zap_leaf.c revision 290765
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
24 */
25
26/*
27 * The 512-byte leaf is broken into 32 16-byte chunks.
28 * chunk number n means l_chunk[n], even though the header precedes it.
29 * the names are stored null-terminated.
30 */
31
32#include <sys/zio.h>
33#include <sys/spa.h>
34#include <sys/dmu.h>
35#include <sys/zfs_context.h>
36#include <sys/fs/zfs.h>
37#include <sys/zap.h>
38#include <sys/zap_impl.h>
39#include <sys/zap_leaf.h>
40#include <sys/arc.h>
41
42static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry);
43
44#define	CHAIN_END 0xffff /* end of the chunk chain */
45
46/* half the (current) minimum block size */
47#define	MAX_ARRAY_BYTES (8<<10)
48
49#define	LEAF_HASH(l, h) \
50	((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
51	((h) >> \
52	(64 - ZAP_LEAF_HASH_SHIFT(l) - zap_leaf_phys(l)->l_hdr.lh_prefix_len)))
53
54#define	LEAF_HASH_ENTPTR(l, h) (&zap_leaf_phys(l)->l_hash[LEAF_HASH(l, h)])
55
56extern inline zap_leaf_phys_t *zap_leaf_phys(zap_leaf_t *l);
57
58static void
59zap_memset(void *a, int c, size_t n)
60{
61	char *cp = a;
62	char *cpend = cp + n;
63
64	while (cp < cpend)
65		*cp++ = c;
66}
67
68static void
69stv(int len, void *addr, uint64_t value)
70{
71	switch (len) {
72	case 1:
73		*(uint8_t *)addr = value;
74		return;
75	case 2:
76		*(uint16_t *)addr = value;
77		return;
78	case 4:
79		*(uint32_t *)addr = value;
80		return;
81	case 8:
82		*(uint64_t *)addr = value;
83		return;
84	}
85	ASSERT(!"bad int len");
86}
87
88static uint64_t
89ldv(int len, const void *addr)
90{
91	switch (len) {
92	case 1:
93		return (*(uint8_t *)addr);
94	case 2:
95		return (*(uint16_t *)addr);
96	case 4:
97		return (*(uint32_t *)addr);
98	case 8:
99		return (*(uint64_t *)addr);
100	}
101	ASSERT(!"bad int len");
102	return (0xFEEDFACEDEADBEEFULL);
103}
104
105void
106zap_leaf_byteswap(zap_leaf_phys_t *buf, int size)
107{
108	int i;
109	zap_leaf_t l;
110	dmu_buf_t l_dbuf;
111
112	l_dbuf.db_data = buf;
113	l.l_bs = highbit64(size) - 1;
114	l.l_dbuf = &l_dbuf;
115
116	buf->l_hdr.lh_block_type =	BSWAP_64(buf->l_hdr.lh_block_type);
117	buf->l_hdr.lh_prefix =		BSWAP_64(buf->l_hdr.lh_prefix);
118	buf->l_hdr.lh_magic =		BSWAP_32(buf->l_hdr.lh_magic);
119	buf->l_hdr.lh_nfree =		BSWAP_16(buf->l_hdr.lh_nfree);
120	buf->l_hdr.lh_nentries =	BSWAP_16(buf->l_hdr.lh_nentries);
121	buf->l_hdr.lh_prefix_len =	BSWAP_16(buf->l_hdr.lh_prefix_len);
122	buf->l_hdr.lh_freelist =	BSWAP_16(buf->l_hdr.lh_freelist);
123
124	for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++)
125		buf->l_hash[i] = BSWAP_16(buf->l_hash[i]);
126
127	for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) {
128		zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i);
129		struct zap_leaf_entry *le;
130
131		switch (lc->l_free.lf_type) {
132		case ZAP_CHUNK_ENTRY:
133			le = &lc->l_entry;
134
135			le->le_type =		BSWAP_8(le->le_type);
136			le->le_value_intlen =	BSWAP_8(le->le_value_intlen);
137			le->le_next =		BSWAP_16(le->le_next);
138			le->le_name_chunk =	BSWAP_16(le->le_name_chunk);
139			le->le_name_numints =	BSWAP_16(le->le_name_numints);
140			le->le_value_chunk =	BSWAP_16(le->le_value_chunk);
141			le->le_value_numints =	BSWAP_16(le->le_value_numints);
142			le->le_cd =		BSWAP_32(le->le_cd);
143			le->le_hash =		BSWAP_64(le->le_hash);
144			break;
145		case ZAP_CHUNK_FREE:
146			lc->l_free.lf_type =	BSWAP_8(lc->l_free.lf_type);
147			lc->l_free.lf_next =	BSWAP_16(lc->l_free.lf_next);
148			break;
149		case ZAP_CHUNK_ARRAY:
150			lc->l_array.la_type =	BSWAP_8(lc->l_array.la_type);
151			lc->l_array.la_next =	BSWAP_16(lc->l_array.la_next);
152			/* la_array doesn't need swapping */
153			break;
154		default:
155			ASSERT(!"bad leaf type");
156		}
157	}
158}
159
160void
161zap_leaf_init(zap_leaf_t *l, boolean_t sort)
162{
163	int i;
164
165	l->l_bs = highbit64(l->l_dbuf->db_size) - 1;
166	zap_memset(&zap_leaf_phys(l)->l_hdr, 0,
167	    sizeof (struct zap_leaf_header));
168	zap_memset(zap_leaf_phys(l)->l_hash, CHAIN_END,
169	    2*ZAP_LEAF_HASH_NUMENTRIES(l));
170	for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
171		ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE;
172		ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1;
173	}
174	ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END;
175	zap_leaf_phys(l)->l_hdr.lh_block_type = ZBT_LEAF;
176	zap_leaf_phys(l)->l_hdr.lh_magic = ZAP_LEAF_MAGIC;
177	zap_leaf_phys(l)->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l);
178	if (sort)
179		zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
180}
181
182/*
183 * Routines which manipulate leaf chunks (l_chunk[]).
184 */
185
186static uint16_t
187zap_leaf_chunk_alloc(zap_leaf_t *l)
188{
189	int chunk;
190
191	ASSERT(zap_leaf_phys(l)->l_hdr.lh_nfree > 0);
192
193	chunk = zap_leaf_phys(l)->l_hdr.lh_freelist;
194	ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
195	ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE);
196
197	zap_leaf_phys(l)->l_hdr.lh_freelist =
198	    ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next;
199
200	zap_leaf_phys(l)->l_hdr.lh_nfree--;
201
202	return (chunk);
203}
204
205static void
206zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk)
207{
208	struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free;
209	ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l));
210	ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
211	ASSERT(zlf->lf_type != ZAP_CHUNK_FREE);
212
213	zlf->lf_type = ZAP_CHUNK_FREE;
214	zlf->lf_next = zap_leaf_phys(l)->l_hdr.lh_freelist;
215	bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */
216	zap_leaf_phys(l)->l_hdr.lh_freelist = chunk;
217
218	zap_leaf_phys(l)->l_hdr.lh_nfree++;
219}
220
221/*
222 * Routines which manipulate leaf arrays (zap_leaf_array type chunks).
223 */
224
225static uint16_t
226zap_leaf_array_create(zap_leaf_t *l, const char *buf,
227    int integer_size, int num_integers)
228{
229	uint16_t chunk_head;
230	uint16_t *chunkp = &chunk_head;
231	int byten = 0;
232	uint64_t value = 0;
233	int shift = (integer_size-1)*8;
234	int len = num_integers;
235
236	ASSERT3U(num_integers * integer_size, <, MAX_ARRAY_BYTES);
237
238	while (len > 0) {
239		uint16_t chunk = zap_leaf_chunk_alloc(l);
240		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
241		int i;
242
243		la->la_type = ZAP_CHUNK_ARRAY;
244		for (i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) {
245			if (byten == 0)
246				value = ldv(integer_size, buf);
247			la->la_array[i] = value >> shift;
248			value <<= 8;
249			if (++byten == integer_size) {
250				byten = 0;
251				buf += integer_size;
252				if (--len == 0)
253					break;
254			}
255		}
256
257		*chunkp = chunk;
258		chunkp = &la->la_next;
259	}
260	*chunkp = CHAIN_END;
261
262	return (chunk_head);
263}
264
265static void
266zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp)
267{
268	uint16_t chunk = *chunkp;
269
270	*chunkp = CHAIN_END;
271
272	while (chunk != CHAIN_END) {
273		int nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next;
274		ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==,
275		    ZAP_CHUNK_ARRAY);
276		zap_leaf_chunk_free(l, chunk);
277		chunk = nextchunk;
278	}
279}
280
281/* array_len and buf_len are in integers, not bytes */
282static void
283zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk,
284    int array_int_len, int array_len, int buf_int_len, uint64_t buf_len,
285    void *buf)
286{
287	int len = MIN(array_len, buf_len);
288	int byten = 0;
289	uint64_t value = 0;
290	char *p = buf;
291
292	ASSERT3U(array_int_len, <=, buf_int_len);
293
294	/* Fast path for one 8-byte integer */
295	if (array_int_len == 8 && buf_int_len == 8 && len == 1) {
296		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
297		uint8_t *ip = la->la_array;
298		uint64_t *buf64 = buf;
299
300		*buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 |
301		    (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 |
302		    (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 |
303		    (uint64_t)ip[6] << 8 | (uint64_t)ip[7];
304		return;
305	}
306
307	/* Fast path for an array of 1-byte integers (eg. the entry name) */
308	if (array_int_len == 1 && buf_int_len == 1 &&
309	    buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) {
310		while (chunk != CHAIN_END) {
311			struct zap_leaf_array *la =
312			    &ZAP_LEAF_CHUNK(l, chunk).l_array;
313			bcopy(la->la_array, p, ZAP_LEAF_ARRAY_BYTES);
314			p += ZAP_LEAF_ARRAY_BYTES;
315			chunk = la->la_next;
316		}
317		return;
318	}
319
320	while (len > 0) {
321		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
322		int i;
323
324		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
325		for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
326			value = (value << 8) | la->la_array[i];
327			byten++;
328			if (byten == array_int_len) {
329				stv(buf_int_len, p, value);
330				byten = 0;
331				len--;
332				if (len == 0)
333					return;
334				p += buf_int_len;
335			}
336		}
337		chunk = la->la_next;
338	}
339}
340
341static boolean_t
342zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn,
343    int chunk, int array_numints)
344{
345	int bseen = 0;
346
347	if (zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY) {
348		uint64_t *thiskey;
349		boolean_t match;
350
351		ASSERT(zn->zn_key_intlen == sizeof (*thiskey));
352		thiskey = kmem_alloc(array_numints * sizeof (*thiskey),
353		    KM_SLEEP);
354
355		zap_leaf_array_read(l, chunk, sizeof (*thiskey), array_numints,
356		    sizeof (*thiskey), array_numints, thiskey);
357		match = bcmp(thiskey, zn->zn_key_orig,
358		    array_numints * sizeof (*thiskey)) == 0;
359		kmem_free(thiskey, array_numints * sizeof (*thiskey));
360		return (match);
361	}
362
363	ASSERT(zn->zn_key_intlen == 1);
364	if (zn->zn_matchtype == MT_FIRST) {
365		char *thisname = kmem_alloc(array_numints, KM_SLEEP);
366		boolean_t match;
367
368		zap_leaf_array_read(l, chunk, sizeof (char), array_numints,
369		    sizeof (char), array_numints, thisname);
370		match = zap_match(zn, thisname);
371		kmem_free(thisname, array_numints);
372		return (match);
373	}
374
375	/*
376	 * Fast path for exact matching.
377	 * First check that the lengths match, so that we don't read
378	 * past the end of the zn_key_orig array.
379	 */
380	if (array_numints != zn->zn_key_orig_numints)
381		return (B_FALSE);
382	while (bseen < array_numints) {
383		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
384		int toread = MIN(array_numints - bseen, ZAP_LEAF_ARRAY_BYTES);
385		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
386		if (bcmp(la->la_array, (char *)zn->zn_key_orig + bseen, toread))
387			break;
388		chunk = la->la_next;
389		bseen += toread;
390	}
391	return (bseen == array_numints);
392}
393
394/*
395 * Routines which manipulate leaf entries.
396 */
397
398int
399zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh)
400{
401	uint16_t *chunkp;
402	struct zap_leaf_entry *le;
403
404	ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
405
406again:
407	for (chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash);
408	    *chunkp != CHAIN_END; chunkp = &le->le_next) {
409		uint16_t chunk = *chunkp;
410		le = ZAP_LEAF_ENTRY(l, chunk);
411
412		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
413		ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
414
415		if (le->le_hash != zn->zn_hash)
416			continue;
417
418		/*
419		 * NB: the entry chain is always sorted by cd on
420		 * normalized zap objects, so this will find the
421		 * lowest-cd match for MT_FIRST.
422		 */
423		ASSERT(zn->zn_matchtype == MT_EXACT ||
424		    (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED));
425		if (zap_leaf_array_match(l, zn, le->le_name_chunk,
426		    le->le_name_numints)) {
427			zeh->zeh_num_integers = le->le_value_numints;
428			zeh->zeh_integer_size = le->le_value_intlen;
429			zeh->zeh_cd = le->le_cd;
430			zeh->zeh_hash = le->le_hash;
431			zeh->zeh_chunkp = chunkp;
432			zeh->zeh_leaf = l;
433			return (0);
434		}
435	}
436
437	/*
438	 * NB: we could of course do this in one pass, but that would be
439	 * a pain.  We'll see if MT_BEST is even used much.
440	 */
441	if (zn->zn_matchtype == MT_BEST) {
442		zn->zn_matchtype = MT_FIRST;
443		goto again;
444	}
445
446	return (SET_ERROR(ENOENT));
447}
448
449/* Return (h1,cd1 >= h2,cd2) */
450#define	HCD_GTEQ(h1, cd1, h2, cd2) \
451	((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE))
452
453int
454zap_leaf_lookup_closest(zap_leaf_t *l,
455    uint64_t h, uint32_t cd, zap_entry_handle_t *zeh)
456{
457	uint16_t chunk;
458	uint64_t besth = -1ULL;
459	uint32_t bestcd = -1U;
460	uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1;
461	uint16_t lh;
462	struct zap_leaf_entry *le;
463
464	ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
465
466	for (lh = LEAF_HASH(l, h); lh <= bestlh; lh++) {
467		for (chunk = zap_leaf_phys(l)->l_hash[lh];
468		    chunk != CHAIN_END; chunk = le->le_next) {
469			le = ZAP_LEAF_ENTRY(l, chunk);
470
471			ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
472			ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
473
474			if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) &&
475			    HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) {
476				ASSERT3U(bestlh, >=, lh);
477				bestlh = lh;
478				besth = le->le_hash;
479				bestcd = le->le_cd;
480
481				zeh->zeh_num_integers = le->le_value_numints;
482				zeh->zeh_integer_size = le->le_value_intlen;
483				zeh->zeh_cd = le->le_cd;
484				zeh->zeh_hash = le->le_hash;
485				zeh->zeh_fakechunk = chunk;
486				zeh->zeh_chunkp = &zeh->zeh_fakechunk;
487				zeh->zeh_leaf = l;
488			}
489		}
490	}
491
492	return (bestcd == -1U ? ENOENT : 0);
493}
494
495int
496zap_entry_read(const zap_entry_handle_t *zeh,
497    uint8_t integer_size, uint64_t num_integers, void *buf)
498{
499	struct zap_leaf_entry *le =
500	    ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
501	ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
502
503	if (le->le_value_intlen > integer_size)
504		return (SET_ERROR(EINVAL));
505
506	zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk,
507	    le->le_value_intlen, le->le_value_numints,
508	    integer_size, num_integers, buf);
509
510	if (zeh->zeh_num_integers > num_integers)
511		return (SET_ERROR(EOVERFLOW));
512	return (0);
513
514}
515
516int
517zap_entry_read_name(zap_t *zap, const zap_entry_handle_t *zeh, uint16_t buflen,
518    char *buf)
519{
520	struct zap_leaf_entry *le =
521	    ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
522	ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
523
524	if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
525		zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 8,
526		    le->le_name_numints, 8, buflen / 8, buf);
527	} else {
528		zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1,
529		    le->le_name_numints, 1, buflen, buf);
530	}
531	if (le->le_name_numints > buflen)
532		return (SET_ERROR(EOVERFLOW));
533	return (0);
534}
535
536int
537zap_entry_update(zap_entry_handle_t *zeh,
538    uint8_t integer_size, uint64_t num_integers, const void *buf)
539{
540	int delta_chunks;
541	zap_leaf_t *l = zeh->zeh_leaf;
542	struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp);
543
544	delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) -
545	    ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * le->le_value_intlen);
546
547	if ((int)zap_leaf_phys(l)->l_hdr.lh_nfree < delta_chunks)
548		return (SET_ERROR(EAGAIN));
549
550	zap_leaf_array_free(l, &le->le_value_chunk);
551	le->le_value_chunk =
552	    zap_leaf_array_create(l, buf, integer_size, num_integers);
553	le->le_value_numints = num_integers;
554	le->le_value_intlen = integer_size;
555	return (0);
556}
557
558void
559zap_entry_remove(zap_entry_handle_t *zeh)
560{
561	uint16_t entry_chunk;
562	struct zap_leaf_entry *le;
563	zap_leaf_t *l = zeh->zeh_leaf;
564
565	ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk);
566
567	entry_chunk = *zeh->zeh_chunkp;
568	le = ZAP_LEAF_ENTRY(l, entry_chunk);
569	ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
570
571	zap_leaf_array_free(l, &le->le_name_chunk);
572	zap_leaf_array_free(l, &le->le_value_chunk);
573
574	*zeh->zeh_chunkp = le->le_next;
575	zap_leaf_chunk_free(l, entry_chunk);
576
577	zap_leaf_phys(l)->l_hdr.lh_nentries--;
578}
579
580int
581zap_entry_create(zap_leaf_t *l, zap_name_t *zn, uint32_t cd,
582    uint8_t integer_size, uint64_t num_integers, const void *buf,
583    zap_entry_handle_t *zeh)
584{
585	uint16_t chunk;
586	uint16_t *chunkp;
587	struct zap_leaf_entry *le;
588	uint64_t valuelen;
589	int numchunks;
590	uint64_t h = zn->zn_hash;
591
592	valuelen = integer_size * num_integers;
593
594	numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn->zn_key_orig_numints *
595	    zn->zn_key_intlen) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen);
596	if (numchunks > ZAP_LEAF_NUMCHUNKS(l))
597		return (E2BIG);
598
599	if (cd == ZAP_NEED_CD) {
600		/* find the lowest unused cd */
601		if (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) {
602			cd = 0;
603
604			for (chunk = *LEAF_HASH_ENTPTR(l, h);
605			    chunk != CHAIN_END; chunk = le->le_next) {
606				le = ZAP_LEAF_ENTRY(l, chunk);
607				if (le->le_cd > cd)
608					break;
609				if (le->le_hash == h) {
610					ASSERT3U(cd, ==, le->le_cd);
611					cd++;
612				}
613			}
614		} else {
615			/* old unsorted format; do it the O(n^2) way */
616			for (cd = 0; ; cd++) {
617				for (chunk = *LEAF_HASH_ENTPTR(l, h);
618				    chunk != CHAIN_END; chunk = le->le_next) {
619					le = ZAP_LEAF_ENTRY(l, chunk);
620					if (le->le_hash == h &&
621					    le->le_cd == cd) {
622						break;
623					}
624				}
625				/* If this cd is not in use, we are good. */
626				if (chunk == CHAIN_END)
627					break;
628			}
629		}
630		/*
631		 * We would run out of space in a block before we could
632		 * store enough entries to run out of CD values.
633		 */
634		ASSERT3U(cd, <, zap_maxcd(zn->zn_zap));
635	}
636
637	if (zap_leaf_phys(l)->l_hdr.lh_nfree < numchunks)
638		return (SET_ERROR(EAGAIN));
639
640	/* make the entry */
641	chunk = zap_leaf_chunk_alloc(l);
642	le = ZAP_LEAF_ENTRY(l, chunk);
643	le->le_type = ZAP_CHUNK_ENTRY;
644	le->le_name_chunk = zap_leaf_array_create(l, zn->zn_key_orig,
645	    zn->zn_key_intlen, zn->zn_key_orig_numints);
646	le->le_name_numints = zn->zn_key_orig_numints;
647	le->le_value_chunk =
648	    zap_leaf_array_create(l, buf, integer_size, num_integers);
649	le->le_value_numints = num_integers;
650	le->le_value_intlen = integer_size;
651	le->le_hash = h;
652	le->le_cd = cd;
653
654	/* link it into the hash chain */
655	/* XXX if we did the search above, we could just use that */
656	chunkp = zap_leaf_rehash_entry(l, chunk);
657
658	zap_leaf_phys(l)->l_hdr.lh_nentries++;
659
660	zeh->zeh_leaf = l;
661	zeh->zeh_num_integers = num_integers;
662	zeh->zeh_integer_size = le->le_value_intlen;
663	zeh->zeh_cd = le->le_cd;
664	zeh->zeh_hash = le->le_hash;
665	zeh->zeh_chunkp = chunkp;
666
667	return (0);
668}
669
670/*
671 * Determine if there is another entry with the same normalized form.
672 * For performance purposes, either zn or name must be provided (the
673 * other can be NULL).  Note, there usually won't be any hash
674 * conflicts, in which case we don't need the concatenated/normalized
675 * form of the name.  But all callers have one of these on hand anyway,
676 * so might as well take advantage.  A cleaner but slower interface
677 * would accept neither argument, and compute the normalized name as
678 * needed (using zap_name_alloc(zap_entry_read_name(zeh))).
679 */
680boolean_t
681zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn,
682    const char *name, zap_t *zap)
683{
684	uint64_t chunk;
685	struct zap_leaf_entry *le;
686	boolean_t allocdzn = B_FALSE;
687
688	if (zap->zap_normflags == 0)
689		return (B_FALSE);
690
691	for (chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash);
692	    chunk != CHAIN_END; chunk = le->le_next) {
693		le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk);
694		if (le->le_hash != zeh->zeh_hash)
695			continue;
696		if (le->le_cd == zeh->zeh_cd)
697			continue;
698
699		if (zn == NULL) {
700			zn = zap_name_alloc(zap, name, MT_FIRST);
701			allocdzn = B_TRUE;
702		}
703		if (zap_leaf_array_match(zeh->zeh_leaf, zn,
704		    le->le_name_chunk, le->le_name_numints)) {
705			if (allocdzn)
706				zap_name_free(zn);
707			return (B_TRUE);
708		}
709	}
710	if (allocdzn)
711		zap_name_free(zn);
712	return (B_FALSE);
713}
714
715/*
716 * Routines for transferring entries between leafs.
717 */
718
719static uint16_t *
720zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry)
721{
722	struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry);
723	struct zap_leaf_entry *le2;
724	uint16_t *chunkp;
725
726	/*
727	 * keep the entry chain sorted by cd
728	 * NB: this will not cause problems for unsorted leafs, though
729	 * it is unnecessary there.
730	 */
731	for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash);
732	    *chunkp != CHAIN_END; chunkp = &le2->le_next) {
733		le2 = ZAP_LEAF_ENTRY(l, *chunkp);
734		if (le2->le_cd > le->le_cd)
735			break;
736	}
737
738	le->le_next = *chunkp;
739	*chunkp = entry;
740	return (chunkp);
741}
742
743static uint16_t
744zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl)
745{
746	uint16_t new_chunk;
747	uint16_t *nchunkp = &new_chunk;
748
749	while (chunk != CHAIN_END) {
750		uint16_t nchunk = zap_leaf_chunk_alloc(nl);
751		struct zap_leaf_array *nla =
752		    &ZAP_LEAF_CHUNK(nl, nchunk).l_array;
753		struct zap_leaf_array *la =
754		    &ZAP_LEAF_CHUNK(l, chunk).l_array;
755		int nextchunk = la->la_next;
756
757		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
758		ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l));
759
760		*nla = *la; /* structure assignment */
761
762		zap_leaf_chunk_free(l, chunk);
763		chunk = nextchunk;
764		*nchunkp = nchunk;
765		nchunkp = &nla->la_next;
766	}
767	*nchunkp = CHAIN_END;
768	return (new_chunk);
769}
770
771static void
772zap_leaf_transfer_entry(zap_leaf_t *l, int entry, zap_leaf_t *nl)
773{
774	struct zap_leaf_entry *le, *nle;
775	uint16_t chunk;
776
777	le = ZAP_LEAF_ENTRY(l, entry);
778	ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
779
780	chunk = zap_leaf_chunk_alloc(nl);
781	nle = ZAP_LEAF_ENTRY(nl, chunk);
782	*nle = *le; /* structure assignment */
783
784	(void) zap_leaf_rehash_entry(nl, chunk);
785
786	nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl);
787	nle->le_value_chunk =
788	    zap_leaf_transfer_array(l, le->le_value_chunk, nl);
789
790	zap_leaf_chunk_free(l, entry);
791
792	zap_leaf_phys(l)->l_hdr.lh_nentries--;
793	zap_leaf_phys(nl)->l_hdr.lh_nentries++;
794}
795
796/*
797 * Transfer the entries whose hash prefix ends in 1 to the new leaf.
798 */
799void
800zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort)
801{
802	int i;
803	int bit = 64 - 1 - zap_leaf_phys(l)->l_hdr.lh_prefix_len;
804
805	/* set new prefix and prefix_len */
806	zap_leaf_phys(l)->l_hdr.lh_prefix <<= 1;
807	zap_leaf_phys(l)->l_hdr.lh_prefix_len++;
808	zap_leaf_phys(nl)->l_hdr.lh_prefix =
809	    zap_leaf_phys(l)->l_hdr.lh_prefix | 1;
810	zap_leaf_phys(nl)->l_hdr.lh_prefix_len =
811	    zap_leaf_phys(l)->l_hdr.lh_prefix_len;
812
813	/* break existing hash chains */
814	zap_memset(zap_leaf_phys(l)->l_hash, CHAIN_END,
815	    2*ZAP_LEAF_HASH_NUMENTRIES(l));
816
817	if (sort)
818		zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
819
820	/*
821	 * Transfer entries whose hash bit 'bit' is set to nl; rehash
822	 * the remaining entries
823	 *
824	 * NB: We could find entries via the hashtable instead. That
825	 * would be O(hashents+numents) rather than O(numblks+numents),
826	 * but this accesses memory more sequentially, and when we're
827	 * called, the block is usually pretty full.
828	 */
829	for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
830		struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i);
831		if (le->le_type != ZAP_CHUNK_ENTRY)
832			continue;
833
834		if (le->le_hash & (1ULL << bit))
835			zap_leaf_transfer_entry(l, i, nl);
836		else
837			(void) zap_leaf_rehash_entry(l, i);
838	}
839}
840
841void
842zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs)
843{
844	int i, n;
845
846	n = zap_f_phys(zap)->zap_ptrtbl.zt_shift -
847	    zap_leaf_phys(l)->l_hdr.lh_prefix_len;
848	n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
849	zs->zs_leafs_with_2n_pointers[n]++;
850
851
852	n = zap_leaf_phys(l)->l_hdr.lh_nentries/5;
853	n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
854	zs->zs_blocks_with_n5_entries[n]++;
855
856	n = ((1<<FZAP_BLOCK_SHIFT(zap)) -
857	    zap_leaf_phys(l)->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 /
858	    (1<<FZAP_BLOCK_SHIFT(zap));
859	n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
860	zs->zs_blocks_n_tenths_full[n]++;
861
862	for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) {
863		int nentries = 0;
864		int chunk = zap_leaf_phys(l)->l_hash[i];
865
866		while (chunk != CHAIN_END) {
867			struct zap_leaf_entry *le =
868			    ZAP_LEAF_ENTRY(l, chunk);
869
870			n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_numints) +
871			    ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints *
872			    le->le_value_intlen);
873			n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
874			zs->zs_entries_using_n_chunks[n]++;
875
876			chunk = le->le_next;
877			nentries++;
878		}
879
880		n = nentries;
881		n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
882		zs->zs_buckets_with_n_entries[n]++;
883	}
884}
885