zfs_vfsops.c revision 302738
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 Pawel Jakub Dawidek <pawel@dawidek.net>.
24 * All rights reserved.
25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 */
28
29/* Portions Copyright 2010 Robert Milkowski */
30
31#include <sys/types.h>
32#include <sys/param.h>
33#include <sys/systm.h>
34#include <sys/kernel.h>
35#include <sys/sysmacros.h>
36#include <sys/kmem.h>
37#include <sys/acl.h>
38#include <sys/vnode.h>
39#include <sys/vfs.h>
40#include <sys/mntent.h>
41#include <sys/mount.h>
42#include <sys/cmn_err.h>
43#include <sys/zfs_znode.h>
44#include <sys/zfs_dir.h>
45#include <sys/zil.h>
46#include <sys/fs/zfs.h>
47#include <sys/dmu.h>
48#include <sys/dsl_prop.h>
49#include <sys/dsl_dataset.h>
50#include <sys/dsl_deleg.h>
51#include <sys/spa.h>
52#include <sys/zap.h>
53#include <sys/sa.h>
54#include <sys/sa_impl.h>
55#include <sys/varargs.h>
56#include <sys/policy.h>
57#include <sys/atomic.h>
58#include <sys/zfs_ioctl.h>
59#include <sys/zfs_ctldir.h>
60#include <sys/zfs_fuid.h>
61#include <sys/sunddi.h>
62#include <sys/dnlc.h>
63#include <sys/dmu_objset.h>
64#include <sys/spa_boot.h>
65#include <sys/jail.h>
66#include "zfs_comutil.h"
67
68struct mtx zfs_debug_mtx;
69MTX_SYSINIT(zfs_debug_mtx, &zfs_debug_mtx, "zfs_debug", MTX_DEF);
70
71SYSCTL_NODE(_vfs, OID_AUTO, zfs, CTLFLAG_RW, 0, "ZFS file system");
72
73int zfs_super_owner;
74SYSCTL_INT(_vfs_zfs, OID_AUTO, super_owner, CTLFLAG_RW, &zfs_super_owner, 0,
75    "File system owner can perform privileged operation on his file systems");
76
77int zfs_debug_level;
78TUNABLE_INT("vfs.zfs.debug", &zfs_debug_level);
79SYSCTL_INT(_vfs_zfs, OID_AUTO, debug, CTLFLAG_RW, &zfs_debug_level, 0,
80    "Debug level");
81
82SYSCTL_NODE(_vfs_zfs, OID_AUTO, version, CTLFLAG_RD, 0, "ZFS versions");
83static int zfs_version_acl = ZFS_ACL_VERSION;
84SYSCTL_INT(_vfs_zfs_version, OID_AUTO, acl, CTLFLAG_RD, &zfs_version_acl, 0,
85    "ZFS_ACL_VERSION");
86static int zfs_version_spa = SPA_VERSION;
87SYSCTL_INT(_vfs_zfs_version, OID_AUTO, spa, CTLFLAG_RD, &zfs_version_spa, 0,
88    "SPA_VERSION");
89static int zfs_version_zpl = ZPL_VERSION;
90SYSCTL_INT(_vfs_zfs_version, OID_AUTO, zpl, CTLFLAG_RD, &zfs_version_zpl, 0,
91    "ZPL_VERSION");
92
93static int zfs_mount(vfs_t *vfsp);
94static int zfs_umount(vfs_t *vfsp, int fflag);
95static int zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp);
96static int zfs_statfs(vfs_t *vfsp, struct statfs *statp);
97static int zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp);
98static int zfs_sync(vfs_t *vfsp, int waitfor);
99static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
100    struct ucred **credanonp, int *numsecflavors, int **secflavors);
101static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp);
102static void zfs_objset_close(zfsvfs_t *zfsvfs);
103static void zfs_freevfs(vfs_t *vfsp);
104
105static struct vfsops zfs_vfsops = {
106	.vfs_mount =		zfs_mount,
107	.vfs_unmount =		zfs_umount,
108	.vfs_root =		zfs_root,
109	.vfs_statfs =		zfs_statfs,
110	.vfs_vget =		zfs_vget,
111	.vfs_sync =		zfs_sync,
112	.vfs_checkexp =		zfs_checkexp,
113	.vfs_fhtovp =		zfs_fhtovp,
114};
115
116VFS_SET(zfs_vfsops, zfs, VFCF_JAIL | VFCF_DELEGADMIN);
117
118/*
119 * We need to keep a count of active fs's.
120 * This is necessary to prevent our module
121 * from being unloaded after a umount -f
122 */
123static uint32_t	zfs_active_fs_count = 0;
124
125/*ARGSUSED*/
126static int
127zfs_sync(vfs_t *vfsp, int waitfor)
128{
129
130	/*
131	 * Data integrity is job one.  We don't want a compromised kernel
132	 * writing to the storage pool, so we never sync during panic.
133	 */
134	if (panicstr)
135		return (0);
136
137	/*
138	 * Ignore the system syncher.  ZFS already commits async data
139	 * at zfs_txg_timeout intervals.
140	 */
141	if (waitfor == MNT_LAZY)
142		return (0);
143
144	if (vfsp != NULL) {
145		/*
146		 * Sync a specific filesystem.
147		 */
148		zfsvfs_t *zfsvfs = vfsp->vfs_data;
149		dsl_pool_t *dp;
150		int error;
151
152		error = vfs_stdsync(vfsp, waitfor);
153		if (error != 0)
154			return (error);
155
156		ZFS_ENTER(zfsvfs);
157		dp = dmu_objset_pool(zfsvfs->z_os);
158
159		/*
160		 * If the system is shutting down, then skip any
161		 * filesystems which may exist on a suspended pool.
162		 */
163		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
164			ZFS_EXIT(zfsvfs);
165			return (0);
166		}
167
168		if (zfsvfs->z_log != NULL)
169			zil_commit(zfsvfs->z_log, 0);
170
171		ZFS_EXIT(zfsvfs);
172	} else {
173		/*
174		 * Sync all ZFS filesystems.  This is what happens when you
175		 * run sync(1M).  Unlike other filesystems, ZFS honors the
176		 * request by waiting for all pools to commit all dirty data.
177		 */
178		spa_sync_allpools();
179	}
180
181	return (0);
182}
183
184#ifndef __FreeBSD_kernel__
185static int
186zfs_create_unique_device(dev_t *dev)
187{
188	major_t new_major;
189
190	do {
191		ASSERT3U(zfs_minor, <=, MAXMIN32);
192		minor_t start = zfs_minor;
193		do {
194			mutex_enter(&zfs_dev_mtx);
195			if (zfs_minor >= MAXMIN32) {
196				/*
197				 * If we're still using the real major
198				 * keep out of /dev/zfs and /dev/zvol minor
199				 * number space.  If we're using a getudev()'ed
200				 * major number, we can use all of its minors.
201				 */
202				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
203					zfs_minor = ZFS_MIN_MINOR;
204				else
205					zfs_minor = 0;
206			} else {
207				zfs_minor++;
208			}
209			*dev = makedevice(zfs_major, zfs_minor);
210			mutex_exit(&zfs_dev_mtx);
211		} while (vfs_devismounted(*dev) && zfs_minor != start);
212		if (zfs_minor == start) {
213			/*
214			 * We are using all ~262,000 minor numbers for the
215			 * current major number.  Create a new major number.
216			 */
217			if ((new_major = getudev()) == (major_t)-1) {
218				cmn_err(CE_WARN,
219				    "zfs_mount: Can't get unique major "
220				    "device number.");
221				return (-1);
222			}
223			mutex_enter(&zfs_dev_mtx);
224			zfs_major = new_major;
225			zfs_minor = 0;
226
227			mutex_exit(&zfs_dev_mtx);
228		} else {
229			break;
230		}
231		/* CONSTANTCONDITION */
232	} while (1);
233
234	return (0);
235}
236#endif	/* !__FreeBSD_kernel__ */
237
238static void
239atime_changed_cb(void *arg, uint64_t newval)
240{
241	zfsvfs_t *zfsvfs = arg;
242
243	if (newval == TRUE) {
244		zfsvfs->z_atime = TRUE;
245		zfsvfs->z_vfs->vfs_flag &= ~MNT_NOATIME;
246		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
247		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
248	} else {
249		zfsvfs->z_atime = FALSE;
250		zfsvfs->z_vfs->vfs_flag |= MNT_NOATIME;
251		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
252		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
253	}
254}
255
256static void
257xattr_changed_cb(void *arg, uint64_t newval)
258{
259	zfsvfs_t *zfsvfs = arg;
260
261	if (newval == TRUE) {
262		/* XXX locking on vfs_flag? */
263#ifdef TODO
264		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
265#endif
266		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
267		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
268	} else {
269		/* XXX locking on vfs_flag? */
270#ifdef TODO
271		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
272#endif
273		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
274		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
275	}
276}
277
278static void
279blksz_changed_cb(void *arg, uint64_t newval)
280{
281	zfsvfs_t *zfsvfs = arg;
282	ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
283	ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
284	ASSERT(ISP2(newval));
285
286	zfsvfs->z_max_blksz = newval;
287	zfsvfs->z_vfs->mnt_stat.f_iosize = newval;
288}
289
290static void
291readonly_changed_cb(void *arg, uint64_t newval)
292{
293	zfsvfs_t *zfsvfs = arg;
294
295	if (newval) {
296		/* XXX locking on vfs_flag? */
297		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
298		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
299		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
300	} else {
301		/* XXX locking on vfs_flag? */
302		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
303		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
304		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
305	}
306}
307
308static void
309setuid_changed_cb(void *arg, uint64_t newval)
310{
311	zfsvfs_t *zfsvfs = arg;
312
313	if (newval == FALSE) {
314		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
315		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
316		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
317	} else {
318		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
319		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
320		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
321	}
322}
323
324static void
325exec_changed_cb(void *arg, uint64_t newval)
326{
327	zfsvfs_t *zfsvfs = arg;
328
329	if (newval == FALSE) {
330		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
331		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
332		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
333	} else {
334		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
335		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
336		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
337	}
338}
339
340/*
341 * The nbmand mount option can be changed at mount time.
342 * We can't allow it to be toggled on live file systems or incorrect
343 * behavior may be seen from cifs clients
344 *
345 * This property isn't registered via dsl_prop_register(), but this callback
346 * will be called when a file system is first mounted
347 */
348static void
349nbmand_changed_cb(void *arg, uint64_t newval)
350{
351	zfsvfs_t *zfsvfs = arg;
352	if (newval == FALSE) {
353		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
354		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
355	} else {
356		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
357		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
358	}
359}
360
361static void
362snapdir_changed_cb(void *arg, uint64_t newval)
363{
364	zfsvfs_t *zfsvfs = arg;
365
366	zfsvfs->z_show_ctldir = newval;
367}
368
369static void
370vscan_changed_cb(void *arg, uint64_t newval)
371{
372	zfsvfs_t *zfsvfs = arg;
373
374	zfsvfs->z_vscan = newval;
375}
376
377static void
378acl_mode_changed_cb(void *arg, uint64_t newval)
379{
380	zfsvfs_t *zfsvfs = arg;
381
382	zfsvfs->z_acl_mode = newval;
383}
384
385static void
386acl_inherit_changed_cb(void *arg, uint64_t newval)
387{
388	zfsvfs_t *zfsvfs = arg;
389
390	zfsvfs->z_acl_inherit = newval;
391}
392
393static int
394zfs_register_callbacks(vfs_t *vfsp)
395{
396	struct dsl_dataset *ds = NULL;
397	objset_t *os = NULL;
398	zfsvfs_t *zfsvfs = NULL;
399	uint64_t nbmand;
400	boolean_t readonly = B_FALSE;
401	boolean_t do_readonly = B_FALSE;
402	boolean_t setuid = B_FALSE;
403	boolean_t do_setuid = B_FALSE;
404	boolean_t exec = B_FALSE;
405	boolean_t do_exec = B_FALSE;
406#ifdef illumos
407	boolean_t devices = B_FALSE;
408	boolean_t do_devices = B_FALSE;
409#endif
410	boolean_t xattr = B_FALSE;
411	boolean_t do_xattr = B_FALSE;
412	boolean_t atime = B_FALSE;
413	boolean_t do_atime = B_FALSE;
414	int error = 0;
415
416	ASSERT(vfsp);
417	zfsvfs = vfsp->vfs_data;
418	ASSERT(zfsvfs);
419	os = zfsvfs->z_os;
420
421	/*
422	 * This function can be called for a snapshot when we update snapshot's
423	 * mount point, which isn't really supported.
424	 */
425	if (dmu_objset_is_snapshot(os))
426		return (EOPNOTSUPP);
427
428	/*
429	 * The act of registering our callbacks will destroy any mount
430	 * options we may have.  In order to enable temporary overrides
431	 * of mount options, we stash away the current values and
432	 * restore them after we register the callbacks.
433	 */
434	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
435	    !spa_writeable(dmu_objset_spa(os))) {
436		readonly = B_TRUE;
437		do_readonly = B_TRUE;
438	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
439		readonly = B_FALSE;
440		do_readonly = B_TRUE;
441	}
442	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
443		setuid = B_FALSE;
444		do_setuid = B_TRUE;
445	} else {
446		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
447			setuid = B_FALSE;
448			do_setuid = B_TRUE;
449		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
450			setuid = B_TRUE;
451			do_setuid = B_TRUE;
452		}
453	}
454	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
455		exec = B_FALSE;
456		do_exec = B_TRUE;
457	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
458		exec = B_TRUE;
459		do_exec = B_TRUE;
460	}
461	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
462		xattr = B_FALSE;
463		do_xattr = B_TRUE;
464	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
465		xattr = B_TRUE;
466		do_xattr = B_TRUE;
467	}
468	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
469		atime = B_FALSE;
470		do_atime = B_TRUE;
471	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
472		atime = B_TRUE;
473		do_atime = B_TRUE;
474	}
475
476	/*
477	 * We need to enter pool configuration here, so that we can use
478	 * dsl_prop_get_int_ds() to handle the special nbmand property below.
479	 * dsl_prop_get_integer() can not be used, because it has to acquire
480	 * spa_namespace_lock and we can not do that because we already hold
481	 * z_teardown_lock.  The problem is that spa_config_sync() is called
482	 * with spa_namespace_lock held and the function calls ZFS vnode
483	 * operations to write the cache file and thus z_teardown_lock is
484	 * acquired after spa_namespace_lock.
485	 */
486	ds = dmu_objset_ds(os);
487	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
488
489	/*
490	 * nbmand is a special property.  It can only be changed at
491	 * mount time.
492	 *
493	 * This is weird, but it is documented to only be changeable
494	 * at mount time.
495	 */
496	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
497		nbmand = B_FALSE;
498	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
499		nbmand = B_TRUE;
500	} else if (error = dsl_prop_get_int_ds(ds, "nbmand", &nbmand) != 0) {
501		dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
502		return (error);
503	}
504
505	/*
506	 * Register property callbacks.
507	 *
508	 * It would probably be fine to just check for i/o error from
509	 * the first prop_register(), but I guess I like to go
510	 * overboard...
511	 */
512	error = dsl_prop_register(ds,
513	    zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
514	error = error ? error : dsl_prop_register(ds,
515	    zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
516	error = error ? error : dsl_prop_register(ds,
517	    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
518	error = error ? error : dsl_prop_register(ds,
519	    zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
520#ifdef illumos
521	error = error ? error : dsl_prop_register(ds,
522	    zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
523#endif
524	error = error ? error : dsl_prop_register(ds,
525	    zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
526	error = error ? error : dsl_prop_register(ds,
527	    zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
528	error = error ? error : dsl_prop_register(ds,
529	    zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
530	error = error ? error : dsl_prop_register(ds,
531	    zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
532	error = error ? error : dsl_prop_register(ds,
533	    zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
534	    zfsvfs);
535	error = error ? error : dsl_prop_register(ds,
536	    zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
537	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
538	if (error)
539		goto unregister;
540
541	/*
542	 * Invoke our callbacks to restore temporary mount options.
543	 */
544	if (do_readonly)
545		readonly_changed_cb(zfsvfs, readonly);
546	if (do_setuid)
547		setuid_changed_cb(zfsvfs, setuid);
548	if (do_exec)
549		exec_changed_cb(zfsvfs, exec);
550	if (do_xattr)
551		xattr_changed_cb(zfsvfs, xattr);
552	if (do_atime)
553		atime_changed_cb(zfsvfs, atime);
554
555	nbmand_changed_cb(zfsvfs, nbmand);
556
557	return (0);
558
559unregister:
560	dsl_prop_unregister_all(ds, zfsvfs);
561	return (error);
562}
563
564static int
565zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
566    uint64_t *userp, uint64_t *groupp)
567{
568	/*
569	 * Is it a valid type of object to track?
570	 */
571	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
572		return (SET_ERROR(ENOENT));
573
574	/*
575	 * If we have a NULL data pointer
576	 * then assume the id's aren't changing and
577	 * return EEXIST to the dmu to let it know to
578	 * use the same ids
579	 */
580	if (data == NULL)
581		return (SET_ERROR(EEXIST));
582
583	if (bonustype == DMU_OT_ZNODE) {
584		znode_phys_t *znp = data;
585		*userp = znp->zp_uid;
586		*groupp = znp->zp_gid;
587	} else {
588		int hdrsize;
589		sa_hdr_phys_t *sap = data;
590		sa_hdr_phys_t sa = *sap;
591		boolean_t swap = B_FALSE;
592
593		ASSERT(bonustype == DMU_OT_SA);
594
595		if (sa.sa_magic == 0) {
596			/*
597			 * This should only happen for newly created
598			 * files that haven't had the znode data filled
599			 * in yet.
600			 */
601			*userp = 0;
602			*groupp = 0;
603			return (0);
604		}
605		if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
606			sa.sa_magic = SA_MAGIC;
607			sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
608			swap = B_TRUE;
609		} else {
610			VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
611		}
612
613		hdrsize = sa_hdrsize(&sa);
614		VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
615		*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
616		    SA_UID_OFFSET));
617		*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
618		    SA_GID_OFFSET));
619		if (swap) {
620			*userp = BSWAP_64(*userp);
621			*groupp = BSWAP_64(*groupp);
622		}
623	}
624	return (0);
625}
626
627static void
628fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
629    char *domainbuf, int buflen, uid_t *ridp)
630{
631	uint64_t fuid;
632	const char *domain;
633
634	fuid = strtonum(fuidstr, NULL);
635
636	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
637	if (domain)
638		(void) strlcpy(domainbuf, domain, buflen);
639	else
640		domainbuf[0] = '\0';
641	*ridp = FUID_RID(fuid);
642}
643
644static uint64_t
645zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
646{
647	switch (type) {
648	case ZFS_PROP_USERUSED:
649		return (DMU_USERUSED_OBJECT);
650	case ZFS_PROP_GROUPUSED:
651		return (DMU_GROUPUSED_OBJECT);
652	case ZFS_PROP_USERQUOTA:
653		return (zfsvfs->z_userquota_obj);
654	case ZFS_PROP_GROUPQUOTA:
655		return (zfsvfs->z_groupquota_obj);
656	}
657	return (0);
658}
659
660int
661zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
662    uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
663{
664	int error;
665	zap_cursor_t zc;
666	zap_attribute_t za;
667	zfs_useracct_t *buf = vbuf;
668	uint64_t obj;
669
670	if (!dmu_objset_userspace_present(zfsvfs->z_os))
671		return (SET_ERROR(ENOTSUP));
672
673	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
674	if (obj == 0) {
675		*bufsizep = 0;
676		return (0);
677	}
678
679	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
680	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
681	    zap_cursor_advance(&zc)) {
682		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
683		    *bufsizep)
684			break;
685
686		fuidstr_to_sid(zfsvfs, za.za_name,
687		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
688
689		buf->zu_space = za.za_first_integer;
690		buf++;
691	}
692	if (error == ENOENT)
693		error = 0;
694
695	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
696	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
697	*cookiep = zap_cursor_serialize(&zc);
698	zap_cursor_fini(&zc);
699	return (error);
700}
701
702/*
703 * buf must be big enough (eg, 32 bytes)
704 */
705static int
706id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
707    char *buf, boolean_t addok)
708{
709	uint64_t fuid;
710	int domainid = 0;
711
712	if (domain && domain[0]) {
713		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
714		if (domainid == -1)
715			return (SET_ERROR(ENOENT));
716	}
717	fuid = FUID_ENCODE(domainid, rid);
718	(void) sprintf(buf, "%llx", (longlong_t)fuid);
719	return (0);
720}
721
722int
723zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
724    const char *domain, uint64_t rid, uint64_t *valp)
725{
726	char buf[32];
727	int err;
728	uint64_t obj;
729
730	*valp = 0;
731
732	if (!dmu_objset_userspace_present(zfsvfs->z_os))
733		return (SET_ERROR(ENOTSUP));
734
735	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
736	if (obj == 0)
737		return (0);
738
739	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
740	if (err)
741		return (err);
742
743	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
744	if (err == ENOENT)
745		err = 0;
746	return (err);
747}
748
749int
750zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
751    const char *domain, uint64_t rid, uint64_t quota)
752{
753	char buf[32];
754	int err;
755	dmu_tx_t *tx;
756	uint64_t *objp;
757	boolean_t fuid_dirtied;
758
759	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
760		return (SET_ERROR(EINVAL));
761
762	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
763		return (SET_ERROR(ENOTSUP));
764
765	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
766	    &zfsvfs->z_groupquota_obj;
767
768	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
769	if (err)
770		return (err);
771	fuid_dirtied = zfsvfs->z_fuid_dirty;
772
773	tx = dmu_tx_create(zfsvfs->z_os);
774	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
775	if (*objp == 0) {
776		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
777		    zfs_userquota_prop_prefixes[type]);
778	}
779	if (fuid_dirtied)
780		zfs_fuid_txhold(zfsvfs, tx);
781	err = dmu_tx_assign(tx, TXG_WAIT);
782	if (err) {
783		dmu_tx_abort(tx);
784		return (err);
785	}
786
787	mutex_enter(&zfsvfs->z_lock);
788	if (*objp == 0) {
789		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
790		    DMU_OT_NONE, 0, tx);
791		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
792		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
793	}
794	mutex_exit(&zfsvfs->z_lock);
795
796	if (quota == 0) {
797		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
798		if (err == ENOENT)
799			err = 0;
800	} else {
801		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
802	}
803	ASSERT(err == 0);
804	if (fuid_dirtied)
805		zfs_fuid_sync(zfsvfs, tx);
806	dmu_tx_commit(tx);
807	return (err);
808}
809
810boolean_t
811zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
812{
813	char buf[32];
814	uint64_t used, quota, usedobj, quotaobj;
815	int err;
816
817	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
818	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
819
820	if (quotaobj == 0 || zfsvfs->z_replay)
821		return (B_FALSE);
822
823	(void) sprintf(buf, "%llx", (longlong_t)fuid);
824	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
825	if (err != 0)
826		return (B_FALSE);
827
828	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
829	if (err != 0)
830		return (B_FALSE);
831	return (used >= quota);
832}
833
834boolean_t
835zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
836{
837	uint64_t fuid;
838	uint64_t quotaobj;
839
840	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
841
842	fuid = isgroup ? zp->z_gid : zp->z_uid;
843
844	if (quotaobj == 0 || zfsvfs->z_replay)
845		return (B_FALSE);
846
847	return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
848}
849
850int
851zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
852{
853	objset_t *os;
854	zfsvfs_t *zfsvfs;
855	uint64_t zval;
856	int i, error;
857	uint64_t sa_obj;
858
859	/*
860	 * XXX: Fix struct statfs so this isn't necessary!
861	 *
862	 * The 'osname' is used as the filesystem's special node, which means
863	 * it must fit in statfs.f_mntfromname, or else it can't be
864	 * enumerated, so libzfs_mnttab_find() returns NULL, which causes
865	 * 'zfs unmount' to think it's not mounted when it is.
866	 */
867	if (strlen(osname) >= MNAMELEN)
868		return (SET_ERROR(ENAMETOOLONG));
869
870	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
871
872	/*
873	 * We claim to always be readonly so we can open snapshots;
874	 * other ZPL code will prevent us from writing to snapshots.
875	 */
876	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
877	if (error) {
878		kmem_free(zfsvfs, sizeof (zfsvfs_t));
879		return (error);
880	}
881
882	/*
883	 * Initialize the zfs-specific filesystem structure.
884	 * Should probably make this a kmem cache, shuffle fields,
885	 * and just bzero up to z_hold_mtx[].
886	 */
887	zfsvfs->z_vfs = NULL;
888	zfsvfs->z_parent = zfsvfs;
889	zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
890	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
891	zfsvfs->z_os = os;
892
893	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
894	if (error) {
895		goto out;
896	} else if (zfsvfs->z_version >
897	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
898		(void) printf("Can't mount a version %lld file system "
899		    "on a version %lld pool\n. Pool must be upgraded to mount "
900		    "this file system.", (u_longlong_t)zfsvfs->z_version,
901		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
902		error = SET_ERROR(ENOTSUP);
903		goto out;
904	}
905	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
906		goto out;
907	zfsvfs->z_norm = (int)zval;
908
909	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
910		goto out;
911	zfsvfs->z_utf8 = (zval != 0);
912
913	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
914		goto out;
915	zfsvfs->z_case = (uint_t)zval;
916
917	/*
918	 * Fold case on file systems that are always or sometimes case
919	 * insensitive.
920	 */
921	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
922	    zfsvfs->z_case == ZFS_CASE_MIXED)
923		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
924
925	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
926	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
927
928	if (zfsvfs->z_use_sa) {
929		/* should either have both of these objects or none */
930		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
931		    &sa_obj);
932		if (error)
933			goto out;
934	} else {
935		/*
936		 * Pre SA versions file systems should never touch
937		 * either the attribute registration or layout objects.
938		 */
939		sa_obj = 0;
940	}
941
942	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
943	    &zfsvfs->z_attr_table);
944	if (error)
945		goto out;
946
947	if (zfsvfs->z_version >= ZPL_VERSION_SA)
948		sa_register_update_callback(os, zfs_sa_upgrade);
949
950	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
951	    &zfsvfs->z_root);
952	if (error)
953		goto out;
954	ASSERT(zfsvfs->z_root != 0);
955
956	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
957	    &zfsvfs->z_unlinkedobj);
958	if (error)
959		goto out;
960
961	error = zap_lookup(os, MASTER_NODE_OBJ,
962	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
963	    8, 1, &zfsvfs->z_userquota_obj);
964	if (error && error != ENOENT)
965		goto out;
966
967	error = zap_lookup(os, MASTER_NODE_OBJ,
968	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
969	    8, 1, &zfsvfs->z_groupquota_obj);
970	if (error && error != ENOENT)
971		goto out;
972
973	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
974	    &zfsvfs->z_fuid_obj);
975	if (error && error != ENOENT)
976		goto out;
977
978	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
979	    &zfsvfs->z_shares_dir);
980	if (error && error != ENOENT)
981		goto out;
982
983	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
984	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
985	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
986	    offsetof(znode_t, z_link_node));
987	rrm_init(&zfsvfs->z_teardown_lock, B_FALSE);
988	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
989	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
990	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
991		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
992
993	*zfvp = zfsvfs;
994	return (0);
995
996out:
997	dmu_objset_disown(os, zfsvfs);
998	*zfvp = NULL;
999	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1000	return (error);
1001}
1002
1003static int
1004zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1005{
1006	int error;
1007
1008	error = zfs_register_callbacks(zfsvfs->z_vfs);
1009	if (error)
1010		return (error);
1011
1012	/*
1013	 * Set the objset user_ptr to track its zfsvfs.
1014	 */
1015	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1016	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1017	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1018
1019	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1020
1021	/*
1022	 * If we are not mounting (ie: online recv), then we don't
1023	 * have to worry about replaying the log as we blocked all
1024	 * operations out since we closed the ZIL.
1025	 */
1026	if (mounting) {
1027		boolean_t readonly;
1028
1029		/*
1030		 * During replay we remove the read only flag to
1031		 * allow replays to succeed.
1032		 */
1033		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1034		if (readonly != 0)
1035			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1036		else
1037			zfs_unlinked_drain(zfsvfs);
1038
1039		/*
1040		 * Parse and replay the intent log.
1041		 *
1042		 * Because of ziltest, this must be done after
1043		 * zfs_unlinked_drain().  (Further note: ziltest
1044		 * doesn't use readonly mounts, where
1045		 * zfs_unlinked_drain() isn't called.)  This is because
1046		 * ziltest causes spa_sync() to think it's committed,
1047		 * but actually it is not, so the intent log contains
1048		 * many txg's worth of changes.
1049		 *
1050		 * In particular, if object N is in the unlinked set in
1051		 * the last txg to actually sync, then it could be
1052		 * actually freed in a later txg and then reallocated
1053		 * in a yet later txg.  This would write a "create
1054		 * object N" record to the intent log.  Normally, this
1055		 * would be fine because the spa_sync() would have
1056		 * written out the fact that object N is free, before
1057		 * we could write the "create object N" intent log
1058		 * record.
1059		 *
1060		 * But when we are in ziltest mode, we advance the "open
1061		 * txg" without actually spa_sync()-ing the changes to
1062		 * disk.  So we would see that object N is still
1063		 * allocated and in the unlinked set, and there is an
1064		 * intent log record saying to allocate it.
1065		 */
1066		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1067			if (zil_replay_disable) {
1068				zil_destroy(zfsvfs->z_log, B_FALSE);
1069			} else {
1070				zfsvfs->z_replay = B_TRUE;
1071				zil_replay(zfsvfs->z_os, zfsvfs,
1072				    zfs_replay_vector);
1073				zfsvfs->z_replay = B_FALSE;
1074			}
1075		}
1076		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1077	}
1078
1079	return (0);
1080}
1081
1082extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1083
1084void
1085zfsvfs_free(zfsvfs_t *zfsvfs)
1086{
1087	int i;
1088
1089	/*
1090	 * This is a barrier to prevent the filesystem from going away in
1091	 * zfs_znode_move() until we can safely ensure that the filesystem is
1092	 * not unmounted. We consider the filesystem valid before the barrier
1093	 * and invalid after the barrier.
1094	 */
1095	rw_enter(&zfsvfs_lock, RW_READER);
1096	rw_exit(&zfsvfs_lock);
1097
1098	zfs_fuid_destroy(zfsvfs);
1099
1100	mutex_destroy(&zfsvfs->z_znodes_lock);
1101	mutex_destroy(&zfsvfs->z_lock);
1102	list_destroy(&zfsvfs->z_all_znodes);
1103	rrm_destroy(&zfsvfs->z_teardown_lock);
1104	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1105	rw_destroy(&zfsvfs->z_fuid_lock);
1106	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1107		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1108	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1109}
1110
1111static void
1112zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1113{
1114	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1115	if (zfsvfs->z_vfs) {
1116		if (zfsvfs->z_use_fuids) {
1117			vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1118			vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1119			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1120			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1121			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1122			vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1123		} else {
1124			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1125			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1126			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1127			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1128			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1129			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1130		}
1131	}
1132	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1133}
1134
1135static int
1136zfs_domount(vfs_t *vfsp, char *osname)
1137{
1138	uint64_t recordsize, fsid_guid;
1139	int error = 0;
1140	zfsvfs_t *zfsvfs;
1141	vnode_t *vp;
1142
1143	ASSERT(vfsp);
1144	ASSERT(osname);
1145
1146	error = zfsvfs_create(osname, &zfsvfs);
1147	if (error)
1148		return (error);
1149	zfsvfs->z_vfs = vfsp;
1150
1151#ifdef illumos
1152	/* Initialize the generic filesystem structure. */
1153	vfsp->vfs_bcount = 0;
1154	vfsp->vfs_data = NULL;
1155
1156	if (zfs_create_unique_device(&mount_dev) == -1) {
1157		error = SET_ERROR(ENODEV);
1158		goto out;
1159	}
1160	ASSERT(vfs_devismounted(mount_dev) == 0);
1161#endif
1162
1163	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1164	    NULL))
1165		goto out;
1166	zfsvfs->z_vfs->vfs_bsize = SPA_MINBLOCKSIZE;
1167	zfsvfs->z_vfs->mnt_stat.f_iosize = recordsize;
1168
1169	vfsp->vfs_data = zfsvfs;
1170	vfsp->mnt_flag |= MNT_LOCAL;
1171	vfsp->mnt_kern_flag |= MNTK_LOOKUP_SHARED;
1172	vfsp->mnt_kern_flag |= MNTK_SHARED_WRITES;
1173	vfsp->mnt_kern_flag |= MNTK_EXTENDED_SHARED;
1174	vfsp->mnt_kern_flag |= MNTK_NO_IOPF;	/* vn_io_fault can be used */
1175
1176	/*
1177	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1178	 * separates our fsid from any other filesystem types, and a
1179	 * 56-bit objset unique ID.  The objset unique ID is unique to
1180	 * all objsets open on this system, provided by unique_create().
1181	 * The 8-bit fs type must be put in the low bits of fsid[1]
1182	 * because that's where other Solaris filesystems put it.
1183	 */
1184	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1185	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1186	vfsp->vfs_fsid.val[0] = fsid_guid;
1187	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1188	    vfsp->mnt_vfc->vfc_typenum & 0xFF;
1189
1190	/*
1191	 * Set features for file system.
1192	 */
1193	zfs_set_fuid_feature(zfsvfs);
1194	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1195		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1196		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1197		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1198	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1199		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1200		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1201	}
1202	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1203
1204	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1205		uint64_t pval;
1206
1207		atime_changed_cb(zfsvfs, B_FALSE);
1208		readonly_changed_cb(zfsvfs, B_TRUE);
1209		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1210			goto out;
1211		xattr_changed_cb(zfsvfs, pval);
1212		zfsvfs->z_issnap = B_TRUE;
1213		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1214
1215		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1216		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1217		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1218	} else {
1219		error = zfsvfs_setup(zfsvfs, B_TRUE);
1220	}
1221
1222	vfs_mountedfrom(vfsp, osname);
1223
1224	if (!zfsvfs->z_issnap)
1225		zfsctl_create(zfsvfs);
1226out:
1227	if (error) {
1228		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1229		zfsvfs_free(zfsvfs);
1230	} else {
1231		atomic_inc_32(&zfs_active_fs_count);
1232	}
1233
1234	return (error);
1235}
1236
1237void
1238zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1239{
1240	objset_t *os = zfsvfs->z_os;
1241
1242	if (!dmu_objset_is_snapshot(os))
1243		dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
1244}
1245
1246#ifdef SECLABEL
1247/*
1248 * Convert a decimal digit string to a uint64_t integer.
1249 */
1250static int
1251str_to_uint64(char *str, uint64_t *objnum)
1252{
1253	uint64_t num = 0;
1254
1255	while (*str) {
1256		if (*str < '0' || *str > '9')
1257			return (SET_ERROR(EINVAL));
1258
1259		num = num*10 + *str++ - '0';
1260	}
1261
1262	*objnum = num;
1263	return (0);
1264}
1265
1266/*
1267 * The boot path passed from the boot loader is in the form of
1268 * "rootpool-name/root-filesystem-object-number'. Convert this
1269 * string to a dataset name: "rootpool-name/root-filesystem-name".
1270 */
1271static int
1272zfs_parse_bootfs(char *bpath, char *outpath)
1273{
1274	char *slashp;
1275	uint64_t objnum;
1276	int error;
1277
1278	if (*bpath == 0 || *bpath == '/')
1279		return (SET_ERROR(EINVAL));
1280
1281	(void) strcpy(outpath, bpath);
1282
1283	slashp = strchr(bpath, '/');
1284
1285	/* if no '/', just return the pool name */
1286	if (slashp == NULL) {
1287		return (0);
1288	}
1289
1290	/* if not a number, just return the root dataset name */
1291	if (str_to_uint64(slashp+1, &objnum)) {
1292		return (0);
1293	}
1294
1295	*slashp = '\0';
1296	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1297	*slashp = '/';
1298
1299	return (error);
1300}
1301
1302/*
1303 * Check that the hex label string is appropriate for the dataset being
1304 * mounted into the global_zone proper.
1305 *
1306 * Return an error if the hex label string is not default or
1307 * admin_low/admin_high.  For admin_low labels, the corresponding
1308 * dataset must be readonly.
1309 */
1310int
1311zfs_check_global_label(const char *dsname, const char *hexsl)
1312{
1313	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1314		return (0);
1315	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1316		return (0);
1317	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1318		/* must be readonly */
1319		uint64_t rdonly;
1320
1321		if (dsl_prop_get_integer(dsname,
1322		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1323			return (SET_ERROR(EACCES));
1324		return (rdonly ? 0 : EACCES);
1325	}
1326	return (SET_ERROR(EACCES));
1327}
1328
1329/*
1330 * Determine whether the mount is allowed according to MAC check.
1331 * by comparing (where appropriate) label of the dataset against
1332 * the label of the zone being mounted into.  If the dataset has
1333 * no label, create one.
1334 *
1335 * Returns 0 if access allowed, error otherwise (e.g. EACCES)
1336 */
1337static int
1338zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1339{
1340	int		error, retv;
1341	zone_t		*mntzone = NULL;
1342	ts_label_t	*mnt_tsl;
1343	bslabel_t	*mnt_sl;
1344	bslabel_t	ds_sl;
1345	char		ds_hexsl[MAXNAMELEN];
1346
1347	retv = EACCES;				/* assume the worst */
1348
1349	/*
1350	 * Start by getting the dataset label if it exists.
1351	 */
1352	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1353	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1354	if (error)
1355		return (SET_ERROR(EACCES));
1356
1357	/*
1358	 * If labeling is NOT enabled, then disallow the mount of datasets
1359	 * which have a non-default label already.  No other label checks
1360	 * are needed.
1361	 */
1362	if (!is_system_labeled()) {
1363		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1364			return (0);
1365		return (SET_ERROR(EACCES));
1366	}
1367
1368	/*
1369	 * Get the label of the mountpoint.  If mounting into the global
1370	 * zone (i.e. mountpoint is not within an active zone and the
1371	 * zoned property is off), the label must be default or
1372	 * admin_low/admin_high only; no other checks are needed.
1373	 */
1374	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1375	if (mntzone->zone_id == GLOBAL_ZONEID) {
1376		uint64_t zoned;
1377
1378		zone_rele(mntzone);
1379
1380		if (dsl_prop_get_integer(osname,
1381		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1382			return (SET_ERROR(EACCES));
1383		if (!zoned)
1384			return (zfs_check_global_label(osname, ds_hexsl));
1385		else
1386			/*
1387			 * This is the case of a zone dataset being mounted
1388			 * initially, before the zone has been fully created;
1389			 * allow this mount into global zone.
1390			 */
1391			return (0);
1392	}
1393
1394	mnt_tsl = mntzone->zone_slabel;
1395	ASSERT(mnt_tsl != NULL);
1396	label_hold(mnt_tsl);
1397	mnt_sl = label2bslabel(mnt_tsl);
1398
1399	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1400		/*
1401		 * The dataset doesn't have a real label, so fabricate one.
1402		 */
1403		char *str = NULL;
1404
1405		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1406		    dsl_prop_set_string(osname,
1407		    zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1408		    ZPROP_SRC_LOCAL, str) == 0)
1409			retv = 0;
1410		if (str != NULL)
1411			kmem_free(str, strlen(str) + 1);
1412	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1413		/*
1414		 * Now compare labels to complete the MAC check.  If the
1415		 * labels are equal then allow access.  If the mountpoint
1416		 * label dominates the dataset label, allow readonly access.
1417		 * Otherwise, access is denied.
1418		 */
1419		if (blequal(mnt_sl, &ds_sl))
1420			retv = 0;
1421		else if (bldominates(mnt_sl, &ds_sl)) {
1422			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1423			retv = 0;
1424		}
1425	}
1426
1427	label_rele(mnt_tsl);
1428	zone_rele(mntzone);
1429	return (retv);
1430}
1431#endif	/* SECLABEL */
1432
1433#ifdef OPENSOLARIS_MOUNTROOT
1434static int
1435zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1436{
1437	int error = 0;
1438	static int zfsrootdone = 0;
1439	zfsvfs_t *zfsvfs = NULL;
1440	znode_t *zp = NULL;
1441	vnode_t *vp = NULL;
1442	char *zfs_bootfs;
1443	char *zfs_devid;
1444
1445	ASSERT(vfsp);
1446
1447	/*
1448	 * The filesystem that we mount as root is defined in the
1449	 * boot property "zfs-bootfs" with a format of
1450	 * "poolname/root-dataset-objnum".
1451	 */
1452	if (why == ROOT_INIT) {
1453		if (zfsrootdone++)
1454			return (SET_ERROR(EBUSY));
1455		/*
1456		 * the process of doing a spa_load will require the
1457		 * clock to be set before we could (for example) do
1458		 * something better by looking at the timestamp on
1459		 * an uberblock, so just set it to -1.
1460		 */
1461		clkset(-1);
1462
1463		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1464			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1465			    "bootfs name");
1466			return (SET_ERROR(EINVAL));
1467		}
1468		zfs_devid = spa_get_bootprop("diskdevid");
1469		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1470		if (zfs_devid)
1471			spa_free_bootprop(zfs_devid);
1472		if (error) {
1473			spa_free_bootprop(zfs_bootfs);
1474			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1475			    error);
1476			return (error);
1477		}
1478		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1479			spa_free_bootprop(zfs_bootfs);
1480			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1481			    error);
1482			return (error);
1483		}
1484
1485		spa_free_bootprop(zfs_bootfs);
1486
1487		if (error = vfs_lock(vfsp))
1488			return (error);
1489
1490		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1491			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1492			goto out;
1493		}
1494
1495		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1496		ASSERT(zfsvfs);
1497		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1498			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1499			goto out;
1500		}
1501
1502		vp = ZTOV(zp);
1503		mutex_enter(&vp->v_lock);
1504		vp->v_flag |= VROOT;
1505		mutex_exit(&vp->v_lock);
1506		rootvp = vp;
1507
1508		/*
1509		 * Leave rootvp held.  The root file system is never unmounted.
1510		 */
1511
1512		vfs_add((struct vnode *)0, vfsp,
1513		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1514out:
1515		vfs_unlock(vfsp);
1516		return (error);
1517	} else if (why == ROOT_REMOUNT) {
1518		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1519		vfsp->vfs_flag |= VFS_REMOUNT;
1520
1521		/* refresh mount options */
1522		zfs_unregister_callbacks(vfsp->vfs_data);
1523		return (zfs_register_callbacks(vfsp));
1524
1525	} else if (why == ROOT_UNMOUNT) {
1526		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1527		(void) zfs_sync(vfsp, 0, 0);
1528		return (0);
1529	}
1530
1531	/*
1532	 * if "why" is equal to anything else other than ROOT_INIT,
1533	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1534	 */
1535	return (SET_ERROR(ENOTSUP));
1536}
1537#endif	/* OPENSOLARIS_MOUNTROOT */
1538
1539static int
1540getpoolname(const char *osname, char *poolname)
1541{
1542	char *p;
1543
1544	p = strchr(osname, '/');
1545	if (p == NULL) {
1546		if (strlen(osname) >= MAXNAMELEN)
1547			return (ENAMETOOLONG);
1548		(void) strcpy(poolname, osname);
1549	} else {
1550		if (p - osname >= MAXNAMELEN)
1551			return (ENAMETOOLONG);
1552		(void) strncpy(poolname, osname, p - osname);
1553		poolname[p - osname] = '\0';
1554	}
1555	return (0);
1556}
1557
1558/*ARGSUSED*/
1559static int
1560zfs_mount(vfs_t *vfsp)
1561{
1562	kthread_t	*td = curthread;
1563	vnode_t		*mvp = vfsp->mnt_vnodecovered;
1564	cred_t		*cr = td->td_ucred;
1565	char		*osname;
1566	int		error = 0;
1567	int		canwrite;
1568
1569#ifdef illumos
1570	if (mvp->v_type != VDIR)
1571		return (SET_ERROR(ENOTDIR));
1572
1573	mutex_enter(&mvp->v_lock);
1574	if ((uap->flags & MS_REMOUNT) == 0 &&
1575	    (uap->flags & MS_OVERLAY) == 0 &&
1576	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1577		mutex_exit(&mvp->v_lock);
1578		return (SET_ERROR(EBUSY));
1579	}
1580	mutex_exit(&mvp->v_lock);
1581
1582	/*
1583	 * ZFS does not support passing unparsed data in via MS_DATA.
1584	 * Users should use the MS_OPTIONSTR interface; this means
1585	 * that all option parsing is already done and the options struct
1586	 * can be interrogated.
1587	 */
1588	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1589#else	/* !illumos */
1590	if (!prison_allow(td->td_ucred, PR_ALLOW_MOUNT_ZFS))
1591		return (SET_ERROR(EPERM));
1592
1593	if (vfs_getopt(vfsp->mnt_optnew, "from", (void **)&osname, NULL))
1594		return (SET_ERROR(EINVAL));
1595#endif	/* illumos */
1596
1597	/*
1598	 * If full-owner-access is enabled and delegated administration is
1599	 * turned on, we must set nosuid.
1600	 */
1601	if (zfs_super_owner &&
1602	    dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != ECANCELED) {
1603		secpolicy_fs_mount_clearopts(cr, vfsp);
1604	}
1605
1606	/*
1607	 * Check for mount privilege?
1608	 *
1609	 * If we don't have privilege then see if
1610	 * we have local permission to allow it
1611	 */
1612	error = secpolicy_fs_mount(cr, mvp, vfsp);
1613	if (error) {
1614		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != 0)
1615			goto out;
1616
1617		if (!(vfsp->vfs_flag & MS_REMOUNT)) {
1618			vattr_t		vattr;
1619
1620			/*
1621			 * Make sure user is the owner of the mount point
1622			 * or has sufficient privileges.
1623			 */
1624
1625			vattr.va_mask = AT_UID;
1626
1627			vn_lock(mvp, LK_SHARED | LK_RETRY);
1628			if (VOP_GETATTR(mvp, &vattr, cr)) {
1629				VOP_UNLOCK(mvp, 0);
1630				goto out;
1631			}
1632
1633			if (secpolicy_vnode_owner(mvp, cr, vattr.va_uid) != 0 &&
1634			    VOP_ACCESS(mvp, VWRITE, cr, td) != 0) {
1635				VOP_UNLOCK(mvp, 0);
1636				goto out;
1637			}
1638			VOP_UNLOCK(mvp, 0);
1639		}
1640
1641		secpolicy_fs_mount_clearopts(cr, vfsp);
1642	}
1643
1644	/*
1645	 * Refuse to mount a filesystem if we are in a local zone and the
1646	 * dataset is not visible.
1647	 */
1648	if (!INGLOBALZONE(curthread) &&
1649	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1650		error = SET_ERROR(EPERM);
1651		goto out;
1652	}
1653
1654#ifdef SECLABEL
1655	error = zfs_mount_label_policy(vfsp, osname);
1656	if (error)
1657		goto out;
1658#endif
1659
1660	vfsp->vfs_flag |= MNT_NFS4ACLS;
1661
1662	/*
1663	 * When doing a remount, we simply refresh our temporary properties
1664	 * according to those options set in the current VFS options.
1665	 */
1666	if (vfsp->vfs_flag & MS_REMOUNT) {
1667		zfsvfs_t *zfsvfs = vfsp->vfs_data;
1668
1669		/*
1670		 * Refresh mount options with z_teardown_lock blocking I/O while
1671		 * the filesystem is in an inconsistent state.
1672		 * The lock also serializes this code with filesystem
1673		 * manipulations between entry to zfs_suspend_fs() and return
1674		 * from zfs_resume_fs().
1675		 */
1676		rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1677		zfs_unregister_callbacks(zfsvfs);
1678		error = zfs_register_callbacks(vfsp);
1679		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1680		goto out;
1681	}
1682
1683	/* Initial root mount: try hard to import the requested root pool. */
1684	if ((vfsp->vfs_flag & MNT_ROOTFS) != 0 &&
1685	    (vfsp->vfs_flag & MNT_UPDATE) == 0) {
1686		char pname[MAXNAMELEN];
1687
1688		error = getpoolname(osname, pname);
1689		if (error == 0)
1690			error = spa_import_rootpool(pname);
1691		if (error)
1692			goto out;
1693	}
1694	DROP_GIANT();
1695	error = zfs_domount(vfsp, osname);
1696	PICKUP_GIANT();
1697
1698#ifdef illumos
1699	/*
1700	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1701	 * disappear due to a forced unmount.
1702	 */
1703	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1704		VFS_HOLD(mvp->v_vfsp);
1705#endif
1706
1707out:
1708	return (error);
1709}
1710
1711static int
1712zfs_statfs(vfs_t *vfsp, struct statfs *statp)
1713{
1714	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1715	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1716
1717	statp->f_version = STATFS_VERSION;
1718
1719	ZFS_ENTER(zfsvfs);
1720
1721	dmu_objset_space(zfsvfs->z_os,
1722	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1723
1724	/*
1725	 * The underlying storage pool actually uses multiple block sizes.
1726	 * We report the fragsize as the smallest block size we support,
1727	 * and we report our blocksize as the filesystem's maximum blocksize.
1728	 */
1729	statp->f_bsize = SPA_MINBLOCKSIZE;
1730	statp->f_iosize = zfsvfs->z_vfs->mnt_stat.f_iosize;
1731
1732	/*
1733	 * The following report "total" blocks of various kinds in the
1734	 * file system, but reported in terms of f_frsize - the
1735	 * "fragment" size.
1736	 */
1737
1738	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1739	statp->f_bfree = availbytes / statp->f_bsize;
1740	statp->f_bavail = statp->f_bfree; /* no root reservation */
1741
1742	/*
1743	 * statvfs() should really be called statufs(), because it assumes
1744	 * static metadata.  ZFS doesn't preallocate files, so the best
1745	 * we can do is report the max that could possibly fit in f_files,
1746	 * and that minus the number actually used in f_ffree.
1747	 * For f_ffree, report the smaller of the number of object available
1748	 * and the number of blocks (each object will take at least a block).
1749	 */
1750	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1751	statp->f_files = statp->f_ffree + usedobjs;
1752
1753	/*
1754	 * We're a zfs filesystem.
1755	 */
1756	(void) strlcpy(statp->f_fstypename, "zfs", sizeof(statp->f_fstypename));
1757
1758	strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname,
1759	    sizeof(statp->f_mntfromname));
1760	strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname,
1761	    sizeof(statp->f_mntonname));
1762
1763	statp->f_namemax = ZFS_MAXNAMELEN;
1764
1765	ZFS_EXIT(zfsvfs);
1766	return (0);
1767}
1768
1769static int
1770zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp)
1771{
1772	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1773	znode_t *rootzp;
1774	int error;
1775
1776	ZFS_ENTER(zfsvfs);
1777
1778	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1779	if (error == 0)
1780		*vpp = ZTOV(rootzp);
1781
1782	ZFS_EXIT(zfsvfs);
1783
1784	if (error == 0)
1785		error = vn_lock(*vpp, flags);
1786	if (error != 0)
1787		*vpp = NULL;
1788
1789	return (error);
1790}
1791
1792/*
1793 * Teardown the zfsvfs::z_os.
1794 *
1795 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1796 * and 'z_teardown_inactive_lock' held.
1797 */
1798static int
1799zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1800{
1801	znode_t	*zp;
1802
1803	rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1804
1805	if (!unmounting) {
1806		/*
1807		 * We purge the parent filesystem's vfsp as the parent
1808		 * filesystem and all of its snapshots have their vnode's
1809		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1810		 * 'z_parent' is self referential for non-snapshots.
1811		 */
1812		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1813#ifdef FREEBSD_NAMECACHE
1814		cache_purgevfs(zfsvfs->z_parent->z_vfs);
1815#endif
1816	}
1817
1818	/*
1819	 * Close the zil. NB: Can't close the zil while zfs_inactive
1820	 * threads are blocked as zil_close can call zfs_inactive.
1821	 */
1822	if (zfsvfs->z_log) {
1823		zil_close(zfsvfs->z_log);
1824		zfsvfs->z_log = NULL;
1825	}
1826
1827	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1828
1829	/*
1830	 * If we are not unmounting (ie: online recv) and someone already
1831	 * unmounted this file system while we were doing the switcheroo,
1832	 * or a reopen of z_os failed then just bail out now.
1833	 */
1834	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1835		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1836		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1837		return (SET_ERROR(EIO));
1838	}
1839
1840	/*
1841	 * At this point there are no vops active, and any new vops will
1842	 * fail with EIO since we have z_teardown_lock for writer (only
1843	 * relavent for forced unmount).
1844	 *
1845	 * Release all holds on dbufs.
1846	 */
1847	mutex_enter(&zfsvfs->z_znodes_lock);
1848	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1849	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1850		if (zp->z_sa_hdl) {
1851			ASSERT(ZTOV(zp)->v_count >= 0);
1852			zfs_znode_dmu_fini(zp);
1853		}
1854	mutex_exit(&zfsvfs->z_znodes_lock);
1855
1856	/*
1857	 * If we are unmounting, set the unmounted flag and let new vops
1858	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1859	 * other vops will fail with EIO.
1860	 */
1861	if (unmounting) {
1862		zfsvfs->z_unmounted = B_TRUE;
1863		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1864		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1865	}
1866
1867	/*
1868	 * z_os will be NULL if there was an error in attempting to reopen
1869	 * zfsvfs, so just return as the properties had already been
1870	 * unregistered and cached data had been evicted before.
1871	 */
1872	if (zfsvfs->z_os == NULL)
1873		return (0);
1874
1875	/*
1876	 * Unregister properties.
1877	 */
1878	zfs_unregister_callbacks(zfsvfs);
1879
1880	/*
1881	 * Evict cached data
1882	 */
1883	if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) &&
1884	    !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1885		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1886	dmu_objset_evict_dbufs(zfsvfs->z_os);
1887
1888	return (0);
1889}
1890
1891/*ARGSUSED*/
1892static int
1893zfs_umount(vfs_t *vfsp, int fflag)
1894{
1895	kthread_t *td = curthread;
1896	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1897	objset_t *os;
1898	cred_t *cr = td->td_ucred;
1899	int ret;
1900
1901	ret = secpolicy_fs_unmount(cr, vfsp);
1902	if (ret) {
1903		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1904		    ZFS_DELEG_PERM_MOUNT, cr))
1905			return (ret);
1906	}
1907
1908	/*
1909	 * We purge the parent filesystem's vfsp as the parent filesystem
1910	 * and all of its snapshots have their vnode's v_vfsp set to the
1911	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1912	 * referential for non-snapshots.
1913	 */
1914	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1915
1916	/*
1917	 * Unmount any snapshots mounted under .zfs before unmounting the
1918	 * dataset itself.
1919	 */
1920	if (zfsvfs->z_ctldir != NULL) {
1921		if ((ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0)
1922			return (ret);
1923		ret = vflush(vfsp, 0, 0, td);
1924		ASSERT(ret == EBUSY);
1925		if (!(fflag & MS_FORCE)) {
1926			if (zfsvfs->z_ctldir->v_count > 1)
1927				return (EBUSY);
1928			ASSERT(zfsvfs->z_ctldir->v_count == 1);
1929		}
1930		zfsctl_destroy(zfsvfs);
1931		ASSERT(zfsvfs->z_ctldir == NULL);
1932	}
1933
1934	if (fflag & MS_FORCE) {
1935		/*
1936		 * Mark file system as unmounted before calling
1937		 * vflush(FORCECLOSE). This way we ensure no future vnops
1938		 * will be called and risk operating on DOOMED vnodes.
1939		 */
1940		rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1941		zfsvfs->z_unmounted = B_TRUE;
1942		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1943	}
1944
1945	/*
1946	 * Flush all the files.
1947	 */
1948	ret = vflush(vfsp, 0, (fflag & MS_FORCE) ? FORCECLOSE : 0, td);
1949	if (ret != 0) {
1950		if (!zfsvfs->z_issnap) {
1951			zfsctl_create(zfsvfs);
1952			ASSERT(zfsvfs->z_ctldir != NULL);
1953		}
1954		return (ret);
1955	}
1956
1957#ifdef illumos
1958	if (!(fflag & MS_FORCE)) {
1959		/*
1960		 * Check the number of active vnodes in the file system.
1961		 * Our count is maintained in the vfs structure, but the
1962		 * number is off by 1 to indicate a hold on the vfs
1963		 * structure itself.
1964		 *
1965		 * The '.zfs' directory maintains a reference of its
1966		 * own, and any active references underneath are
1967		 * reflected in the vnode count.
1968		 */
1969		if (zfsvfs->z_ctldir == NULL) {
1970			if (vfsp->vfs_count > 1)
1971				return (SET_ERROR(EBUSY));
1972		} else {
1973			if (vfsp->vfs_count > 2 ||
1974			    zfsvfs->z_ctldir->v_count > 1)
1975				return (SET_ERROR(EBUSY));
1976		}
1977	}
1978#endif
1979
1980	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1981	os = zfsvfs->z_os;
1982
1983	/*
1984	 * z_os will be NULL if there was an error in
1985	 * attempting to reopen zfsvfs.
1986	 */
1987	if (os != NULL) {
1988		/*
1989		 * Unset the objset user_ptr.
1990		 */
1991		mutex_enter(&os->os_user_ptr_lock);
1992		dmu_objset_set_user(os, NULL);
1993		mutex_exit(&os->os_user_ptr_lock);
1994
1995		/*
1996		 * Finally release the objset
1997		 */
1998		dmu_objset_disown(os, zfsvfs);
1999	}
2000
2001	/*
2002	 * We can now safely destroy the '.zfs' directory node.
2003	 */
2004	if (zfsvfs->z_ctldir != NULL)
2005		zfsctl_destroy(zfsvfs);
2006	zfs_freevfs(vfsp);
2007
2008	return (0);
2009}
2010
2011static int
2012zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp)
2013{
2014	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2015	znode_t		*zp;
2016	int 		err;
2017
2018	/*
2019	 * zfs_zget() can't operate on virtual entries like .zfs/ or
2020	 * .zfs/snapshot/ directories, that's why we return EOPNOTSUPP.
2021	 * This will make NFS to switch to LOOKUP instead of using VGET.
2022	 */
2023	if (ino == ZFSCTL_INO_ROOT || ino == ZFSCTL_INO_SNAPDIR ||
2024	    (zfsvfs->z_shares_dir != 0 && ino == zfsvfs->z_shares_dir))
2025		return (EOPNOTSUPP);
2026
2027	ZFS_ENTER(zfsvfs);
2028	err = zfs_zget(zfsvfs, ino, &zp);
2029	if (err == 0 && zp->z_unlinked) {
2030		VN_RELE(ZTOV(zp));
2031		err = EINVAL;
2032	}
2033	if (err == 0)
2034		*vpp = ZTOV(zp);
2035	ZFS_EXIT(zfsvfs);
2036	if (err == 0)
2037		err = vn_lock(*vpp, flags);
2038	if (err != 0)
2039		*vpp = NULL;
2040	return (err);
2041}
2042
2043static int
2044zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
2045    struct ucred **credanonp, int *numsecflavors, int **secflavors)
2046{
2047	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2048
2049	/*
2050	 * If this is regular file system vfsp is the same as
2051	 * zfsvfs->z_parent->z_vfs, but if it is snapshot,
2052	 * zfsvfs->z_parent->z_vfs represents parent file system
2053	 * which we have to use here, because only this file system
2054	 * has mnt_export configured.
2055	 */
2056	return (vfs_stdcheckexp(zfsvfs->z_parent->z_vfs, nam, extflagsp,
2057	    credanonp, numsecflavors, secflavors));
2058}
2059
2060CTASSERT(SHORT_FID_LEN <= sizeof(struct fid));
2061CTASSERT(LONG_FID_LEN <= sizeof(struct fid));
2062
2063static int
2064zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp)
2065{
2066	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2067	znode_t		*zp;
2068	uint64_t	object = 0;
2069	uint64_t	fid_gen = 0;
2070	uint64_t	gen_mask;
2071	uint64_t	zp_gen;
2072	int 		i, err;
2073
2074	*vpp = NULL;
2075
2076	ZFS_ENTER(zfsvfs);
2077
2078	/*
2079	 * On FreeBSD we can get snapshot's mount point or its parent file
2080	 * system mount point depending if snapshot is already mounted or not.
2081	 */
2082	if (zfsvfs->z_parent == zfsvfs && fidp->fid_len == LONG_FID_LEN) {
2083		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
2084		uint64_t	objsetid = 0;
2085		uint64_t	setgen = 0;
2086
2087		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
2088			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
2089
2090		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
2091			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
2092
2093		ZFS_EXIT(zfsvfs);
2094
2095		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
2096		if (err)
2097			return (SET_ERROR(EINVAL));
2098		ZFS_ENTER(zfsvfs);
2099	}
2100
2101	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
2102		zfid_short_t	*zfid = (zfid_short_t *)fidp;
2103
2104		for (i = 0; i < sizeof (zfid->zf_object); i++)
2105			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
2106
2107		for (i = 0; i < sizeof (zfid->zf_gen); i++)
2108			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
2109	} else {
2110		ZFS_EXIT(zfsvfs);
2111		return (SET_ERROR(EINVAL));
2112	}
2113
2114	/*
2115	 * A zero fid_gen means we are in .zfs or the .zfs/snapshot
2116	 * directory tree. If the object == zfsvfs->z_shares_dir, then
2117	 * we are in the .zfs/shares directory tree.
2118	 */
2119	if ((fid_gen == 0 &&
2120	     (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) ||
2121	    (zfsvfs->z_shares_dir != 0 && object == zfsvfs->z_shares_dir)) {
2122		*vpp = zfsvfs->z_ctldir;
2123		ASSERT(*vpp != NULL);
2124		if (object == ZFSCTL_INO_SNAPDIR) {
2125			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
2126			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2127		} else if (object == zfsvfs->z_shares_dir) {
2128			VERIFY(zfsctl_root_lookup(*vpp, "shares", vpp, NULL,
2129			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2130		} else {
2131			VN_HOLD(*vpp);
2132		}
2133		ZFS_EXIT(zfsvfs);
2134		err = vn_lock(*vpp, flags);
2135		if (err != 0)
2136			*vpp = NULL;
2137		return (err);
2138	}
2139
2140	gen_mask = -1ULL >> (64 - 8 * i);
2141
2142	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
2143	if (err = zfs_zget(zfsvfs, object, &zp)) {
2144		ZFS_EXIT(zfsvfs);
2145		return (err);
2146	}
2147	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
2148	    sizeof (uint64_t));
2149	zp_gen = zp_gen & gen_mask;
2150	if (zp_gen == 0)
2151		zp_gen = 1;
2152	if (zp->z_unlinked || zp_gen != fid_gen) {
2153		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2154		VN_RELE(ZTOV(zp));
2155		ZFS_EXIT(zfsvfs);
2156		return (SET_ERROR(EINVAL));
2157	}
2158
2159	*vpp = ZTOV(zp);
2160	ZFS_EXIT(zfsvfs);
2161	err = vn_lock(*vpp, flags | LK_RETRY);
2162	if (err == 0)
2163		vnode_create_vobject(*vpp, zp->z_size, curthread);
2164	else
2165		*vpp = NULL;
2166	return (err);
2167}
2168
2169/*
2170 * Block out VOPs and close zfsvfs_t::z_os
2171 *
2172 * Note, if successful, then we return with the 'z_teardown_lock' and
2173 * 'z_teardown_inactive_lock' write held.  We leave ownership of the underlying
2174 * dataset and objset intact so that they can be atomically handed off during
2175 * a subsequent rollback or recv operation and the resume thereafter.
2176 */
2177int
2178zfs_suspend_fs(zfsvfs_t *zfsvfs)
2179{
2180	int error;
2181
2182	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2183		return (error);
2184
2185	return (0);
2186}
2187
2188/*
2189 * Rebuild SA and release VOPs.  Note that ownership of the underlying dataset
2190 * is an invariant across any of the operations that can be performed while the
2191 * filesystem was suspended.  Whether it succeeded or failed, the preconditions
2192 * are the same: the relevant objset and associated dataset are owned by
2193 * zfsvfs, held, and long held on entry.
2194 */
2195int
2196zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2197{
2198	int err;
2199	znode_t *zp;
2200	uint64_t sa_obj = 0;
2201
2202	ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock));
2203	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2204
2205	/*
2206	 * We already own this, so just hold and rele it to update the
2207	 * objset_t, as the one we had before may have been evicted.
2208	 */
2209	VERIFY0(dmu_objset_hold(osname, zfsvfs, &zfsvfs->z_os));
2210	VERIFY3P(zfsvfs->z_os->os_dsl_dataset->ds_owner, ==, zfsvfs);
2211	VERIFY(dsl_dataset_long_held(zfsvfs->z_os->os_dsl_dataset));
2212	dmu_objset_rele(zfsvfs->z_os, zfsvfs);
2213
2214	/*
2215	 * Make sure version hasn't changed
2216	 */
2217
2218	err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION,
2219	    &zfsvfs->z_version);
2220
2221	if (err)
2222		goto bail;
2223
2224	err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2225	    ZFS_SA_ATTRS, 8, 1, &sa_obj);
2226
2227	if (err && zfsvfs->z_version >= ZPL_VERSION_SA)
2228		goto bail;
2229
2230	if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2231	    zfs_attr_table,  ZPL_END, &zfsvfs->z_attr_table)) != 0)
2232		goto bail;
2233
2234	if (zfsvfs->z_version >= ZPL_VERSION_SA)
2235		sa_register_update_callback(zfsvfs->z_os,
2236		    zfs_sa_upgrade);
2237
2238	VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2239
2240	zfs_set_fuid_feature(zfsvfs);
2241
2242	/*
2243	 * Attempt to re-establish all the active znodes with
2244	 * their dbufs.  If a zfs_rezget() fails, then we'll let
2245	 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2246	 * when they try to use their znode.
2247	 */
2248	mutex_enter(&zfsvfs->z_znodes_lock);
2249	for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2250	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2251		(void) zfs_rezget(zp);
2252	}
2253	mutex_exit(&zfsvfs->z_znodes_lock);
2254
2255bail:
2256	/* release the VOPs */
2257	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2258	rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
2259
2260	if (err) {
2261		/*
2262		 * Since we couldn't setup the sa framework, try to force
2263		 * unmount this file system.
2264		 */
2265		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) {
2266			vfs_ref(zfsvfs->z_vfs);
2267			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, curthread);
2268		}
2269	}
2270	return (err);
2271}
2272
2273static void
2274zfs_freevfs(vfs_t *vfsp)
2275{
2276	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2277
2278#ifdef illumos
2279	/*
2280	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2281	 * from zfs_mount().  Release it here.  If we came through
2282	 * zfs_mountroot() instead, we didn't grab an extra hold, so
2283	 * skip the VFS_RELE for rootvfs.
2284	 */
2285	if (zfsvfs->z_issnap && (vfsp != rootvfs))
2286		VFS_RELE(zfsvfs->z_parent->z_vfs);
2287#endif
2288
2289	zfsvfs_free(zfsvfs);
2290
2291	atomic_dec_32(&zfs_active_fs_count);
2292}
2293
2294#ifdef __i386__
2295static int desiredvnodes_backup;
2296#endif
2297
2298static void
2299zfs_vnodes_adjust(void)
2300{
2301#ifdef __i386__
2302	int newdesiredvnodes;
2303
2304	desiredvnodes_backup = desiredvnodes;
2305
2306	/*
2307	 * We calculate newdesiredvnodes the same way it is done in
2308	 * vntblinit(). If it is equal to desiredvnodes, it means that
2309	 * it wasn't tuned by the administrator and we can tune it down.
2310	 */
2311	newdesiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 *
2312	    vm_kmem_size / (5 * (sizeof(struct vm_object) +
2313	    sizeof(struct vnode))));
2314	if (newdesiredvnodes == desiredvnodes)
2315		desiredvnodes = (3 * newdesiredvnodes) / 4;
2316#endif
2317}
2318
2319static void
2320zfs_vnodes_adjust_back(void)
2321{
2322
2323#ifdef __i386__
2324	desiredvnodes = desiredvnodes_backup;
2325#endif
2326}
2327
2328void
2329zfs_init(void)
2330{
2331
2332	printf("ZFS filesystem version: " ZPL_VERSION_STRING "\n");
2333
2334	/*
2335	 * Initialize .zfs directory structures
2336	 */
2337	zfsctl_init();
2338
2339	/*
2340	 * Initialize znode cache, vnode ops, etc...
2341	 */
2342	zfs_znode_init();
2343
2344	/*
2345	 * Reduce number of vnodes. Originally number of vnodes is calculated
2346	 * with UFS inode in mind. We reduce it here, because it's too big for
2347	 * ZFS/i386.
2348	 */
2349	zfs_vnodes_adjust();
2350
2351	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2352}
2353
2354void
2355zfs_fini(void)
2356{
2357	zfsctl_fini();
2358	zfs_znode_fini();
2359	zfs_vnodes_adjust_back();
2360}
2361
2362int
2363zfs_busy(void)
2364{
2365	return (zfs_active_fs_count != 0);
2366}
2367
2368int
2369zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2370{
2371	int error;
2372	objset_t *os = zfsvfs->z_os;
2373	dmu_tx_t *tx;
2374
2375	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2376		return (SET_ERROR(EINVAL));
2377
2378	if (newvers < zfsvfs->z_version)
2379		return (SET_ERROR(EINVAL));
2380
2381	if (zfs_spa_version_map(newvers) >
2382	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2383		return (SET_ERROR(ENOTSUP));
2384
2385	tx = dmu_tx_create(os);
2386	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2387	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2388		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2389		    ZFS_SA_ATTRS);
2390		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2391	}
2392	error = dmu_tx_assign(tx, TXG_WAIT);
2393	if (error) {
2394		dmu_tx_abort(tx);
2395		return (error);
2396	}
2397
2398	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2399	    8, 1, &newvers, tx);
2400
2401	if (error) {
2402		dmu_tx_commit(tx);
2403		return (error);
2404	}
2405
2406	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2407		uint64_t sa_obj;
2408
2409		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2410		    SPA_VERSION_SA);
2411		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2412		    DMU_OT_NONE, 0, tx);
2413
2414		error = zap_add(os, MASTER_NODE_OBJ,
2415		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2416		ASSERT0(error);
2417
2418		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2419		sa_register_update_callback(os, zfs_sa_upgrade);
2420	}
2421
2422	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2423	    "from %llu to %llu", zfsvfs->z_version, newvers);
2424
2425	dmu_tx_commit(tx);
2426
2427	zfsvfs->z_version = newvers;
2428
2429	zfs_set_fuid_feature(zfsvfs);
2430
2431	return (0);
2432}
2433
2434/*
2435 * Read a property stored within the master node.
2436 */
2437int
2438zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2439{
2440	const char *pname;
2441	int error = ENOENT;
2442
2443	/*
2444	 * Look up the file system's value for the property.  For the
2445	 * version property, we look up a slightly different string.
2446	 */
2447	if (prop == ZFS_PROP_VERSION)
2448		pname = ZPL_VERSION_STR;
2449	else
2450		pname = zfs_prop_to_name(prop);
2451
2452	if (os != NULL)
2453		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2454
2455	if (error == ENOENT) {
2456		/* No value set, use the default value */
2457		switch (prop) {
2458		case ZFS_PROP_VERSION:
2459			*value = ZPL_VERSION;
2460			break;
2461		case ZFS_PROP_NORMALIZE:
2462		case ZFS_PROP_UTF8ONLY:
2463			*value = 0;
2464			break;
2465		case ZFS_PROP_CASE:
2466			*value = ZFS_CASE_SENSITIVE;
2467			break;
2468		default:
2469			return (error);
2470		}
2471		error = 0;
2472	}
2473	return (error);
2474}
2475
2476#ifdef _KERNEL
2477void
2478zfsvfs_update_fromname(const char *oldname, const char *newname)
2479{
2480	char tmpbuf[MAXPATHLEN];
2481	struct mount *mp;
2482	char *fromname;
2483	size_t oldlen;
2484
2485	oldlen = strlen(oldname);
2486
2487	mtx_lock(&mountlist_mtx);
2488	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2489		fromname = mp->mnt_stat.f_mntfromname;
2490		if (strcmp(fromname, oldname) == 0) {
2491			(void)strlcpy(fromname, newname,
2492			    sizeof(mp->mnt_stat.f_mntfromname));
2493			continue;
2494		}
2495		if (strncmp(fromname, oldname, oldlen) == 0 &&
2496		    (fromname[oldlen] == '/' || fromname[oldlen] == '@')) {
2497			(void)snprintf(tmpbuf, sizeof(tmpbuf), "%s%s",
2498			    newname, fromname + oldlen);
2499			(void)strlcpy(fromname, tmpbuf,
2500			    sizeof(mp->mnt_stat.f_mntfromname));
2501			continue;
2502		}
2503	}
2504	mtx_unlock(&mountlist_mtx);
2505}
2506#endif
2507