zfs_vfsops.c revision 297081
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 Pawel Jakub Dawidek <pawel@dawidek.net>.
24 * All rights reserved.
25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
26 */
27
28/* Portions Copyright 2010 Robert Milkowski */
29
30#include <sys/types.h>
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/kernel.h>
34#include <sys/sysmacros.h>
35#include <sys/kmem.h>
36#include <sys/acl.h>
37#include <sys/vnode.h>
38#include <sys/vfs.h>
39#include <sys/mntent.h>
40#include <sys/mount.h>
41#include <sys/cmn_err.h>
42#include <sys/zfs_znode.h>
43#include <sys/zfs_dir.h>
44#include <sys/zil.h>
45#include <sys/fs/zfs.h>
46#include <sys/dmu.h>
47#include <sys/dsl_prop.h>
48#include <sys/dsl_dataset.h>
49#include <sys/dsl_deleg.h>
50#include <sys/spa.h>
51#include <sys/zap.h>
52#include <sys/sa.h>
53#include <sys/sa_impl.h>
54#include <sys/varargs.h>
55#include <sys/policy.h>
56#include <sys/atomic.h>
57#include <sys/zfs_ioctl.h>
58#include <sys/zfs_ctldir.h>
59#include <sys/zfs_fuid.h>
60#include <sys/sunddi.h>
61#include <sys/dnlc.h>
62#include <sys/dmu_objset.h>
63#include <sys/spa_boot.h>
64#include <sys/jail.h>
65#include "zfs_comutil.h"
66
67struct mtx zfs_debug_mtx;
68MTX_SYSINIT(zfs_debug_mtx, &zfs_debug_mtx, "zfs_debug", MTX_DEF);
69
70SYSCTL_NODE(_vfs, OID_AUTO, zfs, CTLFLAG_RW, 0, "ZFS file system");
71
72int zfs_super_owner;
73SYSCTL_INT(_vfs_zfs, OID_AUTO, super_owner, CTLFLAG_RW, &zfs_super_owner, 0,
74    "File system owner can perform privileged operation on his file systems");
75
76int zfs_debug_level;
77TUNABLE_INT("vfs.zfs.debug", &zfs_debug_level);
78SYSCTL_INT(_vfs_zfs, OID_AUTO, debug, CTLFLAG_RW, &zfs_debug_level, 0,
79    "Debug level");
80
81SYSCTL_NODE(_vfs_zfs, OID_AUTO, version, CTLFLAG_RD, 0, "ZFS versions");
82static int zfs_version_acl = ZFS_ACL_VERSION;
83SYSCTL_INT(_vfs_zfs_version, OID_AUTO, acl, CTLFLAG_RD, &zfs_version_acl, 0,
84    "ZFS_ACL_VERSION");
85static int zfs_version_spa = SPA_VERSION;
86SYSCTL_INT(_vfs_zfs_version, OID_AUTO, spa, CTLFLAG_RD, &zfs_version_spa, 0,
87    "SPA_VERSION");
88static int zfs_version_zpl = ZPL_VERSION;
89SYSCTL_INT(_vfs_zfs_version, OID_AUTO, zpl, CTLFLAG_RD, &zfs_version_zpl, 0,
90    "ZPL_VERSION");
91
92static int zfs_mount(vfs_t *vfsp);
93static int zfs_umount(vfs_t *vfsp, int fflag);
94static int zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp);
95static int zfs_statfs(vfs_t *vfsp, struct statfs *statp);
96static int zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp);
97static int zfs_sync(vfs_t *vfsp, int waitfor);
98static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
99    struct ucred **credanonp, int *numsecflavors, int **secflavors);
100static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp);
101static void zfs_objset_close(zfsvfs_t *zfsvfs);
102static void zfs_freevfs(vfs_t *vfsp);
103
104static struct vfsops zfs_vfsops = {
105	.vfs_mount =		zfs_mount,
106	.vfs_unmount =		zfs_umount,
107	.vfs_root =		zfs_root,
108	.vfs_statfs =		zfs_statfs,
109	.vfs_vget =		zfs_vget,
110	.vfs_sync =		zfs_sync,
111	.vfs_checkexp =		zfs_checkexp,
112	.vfs_fhtovp =		zfs_fhtovp,
113};
114
115VFS_SET(zfs_vfsops, zfs, VFCF_JAIL | VFCF_DELEGADMIN);
116
117/*
118 * We need to keep a count of active fs's.
119 * This is necessary to prevent our module
120 * from being unloaded after a umount -f
121 */
122static uint32_t	zfs_active_fs_count = 0;
123
124/*ARGSUSED*/
125static int
126zfs_sync(vfs_t *vfsp, int waitfor)
127{
128
129	/*
130	 * Data integrity is job one.  We don't want a compromised kernel
131	 * writing to the storage pool, so we never sync during panic.
132	 */
133	if (panicstr)
134		return (0);
135
136	/*
137	 * Ignore the system syncher.  ZFS already commits async data
138	 * at zfs_txg_timeout intervals.
139	 */
140	if (waitfor == MNT_LAZY)
141		return (0);
142
143	if (vfsp != NULL) {
144		/*
145		 * Sync a specific filesystem.
146		 */
147		zfsvfs_t *zfsvfs = vfsp->vfs_data;
148		dsl_pool_t *dp;
149		int error;
150
151		error = vfs_stdsync(vfsp, waitfor);
152		if (error != 0)
153			return (error);
154
155		ZFS_ENTER(zfsvfs);
156		dp = dmu_objset_pool(zfsvfs->z_os);
157
158		/*
159		 * If the system is shutting down, then skip any
160		 * filesystems which may exist on a suspended pool.
161		 */
162		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
163			ZFS_EXIT(zfsvfs);
164			return (0);
165		}
166
167		if (zfsvfs->z_log != NULL)
168			zil_commit(zfsvfs->z_log, 0);
169
170		ZFS_EXIT(zfsvfs);
171	} else {
172		/*
173		 * Sync all ZFS filesystems.  This is what happens when you
174		 * run sync(1M).  Unlike other filesystems, ZFS honors the
175		 * request by waiting for all pools to commit all dirty data.
176		 */
177		spa_sync_allpools();
178	}
179
180	return (0);
181}
182
183#ifndef __FreeBSD_kernel__
184static int
185zfs_create_unique_device(dev_t *dev)
186{
187	major_t new_major;
188
189	do {
190		ASSERT3U(zfs_minor, <=, MAXMIN32);
191		minor_t start = zfs_minor;
192		do {
193			mutex_enter(&zfs_dev_mtx);
194			if (zfs_minor >= MAXMIN32) {
195				/*
196				 * If we're still using the real major
197				 * keep out of /dev/zfs and /dev/zvol minor
198				 * number space.  If we're using a getudev()'ed
199				 * major number, we can use all of its minors.
200				 */
201				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
202					zfs_minor = ZFS_MIN_MINOR;
203				else
204					zfs_minor = 0;
205			} else {
206				zfs_minor++;
207			}
208			*dev = makedevice(zfs_major, zfs_minor);
209			mutex_exit(&zfs_dev_mtx);
210		} while (vfs_devismounted(*dev) && zfs_minor != start);
211		if (zfs_minor == start) {
212			/*
213			 * We are using all ~262,000 minor numbers for the
214			 * current major number.  Create a new major number.
215			 */
216			if ((new_major = getudev()) == (major_t)-1) {
217				cmn_err(CE_WARN,
218				    "zfs_mount: Can't get unique major "
219				    "device number.");
220				return (-1);
221			}
222			mutex_enter(&zfs_dev_mtx);
223			zfs_major = new_major;
224			zfs_minor = 0;
225
226			mutex_exit(&zfs_dev_mtx);
227		} else {
228			break;
229		}
230		/* CONSTANTCONDITION */
231	} while (1);
232
233	return (0);
234}
235#endif	/* !__FreeBSD_kernel__ */
236
237static void
238atime_changed_cb(void *arg, uint64_t newval)
239{
240	zfsvfs_t *zfsvfs = arg;
241
242	if (newval == TRUE) {
243		zfsvfs->z_atime = TRUE;
244		zfsvfs->z_vfs->vfs_flag &= ~MNT_NOATIME;
245		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
246		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
247	} else {
248		zfsvfs->z_atime = FALSE;
249		zfsvfs->z_vfs->vfs_flag |= MNT_NOATIME;
250		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
251		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
252	}
253}
254
255static void
256xattr_changed_cb(void *arg, uint64_t newval)
257{
258	zfsvfs_t *zfsvfs = arg;
259
260	if (newval == TRUE) {
261		/* XXX locking on vfs_flag? */
262#ifdef TODO
263		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
264#endif
265		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
266		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
267	} else {
268		/* XXX locking on vfs_flag? */
269#ifdef TODO
270		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
271#endif
272		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
273		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
274	}
275}
276
277static void
278blksz_changed_cb(void *arg, uint64_t newval)
279{
280	zfsvfs_t *zfsvfs = arg;
281	ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
282	ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
283	ASSERT(ISP2(newval));
284
285	zfsvfs->z_max_blksz = newval;
286	zfsvfs->z_vfs->mnt_stat.f_iosize = newval;
287}
288
289static void
290readonly_changed_cb(void *arg, uint64_t newval)
291{
292	zfsvfs_t *zfsvfs = arg;
293
294	if (newval) {
295		/* XXX locking on vfs_flag? */
296		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
297		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
298		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
299	} else {
300		/* XXX locking on vfs_flag? */
301		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
302		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
303		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
304	}
305}
306
307static void
308setuid_changed_cb(void *arg, uint64_t newval)
309{
310	zfsvfs_t *zfsvfs = arg;
311
312	if (newval == FALSE) {
313		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
314		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
315		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
316	} else {
317		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
318		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
319		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
320	}
321}
322
323static void
324exec_changed_cb(void *arg, uint64_t newval)
325{
326	zfsvfs_t *zfsvfs = arg;
327
328	if (newval == FALSE) {
329		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
330		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
331		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
332	} else {
333		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
334		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
335		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
336	}
337}
338
339/*
340 * The nbmand mount option can be changed at mount time.
341 * We can't allow it to be toggled on live file systems or incorrect
342 * behavior may be seen from cifs clients
343 *
344 * This property isn't registered via dsl_prop_register(), but this callback
345 * will be called when a file system is first mounted
346 */
347static void
348nbmand_changed_cb(void *arg, uint64_t newval)
349{
350	zfsvfs_t *zfsvfs = arg;
351	if (newval == FALSE) {
352		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
353		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
354	} else {
355		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
356		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
357	}
358}
359
360static void
361snapdir_changed_cb(void *arg, uint64_t newval)
362{
363	zfsvfs_t *zfsvfs = arg;
364
365	zfsvfs->z_show_ctldir = newval;
366}
367
368static void
369vscan_changed_cb(void *arg, uint64_t newval)
370{
371	zfsvfs_t *zfsvfs = arg;
372
373	zfsvfs->z_vscan = newval;
374}
375
376static void
377acl_mode_changed_cb(void *arg, uint64_t newval)
378{
379	zfsvfs_t *zfsvfs = arg;
380
381	zfsvfs->z_acl_mode = newval;
382}
383
384static void
385acl_inherit_changed_cb(void *arg, uint64_t newval)
386{
387	zfsvfs_t *zfsvfs = arg;
388
389	zfsvfs->z_acl_inherit = newval;
390}
391
392static int
393zfs_register_callbacks(vfs_t *vfsp)
394{
395	struct dsl_dataset *ds = NULL;
396	objset_t *os = NULL;
397	zfsvfs_t *zfsvfs = NULL;
398	uint64_t nbmand;
399	boolean_t readonly = B_FALSE;
400	boolean_t do_readonly = B_FALSE;
401	boolean_t setuid = B_FALSE;
402	boolean_t do_setuid = B_FALSE;
403	boolean_t exec = B_FALSE;
404	boolean_t do_exec = B_FALSE;
405#ifdef illumos
406	boolean_t devices = B_FALSE;
407	boolean_t do_devices = B_FALSE;
408#endif
409	boolean_t xattr = B_FALSE;
410	boolean_t do_xattr = B_FALSE;
411	boolean_t atime = B_FALSE;
412	boolean_t do_atime = B_FALSE;
413	int error = 0;
414
415	ASSERT(vfsp);
416	zfsvfs = vfsp->vfs_data;
417	ASSERT(zfsvfs);
418	os = zfsvfs->z_os;
419
420	/*
421	 * This function can be called for a snapshot when we update snapshot's
422	 * mount point, which isn't really supported.
423	 */
424	if (dmu_objset_is_snapshot(os))
425		return (EOPNOTSUPP);
426
427	/*
428	 * The act of registering our callbacks will destroy any mount
429	 * options we may have.  In order to enable temporary overrides
430	 * of mount options, we stash away the current values and
431	 * restore them after we register the callbacks.
432	 */
433	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
434	    !spa_writeable(dmu_objset_spa(os))) {
435		readonly = B_TRUE;
436		do_readonly = B_TRUE;
437	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
438		readonly = B_FALSE;
439		do_readonly = B_TRUE;
440	}
441	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
442		setuid = B_FALSE;
443		do_setuid = B_TRUE;
444	} else {
445		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
446			setuid = B_FALSE;
447			do_setuid = B_TRUE;
448		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
449			setuid = B_TRUE;
450			do_setuid = B_TRUE;
451		}
452	}
453	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
454		exec = B_FALSE;
455		do_exec = B_TRUE;
456	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
457		exec = B_TRUE;
458		do_exec = B_TRUE;
459	}
460	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
461		xattr = B_FALSE;
462		do_xattr = B_TRUE;
463	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
464		xattr = B_TRUE;
465		do_xattr = B_TRUE;
466	}
467	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
468		atime = B_FALSE;
469		do_atime = B_TRUE;
470	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
471		atime = B_TRUE;
472		do_atime = B_TRUE;
473	}
474
475	/*
476	 * We need to enter pool configuration here, so that we can use
477	 * dsl_prop_get_int_ds() to handle the special nbmand property below.
478	 * dsl_prop_get_integer() can not be used, because it has to acquire
479	 * spa_namespace_lock and we can not do that because we already hold
480	 * z_teardown_lock.  The problem is that spa_config_sync() is called
481	 * with spa_namespace_lock held and the function calls ZFS vnode
482	 * operations to write the cache file and thus z_teardown_lock is
483	 * acquired after spa_namespace_lock.
484	 */
485	ds = dmu_objset_ds(os);
486	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
487
488	/*
489	 * nbmand is a special property.  It can only be changed at
490	 * mount time.
491	 *
492	 * This is weird, but it is documented to only be changeable
493	 * at mount time.
494	 */
495	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
496		nbmand = B_FALSE;
497	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
498		nbmand = B_TRUE;
499	} else if (error = dsl_prop_get_int_ds(ds, "nbmand", &nbmand) != 0) {
500		dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
501		return (error);
502	}
503
504	/*
505	 * Register property callbacks.
506	 *
507	 * It would probably be fine to just check for i/o error from
508	 * the first prop_register(), but I guess I like to go
509	 * overboard...
510	 */
511	error = dsl_prop_register(ds,
512	    zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
513	error = error ? error : dsl_prop_register(ds,
514	    zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
515	error = error ? error : dsl_prop_register(ds,
516	    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
517	error = error ? error : dsl_prop_register(ds,
518	    zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
519#ifdef illumos
520	error = error ? error : dsl_prop_register(ds,
521	    zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
522#endif
523	error = error ? error : dsl_prop_register(ds,
524	    zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
525	error = error ? error : dsl_prop_register(ds,
526	    zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
527	error = error ? error : dsl_prop_register(ds,
528	    zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
529	error = error ? error : dsl_prop_register(ds,
530	    zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
531	error = error ? error : dsl_prop_register(ds,
532	    zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
533	    zfsvfs);
534	error = error ? error : dsl_prop_register(ds,
535	    zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
536	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
537	if (error)
538		goto unregister;
539
540	/*
541	 * Invoke our callbacks to restore temporary mount options.
542	 */
543	if (do_readonly)
544		readonly_changed_cb(zfsvfs, readonly);
545	if (do_setuid)
546		setuid_changed_cb(zfsvfs, setuid);
547	if (do_exec)
548		exec_changed_cb(zfsvfs, exec);
549	if (do_xattr)
550		xattr_changed_cb(zfsvfs, xattr);
551	if (do_atime)
552		atime_changed_cb(zfsvfs, atime);
553
554	nbmand_changed_cb(zfsvfs, nbmand);
555
556	return (0);
557
558unregister:
559	dsl_prop_unregister_all(ds, zfsvfs);
560	return (error);
561}
562
563static int
564zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
565    uint64_t *userp, uint64_t *groupp)
566{
567	/*
568	 * Is it a valid type of object to track?
569	 */
570	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
571		return (SET_ERROR(ENOENT));
572
573	/*
574	 * If we have a NULL data pointer
575	 * then assume the id's aren't changing and
576	 * return EEXIST to the dmu to let it know to
577	 * use the same ids
578	 */
579	if (data == NULL)
580		return (SET_ERROR(EEXIST));
581
582	if (bonustype == DMU_OT_ZNODE) {
583		znode_phys_t *znp = data;
584		*userp = znp->zp_uid;
585		*groupp = znp->zp_gid;
586	} else {
587		int hdrsize;
588		sa_hdr_phys_t *sap = data;
589		sa_hdr_phys_t sa = *sap;
590		boolean_t swap = B_FALSE;
591
592		ASSERT(bonustype == DMU_OT_SA);
593
594		if (sa.sa_magic == 0) {
595			/*
596			 * This should only happen for newly created
597			 * files that haven't had the znode data filled
598			 * in yet.
599			 */
600			*userp = 0;
601			*groupp = 0;
602			return (0);
603		}
604		if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
605			sa.sa_magic = SA_MAGIC;
606			sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
607			swap = B_TRUE;
608		} else {
609			VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
610		}
611
612		hdrsize = sa_hdrsize(&sa);
613		VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
614		*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
615		    SA_UID_OFFSET));
616		*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
617		    SA_GID_OFFSET));
618		if (swap) {
619			*userp = BSWAP_64(*userp);
620			*groupp = BSWAP_64(*groupp);
621		}
622	}
623	return (0);
624}
625
626static void
627fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
628    char *domainbuf, int buflen, uid_t *ridp)
629{
630	uint64_t fuid;
631	const char *domain;
632
633	fuid = strtonum(fuidstr, NULL);
634
635	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
636	if (domain)
637		(void) strlcpy(domainbuf, domain, buflen);
638	else
639		domainbuf[0] = '\0';
640	*ridp = FUID_RID(fuid);
641}
642
643static uint64_t
644zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
645{
646	switch (type) {
647	case ZFS_PROP_USERUSED:
648		return (DMU_USERUSED_OBJECT);
649	case ZFS_PROP_GROUPUSED:
650		return (DMU_GROUPUSED_OBJECT);
651	case ZFS_PROP_USERQUOTA:
652		return (zfsvfs->z_userquota_obj);
653	case ZFS_PROP_GROUPQUOTA:
654		return (zfsvfs->z_groupquota_obj);
655	}
656	return (0);
657}
658
659int
660zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
661    uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
662{
663	int error;
664	zap_cursor_t zc;
665	zap_attribute_t za;
666	zfs_useracct_t *buf = vbuf;
667	uint64_t obj;
668
669	if (!dmu_objset_userspace_present(zfsvfs->z_os))
670		return (SET_ERROR(ENOTSUP));
671
672	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
673	if (obj == 0) {
674		*bufsizep = 0;
675		return (0);
676	}
677
678	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
679	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
680	    zap_cursor_advance(&zc)) {
681		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
682		    *bufsizep)
683			break;
684
685		fuidstr_to_sid(zfsvfs, za.za_name,
686		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
687
688		buf->zu_space = za.za_first_integer;
689		buf++;
690	}
691	if (error == ENOENT)
692		error = 0;
693
694	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
695	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
696	*cookiep = zap_cursor_serialize(&zc);
697	zap_cursor_fini(&zc);
698	return (error);
699}
700
701/*
702 * buf must be big enough (eg, 32 bytes)
703 */
704static int
705id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
706    char *buf, boolean_t addok)
707{
708	uint64_t fuid;
709	int domainid = 0;
710
711	if (domain && domain[0]) {
712		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
713		if (domainid == -1)
714			return (SET_ERROR(ENOENT));
715	}
716	fuid = FUID_ENCODE(domainid, rid);
717	(void) sprintf(buf, "%llx", (longlong_t)fuid);
718	return (0);
719}
720
721int
722zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
723    const char *domain, uint64_t rid, uint64_t *valp)
724{
725	char buf[32];
726	int err;
727	uint64_t obj;
728
729	*valp = 0;
730
731	if (!dmu_objset_userspace_present(zfsvfs->z_os))
732		return (SET_ERROR(ENOTSUP));
733
734	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
735	if (obj == 0)
736		return (0);
737
738	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
739	if (err)
740		return (err);
741
742	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
743	if (err == ENOENT)
744		err = 0;
745	return (err);
746}
747
748int
749zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
750    const char *domain, uint64_t rid, uint64_t quota)
751{
752	char buf[32];
753	int err;
754	dmu_tx_t *tx;
755	uint64_t *objp;
756	boolean_t fuid_dirtied;
757
758	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
759		return (SET_ERROR(EINVAL));
760
761	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
762		return (SET_ERROR(ENOTSUP));
763
764	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
765	    &zfsvfs->z_groupquota_obj;
766
767	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
768	if (err)
769		return (err);
770	fuid_dirtied = zfsvfs->z_fuid_dirty;
771
772	tx = dmu_tx_create(zfsvfs->z_os);
773	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
774	if (*objp == 0) {
775		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
776		    zfs_userquota_prop_prefixes[type]);
777	}
778	if (fuid_dirtied)
779		zfs_fuid_txhold(zfsvfs, tx);
780	err = dmu_tx_assign(tx, TXG_WAIT);
781	if (err) {
782		dmu_tx_abort(tx);
783		return (err);
784	}
785
786	mutex_enter(&zfsvfs->z_lock);
787	if (*objp == 0) {
788		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
789		    DMU_OT_NONE, 0, tx);
790		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
791		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
792	}
793	mutex_exit(&zfsvfs->z_lock);
794
795	if (quota == 0) {
796		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
797		if (err == ENOENT)
798			err = 0;
799	} else {
800		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
801	}
802	ASSERT(err == 0);
803	if (fuid_dirtied)
804		zfs_fuid_sync(zfsvfs, tx);
805	dmu_tx_commit(tx);
806	return (err);
807}
808
809boolean_t
810zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
811{
812	char buf[32];
813	uint64_t used, quota, usedobj, quotaobj;
814	int err;
815
816	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
817	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
818
819	if (quotaobj == 0 || zfsvfs->z_replay)
820		return (B_FALSE);
821
822	(void) sprintf(buf, "%llx", (longlong_t)fuid);
823	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
824	if (err != 0)
825		return (B_FALSE);
826
827	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
828	if (err != 0)
829		return (B_FALSE);
830	return (used >= quota);
831}
832
833boolean_t
834zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
835{
836	uint64_t fuid;
837	uint64_t quotaobj;
838
839	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
840
841	fuid = isgroup ? zp->z_gid : zp->z_uid;
842
843	if (quotaobj == 0 || zfsvfs->z_replay)
844		return (B_FALSE);
845
846	return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
847}
848
849int
850zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
851{
852	objset_t *os;
853	zfsvfs_t *zfsvfs;
854	uint64_t zval;
855	int i, error;
856	uint64_t sa_obj;
857
858	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
859
860	/*
861	 * We claim to always be readonly so we can open snapshots;
862	 * other ZPL code will prevent us from writing to snapshots.
863	 */
864	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
865	if (error) {
866		kmem_free(zfsvfs, sizeof (zfsvfs_t));
867		return (error);
868	}
869
870	/*
871	 * Initialize the zfs-specific filesystem structure.
872	 * Should probably make this a kmem cache, shuffle fields,
873	 * and just bzero up to z_hold_mtx[].
874	 */
875	zfsvfs->z_vfs = NULL;
876	zfsvfs->z_parent = zfsvfs;
877	zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
878	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
879	zfsvfs->z_os = os;
880
881	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
882	if (error) {
883		goto out;
884	} else if (zfsvfs->z_version >
885	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
886		(void) printf("Can't mount a version %lld file system "
887		    "on a version %lld pool\n. Pool must be upgraded to mount "
888		    "this file system.", (u_longlong_t)zfsvfs->z_version,
889		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
890		error = SET_ERROR(ENOTSUP);
891		goto out;
892	}
893	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
894		goto out;
895	zfsvfs->z_norm = (int)zval;
896
897	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
898		goto out;
899	zfsvfs->z_utf8 = (zval != 0);
900
901	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
902		goto out;
903	zfsvfs->z_case = (uint_t)zval;
904
905	/*
906	 * Fold case on file systems that are always or sometimes case
907	 * insensitive.
908	 */
909	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
910	    zfsvfs->z_case == ZFS_CASE_MIXED)
911		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
912
913	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
914	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
915
916	if (zfsvfs->z_use_sa) {
917		/* should either have both of these objects or none */
918		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
919		    &sa_obj);
920		if (error)
921			goto out;
922	} else {
923		/*
924		 * Pre SA versions file systems should never touch
925		 * either the attribute registration or layout objects.
926		 */
927		sa_obj = 0;
928	}
929
930	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
931	    &zfsvfs->z_attr_table);
932	if (error)
933		goto out;
934
935	if (zfsvfs->z_version >= ZPL_VERSION_SA)
936		sa_register_update_callback(os, zfs_sa_upgrade);
937
938	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
939	    &zfsvfs->z_root);
940	if (error)
941		goto out;
942	ASSERT(zfsvfs->z_root != 0);
943
944	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
945	    &zfsvfs->z_unlinkedobj);
946	if (error)
947		goto out;
948
949	error = zap_lookup(os, MASTER_NODE_OBJ,
950	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
951	    8, 1, &zfsvfs->z_userquota_obj);
952	if (error && error != ENOENT)
953		goto out;
954
955	error = zap_lookup(os, MASTER_NODE_OBJ,
956	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
957	    8, 1, &zfsvfs->z_groupquota_obj);
958	if (error && error != ENOENT)
959		goto out;
960
961	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
962	    &zfsvfs->z_fuid_obj);
963	if (error && error != ENOENT)
964		goto out;
965
966	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
967	    &zfsvfs->z_shares_dir);
968	if (error && error != ENOENT)
969		goto out;
970
971	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
972	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
973	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
974	    offsetof(znode_t, z_link_node));
975	rrm_init(&zfsvfs->z_teardown_lock, B_FALSE);
976	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
977	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
978	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
979		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
980
981	*zfvp = zfsvfs;
982	return (0);
983
984out:
985	dmu_objset_disown(os, zfsvfs);
986	*zfvp = NULL;
987	kmem_free(zfsvfs, sizeof (zfsvfs_t));
988	return (error);
989}
990
991static int
992zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
993{
994	int error;
995
996	error = zfs_register_callbacks(zfsvfs->z_vfs);
997	if (error)
998		return (error);
999
1000	/*
1001	 * Set the objset user_ptr to track its zfsvfs.
1002	 */
1003	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1004	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1005	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1006
1007	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1008
1009	/*
1010	 * If we are not mounting (ie: online recv), then we don't
1011	 * have to worry about replaying the log as we blocked all
1012	 * operations out since we closed the ZIL.
1013	 */
1014	if (mounting) {
1015		boolean_t readonly;
1016
1017		/*
1018		 * During replay we remove the read only flag to
1019		 * allow replays to succeed.
1020		 */
1021		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1022		if (readonly != 0)
1023			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1024		else
1025			zfs_unlinked_drain(zfsvfs);
1026
1027		/*
1028		 * Parse and replay the intent log.
1029		 *
1030		 * Because of ziltest, this must be done after
1031		 * zfs_unlinked_drain().  (Further note: ziltest
1032		 * doesn't use readonly mounts, where
1033		 * zfs_unlinked_drain() isn't called.)  This is because
1034		 * ziltest causes spa_sync() to think it's committed,
1035		 * but actually it is not, so the intent log contains
1036		 * many txg's worth of changes.
1037		 *
1038		 * In particular, if object N is in the unlinked set in
1039		 * the last txg to actually sync, then it could be
1040		 * actually freed in a later txg and then reallocated
1041		 * in a yet later txg.  This would write a "create
1042		 * object N" record to the intent log.  Normally, this
1043		 * would be fine because the spa_sync() would have
1044		 * written out the fact that object N is free, before
1045		 * we could write the "create object N" intent log
1046		 * record.
1047		 *
1048		 * But when we are in ziltest mode, we advance the "open
1049		 * txg" without actually spa_sync()-ing the changes to
1050		 * disk.  So we would see that object N is still
1051		 * allocated and in the unlinked set, and there is an
1052		 * intent log record saying to allocate it.
1053		 */
1054		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1055			if (zil_replay_disable) {
1056				zil_destroy(zfsvfs->z_log, B_FALSE);
1057			} else {
1058				zfsvfs->z_replay = B_TRUE;
1059				zil_replay(zfsvfs->z_os, zfsvfs,
1060				    zfs_replay_vector);
1061				zfsvfs->z_replay = B_FALSE;
1062			}
1063		}
1064		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1065	}
1066
1067	return (0);
1068}
1069
1070extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1071
1072void
1073zfsvfs_free(zfsvfs_t *zfsvfs)
1074{
1075	int i;
1076
1077	/*
1078	 * This is a barrier to prevent the filesystem from going away in
1079	 * zfs_znode_move() until we can safely ensure that the filesystem is
1080	 * not unmounted. We consider the filesystem valid before the barrier
1081	 * and invalid after the barrier.
1082	 */
1083	rw_enter(&zfsvfs_lock, RW_READER);
1084	rw_exit(&zfsvfs_lock);
1085
1086	zfs_fuid_destroy(zfsvfs);
1087
1088	mutex_destroy(&zfsvfs->z_znodes_lock);
1089	mutex_destroy(&zfsvfs->z_lock);
1090	list_destroy(&zfsvfs->z_all_znodes);
1091	rrm_destroy(&zfsvfs->z_teardown_lock);
1092	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1093	rw_destroy(&zfsvfs->z_fuid_lock);
1094	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1095		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1096	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1097}
1098
1099static void
1100zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1101{
1102	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1103	if (zfsvfs->z_vfs) {
1104		if (zfsvfs->z_use_fuids) {
1105			vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1106			vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1107			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1108			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1109			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1110			vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1111		} else {
1112			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1113			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1114			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1115			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1116			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1117			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1118		}
1119	}
1120	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1121}
1122
1123static int
1124zfs_domount(vfs_t *vfsp, char *osname)
1125{
1126	uint64_t recordsize, fsid_guid;
1127	int error = 0;
1128	zfsvfs_t *zfsvfs;
1129	vnode_t *vp;
1130
1131	ASSERT(vfsp);
1132	ASSERT(osname);
1133
1134	error = zfsvfs_create(osname, &zfsvfs);
1135	if (error)
1136		return (error);
1137	zfsvfs->z_vfs = vfsp;
1138
1139#ifdef illumos
1140	/* Initialize the generic filesystem structure. */
1141	vfsp->vfs_bcount = 0;
1142	vfsp->vfs_data = NULL;
1143
1144	if (zfs_create_unique_device(&mount_dev) == -1) {
1145		error = SET_ERROR(ENODEV);
1146		goto out;
1147	}
1148	ASSERT(vfs_devismounted(mount_dev) == 0);
1149#endif
1150
1151	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1152	    NULL))
1153		goto out;
1154	zfsvfs->z_vfs->vfs_bsize = SPA_MINBLOCKSIZE;
1155	zfsvfs->z_vfs->mnt_stat.f_iosize = recordsize;
1156
1157	vfsp->vfs_data = zfsvfs;
1158	vfsp->mnt_flag |= MNT_LOCAL;
1159	vfsp->mnt_kern_flag |= MNTK_LOOKUP_SHARED;
1160	vfsp->mnt_kern_flag |= MNTK_SHARED_WRITES;
1161	vfsp->mnt_kern_flag |= MNTK_EXTENDED_SHARED;
1162
1163	/*
1164	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1165	 * separates our fsid from any other filesystem types, and a
1166	 * 56-bit objset unique ID.  The objset unique ID is unique to
1167	 * all objsets open on this system, provided by unique_create().
1168	 * The 8-bit fs type must be put in the low bits of fsid[1]
1169	 * because that's where other Solaris filesystems put it.
1170	 */
1171	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1172	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1173	vfsp->vfs_fsid.val[0] = fsid_guid;
1174	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1175	    vfsp->mnt_vfc->vfc_typenum & 0xFF;
1176
1177	/*
1178	 * Set features for file system.
1179	 */
1180	zfs_set_fuid_feature(zfsvfs);
1181	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1182		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1183		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1184		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1185	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1186		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1187		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1188	}
1189	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1190
1191	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1192		uint64_t pval;
1193
1194		atime_changed_cb(zfsvfs, B_FALSE);
1195		readonly_changed_cb(zfsvfs, B_TRUE);
1196		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1197			goto out;
1198		xattr_changed_cb(zfsvfs, pval);
1199		zfsvfs->z_issnap = B_TRUE;
1200		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1201
1202		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1203		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1204		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1205	} else {
1206		error = zfsvfs_setup(zfsvfs, B_TRUE);
1207	}
1208
1209	vfs_mountedfrom(vfsp, osname);
1210
1211	if (!zfsvfs->z_issnap)
1212		zfsctl_create(zfsvfs);
1213out:
1214	if (error) {
1215		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1216		zfsvfs_free(zfsvfs);
1217	} else {
1218		atomic_inc_32(&zfs_active_fs_count);
1219	}
1220
1221	return (error);
1222}
1223
1224void
1225zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1226{
1227	objset_t *os = zfsvfs->z_os;
1228
1229	if (!dmu_objset_is_snapshot(os))
1230		dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
1231}
1232
1233#ifdef SECLABEL
1234/*
1235 * Convert a decimal digit string to a uint64_t integer.
1236 */
1237static int
1238str_to_uint64(char *str, uint64_t *objnum)
1239{
1240	uint64_t num = 0;
1241
1242	while (*str) {
1243		if (*str < '0' || *str > '9')
1244			return (SET_ERROR(EINVAL));
1245
1246		num = num*10 + *str++ - '0';
1247	}
1248
1249	*objnum = num;
1250	return (0);
1251}
1252
1253/*
1254 * The boot path passed from the boot loader is in the form of
1255 * "rootpool-name/root-filesystem-object-number'. Convert this
1256 * string to a dataset name: "rootpool-name/root-filesystem-name".
1257 */
1258static int
1259zfs_parse_bootfs(char *bpath, char *outpath)
1260{
1261	char *slashp;
1262	uint64_t objnum;
1263	int error;
1264
1265	if (*bpath == 0 || *bpath == '/')
1266		return (SET_ERROR(EINVAL));
1267
1268	(void) strcpy(outpath, bpath);
1269
1270	slashp = strchr(bpath, '/');
1271
1272	/* if no '/', just return the pool name */
1273	if (slashp == NULL) {
1274		return (0);
1275	}
1276
1277	/* if not a number, just return the root dataset name */
1278	if (str_to_uint64(slashp+1, &objnum)) {
1279		return (0);
1280	}
1281
1282	*slashp = '\0';
1283	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1284	*slashp = '/';
1285
1286	return (error);
1287}
1288
1289/*
1290 * Check that the hex label string is appropriate for the dataset being
1291 * mounted into the global_zone proper.
1292 *
1293 * Return an error if the hex label string is not default or
1294 * admin_low/admin_high.  For admin_low labels, the corresponding
1295 * dataset must be readonly.
1296 */
1297int
1298zfs_check_global_label(const char *dsname, const char *hexsl)
1299{
1300	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1301		return (0);
1302	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1303		return (0);
1304	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1305		/* must be readonly */
1306		uint64_t rdonly;
1307
1308		if (dsl_prop_get_integer(dsname,
1309		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1310			return (SET_ERROR(EACCES));
1311		return (rdonly ? 0 : EACCES);
1312	}
1313	return (SET_ERROR(EACCES));
1314}
1315
1316/*
1317 * Determine whether the mount is allowed according to MAC check.
1318 * by comparing (where appropriate) label of the dataset against
1319 * the label of the zone being mounted into.  If the dataset has
1320 * no label, create one.
1321 *
1322 * Returns 0 if access allowed, error otherwise (e.g. EACCES)
1323 */
1324static int
1325zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1326{
1327	int		error, retv;
1328	zone_t		*mntzone = NULL;
1329	ts_label_t	*mnt_tsl;
1330	bslabel_t	*mnt_sl;
1331	bslabel_t	ds_sl;
1332	char		ds_hexsl[MAXNAMELEN];
1333
1334	retv = EACCES;				/* assume the worst */
1335
1336	/*
1337	 * Start by getting the dataset label if it exists.
1338	 */
1339	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1340	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1341	if (error)
1342		return (SET_ERROR(EACCES));
1343
1344	/*
1345	 * If labeling is NOT enabled, then disallow the mount of datasets
1346	 * which have a non-default label already.  No other label checks
1347	 * are needed.
1348	 */
1349	if (!is_system_labeled()) {
1350		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1351			return (0);
1352		return (SET_ERROR(EACCES));
1353	}
1354
1355	/*
1356	 * Get the label of the mountpoint.  If mounting into the global
1357	 * zone (i.e. mountpoint is not within an active zone and the
1358	 * zoned property is off), the label must be default or
1359	 * admin_low/admin_high only; no other checks are needed.
1360	 */
1361	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1362	if (mntzone->zone_id == GLOBAL_ZONEID) {
1363		uint64_t zoned;
1364
1365		zone_rele(mntzone);
1366
1367		if (dsl_prop_get_integer(osname,
1368		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1369			return (SET_ERROR(EACCES));
1370		if (!zoned)
1371			return (zfs_check_global_label(osname, ds_hexsl));
1372		else
1373			/*
1374			 * This is the case of a zone dataset being mounted
1375			 * initially, before the zone has been fully created;
1376			 * allow this mount into global zone.
1377			 */
1378			return (0);
1379	}
1380
1381	mnt_tsl = mntzone->zone_slabel;
1382	ASSERT(mnt_tsl != NULL);
1383	label_hold(mnt_tsl);
1384	mnt_sl = label2bslabel(mnt_tsl);
1385
1386	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1387		/*
1388		 * The dataset doesn't have a real label, so fabricate one.
1389		 */
1390		char *str = NULL;
1391
1392		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1393		    dsl_prop_set_string(osname,
1394		    zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1395		    ZPROP_SRC_LOCAL, str) == 0)
1396			retv = 0;
1397		if (str != NULL)
1398			kmem_free(str, strlen(str) + 1);
1399	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1400		/*
1401		 * Now compare labels to complete the MAC check.  If the
1402		 * labels are equal then allow access.  If the mountpoint
1403		 * label dominates the dataset label, allow readonly access.
1404		 * Otherwise, access is denied.
1405		 */
1406		if (blequal(mnt_sl, &ds_sl))
1407			retv = 0;
1408		else if (bldominates(mnt_sl, &ds_sl)) {
1409			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1410			retv = 0;
1411		}
1412	}
1413
1414	label_rele(mnt_tsl);
1415	zone_rele(mntzone);
1416	return (retv);
1417}
1418#endif	/* SECLABEL */
1419
1420#ifdef OPENSOLARIS_MOUNTROOT
1421static int
1422zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1423{
1424	int error = 0;
1425	static int zfsrootdone = 0;
1426	zfsvfs_t *zfsvfs = NULL;
1427	znode_t *zp = NULL;
1428	vnode_t *vp = NULL;
1429	char *zfs_bootfs;
1430	char *zfs_devid;
1431
1432	ASSERT(vfsp);
1433
1434	/*
1435	 * The filesystem that we mount as root is defined in the
1436	 * boot property "zfs-bootfs" with a format of
1437	 * "poolname/root-dataset-objnum".
1438	 */
1439	if (why == ROOT_INIT) {
1440		if (zfsrootdone++)
1441			return (SET_ERROR(EBUSY));
1442		/*
1443		 * the process of doing a spa_load will require the
1444		 * clock to be set before we could (for example) do
1445		 * something better by looking at the timestamp on
1446		 * an uberblock, so just set it to -1.
1447		 */
1448		clkset(-1);
1449
1450		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1451			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1452			    "bootfs name");
1453			return (SET_ERROR(EINVAL));
1454		}
1455		zfs_devid = spa_get_bootprop("diskdevid");
1456		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1457		if (zfs_devid)
1458			spa_free_bootprop(zfs_devid);
1459		if (error) {
1460			spa_free_bootprop(zfs_bootfs);
1461			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1462			    error);
1463			return (error);
1464		}
1465		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1466			spa_free_bootprop(zfs_bootfs);
1467			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1468			    error);
1469			return (error);
1470		}
1471
1472		spa_free_bootprop(zfs_bootfs);
1473
1474		if (error = vfs_lock(vfsp))
1475			return (error);
1476
1477		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1478			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1479			goto out;
1480		}
1481
1482		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1483		ASSERT(zfsvfs);
1484		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1485			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1486			goto out;
1487		}
1488
1489		vp = ZTOV(zp);
1490		mutex_enter(&vp->v_lock);
1491		vp->v_flag |= VROOT;
1492		mutex_exit(&vp->v_lock);
1493		rootvp = vp;
1494
1495		/*
1496		 * Leave rootvp held.  The root file system is never unmounted.
1497		 */
1498
1499		vfs_add((struct vnode *)0, vfsp,
1500		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1501out:
1502		vfs_unlock(vfsp);
1503		return (error);
1504	} else if (why == ROOT_REMOUNT) {
1505		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1506		vfsp->vfs_flag |= VFS_REMOUNT;
1507
1508		/* refresh mount options */
1509		zfs_unregister_callbacks(vfsp->vfs_data);
1510		return (zfs_register_callbacks(vfsp));
1511
1512	} else if (why == ROOT_UNMOUNT) {
1513		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1514		(void) zfs_sync(vfsp, 0, 0);
1515		return (0);
1516	}
1517
1518	/*
1519	 * if "why" is equal to anything else other than ROOT_INIT,
1520	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1521	 */
1522	return (SET_ERROR(ENOTSUP));
1523}
1524#endif	/* OPENSOLARIS_MOUNTROOT */
1525
1526static int
1527getpoolname(const char *osname, char *poolname)
1528{
1529	char *p;
1530
1531	p = strchr(osname, '/');
1532	if (p == NULL) {
1533		if (strlen(osname) >= MAXNAMELEN)
1534			return (ENAMETOOLONG);
1535		(void) strcpy(poolname, osname);
1536	} else {
1537		if (p - osname >= MAXNAMELEN)
1538			return (ENAMETOOLONG);
1539		(void) strncpy(poolname, osname, p - osname);
1540		poolname[p - osname] = '\0';
1541	}
1542	return (0);
1543}
1544
1545/*ARGSUSED*/
1546static int
1547zfs_mount(vfs_t *vfsp)
1548{
1549	kthread_t	*td = curthread;
1550	vnode_t		*mvp = vfsp->mnt_vnodecovered;
1551	cred_t		*cr = td->td_ucred;
1552	char		*osname;
1553	int		error = 0;
1554	int		canwrite;
1555
1556#ifdef illumos
1557	if (mvp->v_type != VDIR)
1558		return (SET_ERROR(ENOTDIR));
1559
1560	mutex_enter(&mvp->v_lock);
1561	if ((uap->flags & MS_REMOUNT) == 0 &&
1562	    (uap->flags & MS_OVERLAY) == 0 &&
1563	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1564		mutex_exit(&mvp->v_lock);
1565		return (SET_ERROR(EBUSY));
1566	}
1567	mutex_exit(&mvp->v_lock);
1568
1569	/*
1570	 * ZFS does not support passing unparsed data in via MS_DATA.
1571	 * Users should use the MS_OPTIONSTR interface; this means
1572	 * that all option parsing is already done and the options struct
1573	 * can be interrogated.
1574	 */
1575	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1576#else	/* !illumos */
1577	if (!prison_allow(td->td_ucred, PR_ALLOW_MOUNT_ZFS))
1578		return (SET_ERROR(EPERM));
1579
1580	if (vfs_getopt(vfsp->mnt_optnew, "from", (void **)&osname, NULL))
1581		return (SET_ERROR(EINVAL));
1582#endif	/* illumos */
1583
1584	/*
1585	 * If full-owner-access is enabled and delegated administration is
1586	 * turned on, we must set nosuid.
1587	 */
1588	if (zfs_super_owner &&
1589	    dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != ECANCELED) {
1590		secpolicy_fs_mount_clearopts(cr, vfsp);
1591	}
1592
1593	/*
1594	 * Check for mount privilege?
1595	 *
1596	 * If we don't have privilege then see if
1597	 * we have local permission to allow it
1598	 */
1599	error = secpolicy_fs_mount(cr, mvp, vfsp);
1600	if (error) {
1601		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != 0)
1602			goto out;
1603
1604		if (!(vfsp->vfs_flag & MS_REMOUNT)) {
1605			vattr_t		vattr;
1606
1607			/*
1608			 * Make sure user is the owner of the mount point
1609			 * or has sufficient privileges.
1610			 */
1611
1612			vattr.va_mask = AT_UID;
1613
1614			vn_lock(mvp, LK_SHARED | LK_RETRY);
1615			if (VOP_GETATTR(mvp, &vattr, cr)) {
1616				VOP_UNLOCK(mvp, 0);
1617				goto out;
1618			}
1619
1620			if (secpolicy_vnode_owner(mvp, cr, vattr.va_uid) != 0 &&
1621			    VOP_ACCESS(mvp, VWRITE, cr, td) != 0) {
1622				VOP_UNLOCK(mvp, 0);
1623				goto out;
1624			}
1625			VOP_UNLOCK(mvp, 0);
1626		}
1627
1628		secpolicy_fs_mount_clearopts(cr, vfsp);
1629	}
1630
1631	/*
1632	 * Refuse to mount a filesystem if we are in a local zone and the
1633	 * dataset is not visible.
1634	 */
1635	if (!INGLOBALZONE(curthread) &&
1636	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1637		error = SET_ERROR(EPERM);
1638		goto out;
1639	}
1640
1641#ifdef SECLABEL
1642	error = zfs_mount_label_policy(vfsp, osname);
1643	if (error)
1644		goto out;
1645#endif
1646
1647	vfsp->vfs_flag |= MNT_NFS4ACLS;
1648
1649	/*
1650	 * When doing a remount, we simply refresh our temporary properties
1651	 * according to those options set in the current VFS options.
1652	 */
1653	if (vfsp->vfs_flag & MS_REMOUNT) {
1654		zfsvfs_t *zfsvfs = vfsp->vfs_data;
1655
1656		/*
1657		 * Refresh mount options with z_teardown_lock blocking I/O while
1658		 * the filesystem is in an inconsistent state.
1659		 * The lock also serializes this code with filesystem
1660		 * manipulations between entry to zfs_suspend_fs() and return
1661		 * from zfs_resume_fs().
1662		 */
1663		rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1664		zfs_unregister_callbacks(zfsvfs);
1665		error = zfs_register_callbacks(vfsp);
1666		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1667		goto out;
1668	}
1669
1670	/* Initial root mount: try hard to import the requested root pool. */
1671	if ((vfsp->vfs_flag & MNT_ROOTFS) != 0 &&
1672	    (vfsp->vfs_flag & MNT_UPDATE) == 0) {
1673		char pname[MAXNAMELEN];
1674
1675		error = getpoolname(osname, pname);
1676		if (error == 0)
1677			error = spa_import_rootpool(pname);
1678		if (error)
1679			goto out;
1680	}
1681	DROP_GIANT();
1682	error = zfs_domount(vfsp, osname);
1683	PICKUP_GIANT();
1684
1685#ifdef illumos
1686	/*
1687	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1688	 * disappear due to a forced unmount.
1689	 */
1690	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1691		VFS_HOLD(mvp->v_vfsp);
1692#endif
1693
1694out:
1695	return (error);
1696}
1697
1698static int
1699zfs_statfs(vfs_t *vfsp, struct statfs *statp)
1700{
1701	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1702	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1703
1704	statp->f_version = STATFS_VERSION;
1705
1706	ZFS_ENTER(zfsvfs);
1707
1708	dmu_objset_space(zfsvfs->z_os,
1709	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1710
1711	/*
1712	 * The underlying storage pool actually uses multiple block sizes.
1713	 * We report the fragsize as the smallest block size we support,
1714	 * and we report our blocksize as the filesystem's maximum blocksize.
1715	 */
1716	statp->f_bsize = SPA_MINBLOCKSIZE;
1717	statp->f_iosize = zfsvfs->z_vfs->mnt_stat.f_iosize;
1718
1719	/*
1720	 * The following report "total" blocks of various kinds in the
1721	 * file system, but reported in terms of f_frsize - the
1722	 * "fragment" size.
1723	 */
1724
1725	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1726	statp->f_bfree = availbytes / statp->f_bsize;
1727	statp->f_bavail = statp->f_bfree; /* no root reservation */
1728
1729	/*
1730	 * statvfs() should really be called statufs(), because it assumes
1731	 * static metadata.  ZFS doesn't preallocate files, so the best
1732	 * we can do is report the max that could possibly fit in f_files,
1733	 * and that minus the number actually used in f_ffree.
1734	 * For f_ffree, report the smaller of the number of object available
1735	 * and the number of blocks (each object will take at least a block).
1736	 */
1737	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1738	statp->f_files = statp->f_ffree + usedobjs;
1739
1740	/*
1741	 * We're a zfs filesystem.
1742	 */
1743	(void) strlcpy(statp->f_fstypename, "zfs", sizeof(statp->f_fstypename));
1744
1745	strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname,
1746	    sizeof(statp->f_mntfromname));
1747	strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname,
1748	    sizeof(statp->f_mntonname));
1749
1750	statp->f_namemax = ZFS_MAXNAMELEN;
1751
1752	ZFS_EXIT(zfsvfs);
1753	return (0);
1754}
1755
1756static int
1757zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp)
1758{
1759	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1760	znode_t *rootzp;
1761	int error;
1762
1763	ZFS_ENTER(zfsvfs);
1764
1765	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1766	if (error == 0)
1767		*vpp = ZTOV(rootzp);
1768
1769	ZFS_EXIT(zfsvfs);
1770
1771	if (error == 0) {
1772		error = vn_lock(*vpp, flags);
1773		if (error == 0)
1774			(*vpp)->v_vflag |= VV_ROOT;
1775	}
1776	if (error != 0)
1777		*vpp = NULL;
1778
1779	return (error);
1780}
1781
1782/*
1783 * Teardown the zfsvfs::z_os.
1784 *
1785 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1786 * and 'z_teardown_inactive_lock' held.
1787 */
1788static int
1789zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1790{
1791	znode_t	*zp;
1792
1793	rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1794
1795	if (!unmounting) {
1796		/*
1797		 * We purge the parent filesystem's vfsp as the parent
1798		 * filesystem and all of its snapshots have their vnode's
1799		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1800		 * 'z_parent' is self referential for non-snapshots.
1801		 */
1802		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1803#ifdef FREEBSD_NAMECACHE
1804		cache_purgevfs(zfsvfs->z_parent->z_vfs);
1805#endif
1806	}
1807
1808	/*
1809	 * Close the zil. NB: Can't close the zil while zfs_inactive
1810	 * threads are blocked as zil_close can call zfs_inactive.
1811	 */
1812	if (zfsvfs->z_log) {
1813		zil_close(zfsvfs->z_log);
1814		zfsvfs->z_log = NULL;
1815	}
1816
1817	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1818
1819	/*
1820	 * If we are not unmounting (ie: online recv) and someone already
1821	 * unmounted this file system while we were doing the switcheroo,
1822	 * or a reopen of z_os failed then just bail out now.
1823	 */
1824	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1825		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1826		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1827		return (SET_ERROR(EIO));
1828	}
1829
1830	/*
1831	 * At this point there are no vops active, and any new vops will
1832	 * fail with EIO since we have z_teardown_lock for writer (only
1833	 * relavent for forced unmount).
1834	 *
1835	 * Release all holds on dbufs.
1836	 */
1837	mutex_enter(&zfsvfs->z_znodes_lock);
1838	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1839	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1840		if (zp->z_sa_hdl) {
1841			ASSERT(ZTOV(zp)->v_count >= 0);
1842			zfs_znode_dmu_fini(zp);
1843		}
1844	mutex_exit(&zfsvfs->z_znodes_lock);
1845
1846	/*
1847	 * If we are unmounting, set the unmounted flag and let new vops
1848	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1849	 * other vops will fail with EIO.
1850	 */
1851	if (unmounting) {
1852		zfsvfs->z_unmounted = B_TRUE;
1853		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1854		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1855	}
1856
1857	/*
1858	 * z_os will be NULL if there was an error in attempting to reopen
1859	 * zfsvfs, so just return as the properties had already been
1860	 * unregistered and cached data had been evicted before.
1861	 */
1862	if (zfsvfs->z_os == NULL)
1863		return (0);
1864
1865	/*
1866	 * Unregister properties.
1867	 */
1868	zfs_unregister_callbacks(zfsvfs);
1869
1870	/*
1871	 * Evict cached data
1872	 */
1873	if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) &&
1874	    !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1875		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1876	dmu_objset_evict_dbufs(zfsvfs->z_os);
1877
1878	return (0);
1879}
1880
1881/*ARGSUSED*/
1882static int
1883zfs_umount(vfs_t *vfsp, int fflag)
1884{
1885	kthread_t *td = curthread;
1886	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1887	objset_t *os;
1888	cred_t *cr = td->td_ucred;
1889	int ret;
1890
1891	ret = secpolicy_fs_unmount(cr, vfsp);
1892	if (ret) {
1893		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1894		    ZFS_DELEG_PERM_MOUNT, cr))
1895			return (ret);
1896	}
1897
1898	/*
1899	 * We purge the parent filesystem's vfsp as the parent filesystem
1900	 * and all of its snapshots have their vnode's v_vfsp set to the
1901	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1902	 * referential for non-snapshots.
1903	 */
1904	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1905
1906	/*
1907	 * Unmount any snapshots mounted under .zfs before unmounting the
1908	 * dataset itself.
1909	 */
1910	if (zfsvfs->z_ctldir != NULL) {
1911		if ((ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0)
1912			return (ret);
1913		ret = vflush(vfsp, 0, 0, td);
1914		ASSERT(ret == EBUSY);
1915		if (!(fflag & MS_FORCE)) {
1916			if (zfsvfs->z_ctldir->v_count > 1)
1917				return (EBUSY);
1918			ASSERT(zfsvfs->z_ctldir->v_count == 1);
1919		}
1920		zfsctl_destroy(zfsvfs);
1921		ASSERT(zfsvfs->z_ctldir == NULL);
1922	}
1923
1924	if (fflag & MS_FORCE) {
1925		/*
1926		 * Mark file system as unmounted before calling
1927		 * vflush(FORCECLOSE). This way we ensure no future vnops
1928		 * will be called and risk operating on DOOMED vnodes.
1929		 */
1930		rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1931		zfsvfs->z_unmounted = B_TRUE;
1932		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1933	}
1934
1935	/*
1936	 * Flush all the files.
1937	 */
1938	ret = vflush(vfsp, 0, (fflag & MS_FORCE) ? FORCECLOSE : 0, td);
1939	if (ret != 0) {
1940		if (!zfsvfs->z_issnap) {
1941			zfsctl_create(zfsvfs);
1942			ASSERT(zfsvfs->z_ctldir != NULL);
1943		}
1944		return (ret);
1945	}
1946
1947#ifdef illumos
1948	if (!(fflag & MS_FORCE)) {
1949		/*
1950		 * Check the number of active vnodes in the file system.
1951		 * Our count is maintained in the vfs structure, but the
1952		 * number is off by 1 to indicate a hold on the vfs
1953		 * structure itself.
1954		 *
1955		 * The '.zfs' directory maintains a reference of its
1956		 * own, and any active references underneath are
1957		 * reflected in the vnode count.
1958		 */
1959		if (zfsvfs->z_ctldir == NULL) {
1960			if (vfsp->vfs_count > 1)
1961				return (SET_ERROR(EBUSY));
1962		} else {
1963			if (vfsp->vfs_count > 2 ||
1964			    zfsvfs->z_ctldir->v_count > 1)
1965				return (SET_ERROR(EBUSY));
1966		}
1967	}
1968#endif
1969
1970	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1971	os = zfsvfs->z_os;
1972
1973	/*
1974	 * z_os will be NULL if there was an error in
1975	 * attempting to reopen zfsvfs.
1976	 */
1977	if (os != NULL) {
1978		/*
1979		 * Unset the objset user_ptr.
1980		 */
1981		mutex_enter(&os->os_user_ptr_lock);
1982		dmu_objset_set_user(os, NULL);
1983		mutex_exit(&os->os_user_ptr_lock);
1984
1985		/*
1986		 * Finally release the objset
1987		 */
1988		dmu_objset_disown(os, zfsvfs);
1989	}
1990
1991	/*
1992	 * We can now safely destroy the '.zfs' directory node.
1993	 */
1994	if (zfsvfs->z_ctldir != NULL)
1995		zfsctl_destroy(zfsvfs);
1996	if (zfsvfs->z_issnap) {
1997		vnode_t *svp = vfsp->mnt_vnodecovered;
1998
1999		if (svp->v_count >= 2)
2000			VN_RELE(svp);
2001	}
2002	zfs_freevfs(vfsp);
2003
2004	return (0);
2005}
2006
2007static int
2008zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp)
2009{
2010	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2011	znode_t		*zp;
2012	int 		err;
2013
2014	/*
2015	 * zfs_zget() can't operate on virtual entries like .zfs/ or
2016	 * .zfs/snapshot/ directories, that's why we return EOPNOTSUPP.
2017	 * This will make NFS to switch to LOOKUP instead of using VGET.
2018	 */
2019	if (ino == ZFSCTL_INO_ROOT || ino == ZFSCTL_INO_SNAPDIR ||
2020	    (zfsvfs->z_shares_dir != 0 && ino == zfsvfs->z_shares_dir))
2021		return (EOPNOTSUPP);
2022
2023	ZFS_ENTER(zfsvfs);
2024	err = zfs_zget(zfsvfs, ino, &zp);
2025	if (err == 0 && zp->z_unlinked) {
2026		VN_RELE(ZTOV(zp));
2027		err = EINVAL;
2028	}
2029	if (err == 0)
2030		*vpp = ZTOV(zp);
2031	ZFS_EXIT(zfsvfs);
2032	if (err == 0)
2033		err = vn_lock(*vpp, flags);
2034	if (err != 0)
2035		*vpp = NULL;
2036	return (err);
2037}
2038
2039static int
2040zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
2041    struct ucred **credanonp, int *numsecflavors, int **secflavors)
2042{
2043	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2044
2045	/*
2046	 * If this is regular file system vfsp is the same as
2047	 * zfsvfs->z_parent->z_vfs, but if it is snapshot,
2048	 * zfsvfs->z_parent->z_vfs represents parent file system
2049	 * which we have to use here, because only this file system
2050	 * has mnt_export configured.
2051	 */
2052	return (vfs_stdcheckexp(zfsvfs->z_parent->z_vfs, nam, extflagsp,
2053	    credanonp, numsecflavors, secflavors));
2054}
2055
2056CTASSERT(SHORT_FID_LEN <= sizeof(struct fid));
2057CTASSERT(LONG_FID_LEN <= sizeof(struct fid));
2058
2059static int
2060zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp)
2061{
2062	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2063	znode_t		*zp;
2064	uint64_t	object = 0;
2065	uint64_t	fid_gen = 0;
2066	uint64_t	gen_mask;
2067	uint64_t	zp_gen;
2068	int 		i, err;
2069
2070	*vpp = NULL;
2071
2072	ZFS_ENTER(zfsvfs);
2073
2074	/*
2075	 * On FreeBSD we can get snapshot's mount point or its parent file
2076	 * system mount point depending if snapshot is already mounted or not.
2077	 */
2078	if (zfsvfs->z_parent == zfsvfs && fidp->fid_len == LONG_FID_LEN) {
2079		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
2080		uint64_t	objsetid = 0;
2081		uint64_t	setgen = 0;
2082
2083		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
2084			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
2085
2086		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
2087			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
2088
2089		ZFS_EXIT(zfsvfs);
2090
2091		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
2092		if (err)
2093			return (SET_ERROR(EINVAL));
2094		ZFS_ENTER(zfsvfs);
2095	}
2096
2097	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
2098		zfid_short_t	*zfid = (zfid_short_t *)fidp;
2099
2100		for (i = 0; i < sizeof (zfid->zf_object); i++)
2101			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
2102
2103		for (i = 0; i < sizeof (zfid->zf_gen); i++)
2104			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
2105	} else {
2106		ZFS_EXIT(zfsvfs);
2107		return (SET_ERROR(EINVAL));
2108	}
2109
2110	/*
2111	 * A zero fid_gen means we are in .zfs or the .zfs/snapshot
2112	 * directory tree. If the object == zfsvfs->z_shares_dir, then
2113	 * we are in the .zfs/shares directory tree.
2114	 */
2115	if ((fid_gen == 0 &&
2116	     (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) ||
2117	    (zfsvfs->z_shares_dir != 0 && object == zfsvfs->z_shares_dir)) {
2118		*vpp = zfsvfs->z_ctldir;
2119		ASSERT(*vpp != NULL);
2120		if (object == ZFSCTL_INO_SNAPDIR) {
2121			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
2122			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2123		} else if (object == zfsvfs->z_shares_dir) {
2124			VERIFY(zfsctl_root_lookup(*vpp, "shares", vpp, NULL,
2125			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2126		} else {
2127			VN_HOLD(*vpp);
2128		}
2129		ZFS_EXIT(zfsvfs);
2130		err = vn_lock(*vpp, flags);
2131		if (err != 0)
2132			*vpp = NULL;
2133		return (err);
2134	}
2135
2136	gen_mask = -1ULL >> (64 - 8 * i);
2137
2138	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
2139	if (err = zfs_zget(zfsvfs, object, &zp)) {
2140		ZFS_EXIT(zfsvfs);
2141		return (err);
2142	}
2143	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
2144	    sizeof (uint64_t));
2145	zp_gen = zp_gen & gen_mask;
2146	if (zp_gen == 0)
2147		zp_gen = 1;
2148	if (zp->z_unlinked || zp_gen != fid_gen) {
2149		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2150		VN_RELE(ZTOV(zp));
2151		ZFS_EXIT(zfsvfs);
2152		return (SET_ERROR(EINVAL));
2153	}
2154
2155	*vpp = ZTOV(zp);
2156	ZFS_EXIT(zfsvfs);
2157	err = vn_lock(*vpp, flags | LK_RETRY);
2158	if (err == 0)
2159		vnode_create_vobject(*vpp, zp->z_size, curthread);
2160	else
2161		*vpp = NULL;
2162	return (err);
2163}
2164
2165/*
2166 * Block out VOPs and close zfsvfs_t::z_os
2167 *
2168 * Note, if successful, then we return with the 'z_teardown_lock' and
2169 * 'z_teardown_inactive_lock' write held.  We leave ownership of the underlying
2170 * dataset and objset intact so that they can be atomically handed off during
2171 * a subsequent rollback or recv operation and the resume thereafter.
2172 */
2173int
2174zfs_suspend_fs(zfsvfs_t *zfsvfs)
2175{
2176	int error;
2177
2178	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2179		return (error);
2180
2181	return (0);
2182}
2183
2184/*
2185 * Rebuild SA and release VOPs.  Note that ownership of the underlying dataset
2186 * is an invariant across any of the operations that can be performed while the
2187 * filesystem was suspended.  Whether it succeeded or failed, the preconditions
2188 * are the same: the relevant objset and associated dataset are owned by
2189 * zfsvfs, held, and long held on entry.
2190 */
2191int
2192zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2193{
2194	int err;
2195	znode_t *zp;
2196	uint64_t sa_obj = 0;
2197
2198	ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock));
2199	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2200
2201	/*
2202	 * We already own this, so just hold and rele it to update the
2203	 * objset_t, as the one we had before may have been evicted.
2204	 */
2205	VERIFY0(dmu_objset_hold(osname, zfsvfs, &zfsvfs->z_os));
2206	VERIFY3P(zfsvfs->z_os->os_dsl_dataset->ds_owner, ==, zfsvfs);
2207	VERIFY(dsl_dataset_long_held(zfsvfs->z_os->os_dsl_dataset));
2208	dmu_objset_rele(zfsvfs->z_os, zfsvfs);
2209
2210	/*
2211	 * Make sure version hasn't changed
2212	 */
2213
2214	err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION,
2215	    &zfsvfs->z_version);
2216
2217	if (err)
2218		goto bail;
2219
2220	err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2221	    ZFS_SA_ATTRS, 8, 1, &sa_obj);
2222
2223	if (err && zfsvfs->z_version >= ZPL_VERSION_SA)
2224		goto bail;
2225
2226	if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2227	    zfs_attr_table,  ZPL_END, &zfsvfs->z_attr_table)) != 0)
2228		goto bail;
2229
2230	if (zfsvfs->z_version >= ZPL_VERSION_SA)
2231		sa_register_update_callback(zfsvfs->z_os,
2232		    zfs_sa_upgrade);
2233
2234	VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2235
2236	zfs_set_fuid_feature(zfsvfs);
2237
2238	/*
2239	 * Attempt to re-establish all the active znodes with
2240	 * their dbufs.  If a zfs_rezget() fails, then we'll let
2241	 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2242	 * when they try to use their znode.
2243	 */
2244	mutex_enter(&zfsvfs->z_znodes_lock);
2245	for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2246	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2247		(void) zfs_rezget(zp);
2248	}
2249	mutex_exit(&zfsvfs->z_znodes_lock);
2250
2251bail:
2252	/* release the VOPs */
2253	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2254	rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
2255
2256	if (err) {
2257		/*
2258		 * Since we couldn't setup the sa framework, try to force
2259		 * unmount this file system.
2260		 */
2261		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) {
2262			vfs_ref(zfsvfs->z_vfs);
2263			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, curthread);
2264		}
2265	}
2266	return (err);
2267}
2268
2269static void
2270zfs_freevfs(vfs_t *vfsp)
2271{
2272	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2273
2274#ifdef illumos
2275	/*
2276	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2277	 * from zfs_mount().  Release it here.  If we came through
2278	 * zfs_mountroot() instead, we didn't grab an extra hold, so
2279	 * skip the VFS_RELE for rootvfs.
2280	 */
2281	if (zfsvfs->z_issnap && (vfsp != rootvfs))
2282		VFS_RELE(zfsvfs->z_parent->z_vfs);
2283#endif
2284
2285	zfsvfs_free(zfsvfs);
2286
2287	atomic_dec_32(&zfs_active_fs_count);
2288}
2289
2290#ifdef __i386__
2291static int desiredvnodes_backup;
2292#endif
2293
2294static void
2295zfs_vnodes_adjust(void)
2296{
2297#ifdef __i386__
2298	int newdesiredvnodes;
2299
2300	desiredvnodes_backup = desiredvnodes;
2301
2302	/*
2303	 * We calculate newdesiredvnodes the same way it is done in
2304	 * vntblinit(). If it is equal to desiredvnodes, it means that
2305	 * it wasn't tuned by the administrator and we can tune it down.
2306	 */
2307	newdesiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 *
2308	    vm_kmem_size / (5 * (sizeof(struct vm_object) +
2309	    sizeof(struct vnode))));
2310	if (newdesiredvnodes == desiredvnodes)
2311		desiredvnodes = (3 * newdesiredvnodes) / 4;
2312#endif
2313}
2314
2315static void
2316zfs_vnodes_adjust_back(void)
2317{
2318
2319#ifdef __i386__
2320	desiredvnodes = desiredvnodes_backup;
2321#endif
2322}
2323
2324void
2325zfs_init(void)
2326{
2327
2328	printf("ZFS filesystem version: " ZPL_VERSION_STRING "\n");
2329
2330	/*
2331	 * Initialize .zfs directory structures
2332	 */
2333	zfsctl_init();
2334
2335	/*
2336	 * Initialize znode cache, vnode ops, etc...
2337	 */
2338	zfs_znode_init();
2339
2340	/*
2341	 * Reduce number of vnodes. Originally number of vnodes is calculated
2342	 * with UFS inode in mind. We reduce it here, because it's too big for
2343	 * ZFS/i386.
2344	 */
2345	zfs_vnodes_adjust();
2346
2347	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2348}
2349
2350void
2351zfs_fini(void)
2352{
2353	zfsctl_fini();
2354	zfs_znode_fini();
2355	zfs_vnodes_adjust_back();
2356}
2357
2358int
2359zfs_busy(void)
2360{
2361	return (zfs_active_fs_count != 0);
2362}
2363
2364int
2365zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2366{
2367	int error;
2368	objset_t *os = zfsvfs->z_os;
2369	dmu_tx_t *tx;
2370
2371	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2372		return (SET_ERROR(EINVAL));
2373
2374	if (newvers < zfsvfs->z_version)
2375		return (SET_ERROR(EINVAL));
2376
2377	if (zfs_spa_version_map(newvers) >
2378	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2379		return (SET_ERROR(ENOTSUP));
2380
2381	tx = dmu_tx_create(os);
2382	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2383	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2384		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2385		    ZFS_SA_ATTRS);
2386		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2387	}
2388	error = dmu_tx_assign(tx, TXG_WAIT);
2389	if (error) {
2390		dmu_tx_abort(tx);
2391		return (error);
2392	}
2393
2394	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2395	    8, 1, &newvers, tx);
2396
2397	if (error) {
2398		dmu_tx_commit(tx);
2399		return (error);
2400	}
2401
2402	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2403		uint64_t sa_obj;
2404
2405		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2406		    SPA_VERSION_SA);
2407		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2408		    DMU_OT_NONE, 0, tx);
2409
2410		error = zap_add(os, MASTER_NODE_OBJ,
2411		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2412		ASSERT0(error);
2413
2414		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2415		sa_register_update_callback(os, zfs_sa_upgrade);
2416	}
2417
2418	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2419	    "from %llu to %llu", zfsvfs->z_version, newvers);
2420
2421	dmu_tx_commit(tx);
2422
2423	zfsvfs->z_version = newvers;
2424
2425	zfs_set_fuid_feature(zfsvfs);
2426
2427	return (0);
2428}
2429
2430/*
2431 * Read a property stored within the master node.
2432 */
2433int
2434zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2435{
2436	const char *pname;
2437	int error = ENOENT;
2438
2439	/*
2440	 * Look up the file system's value for the property.  For the
2441	 * version property, we look up a slightly different string.
2442	 */
2443	if (prop == ZFS_PROP_VERSION)
2444		pname = ZPL_VERSION_STR;
2445	else
2446		pname = zfs_prop_to_name(prop);
2447
2448	if (os != NULL)
2449		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2450
2451	if (error == ENOENT) {
2452		/* No value set, use the default value */
2453		switch (prop) {
2454		case ZFS_PROP_VERSION:
2455			*value = ZPL_VERSION;
2456			break;
2457		case ZFS_PROP_NORMALIZE:
2458		case ZFS_PROP_UTF8ONLY:
2459			*value = 0;
2460			break;
2461		case ZFS_PROP_CASE:
2462			*value = ZFS_CASE_SENSITIVE;
2463			break;
2464		default:
2465			return (error);
2466		}
2467		error = 0;
2468	}
2469	return (error);
2470}
2471
2472#ifdef _KERNEL
2473void
2474zfsvfs_update_fromname(const char *oldname, const char *newname)
2475{
2476	char tmpbuf[MAXPATHLEN];
2477	struct mount *mp;
2478	char *fromname;
2479	size_t oldlen;
2480
2481	oldlen = strlen(oldname);
2482
2483	mtx_lock(&mountlist_mtx);
2484	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2485		fromname = mp->mnt_stat.f_mntfromname;
2486		if (strcmp(fromname, oldname) == 0) {
2487			(void)strlcpy(fromname, newname,
2488			    sizeof(mp->mnt_stat.f_mntfromname));
2489			continue;
2490		}
2491		if (strncmp(fromname, oldname, oldlen) == 0 &&
2492		    (fromname[oldlen] == '/' || fromname[oldlen] == '@')) {
2493			(void)snprintf(tmpbuf, sizeof(tmpbuf), "%s%s",
2494			    newname, fromname + oldlen);
2495			(void)strlcpy(fromname, tmpbuf,
2496			    sizeof(mp->mnt_stat.f_mntfromname));
2497			continue;
2498		}
2499	}
2500	mtx_unlock(&mountlist_mtx);
2501}
2502#endif
2503