zfs_rlock.c revision 185029
1168404Spjd/*
2168404Spjd * CDDL HEADER START
3168404Spjd *
4168404Spjd * The contents of this file are subject to the terms of the
5168404Spjd * Common Development and Distribution License (the "License").
6168404Spjd * You may not use this file except in compliance with the License.
7168404Spjd *
8168404Spjd * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9168404Spjd * or http://www.opensolaris.org/os/licensing.
10168404Spjd * See the License for the specific language governing permissions
11168404Spjd * and limitations under the License.
12168404Spjd *
13168404Spjd * When distributing Covered Code, include this CDDL HEADER in each
14168404Spjd * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15168404Spjd * If applicable, add the following below this CDDL HEADER, with the
16168404Spjd * fields enclosed by brackets "[]" replaced with your own identifying
17168404Spjd * information: Portions Copyright [yyyy] [name of copyright owner]
18168404Spjd *
19168404Spjd * CDDL HEADER END
20168404Spjd */
21168404Spjd/*
22168404Spjd * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23168404Spjd * Use is subject to license terms.
24168404Spjd */
25168404Spjd
26168404Spjd#pragma ident	"%Z%%M%	%I%	%E% SMI"
27168404Spjd
28168404Spjd/*
29168404Spjd * This file contains the code to implement file range locking in
30168404Spjd * ZFS, although there isn't much specific to ZFS (all that comes to mind
31168404Spjd * support for growing the blocksize).
32168404Spjd *
33168404Spjd * Interface
34168404Spjd * ---------
35168404Spjd * Defined in zfs_rlock.h but essentially:
36168404Spjd *	rl = zfs_range_lock(zp, off, len, lock_type);
37168404Spjd *	zfs_range_unlock(rl);
38168404Spjd *	zfs_range_reduce(rl, off, len);
39168404Spjd *
40168404Spjd * AVL tree
41168404Spjd * --------
42168404Spjd * An AVL tree is used to maintain the state of the existing ranges
43168404Spjd * that are locked for exclusive (writer) or shared (reader) use.
44168404Spjd * The starting range offset is used for searching and sorting the tree.
45168404Spjd *
46168404Spjd * Common case
47168404Spjd * -----------
48168404Spjd * The (hopefully) usual case is of no overlaps or contention for
49168404Spjd * locks. On entry to zfs_lock_range() a rl_t is allocated; the tree
50168404Spjd * searched that finds no overlap, and *this* rl_t is placed in the tree.
51168404Spjd *
52168404Spjd * Overlaps/Reference counting/Proxy locks
53168404Spjd * ---------------------------------------
54168404Spjd * The avl code only allows one node at a particular offset. Also it's very
55168404Spjd * inefficient to search through all previous entries looking for overlaps
56168404Spjd * (because the very 1st in the ordered list might be at offset 0 but
57168404Spjd * cover the whole file).
58168404Spjd * So this implementation uses reference counts and proxy range locks.
59168404Spjd * Firstly, only reader locks use reference counts and proxy locks,
60168404Spjd * because writer locks are exclusive.
61168404Spjd * When a reader lock overlaps with another then a proxy lock is created
62168404Spjd * for that range and replaces the original lock. If the overlap
63168404Spjd * is exact then the reference count of the proxy is simply incremented.
64168404Spjd * Otherwise, the proxy lock is split into smaller lock ranges and
65168404Spjd * new proxy locks created for non overlapping ranges.
66168404Spjd * The reference counts are adjusted accordingly.
67168404Spjd * Meanwhile, the orginal lock is kept around (this is the callers handle)
68168404Spjd * and its offset and length are used when releasing the lock.
69168404Spjd *
70168404Spjd * Thread coordination
71168404Spjd * -------------------
72168404Spjd * In order to make wakeups efficient and to ensure multiple continuous
73168404Spjd * readers on a range don't starve a writer for the same range lock,
74168404Spjd * two condition variables are allocated in each rl_t.
75168404Spjd * If a writer (or reader) can't get a range it initialises the writer
76168404Spjd * (or reader) cv; sets a flag saying there's a writer (or reader) waiting;
77168404Spjd * and waits on that cv. When a thread unlocks that range it wakes up all
78168404Spjd * writers then all readers before destroying the lock.
79168404Spjd *
80168404Spjd * Append mode writes
81168404Spjd * ------------------
82168404Spjd * Append mode writes need to lock a range at the end of a file.
83168404Spjd * The offset of the end of the file is determined under the
84168404Spjd * range locking mutex, and the lock type converted from RL_APPEND to
85168404Spjd * RL_WRITER and the range locked.
86168404Spjd *
87168404Spjd * Grow block handling
88168404Spjd * -------------------
89168404Spjd * ZFS supports multiple block sizes currently upto 128K. The smallest
90168404Spjd * block size is used for the file which is grown as needed. During this
91168404Spjd * growth all other writers and readers must be excluded.
92168404Spjd * So if the block size needs to be grown then the whole file is
93168404Spjd * exclusively locked, then later the caller will reduce the lock
94168404Spjd * range to just the range to be written using zfs_reduce_range.
95168404Spjd */
96168404Spjd
97168404Spjd#include <sys/zfs_rlock.h>
98168404Spjd
99168404Spjd/*
100168404Spjd * Check if a write lock can be grabbed, or wait and recheck until available.
101168404Spjd */
102168404Spjdstatic void
103168404Spjdzfs_range_lock_writer(znode_t *zp, rl_t *new)
104168404Spjd{
105168404Spjd	avl_tree_t *tree = &zp->z_range_avl;
106168404Spjd	rl_t *rl;
107168404Spjd	avl_index_t where;
108168404Spjd	uint64_t end_size;
109168404Spjd	uint64_t off = new->r_off;
110168404Spjd	uint64_t len = new->r_len;
111168404Spjd
112168404Spjd	for (;;) {
113168404Spjd		/*
114168404Spjd		 * Range locking is also used by zvol and uses a
115168404Spjd		 * dummied up znode. However, for zvol, we don't need to
116168404Spjd		 * append or grow blocksize, and besides we don't have
117168404Spjd		 * a z_phys or z_zfsvfs - so skip that processing.
118168404Spjd		 *
119168404Spjd		 * Yes, this is ugly, and would be solved by not handling
120168404Spjd		 * grow or append in range lock code. If that was done then
121168404Spjd		 * we could make the range locking code generically available
122168404Spjd		 * to other non-zfs consumers.
123168404Spjd		 */
124168404Spjd		if (zp->z_vnode) { /* caller is ZPL */
125168404Spjd			/*
126168404Spjd			 * If in append mode pick up the current end of file.
127168404Spjd			 * This is done under z_range_lock to avoid races.
128168404Spjd			 */
129168404Spjd			if (new->r_type == RL_APPEND)
130168404Spjd				new->r_off = zp->z_phys->zp_size;
131168404Spjd
132168404Spjd			/*
133168404Spjd			 * If we need to grow the block size then grab the whole
134168404Spjd			 * file range. This is also done under z_range_lock to
135168404Spjd			 * avoid races.
136168404Spjd			 */
137168404Spjd			end_size = MAX(zp->z_phys->zp_size, new->r_off + len);
138168404Spjd			if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) ||
139168404Spjd			    zp->z_blksz < zp->z_zfsvfs->z_max_blksz)) {
140168404Spjd				new->r_off = 0;
141168404Spjd				new->r_len = UINT64_MAX;
142168404Spjd			}
143168404Spjd		}
144168404Spjd
145168404Spjd		/*
146168404Spjd		 * First check for the usual case of no locks
147168404Spjd		 */
148168404Spjd		if (avl_numnodes(tree) == 0) {
149168404Spjd			new->r_type = RL_WRITER; /* convert to writer */
150168404Spjd			avl_add(tree, new);
151168404Spjd			return;
152168404Spjd		}
153168404Spjd
154168404Spjd		/*
155168404Spjd		 * Look for any locks in the range.
156168404Spjd		 */
157168404Spjd		rl = avl_find(tree, new, &where);
158168404Spjd		if (rl)
159168404Spjd			goto wait; /* already locked at same offset */
160168404Spjd
161168404Spjd		rl = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
162168404Spjd		if (rl && (rl->r_off < new->r_off + new->r_len))
163168404Spjd			goto wait;
164168404Spjd
165168404Spjd		rl = (rl_t *)avl_nearest(tree, where, AVL_BEFORE);
166168404Spjd		if (rl && rl->r_off + rl->r_len > new->r_off)
167168404Spjd			goto wait;
168168404Spjd
169168404Spjd		new->r_type = RL_WRITER; /* convert possible RL_APPEND */
170168404Spjd		avl_insert(tree, new, where);
171168404Spjd		return;
172168404Spjdwait:
173168404Spjd		if (!rl->r_write_wanted) {
174168404Spjd			cv_init(&rl->r_wr_cv, NULL, CV_DEFAULT, NULL);
175168404Spjd			rl->r_write_wanted = B_TRUE;
176168404Spjd		}
177168404Spjd		cv_wait(&rl->r_wr_cv, &zp->z_range_lock);
178168404Spjd
179168404Spjd		/* reset to original */
180168404Spjd		new->r_off = off;
181168404Spjd		new->r_len = len;
182168404Spjd	}
183168404Spjd}
184168404Spjd
185168404Spjd/*
186168404Spjd * If this is an original (non-proxy) lock then replace it by
187168404Spjd * a proxy and return the proxy.
188168404Spjd */
189168404Spjdstatic rl_t *
190168404Spjdzfs_range_proxify(avl_tree_t *tree, rl_t *rl)
191168404Spjd{
192168404Spjd	rl_t *proxy;
193168404Spjd
194168404Spjd	if (rl->r_proxy)
195168404Spjd		return (rl); /* already a proxy */
196168404Spjd
197168404Spjd	ASSERT3U(rl->r_cnt, ==, 1);
198168404Spjd	ASSERT(rl->r_write_wanted == B_FALSE);
199168404Spjd	ASSERT(rl->r_read_wanted == B_FALSE);
200168404Spjd	avl_remove(tree, rl);
201168404Spjd	rl->r_cnt = 0;
202168404Spjd
203168404Spjd	/* create a proxy range lock */
204168404Spjd	proxy = kmem_alloc(sizeof (rl_t), KM_SLEEP);
205168404Spjd	proxy->r_off = rl->r_off;
206168404Spjd	proxy->r_len = rl->r_len;
207168404Spjd	proxy->r_cnt = 1;
208168404Spjd	proxy->r_type = RL_READER;
209168404Spjd	proxy->r_proxy = B_TRUE;
210168404Spjd	proxy->r_write_wanted = B_FALSE;
211168404Spjd	proxy->r_read_wanted = B_FALSE;
212168404Spjd	avl_add(tree, proxy);
213168404Spjd
214168404Spjd	return (proxy);
215168404Spjd}
216168404Spjd
217168404Spjd/*
218168404Spjd * Split the range lock at the supplied offset
219168404Spjd * returning the *front* proxy.
220168404Spjd */
221168404Spjdstatic rl_t *
222168404Spjdzfs_range_split(avl_tree_t *tree, rl_t *rl, uint64_t off)
223168404Spjd{
224168404Spjd	rl_t *front, *rear;
225168404Spjd
226168404Spjd	ASSERT3U(rl->r_len, >, 1);
227168404Spjd	ASSERT3U(off, >, rl->r_off);
228168404Spjd	ASSERT3U(off, <, rl->r_off + rl->r_len);
229168404Spjd	ASSERT(rl->r_write_wanted == B_FALSE);
230168404Spjd	ASSERT(rl->r_read_wanted == B_FALSE);
231168404Spjd
232168404Spjd	/* create the rear proxy range lock */
233168404Spjd	rear = kmem_alloc(sizeof (rl_t), KM_SLEEP);
234168404Spjd	rear->r_off = off;
235168404Spjd	rear->r_len = rl->r_off + rl->r_len - off;
236168404Spjd	rear->r_cnt = rl->r_cnt;
237168404Spjd	rear->r_type = RL_READER;
238168404Spjd	rear->r_proxy = B_TRUE;
239168404Spjd	rear->r_write_wanted = B_FALSE;
240168404Spjd	rear->r_read_wanted = B_FALSE;
241168404Spjd
242168404Spjd	front = zfs_range_proxify(tree, rl);
243168404Spjd	front->r_len = off - rl->r_off;
244168404Spjd
245168404Spjd	avl_insert_here(tree, rear, front, AVL_AFTER);
246168404Spjd	return (front);
247168404Spjd}
248168404Spjd
249168404Spjd/*
250168404Spjd * Create and add a new proxy range lock for the supplied range.
251168404Spjd */
252168404Spjdstatic void
253168404Spjdzfs_range_new_proxy(avl_tree_t *tree, uint64_t off, uint64_t len)
254168404Spjd{
255168404Spjd	rl_t *rl;
256168404Spjd
257168404Spjd	ASSERT(len);
258168404Spjd	rl = kmem_alloc(sizeof (rl_t), KM_SLEEP);
259168404Spjd	rl->r_off = off;
260168404Spjd	rl->r_len = len;
261168404Spjd	rl->r_cnt = 1;
262168404Spjd	rl->r_type = RL_READER;
263168404Spjd	rl->r_proxy = B_TRUE;
264168404Spjd	rl->r_write_wanted = B_FALSE;
265168404Spjd	rl->r_read_wanted = B_FALSE;
266168404Spjd	avl_add(tree, rl);
267168404Spjd}
268168404Spjd
269168404Spjdstatic void
270168404Spjdzfs_range_add_reader(avl_tree_t *tree, rl_t *new, rl_t *prev, avl_index_t where)
271168404Spjd{
272168404Spjd	rl_t *next;
273168404Spjd	uint64_t off = new->r_off;
274168404Spjd	uint64_t len = new->r_len;
275168404Spjd
276168404Spjd	/*
277168404Spjd	 * prev arrives either:
278168404Spjd	 * - pointing to an entry at the same offset
279168404Spjd	 * - pointing to the entry with the closest previous offset whose
280168404Spjd	 *   range may overlap with the new range
281168404Spjd	 * - null, if there were no ranges starting before the new one
282168404Spjd	 */
283168404Spjd	if (prev) {
284168404Spjd		if (prev->r_off + prev->r_len <= off) {
285168404Spjd			prev = NULL;
286168404Spjd		} else if (prev->r_off != off) {
287168404Spjd			/*
288168404Spjd			 * convert to proxy if needed then
289168404Spjd			 * split this entry and bump ref count
290168404Spjd			 */
291168404Spjd			prev = zfs_range_split(tree, prev, off);
292168404Spjd			prev = AVL_NEXT(tree, prev); /* move to rear range */
293168404Spjd		}
294168404Spjd	}
295168404Spjd	ASSERT((prev == NULL) || (prev->r_off == off));
296168404Spjd
297168404Spjd	if (prev)
298168404Spjd		next = prev;
299168404Spjd	else
300168404Spjd		next = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
301168404Spjd
302168404Spjd	if (next == NULL || off + len <= next->r_off) {
303168404Spjd		/* no overlaps, use the original new rl_t in the tree */
304168404Spjd		avl_insert(tree, new, where);
305168404Spjd		return;
306168404Spjd	}
307168404Spjd
308168404Spjd	if (off < next->r_off) {
309168404Spjd		/* Add a proxy for initial range before the overlap */
310168404Spjd		zfs_range_new_proxy(tree, off, next->r_off - off);
311168404Spjd	}
312168404Spjd
313168404Spjd	new->r_cnt = 0; /* will use proxies in tree */
314168404Spjd	/*
315168404Spjd	 * We now search forward through the ranges, until we go past the end
316168404Spjd	 * of the new range. For each entry we make it a proxy if it
317168404Spjd	 * isn't already, then bump its reference count. If there's any
318168404Spjd	 * gaps between the ranges then we create a new proxy range.
319168404Spjd	 */
320168404Spjd	for (prev = NULL; next; prev = next, next = AVL_NEXT(tree, next)) {
321168404Spjd		if (off + len <= next->r_off)
322168404Spjd			break;
323168404Spjd		if (prev && prev->r_off + prev->r_len < next->r_off) {
324168404Spjd			/* there's a gap */
325168404Spjd			ASSERT3U(next->r_off, >, prev->r_off + prev->r_len);
326168404Spjd			zfs_range_new_proxy(tree, prev->r_off + prev->r_len,
327168404Spjd			    next->r_off - (prev->r_off + prev->r_len));
328168404Spjd		}
329168404Spjd		if (off + len == next->r_off + next->r_len) {
330168404Spjd			/* exact overlap with end */
331168404Spjd			next = zfs_range_proxify(tree, next);
332168404Spjd			next->r_cnt++;
333168404Spjd			return;
334168404Spjd		}
335168404Spjd		if (off + len < next->r_off + next->r_len) {
336168404Spjd			/* new range ends in the middle of this block */
337168404Spjd			next = zfs_range_split(tree, next, off + len);
338168404Spjd			next->r_cnt++;
339168404Spjd			return;
340168404Spjd		}
341168404Spjd		ASSERT3U(off + len, >, next->r_off + next->r_len);
342168404Spjd		next = zfs_range_proxify(tree, next);
343168404Spjd		next->r_cnt++;
344168404Spjd	}
345168404Spjd
346168404Spjd	/* Add the remaining end range. */
347168404Spjd	zfs_range_new_proxy(tree, prev->r_off + prev->r_len,
348168404Spjd	    (off + len) - (prev->r_off + prev->r_len));
349168404Spjd}
350168404Spjd
351168404Spjd/*
352168404Spjd * Check if a reader lock can be grabbed, or wait and recheck until available.
353168404Spjd */
354168404Spjdstatic void
355168404Spjdzfs_range_lock_reader(znode_t *zp, rl_t *new)
356168404Spjd{
357168404Spjd	avl_tree_t *tree = &zp->z_range_avl;
358168404Spjd	rl_t *prev, *next;
359168404Spjd	avl_index_t where;
360168404Spjd	uint64_t off = new->r_off;
361168404Spjd	uint64_t len = new->r_len;
362168404Spjd
363168404Spjd	/*
364168404Spjd	 * Look for any writer locks in the range.
365168404Spjd	 */
366168404Spjdretry:
367168404Spjd	prev = avl_find(tree, new, &where);
368168404Spjd	if (prev == NULL)
369168404Spjd		prev = (rl_t *)avl_nearest(tree, where, AVL_BEFORE);
370168404Spjd
371168404Spjd	/*
372168404Spjd	 * Check the previous range for a writer lock overlap.
373168404Spjd	 */
374168404Spjd	if (prev && (off < prev->r_off + prev->r_len)) {
375168404Spjd		if ((prev->r_type == RL_WRITER) || (prev->r_write_wanted)) {
376168404Spjd			if (!prev->r_read_wanted) {
377168404Spjd				cv_init(&prev->r_rd_cv, NULL, CV_DEFAULT, NULL);
378168404Spjd				prev->r_read_wanted = B_TRUE;
379168404Spjd			}
380168404Spjd			cv_wait(&prev->r_rd_cv, &zp->z_range_lock);
381168404Spjd			goto retry;
382168404Spjd		}
383168404Spjd		if (off + len < prev->r_off + prev->r_len)
384168404Spjd			goto got_lock;
385168404Spjd	}
386168404Spjd
387168404Spjd	/*
388168404Spjd	 * Search through the following ranges to see if there's
389168404Spjd	 * write lock any overlap.
390168404Spjd	 */
391168404Spjd	if (prev)
392168404Spjd		next = AVL_NEXT(tree, prev);
393168404Spjd	else
394168404Spjd		next = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
395168404Spjd	for (; next; next = AVL_NEXT(tree, next)) {
396168404Spjd		if (off + len <= next->r_off)
397168404Spjd			goto got_lock;
398168404Spjd		if ((next->r_type == RL_WRITER) || (next->r_write_wanted)) {
399168404Spjd			if (!next->r_read_wanted) {
400168404Spjd				cv_init(&next->r_rd_cv, NULL, CV_DEFAULT, NULL);
401168404Spjd				next->r_read_wanted = B_TRUE;
402168404Spjd			}
403168404Spjd			cv_wait(&next->r_rd_cv, &zp->z_range_lock);
404168404Spjd			goto retry;
405168404Spjd		}
406168404Spjd		if (off + len <= next->r_off + next->r_len)
407168404Spjd			goto got_lock;
408168404Spjd	}
409168404Spjd
410168404Spjdgot_lock:
411168404Spjd	/*
412168404Spjd	 * Add the read lock, which may involve splitting existing
413168404Spjd	 * locks and bumping ref counts (r_cnt).
414168404Spjd	 */
415168404Spjd	zfs_range_add_reader(tree, new, prev, where);
416168404Spjd}
417168404Spjd
418168404Spjd/*
419168404Spjd * Lock a range (offset, length) as either shared (RL_READER)
420168404Spjd * or exclusive (RL_WRITER). Returns the range lock structure
421168404Spjd * for later unlocking or reduce range (if entire file
422168404Spjd * previously locked as RL_WRITER).
423168404Spjd */
424168404Spjdrl_t *
425168404Spjdzfs_range_lock(znode_t *zp, uint64_t off, uint64_t len, rl_type_t type)
426168404Spjd{
427168404Spjd	rl_t *new;
428168404Spjd
429168404Spjd	ASSERT(type == RL_READER || type == RL_WRITER || type == RL_APPEND);
430168404Spjd
431168404Spjd	new = kmem_alloc(sizeof (rl_t), KM_SLEEP);
432168404Spjd	new->r_zp = zp;
433168404Spjd	new->r_off = off;
434168404Spjd	new->r_len = len;
435168404Spjd	new->r_cnt = 1; /* assume it's going to be in the tree */
436168404Spjd	new->r_type = type;
437168404Spjd	new->r_proxy = B_FALSE;
438168404Spjd	new->r_write_wanted = B_FALSE;
439168404Spjd	new->r_read_wanted = B_FALSE;
440168404Spjd
441168404Spjd	mutex_enter(&zp->z_range_lock);
442168404Spjd	if (type == RL_READER) {
443168404Spjd		/*
444168404Spjd		 * First check for the usual case of no locks
445168404Spjd		 */
446168404Spjd		if (avl_numnodes(&zp->z_range_avl) == 0)
447168404Spjd			avl_add(&zp->z_range_avl, new);
448168404Spjd		else
449168404Spjd			zfs_range_lock_reader(zp, new);
450168404Spjd	} else
451168404Spjd		zfs_range_lock_writer(zp, new); /* RL_WRITER or RL_APPEND */
452168404Spjd	mutex_exit(&zp->z_range_lock);
453168404Spjd	return (new);
454168404Spjd}
455168404Spjd
456168404Spjd/*
457168404Spjd * Unlock a reader lock
458168404Spjd */
459168404Spjdstatic void
460168404Spjdzfs_range_unlock_reader(znode_t *zp, rl_t *remove)
461168404Spjd{
462168404Spjd	avl_tree_t *tree = &zp->z_range_avl;
463168404Spjd	rl_t *rl, *next;
464168404Spjd	uint64_t len;
465168404Spjd
466168404Spjd	/*
467168404Spjd	 * The common case is when the remove entry is in the tree
468168404Spjd	 * (cnt == 1) meaning there's been no other reader locks overlapping
469168404Spjd	 * with this one. Otherwise the remove entry will have been
470168404Spjd	 * removed from the tree and replaced by proxies (one or
471168404Spjd	 * more ranges mapping to the entire range).
472168404Spjd	 */
473168404Spjd	if (remove->r_cnt == 1) {
474168404Spjd		avl_remove(tree, remove);
475185029Spjd		if (remove->r_write_wanted) {
476168404Spjd			cv_broadcast(&remove->r_wr_cv);
477185029Spjd			cv_destroy(&remove->r_wr_cv);
478185029Spjd		}
479185029Spjd		if (remove->r_read_wanted) {
480168404Spjd			cv_broadcast(&remove->r_rd_cv);
481185029Spjd			cv_destroy(&remove->r_rd_cv);
482185029Spjd		}
483168404Spjd	} else {
484168404Spjd		ASSERT3U(remove->r_cnt, ==, 0);
485168404Spjd		ASSERT3U(remove->r_write_wanted, ==, 0);
486168404Spjd		ASSERT3U(remove->r_read_wanted, ==, 0);
487168404Spjd		/*
488168404Spjd		 * Find start proxy representing this reader lock,
489168404Spjd		 * then decrement ref count on all proxies
490168404Spjd		 * that make up this range, freeing them as needed.
491168404Spjd		 */
492168404Spjd		rl = avl_find(tree, remove, NULL);
493168404Spjd		ASSERT(rl);
494168404Spjd		ASSERT(rl->r_cnt);
495168404Spjd		ASSERT(rl->r_type == RL_READER);
496168404Spjd		for (len = remove->r_len; len != 0; rl = next) {
497168404Spjd			len -= rl->r_len;
498168404Spjd			if (len) {
499168404Spjd				next = AVL_NEXT(tree, rl);
500168404Spjd				ASSERT(next);
501168404Spjd				ASSERT(rl->r_off + rl->r_len == next->r_off);
502168404Spjd				ASSERT(next->r_cnt);
503168404Spjd				ASSERT(next->r_type == RL_READER);
504168404Spjd			}
505168404Spjd			rl->r_cnt--;
506168404Spjd			if (rl->r_cnt == 0) {
507168404Spjd				avl_remove(tree, rl);
508185029Spjd				if (rl->r_write_wanted) {
509168404Spjd					cv_broadcast(&rl->r_wr_cv);
510185029Spjd					cv_destroy(&rl->r_wr_cv);
511185029Spjd				}
512185029Spjd				if (rl->r_read_wanted) {
513168404Spjd					cv_broadcast(&rl->r_rd_cv);
514185029Spjd					cv_destroy(&rl->r_rd_cv);
515185029Spjd				}
516168404Spjd				kmem_free(rl, sizeof (rl_t));
517168404Spjd			}
518168404Spjd		}
519168404Spjd	}
520168404Spjd	kmem_free(remove, sizeof (rl_t));
521168404Spjd}
522168404Spjd
523168404Spjd/*
524168404Spjd * Unlock range and destroy range lock structure.
525168404Spjd */
526168404Spjdvoid
527168404Spjdzfs_range_unlock(rl_t *rl)
528168404Spjd{
529168404Spjd	znode_t *zp = rl->r_zp;
530168404Spjd
531168404Spjd	ASSERT(rl->r_type == RL_WRITER || rl->r_type == RL_READER);
532168404Spjd	ASSERT(rl->r_cnt == 1 || rl->r_cnt == 0);
533168404Spjd	ASSERT(!rl->r_proxy);
534168404Spjd
535168404Spjd	mutex_enter(&zp->z_range_lock);
536168404Spjd	if (rl->r_type == RL_WRITER) {
537168404Spjd		/* writer locks can't be shared or split */
538168404Spjd		avl_remove(&zp->z_range_avl, rl);
539168404Spjd		mutex_exit(&zp->z_range_lock);
540168404Spjd		if (rl->r_write_wanted) {
541168404Spjd			cv_broadcast(&rl->r_wr_cv);
542168404Spjd			cv_destroy(&rl->r_wr_cv);
543168404Spjd		}
544168404Spjd		if (rl->r_read_wanted) {
545168404Spjd			cv_broadcast(&rl->r_rd_cv);
546168404Spjd			cv_destroy(&rl->r_rd_cv);
547168404Spjd		}
548168404Spjd		kmem_free(rl, sizeof (rl_t));
549168404Spjd	} else {
550168404Spjd		/*
551168404Spjd		 * lock may be shared, let zfs_range_unlock_reader()
552168404Spjd		 * release the lock and free the rl_t
553168404Spjd		 */
554168404Spjd		zfs_range_unlock_reader(zp, rl);
555168404Spjd		mutex_exit(&zp->z_range_lock);
556168404Spjd	}
557168404Spjd}
558168404Spjd
559168404Spjd/*
560168404Spjd * Reduce range locked as RL_WRITER from whole file to specified range.
561168404Spjd * Asserts the whole file is exclusivly locked and so there's only one
562168404Spjd * entry in the tree.
563168404Spjd */
564168404Spjdvoid
565168404Spjdzfs_range_reduce(rl_t *rl, uint64_t off, uint64_t len)
566168404Spjd{
567168404Spjd	znode_t *zp = rl->r_zp;
568168404Spjd
569168404Spjd	/* Ensure there are no other locks */
570168404Spjd	ASSERT(avl_numnodes(&zp->z_range_avl) == 1);
571168404Spjd	ASSERT(rl->r_off == 0);
572168404Spjd	ASSERT(rl->r_type == RL_WRITER);
573168404Spjd	ASSERT(!rl->r_proxy);
574168404Spjd	ASSERT3U(rl->r_len, ==, UINT64_MAX);
575168404Spjd	ASSERT3U(rl->r_cnt, ==, 1);
576168404Spjd
577168404Spjd	mutex_enter(&zp->z_range_lock);
578168404Spjd	rl->r_off = off;
579168404Spjd	rl->r_len = len;
580168404Spjd	mutex_exit(&zp->z_range_lock);
581168404Spjd	if (rl->r_write_wanted)
582168404Spjd		cv_broadcast(&rl->r_wr_cv);
583168404Spjd	if (rl->r_read_wanted)
584168404Spjd		cv_broadcast(&rl->r_rd_cv);
585168404Spjd}
586168404Spjd
587168404Spjd/*
588168404Spjd * AVL comparison function used to order range locks
589168404Spjd * Locks are ordered on the start offset of the range.
590168404Spjd */
591168404Spjdint
592168404Spjdzfs_range_compare(const void *arg1, const void *arg2)
593168404Spjd{
594168404Spjd	const rl_t *rl1 = arg1;
595168404Spjd	const rl_t *rl2 = arg2;
596168404Spjd
597168404Spjd	if (rl1->r_off > rl2->r_off)
598168404Spjd		return (1);
599168404Spjd	if (rl1->r_off < rl2->r_off)
600168404Spjd		return (-1);
601168404Spjd	return (0);
602168404Spjd}
603