl_t		*rl;
4668	int		error = 0;
4669
4670	ZFS_ENTER(zfsvfs);
4671	ZFS_VERIFY_ZP(zp);
4672
4673	/*
4674	 * Align this request to the file block size in case we kluster.
4675	 * XXX - this can result in pretty aggresive locking, which can
4676	 * impact simultanious read/write access.  One option might be
4677	 * to break up long requests (len == 0) into block-by-block
4678	 * operations to get narrower locking.
4679	 */
4680	blksz = zp->z_blksz;
4681	if (ISP2(blksz))
4682		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4683	else
4684		io_off = 0;
4685	if (len > 0 && ISP2(blksz))
4686		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4687	else
4688		io_len = 0;
4689
4690	if (io_len == 0) {
4691		/*
4692		 * Search the entire vp list for pages >= io_off.
4693		 */
4694		rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4695		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4696		goto out;
4697	}
4698	rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4699
4700	if (off > zp->z_size) {
4701		/* past end of file */
4702		zfs_range_unlock(rl);
4703		ZFS_EXIT(zfsvfs);
4704		return (0);
4705	}
4706
4707	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4708
4709	for (off = io_off; io_off < off + len; io_off += io_len) {
4710		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4711			pp = page_lookup(vp, io_off,
4712			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4713		} else {
4714			pp = page_lookup_nowait(vp, io_off,
4715			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4716		}
4717
4718		if (pp != NULL && pvn_getdirty(pp, flags)) {
4719			int err;
4720
4721			/*
4722			 * Found a dirty page to push
4723			 */
4724			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4725			if (err)
4726				error = err;
4727		} else {
4728			io_len = PAGESIZE;
4729		}
4730	}
4731out:
4732	zfs_range_unlock(rl);
4733	if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4734		zil_commit(zfsvfs->z_log, zp->z_id);
4735	ZFS_EXIT(zfsvfs);
4736	return (error);
4737}
4738#endif	/* illumos */
4739
4740/*ARGSUSED*/
4741void
4742zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4743{
4744	znode_t	*zp = VTOZ(vp);
4745	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4746	int error;
4747
4748	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4749	if (zp->z_sa_hdl == NULL) {
4750		/*
4751		 * The fs has been unmounted, or we did a
4752		 * suspend/resume and this file no longer exists.
4753		 */
4754		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4755		vrecycle(vp);
4756		return;
4757	}
4758
4759	mutex_enter(&zp->z_lock);
4760	if (zp->z_unlinked) {
4761		/*
4762		 * Fast path to recycle a vnode of a removed file.
4763		 */
4764		mutex_exit(&zp->z_lock);
4765		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4766		vrecycle(vp);
4767		return;
4768	}
4769	mutex_exit(&zp->z_lock);
4770
4771	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4772		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4773
4774		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4775		zfs_sa_upgrade_txholds(tx, zp);
4776		error = dmu_tx_assign(tx, TXG_WAIT);
4777		if (error) {
4778			dmu_tx_abort(tx);
4779		} else {
4780			mutex_enter(&zp->z_lock);
4781			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4782			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4783			zp->z_atime_dirty = 0;
4784			mutex_exit(&zp->z_lock);
4785			dmu_tx_commit(tx);
4786		}
4787	}
4788	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4789}
4790
4791#ifdef illumos
4792/*
4793 * Bounds-check the seek operation.
4794 *
4795 *	IN:	vp	- vnode seeking within
4796 *		ooff	- old file offset
4797 *		noffp	- pointer to new file offset
4798 *		ct	- caller context
4799 *
4800 *	RETURN:	0 on success, EINVAL if new offset invalid.
4801 */
4802/* ARGSUSED */
4803static int
4804zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4805    caller_context_t *ct)
4806{
4807	if (vp->v_type == VDIR)
4808		return (0);
4809	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4810}
4811
4812/*
4813 * Pre-filter the generic locking function to trap attempts to place
4814 * a mandatory lock on a memory mapped file.
4815 */
4816static int
4817zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4818    flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4819{
4820	znode_t *zp = VTOZ(vp);
4821	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4822
4823	ZFS_ENTER(zfsvfs);
4824	ZFS_VERIFY_ZP(zp);
4825
4826	/*
4827	 * We are following the UFS semantics with respect to mapcnt
4828	 * here: If we see that the file is mapped already, then we will
4829	 * return an error, but we don't worry about races between this
4830	 * function and zfs_map().
4831	 */
4832	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4833		ZFS_EXIT(zfsvfs);
4834		return (SET_ERROR(EAGAIN));
4835	}
4836	ZFS_EXIT(zfsvfs);
4837	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4838}
4839
4840/*
4841 * If we can't find a page in the cache, we will create a new page
4842 * and fill it with file data.  For efficiency, we may try to fill
4843 * multiple pages at once (klustering) to fill up the supplied page
4844 * list.  Note that the pages to be filled are held with an exclusive
4845 * lock to prevent access by other threads while they are being filled.
4846 */
4847static int
4848zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4849    caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4850{
4851	znode_t *zp = VTOZ(vp);
4852	page_t *pp, *cur_pp;
4853	objset_t *os = zp->z_zfsvfs->z_os;
4854	u_offset_t io_off, total;
4855	size_t io_len;
4856	int err;
4857
4858	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4859		/*
4860		 * We only have a single page, don't bother klustering
4861		 */
4862		io_off = off;
4863		io_len = PAGESIZE;
4864		pp = page_create_va(vp, io_off, io_len,
4865		    PG_EXCL | PG_WAIT, seg, addr);
4866	} else {
4867		/*
4868		 * Try to find enough pages to fill the page list
4869		 */
4870		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4871		    &io_len, off, plsz, 0);
4872	}
4873	if (pp == NULL) {
4874		/*
4875		 * The page already exists, nothing to do here.
4876		 */
4877		*pl = NULL;
4878		return (0);
4879	}
4880
4881	/*
4882	 * Fill the pages in the kluster.
4883	 */
4884	cur_pp = pp;
4885	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4886		caddr_t va;
4887
4888		ASSERT3U(io_off, ==, cur_pp->p_offset);
4889		va = zfs_map_page(cur_pp, S_WRITE);
4890		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4891		    DMU_READ_PREFETCH);
4892		zfs_unmap_page(cur_pp, va);
4893		if (err) {
4894			/* On error, toss the entire kluster */
4895			pvn_read_done(pp, B_ERROR);
4896			/* convert checksum errors into IO errors */
4897			if (err == ECKSUM)
4898				err = SET_ERROR(EIO);
4899			return (err);
4900		}
4901		cur_pp = cur_pp->p_next;
4902	}
4903
4904	/*
4905	 * Fill in the page list array from the kluster starting
4906	 * from the desired offset `off'.
4907	 * NOTE: the page list will always be null terminated.
4908	 */
4909	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4910	ASSERT(pl == NULL || (*pl)->p_offset == off);
4911
4912	return (0);
4913}
4914
4915/*
4916 * Return pointers to the pages for the file region [off, off + len]
4917 * in the pl array.  If plsz is greater than len, this function may
4918 * also return page pointers from after the specified region
4919 * (i.e. the region [off, off + plsz]).  These additional pages are
4920 * only returned if they are already in the cache, or were created as
4921 * part of a klustered read.
4922 *
4923 *	IN:	vp	- vnode of file to get data from.
4924 *		off	- position in file to get data from.
4925 *		len	- amount of data to retrieve.
4926 *		plsz	- length of provided page list.
4927 *		seg	- segment to obtain pages for.
4928 *		addr	- virtual address of fault.
4929 *		rw	- mode of created pages.
4930 *		cr	- credentials of caller.
4931 *		ct	- caller context.
4932 *
4933 *	OUT:	protp	- protection mode of created pages.
4934 *		pl	- list of pages created.
4935 *
4936 *	RETURN:	0 on success, error code on failure.
4937 *
4938 * Timestamps:
4939 *	vp - atime updated
4940 */
4941/* ARGSUSED */
4942static int
4943zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4944    page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4945    enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4946{
4947	znode_t		*zp = VTOZ(vp);
4948	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4949	page_t		**pl0 = pl;
4950	int		err = 0;
4951
4952	/* we do our own caching, faultahead is unnecessary */
4953	if (pl == NULL)
4954		return (0);
4955	else if (len > plsz)
4956		len = plsz;
4957	else
4958		len = P2ROUNDUP(len, PAGESIZE);
4959	ASSERT(plsz >= len);
4960
4961	ZFS_ENTER(zfsvfs);
4962	ZFS_VERIFY_ZP(zp);
4963
4964	if (protp)
4965		*protp = PROT_ALL;
4966
4967	/*
4968	 * Loop through the requested range [off, off + len) looking
4969	 * for pages.  If we don't find a page, we will need to create
4970	 * a new page and fill it with data from the file.
4971	 */
4972	while (len > 0) {
4973		if (*pl = page_lookup(vp, off, SE_SHARED))
4974			*(pl+1) = NULL;
4975		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4976			goto out;
4977		while (*pl) {
4978			ASSERT3U((*pl)->p_offset, ==, off);
4979			off += PAGESIZE;
4980			addr += PAGESIZE;
4981			if (len > 0) {
4982				ASSERT3U(len, >=, PAGESIZE);
4983				len -= PAGESIZE;
4984			}
4985			ASSERT3U(plsz, >=, PAGESIZE);
4986			plsz -= PAGESIZE;
4987			pl++;
4988		}
4989	}
4990
4991	/*
4992	 * Fill out the page array with any pages already in the cache.
4993	 */
4994	while (plsz > 0 &&
4995	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4996			off += PAGESIZE;
4997			plsz -= PAGESIZE;
4998	}
4999out:
5000	if (err) {
5001		/*
5002		 * Release any pages we have previously locked.
5003		 */
5004		while (pl > pl0)
5005			page_unlock(*--pl);
5006	} else {
5007		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
5008	}
5009
5010	*pl = NULL;
5011
5012	ZFS_EXIT(zfsvfs);
5013	return (err);
5014}
5015
5016/*
5017 * Request a memory map for a section of a file.  This code interacts
5018 * with common code and the VM system as follows:
5019 *
5020 * - common code calls mmap(), which ends up in smmap_common()
5021 * - this calls VOP_MAP(), which takes you into (say) zfs
5022 * - zfs_map() calls as_map(), passing segvn_create() as the callback
5023 * - segvn_create() creates the new segment and calls VOP_ADDMAP()
5024 * - zfs_addmap() updates z_mapcnt
5025 */
5026/*ARGSUSED*/
5027static int
5028zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
5029    size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
5030    caller_context_t *ct)
5031{
5032	znode_t *zp = VTOZ(vp);
5033	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5034	segvn_crargs_t	vn_a;
5035	int		error;
5036
5037	ZFS_ENTER(zfsvfs);
5038	ZFS_VERIFY_ZP(zp);
5039
5040	if ((prot & PROT_WRITE) && (zp->z_pflags &
5041	    (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
5042		ZFS_EXIT(zfsvfs);
5043		return (SET_ERROR(EPERM));
5044	}
5045
5046	if ((prot & (PROT_READ | PROT_EXEC)) &&
5047	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
5048		ZFS_EXIT(zfsvfs);
5049		return (SET_ERROR(EACCES));
5050	}
5051
5052	if (vp->v_flag & VNOMAP) {
5053		ZFS_EXIT(zfsvfs);
5054		return (SET_ERROR(ENOSYS));
5055	}
5056
5057	if (off < 0 || len > MAXOFFSET_T - off) {
5058		ZFS_EXIT(zfsvfs);
5059		return (SET_ERROR(ENXIO));
5060	}
5061
5062	if (vp->v_type != VREG) {
5063		ZFS_EXIT(zfsvfs);
5064		return (SET_ERROR(ENODEV));
5065	}
5066
5067	/*
5068	 * If file is locked, disallow mapping.
5069	 */
5070	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
5071		ZFS_EXIT(zfsvfs);
5072		return (SET_ERROR(EAGAIN));
5073	}
5074
5075	as_rangelock(as);
5076	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
5077	if (error != 0) {
5078		as_rangeunlock(as);
5079		ZFS_EXIT(zfsvfs);
5080		return (error);
5081	}
5082
5083	vn_a.vp = vp;
5084	vn_a.offset = (u_offset_t)off;
5085	vn_a.type = flags & MAP_TYPE;
5086	vn_a.prot = prot;
5087	vn_a.maxprot = maxprot;
5088	vn_a.cred = cr;
5089	vn_a.amp = NULL;
5090	vn_a.flags = flags & ~MAP_TYPE;
5091	vn_a.szc = 0;
5092	vn_a.lgrp_mem_policy_flags = 0;
5093
5094	error = as_map(as, *addrp, len, segvn_create, &vn_a);
5095
5096	as_rangeunlock(as);
5097	ZFS_EXIT(zfsvfs);
5098	return (error);
5099}
5100
5101/* ARGSUSED */
5102static int
5103zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5104    size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
5105    caller_context_t *ct)
5106{
5107	uint64_t pages = btopr(len);
5108
5109	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
5110	return (0);
5111}
5112
5113/*
5114 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
5115 * more accurate mtime for the associated file.  Since we don't have a way of
5116 * detecting when the data was actually modified, we have to resort to
5117 * heuristics.  If an explicit msync() is done, then we mark the mtime when the
5118 * last page is pushed.  The problem occurs when the msync() call is omitted,
5119 * which by far the most common case:
5120 *
5121 *	open()
5122 *	mmap()
5123 *	<modify memory>
5124 *	munmap()
5125 *	close()
5126 *	<time lapse>
5127 *	putpage() via fsflush
5128 *
5129 * If we wait until fsflush to come along, we can have a modification time that
5130 * is some arbitrary point in the future.  In order to prevent this in the
5131 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
5132 * torn down.
5133 */
5134/* ARGSUSED */
5135static int
5136zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5137    size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
5138    caller_context_t *ct)
5139{
5140	uint64_t pages = btopr(len);
5141
5142	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
5143	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
5144
5145	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
5146	    vn_has_cached_data(vp))
5147		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
5148
5149	return (0);
5150}
5151
5152/*
5153 * Free or allocate space in a file.  Currently, this function only
5154 * supports the `F_FREESP' command.  However, this command is somewhat
5155 * misnamed, as its functionality includes the ability to allocate as
5156 * well as free space.
5157 *
5158 *	IN:	vp	- vnode of file to free data in.
5159 *		cmd	- action to take (only F_FREESP supported).
5160 *		bfp	- section of file to free/alloc.
5161 *		flag	- current file open mode flags.
5162 *		offset	- current file offset.
5163 *		cr	- credentials of caller [UNUSED].
5164 *		ct	- caller context.
5165 *
5166 *	RETURN:	0 on success, error code on failure.
5167 *
5168 * Timestamps:
5169 *	vp - ctime|mtime updated
5170 */
5171/* ARGSUSED */
5172static int
5173zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
5174    offset_t offset, cred_t *cr, caller_context_t *ct)
5175{
5176	znode_t		*zp = VTOZ(vp);
5177	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5178	uint64_t	off, len;
5179	int		error;
5180
5181	ZFS_ENTER(zfsvfs);
5182	ZFS_VERIFY_ZP(zp);
5183
5184	if (cmd != F_FREESP) {
5185		ZFS_EXIT(zfsvfs);
5186		return (SET_ERROR(EINVAL));
5187	}
5188
5189	/*
5190	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
5191	 * callers might not be able to detect properly that we are read-only,
5192	 * so check it explicitly here.
5193	 */
5194	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
5195		ZFS_EXIT(zfsvfs);
5196		return (SET_ERROR(EROFS));
5197	}
5198
5199	if (error = convoff(vp, bfp, 0, offset)) {
5200		ZFS_EXIT(zfsvfs);
5201		return (error);
5202	}
5203
5204	if (bfp->l_len < 0) {
5205		ZFS_EXIT(zfsvfs);
5206		return (SET_ERROR(EINVAL));
5207	}
5208
5209	off = bfp->l_start;
5210	len = bfp->l_len; /* 0 means from off to end of file */
5211
5212	error = zfs_freesp(zp, off, len, flag, TRUE);
5213
5214	ZFS_EXIT(zfsvfs);
5215	return (error);
5216}
5217#endif	/* illumos */
5218
5219CTASSERT(sizeof(struct zfid_short) <= sizeof(struct fid));
5220CTASSERT(sizeof(struct zfid_long) <= sizeof(struct fid));
5221
5222/*ARGSUSED*/
5223static int
5224zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
5225{
5226	znode_t		*zp = VTOZ(vp);
5227	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5228	uint32_t	gen;
5229	uint64_t	gen64;
5230	uint64_t	object = zp->z_id;
5231	zfid_short_t	*zfid;
5232	int		size, i, error;
5233
5234	ZFS_ENTER(zfsvfs);
5235	ZFS_VERIFY_ZP(zp);
5236
5237	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
5238	    &gen64, sizeof (uint64_t))) != 0) {
5239		ZFS_EXIT(zfsvfs);
5240		return (error);
5241	}
5242
5243	gen = (uint32_t)gen64;
5244
5245	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
5246
5247#ifdef illumos
5248	if (fidp->fid_len < size) {
5249		fidp->fid_len = size;
5250		ZFS_EXIT(zfsvfs);
5251		return (SET_ERROR(ENOSPC));
5252	}
5253#else
5254	fidp->fid_len = size;
5255#endif
5256
5257	zfid = (zfid_short_t *)fidp;
5258
5259	zfid->zf_len = size;
5260
5261	for (i = 0; i < sizeof (zfid->zf_object); i++)
5262		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
5263
5264	/* Must have a non-zero generation number to distinguish from .zfs */
5265	if (gen == 0)
5266		gen = 1;
5267	for (i = 0; i < sizeof (zfid->zf_gen); i++)
5268		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
5269
5270	if (size == LONG_FID_LEN) {
5271		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
5272		zfid_long_t	*zlfid;
5273
5274		zlfid = (zfid_long_t *)fidp;
5275
5276		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
5277			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
5278
5279		/* XXX - this should be the generation number for the objset */
5280		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
5281			zlfid->zf_setgen[i] = 0;
5282	}
5283
5284	ZFS_EXIT(zfsvfs);
5285	return (0);
5286}
5287
5288static int
5289zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
5290    caller_context_t *ct)
5291{
5292	znode_t		*zp, *xzp;
5293	zfsvfs_t	*zfsvfs;
5294	zfs_dirlock_t	*dl;
5295	int		error;
5296
5297	switch (cmd) {
5298	case _PC_LINK_MAX:
5299		*valp = INT_MAX;
5300		return (0);
5301
5302	case _PC_FILESIZEBITS:
5303		*valp = 64;
5304		return (0);
5305#ifdef illumos
5306	case _PC_XATTR_EXISTS:
5307		zp = VTOZ(vp);
5308		zfsvfs = zp->z_zfsvfs;
5309		ZFS_ENTER(zfsvfs);
5310		ZFS_VERIFY_ZP(zp);
5311		*valp = 0;
5312		error = zfs_dirent_lock(&dl, zp, "", &xzp,
5313		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
5314		if (error == 0) {
5315			zfs_dirent_unlock(dl);
5316			if (!zfs_dirempty(xzp))
5317				*valp = 1;
5318			VN_RELE(ZTOV(xzp));
5319		} else if (error == ENOENT) {
5320			/*
5321			 * If there aren't extended attributes, it's the
5322			 * same as having zero of them.
5323			 */
5324			error = 0;
5325		}
5326		ZFS_EXIT(zfsvfs);
5327		return (error);
5328
5329	case _PC_SATTR_ENABLED:
5330	case _PC_SATTR_EXISTS:
5331		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
5332		    (vp->v_type == VREG || vp->v_type == VDIR);
5333		return (0);
5334
5335	case _PC_ACCESS_FILTERING:
5336		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
5337		    vp->v_type == VDIR;
5338		return (0);
5339
5340	case _PC_ACL_ENABLED:
5341		*valp = _ACL_ACE_ENABLED;
5342		return (0);
5343#endif	/* illumos */
5344	case _PC_MIN_HOLE_SIZE:
5345		*valp = (int)SPA_MINBLOCKSIZE;
5346		return (0);
5347#ifdef illumos
5348	case _PC_TIMESTAMP_RESOLUTION:
5349		/* nanosecond timestamp resolution */
5350		*valp = 1L;
5351		return (0);
5352#endif
5353	case _PC_ACL_EXTENDED:
5354		*valp = 0;
5355		return (0);
5356
5357	case _PC_ACL_NFS4:
5358		*valp = 1;
5359		return (0);
5360
5361	case _PC_ACL_PATH_MAX:
5362		*valp = ACL_MAX_ENTRIES;
5363		return (0);
5364
5365	default:
5366		return (EOPNOTSUPP);
5367	}
5368}
5369
5370/*ARGSUSED*/
5371static int
5372zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5373    caller_context_t *ct)
5374{
5375	znode_t *zp = VTOZ(vp);
5376	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5377	int error;
5378	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5379
5380	ZFS_ENTER(zfsvfs);
5381	ZFS_VERIFY_ZP(zp);
5382	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5383	ZFS_EXIT(zfsvfs);
5384
5385	return (error);
5386}
5387
5388/*ARGSUSED*/
5389int
5390zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5391    caller_context_t *ct)
5392{
5393	znode_t *zp = VTOZ(vp);
5394	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5395	int error;
5396	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5397	zilog_t	*zilog = zfsvfs->z_log;
5398
5399	ZFS_ENTER(zfsvfs);
5400	ZFS_VERIFY_ZP(zp);
5401
5402	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5403
5404	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5405		zil_commit(zilog, 0);
5406
5407	ZFS_EXIT(zfsvfs);
5408	return (error);
5409}
5410
5411#ifdef illumos
5412/*
5413 * The smallest read we may consider to loan out an arcbuf.
5414 * This must be a power of 2.
5415 */
5416int zcr_blksz_min = (1 << 10);	/* 1K */
5417/*
5418 * If set to less than the file block size, allow loaning out of an
5419 * arcbuf for a partial block read.  This must be a power of 2.
5420 */
5421int zcr_blksz_max = (1 << 17);	/* 128K */
5422
5423/*ARGSUSED*/
5424static int
5425zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5426    caller_context_t *ct)
5427{
5428	znode_t	*zp = VTOZ(vp);
5429	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5430	int max_blksz = zfsvfs->z_max_blksz;
5431	uio_t *uio = &xuio->xu_uio;
5432	ssize_t size = uio->uio_resid;
5433	offset_t offset = uio->uio_loffset;
5434	int blksz;
5435	int fullblk, i;
5436	arc_buf_t *abuf;
5437	ssize_t maxsize;
5438	int preamble, postamble;
5439
5440	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5441		return (SET_ERROR(EINVAL));
5442
5443	ZFS_ENTER(zfsvfs);
5444	ZFS_VERIFY_ZP(zp);
5445	switch (ioflag) {
5446	case UIO_WRITE:
5447		/*
5448		 * Loan out an arc_buf for write if write size is bigger than
5449		 * max_blksz, and the file's block size is also max_blksz.
5450		 */
5451		blksz = max_blksz;
5452		if (size < blksz || zp->z_blksz != blksz) {
5453			ZFS_EXIT(zfsvfs);
5454			return (SET_ERROR(EINVAL));
5455		}
5456		/*
5457		 * Caller requests buffers for write before knowing where the
5458		 * write offset might be (e.g. NFS TCP write).
5459		 */
5460		if (offset == -1) {
5461			preamble = 0;
5462		} else {
5463			preamble = P2PHASE(offset, blksz);
5464			if (preamble) {
5465				preamble = blksz - preamble;
5466				size -= preamble;
5467			}
5468		}
5469
5470		postamble = P2PHASE(size, blksz);
5471		size -= postamble;
5472
5473		fullblk = size / blksz;
5474		(void) dmu_xuio_init(xuio,
5475		    (preamble != 0) + fullblk + (postamble != 0));
5476		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5477		    int, postamble, int,
5478		    (preamble != 0) + fullblk + (postamble != 0));
5479
5480		/*
5481		 * Have to fix iov base/len for partial buffers.  They
5482		 * currently represent full arc_buf's.
5483		 */
5484		if (preamble) {
5485			/* data begins in the middle of the arc_buf */
5486			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5487			    blksz);
5488			ASSERT(abuf);
5489			(void) dmu_xuio_add(xuio, abuf,
5490			    blksz - preamble, preamble);
5491		}
5492
5493		for (i = 0; i < fullblk; i++) {
5494			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5495			    blksz);
5496			ASSERT(abuf);
5497			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
5498		}
5499
5500		if (postamble) {
5501			/* data ends in the middle of the arc_buf */
5502			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5503			    blksz);
5504			ASSERT(abuf);
5505			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
5506		}
5507		break;
5508	case UIO_READ:
5509		/*
5510		 * Loan out an arc_buf for read if the read size is larger than
5511		 * the current file block size.  Block alignment is not
5512		 * considered.  Partial arc_buf will be loaned out for read.
5513		 */
5514		blksz = zp->z_blksz;
5515		if (blksz < zcr_blksz_min)
5516			blksz = zcr_blksz_min;
5517		if (blksz > zcr_blksz_max)
5518			blksz = zcr_blksz_max;
5519		/* avoid potential complexity of dealing with it */
5520		if (blksz > max_blksz) {
5521			ZFS_EXIT(zfsvfs);
5522			return (SET_ERROR(EINVAL));
5523		}
5524
5525		maxsize = zp->z_size - uio->uio_loffset;
5526		if (size > maxsize)
5527			size = maxsize;
5528
5529		if (size < blksz || vn_has_cached_data(vp)) {
5530			ZFS_EXIT(zfsvfs);
5531			return (SET_ERROR(EINVAL));
5532		}
5533		break;
5534	default:
5535		ZFS_EXIT(zfsvfs);
5536		return (SET_ERROR(EINVAL));
5537	}
5538
5539	uio->uio_extflg = UIO_XUIO;
5540	XUIO_XUZC_RW(xuio) = ioflag;
5541	ZFS_EXIT(zfsvfs);
5542	return (0);
5543}
5544
5545/*ARGSUSED*/
5546static int
5547zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5548{
5549	int i;
5550	arc_buf_t *abuf;
5551	int ioflag = XUIO_XUZC_RW(xuio);
5552
5553	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5554
5555	i = dmu_xuio_cnt(xuio);
5556	while (i-- > 0) {
5557		abuf = dmu_xuio_arcbuf(xuio, i);
5558		/*
5559		 * if abuf == NULL, it must be a write buffer
5560		 * that has been returned in zfs_write().
5561		 */
5562		if (abuf)
5563			dmu_return_arcbuf(abuf);
5564		ASSERT(abuf || ioflag == UIO_WRITE);
5565	}
5566
5567	dmu_xuio_fini(xuio);
5568	return (0);
5569}
5570
5571/*
5572 * Predeclare these here so that the compiler assumes that
5573 * this is an "old style" function declaration that does
5574 * not include arguments => we won't get type mismatch errors
5575 * in the initializations that follow.
5576 */
5577static int zfs_inval();
5578static int zfs_isdir();
5579
5580static int
5581zfs_inval()
5582{
5583	return (SET_ERROR(EINVAL));
5584}
5585
5586static int
5587zfs_isdir()
5588{
5589	return (SET_ERROR(EISDIR));
5590}
5591/*
5592 * Directory vnode operations template
5593 */
5594vnodeops_t *zfs_dvnodeops;
5595const fs_operation_def_t zfs_dvnodeops_template[] = {
5596	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5597	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5598	VOPNAME_READ,		{ .error = zfs_isdir },
5599	VOPNAME_WRITE,		{ .error = zfs_isdir },
5600	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5601	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5602	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5603	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5604	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5605	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5606	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5607	VOPNAME_LINK,		{ .vop_link = zfs_link },
5608	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5609	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
5610	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5611	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5612	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
5613	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5614	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5615	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5616	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5617	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5618	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5619	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5620	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5621	NULL,			NULL
5622};
5623
5624/*
5625 * Regular file vnode operations template
5626 */
5627vnodeops_t *zfs_fvnodeops;
5628const fs_operation_def_t zfs_fvnodeops_template[] = {
5629	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5630	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5631	VOPNAME_READ,		{ .vop_read = zfs_read },
5632	VOPNAME_WRITE,		{ .vop_write = zfs_write },
5633	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5634	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5635	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5636	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5637	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5638	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5639	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5640	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5641	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5642	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5643	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
5644	VOPNAME_SPACE,		{ .vop_space = zfs_space },
5645	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
5646	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
5647	VOPNAME_MAP,		{ .vop_map = zfs_map },
5648	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
5649	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
5650	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5651	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5652	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5653	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5654	VOPNAME_REQZCBUF,	{ .vop_reqzcbuf = zfs_reqzcbuf },
5655	VOPNAME_RETZCBUF,	{ .vop_retzcbuf = zfs_retzcbuf },
5656	NULL,			NULL
5657};
5658
5659/*
5660 * Symbolic link vnode operations template
5661 */
5662vnodeops_t *zfs_symvnodeops;
5663const fs_operation_def_t zfs_symvnodeops_template[] = {
5664	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5665	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5666	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5667	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5668	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5669	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5670	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5671	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5672	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5673	NULL,			NULL
5674};
5675
5676/*
5677 * special share hidden files vnode operations template
5678 */
5679vnodeops_t *zfs_sharevnodeops;
5680const fs_operation_def_t zfs_sharevnodeops_template[] = {
5681	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5682	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5683	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5684	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5685	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5686	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5687	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5688	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5689	NULL,			NULL
5690};
5691
5692/*
5693 * Extended attribute directory vnode operations template
5694 *
5695 * This template is identical to the directory vnodes
5696 * operation template except for restricted operations:
5697 *	VOP_MKDIR()
5698 *	VOP_SYMLINK()
5699 *
5700 * Note that there are other restrictions embedded in:
5701 *	zfs_create()	- restrict type to VREG
5702 *	zfs_link()	- no links into/out of attribute space
5703 *	zfs_rename()	- no moves into/out of attribute space
5704 */
5705vnodeops_t *zfs_xdvnodeops;
5706const fs_operation_def_t zfs_xdvnodeops_template[] = {
5707	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5708	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5709	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5710	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5711	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5712	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5713	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5714	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5715	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5716	VOPNAME_LINK,		{ .vop_link = zfs_link },
5717	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5718	VOPNAME_MKDIR,		{ .error = zfs_inval },
5719	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5720	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5721	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5722	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5723	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5724	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5725	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5726	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5727	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5728	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5729	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5730	NULL,			NULL
5731};
5732
5733/*
5734 * Error vnode operations template
5735 */
5736vnodeops_t *zfs_evnodeops;
5737const fs_operation_def_t zfs_evnodeops_template[] = {
5738	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5739	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5740	NULL,			NULL
5741};
5742#endif	/* illumos */
5743
5744static int
5745ioflags(int ioflags)
5746{
5747	int flags = 0;
5748
5749	if (ioflags & IO_APPEND)
5750		flags |= FAPPEND;
5751	if (ioflags & IO_NDELAY)
5752        	flags |= FNONBLOCK;
5753	if (ioflags & IO_SYNC)
5754		flags |= (FSYNC | FDSYNC | FRSYNC);
5755
5756	return (flags);
5757}
5758
5759static int
5760zfs_getpages(struct vnode *vp, vm_page_t *m, int count, int reqpage)
5761{
5762	znode_t *zp = VTOZ(vp);
5763	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5764	objset_t *os = zp->z_zfsvfs->z_os;
5765	vm_page_t mfirst, mlast, mreq;
5766	vm_object_t object;
5767	caddr_t va;
5768	struct sf_buf *sf;
5769	off_t startoff, endoff;
5770	int i, error;
5771	vm_pindex_t reqstart, reqend;
5772	int pcount, lsize, reqsize, size;
5773
5774	ZFS_ENTER(zfsvfs);
5775	ZFS_VERIFY_ZP(zp);
5776
5777	pcount = OFF_TO_IDX(round_page(count));
5778	mreq = m[reqpage];
5779	object = mreq->object;
5780	error = 0;
5781
5782	KASSERT(vp->v_object == object, ("mismatching object"));
5783
5784	if (pcount > 1 && zp->z_blksz > PAGESIZE) {
5785		startoff = rounddown(IDX_TO_OFF(mreq->pindex), zp->z_blksz);
5786		reqstart = OFF_TO_IDX(round_page(startoff));
5787		if (reqstart < m[0]->pindex)
5788			reqstart = 0;
5789		else
5790			reqstart = reqstart - m[0]->pindex;
5791		endoff = roundup(IDX_TO_OFF(mreq->pindex) + PAGE_SIZE,
5792		    zp->z_blksz);
5793		reqend = OFF_TO_IDX(trunc_page(endoff)) - 1;
5794		if (reqend > m[pcount - 1]->pindex)
5795			reqend = m[pcount - 1]->pindex;
5796		reqsize = reqend - m[reqstart]->pindex + 1;
5797		KASSERT(reqstart <= reqpage && reqpage < reqstart + reqsize,
5798		    ("reqpage beyond [reqstart, reqstart + reqsize[ bounds"));
5799	} else {
5800		reqstart = reqpage;
5801		reqsize = 1;
5802	}
5803	mfirst = m[reqstart];
5804	mlast = m[reqstart + reqsize - 1];
5805
5806	zfs_vmobject_wlock(object);
5807
5808	for (i = 0; i < reqstart; i++) {
5809		vm_page_lock(m[i]);
5810		vm_page_free(m[i]);
5811		vm_page_unlock(m[i]);
5812	}
5813	for (i = reqstart + reqsize; i < pcount; i++) {
5814		vm_page_lock(m[i]);
5815		vm_page_free(m[i]);
5816		vm_page_unlock(m[i]);
5817	}
5818
5819	if (mreq->valid && reqsize == 1) {
5820		if (mreq->valid != VM_PAGE_BITS_ALL)
5821			vm_page_zero_invalid(mreq, TRUE);
5822		zfs_vmobject_wunlock(object);
5823		ZFS_EXIT(zfsvfs);
5824		return (zfs_vm_pagerret_ok);
5825	}
5826
5827	PCPU_INC(cnt.v_vnodein);
5828	PCPU_ADD(cnt.v_vnodepgsin, reqsize);
5829
5830	if (IDX_TO_OFF(mreq->pindex) >= object->un_pager.vnp.vnp_size) {
5831		for (i = reqstart; i < reqstart + reqsize; i++) {
5832			if (i != reqpage) {
5833				vm_page_lock(m[i]);
5834				vm_page_free(m[i]);
5835				vm_page_unlock(m[i]);
5836			}
5837		}
5838		zfs_vmobject_wunlock(object);
5839		ZFS_EXIT(zfsvfs);
5840		return (zfs_vm_pagerret_bad);
5841	}
5842
5843	lsize = PAGE_SIZE;
5844	if (IDX_TO_OFF(mlast->pindex) + lsize > object->un_pager.vnp.vnp_size)
5845		lsize = object->un_pager.vnp.vnp_size - IDX_TO_OFF(mlast->pindex);
5846
5847	zfs_vmobject_wunlock(object);
5848
5849	for (i = reqstart; i < reqstart + reqsize; i++) {
5850		size = PAGE_SIZE;
5851		if (i == (reqstart + reqsize - 1))
5852			size = lsize;
5853		va = zfs_map_page(m[i], &sf);
5854		error = dmu_read(os, zp->z_id, IDX_TO_OFF(m[i]->pindex),
5855		    size, va, DMU_READ_PREFETCH);
5856		if (size != PAGE_SIZE)
5857			bzero(va + size, PAGE_SIZE - size);
5858		zfs_unmap_page(sf);
5859		if (error != 0)
5860			break;
5861	}
5862
5863	zfs_vmobject_wlock(object);
5864
5865	for (i = reqstart; i < reqstart + reqsize; i++) {
5866		if (!error)
5867			m[i]->valid = VM_PAGE_BITS_ALL;
5868		KASSERT(m[i]->dirty == 0, ("zfs_getpages: page %p is dirty", m[i]));
5869		if (i != reqpage)
5870			vm_page_readahead_finish(m[i]);
5871	}
5872
5873	zfs_vmobject_wunlock(object);
5874
5875	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
5876	ZFS_EXIT(zfsvfs);
5877	return (error ? zfs_vm_pagerret_error : zfs_vm_pagerret_ok);
5878}
5879
5880static int
5881zfs_freebsd_getpages(ap)
5882	struct vop_getpages_args /* {
5883		struct vnode *a_vp;
5884		vm_page_t *a_m;
5885		int a_count;
5886		int a_reqpage;
5887		vm_ooffset_t a_offset;
5888	} */ *ap;
5889{
5890
5891	return (zfs_getpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_reqpage));
5892}
5893
5894static int
5895zfs_putpages(struct vnode *vp, vm_page_t *ma, size_t len, int flags,
5896    int *rtvals)
5897{
5898	znode_t		*zp = VTOZ(vp);
5899	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5900	rl_t		*rl;
5901	dmu_tx_t	*tx;
5902	struct sf_buf	*sf;
5903	vm_object_t	object;
5904	vm_page_t	m;
5905	caddr_t		va;
5906	size_t		tocopy;
5907	size_t		lo_len;
5908	vm_ooffset_t	lo_off;
5909	vm_ooffset_t	off;
5910	uint_t		blksz;
5911	int		ncount;
5912	int		pcount;
5913	int		err;
5914	int		i;
5915
5916	ZFS_ENTER(zfsvfs);
5917	ZFS_VERIFY_ZP(zp);
5918
5919	object = vp->v_object;
5920	pcount = btoc(len);
5921	ncount = pcount;
5922
5923	KASSERT(ma[0]->object == object, ("mismatching object"));
5924	KASSERT(len > 0 && (len & PAGE_MASK) == 0, ("unexpected length"));
5925
5926	for (i = 0; i < pcount; i++)
5927		rtvals[i] = zfs_vm_pagerret_error;
5928
5929	off = IDX_TO_OFF(ma[0]->pindex);
5930	blksz = zp->z_blksz;
5931	lo_off = rounddown(off, blksz);
5932	lo_len = roundup(len + (off - lo_off), blksz);
5933	rl = zfs_range_lock(zp, lo_off, lo_len, RL_WRITER);
5934
5935	zfs_vmobject_wlock(object);
5936	if (len + off > object->un_pager.vnp.vnp_size) {
5937		if (object->un_pager.vnp.vnp_size > off) {
5938			int pgoff;
5939
5940			len = object->un_pager.vnp.vnp_size - off;
5941			ncount = btoc(len);
5942			if ((pgoff = (int)len & PAGE_MASK) != 0) {
5943				/*
5944				 * If the object is locked and the following
5945				 * conditions hold, then the page's dirty
5946				 * field cannot be concurrently changed by a
5947				 * pmap operation.
5948				 */
5949				m = ma[ncount - 1];
5950				vm_page_assert_sbusied(m);
5951				KASSERT(!pmap_page_is_write_mapped(m),
5952				    ("zfs_putpages: page %p is not read-only", m));
5953				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
5954				    pgoff);
5955			}
5956		} else {
5957			len = 0;
5958			ncount = 0;
5959		}
5960		if (ncount < pcount) {
5961			for (i = ncount; i < pcount; i++) {
5962				rtvals[i] = zfs_vm_pagerret_bad;
5963			}
5964		}
5965	}
5966	zfs_vmobject_wunlock(object);
5967
5968	if (ncount == 0)
5969		goto out;
5970
5971	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
5972	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
5973		goto out;
5974	}
5975
5976top:
5977	tx = dmu_tx_create(zfsvfs->z_os);
5978	dmu_tx_hold_write(tx, zp->z_id, off, len);
5979
5980	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
5981	zfs_sa_upgrade_txholds(tx, zp);
5982	err = dmu_tx_assign(tx, TXG_NOWAIT);
5983	if (err != 0) {
5984		if (err == ERESTART) {
5985			dmu_tx_wait(tx);
5986			dmu_tx_abort(tx);
5987			goto top;
5988		}
5989		dmu_tx_abort(tx);
5990		goto out;
5991	}
5992
5993	if (zp->z_blksz < PAGE_SIZE) {
5994		i = 0;
5995		for (i = 0; len > 0; off += tocopy, len -= tocopy, i++) {
5996			tocopy = len > PAGE_SIZE ? PAGE_SIZE : len;
5997			va = zfs_map_page(ma[i], &sf);
5998			dmu_write(zfsvfs->z_os, zp->z_id, off, tocopy, va, tx);
5999			zfs_unmap_page(sf);
6000		}
6001	} else {
6002		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, ma, tx);
6003	}
6004
6005	if (err == 0) {
6006		uint64_t mtime[2], ctime[2];
6007		sa_bulk_attr_t bulk[3];
6008		int count = 0;
6009
6010		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
6011		    &mtime, 16);
6012		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
6013		    &ctime, 16);
6014		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
6015		    &zp->z_pflags, 8);
6016		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
6017		    B_TRUE);
6018		(void)sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
6019		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
6020
6021		zfs_vmobject_wlock(object);
6022		for (i = 0; i < ncount; i++) {
6023			rtvals[i] = zfs_vm_pagerret_ok;
6024			vm_page_undirty(ma[i]);
6025		}
6026		zfs_vmobject_wunlock(object);
6027		PCPU_INC(cnt.v_vnodeout);
6028		PCPU_ADD(cnt.v_vnodepgsout, ncount);
6029	}
6030	dmu_tx_commit(tx);
6031
6032out:
6033	zfs_range_unlock(rl);
6034	if ((flags & (zfs_vm_pagerput_sync | zfs_vm_pagerput_inval)) != 0 ||
6035	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
6036		zil_commit(zfsvfs->z_log, zp->z_id);
6037	ZFS_EXIT(zfsvfs);
6038	return (rtvals[0]);
6039}
6040
6041int
6042zfs_freebsd_putpages(ap)
6043	struct vop_putpages_args /* {
6044		struct vnode *a_vp;
6045		vm_page_t *a_m;
6046		int a_count;
6047		int a_sync;
6048		int *a_rtvals;
6049		vm_ooffset_t a_offset;
6050	} */ *ap;
6051{
6052
6053	return (zfs_putpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_sync,
6054	    ap->a_rtvals));
6055}
6056
6057static int
6058zfs_freebsd_bmap(ap)
6059	struct vop_bmap_args /* {
6060		struct vnode *a_vp;
6061		daddr_t  a_bn;
6062		struct bufobj **a_bop;
6063		daddr_t *a_bnp;
6064		int *a_runp;
6065		int *a_runb;
6066	} */ *ap;
6067{
6068
6069	if (ap->a_bop != NULL)
6070		*ap->a_bop = &ap->a_vp->v_bufobj;
6071	if (ap->a_bnp != NULL)
6072		*ap->a_bnp = ap->a_bn;
6073	if (ap->a_runp != NULL)
6074		*ap->a_runp = 0;
6075	if (ap->a_runb != NULL)
6076		*ap->a_runb = 0;
6077
6078	return (0);
6079}
6080
6081static int
6082zfs_freebsd_open(ap)
6083	struct vop_open_args /* {
6084		struct vnode *a_vp;
6085		int a_mode;
6086		struct ucred *a_cred;
6087		struct thread *a_td;
6088	} */ *ap;
6089{
6090	vnode_t	*vp = ap->a_vp;
6091	znode_t *zp = VTOZ(vp);
6092	int error;
6093
6094	error = zfs_open(&vp, ap->a_mode, ap->a_cred, NULL);
6095	if (error == 0)
6096		vnode_create_vobject(vp, zp->z_size, ap->a_td);
6097	return (error);
6098}
6099
6100static int
6101zfs_freebsd_close(ap)
6102	struct vop_close_args /* {
6103		struct vnode *a_vp;
6104		int  a_fflag;
6105		struct ucred *a_cred;
6106		struct thread *a_td;
6107	} */ *ap;
6108{
6109
6110	return (zfs_close(ap->a_vp, ap->a_fflag, 1, 0, ap->a_cred, NULL));
6111}
6112
6113static int
6114zfs_freebsd_ioctl(ap)
6115	struct vop_ioctl_args /* {
6116		struct vnode *a_vp;
6117		u_long a_command;
6118		caddr_t a_data;
6119		int a_fflag;
6120		struct ucred *cred;
6121		struct thread *td;
6122	} */ *ap;
6123{
6124
6125	return (zfs_ioctl(ap->a_vp, ap->a_command, (intptr_t)ap->a_data,
6126	    ap->a_fflag, ap->a_cred, NULL, NULL));
6127}
6128
6129static int
6130zfs_freebsd_read(ap)
6131	struct vop_read_args /* {
6132		struct vnode *a_vp;
6133		struct uio *a_uio;
6134		int a_ioflag;
6135		struct ucred *a_cred;
6136	} */ *ap;
6137{
6138
6139	return (zfs_read(ap->a_vp, ap->a_uio, ioflags(ap->a_ioflag),
6140	    ap->a_cred, NULL));
6141}
6142
6143static int
6144zfs_freebsd_write(ap)
6145	struct vop_write_args /* {
6146		struct vnode *a_vp;
6147		struct uio *a_uio;
6148		int a_ioflag;
6149		struct ucred *a_cred;
6150	} */ *ap;
6151{
6152
6153	return (zfs_write(ap->a_vp, ap->a_uio, ioflags(ap->a_ioflag),
6154	    ap->a_cred, NULL));
6155}
6156
6157static int
6158zfs_freebsd_access(ap)
6159	struct vop_access_args /* {
6160		struct vnode *a_vp;
6161		accmode_t a_accmode;
6162		struct ucred *a_cred;
6163		struct thread *a_td;
6164	} */ *ap;
6165{
6166	vnode_t *vp = ap->a_vp;
6167	znode_t *zp = VTOZ(vp);
6168	accmode_t accmode;
6169	int error = 0;
6170
6171	/*
6172	 * ZFS itself only knowns about VREAD, VWRITE, VEXEC and VAPPEND,
6173	 */
6174	accmode = ap->a_accmode & (VREAD|VWRITE|VEXEC|VAPPEND);
6175	if (accmode != 0)
6176		error = zfs_access(ap->a_vp, accmode, 0, ap->a_cred, NULL);
6177
6178	/*
6179	 * VADMIN has to be handled by vaccess().
6180	 */
6181	if (error == 0) {
6182		accmode = ap->a_accmode & ~(VREAD|VWRITE|VEXEC|VAPPEND);
6183		if (accmode != 0) {
6184			error = vaccess(vp->v_type, zp->z_mode, zp->z_uid,
6185			    zp->z_gid, accmode, ap->a_cred, NULL);
6186		}
6187	}
6188
6189	/*
6190	 * For VEXEC, ensure that at least one execute bit is set for
6191	 * non-directories.
6192	 */
6193	if (error == 0 && (ap->a_accmode & VEXEC) != 0 && vp->v_type != VDIR &&
6194	    (zp->z_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0) {
6195		error = EACCES;
6196	}
6197
6198	return (error);
6199}
6200
6201static int
6202zfs_freebsd_lookup(ap)
6203	struct vop_lookup_args /* {
6204		struct vnode *a_dvp;
6205		struct vnode **a_vpp;
6206		struct componentname *a_cnp;
6207	} */ *ap;
6208{
6209	struct componentname *cnp = ap->a_cnp;
6210	char nm[NAME_MAX + 1];
6211
6212	ASSERT(cnp->cn_namelen < sizeof(nm));
6213	strlcpy(nm, cnp->cn_nameptr, MIN(cnp->cn_namelen + 1, sizeof(nm)));
6214
6215	return (zfs_lookup(ap->a_dvp, nm, ap->a_vpp, cnp, cnp->cn_nameiop,
6216	    cnp->cn_cred, cnp->cn_thread, 0));
6217}
6218
6219static int
6220zfs_freebsd_create(ap)
6221	struct vop_create_args /* {
6222		struct vnode *a_dvp;
6223		struct vnode **a_vpp;
6224		struct componentname *a_cnp;
6225		struct vattr *a_vap;
6226	} */ *ap;
6227{
6228	struct componentname *cnp = ap->a_cnp;
6229	vattr_t *vap = ap->a_vap;
6230	int error, mode;
6231
6232	ASSERT(cnp->cn_flags & SAVENAME);
6233
6234	vattr_init_mask(vap);
6235	mode = vap->va_mode & ALLPERMS;
6236
6237	error = zfs_create(ap->a_dvp, cnp->cn_nameptr, vap, !EXCL, mode,
6238	    ap->a_vpp, cnp->cn_cred, cnp->cn_thread);
6239#ifdef FREEBSD_NAMECACHE
6240	if (error == 0 && (cnp->cn_flags & MAKEENTRY) != 0)
6241		cache_enter(ap->a_dvp, *ap->a_vpp, cnp);
6242#endif
6243	return (error);
6244}
6245
6246static int
6247zfs_freebsd_remove(ap)
6248	struct vop_remove_args /* {
6249		struct vnode *a_dvp;
6250		struct vnode *a_vp;
6251		struct componentname *a_cnp;
6252	} */ *ap;
6253{
6254
6255	ASSERT(ap->a_cnp->cn_flags & SAVENAME);
6256
6257	return (zfs_remove(ap->a_dvp, ap->a_cnp->cn_nameptr,
6258	    ap->a_cnp->cn_cred, NULL, 0));
6259}
6260
6261static int
6262zfs_freebsd_mkdir(ap)
6263	struct vop_mkdir_args /* {
6264		struct vnode *a_dvp;
6265		struct vnode **a_vpp;
6266		struct componentname *a_cnp;
6267		struct vattr *a_vap;
6268	} */ *ap;
6269{
6270	vattr_t *vap = ap->a_vap;
6271
6272	ASSERT(ap->a_cnp->cn_flags & SAVENAME);
6273
6274	vattr_init_mask(vap);
6275
6276	return (zfs_mkdir(ap->a_dvp, ap->a_cnp->cn_nameptr, vap, ap->a_vpp,
6277	    ap->a_cnp->cn_cred, NULL, 0, NULL));
6278}
6279
6280static int
6281zfs_freebsd_rmdir(ap)
6282	struct vop_rmdir_args /* {
6283		struct vnode *a_dvp;
6284		struct vnode *a_vp;
6285		struct componentname *a_cnp;
6286	} */ *ap;
6287{
6288	struct componentname *cnp = ap->a_cnp;
6289
6290	ASSERT(cnp->cn_flags & SAVENAME);
6291
6292	return (zfs_rmdir(ap->a_dvp, cnp->cn_nameptr, NULL, cnp->cn_cred, NULL, 0));
6293}
6294
6295static int
6296zfs_freebsd_readdir(ap)
6297	struct vop_readdir_args /* {
6298		struct vnode *a_vp;
6299		struct uio *a_uio;
6300		struct ucred *a_cred;
6301		int *a_eofflag;
6302		int *a_ncookies;
6303		u_long **a_cookies;
6304	} */ *ap;
6305{
6306
6307	return (zfs_readdir(ap->a_vp, ap->a_uio, ap->a_cred, ap->a_eofflag,
6308	    ap->a_ncookies, ap->a_cookies));
6309}
6310
6311static int
6312zfs_freebsd_fsync(ap)
6313	struct vop_fsync_args /* {
6314		struct vnode *a_vp;
6315		int a_waitfor;
6316		struct thread *a_td;
6317	} */ *ap;
6318{
6319
6320	vop_stdfsync(ap);
6321	return (zfs_fsync(ap->a_vp, 0, ap->a_td->td_ucred, NULL));
6322}
6323
6324static int
6325zfs_freebsd_getattr(ap)
6326	struct vop_getattr_args /* {
6327		struct vnode *a_vp;
6328		struct vattr *a_vap;
6329		struct ucred *a_cred;
6330	} */ *ap;
6331{
6332	vattr_t *vap = ap->a_vap;
6333	xvattr_t xvap;
6334	u_long fflags = 0;
6335	int error;
6336
6337	xva_init(&xvap);
6338	xvap.xva_vattr = *vap;
6339	xvap.xva_vattr.va_mask |= AT_XVATTR;
6340
6341	/* Convert chflags into ZFS-type flags. */
6342	/* XXX: what about SF_SETTABLE?. */
6343	XVA_SET_REQ(&xvap, XAT_IMMUTABLE);
6344	XVA_SET_REQ(&xvap, XAT_APPENDONLY);
6345	XVA_SET_REQ(&xvap, XAT_NOUNLINK);
6346	XVA_SET_REQ(&xvap, XAT_NODUMP);
6347	XVA_SET_REQ(&xvap, XAT_READONLY);
6348	XVA_SET_REQ(&xvap, XAT_ARCHIVE);
6349	XVA_SET_REQ(&xvap, XAT_SYSTEM);
6350	XVA_SET_REQ(&xvap, XAT_HIDDEN);
6351	XVA_SET_REQ(&xvap, XAT_REPARSE);
6352	XVA_SET_REQ(&xvap, XAT_OFFLINE);
6353	XVA_SET_REQ(&xvap, XAT_SPARSE);
6354
6355	error = zfs_getattr(ap->a_vp, (vattr_t *)&xvap, 0, ap->a_cred, NULL);
6356	if (error != 0)
6357		return (error);
6358
6359	/* Convert ZFS xattr into chflags. */
6360#define	FLAG_CHECK(fflag, xflag, xfield)	do {			\
6361	if (XVA_ISSET_RTN(&xvap, (xflag)) && (xfield) != 0)		\
6362		fflags |= (fflag);					\
6363} while (0)
6364	FLAG_CHECK(SF_IMMUTABLE, XAT_IMMUTABLE,
6365	    xvap.xva_xoptattrs.xoa_immutable);
6366	FLAG_CHECK(SF_APPEND, XAT_APPENDONLY,
6367	    xvap.xva_xoptattrs.xoa_appendonly);
6368	FLAG_CHECK(SF_NOUNLINK, XAT_NOUNLINK,
6369	    xvap.xva_xoptattrs.xoa_nounlink);
6370	FLAG_CHECK(UF_ARCHIVE, XAT_ARCHIVE,
6371	    xvap.xva_xoptattrs.xoa_archive);
6372	FLAG_CHECK(UF_NODUMP, XAT_NODUMP,
6373	    xvap.xva_xoptattrs.xoa_nodump);
6374	FLAG_CHECK(UF_READONLY, XAT_READONLY,
6375	    xvap.xva_xoptattrs.xoa_readonly);
6376	FLAG_CHECK(UF_SYSTEM, XAT_SYSTEM,
6377	    xvap.xva_xoptattrs.xoa_system);
6378	FLAG_CHECK(UF_HIDDEN, XAT_HIDDEN,
6379	    xvap.xva_xoptattrs.xoa_hidden);
6380	FLAG_CHECK(UF_REPARSE, XAT_REPARSE,
6381	    xvap.xva_xoptattrs.xoa_reparse);
6382	FLAG_CHECK(UF_OFFLINE, XAT_OFFLINE,
6383	    xvap.xva_xoptattrs.xoa_offline);
6384	FLAG_CHECK(UF_SPARSE, XAT_SPARSE,
6385	    xvap.xva_xoptattrs.xoa_sparse);
6386
6387#undef	FLAG_CHECK
6388	*vap = xvap.xva_vattr;
6389	vap->va_flags = fflags;
6390	return (0);
6391}
6392
6393static int
6394zfs_freebsd_setattr(ap)
6395	struct vop_setattr_args /* {
6396		struct vnode *a_vp;
6397		struct vattr *a_vap;
6398		struct ucred *a_cred;
6399	} */ *ap;
6400{
6401	vnode_t *vp = ap->a_vp;
6402	vattr_t *vap = ap->a_vap;
6403	cred_t *cred = ap->a_cred;
6404	xvattr_t xvap;
6405	u_long fflags;
6406	uint64_t zflags;
6407
6408	vattr_init_mask(vap);
6409	vap->va_mask &= ~AT_NOSET;
6410
6411	xva_init(&xvap);
6412	xvap.xva_vattr = *vap;
6413
6414	zflags = VTOZ(vp)->z_pflags;
6415
6416	if (vap->va_flags != VNOVAL) {
6417		zfsvfs_t *zfsvfs = VTOZ(vp)->z_zfsvfs;
6418		int error;
6419
6420		if (zfsvfs->z_use_fuids == B_FALSE)
6421			return (EOPNOTSUPP);
6422
6423		fflags = vap->va_flags;
6424		/*
6425		 * XXX KDM
6426		 * We need to figure out whether it makes sense to allow
6427		 * UF_REPARSE through, since we don't really have other
6428		 * facilities to handle reparse points and zfs_setattr()
6429		 * doesn't currently allow setting that attribute anyway.
6430		 */
6431		if ((fflags & ~(SF_IMMUTABLE|SF_APPEND|SF_NOUNLINK|UF_ARCHIVE|
6432		     UF_NODUMP|UF_SYSTEM|UF_HIDDEN|UF_READONLY|UF_REPARSE|
6433		     UF_OFFLINE|UF_SPARSE)) != 0)
6434			return (EOPNOTSUPP);
6435		/*
6436		 * Unprivileged processes are not permitted to unset system
6437		 * flags, or modify flags if any system flags are set.
6438		 * Privileged non-jail processes may not modify system flags
6439		 * if securelevel > 0 and any existing system flags are set.
6440		 * Privileged jail processes behave like privileged non-jail
6441		 * processes if the security.jail.chflags_allowed sysctl is
6442		 * is non-zero; otherwise, they behave like unprivileged
6443		 * processes.
6444		 */
6445		if (secpolicy_fs_owner(vp->v_mount, cred) == 0 ||
6446		    priv_check_cred(cred, PRIV_VFS_SYSFLAGS, 0) == 0) {
6447			if (zflags &
6448			    (ZFS_IMMUTABLE | ZFS_APPENDONLY | ZFS_NOUNLINK)) {
6449				error = securelevel_gt(cred, 0);
6450				if (error != 0)
6451					return (error);
6452			}
6453		} else {
6454			/*
6455			 * Callers may only modify the file flags on objects they
6456			 * have VADMIN rights for.
6457			 */
6458			if ((error = VOP_ACCESS(vp, VADMIN, cred, curthread)) != 0)
6459				return (error);
6460			if (zflags &
6461			    (ZFS_IMMUTABLE | ZFS_APPENDONLY | ZFS_NOUNLINK)) {
6462				return (EPERM);
6463			}
6464			if (fflags &
6465			    (SF_IMMUTABLE | SF_APPEND | SF_NOUNLINK)) {
6466				return (EPERM);
6467			}
6468		}
6469
6470#define	FLAG_CHANGE(fflag, zflag, xflag, xfield)	do {		\
6471	if (((fflags & (fflag)) && !(zflags & (zflag))) ||		\
6472	    ((zflags & (zflag)) && !(fflags & (fflag)))) {		\
6473		XVA_SET_REQ(&xvap, (xflag));				\
6474		(xfield) = ((fflags & (fflag)) != 0);			\
6475	}								\
6476} while (0)
6477		/* Convert chflags into ZFS-type flags. */
6478		/* XXX: what about SF_SETTABLE?. */
6479		FLAG_CHANGE(SF_IMMUTABLE, ZFS_IMMUTABLE, XAT_IMMUTABLE,
6480		    xvap.xva_xoptattrs.xoa_immutable);
6481		FLAG_CHANGE(SF_APPEND, ZFS_APPENDONLY, XAT_APPENDONLY,
6482		    xvap.xva_xoptattrs.xoa_appendonly);
6483		FLAG_CHANGE(SF_NOUNLINK, ZFS_NOUNLINK, XAT_NOUNLINK,
6484		    xvap.xva_xoptattrs.xoa_nounlink);
6485		FLAG_CHANGE(UF_ARCHIVE, ZFS_ARCHIVE, XAT_ARCHIVE,
6486		    xvap.xva_xoptattrs.xoa_archive);
6487		FLAG_CHANGE(UF_NODUMP, ZFS_NODUMP, XAT_NODUMP,
6488		    xvap.xva_xoptattrs.xoa_nodump);
6489		FLAG_CHANGE(UF_READONLY, ZFS_READONLY, XAT_READONLY,
6490		    xvap.xva_xoptattrs.xoa_readonly);
6491		FLAG_CHANGE(UF_SYSTEM, ZFS_SYSTEM, XAT_SYSTEM,
6492		    xvap.xva_xoptattrs.xoa_system);
6493		FLAG_CHANGE(UF_HIDDEN, ZFS_HIDDEN, XAT_HIDDEN,
6494		    xvap.xva_xoptattrs.xoa_hidden);
6495		FLAG_CHANGE(UF_REPARSE, ZFS_REPARSE, XAT_REPARSE,
6496		    xvap.xva_xoptattrs.xoa_hidden);
6497		FLAG_CHANGE(UF_OFFLINE, ZFS_OFFLINE, XAT_OFFLINE,
6498		    xvap.xva_xoptattrs.xoa_offline);
6499		FLAG_CHANGE(UF_SPARSE, ZFS_SPARSE, XAT_SPARSE,
6500		    xvap.xva_xoptattrs.xoa_sparse);
6501#undef	FLAG_CHANGE
6502	}
6503	return (zfs_setattr(vp, (vattr_t *)&xvap, 0, cred, NULL));
6504}
6505
6506static int
6507zfs_freebsd_rename(ap)
6508	struct vop_rename_args  /* {
6509		struct vnode *a_fdvp;
6510		struct vnode *a_fvp;
6511		struct componentname *a_fcnp;
6512		struct vnode *a_tdvp;
6513		struct vnode *a_tvp;
6514		struct componentname *a_tcnp;
6515	} */ *ap;
6516{
6517	vnode_t *fdvp = ap->a_fdvp;
6518	vnode_t *fvp = ap->a_fvp;
6519	vnode_t *tdvp = ap->a_tdvp;
6520	vnode_t *tvp = ap->a_tvp;
6521	int error;
6522
6523	ASSERT(ap->a_fcnp->cn_flags & (SAVENAME|SAVESTART));
6524	ASSERT(ap->a_tcnp->cn_flags & (SAVENAME|SAVESTART));
6525
6526	/*
6527	 * Check for cross-device rename.
6528	 */
6529	if ((fdvp->v_mount != tdvp->v_mount) ||
6530	    (tvp && (fdvp->v_mount != tvp->v_mount)))
6531		error = EXDEV;
6532	else
6533		error = zfs_rename(fdvp, ap->a_fcnp->cn_nameptr, tdvp,
6534		    ap->a_tcnp->cn_nameptr, ap->a_fcnp->cn_cred, NULL, 0);
6535	if (tdvp == tvp)
6536		VN_RELE(tdvp);
6537	else
6538		VN_URELE(tdvp);
6539	if (tvp)
6540		VN_URELE(tvp);
6541	VN_RELE(fdvp);
6542	VN_RELE(fvp);
6543
6544	return (error);
6545}
6546
6547static int
6548zfs_freebsd_symlink(ap)
6549	struct vop_symlink_args /* {
6550		struct vnode *a_dvp;
6551		struct vnode **a_vpp;
6552		struct componentname *a_cnp;
6553		struct vattr *a_vap;
6554		char *a_target;
6555	} */ *ap;
6556{
6557	struct componentname *cnp = ap->a_cnp;
6558	vattr_t *vap = ap->a_vap;
6559
6560	ASSERT(cnp->cn_flags & SAVENAME);
6561
6562	vap->va_type = VLNK;	/* FreeBSD: Syscall only sets va_mode. */
6563	vattr_init_mask(vap);
6564
6565	return (zfs_symlink(ap->a_dvp, ap->a_vpp, cnp->cn_nameptr, vap,
6566	    ap->a_target, cnp->cn_cred, cnp->cn_thread));
6567}
6568
6569static int
6570zfs_freebsd_readlink(ap)
6571	struct vop_readlink_args /* {
6572		struct vnode *a_vp;
6573		struct uio *a_uio;
6574		struct ucred *a_cred;
6575	} */ *ap;
6576{
6577
6578	return (zfs_readlink(ap->a_vp, ap->a_uio, ap->a_cred, NULL));
6579}
6580
6581static int
6582zfs_freebsd_link(ap)
6583	struct vop_link_args /* {
6584		struct vnode *a_tdvp;
6585		struct vnode *a_vp;
6586		struct componentname *a_cnp;
6587	} */ *ap;
6588{
6589	struct componentname *cnp = ap->a_cnp;
6590	vnode_t *vp = ap->a_vp;
6591	vnode_t *tdvp = ap->a_tdvp;
6592
6593	if (tdvp->v_mount != vp->v_mount)
6594		return (EXDEV);
6595
6596	ASSERT(cnp->cn_flags & SAVENAME);
6597
6598	return (zfs_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_cred, NULL, 0));
6599}
6600
6601static int
6602zfs_freebsd_inactive(ap)
6603	struct vop_inactive_args /* {
6604		struct vnode *a_vp;
6605		struct thread *a_td;
6606	} */ *ap;
6607{
6608	vnode_t *vp = ap->a_vp;
6609
6610	zfs_inactive(vp, ap->a_td->td_ucred, NULL);
6611	return (0);
6612}
6613
6614static int
6615zfs_freebsd_reclaim(ap)
6616	struct vop_reclaim_args /* {
6617		struct vnode *a_vp;
6618		struct thread *a_td;
6619	} */ *ap;
6620{
6621	vnode_t	*vp = ap->a_vp;
6622	znode_t	*zp = VTOZ(vp);
6623	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
6624
6625	ASSERT(zp != NULL);
6626
6627	/* Destroy the vm object and flush associated pages. */
6628	vnode_destroy_vobject(vp);
6629
6630	/*
6631	 * z_teardown_inactive_lock protects from a race with
6632	 * zfs_znode_dmu_fini in zfsvfs_teardown during
6633	 * force unmount.
6634	 */
6635	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
6636	if (zp->z_sa_hdl == NULL)
6637		zfs_znode_free(zp);
6638	else
6639		zfs_zinactive(zp);
6640	rw_exit(&zfsvfs->z_teardown_inactive_lock);
6641
6642	vp->v_data = NULL;
6643	return (0);
6644}
6645
6646static int
6647zfs_freebsd_fid(ap)
6648	struct vop_fid_args /* {
6649		struct vnode *a_vp;
6650		struct fid *a_fid;
6651	} */ *ap;
6652{
6653
6654	return (zfs_fid(ap->a_vp, (void *)ap->a_fid, NULL));
6655}
6656
6657static int
6658zfs_freebsd_pathconf(ap)
6659	struct vop_pathconf_args /* {
6660		struct vnode *a_vp;
6661		int a_name;
6662		register_t *a_retval;
6663	} */ *ap;
6664{
6665	ulong_t val;
6666	int error;
6667
6668	error = zfs_pathconf(ap->a_vp, ap->a_name, &val, curthread->td_ucred, NULL);
6669	if (error == 0)
6670		*ap->a_retval = val;
6671	else if (error == EOPNOTSUPP)
6672		error = vop_stdpathconf(ap);
6673	return (error);
6674}
6675
6676static int
6677zfs_freebsd_fifo_pathconf(ap)
6678	struct vop_pathconf_args /* {
6679		struct vnode *a_vp;
6680		int a_name;
6681		register_t *a_retval;
6682	} */ *ap;
6683{
6684
6685	switch (ap->a_name) {
6686	case _PC_ACL_EXTENDED:
6687	case _PC_ACL_NFS4:
6688	case _PC_ACL_PATH_MAX:
6689	case _PC_MAC_PRESENT:
6690		return (zfs_freebsd_pathconf(ap));
6691	default:
6692		return (fifo_specops.vop_pathconf(ap));
6693	}
6694}
6695
6696/*
6697 * FreeBSD's extended attributes namespace defines file name prefix for ZFS'
6698 * extended attribute name:
6699 *
6700 *	NAMESPACE	PREFIX
6701 *	system		freebsd:system:
6702 *	user		(none, can be used to access ZFS fsattr(5) attributes
6703 *			created on Solaris)
6704 */
6705static int
6706zfs_create_attrname(int attrnamespace, const char *name, char *attrname,
6707    size_t size)
6708{
6709	const char *namespace, *prefix, *suffix;
6710
6711	/* We don't allow '/' character in attribute name. */
6712	if (strchr(name, '/') != NULL)
6713		return (EINVAL);
6714	/* We don't allow attribute names that start with "freebsd:" string. */
6715	if (strncmp(name, "freebsd:", 8) == 0)
6716		return (EINVAL);
6717
6718	bzero(attrname, size);
6719
6720	switch (attrnamespace) {
6721	case EXTATTR_NAMESPACE_USER:
6722#if 0
6723		prefix = "freebsd:";
6724		namespace = EXTATTR_NAMESPACE_USER_STRING;
6725		suffix = ":";
6726#else
6727		/*
6728		 * This is the default namespace by which we can access all
6729		 * attributes created on Solaris.
6730		 */
6731		prefix = namespace = suffix = "";
6732#endif
6733		break;
6734	case EXTATTR_NAMESPACE_SYSTEM:
6735		prefix = "freebsd:";
6736		namespace = EXTATTR_NAMESPACE_SYSTEM_STRING;
6737		suffix = ":";
6738		break;
6739	case EXTATTR_NAMESPACE_EMPTY:
6740	default:
6741		return (EINVAL);
6742	}
6743	if (snprintf(attrname, size, "%s%s%s%s", prefix, namespace, suffix,
6744	    name) >= size) {
6745		return (ENAMETOOLONG);
6746	}
6747	return (0);
6748}
6749
6750/*
6751 * Vnode operating to retrieve a named extended attribute.
6752 */
6753static int
6754zfs_getextattr(struct vop_getextattr_args *ap)
6755/*
6756vop_getextattr {
6757	IN struct vnode *a_vp;
6758	IN int a_attrnamespace;
6759	IN const char *a_name;
6760	INOUT struct uio *a_uio;
6761	OUT size_t *a_size;
6762	IN struct ucred *a_cred;
6763	IN struct thread *a_td;
6764};
6765*/
6766{
6767	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6768	struct thread *td = ap->a_td;
6769	struct nameidata nd;
6770	char attrname[255];
6771	struct vattr va;
6772	vnode_t *xvp = NULL, *vp;
6773	int error, flags;
6774
6775	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6776	    ap->a_cred, ap->a_td, VREAD);
6777	if (error != 0)
6778		return (error);
6779
6780	error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
6781	    sizeof(attrname));
6782	if (error != 0)
6783		return (error);
6784
6785	ZFS_ENTER(zfsvfs);
6786
6787	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6788	    LOOKUP_XATTR);
6789	if (error != 0) {
6790		ZFS_EXIT(zfsvfs);
6791		return (error);
6792	}
6793
6794	flags = FREAD;
6795	NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname,
6796	    xvp, td);
6797	error = vn_open_cred(&nd, &flags, 0, 0, ap->a_cred, NULL);
6798	vp = nd.ni_vp;
6799	NDFREE(&nd, NDF_ONLY_PNBUF);
6800	if (error != 0) {
6801		ZFS_EXIT(zfsvfs);
6802		if (error == ENOENT)
6803			error = ENOATTR;
6804		return (error);
6805	}
6806
6807	if (ap->a_size != NULL) {
6808		error = VOP_GETATTR(vp, &va, ap->a_cred);
6809		if (error == 0)
6810			*ap->a_size = (size_t)va.va_size;
6811	} else if (ap->a_uio != NULL)
6812		error = VOP_READ(vp, ap->a_uio, IO_UNIT, ap->a_cred);
6813
6814	VOP_UNLOCK(vp, 0);
6815	vn_close(vp, flags, ap->a_cred, td);
6816	ZFS_EXIT(zfsvfs);
6817
6818	return (error);
6819}
6820
6821/*
6822 * Vnode operation to remove a named attribute.
6823 */
6824int
6825zfs_deleteextattr(struct vop_deleteextattr_args *ap)
6826/*
6827vop_deleteextattr {
6828	IN struct vnode *a_vp;
6829	IN int a_attrnamespace;
6830	IN const char *a_name;
6831	IN struct ucred *a_cred;
6832	IN struct thread *a_td;
6833};
6834*/
6835{
6836	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6837	struct thread *td = ap->a_td;
6838	struct nameidata nd;
6839	char attrname[255];
6840	struct vattr va;
6841	vnode_t *xvp = NULL, *vp;
6842	int error, flags;
6843
6844	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6845	    ap->a_cred, ap->a_td, VWRITE);
6846	if (error != 0)
6847		return (error);
6848
6849	error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
6850	    sizeof(attrname));
6851	if (error != 0)
6852		return (error);
6853
6854	ZFS_ENTER(zfsvfs);
6855
6856	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6857	    LOOKUP_XATTR);
6858	if (error != 0) {
6859		ZFS_EXIT(zfsvfs);
6860		return (error);
6861	}
6862
6863	NDINIT_ATVP(&nd, DELETE, NOFOLLOW | LOCKPARENT | LOCKLEAF,
6864	    UIO_SYSSPACE, attrname, xvp, td);
6865	error = namei(&nd);
6866	vp = nd.ni_vp;
6867	if (error != 0) {
6868		ZFS_EXIT(zfsvfs);
6869		NDFREE(&nd, NDF_ONLY_PNBUF);
6870		if (error == ENOENT)
6871			error = ENOATTR;
6872		return (error);
6873	}
6874
6875	error = VOP_REMOVE(nd.ni_dvp, vp, &nd.ni_cnd);
6876	NDFREE(&nd, NDF_ONLY_PNBUF);
6877
6878	vput(nd.ni_dvp);
6879	if (vp == nd.ni_dvp)
6880		vrele(vp);
6881	else
6882		vput(vp);
6883	ZFS_EXIT(zfsvfs);
6884
6885	return (error);
6886}
6887
6888/*
6889 * Vnode operation to set a named attribute.
6890 */
6891static int
6892zfs_setextattr(struct vop_setextattr_args *ap)
6893/*
6894vop_setextattr {
6895	IN struct vnode *a_vp;
6896	IN int a_attrnamespace;
6897	IN const char *a_name;
6898	INOUT struct uio *a_uio;
6899	IN struct ucred *a_cred;
6900	IN struct thread *a_td;
6901};
6902*/
6903{
6904	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6905	struct thread *td = ap->a_td;
6906	struct nameidata nd;
6907	char attrname[255];
6908	struct vattr va;
6909	vnode_t *xvp = NULL, *vp;
6910	int error, flags;
6911
6912	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6913	    ap->a_cred, ap->a_td, VWRITE);
6914	if (error != 0)
6915		return (error);
6916
6917	error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
6918	    sizeof(attrname));
6919	if (error != 0)
6920		return (error);
6921
6922	ZFS_ENTER(zfsvfs);
6923
6924	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6925	    LOOKUP_XATTR | CREATE_XATTR_DIR);
6926	if (error != 0) {
6927		ZFS_EXIT(zfsvfs);
6928		return (error);
6929	}
6930
6931	flags = FFLAGS(O_WRONLY | O_CREAT);
6932	NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname,
6933	    xvp, td);
6934	error = vn_open_cred(&nd, &flags, 0600, 0, ap->a_cred, NULL);
6935	vp = nd.ni_vp;
6936	NDFREE(&nd, NDF_ONLY_PNBUF);
6937	if (error != 0) {
6938		ZFS_EXIT(zfsvfs);
6939		return (error);
6940	}
6941
6942	VATTR_NULL(&va);
6943	va.va_size = 0;
6944	error = VOP_SETATTR(vp, &va, ap->a_cred);
6945	if (error == 0)
6946		VOP_WRITE(vp, ap->a_uio, IO_UNIT, ap->a_cred);
6947
6948	VOP_UNLOCK(vp, 0);
6949	vn_close(vp, flags, ap->a_cred, td);
6950	ZFS_EXIT(zfsvfs);
6951
6952	return (error);
6953}
6954
6955/*
6956 * Vnode operation to retrieve extended attributes on a vnode.
6957 */
6958static int
6959zfs_listextattr(struct vop_listextattr_args *ap)
6960/*
6961vop_listextattr {
6962	IN struct vnode *a_vp;
6963	IN int a_attrnamespace;
6964	INOUT struct uio *a_uio;
6965	OUT size_t *a_size;
6966	IN struct ucred *a_cred;
6967	IN struct thread *a_td;
6968};
6969*/
6970{
6971	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6972	struct thread *td = ap->a_td;
6973	struct nameidata nd;
6974	char attrprefix[16];
6975	u_char dirbuf[sizeof(struct dirent)];
6976	struct dirent *dp;
6977	struct iovec aiov;
6978	struct uio auio, *uio = ap->a_uio;
6979	size_t *sizep = ap->a_size;
6980	size_t plen;
6981	vnode_t *xvp = NULL, *vp;
6982	int done, error, eof, pos;
6983
6984	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6985	    ap->a_cred, ap->a_td, VREAD);
6986	if (error != 0)
6987		return (error);
6988
6989	error = zfs_create_attrname(ap->a_attrnamespace, "", attrprefix,
6990	    sizeof(attrprefix));
6991	if (error != 0)
6992		return (error);
6993	plen = strlen(attrprefix);
6994
6995	ZFS_ENTER(zfsvfs);
6996
6997	if (sizep != NULL)
6998		*sizep = 0;
6999
7000	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
7001	    LOOKUP_XATTR);
7002	if (error != 0) {
7003		ZFS_EXIT(zfsvfs);
7004		/*
7005		 * ENOATTR means that the EA directory does not yet exist,
7006		 * i.e. there are no extended attributes there.
7007		 */
7008		if (error == ENOATTR)
7009			error = 0;
7010		return (error);
7011	}
7012
7013	NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW | LOCKLEAF | LOCKSHARED,
7014	    UIO_SYSSPACE, ".", xvp, td);
7015	error = namei(&nd);
7016	vp = nd.ni_vp;
7017	NDFREE(&nd, NDF_ONLY_PNBUF);
7018	if (error != 0) {
7019		ZFS_EXIT(zfsvfs);
7020		return (error);
7021	}
7022
7023	auio.uio_iov = &aiov;
7024	auio.uio_iovcnt = 1;
7025	auio.uio_segflg = UIO_SYSSPACE;
7026	auio.uio_td = td;
7027	auio.uio_rw = UIO_READ;
7028	auio.uio_offset = 0;
7029
7030	do {
7031		u_char nlen;
7032
7033		aiov.iov_base = (void *)dirbuf;
7034		aiov.iov_len = sizeof(dirbuf);
7035		auio.uio_resid = sizeof(dirbuf);
7036		error = VOP_READDIR(vp, &auio, ap->a_cred, &eof, NULL, NULL);
7037		done = sizeof(dirbuf) - auio.uio_resid;
7038		if (error != 0)
7039			break;
7040		for (pos = 0; pos < done;) {
7041			dp = (struct dirent *)(dirbuf + pos);
7042			pos += dp->d_reclen;
7043			/*
7044			 * XXX: Temporarily we also accept DT_UNKNOWN, as this
7045			 * is what we get when attribute was created on Solaris.
7046			 */
7047			if (dp->d_type != DT_REG && dp->d_type != DT_UNKNOWN)
7048				continue;
7049			if (plen == 0 && strncmp(dp->d_name, "freebsd:", 8) == 0)
7050				continue;
7051			else if (strncmp(dp->d_name, attrprefix, plen) != 0)
7052				continue;
7053			nlen = dp->d_namlen - plen;
7054			if (sizep != NULL)
7055				*sizep += 1 + nlen;
7056			else if (uio != NULL) {
7057				/*
7058				 * Format of extattr name entry is one byte for
7059				 * length and the rest for name.
7060				 */
7061				error = uiomove(&nlen, 1, uio->uio_rw, uio);
7062				if (error == 0) {
7063					error = uiomove(dp->d_name + plen, nlen,
7064					    uio->uio_rw, uio);
7065				}
7066				if (error != 0)
7067					break;
7068			}
7069		}
7070	} while (!eof && error == 0);
7071
7072	vput(vp);
7073	ZFS_EXIT(zfsvfs);
7074
7075	return (error);
7076}
7077
7078int
7079zfs_freebsd_getacl(ap)
7080	struct vop_getacl_args /* {
7081		struct vnode *vp;
7082		acl_type_t type;
7083		struct acl *aclp;
7084		struct ucred *cred;
7085		struct thread *td;
7086	} */ *ap;
7087{
7088	int		error;
7089	vsecattr_t      vsecattr;
7090
7091	if (ap->a_type != ACL_TYPE_NFS4)
7092		return (EINVAL);
7093
7094	vsecattr.vsa_mask = VSA_ACE | VSA_ACECNT;
7095	if (error = zfs_getsecattr(ap->a_vp, &vsecattr, 0, ap->a_cred, NULL))
7096		return (error);
7097
7098	error = acl_from_aces(ap->a_aclp, vsecattr.vsa_aclentp, vsecattr.vsa_aclcnt);
7099	if (vsecattr.vsa_aclentp != NULL)
7100		kmem_free(vsecattr.vsa_aclentp, vsecattr.vsa_aclentsz);
7101
7102	return (error);
7103}
7104
7105int
7106zfs_freebsd_setacl(ap)
7107	struct vop_setacl_args /* {
7108		struct vnode *vp;
7109		acl_type_t type;
7110		struct acl *aclp;
7111		struct ucred *cred;
7112		struct thread *td;
7113	} */ *ap;
7114{
7115	int		error;
7116	vsecattr_t      vsecattr;
7117	int		aclbsize;	/* size of acl list in bytes */
7118	aclent_t	*aaclp;
7119
7120	if (ap->a_type != ACL_TYPE_NFS4)
7121		return (EINVAL);
7122
7123	if (ap->a_aclp->acl_cnt < 1 || ap->a_aclp->acl_cnt > MAX_ACL_ENTRIES)
7124		return (EINVAL);
7125
7126	/*
7127	 * With NFSv4 ACLs, chmod(2) may need to add additional entries,
7128	 * splitting every entry into two and appending "canonical six"
7129	 * entries at the end.  Don't allow for setting an ACL that would
7130	 * cause chmod(2) to run out of ACL entries.
7131	 */
7132	if (ap->a_aclp->acl_cnt * 2 + 6 > ACL_MAX_ENTRIES)
7133		return (ENOSPC);
7134
7135	error = acl_nfs4_check(ap->a_aclp, ap->a_vp->v_type == VDIR);
7136	if (error != 0)
7137		return (error);
7138
7139	vsecattr.vsa_mask = VSA_ACE;
7140	aclbsize = ap->a_aclp->acl_cnt * sizeof(ace_t);
7141	vsecattr.vsa_aclentp = kmem_alloc(aclbsize, KM_SLEEP);
7142	aaclp = vsecattr.vsa_aclentp;
7143	vsecattr.vsa_aclentsz = aclbsize;
7144
7145	aces_from_acl(vsecattr.vsa_aclentp, &vsecattr.vsa_aclcnt, ap->a_aclp);
7146	error = zfs_setsecattr(ap->a_vp, &vsecattr, 0, ap->a_cred, NULL);
7147	kmem_free(aaclp, aclbsize);
7148
7149	return (error);
7150}
7151
7152int
7153zfs_freebsd_aclcheck(ap)
7154	struct vop_aclcheck_args /* {
7155		struct vnode *vp;
7156		acl_type_t type;
7157		struct acl *aclp;
7158		struct ucred *cred;
7159		struct thread *td;
7160	} */ *ap;
7161{
7162
7163	return (EOPNOTSUPP);
7164}
7165
7166struct vop_vector zfs_vnodeops;
7167struct vop_vector zfs_fifoops;
7168struct vop_vector zfs_shareops;
7169
7170struct vop_vector zfs_vnodeops = {
7171	.vop_default =		&default_vnodeops,
7172	.vop_inactive =		zfs_freebsd_inactive,
7173	.vop_reclaim =		zfs_freebsd_reclaim,
7174	.vop_access =		zfs_freebsd_access,
7175#ifdef FREEBSD_NAMECACHE
7176	.vop_lookup =		vfs_cache_lookup,
7177	.vop_cachedlookup =	zfs_freebsd_lookup,
7178#else
7179	.vop_lookup =		zfs_freebsd_lookup,
7180#endif
7181	.vop_getattr =		zfs_freebsd_getattr,
7182	.vop_setattr =		zfs_freebsd_setattr,
7183	.vop_create =		zfs_freebsd_create,
7184	.vop_mknod =		zfs_freebsd_create,
7185	.vop_mkdir =		zfs_freebsd_mkdir,
7186	.vop_readdir =		zfs_freebsd_readdir,
7187	.vop_fsync =		zfs_freebsd_fsync,
7188	.vop_open =		zfs_freebsd_open,
7189	.vop_close =		zfs_freebsd_close,
7190	.vop_rmdir =		zfs_freebsd_rmdir,
7191	.vop_ioctl =		zfs_freebsd_ioctl,
7192	.vop_link =		zfs_freebsd_link,
7193	.vop_symlink =		zfs_freebsd_symlink,
7194	.vop_readlink =		zfs_freebsd_readlink,
7195	.vop_read =		zfs_freebsd_read,
7196	.vop_write =		zfs_freebsd_write,
7197	.vop_remove =		zfs_freebsd_remove,
7198	.vop_rename =		zfs_freebsd_rename,
7199	.vop_pathconf =		zfs_freebsd_pathconf,
7200	.vop_bmap =		zfs_freebsd_bmap,
7201	.vop_fid =		zfs_freebsd_fid,
7202	.vop_getextattr =	zfs_getextattr,
7203	.vop_deleteextattr =	zfs_deleteextattr,
7204	.vop_setextattr =	zfs_setextattr,
7205	.vop_listextattr =	zfs_listextattr,
7206	.vop_getacl =		zfs_freebsd_getacl,
7207	.vop_setacl =		zfs_freebsd_setacl,
7208	.vop_aclcheck =		zfs_freebsd_aclcheck,
7209	.vop_getpages =		zfs_freebsd_getpages,
7210	.vop_putpages =		zfs_freebsd_putpages,
7211};
7212
7213struct vop_vector zfs_fifoops = {
7214	.vop_default =		&fifo_specops,
7215	.vop_fsync =		zfs_freebsd_fsync,
7216	.vop_access =		zfs_freebsd_access,
7217	.vop_getattr =		zfs_freebsd_getattr,
7218	.vop_inactive =		zfs_freebsd_inactive,
7219	.vop_read =		VOP_PANIC,
7220	.vop_reclaim =		zfs_freebsd_reclaim,
7221	.vop_setattr =		zfs_freebsd_setattr,
7222	.vop_write =		VOP_PANIC,
7223	.vop_pathconf = 	zfs_freebsd_fifo_pathconf,
7224	.vop_fid =		zfs_freebsd_fid,
7225	.vop_getacl =		zfs_freebsd_getacl,
7226	.vop_setacl =		zfs_freebsd_setacl,
7227	.vop_aclcheck =		zfs_freebsd_aclcheck,
7228};
7229
7230/*
7231 * special share hidden files vnode operations template
7232 */
7233struct vop_vector zfs_shareops = {
7234	.vop_default =		&default_vnodeops,
7235	.vop_access =		zfs_freebsd_access,
7236	.vop_inactive =		zfs_freebsd_inactive,
7237	.vop_reclaim =		zfs_freebsd_reclaim,
7238	.vop_fid =		zfs_freebsd_fid,
7239	.vop_pathconf =		zfs_freebsd_pathconf,
7240};
7241