vdev.c revision 290761
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
26 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 */
28
29#include <sys/zfs_context.h>
30#include <sys/fm/fs/zfs.h>
31#include <sys/spa.h>
32#include <sys/spa_impl.h>
33#include <sys/dmu.h>
34#include <sys/dmu_tx.h>
35#include <sys/vdev_impl.h>
36#include <sys/uberblock_impl.h>
37#include <sys/metaslab.h>
38#include <sys/metaslab_impl.h>
39#include <sys/space_map.h>
40#include <sys/space_reftree.h>
41#include <sys/zio.h>
42#include <sys/zap.h>
43#include <sys/fs/zfs.h>
44#include <sys/arc.h>
45#include <sys/zil.h>
46#include <sys/dsl_scan.h>
47#include <sys/trim_map.h>
48
49SYSCTL_DECL(_vfs_zfs);
50SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
51
52/*
53 * Virtual device management.
54 */
55
56/*
57 * The limit for ZFS to automatically increase a top-level vdev's ashift
58 * from logical ashift to physical ashift.
59 *
60 * Example: one or more 512B emulation child vdevs
61 *          child->vdev_ashift = 9 (512 bytes)
62 *          child->vdev_physical_ashift = 12 (4096 bytes)
63 *          zfs_max_auto_ashift = 11 (2048 bytes)
64 *          zfs_min_auto_ashift = 9 (512 bytes)
65 *
66 * On pool creation or the addition of a new top-level vdev, ZFS will
67 * increase the ashift of the top-level vdev to 2048 as limited by
68 * zfs_max_auto_ashift.
69 *
70 * Example: one or more 512B emulation child vdevs
71 *          child->vdev_ashift = 9 (512 bytes)
72 *          child->vdev_physical_ashift = 12 (4096 bytes)
73 *          zfs_max_auto_ashift = 13 (8192 bytes)
74 *          zfs_min_auto_ashift = 9 (512 bytes)
75 *
76 * On pool creation or the addition of a new top-level vdev, ZFS will
77 * increase the ashift of the top-level vdev to 4096 to match the
78 * max vdev_physical_ashift.
79 *
80 * Example: one or more 512B emulation child vdevs
81 *          child->vdev_ashift = 9 (512 bytes)
82 *          child->vdev_physical_ashift = 9 (512 bytes)
83 *          zfs_max_auto_ashift = 13 (8192 bytes)
84 *          zfs_min_auto_ashift = 12 (4096 bytes)
85 *
86 * On pool creation or the addition of a new top-level vdev, ZFS will
87 * increase the ashift of the top-level vdev to 4096 to match the
88 * zfs_min_auto_ashift.
89 */
90static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
91static uint64_t zfs_min_auto_ashift = SPA_MINASHIFT;
92
93static int
94sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
95{
96	uint64_t val;
97	int err;
98
99	val = zfs_max_auto_ashift;
100	err = sysctl_handle_64(oidp, &val, 0, req);
101	if (err != 0 || req->newptr == NULL)
102		return (err);
103
104	if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift)
105		return (EINVAL);
106
107	zfs_max_auto_ashift = val;
108
109	return (0);
110}
111SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
112    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
113    sysctl_vfs_zfs_max_auto_ashift, "QU",
114    "Max ashift used when optimising for logical -> physical sectors size on "
115    "new top-level vdevs.");
116
117static int
118sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)
119{
120	uint64_t val;
121	int err;
122
123	val = zfs_min_auto_ashift;
124	err = sysctl_handle_64(oidp, &val, 0, req);
125	if (err != 0 || req->newptr == NULL)
126		return (err);
127
128	if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift)
129		return (EINVAL);
130
131	zfs_min_auto_ashift = val;
132
133	return (0);
134}
135SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift,
136    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
137    sysctl_vfs_zfs_min_auto_ashift, "QU",
138    "Min ashift used when creating new top-level vdevs.");
139
140static vdev_ops_t *vdev_ops_table[] = {
141	&vdev_root_ops,
142	&vdev_raidz_ops,
143	&vdev_mirror_ops,
144	&vdev_replacing_ops,
145	&vdev_spare_ops,
146#ifdef _KERNEL
147	&vdev_geom_ops,
148#else
149	&vdev_disk_ops,
150#endif
151	&vdev_file_ops,
152	&vdev_missing_ops,
153	&vdev_hole_ops,
154	NULL
155};
156
157
158/*
159 * When a vdev is added, it will be divided into approximately (but no
160 * more than) this number of metaslabs.
161 */
162int metaslabs_per_vdev = 200;
163SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, metaslabs_per_vdev, CTLFLAG_RDTUN,
164    &metaslabs_per_vdev, 0,
165    "When a vdev is added, how many metaslabs the vdev should be divided into");
166
167/*
168 * Given a vdev type, return the appropriate ops vector.
169 */
170static vdev_ops_t *
171vdev_getops(const char *type)
172{
173	vdev_ops_t *ops, **opspp;
174
175	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
176		if (strcmp(ops->vdev_op_type, type) == 0)
177			break;
178
179	return (ops);
180}
181
182/*
183 * Default asize function: return the MAX of psize with the asize of
184 * all children.  This is what's used by anything other than RAID-Z.
185 */
186uint64_t
187vdev_default_asize(vdev_t *vd, uint64_t psize)
188{
189	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
190	uint64_t csize;
191
192	for (int c = 0; c < vd->vdev_children; c++) {
193		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
194		asize = MAX(asize, csize);
195	}
196
197	return (asize);
198}
199
200/*
201 * Get the minimum allocatable size. We define the allocatable size as
202 * the vdev's asize rounded to the nearest metaslab. This allows us to
203 * replace or attach devices which don't have the same physical size but
204 * can still satisfy the same number of allocations.
205 */
206uint64_t
207vdev_get_min_asize(vdev_t *vd)
208{
209	vdev_t *pvd = vd->vdev_parent;
210
211	/*
212	 * If our parent is NULL (inactive spare or cache) or is the root,
213	 * just return our own asize.
214	 */
215	if (pvd == NULL)
216		return (vd->vdev_asize);
217
218	/*
219	 * The top-level vdev just returns the allocatable size rounded
220	 * to the nearest metaslab.
221	 */
222	if (vd == vd->vdev_top)
223		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
224
225	/*
226	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
227	 * so each child must provide at least 1/Nth of its asize.
228	 */
229	if (pvd->vdev_ops == &vdev_raidz_ops)
230		return (pvd->vdev_min_asize / pvd->vdev_children);
231
232	return (pvd->vdev_min_asize);
233}
234
235void
236vdev_set_min_asize(vdev_t *vd)
237{
238	vd->vdev_min_asize = vdev_get_min_asize(vd);
239
240	for (int c = 0; c < vd->vdev_children; c++)
241		vdev_set_min_asize(vd->vdev_child[c]);
242}
243
244vdev_t *
245vdev_lookup_top(spa_t *spa, uint64_t vdev)
246{
247	vdev_t *rvd = spa->spa_root_vdev;
248
249	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
250
251	if (vdev < rvd->vdev_children) {
252		ASSERT(rvd->vdev_child[vdev] != NULL);
253		return (rvd->vdev_child[vdev]);
254	}
255
256	return (NULL);
257}
258
259vdev_t *
260vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
261{
262	vdev_t *mvd;
263
264	if (vd->vdev_guid == guid)
265		return (vd);
266
267	for (int c = 0; c < vd->vdev_children; c++)
268		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
269		    NULL)
270			return (mvd);
271
272	return (NULL);
273}
274
275static int
276vdev_count_leaves_impl(vdev_t *vd)
277{
278	int n = 0;
279
280	if (vd->vdev_ops->vdev_op_leaf)
281		return (1);
282
283	for (int c = 0; c < vd->vdev_children; c++)
284		n += vdev_count_leaves_impl(vd->vdev_child[c]);
285
286	return (n);
287}
288
289int
290vdev_count_leaves(spa_t *spa)
291{
292	return (vdev_count_leaves_impl(spa->spa_root_vdev));
293}
294
295void
296vdev_add_child(vdev_t *pvd, vdev_t *cvd)
297{
298	size_t oldsize, newsize;
299	uint64_t id = cvd->vdev_id;
300	vdev_t **newchild;
301	spa_t *spa = cvd->vdev_spa;
302
303	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
304	ASSERT(cvd->vdev_parent == NULL);
305
306	cvd->vdev_parent = pvd;
307
308	if (pvd == NULL)
309		return;
310
311	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
312
313	oldsize = pvd->vdev_children * sizeof (vdev_t *);
314	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
315	newsize = pvd->vdev_children * sizeof (vdev_t *);
316
317	newchild = kmem_zalloc(newsize, KM_SLEEP);
318	if (pvd->vdev_child != NULL) {
319		bcopy(pvd->vdev_child, newchild, oldsize);
320		kmem_free(pvd->vdev_child, oldsize);
321	}
322
323	pvd->vdev_child = newchild;
324	pvd->vdev_child[id] = cvd;
325
326	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
327	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
328
329	/*
330	 * Walk up all ancestors to update guid sum.
331	 */
332	for (; pvd != NULL; pvd = pvd->vdev_parent)
333		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
334}
335
336void
337vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
338{
339	int c;
340	uint_t id = cvd->vdev_id;
341
342	ASSERT(cvd->vdev_parent == pvd);
343
344	if (pvd == NULL)
345		return;
346
347	ASSERT(id < pvd->vdev_children);
348	ASSERT(pvd->vdev_child[id] == cvd);
349
350	pvd->vdev_child[id] = NULL;
351	cvd->vdev_parent = NULL;
352
353	for (c = 0; c < pvd->vdev_children; c++)
354		if (pvd->vdev_child[c])
355			break;
356
357	if (c == pvd->vdev_children) {
358		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
359		pvd->vdev_child = NULL;
360		pvd->vdev_children = 0;
361	}
362
363	/*
364	 * Walk up all ancestors to update guid sum.
365	 */
366	for (; pvd != NULL; pvd = pvd->vdev_parent)
367		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
368}
369
370/*
371 * Remove any holes in the child array.
372 */
373void
374vdev_compact_children(vdev_t *pvd)
375{
376	vdev_t **newchild, *cvd;
377	int oldc = pvd->vdev_children;
378	int newc;
379
380	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
381
382	for (int c = newc = 0; c < oldc; c++)
383		if (pvd->vdev_child[c])
384			newc++;
385
386	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
387
388	for (int c = newc = 0; c < oldc; c++) {
389		if ((cvd = pvd->vdev_child[c]) != NULL) {
390			newchild[newc] = cvd;
391			cvd->vdev_id = newc++;
392		}
393	}
394
395	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
396	pvd->vdev_child = newchild;
397	pvd->vdev_children = newc;
398}
399
400/*
401 * Allocate and minimally initialize a vdev_t.
402 */
403vdev_t *
404vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
405{
406	vdev_t *vd;
407
408	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
409
410	if (spa->spa_root_vdev == NULL) {
411		ASSERT(ops == &vdev_root_ops);
412		spa->spa_root_vdev = vd;
413		spa->spa_load_guid = spa_generate_guid(NULL);
414	}
415
416	if (guid == 0 && ops != &vdev_hole_ops) {
417		if (spa->spa_root_vdev == vd) {
418			/*
419			 * The root vdev's guid will also be the pool guid,
420			 * which must be unique among all pools.
421			 */
422			guid = spa_generate_guid(NULL);
423		} else {
424			/*
425			 * Any other vdev's guid must be unique within the pool.
426			 */
427			guid = spa_generate_guid(spa);
428		}
429		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
430	}
431
432	vd->vdev_spa = spa;
433	vd->vdev_id = id;
434	vd->vdev_guid = guid;
435	vd->vdev_guid_sum = guid;
436	vd->vdev_ops = ops;
437	vd->vdev_state = VDEV_STATE_CLOSED;
438	vd->vdev_ishole = (ops == &vdev_hole_ops);
439
440	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
441	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
442	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
443	for (int t = 0; t < DTL_TYPES; t++) {
444		vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
445		    &vd->vdev_dtl_lock);
446	}
447	txg_list_create(&vd->vdev_ms_list,
448	    offsetof(struct metaslab, ms_txg_node));
449	txg_list_create(&vd->vdev_dtl_list,
450	    offsetof(struct vdev, vdev_dtl_node));
451	vd->vdev_stat.vs_timestamp = gethrtime();
452	vdev_queue_init(vd);
453	vdev_cache_init(vd);
454
455	return (vd);
456}
457
458/*
459 * Allocate a new vdev.  The 'alloctype' is used to control whether we are
460 * creating a new vdev or loading an existing one - the behavior is slightly
461 * different for each case.
462 */
463int
464vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
465    int alloctype)
466{
467	vdev_ops_t *ops;
468	char *type;
469	uint64_t guid = 0, islog, nparity;
470	vdev_t *vd;
471
472	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
473
474	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
475		return (SET_ERROR(EINVAL));
476
477	if ((ops = vdev_getops(type)) == NULL)
478		return (SET_ERROR(EINVAL));
479
480	/*
481	 * If this is a load, get the vdev guid from the nvlist.
482	 * Otherwise, vdev_alloc_common() will generate one for us.
483	 */
484	if (alloctype == VDEV_ALLOC_LOAD) {
485		uint64_t label_id;
486
487		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
488		    label_id != id)
489			return (SET_ERROR(EINVAL));
490
491		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
492			return (SET_ERROR(EINVAL));
493	} else if (alloctype == VDEV_ALLOC_SPARE) {
494		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
495			return (SET_ERROR(EINVAL));
496	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
497		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
498			return (SET_ERROR(EINVAL));
499	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
500		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
501			return (SET_ERROR(EINVAL));
502	}
503
504	/*
505	 * The first allocated vdev must be of type 'root'.
506	 */
507	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
508		return (SET_ERROR(EINVAL));
509
510	/*
511	 * Determine whether we're a log vdev.
512	 */
513	islog = 0;
514	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
515	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
516		return (SET_ERROR(ENOTSUP));
517
518	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
519		return (SET_ERROR(ENOTSUP));
520
521	/*
522	 * Set the nparity property for RAID-Z vdevs.
523	 */
524	nparity = -1ULL;
525	if (ops == &vdev_raidz_ops) {
526		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
527		    &nparity) == 0) {
528			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
529				return (SET_ERROR(EINVAL));
530			/*
531			 * Previous versions could only support 1 or 2 parity
532			 * device.
533			 */
534			if (nparity > 1 &&
535			    spa_version(spa) < SPA_VERSION_RAIDZ2)
536				return (SET_ERROR(ENOTSUP));
537			if (nparity > 2 &&
538			    spa_version(spa) < SPA_VERSION_RAIDZ3)
539				return (SET_ERROR(ENOTSUP));
540		} else {
541			/*
542			 * We require the parity to be specified for SPAs that
543			 * support multiple parity levels.
544			 */
545			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
546				return (SET_ERROR(EINVAL));
547			/*
548			 * Otherwise, we default to 1 parity device for RAID-Z.
549			 */
550			nparity = 1;
551		}
552	} else {
553		nparity = 0;
554	}
555	ASSERT(nparity != -1ULL);
556
557	vd = vdev_alloc_common(spa, id, guid, ops);
558
559	vd->vdev_islog = islog;
560	vd->vdev_nparity = nparity;
561
562	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
563		vd->vdev_path = spa_strdup(vd->vdev_path);
564	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
565		vd->vdev_devid = spa_strdup(vd->vdev_devid);
566	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
567	    &vd->vdev_physpath) == 0)
568		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
569	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
570		vd->vdev_fru = spa_strdup(vd->vdev_fru);
571
572	/*
573	 * Set the whole_disk property.  If it's not specified, leave the value
574	 * as -1.
575	 */
576	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
577	    &vd->vdev_wholedisk) != 0)
578		vd->vdev_wholedisk = -1ULL;
579
580	/*
581	 * Look for the 'not present' flag.  This will only be set if the device
582	 * was not present at the time of import.
583	 */
584	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
585	    &vd->vdev_not_present);
586
587	/*
588	 * Get the alignment requirement.
589	 */
590	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
591
592	/*
593	 * Retrieve the vdev creation time.
594	 */
595	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
596	    &vd->vdev_crtxg);
597
598	/*
599	 * If we're a top-level vdev, try to load the allocation parameters.
600	 */
601	if (parent && !parent->vdev_parent &&
602	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
603		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
604		    &vd->vdev_ms_array);
605		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
606		    &vd->vdev_ms_shift);
607		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
608		    &vd->vdev_asize);
609		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
610		    &vd->vdev_removing);
611	}
612
613	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
614		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
615		    alloctype == VDEV_ALLOC_ADD ||
616		    alloctype == VDEV_ALLOC_SPLIT ||
617		    alloctype == VDEV_ALLOC_ROOTPOOL);
618		vd->vdev_mg = metaslab_group_create(islog ?
619		    spa_log_class(spa) : spa_normal_class(spa), vd);
620	}
621
622	/*
623	 * If we're a leaf vdev, try to load the DTL object and other state.
624	 */
625	if (vd->vdev_ops->vdev_op_leaf &&
626	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
627	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
628		if (alloctype == VDEV_ALLOC_LOAD) {
629			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
630			    &vd->vdev_dtl_object);
631			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
632			    &vd->vdev_unspare);
633		}
634
635		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
636			uint64_t spare = 0;
637
638			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
639			    &spare) == 0 && spare)
640				spa_spare_add(vd);
641		}
642
643		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
644		    &vd->vdev_offline);
645
646		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
647		    &vd->vdev_resilver_txg);
648
649		/*
650		 * When importing a pool, we want to ignore the persistent fault
651		 * state, as the diagnosis made on another system may not be
652		 * valid in the current context.  Local vdevs will
653		 * remain in the faulted state.
654		 */
655		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
656			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
657			    &vd->vdev_faulted);
658			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
659			    &vd->vdev_degraded);
660			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
661			    &vd->vdev_removed);
662
663			if (vd->vdev_faulted || vd->vdev_degraded) {
664				char *aux;
665
666				vd->vdev_label_aux =
667				    VDEV_AUX_ERR_EXCEEDED;
668				if (nvlist_lookup_string(nv,
669				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
670				    strcmp(aux, "external") == 0)
671					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
672			}
673		}
674	}
675
676	/*
677	 * Add ourselves to the parent's list of children.
678	 */
679	vdev_add_child(parent, vd);
680
681	*vdp = vd;
682
683	return (0);
684}
685
686void
687vdev_free(vdev_t *vd)
688{
689	spa_t *spa = vd->vdev_spa;
690
691	/*
692	 * vdev_free() implies closing the vdev first.  This is simpler than
693	 * trying to ensure complicated semantics for all callers.
694	 */
695	vdev_close(vd);
696
697	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
698	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
699
700	/*
701	 * Free all children.
702	 */
703	for (int c = 0; c < vd->vdev_children; c++)
704		vdev_free(vd->vdev_child[c]);
705
706	ASSERT(vd->vdev_child == NULL);
707	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
708
709	/*
710	 * Discard allocation state.
711	 */
712	if (vd->vdev_mg != NULL) {
713		vdev_metaslab_fini(vd);
714		metaslab_group_destroy(vd->vdev_mg);
715	}
716
717	ASSERT0(vd->vdev_stat.vs_space);
718	ASSERT0(vd->vdev_stat.vs_dspace);
719	ASSERT0(vd->vdev_stat.vs_alloc);
720
721	/*
722	 * Remove this vdev from its parent's child list.
723	 */
724	vdev_remove_child(vd->vdev_parent, vd);
725
726	ASSERT(vd->vdev_parent == NULL);
727
728	/*
729	 * Clean up vdev structure.
730	 */
731	vdev_queue_fini(vd);
732	vdev_cache_fini(vd);
733
734	if (vd->vdev_path)
735		spa_strfree(vd->vdev_path);
736	if (vd->vdev_devid)
737		spa_strfree(vd->vdev_devid);
738	if (vd->vdev_physpath)
739		spa_strfree(vd->vdev_physpath);
740	if (vd->vdev_fru)
741		spa_strfree(vd->vdev_fru);
742
743	if (vd->vdev_isspare)
744		spa_spare_remove(vd);
745	if (vd->vdev_isl2cache)
746		spa_l2cache_remove(vd);
747
748	txg_list_destroy(&vd->vdev_ms_list);
749	txg_list_destroy(&vd->vdev_dtl_list);
750
751	mutex_enter(&vd->vdev_dtl_lock);
752	space_map_close(vd->vdev_dtl_sm);
753	for (int t = 0; t < DTL_TYPES; t++) {
754		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
755		range_tree_destroy(vd->vdev_dtl[t]);
756	}
757	mutex_exit(&vd->vdev_dtl_lock);
758
759	mutex_destroy(&vd->vdev_dtl_lock);
760	mutex_destroy(&vd->vdev_stat_lock);
761	mutex_destroy(&vd->vdev_probe_lock);
762
763	if (vd == spa->spa_root_vdev)
764		spa->spa_root_vdev = NULL;
765
766	kmem_free(vd, sizeof (vdev_t));
767}
768
769/*
770 * Transfer top-level vdev state from svd to tvd.
771 */
772static void
773vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
774{
775	spa_t *spa = svd->vdev_spa;
776	metaslab_t *msp;
777	vdev_t *vd;
778	int t;
779
780	ASSERT(tvd == tvd->vdev_top);
781
782	tvd->vdev_ms_array = svd->vdev_ms_array;
783	tvd->vdev_ms_shift = svd->vdev_ms_shift;
784	tvd->vdev_ms_count = svd->vdev_ms_count;
785
786	svd->vdev_ms_array = 0;
787	svd->vdev_ms_shift = 0;
788	svd->vdev_ms_count = 0;
789
790	if (tvd->vdev_mg)
791		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
792	tvd->vdev_mg = svd->vdev_mg;
793	tvd->vdev_ms = svd->vdev_ms;
794
795	svd->vdev_mg = NULL;
796	svd->vdev_ms = NULL;
797
798	if (tvd->vdev_mg != NULL)
799		tvd->vdev_mg->mg_vd = tvd;
800
801	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
802	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
803	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
804
805	svd->vdev_stat.vs_alloc = 0;
806	svd->vdev_stat.vs_space = 0;
807	svd->vdev_stat.vs_dspace = 0;
808
809	for (t = 0; t < TXG_SIZE; t++) {
810		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
811			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
812		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
813			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
814		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
815			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
816	}
817
818	if (list_link_active(&svd->vdev_config_dirty_node)) {
819		vdev_config_clean(svd);
820		vdev_config_dirty(tvd);
821	}
822
823	if (list_link_active(&svd->vdev_state_dirty_node)) {
824		vdev_state_clean(svd);
825		vdev_state_dirty(tvd);
826	}
827
828	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
829	svd->vdev_deflate_ratio = 0;
830
831	tvd->vdev_islog = svd->vdev_islog;
832	svd->vdev_islog = 0;
833}
834
835static void
836vdev_top_update(vdev_t *tvd, vdev_t *vd)
837{
838	if (vd == NULL)
839		return;
840
841	vd->vdev_top = tvd;
842
843	for (int c = 0; c < vd->vdev_children; c++)
844		vdev_top_update(tvd, vd->vdev_child[c]);
845}
846
847/*
848 * Add a mirror/replacing vdev above an existing vdev.
849 */
850vdev_t *
851vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
852{
853	spa_t *spa = cvd->vdev_spa;
854	vdev_t *pvd = cvd->vdev_parent;
855	vdev_t *mvd;
856
857	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
858
859	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
860
861	mvd->vdev_asize = cvd->vdev_asize;
862	mvd->vdev_min_asize = cvd->vdev_min_asize;
863	mvd->vdev_max_asize = cvd->vdev_max_asize;
864	mvd->vdev_ashift = cvd->vdev_ashift;
865	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
866	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
867	mvd->vdev_state = cvd->vdev_state;
868	mvd->vdev_crtxg = cvd->vdev_crtxg;
869
870	vdev_remove_child(pvd, cvd);
871	vdev_add_child(pvd, mvd);
872	cvd->vdev_id = mvd->vdev_children;
873	vdev_add_child(mvd, cvd);
874	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
875
876	if (mvd == mvd->vdev_top)
877		vdev_top_transfer(cvd, mvd);
878
879	return (mvd);
880}
881
882/*
883 * Remove a 1-way mirror/replacing vdev from the tree.
884 */
885void
886vdev_remove_parent(vdev_t *cvd)
887{
888	vdev_t *mvd = cvd->vdev_parent;
889	vdev_t *pvd = mvd->vdev_parent;
890
891	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
892
893	ASSERT(mvd->vdev_children == 1);
894	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
895	    mvd->vdev_ops == &vdev_replacing_ops ||
896	    mvd->vdev_ops == &vdev_spare_ops);
897	cvd->vdev_ashift = mvd->vdev_ashift;
898	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
899	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
900
901	vdev_remove_child(mvd, cvd);
902	vdev_remove_child(pvd, mvd);
903
904	/*
905	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
906	 * Otherwise, we could have detached an offline device, and when we
907	 * go to import the pool we'll think we have two top-level vdevs,
908	 * instead of a different version of the same top-level vdev.
909	 */
910	if (mvd->vdev_top == mvd) {
911		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
912		cvd->vdev_orig_guid = cvd->vdev_guid;
913		cvd->vdev_guid += guid_delta;
914		cvd->vdev_guid_sum += guid_delta;
915	}
916	cvd->vdev_id = mvd->vdev_id;
917	vdev_add_child(pvd, cvd);
918	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
919
920	if (cvd == cvd->vdev_top)
921		vdev_top_transfer(mvd, cvd);
922
923	ASSERT(mvd->vdev_children == 0);
924	vdev_free(mvd);
925}
926
927int
928vdev_metaslab_init(vdev_t *vd, uint64_t txg)
929{
930	spa_t *spa = vd->vdev_spa;
931	objset_t *mos = spa->spa_meta_objset;
932	uint64_t m;
933	uint64_t oldc = vd->vdev_ms_count;
934	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
935	metaslab_t **mspp;
936	int error;
937
938	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
939
940	/*
941	 * This vdev is not being allocated from yet or is a hole.
942	 */
943	if (vd->vdev_ms_shift == 0)
944		return (0);
945
946	ASSERT(!vd->vdev_ishole);
947
948	/*
949	 * Compute the raidz-deflation ratio.  Note, we hard-code
950	 * in 128k (1 << 17) because it is the "typical" blocksize.
951	 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
952	 * otherwise it would inconsistently account for existing bp's.
953	 */
954	vd->vdev_deflate_ratio = (1 << 17) /
955	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
956
957	ASSERT(oldc <= newc);
958
959	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
960
961	if (oldc != 0) {
962		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
963		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
964	}
965
966	vd->vdev_ms = mspp;
967	vd->vdev_ms_count = newc;
968
969	for (m = oldc; m < newc; m++) {
970		uint64_t object = 0;
971
972		if (txg == 0) {
973			error = dmu_read(mos, vd->vdev_ms_array,
974			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
975			    DMU_READ_PREFETCH);
976			if (error)
977				return (error);
978		}
979
980		error = metaslab_init(vd->vdev_mg, m, object, txg,
981		    &(vd->vdev_ms[m]));
982		if (error)
983			return (error);
984	}
985
986	if (txg == 0)
987		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
988
989	/*
990	 * If the vdev is being removed we don't activate
991	 * the metaslabs since we want to ensure that no new
992	 * allocations are performed on this device.
993	 */
994	if (oldc == 0 && !vd->vdev_removing)
995		metaslab_group_activate(vd->vdev_mg);
996
997	if (txg == 0)
998		spa_config_exit(spa, SCL_ALLOC, FTAG);
999
1000	return (0);
1001}
1002
1003void
1004vdev_metaslab_fini(vdev_t *vd)
1005{
1006	uint64_t m;
1007	uint64_t count = vd->vdev_ms_count;
1008
1009	if (vd->vdev_ms != NULL) {
1010		metaslab_group_passivate(vd->vdev_mg);
1011		for (m = 0; m < count; m++) {
1012			metaslab_t *msp = vd->vdev_ms[m];
1013
1014			if (msp != NULL)
1015				metaslab_fini(msp);
1016		}
1017		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1018		vd->vdev_ms = NULL;
1019	}
1020}
1021
1022typedef struct vdev_probe_stats {
1023	boolean_t	vps_readable;
1024	boolean_t	vps_writeable;
1025	int		vps_flags;
1026} vdev_probe_stats_t;
1027
1028static void
1029vdev_probe_done(zio_t *zio)
1030{
1031	spa_t *spa = zio->io_spa;
1032	vdev_t *vd = zio->io_vd;
1033	vdev_probe_stats_t *vps = zio->io_private;
1034
1035	ASSERT(vd->vdev_probe_zio != NULL);
1036
1037	if (zio->io_type == ZIO_TYPE_READ) {
1038		if (zio->io_error == 0)
1039			vps->vps_readable = 1;
1040		if (zio->io_error == 0 && spa_writeable(spa)) {
1041			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1042			    zio->io_offset, zio->io_size, zio->io_data,
1043			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1044			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1045		} else {
1046			zio_buf_free(zio->io_data, zio->io_size);
1047		}
1048	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1049		if (zio->io_error == 0)
1050			vps->vps_writeable = 1;
1051		zio_buf_free(zio->io_data, zio->io_size);
1052	} else if (zio->io_type == ZIO_TYPE_NULL) {
1053		zio_t *pio;
1054
1055		vd->vdev_cant_read |= !vps->vps_readable;
1056		vd->vdev_cant_write |= !vps->vps_writeable;
1057
1058		if (vdev_readable(vd) &&
1059		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1060			zio->io_error = 0;
1061		} else {
1062			ASSERT(zio->io_error != 0);
1063			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1064			    spa, vd, NULL, 0, 0);
1065			zio->io_error = SET_ERROR(ENXIO);
1066		}
1067
1068		mutex_enter(&vd->vdev_probe_lock);
1069		ASSERT(vd->vdev_probe_zio == zio);
1070		vd->vdev_probe_zio = NULL;
1071		mutex_exit(&vd->vdev_probe_lock);
1072
1073		while ((pio = zio_walk_parents(zio)) != NULL)
1074			if (!vdev_accessible(vd, pio))
1075				pio->io_error = SET_ERROR(ENXIO);
1076
1077		kmem_free(vps, sizeof (*vps));
1078	}
1079}
1080
1081/*
1082 * Determine whether this device is accessible.
1083 *
1084 * Read and write to several known locations: the pad regions of each
1085 * vdev label but the first, which we leave alone in case it contains
1086 * a VTOC.
1087 */
1088zio_t *
1089vdev_probe(vdev_t *vd, zio_t *zio)
1090{
1091	spa_t *spa = vd->vdev_spa;
1092	vdev_probe_stats_t *vps = NULL;
1093	zio_t *pio;
1094
1095	ASSERT(vd->vdev_ops->vdev_op_leaf);
1096
1097	/*
1098	 * Don't probe the probe.
1099	 */
1100	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1101		return (NULL);
1102
1103	/*
1104	 * To prevent 'probe storms' when a device fails, we create
1105	 * just one probe i/o at a time.  All zios that want to probe
1106	 * this vdev will become parents of the probe io.
1107	 */
1108	mutex_enter(&vd->vdev_probe_lock);
1109
1110	if ((pio = vd->vdev_probe_zio) == NULL) {
1111		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1112
1113		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1114		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1115		    ZIO_FLAG_TRYHARD;
1116
1117		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1118			/*
1119			 * vdev_cant_read and vdev_cant_write can only
1120			 * transition from TRUE to FALSE when we have the
1121			 * SCL_ZIO lock as writer; otherwise they can only
1122			 * transition from FALSE to TRUE.  This ensures that
1123			 * any zio looking at these values can assume that
1124			 * failures persist for the life of the I/O.  That's
1125			 * important because when a device has intermittent
1126			 * connectivity problems, we want to ensure that
1127			 * they're ascribed to the device (ENXIO) and not
1128			 * the zio (EIO).
1129			 *
1130			 * Since we hold SCL_ZIO as writer here, clear both
1131			 * values so the probe can reevaluate from first
1132			 * principles.
1133			 */
1134			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1135			vd->vdev_cant_read = B_FALSE;
1136			vd->vdev_cant_write = B_FALSE;
1137		}
1138
1139		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1140		    vdev_probe_done, vps,
1141		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1142
1143		/*
1144		 * We can't change the vdev state in this context, so we
1145		 * kick off an async task to do it on our behalf.
1146		 */
1147		if (zio != NULL) {
1148			vd->vdev_probe_wanted = B_TRUE;
1149			spa_async_request(spa, SPA_ASYNC_PROBE);
1150		}
1151	}
1152
1153	if (zio != NULL)
1154		zio_add_child(zio, pio);
1155
1156	mutex_exit(&vd->vdev_probe_lock);
1157
1158	if (vps == NULL) {
1159		ASSERT(zio != NULL);
1160		return (NULL);
1161	}
1162
1163	for (int l = 1; l < VDEV_LABELS; l++) {
1164		zio_nowait(zio_read_phys(pio, vd,
1165		    vdev_label_offset(vd->vdev_psize, l,
1166		    offsetof(vdev_label_t, vl_pad2)),
1167		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1168		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1169		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1170	}
1171
1172	if (zio == NULL)
1173		return (pio);
1174
1175	zio_nowait(pio);
1176	return (NULL);
1177}
1178
1179static void
1180vdev_open_child(void *arg)
1181{
1182	vdev_t *vd = arg;
1183
1184	vd->vdev_open_thread = curthread;
1185	vd->vdev_open_error = vdev_open(vd);
1186	vd->vdev_open_thread = NULL;
1187}
1188
1189boolean_t
1190vdev_uses_zvols(vdev_t *vd)
1191{
1192	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1193	    strlen(ZVOL_DIR)) == 0)
1194		return (B_TRUE);
1195	for (int c = 0; c < vd->vdev_children; c++)
1196		if (vdev_uses_zvols(vd->vdev_child[c]))
1197			return (B_TRUE);
1198	return (B_FALSE);
1199}
1200
1201void
1202vdev_open_children(vdev_t *vd)
1203{
1204	taskq_t *tq;
1205	int children = vd->vdev_children;
1206
1207	/*
1208	 * in order to handle pools on top of zvols, do the opens
1209	 * in a single thread so that the same thread holds the
1210	 * spa_namespace_lock
1211	 */
1212	if (B_TRUE || vdev_uses_zvols(vd)) {
1213		for (int c = 0; c < children; c++)
1214			vd->vdev_child[c]->vdev_open_error =
1215			    vdev_open(vd->vdev_child[c]);
1216		return;
1217	}
1218	tq = taskq_create("vdev_open", children, minclsyspri,
1219	    children, children, TASKQ_PREPOPULATE);
1220
1221	for (int c = 0; c < children; c++)
1222		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1223		    TQ_SLEEP) != 0);
1224
1225	taskq_destroy(tq);
1226}
1227
1228/*
1229 * Prepare a virtual device for access.
1230 */
1231int
1232vdev_open(vdev_t *vd)
1233{
1234	spa_t *spa = vd->vdev_spa;
1235	int error;
1236	uint64_t osize = 0;
1237	uint64_t max_osize = 0;
1238	uint64_t asize, max_asize, psize;
1239	uint64_t logical_ashift = 0;
1240	uint64_t physical_ashift = 0;
1241
1242	ASSERT(vd->vdev_open_thread == curthread ||
1243	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1244	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1245	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1246	    vd->vdev_state == VDEV_STATE_OFFLINE);
1247
1248	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1249	vd->vdev_cant_read = B_FALSE;
1250	vd->vdev_cant_write = B_FALSE;
1251	vd->vdev_notrim = B_FALSE;
1252	vd->vdev_min_asize = vdev_get_min_asize(vd);
1253
1254	/*
1255	 * If this vdev is not removed, check its fault status.  If it's
1256	 * faulted, bail out of the open.
1257	 */
1258	if (!vd->vdev_removed && vd->vdev_faulted) {
1259		ASSERT(vd->vdev_children == 0);
1260		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1261		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1262		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1263		    vd->vdev_label_aux);
1264		return (SET_ERROR(ENXIO));
1265	} else if (vd->vdev_offline) {
1266		ASSERT(vd->vdev_children == 0);
1267		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1268		return (SET_ERROR(ENXIO));
1269	}
1270
1271	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1272	    &logical_ashift, &physical_ashift);
1273
1274	/*
1275	 * Reset the vdev_reopening flag so that we actually close
1276	 * the vdev on error.
1277	 */
1278	vd->vdev_reopening = B_FALSE;
1279	if (zio_injection_enabled && error == 0)
1280		error = zio_handle_device_injection(vd, NULL, ENXIO);
1281
1282	if (error) {
1283		if (vd->vdev_removed &&
1284		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1285			vd->vdev_removed = B_FALSE;
1286
1287		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1288		    vd->vdev_stat.vs_aux);
1289		return (error);
1290	}
1291
1292	vd->vdev_removed = B_FALSE;
1293
1294	/*
1295	 * Recheck the faulted flag now that we have confirmed that
1296	 * the vdev is accessible.  If we're faulted, bail.
1297	 */
1298	if (vd->vdev_faulted) {
1299		ASSERT(vd->vdev_children == 0);
1300		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1301		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1302		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1303		    vd->vdev_label_aux);
1304		return (SET_ERROR(ENXIO));
1305	}
1306
1307	if (vd->vdev_degraded) {
1308		ASSERT(vd->vdev_children == 0);
1309		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1310		    VDEV_AUX_ERR_EXCEEDED);
1311	} else {
1312		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1313	}
1314
1315	/*
1316	 * For hole or missing vdevs we just return success.
1317	 */
1318	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1319		return (0);
1320
1321	if (zfs_trim_enabled && !vd->vdev_notrim && vd->vdev_ops->vdev_op_leaf)
1322		trim_map_create(vd);
1323
1324	for (int c = 0; c < vd->vdev_children; c++) {
1325		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1326			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1327			    VDEV_AUX_NONE);
1328			break;
1329		}
1330	}
1331
1332	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1333	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1334
1335	if (vd->vdev_children == 0) {
1336		if (osize < SPA_MINDEVSIZE) {
1337			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1338			    VDEV_AUX_TOO_SMALL);
1339			return (SET_ERROR(EOVERFLOW));
1340		}
1341		psize = osize;
1342		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1343		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1344		    VDEV_LABEL_END_SIZE);
1345	} else {
1346		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1347		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1348			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1349			    VDEV_AUX_TOO_SMALL);
1350			return (SET_ERROR(EOVERFLOW));
1351		}
1352		psize = 0;
1353		asize = osize;
1354		max_asize = max_osize;
1355	}
1356
1357	vd->vdev_psize = psize;
1358
1359	/*
1360	 * Make sure the allocatable size hasn't shrunk.
1361	 */
1362	if (asize < vd->vdev_min_asize) {
1363		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1364		    VDEV_AUX_BAD_LABEL);
1365		return (SET_ERROR(EINVAL));
1366	}
1367
1368	vd->vdev_physical_ashift =
1369	    MAX(physical_ashift, vd->vdev_physical_ashift);
1370	vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1371	vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1372
1373	if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1374		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1375		    VDEV_AUX_ASHIFT_TOO_BIG);
1376		return (EINVAL);
1377	}
1378
1379	if (vd->vdev_asize == 0) {
1380		/*
1381		 * This is the first-ever open, so use the computed values.
1382		 * For testing purposes, a higher ashift can be requested.
1383		 */
1384		vd->vdev_asize = asize;
1385		vd->vdev_max_asize = max_asize;
1386	} else {
1387		/*
1388		 * Make sure the alignment requirement hasn't increased.
1389		 */
1390		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1391		    vd->vdev_ops->vdev_op_leaf) {
1392			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1393			    VDEV_AUX_BAD_LABEL);
1394			return (EINVAL);
1395		}
1396		vd->vdev_max_asize = max_asize;
1397	}
1398
1399	/*
1400	 * If all children are healthy and the asize has increased,
1401	 * then we've experienced dynamic LUN growth.  If automatic
1402	 * expansion is enabled then use the additional space.
1403	 */
1404	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1405	    (vd->vdev_expanding || spa->spa_autoexpand))
1406		vd->vdev_asize = asize;
1407
1408	vdev_set_min_asize(vd);
1409
1410	/*
1411	 * Ensure we can issue some IO before declaring the
1412	 * vdev open for business.
1413	 */
1414	if (vd->vdev_ops->vdev_op_leaf &&
1415	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1416		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1417		    VDEV_AUX_ERR_EXCEEDED);
1418		return (error);
1419	}
1420
1421	/*
1422	 * Track the min and max ashift values for normal data devices.
1423	 */
1424	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1425	    !vd->vdev_islog && vd->vdev_aux == NULL) {
1426		if (vd->vdev_ashift > spa->spa_max_ashift)
1427			spa->spa_max_ashift = vd->vdev_ashift;
1428		if (vd->vdev_ashift < spa->spa_min_ashift)
1429			spa->spa_min_ashift = vd->vdev_ashift;
1430	}
1431
1432	/*
1433	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1434	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1435	 * since this would just restart the scrub we are already doing.
1436	 */
1437	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1438	    vdev_resilver_needed(vd, NULL, NULL))
1439		spa_async_request(spa, SPA_ASYNC_RESILVER);
1440
1441	return (0);
1442}
1443
1444/*
1445 * Called once the vdevs are all opened, this routine validates the label
1446 * contents.  This needs to be done before vdev_load() so that we don't
1447 * inadvertently do repair I/Os to the wrong device.
1448 *
1449 * If 'strict' is false ignore the spa guid check. This is necessary because
1450 * if the machine crashed during a re-guid the new guid might have been written
1451 * to all of the vdev labels, but not the cached config. The strict check
1452 * will be performed when the pool is opened again using the mos config.
1453 *
1454 * This function will only return failure if one of the vdevs indicates that it
1455 * has since been destroyed or exported.  This is only possible if
1456 * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1457 * will be updated but the function will return 0.
1458 */
1459int
1460vdev_validate(vdev_t *vd, boolean_t strict)
1461{
1462	spa_t *spa = vd->vdev_spa;
1463	nvlist_t *label;
1464	uint64_t guid = 0, top_guid;
1465	uint64_t state;
1466
1467	for (int c = 0; c < vd->vdev_children; c++)
1468		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1469			return (SET_ERROR(EBADF));
1470
1471	/*
1472	 * If the device has already failed, or was marked offline, don't do
1473	 * any further validation.  Otherwise, label I/O will fail and we will
1474	 * overwrite the previous state.
1475	 */
1476	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1477		uint64_t aux_guid = 0;
1478		nvlist_t *nvl;
1479		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1480		    spa_last_synced_txg(spa) : -1ULL;
1481
1482		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1483			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1484			    VDEV_AUX_BAD_LABEL);
1485			return (0);
1486		}
1487
1488		/*
1489		 * Determine if this vdev has been split off into another
1490		 * pool.  If so, then refuse to open it.
1491		 */
1492		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1493		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1494			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1495			    VDEV_AUX_SPLIT_POOL);
1496			nvlist_free(label);
1497			return (0);
1498		}
1499
1500		if (strict && (nvlist_lookup_uint64(label,
1501		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1502		    guid != spa_guid(spa))) {
1503			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1504			    VDEV_AUX_CORRUPT_DATA);
1505			nvlist_free(label);
1506			return (0);
1507		}
1508
1509		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1510		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1511		    &aux_guid) != 0)
1512			aux_guid = 0;
1513
1514		/*
1515		 * If this vdev just became a top-level vdev because its
1516		 * sibling was detached, it will have adopted the parent's
1517		 * vdev guid -- but the label may or may not be on disk yet.
1518		 * Fortunately, either version of the label will have the
1519		 * same top guid, so if we're a top-level vdev, we can
1520		 * safely compare to that instead.
1521		 *
1522		 * If we split this vdev off instead, then we also check the
1523		 * original pool's guid.  We don't want to consider the vdev
1524		 * corrupt if it is partway through a split operation.
1525		 */
1526		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1527		    &guid) != 0 ||
1528		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1529		    &top_guid) != 0 ||
1530		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1531		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1532			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1533			    VDEV_AUX_CORRUPT_DATA);
1534			nvlist_free(label);
1535			return (0);
1536		}
1537
1538		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1539		    &state) != 0) {
1540			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1541			    VDEV_AUX_CORRUPT_DATA);
1542			nvlist_free(label);
1543			return (0);
1544		}
1545
1546		nvlist_free(label);
1547
1548		/*
1549		 * If this is a verbatim import, no need to check the
1550		 * state of the pool.
1551		 */
1552		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1553		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1554		    state != POOL_STATE_ACTIVE)
1555			return (SET_ERROR(EBADF));
1556
1557		/*
1558		 * If we were able to open and validate a vdev that was
1559		 * previously marked permanently unavailable, clear that state
1560		 * now.
1561		 */
1562		if (vd->vdev_not_present)
1563			vd->vdev_not_present = 0;
1564	}
1565
1566	return (0);
1567}
1568
1569/*
1570 * Close a virtual device.
1571 */
1572void
1573vdev_close(vdev_t *vd)
1574{
1575	spa_t *spa = vd->vdev_spa;
1576	vdev_t *pvd = vd->vdev_parent;
1577
1578	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1579
1580	/*
1581	 * If our parent is reopening, then we are as well, unless we are
1582	 * going offline.
1583	 */
1584	if (pvd != NULL && pvd->vdev_reopening)
1585		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1586
1587	vd->vdev_ops->vdev_op_close(vd);
1588
1589	vdev_cache_purge(vd);
1590
1591	if (vd->vdev_ops->vdev_op_leaf)
1592		trim_map_destroy(vd);
1593
1594	/*
1595	 * We record the previous state before we close it, so that if we are
1596	 * doing a reopen(), we don't generate FMA ereports if we notice that
1597	 * it's still faulted.
1598	 */
1599	vd->vdev_prevstate = vd->vdev_state;
1600
1601	if (vd->vdev_offline)
1602		vd->vdev_state = VDEV_STATE_OFFLINE;
1603	else
1604		vd->vdev_state = VDEV_STATE_CLOSED;
1605	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1606}
1607
1608void
1609vdev_hold(vdev_t *vd)
1610{
1611	spa_t *spa = vd->vdev_spa;
1612
1613	ASSERT(spa_is_root(spa));
1614	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1615		return;
1616
1617	for (int c = 0; c < vd->vdev_children; c++)
1618		vdev_hold(vd->vdev_child[c]);
1619
1620	if (vd->vdev_ops->vdev_op_leaf)
1621		vd->vdev_ops->vdev_op_hold(vd);
1622}
1623
1624void
1625vdev_rele(vdev_t *vd)
1626{
1627	spa_t *spa = vd->vdev_spa;
1628
1629	ASSERT(spa_is_root(spa));
1630	for (int c = 0; c < vd->vdev_children; c++)
1631		vdev_rele(vd->vdev_child[c]);
1632
1633	if (vd->vdev_ops->vdev_op_leaf)
1634		vd->vdev_ops->vdev_op_rele(vd);
1635}
1636
1637/*
1638 * Reopen all interior vdevs and any unopened leaves.  We don't actually
1639 * reopen leaf vdevs which had previously been opened as they might deadlock
1640 * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1641 * If the leaf has never been opened then open it, as usual.
1642 */
1643void
1644vdev_reopen(vdev_t *vd)
1645{
1646	spa_t *spa = vd->vdev_spa;
1647
1648	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1649
1650	/* set the reopening flag unless we're taking the vdev offline */
1651	vd->vdev_reopening = !vd->vdev_offline;
1652	vdev_close(vd);
1653	(void) vdev_open(vd);
1654
1655	/*
1656	 * Call vdev_validate() here to make sure we have the same device.
1657	 * Otherwise, a device with an invalid label could be successfully
1658	 * opened in response to vdev_reopen().
1659	 */
1660	if (vd->vdev_aux) {
1661		(void) vdev_validate_aux(vd);
1662		if (vdev_readable(vd) && vdev_writeable(vd) &&
1663		    vd->vdev_aux == &spa->spa_l2cache &&
1664		    !l2arc_vdev_present(vd))
1665			l2arc_add_vdev(spa, vd);
1666	} else {
1667		(void) vdev_validate(vd, B_TRUE);
1668	}
1669
1670	/*
1671	 * Reassess parent vdev's health.
1672	 */
1673	vdev_propagate_state(vd);
1674}
1675
1676int
1677vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1678{
1679	int error;
1680
1681	/*
1682	 * Normally, partial opens (e.g. of a mirror) are allowed.
1683	 * For a create, however, we want to fail the request if
1684	 * there are any components we can't open.
1685	 */
1686	error = vdev_open(vd);
1687
1688	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1689		vdev_close(vd);
1690		return (error ? error : ENXIO);
1691	}
1692
1693	/*
1694	 * Recursively load DTLs and initialize all labels.
1695	 */
1696	if ((error = vdev_dtl_load(vd)) != 0 ||
1697	    (error = vdev_label_init(vd, txg, isreplacing ?
1698	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1699		vdev_close(vd);
1700		return (error);
1701	}
1702
1703	return (0);
1704}
1705
1706void
1707vdev_metaslab_set_size(vdev_t *vd)
1708{
1709	/*
1710	 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1711	 */
1712	vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1713	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1714}
1715
1716/*
1717 * Maximize performance by inflating the configured ashift for top level
1718 * vdevs to be as close to the physical ashift as possible while maintaining
1719 * administrator defined limits and ensuring it doesn't go below the
1720 * logical ashift.
1721 */
1722void
1723vdev_ashift_optimize(vdev_t *vd)
1724{
1725	if (vd == vd->vdev_top) {
1726		if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1727			vd->vdev_ashift = MIN(
1728			    MAX(zfs_max_auto_ashift, vd->vdev_ashift),
1729			    MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift));
1730		} else {
1731			/*
1732			 * Unusual case where logical ashift > physical ashift
1733			 * so we can't cap the calculated ashift based on max
1734			 * ashift as that would cause failures.
1735			 * We still check if we need to increase it to match
1736			 * the min ashift.
1737			 */
1738			vd->vdev_ashift = MAX(zfs_min_auto_ashift,
1739			    vd->vdev_ashift);
1740		}
1741	}
1742}
1743
1744void
1745vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1746{
1747	ASSERT(vd == vd->vdev_top);
1748	ASSERT(!vd->vdev_ishole);
1749	ASSERT(ISP2(flags));
1750	ASSERT(spa_writeable(vd->vdev_spa));
1751
1752	if (flags & VDD_METASLAB)
1753		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1754
1755	if (flags & VDD_DTL)
1756		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1757
1758	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1759}
1760
1761void
1762vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1763{
1764	for (int c = 0; c < vd->vdev_children; c++)
1765		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1766
1767	if (vd->vdev_ops->vdev_op_leaf)
1768		vdev_dirty(vd->vdev_top, flags, vd, txg);
1769}
1770
1771/*
1772 * DTLs.
1773 *
1774 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1775 * the vdev has less than perfect replication.  There are four kinds of DTL:
1776 *
1777 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1778 *
1779 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1780 *
1781 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1782 *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1783 *	txgs that was scrubbed.
1784 *
1785 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1786 *	persistent errors or just some device being offline.
1787 *	Unlike the other three, the DTL_OUTAGE map is not generally
1788 *	maintained; it's only computed when needed, typically to
1789 *	determine whether a device can be detached.
1790 *
1791 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1792 * either has the data or it doesn't.
1793 *
1794 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1795 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1796 * if any child is less than fully replicated, then so is its parent.
1797 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1798 * comprising only those txgs which appear in 'maxfaults' or more children;
1799 * those are the txgs we don't have enough replication to read.  For example,
1800 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1801 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1802 * two child DTL_MISSING maps.
1803 *
1804 * It should be clear from the above that to compute the DTLs and outage maps
1805 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1806 * Therefore, that is all we keep on disk.  When loading the pool, or after
1807 * a configuration change, we generate all other DTLs from first principles.
1808 */
1809void
1810vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1811{
1812	range_tree_t *rt = vd->vdev_dtl[t];
1813
1814	ASSERT(t < DTL_TYPES);
1815	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1816	ASSERT(spa_writeable(vd->vdev_spa));
1817
1818	mutex_enter(rt->rt_lock);
1819	if (!range_tree_contains(rt, txg, size))
1820		range_tree_add(rt, txg, size);
1821	mutex_exit(rt->rt_lock);
1822}
1823
1824boolean_t
1825vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1826{
1827	range_tree_t *rt = vd->vdev_dtl[t];
1828	boolean_t dirty = B_FALSE;
1829
1830	ASSERT(t < DTL_TYPES);
1831	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1832
1833	mutex_enter(rt->rt_lock);
1834	if (range_tree_space(rt) != 0)
1835		dirty = range_tree_contains(rt, txg, size);
1836	mutex_exit(rt->rt_lock);
1837
1838	return (dirty);
1839}
1840
1841boolean_t
1842vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1843{
1844	range_tree_t *rt = vd->vdev_dtl[t];
1845	boolean_t empty;
1846
1847	mutex_enter(rt->rt_lock);
1848	empty = (range_tree_space(rt) == 0);
1849	mutex_exit(rt->rt_lock);
1850
1851	return (empty);
1852}
1853
1854/*
1855 * Returns the lowest txg in the DTL range.
1856 */
1857static uint64_t
1858vdev_dtl_min(vdev_t *vd)
1859{
1860	range_seg_t *rs;
1861
1862	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1863	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1864	ASSERT0(vd->vdev_children);
1865
1866	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1867	return (rs->rs_start - 1);
1868}
1869
1870/*
1871 * Returns the highest txg in the DTL.
1872 */
1873static uint64_t
1874vdev_dtl_max(vdev_t *vd)
1875{
1876	range_seg_t *rs;
1877
1878	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1879	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1880	ASSERT0(vd->vdev_children);
1881
1882	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1883	return (rs->rs_end);
1884}
1885
1886/*
1887 * Determine if a resilvering vdev should remove any DTL entries from
1888 * its range. If the vdev was resilvering for the entire duration of the
1889 * scan then it should excise that range from its DTLs. Otherwise, this
1890 * vdev is considered partially resilvered and should leave its DTL
1891 * entries intact. The comment in vdev_dtl_reassess() describes how we
1892 * excise the DTLs.
1893 */
1894static boolean_t
1895vdev_dtl_should_excise(vdev_t *vd)
1896{
1897	spa_t *spa = vd->vdev_spa;
1898	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1899
1900	ASSERT0(scn->scn_phys.scn_errors);
1901	ASSERT0(vd->vdev_children);
1902
1903	if (vd->vdev_resilver_txg == 0 ||
1904	    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1905		return (B_TRUE);
1906
1907	/*
1908	 * When a resilver is initiated the scan will assign the scn_max_txg
1909	 * value to the highest txg value that exists in all DTLs. If this
1910	 * device's max DTL is not part of this scan (i.e. it is not in
1911	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1912	 * for excision.
1913	 */
1914	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1915		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1916		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1917		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1918		return (B_TRUE);
1919	}
1920	return (B_FALSE);
1921}
1922
1923/*
1924 * Reassess DTLs after a config change or scrub completion.
1925 */
1926void
1927vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1928{
1929	spa_t *spa = vd->vdev_spa;
1930	avl_tree_t reftree;
1931	int minref;
1932
1933	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1934
1935	for (int c = 0; c < vd->vdev_children; c++)
1936		vdev_dtl_reassess(vd->vdev_child[c], txg,
1937		    scrub_txg, scrub_done);
1938
1939	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1940		return;
1941
1942	if (vd->vdev_ops->vdev_op_leaf) {
1943		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1944
1945		mutex_enter(&vd->vdev_dtl_lock);
1946
1947		/*
1948		 * If we've completed a scan cleanly then determine
1949		 * if this vdev should remove any DTLs. We only want to
1950		 * excise regions on vdevs that were available during
1951		 * the entire duration of this scan.
1952		 */
1953		if (scrub_txg != 0 &&
1954		    (spa->spa_scrub_started ||
1955		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1956		    vdev_dtl_should_excise(vd)) {
1957			/*
1958			 * We completed a scrub up to scrub_txg.  If we
1959			 * did it without rebooting, then the scrub dtl
1960			 * will be valid, so excise the old region and
1961			 * fold in the scrub dtl.  Otherwise, leave the
1962			 * dtl as-is if there was an error.
1963			 *
1964			 * There's little trick here: to excise the beginning
1965			 * of the DTL_MISSING map, we put it into a reference
1966			 * tree and then add a segment with refcnt -1 that
1967			 * covers the range [0, scrub_txg).  This means
1968			 * that each txg in that range has refcnt -1 or 0.
1969			 * We then add DTL_SCRUB with a refcnt of 2, so that
1970			 * entries in the range [0, scrub_txg) will have a
1971			 * positive refcnt -- either 1 or 2.  We then convert
1972			 * the reference tree into the new DTL_MISSING map.
1973			 */
1974			space_reftree_create(&reftree);
1975			space_reftree_add_map(&reftree,
1976			    vd->vdev_dtl[DTL_MISSING], 1);
1977			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1978			space_reftree_add_map(&reftree,
1979			    vd->vdev_dtl[DTL_SCRUB], 2);
1980			space_reftree_generate_map(&reftree,
1981			    vd->vdev_dtl[DTL_MISSING], 1);
1982			space_reftree_destroy(&reftree);
1983		}
1984		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1985		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1986		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1987		if (scrub_done)
1988			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1989		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1990		if (!vdev_readable(vd))
1991			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1992		else
1993			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1994			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1995
1996		/*
1997		 * If the vdev was resilvering and no longer has any
1998		 * DTLs then reset its resilvering flag and dirty
1999		 * the top level so that we persist the change.
2000		 */
2001		if (vd->vdev_resilver_txg != 0 &&
2002		    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
2003		    range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
2004			vd->vdev_resilver_txg = 0;
2005			vdev_config_dirty(vd->vdev_top);
2006		}
2007
2008		mutex_exit(&vd->vdev_dtl_lock);
2009
2010		if (txg != 0)
2011			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2012		return;
2013	}
2014
2015	mutex_enter(&vd->vdev_dtl_lock);
2016	for (int t = 0; t < DTL_TYPES; t++) {
2017		/* account for child's outage in parent's missing map */
2018		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2019		if (t == DTL_SCRUB)
2020			continue;			/* leaf vdevs only */
2021		if (t == DTL_PARTIAL)
2022			minref = 1;			/* i.e. non-zero */
2023		else if (vd->vdev_nparity != 0)
2024			minref = vd->vdev_nparity + 1;	/* RAID-Z */
2025		else
2026			minref = vd->vdev_children;	/* any kind of mirror */
2027		space_reftree_create(&reftree);
2028		for (int c = 0; c < vd->vdev_children; c++) {
2029			vdev_t *cvd = vd->vdev_child[c];
2030			mutex_enter(&cvd->vdev_dtl_lock);
2031			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2032			mutex_exit(&cvd->vdev_dtl_lock);
2033		}
2034		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2035		space_reftree_destroy(&reftree);
2036	}
2037	mutex_exit(&vd->vdev_dtl_lock);
2038}
2039
2040int
2041vdev_dtl_load(vdev_t *vd)
2042{
2043	spa_t *spa = vd->vdev_spa;
2044	objset_t *mos = spa->spa_meta_objset;
2045	int error = 0;
2046
2047	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2048		ASSERT(!vd->vdev_ishole);
2049
2050		error = space_map_open(&vd->vdev_dtl_sm, mos,
2051		    vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2052		if (error)
2053			return (error);
2054		ASSERT(vd->vdev_dtl_sm != NULL);
2055
2056		mutex_enter(&vd->vdev_dtl_lock);
2057
2058		/*
2059		 * Now that we've opened the space_map we need to update
2060		 * the in-core DTL.
2061		 */
2062		space_map_update(vd->vdev_dtl_sm);
2063
2064		error = space_map_load(vd->vdev_dtl_sm,
2065		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2066		mutex_exit(&vd->vdev_dtl_lock);
2067
2068		return (error);
2069	}
2070
2071	for (int c = 0; c < vd->vdev_children; c++) {
2072		error = vdev_dtl_load(vd->vdev_child[c]);
2073		if (error != 0)
2074			break;
2075	}
2076
2077	return (error);
2078}
2079
2080void
2081vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2082{
2083	spa_t *spa = vd->vdev_spa;
2084	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2085	objset_t *mos = spa->spa_meta_objset;
2086	range_tree_t *rtsync;
2087	kmutex_t rtlock;
2088	dmu_tx_t *tx;
2089	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2090
2091	ASSERT(!vd->vdev_ishole);
2092	ASSERT(vd->vdev_ops->vdev_op_leaf);
2093
2094	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2095
2096	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2097		mutex_enter(&vd->vdev_dtl_lock);
2098		space_map_free(vd->vdev_dtl_sm, tx);
2099		space_map_close(vd->vdev_dtl_sm);
2100		vd->vdev_dtl_sm = NULL;
2101		mutex_exit(&vd->vdev_dtl_lock);
2102		dmu_tx_commit(tx);
2103		return;
2104	}
2105
2106	if (vd->vdev_dtl_sm == NULL) {
2107		uint64_t new_object;
2108
2109		new_object = space_map_alloc(mos, tx);
2110		VERIFY3U(new_object, !=, 0);
2111
2112		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2113		    0, -1ULL, 0, &vd->vdev_dtl_lock));
2114		ASSERT(vd->vdev_dtl_sm != NULL);
2115	}
2116
2117	bzero(&rtlock, sizeof(rtlock));
2118	mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2119
2120	rtsync = range_tree_create(NULL, NULL, &rtlock);
2121
2122	mutex_enter(&rtlock);
2123
2124	mutex_enter(&vd->vdev_dtl_lock);
2125	range_tree_walk(rt, range_tree_add, rtsync);
2126	mutex_exit(&vd->vdev_dtl_lock);
2127
2128	space_map_truncate(vd->vdev_dtl_sm, tx);
2129	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2130	range_tree_vacate(rtsync, NULL, NULL);
2131
2132	range_tree_destroy(rtsync);
2133
2134	mutex_exit(&rtlock);
2135	mutex_destroy(&rtlock);
2136
2137	/*
2138	 * If the object for the space map has changed then dirty
2139	 * the top level so that we update the config.
2140	 */
2141	if (object != space_map_object(vd->vdev_dtl_sm)) {
2142		zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2143		    "new object %llu", txg, spa_name(spa), object,
2144		    space_map_object(vd->vdev_dtl_sm));
2145		vdev_config_dirty(vd->vdev_top);
2146	}
2147
2148	dmu_tx_commit(tx);
2149
2150	mutex_enter(&vd->vdev_dtl_lock);
2151	space_map_update(vd->vdev_dtl_sm);
2152	mutex_exit(&vd->vdev_dtl_lock);
2153}
2154
2155/*
2156 * Determine whether the specified vdev can be offlined/detached/removed
2157 * without losing data.
2158 */
2159boolean_t
2160vdev_dtl_required(vdev_t *vd)
2161{
2162	spa_t *spa = vd->vdev_spa;
2163	vdev_t *tvd = vd->vdev_top;
2164	uint8_t cant_read = vd->vdev_cant_read;
2165	boolean_t required;
2166
2167	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2168
2169	if (vd == spa->spa_root_vdev || vd == tvd)
2170		return (B_TRUE);
2171
2172	/*
2173	 * Temporarily mark the device as unreadable, and then determine
2174	 * whether this results in any DTL outages in the top-level vdev.
2175	 * If not, we can safely offline/detach/remove the device.
2176	 */
2177	vd->vdev_cant_read = B_TRUE;
2178	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2179	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2180	vd->vdev_cant_read = cant_read;
2181	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2182
2183	if (!required && zio_injection_enabled)
2184		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2185
2186	return (required);
2187}
2188
2189/*
2190 * Determine if resilver is needed, and if so the txg range.
2191 */
2192boolean_t
2193vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2194{
2195	boolean_t needed = B_FALSE;
2196	uint64_t thismin = UINT64_MAX;
2197	uint64_t thismax = 0;
2198
2199	if (vd->vdev_children == 0) {
2200		mutex_enter(&vd->vdev_dtl_lock);
2201		if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2202		    vdev_writeable(vd)) {
2203
2204			thismin = vdev_dtl_min(vd);
2205			thismax = vdev_dtl_max(vd);
2206			needed = B_TRUE;
2207		}
2208		mutex_exit(&vd->vdev_dtl_lock);
2209	} else {
2210		for (int c = 0; c < vd->vdev_children; c++) {
2211			vdev_t *cvd = vd->vdev_child[c];
2212			uint64_t cmin, cmax;
2213
2214			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2215				thismin = MIN(thismin, cmin);
2216				thismax = MAX(thismax, cmax);
2217				needed = B_TRUE;
2218			}
2219		}
2220	}
2221
2222	if (needed && minp) {
2223		*minp = thismin;
2224		*maxp = thismax;
2225	}
2226	return (needed);
2227}
2228
2229void
2230vdev_load(vdev_t *vd)
2231{
2232	/*
2233	 * Recursively load all children.
2234	 */
2235	for (int c = 0; c < vd->vdev_children; c++)
2236		vdev_load(vd->vdev_child[c]);
2237
2238	/*
2239	 * If this is a top-level vdev, initialize its metaslabs.
2240	 */
2241	if (vd == vd->vdev_top && !vd->vdev_ishole &&
2242	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2243	    vdev_metaslab_init(vd, 0) != 0))
2244		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2245		    VDEV_AUX_CORRUPT_DATA);
2246
2247	/*
2248	 * If this is a leaf vdev, load its DTL.
2249	 */
2250	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2251		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2252		    VDEV_AUX_CORRUPT_DATA);
2253}
2254
2255/*
2256 * The special vdev case is used for hot spares and l2cache devices.  Its
2257 * sole purpose it to set the vdev state for the associated vdev.  To do this,
2258 * we make sure that we can open the underlying device, then try to read the
2259 * label, and make sure that the label is sane and that it hasn't been
2260 * repurposed to another pool.
2261 */
2262int
2263vdev_validate_aux(vdev_t *vd)
2264{
2265	nvlist_t *label;
2266	uint64_t guid, version;
2267	uint64_t state;
2268
2269	if (!vdev_readable(vd))
2270		return (0);
2271
2272	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2273		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2274		    VDEV_AUX_CORRUPT_DATA);
2275		return (-1);
2276	}
2277
2278	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2279	    !SPA_VERSION_IS_SUPPORTED(version) ||
2280	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2281	    guid != vd->vdev_guid ||
2282	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2283		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2284		    VDEV_AUX_CORRUPT_DATA);
2285		nvlist_free(label);
2286		return (-1);
2287	}
2288
2289	/*
2290	 * We don't actually check the pool state here.  If it's in fact in
2291	 * use by another pool, we update this fact on the fly when requested.
2292	 */
2293	nvlist_free(label);
2294	return (0);
2295}
2296
2297void
2298vdev_remove(vdev_t *vd, uint64_t txg)
2299{
2300	spa_t *spa = vd->vdev_spa;
2301	objset_t *mos = spa->spa_meta_objset;
2302	dmu_tx_t *tx;
2303
2304	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2305
2306	if (vd->vdev_ms != NULL) {
2307		metaslab_group_t *mg = vd->vdev_mg;
2308
2309		metaslab_group_histogram_verify(mg);
2310		metaslab_class_histogram_verify(mg->mg_class);
2311
2312		for (int m = 0; m < vd->vdev_ms_count; m++) {
2313			metaslab_t *msp = vd->vdev_ms[m];
2314
2315			if (msp == NULL || msp->ms_sm == NULL)
2316				continue;
2317
2318			mutex_enter(&msp->ms_lock);
2319			/*
2320			 * If the metaslab was not loaded when the vdev
2321			 * was removed then the histogram accounting may
2322			 * not be accurate. Update the histogram information
2323			 * here so that we ensure that the metaslab group
2324			 * and metaslab class are up-to-date.
2325			 */
2326			metaslab_group_histogram_remove(mg, msp);
2327
2328			VERIFY0(space_map_allocated(msp->ms_sm));
2329			space_map_free(msp->ms_sm, tx);
2330			space_map_close(msp->ms_sm);
2331			msp->ms_sm = NULL;
2332			mutex_exit(&msp->ms_lock);
2333		}
2334
2335		metaslab_group_histogram_verify(mg);
2336		metaslab_class_histogram_verify(mg->mg_class);
2337		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2338			ASSERT0(mg->mg_histogram[i]);
2339
2340	}
2341
2342	if (vd->vdev_ms_array) {
2343		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2344		vd->vdev_ms_array = 0;
2345	}
2346	dmu_tx_commit(tx);
2347}
2348
2349void
2350vdev_sync_done(vdev_t *vd, uint64_t txg)
2351{
2352	metaslab_t *msp;
2353	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2354
2355	ASSERT(!vd->vdev_ishole);
2356
2357	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2358		metaslab_sync_done(msp, txg);
2359
2360	if (reassess)
2361		metaslab_sync_reassess(vd->vdev_mg);
2362}
2363
2364void
2365vdev_sync(vdev_t *vd, uint64_t txg)
2366{
2367	spa_t *spa = vd->vdev_spa;
2368	vdev_t *lvd;
2369	metaslab_t *msp;
2370	dmu_tx_t *tx;
2371
2372	ASSERT(!vd->vdev_ishole);
2373
2374	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2375		ASSERT(vd == vd->vdev_top);
2376		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2377		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2378		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2379		ASSERT(vd->vdev_ms_array != 0);
2380		vdev_config_dirty(vd);
2381		dmu_tx_commit(tx);
2382	}
2383
2384	/*
2385	 * Remove the metadata associated with this vdev once it's empty.
2386	 */
2387	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2388		vdev_remove(vd, txg);
2389
2390	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2391		metaslab_sync(msp, txg);
2392		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2393	}
2394
2395	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2396		vdev_dtl_sync(lvd, txg);
2397
2398	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2399}
2400
2401uint64_t
2402vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2403{
2404	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2405}
2406
2407/*
2408 * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2409 * not be opened, and no I/O is attempted.
2410 */
2411int
2412vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2413{
2414	vdev_t *vd, *tvd;
2415
2416	spa_vdev_state_enter(spa, SCL_NONE);
2417
2418	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2419		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2420
2421	if (!vd->vdev_ops->vdev_op_leaf)
2422		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2423
2424	tvd = vd->vdev_top;
2425
2426	/*
2427	 * We don't directly use the aux state here, but if we do a
2428	 * vdev_reopen(), we need this value to be present to remember why we
2429	 * were faulted.
2430	 */
2431	vd->vdev_label_aux = aux;
2432
2433	/*
2434	 * Faulted state takes precedence over degraded.
2435	 */
2436	vd->vdev_delayed_close = B_FALSE;
2437	vd->vdev_faulted = 1ULL;
2438	vd->vdev_degraded = 0ULL;
2439	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2440
2441	/*
2442	 * If this device has the only valid copy of the data, then
2443	 * back off and simply mark the vdev as degraded instead.
2444	 */
2445	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2446		vd->vdev_degraded = 1ULL;
2447		vd->vdev_faulted = 0ULL;
2448
2449		/*
2450		 * If we reopen the device and it's not dead, only then do we
2451		 * mark it degraded.
2452		 */
2453		vdev_reopen(tvd);
2454
2455		if (vdev_readable(vd))
2456			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2457	}
2458
2459	return (spa_vdev_state_exit(spa, vd, 0));
2460}
2461
2462/*
2463 * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2464 * user that something is wrong.  The vdev continues to operate as normal as far
2465 * as I/O is concerned.
2466 */
2467int
2468vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2469{
2470	vdev_t *vd;
2471
2472	spa_vdev_state_enter(spa, SCL_NONE);
2473
2474	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2475		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2476
2477	if (!vd->vdev_ops->vdev_op_leaf)
2478		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2479
2480	/*
2481	 * If the vdev is already faulted, then don't do anything.
2482	 */
2483	if (vd->vdev_faulted || vd->vdev_degraded)
2484		return (spa_vdev_state_exit(spa, NULL, 0));
2485
2486	vd->vdev_degraded = 1ULL;
2487	if (!vdev_is_dead(vd))
2488		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2489		    aux);
2490
2491	return (spa_vdev_state_exit(spa, vd, 0));
2492}
2493
2494/*
2495 * Online the given vdev.
2496 *
2497 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2498 * spare device should be detached when the device finishes resilvering.
2499 * Second, the online should be treated like a 'test' online case, so no FMA
2500 * events are generated if the device fails to open.
2501 */
2502int
2503vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2504{
2505	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2506	boolean_t postevent = B_FALSE;
2507
2508	spa_vdev_state_enter(spa, SCL_NONE);
2509
2510	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2511		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2512
2513	if (!vd->vdev_ops->vdev_op_leaf)
2514		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2515
2516	postevent =
2517	    (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ?
2518	    B_TRUE : B_FALSE;
2519
2520	tvd = vd->vdev_top;
2521	vd->vdev_offline = B_FALSE;
2522	vd->vdev_tmpoffline = B_FALSE;
2523	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2524	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2525
2526	/* XXX - L2ARC 1.0 does not support expansion */
2527	if (!vd->vdev_aux) {
2528		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2529			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2530	}
2531
2532	vdev_reopen(tvd);
2533	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2534
2535	if (!vd->vdev_aux) {
2536		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2537			pvd->vdev_expanding = B_FALSE;
2538	}
2539
2540	if (newstate)
2541		*newstate = vd->vdev_state;
2542	if ((flags & ZFS_ONLINE_UNSPARE) &&
2543	    !vdev_is_dead(vd) && vd->vdev_parent &&
2544	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2545	    vd->vdev_parent->vdev_child[0] == vd)
2546		vd->vdev_unspare = B_TRUE;
2547
2548	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2549
2550		/* XXX - L2ARC 1.0 does not support expansion */
2551		if (vd->vdev_aux)
2552			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2553		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2554	}
2555
2556	if (postevent)
2557		spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2558
2559	return (spa_vdev_state_exit(spa, vd, 0));
2560}
2561
2562static int
2563vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2564{
2565	vdev_t *vd, *tvd;
2566	int error = 0;
2567	uint64_t generation;
2568	metaslab_group_t *mg;
2569
2570top:
2571	spa_vdev_state_enter(spa, SCL_ALLOC);
2572
2573	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2574		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2575
2576	if (!vd->vdev_ops->vdev_op_leaf)
2577		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2578
2579	tvd = vd->vdev_top;
2580	mg = tvd->vdev_mg;
2581	generation = spa->spa_config_generation + 1;
2582
2583	/*
2584	 * If the device isn't already offline, try to offline it.
2585	 */
2586	if (!vd->vdev_offline) {
2587		/*
2588		 * If this device has the only valid copy of some data,
2589		 * don't allow it to be offlined. Log devices are always
2590		 * expendable.
2591		 */
2592		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2593		    vdev_dtl_required(vd))
2594			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2595
2596		/*
2597		 * If the top-level is a slog and it has had allocations
2598		 * then proceed.  We check that the vdev's metaslab group
2599		 * is not NULL since it's possible that we may have just
2600		 * added this vdev but not yet initialized its metaslabs.
2601		 */
2602		if (tvd->vdev_islog && mg != NULL) {
2603			/*
2604			 * Prevent any future allocations.
2605			 */
2606			metaslab_group_passivate(mg);
2607			(void) spa_vdev_state_exit(spa, vd, 0);
2608
2609			error = spa_offline_log(spa);
2610
2611			spa_vdev_state_enter(spa, SCL_ALLOC);
2612
2613			/*
2614			 * Check to see if the config has changed.
2615			 */
2616			if (error || generation != spa->spa_config_generation) {
2617				metaslab_group_activate(mg);
2618				if (error)
2619					return (spa_vdev_state_exit(spa,
2620					    vd, error));
2621				(void) spa_vdev_state_exit(spa, vd, 0);
2622				goto top;
2623			}
2624			ASSERT0(tvd->vdev_stat.vs_alloc);
2625		}
2626
2627		/*
2628		 * Offline this device and reopen its top-level vdev.
2629		 * If the top-level vdev is a log device then just offline
2630		 * it. Otherwise, if this action results in the top-level
2631		 * vdev becoming unusable, undo it and fail the request.
2632		 */
2633		vd->vdev_offline = B_TRUE;
2634		vdev_reopen(tvd);
2635
2636		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2637		    vdev_is_dead(tvd)) {
2638			vd->vdev_offline = B_FALSE;
2639			vdev_reopen(tvd);
2640			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2641		}
2642
2643		/*
2644		 * Add the device back into the metaslab rotor so that
2645		 * once we online the device it's open for business.
2646		 */
2647		if (tvd->vdev_islog && mg != NULL)
2648			metaslab_group_activate(mg);
2649	}
2650
2651	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2652
2653	return (spa_vdev_state_exit(spa, vd, 0));
2654}
2655
2656int
2657vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2658{
2659	int error;
2660
2661	mutex_enter(&spa->spa_vdev_top_lock);
2662	error = vdev_offline_locked(spa, guid, flags);
2663	mutex_exit(&spa->spa_vdev_top_lock);
2664
2665	return (error);
2666}
2667
2668/*
2669 * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2670 * vdev_offline(), we assume the spa config is locked.  We also clear all
2671 * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2672 */
2673void
2674vdev_clear(spa_t *spa, vdev_t *vd)
2675{
2676	vdev_t *rvd = spa->spa_root_vdev;
2677
2678	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2679
2680	if (vd == NULL)
2681		vd = rvd;
2682
2683	vd->vdev_stat.vs_read_errors = 0;
2684	vd->vdev_stat.vs_write_errors = 0;
2685	vd->vdev_stat.vs_checksum_errors = 0;
2686
2687	for (int c = 0; c < vd->vdev_children; c++)
2688		vdev_clear(spa, vd->vdev_child[c]);
2689
2690	if (vd == rvd) {
2691		for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
2692			vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2693
2694		for (int c = 0; c < spa->spa_spares.sav_count; c++)
2695			vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2696	}
2697
2698	/*
2699	 * If we're in the FAULTED state or have experienced failed I/O, then
2700	 * clear the persistent state and attempt to reopen the device.  We
2701	 * also mark the vdev config dirty, so that the new faulted state is
2702	 * written out to disk.
2703	 */
2704	if (vd->vdev_faulted || vd->vdev_degraded ||
2705	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2706
2707		/*
2708		 * When reopening in reponse to a clear event, it may be due to
2709		 * a fmadm repair request.  In this case, if the device is
2710		 * still broken, we want to still post the ereport again.
2711		 */
2712		vd->vdev_forcefault = B_TRUE;
2713
2714		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2715		vd->vdev_cant_read = B_FALSE;
2716		vd->vdev_cant_write = B_FALSE;
2717
2718		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2719
2720		vd->vdev_forcefault = B_FALSE;
2721
2722		if (vd != rvd && vdev_writeable(vd->vdev_top))
2723			vdev_state_dirty(vd->vdev_top);
2724
2725		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2726			spa_async_request(spa, SPA_ASYNC_RESILVER);
2727
2728		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2729	}
2730
2731	/*
2732	 * When clearing a FMA-diagnosed fault, we always want to
2733	 * unspare the device, as we assume that the original spare was
2734	 * done in response to the FMA fault.
2735	 */
2736	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2737	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2738	    vd->vdev_parent->vdev_child[0] == vd)
2739		vd->vdev_unspare = B_TRUE;
2740}
2741
2742boolean_t
2743vdev_is_dead(vdev_t *vd)
2744{
2745	/*
2746	 * Holes and missing devices are always considered "dead".
2747	 * This simplifies the code since we don't have to check for
2748	 * these types of devices in the various code paths.
2749	 * Instead we rely on the fact that we skip over dead devices
2750	 * before issuing I/O to them.
2751	 */
2752	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2753	    vd->vdev_ops == &vdev_missing_ops);
2754}
2755
2756boolean_t
2757vdev_readable(vdev_t *vd)
2758{
2759	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2760}
2761
2762boolean_t
2763vdev_writeable(vdev_t *vd)
2764{
2765	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2766}
2767
2768boolean_t
2769vdev_allocatable(vdev_t *vd)
2770{
2771	uint64_t state = vd->vdev_state;
2772
2773	/*
2774	 * We currently allow allocations from vdevs which may be in the
2775	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2776	 * fails to reopen then we'll catch it later when we're holding
2777	 * the proper locks.  Note that we have to get the vdev state
2778	 * in a local variable because although it changes atomically,
2779	 * we're asking two separate questions about it.
2780	 */
2781	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2782	    !vd->vdev_cant_write && !vd->vdev_ishole);
2783}
2784
2785boolean_t
2786vdev_accessible(vdev_t *vd, zio_t *zio)
2787{
2788	ASSERT(zio->io_vd == vd);
2789
2790	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2791		return (B_FALSE);
2792
2793	if (zio->io_type == ZIO_TYPE_READ)
2794		return (!vd->vdev_cant_read);
2795
2796	if (zio->io_type == ZIO_TYPE_WRITE)
2797		return (!vd->vdev_cant_write);
2798
2799	return (B_TRUE);
2800}
2801
2802/*
2803 * Get statistics for the given vdev.
2804 */
2805void
2806vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2807{
2808	spa_t *spa = vd->vdev_spa;
2809	vdev_t *rvd = spa->spa_root_vdev;
2810
2811	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2812
2813	mutex_enter(&vd->vdev_stat_lock);
2814	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2815	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2816	vs->vs_state = vd->vdev_state;
2817	vs->vs_rsize = vdev_get_min_asize(vd);
2818	if (vd->vdev_ops->vdev_op_leaf)
2819		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2820	if (vd->vdev_max_asize != 0)
2821		vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2822	vs->vs_configured_ashift = vd->vdev_top != NULL
2823	    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
2824	vs->vs_logical_ashift = vd->vdev_logical_ashift;
2825	vs->vs_physical_ashift = vd->vdev_physical_ashift;
2826	if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2827		vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2828	}
2829
2830	/*
2831	 * If we're getting stats on the root vdev, aggregate the I/O counts
2832	 * over all top-level vdevs (i.e. the direct children of the root).
2833	 */
2834	if (vd == rvd) {
2835		for (int c = 0; c < rvd->vdev_children; c++) {
2836			vdev_t *cvd = rvd->vdev_child[c];
2837			vdev_stat_t *cvs = &cvd->vdev_stat;
2838
2839			for (int t = 0; t < ZIO_TYPES; t++) {
2840				vs->vs_ops[t] += cvs->vs_ops[t];
2841				vs->vs_bytes[t] += cvs->vs_bytes[t];
2842			}
2843			cvs->vs_scan_removing = cvd->vdev_removing;
2844		}
2845	}
2846	mutex_exit(&vd->vdev_stat_lock);
2847}
2848
2849void
2850vdev_clear_stats(vdev_t *vd)
2851{
2852	mutex_enter(&vd->vdev_stat_lock);
2853	vd->vdev_stat.vs_space = 0;
2854	vd->vdev_stat.vs_dspace = 0;
2855	vd->vdev_stat.vs_alloc = 0;
2856	mutex_exit(&vd->vdev_stat_lock);
2857}
2858
2859void
2860vdev_scan_stat_init(vdev_t *vd)
2861{
2862	vdev_stat_t *vs = &vd->vdev_stat;
2863
2864	for (int c = 0; c < vd->vdev_children; c++)
2865		vdev_scan_stat_init(vd->vdev_child[c]);
2866
2867	mutex_enter(&vd->vdev_stat_lock);
2868	vs->vs_scan_processed = 0;
2869	mutex_exit(&vd->vdev_stat_lock);
2870}
2871
2872void
2873vdev_stat_update(zio_t *zio, uint64_t psize)
2874{
2875	spa_t *spa = zio->io_spa;
2876	vdev_t *rvd = spa->spa_root_vdev;
2877	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2878	vdev_t *pvd;
2879	uint64_t txg = zio->io_txg;
2880	vdev_stat_t *vs = &vd->vdev_stat;
2881	zio_type_t type = zio->io_type;
2882	int flags = zio->io_flags;
2883
2884	/*
2885	 * If this i/o is a gang leader, it didn't do any actual work.
2886	 */
2887	if (zio->io_gang_tree)
2888		return;
2889
2890	if (zio->io_error == 0) {
2891		/*
2892		 * If this is a root i/o, don't count it -- we've already
2893		 * counted the top-level vdevs, and vdev_get_stats() will
2894		 * aggregate them when asked.  This reduces contention on
2895		 * the root vdev_stat_lock and implicitly handles blocks
2896		 * that compress away to holes, for which there is no i/o.
2897		 * (Holes never create vdev children, so all the counters
2898		 * remain zero, which is what we want.)
2899		 *
2900		 * Note: this only applies to successful i/o (io_error == 0)
2901		 * because unlike i/o counts, errors are not additive.
2902		 * When reading a ditto block, for example, failure of
2903		 * one top-level vdev does not imply a root-level error.
2904		 */
2905		if (vd == rvd)
2906			return;
2907
2908		ASSERT(vd == zio->io_vd);
2909
2910		if (flags & ZIO_FLAG_IO_BYPASS)
2911			return;
2912
2913		mutex_enter(&vd->vdev_stat_lock);
2914
2915		if (flags & ZIO_FLAG_IO_REPAIR) {
2916			if (flags & ZIO_FLAG_SCAN_THREAD) {
2917				dsl_scan_phys_t *scn_phys =
2918				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2919				uint64_t *processed = &scn_phys->scn_processed;
2920
2921				/* XXX cleanup? */
2922				if (vd->vdev_ops->vdev_op_leaf)
2923					atomic_add_64(processed, psize);
2924				vs->vs_scan_processed += psize;
2925			}
2926
2927			if (flags & ZIO_FLAG_SELF_HEAL)
2928				vs->vs_self_healed += psize;
2929		}
2930
2931		vs->vs_ops[type]++;
2932		vs->vs_bytes[type] += psize;
2933
2934		mutex_exit(&vd->vdev_stat_lock);
2935		return;
2936	}
2937
2938	if (flags & ZIO_FLAG_SPECULATIVE)
2939		return;
2940
2941	/*
2942	 * If this is an I/O error that is going to be retried, then ignore the
2943	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2944	 * hard errors, when in reality they can happen for any number of
2945	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2946	 */
2947	if (zio->io_error == EIO &&
2948	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2949		return;
2950
2951	/*
2952	 * Intent logs writes won't propagate their error to the root
2953	 * I/O so don't mark these types of failures as pool-level
2954	 * errors.
2955	 */
2956	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2957		return;
2958
2959	mutex_enter(&vd->vdev_stat_lock);
2960	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2961		if (zio->io_error == ECKSUM)
2962			vs->vs_checksum_errors++;
2963		else
2964			vs->vs_read_errors++;
2965	}
2966	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2967		vs->vs_write_errors++;
2968	mutex_exit(&vd->vdev_stat_lock);
2969
2970	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2971	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2972	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2973	    spa->spa_claiming)) {
2974		/*
2975		 * This is either a normal write (not a repair), or it's
2976		 * a repair induced by the scrub thread, or it's a repair
2977		 * made by zil_claim() during spa_load() in the first txg.
2978		 * In the normal case, we commit the DTL change in the same
2979		 * txg as the block was born.  In the scrub-induced repair
2980		 * case, we know that scrubs run in first-pass syncing context,
2981		 * so we commit the DTL change in spa_syncing_txg(spa).
2982		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2983		 *
2984		 * We currently do not make DTL entries for failed spontaneous
2985		 * self-healing writes triggered by normal (non-scrubbing)
2986		 * reads, because we have no transactional context in which to
2987		 * do so -- and it's not clear that it'd be desirable anyway.
2988		 */
2989		if (vd->vdev_ops->vdev_op_leaf) {
2990			uint64_t commit_txg = txg;
2991			if (flags & ZIO_FLAG_SCAN_THREAD) {
2992				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2993				ASSERT(spa_sync_pass(spa) == 1);
2994				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2995				commit_txg = spa_syncing_txg(spa);
2996			} else if (spa->spa_claiming) {
2997				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2998				commit_txg = spa_first_txg(spa);
2999			}
3000			ASSERT(commit_txg >= spa_syncing_txg(spa));
3001			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3002				return;
3003			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3004				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3005			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3006		}
3007		if (vd != rvd)
3008			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3009	}
3010}
3011
3012/*
3013 * Update the in-core space usage stats for this vdev, its metaslab class,
3014 * and the root vdev.
3015 */
3016void
3017vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3018    int64_t space_delta)
3019{
3020	int64_t dspace_delta = space_delta;
3021	spa_t *spa = vd->vdev_spa;
3022	vdev_t *rvd = spa->spa_root_vdev;
3023	metaslab_group_t *mg = vd->vdev_mg;
3024	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3025
3026	ASSERT(vd == vd->vdev_top);
3027
3028	/*
3029	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3030	 * factor.  We must calculate this here and not at the root vdev
3031	 * because the root vdev's psize-to-asize is simply the max of its
3032	 * childrens', thus not accurate enough for us.
3033	 */
3034	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3035	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3036	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3037	    vd->vdev_deflate_ratio;
3038
3039	mutex_enter(&vd->vdev_stat_lock);
3040	vd->vdev_stat.vs_alloc += alloc_delta;
3041	vd->vdev_stat.vs_space += space_delta;
3042	vd->vdev_stat.vs_dspace += dspace_delta;
3043	mutex_exit(&vd->vdev_stat_lock);
3044
3045	if (mc == spa_normal_class(spa)) {
3046		mutex_enter(&rvd->vdev_stat_lock);
3047		rvd->vdev_stat.vs_alloc += alloc_delta;
3048		rvd->vdev_stat.vs_space += space_delta;
3049		rvd->vdev_stat.vs_dspace += dspace_delta;
3050		mutex_exit(&rvd->vdev_stat_lock);
3051	}
3052
3053	if (mc != NULL) {
3054		ASSERT(rvd == vd->vdev_parent);
3055		ASSERT(vd->vdev_ms_count != 0);
3056
3057		metaslab_class_space_update(mc,
3058		    alloc_delta, defer_delta, space_delta, dspace_delta);
3059	}
3060}
3061
3062/*
3063 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3064 * so that it will be written out next time the vdev configuration is synced.
3065 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3066 */
3067void
3068vdev_config_dirty(vdev_t *vd)
3069{
3070	spa_t *spa = vd->vdev_spa;
3071	vdev_t *rvd = spa->spa_root_vdev;
3072	int c;
3073
3074	ASSERT(spa_writeable(spa));
3075
3076	/*
3077	 * If this is an aux vdev (as with l2cache and spare devices), then we
3078	 * update the vdev config manually and set the sync flag.
3079	 */
3080	if (vd->vdev_aux != NULL) {
3081		spa_aux_vdev_t *sav = vd->vdev_aux;
3082		nvlist_t **aux;
3083		uint_t naux;
3084
3085		for (c = 0; c < sav->sav_count; c++) {
3086			if (sav->sav_vdevs[c] == vd)
3087				break;
3088		}
3089
3090		if (c == sav->sav_count) {
3091			/*
3092			 * We're being removed.  There's nothing more to do.
3093			 */
3094			ASSERT(sav->sav_sync == B_TRUE);
3095			return;
3096		}
3097
3098		sav->sav_sync = B_TRUE;
3099
3100		if (nvlist_lookup_nvlist_array(sav->sav_config,
3101		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3102			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3103			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3104		}
3105
3106		ASSERT(c < naux);
3107
3108		/*
3109		 * Setting the nvlist in the middle if the array is a little
3110		 * sketchy, but it will work.
3111		 */
3112		nvlist_free(aux[c]);
3113		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3114
3115		return;
3116	}
3117
3118	/*
3119	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
3120	 * must either hold SCL_CONFIG as writer, or must be the sync thread
3121	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3122	 * so this is sufficient to ensure mutual exclusion.
3123	 */
3124	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3125	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3126	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3127
3128	if (vd == rvd) {
3129		for (c = 0; c < rvd->vdev_children; c++)
3130			vdev_config_dirty(rvd->vdev_child[c]);
3131	} else {
3132		ASSERT(vd == vd->vdev_top);
3133
3134		if (!list_link_active(&vd->vdev_config_dirty_node) &&
3135		    !vd->vdev_ishole)
3136			list_insert_head(&spa->spa_config_dirty_list, vd);
3137	}
3138}
3139
3140void
3141vdev_config_clean(vdev_t *vd)
3142{
3143	spa_t *spa = vd->vdev_spa;
3144
3145	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3146	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3147	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3148
3149	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3150	list_remove(&spa->spa_config_dirty_list, vd);
3151}
3152
3153/*
3154 * Mark a top-level vdev's state as dirty, so that the next pass of
3155 * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3156 * the state changes from larger config changes because they require
3157 * much less locking, and are often needed for administrative actions.
3158 */
3159void
3160vdev_state_dirty(vdev_t *vd)
3161{
3162	spa_t *spa = vd->vdev_spa;
3163
3164	ASSERT(spa_writeable(spa));
3165	ASSERT(vd == vd->vdev_top);
3166
3167	/*
3168	 * The state list is protected by the SCL_STATE lock.  The caller
3169	 * must either hold SCL_STATE as writer, or must be the sync thread
3170	 * (which holds SCL_STATE as reader).  There's only one sync thread,
3171	 * so this is sufficient to ensure mutual exclusion.
3172	 */
3173	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3174	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3175	    spa_config_held(spa, SCL_STATE, RW_READER)));
3176
3177	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3178		list_insert_head(&spa->spa_state_dirty_list, vd);
3179}
3180
3181void
3182vdev_state_clean(vdev_t *vd)
3183{
3184	spa_t *spa = vd->vdev_spa;
3185
3186	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3187	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3188	    spa_config_held(spa, SCL_STATE, RW_READER)));
3189
3190	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3191	list_remove(&spa->spa_state_dirty_list, vd);
3192}
3193
3194/*
3195 * Propagate vdev state up from children to parent.
3196 */
3197void
3198vdev_propagate_state(vdev_t *vd)
3199{
3200	spa_t *spa = vd->vdev_spa;
3201	vdev_t *rvd = spa->spa_root_vdev;
3202	int degraded = 0, faulted = 0;
3203	int corrupted = 0;
3204	vdev_t *child;
3205
3206	if (vd->vdev_children > 0) {
3207		for (int c = 0; c < vd->vdev_children; c++) {
3208			child = vd->vdev_child[c];
3209
3210			/*
3211			 * Don't factor holes into the decision.
3212			 */
3213			if (child->vdev_ishole)
3214				continue;
3215
3216			if (!vdev_readable(child) ||
3217			    (!vdev_writeable(child) && spa_writeable(spa))) {
3218				/*
3219				 * Root special: if there is a top-level log
3220				 * device, treat the root vdev as if it were
3221				 * degraded.
3222				 */
3223				if (child->vdev_islog && vd == rvd)
3224					degraded++;
3225				else
3226					faulted++;
3227			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3228				degraded++;
3229			}
3230
3231			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3232				corrupted++;
3233		}
3234
3235		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3236
3237		/*
3238		 * Root special: if there is a top-level vdev that cannot be
3239		 * opened due to corrupted metadata, then propagate the root
3240		 * vdev's aux state as 'corrupt' rather than 'insufficient
3241		 * replicas'.
3242		 */
3243		if (corrupted && vd == rvd &&
3244		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3245			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3246			    VDEV_AUX_CORRUPT_DATA);
3247	}
3248
3249	if (vd->vdev_parent)
3250		vdev_propagate_state(vd->vdev_parent);
3251}
3252
3253/*
3254 * Set a vdev's state.  If this is during an open, we don't update the parent
3255 * state, because we're in the process of opening children depth-first.
3256 * Otherwise, we propagate the change to the parent.
3257 *
3258 * If this routine places a device in a faulted state, an appropriate ereport is
3259 * generated.
3260 */
3261void
3262vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3263{
3264	uint64_t save_state;
3265	spa_t *spa = vd->vdev_spa;
3266
3267	if (state == vd->vdev_state) {
3268		vd->vdev_stat.vs_aux = aux;
3269		return;
3270	}
3271
3272	save_state = vd->vdev_state;
3273
3274	vd->vdev_state = state;
3275	vd->vdev_stat.vs_aux = aux;
3276
3277	/*
3278	 * If we are setting the vdev state to anything but an open state, then
3279	 * always close the underlying device unless the device has requested
3280	 * a delayed close (i.e. we're about to remove or fault the device).
3281	 * Otherwise, we keep accessible but invalid devices open forever.
3282	 * We don't call vdev_close() itself, because that implies some extra
3283	 * checks (offline, etc) that we don't want here.  This is limited to
3284	 * leaf devices, because otherwise closing the device will affect other
3285	 * children.
3286	 */
3287	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3288	    vd->vdev_ops->vdev_op_leaf)
3289		vd->vdev_ops->vdev_op_close(vd);
3290
3291	/*
3292	 * If we have brought this vdev back into service, we need
3293	 * to notify fmd so that it can gracefully repair any outstanding
3294	 * cases due to a missing device.  We do this in all cases, even those
3295	 * that probably don't correlate to a repaired fault.  This is sure to
3296	 * catch all cases, and we let the zfs-retire agent sort it out.  If
3297	 * this is a transient state it's OK, as the retire agent will
3298	 * double-check the state of the vdev before repairing it.
3299	 */
3300	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3301	    vd->vdev_prevstate != state)
3302		zfs_post_state_change(spa, vd);
3303
3304	if (vd->vdev_removed &&
3305	    state == VDEV_STATE_CANT_OPEN &&
3306	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3307		/*
3308		 * If the previous state is set to VDEV_STATE_REMOVED, then this
3309		 * device was previously marked removed and someone attempted to
3310		 * reopen it.  If this failed due to a nonexistent device, then
3311		 * keep the device in the REMOVED state.  We also let this be if
3312		 * it is one of our special test online cases, which is only
3313		 * attempting to online the device and shouldn't generate an FMA
3314		 * fault.
3315		 */
3316		vd->vdev_state = VDEV_STATE_REMOVED;
3317		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3318	} else if (state == VDEV_STATE_REMOVED) {
3319		vd->vdev_removed = B_TRUE;
3320	} else if (state == VDEV_STATE_CANT_OPEN) {
3321		/*
3322		 * If we fail to open a vdev during an import or recovery, we
3323		 * mark it as "not available", which signifies that it was
3324		 * never there to begin with.  Failure to open such a device
3325		 * is not considered an error.
3326		 */
3327		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3328		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3329		    vd->vdev_ops->vdev_op_leaf)
3330			vd->vdev_not_present = 1;
3331
3332		/*
3333		 * Post the appropriate ereport.  If the 'prevstate' field is
3334		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3335		 * that this is part of a vdev_reopen().  In this case, we don't
3336		 * want to post the ereport if the device was already in the
3337		 * CANT_OPEN state beforehand.
3338		 *
3339		 * If the 'checkremove' flag is set, then this is an attempt to
3340		 * online the device in response to an insertion event.  If we
3341		 * hit this case, then we have detected an insertion event for a
3342		 * faulted or offline device that wasn't in the removed state.
3343		 * In this scenario, we don't post an ereport because we are
3344		 * about to replace the device, or attempt an online with
3345		 * vdev_forcefault, which will generate the fault for us.
3346		 */
3347		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3348		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3349		    vd != spa->spa_root_vdev) {
3350			const char *class;
3351
3352			switch (aux) {
3353			case VDEV_AUX_OPEN_FAILED:
3354				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3355				break;
3356			case VDEV_AUX_CORRUPT_DATA:
3357				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3358				break;
3359			case VDEV_AUX_NO_REPLICAS:
3360				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3361				break;
3362			case VDEV_AUX_BAD_GUID_SUM:
3363				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3364				break;
3365			case VDEV_AUX_TOO_SMALL:
3366				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3367				break;
3368			case VDEV_AUX_BAD_LABEL:
3369				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3370				break;
3371			default:
3372				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3373			}
3374
3375			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3376		}
3377
3378		/* Erase any notion of persistent removed state */
3379		vd->vdev_removed = B_FALSE;
3380	} else {
3381		vd->vdev_removed = B_FALSE;
3382	}
3383
3384	if (!isopen && vd->vdev_parent)
3385		vdev_propagate_state(vd->vdev_parent);
3386}
3387
3388/*
3389 * Check the vdev configuration to ensure that it's capable of supporting
3390 * a root pool.
3391 *
3392 * On Solaris, we do not support RAID-Z or partial configuration.  In
3393 * addition, only a single top-level vdev is allowed and none of the
3394 * leaves can be wholedisks.
3395 *
3396 * For FreeBSD, we can boot from any configuration. There is a
3397 * limitation that the boot filesystem must be either uncompressed or
3398 * compresses with lzjb compression but I'm not sure how to enforce
3399 * that here.
3400 */
3401boolean_t
3402vdev_is_bootable(vdev_t *vd)
3403{
3404#ifdef sun
3405	if (!vd->vdev_ops->vdev_op_leaf) {
3406		char *vdev_type = vd->vdev_ops->vdev_op_type;
3407
3408		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3409		    vd->vdev_children > 1) {
3410			return (B_FALSE);
3411		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3412		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3413			return (B_FALSE);
3414		}
3415	}
3416
3417	for (int c = 0; c < vd->vdev_children; c++) {
3418		if (!vdev_is_bootable(vd->vdev_child[c]))
3419			return (B_FALSE);
3420	}
3421#endif	/* sun */
3422	return (B_TRUE);
3423}
3424
3425/*
3426 * Load the state from the original vdev tree (ovd) which
3427 * we've retrieved from the MOS config object. If the original
3428 * vdev was offline or faulted then we transfer that state to the
3429 * device in the current vdev tree (nvd).
3430 */
3431void
3432vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3433{
3434	spa_t *spa = nvd->vdev_spa;
3435
3436	ASSERT(nvd->vdev_top->vdev_islog);
3437	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3438	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3439
3440	for (int c = 0; c < nvd->vdev_children; c++)
3441		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3442
3443	if (nvd->vdev_ops->vdev_op_leaf) {
3444		/*
3445		 * Restore the persistent vdev state
3446		 */
3447		nvd->vdev_offline = ovd->vdev_offline;
3448		nvd->vdev_faulted = ovd->vdev_faulted;
3449		nvd->vdev_degraded = ovd->vdev_degraded;
3450		nvd->vdev_removed = ovd->vdev_removed;
3451	}
3452}
3453
3454/*
3455 * Determine if a log device has valid content.  If the vdev was
3456 * removed or faulted in the MOS config then we know that
3457 * the content on the log device has already been written to the pool.
3458 */
3459boolean_t
3460vdev_log_state_valid(vdev_t *vd)
3461{
3462	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3463	    !vd->vdev_removed)
3464		return (B_TRUE);
3465
3466	for (int c = 0; c < vd->vdev_children; c++)
3467		if (vdev_log_state_valid(vd->vdev_child[c]))
3468			return (B_TRUE);
3469
3470	return (B_FALSE);
3471}
3472
3473/*
3474 * Expand a vdev if possible.
3475 */
3476void
3477vdev_expand(vdev_t *vd, uint64_t txg)
3478{
3479	ASSERT(vd->vdev_top == vd);
3480	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3481
3482	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3483		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3484		vdev_config_dirty(vd);
3485	}
3486}
3487
3488/*
3489 * Split a vdev.
3490 */
3491void
3492vdev_split(vdev_t *vd)
3493{
3494	vdev_t *cvd, *pvd = vd->vdev_parent;
3495
3496	vdev_remove_child(pvd, vd);
3497	vdev_compact_children(pvd);
3498
3499	cvd = pvd->vdev_child[0];
3500	if (pvd->vdev_children == 1) {
3501		vdev_remove_parent(cvd);
3502		cvd->vdev_splitting = B_TRUE;
3503	}
3504	vdev_propagate_state(cvd);
3505}
3506
3507void
3508vdev_deadman(vdev_t *vd)
3509{
3510	for (int c = 0; c < vd->vdev_children; c++) {
3511		vdev_t *cvd = vd->vdev_child[c];
3512
3513		vdev_deadman(cvd);
3514	}
3515
3516	if (vd->vdev_ops->vdev_op_leaf) {
3517		vdev_queue_t *vq = &vd->vdev_queue;
3518
3519		mutex_enter(&vq->vq_lock);
3520		if (avl_numnodes(&vq->vq_active_tree) > 0) {
3521			spa_t *spa = vd->vdev_spa;
3522			zio_t *fio;
3523			uint64_t delta;
3524
3525			/*
3526			 * Look at the head of all the pending queues,
3527			 * if any I/O has been outstanding for longer than
3528			 * the spa_deadman_synctime we panic the system.
3529			 */
3530			fio = avl_first(&vq->vq_active_tree);
3531			delta = gethrtime() - fio->io_timestamp;
3532			if (delta > spa_deadman_synctime(spa)) {
3533				zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3534				    "delta %lluns, last io %lluns",
3535				    fio->io_timestamp, delta,
3536				    vq->vq_io_complete_ts);
3537				fm_panic("I/O to pool '%s' appears to be "
3538				    "hung on vdev guid %llu at '%s'.",
3539				    spa_name(spa),
3540				    (long long unsigned int) vd->vdev_guid,
3541				    vd->vdev_path);
3542			}
3543		}
3544		mutex_exit(&vq->vq_lock);
3545	}
3546}
3547