vdev.c revision 253991
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25 * Copyright (c) 2013 by Delphix. All rights reserved.
26 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 */
28
29#include <sys/zfs_context.h>
30#include <sys/fm/fs/zfs.h>
31#include <sys/spa.h>
32#include <sys/spa_impl.h>
33#include <sys/dmu.h>
34#include <sys/dmu_tx.h>
35#include <sys/vdev_impl.h>
36#include <sys/uberblock_impl.h>
37#include <sys/metaslab.h>
38#include <sys/metaslab_impl.h>
39#include <sys/space_map.h>
40#include <sys/zio.h>
41#include <sys/zap.h>
42#include <sys/fs/zfs.h>
43#include <sys/arc.h>
44#include <sys/zil.h>
45#include <sys/dsl_scan.h>
46#include <sys/trim_map.h>
47
48SYSCTL_DECL(_vfs_zfs);
49SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
50
51/*
52 * Virtual device management.
53 */
54
55static vdev_ops_t *vdev_ops_table[] = {
56	&vdev_root_ops,
57	&vdev_raidz_ops,
58	&vdev_mirror_ops,
59	&vdev_replacing_ops,
60	&vdev_spare_ops,
61#ifdef _KERNEL
62	&vdev_geom_ops,
63#else
64	&vdev_disk_ops,
65#endif
66	&vdev_file_ops,
67	&vdev_missing_ops,
68	&vdev_hole_ops,
69	NULL
70};
71
72
73/*
74 * Given a vdev type, return the appropriate ops vector.
75 */
76static vdev_ops_t *
77vdev_getops(const char *type)
78{
79	vdev_ops_t *ops, **opspp;
80
81	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
82		if (strcmp(ops->vdev_op_type, type) == 0)
83			break;
84
85	return (ops);
86}
87
88/*
89 * Default asize function: return the MAX of psize with the asize of
90 * all children.  This is what's used by anything other than RAID-Z.
91 */
92uint64_t
93vdev_default_asize(vdev_t *vd, uint64_t psize)
94{
95	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
96	uint64_t csize;
97
98	for (int c = 0; c < vd->vdev_children; c++) {
99		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
100		asize = MAX(asize, csize);
101	}
102
103	return (asize);
104}
105
106/*
107 * Get the minimum allocatable size. We define the allocatable size as
108 * the vdev's asize rounded to the nearest metaslab. This allows us to
109 * replace or attach devices which don't have the same physical size but
110 * can still satisfy the same number of allocations.
111 */
112uint64_t
113vdev_get_min_asize(vdev_t *vd)
114{
115	vdev_t *pvd = vd->vdev_parent;
116
117	/*
118	 * If our parent is NULL (inactive spare or cache) or is the root,
119	 * just return our own asize.
120	 */
121	if (pvd == NULL)
122		return (vd->vdev_asize);
123
124	/*
125	 * The top-level vdev just returns the allocatable size rounded
126	 * to the nearest metaslab.
127	 */
128	if (vd == vd->vdev_top)
129		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
130
131	/*
132	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
133	 * so each child must provide at least 1/Nth of its asize.
134	 */
135	if (pvd->vdev_ops == &vdev_raidz_ops)
136		return (pvd->vdev_min_asize / pvd->vdev_children);
137
138	return (pvd->vdev_min_asize);
139}
140
141void
142vdev_set_min_asize(vdev_t *vd)
143{
144	vd->vdev_min_asize = vdev_get_min_asize(vd);
145
146	for (int c = 0; c < vd->vdev_children; c++)
147		vdev_set_min_asize(vd->vdev_child[c]);
148}
149
150vdev_t *
151vdev_lookup_top(spa_t *spa, uint64_t vdev)
152{
153	vdev_t *rvd = spa->spa_root_vdev;
154
155	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
156
157	if (vdev < rvd->vdev_children) {
158		ASSERT(rvd->vdev_child[vdev] != NULL);
159		return (rvd->vdev_child[vdev]);
160	}
161
162	return (NULL);
163}
164
165vdev_t *
166vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
167{
168	vdev_t *mvd;
169
170	if (vd->vdev_guid == guid)
171		return (vd);
172
173	for (int c = 0; c < vd->vdev_children; c++)
174		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
175		    NULL)
176			return (mvd);
177
178	return (NULL);
179}
180
181void
182vdev_add_child(vdev_t *pvd, vdev_t *cvd)
183{
184	size_t oldsize, newsize;
185	uint64_t id = cvd->vdev_id;
186	vdev_t **newchild;
187
188	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
189	ASSERT(cvd->vdev_parent == NULL);
190
191	cvd->vdev_parent = pvd;
192
193	if (pvd == NULL)
194		return;
195
196	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
197
198	oldsize = pvd->vdev_children * sizeof (vdev_t *);
199	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
200	newsize = pvd->vdev_children * sizeof (vdev_t *);
201
202	newchild = kmem_zalloc(newsize, KM_SLEEP);
203	if (pvd->vdev_child != NULL) {
204		bcopy(pvd->vdev_child, newchild, oldsize);
205		kmem_free(pvd->vdev_child, oldsize);
206	}
207
208	pvd->vdev_child = newchild;
209	pvd->vdev_child[id] = cvd;
210
211	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
212	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
213
214	/*
215	 * Walk up all ancestors to update guid sum.
216	 */
217	for (; pvd != NULL; pvd = pvd->vdev_parent)
218		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
219}
220
221void
222vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
223{
224	int c;
225	uint_t id = cvd->vdev_id;
226
227	ASSERT(cvd->vdev_parent == pvd);
228
229	if (pvd == NULL)
230		return;
231
232	ASSERT(id < pvd->vdev_children);
233	ASSERT(pvd->vdev_child[id] == cvd);
234
235	pvd->vdev_child[id] = NULL;
236	cvd->vdev_parent = NULL;
237
238	for (c = 0; c < pvd->vdev_children; c++)
239		if (pvd->vdev_child[c])
240			break;
241
242	if (c == pvd->vdev_children) {
243		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
244		pvd->vdev_child = NULL;
245		pvd->vdev_children = 0;
246	}
247
248	/*
249	 * Walk up all ancestors to update guid sum.
250	 */
251	for (; pvd != NULL; pvd = pvd->vdev_parent)
252		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
253}
254
255/*
256 * Remove any holes in the child array.
257 */
258void
259vdev_compact_children(vdev_t *pvd)
260{
261	vdev_t **newchild, *cvd;
262	int oldc = pvd->vdev_children;
263	int newc;
264
265	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
266
267	for (int c = newc = 0; c < oldc; c++)
268		if (pvd->vdev_child[c])
269			newc++;
270
271	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
272
273	for (int c = newc = 0; c < oldc; c++) {
274		if ((cvd = pvd->vdev_child[c]) != NULL) {
275			newchild[newc] = cvd;
276			cvd->vdev_id = newc++;
277		}
278	}
279
280	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
281	pvd->vdev_child = newchild;
282	pvd->vdev_children = newc;
283}
284
285/*
286 * Allocate and minimally initialize a vdev_t.
287 */
288vdev_t *
289vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
290{
291	vdev_t *vd;
292
293	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
294
295	if (spa->spa_root_vdev == NULL) {
296		ASSERT(ops == &vdev_root_ops);
297		spa->spa_root_vdev = vd;
298		spa->spa_load_guid = spa_generate_guid(NULL);
299	}
300
301	if (guid == 0 && ops != &vdev_hole_ops) {
302		if (spa->spa_root_vdev == vd) {
303			/*
304			 * The root vdev's guid will also be the pool guid,
305			 * which must be unique among all pools.
306			 */
307			guid = spa_generate_guid(NULL);
308		} else {
309			/*
310			 * Any other vdev's guid must be unique within the pool.
311			 */
312			guid = spa_generate_guid(spa);
313		}
314		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
315	}
316
317	vd->vdev_spa = spa;
318	vd->vdev_id = id;
319	vd->vdev_guid = guid;
320	vd->vdev_guid_sum = guid;
321	vd->vdev_ops = ops;
322	vd->vdev_state = VDEV_STATE_CLOSED;
323	vd->vdev_ishole = (ops == &vdev_hole_ops);
324
325	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
326	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
327	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
328	for (int t = 0; t < DTL_TYPES; t++) {
329		space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
330		    &vd->vdev_dtl_lock);
331	}
332	txg_list_create(&vd->vdev_ms_list,
333	    offsetof(struct metaslab, ms_txg_node));
334	txg_list_create(&vd->vdev_dtl_list,
335	    offsetof(struct vdev, vdev_dtl_node));
336	vd->vdev_stat.vs_timestamp = gethrtime();
337	vdev_queue_init(vd);
338	vdev_cache_init(vd);
339
340	return (vd);
341}
342
343/*
344 * Allocate a new vdev.  The 'alloctype' is used to control whether we are
345 * creating a new vdev or loading an existing one - the behavior is slightly
346 * different for each case.
347 */
348int
349vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
350    int alloctype)
351{
352	vdev_ops_t *ops;
353	char *type;
354	uint64_t guid = 0, islog, nparity;
355	vdev_t *vd;
356
357	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
358
359	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
360		return (SET_ERROR(EINVAL));
361
362	if ((ops = vdev_getops(type)) == NULL)
363		return (SET_ERROR(EINVAL));
364
365	/*
366	 * If this is a load, get the vdev guid from the nvlist.
367	 * Otherwise, vdev_alloc_common() will generate one for us.
368	 */
369	if (alloctype == VDEV_ALLOC_LOAD) {
370		uint64_t label_id;
371
372		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
373		    label_id != id)
374			return (SET_ERROR(EINVAL));
375
376		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
377			return (SET_ERROR(EINVAL));
378	} else if (alloctype == VDEV_ALLOC_SPARE) {
379		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
380			return (SET_ERROR(EINVAL));
381	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
382		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
383			return (SET_ERROR(EINVAL));
384	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
385		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
386			return (SET_ERROR(EINVAL));
387	}
388
389	/*
390	 * The first allocated vdev must be of type 'root'.
391	 */
392	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
393		return (SET_ERROR(EINVAL));
394
395	/*
396	 * Determine whether we're a log vdev.
397	 */
398	islog = 0;
399	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
400	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
401		return (SET_ERROR(ENOTSUP));
402
403	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
404		return (SET_ERROR(ENOTSUP));
405
406	/*
407	 * Set the nparity property for RAID-Z vdevs.
408	 */
409	nparity = -1ULL;
410	if (ops == &vdev_raidz_ops) {
411		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
412		    &nparity) == 0) {
413			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
414				return (SET_ERROR(EINVAL));
415			/*
416			 * Previous versions could only support 1 or 2 parity
417			 * device.
418			 */
419			if (nparity > 1 &&
420			    spa_version(spa) < SPA_VERSION_RAIDZ2)
421				return (SET_ERROR(ENOTSUP));
422			if (nparity > 2 &&
423			    spa_version(spa) < SPA_VERSION_RAIDZ3)
424				return (SET_ERROR(ENOTSUP));
425		} else {
426			/*
427			 * We require the parity to be specified for SPAs that
428			 * support multiple parity levels.
429			 */
430			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
431				return (SET_ERROR(EINVAL));
432			/*
433			 * Otherwise, we default to 1 parity device for RAID-Z.
434			 */
435			nparity = 1;
436		}
437	} else {
438		nparity = 0;
439	}
440	ASSERT(nparity != -1ULL);
441
442	vd = vdev_alloc_common(spa, id, guid, ops);
443
444	vd->vdev_islog = islog;
445	vd->vdev_nparity = nparity;
446
447	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
448		vd->vdev_path = spa_strdup(vd->vdev_path);
449	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
450		vd->vdev_devid = spa_strdup(vd->vdev_devid);
451	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
452	    &vd->vdev_physpath) == 0)
453		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
454	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
455		vd->vdev_fru = spa_strdup(vd->vdev_fru);
456
457	/*
458	 * Set the whole_disk property.  If it's not specified, leave the value
459	 * as -1.
460	 */
461	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
462	    &vd->vdev_wholedisk) != 0)
463		vd->vdev_wholedisk = -1ULL;
464
465	/*
466	 * Look for the 'not present' flag.  This will only be set if the device
467	 * was not present at the time of import.
468	 */
469	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
470	    &vd->vdev_not_present);
471
472	/*
473	 * Get the alignment requirement.
474	 */
475	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
476
477	/*
478	 * Retrieve the vdev creation time.
479	 */
480	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
481	    &vd->vdev_crtxg);
482
483	/*
484	 * If we're a top-level vdev, try to load the allocation parameters.
485	 */
486	if (parent && !parent->vdev_parent &&
487	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
488		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
489		    &vd->vdev_ms_array);
490		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
491		    &vd->vdev_ms_shift);
492		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
493		    &vd->vdev_asize);
494		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
495		    &vd->vdev_removing);
496	}
497
498	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
499		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
500		    alloctype == VDEV_ALLOC_ADD ||
501		    alloctype == VDEV_ALLOC_SPLIT ||
502		    alloctype == VDEV_ALLOC_ROOTPOOL);
503		vd->vdev_mg = metaslab_group_create(islog ?
504		    spa_log_class(spa) : spa_normal_class(spa), vd);
505	}
506
507	/*
508	 * If we're a leaf vdev, try to load the DTL object and other state.
509	 */
510	if (vd->vdev_ops->vdev_op_leaf &&
511	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
512	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
513		if (alloctype == VDEV_ALLOC_LOAD) {
514			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
515			    &vd->vdev_dtl_smo.smo_object);
516			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
517			    &vd->vdev_unspare);
518		}
519
520		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
521			uint64_t spare = 0;
522
523			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
524			    &spare) == 0 && spare)
525				spa_spare_add(vd);
526		}
527
528		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
529		    &vd->vdev_offline);
530
531		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
532		    &vd->vdev_resilvering);
533
534		/*
535		 * When importing a pool, we want to ignore the persistent fault
536		 * state, as the diagnosis made on another system may not be
537		 * valid in the current context.  Local vdevs will
538		 * remain in the faulted state.
539		 */
540		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
541			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
542			    &vd->vdev_faulted);
543			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
544			    &vd->vdev_degraded);
545			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
546			    &vd->vdev_removed);
547
548			if (vd->vdev_faulted || vd->vdev_degraded) {
549				char *aux;
550
551				vd->vdev_label_aux =
552				    VDEV_AUX_ERR_EXCEEDED;
553				if (nvlist_lookup_string(nv,
554				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
555				    strcmp(aux, "external") == 0)
556					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
557			}
558		}
559	}
560
561	/*
562	 * Add ourselves to the parent's list of children.
563	 */
564	vdev_add_child(parent, vd);
565
566	*vdp = vd;
567
568	return (0);
569}
570
571void
572vdev_free(vdev_t *vd)
573{
574	spa_t *spa = vd->vdev_spa;
575
576	/*
577	 * vdev_free() implies closing the vdev first.  This is simpler than
578	 * trying to ensure complicated semantics for all callers.
579	 */
580	vdev_close(vd);
581
582	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
583	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
584
585	/*
586	 * Free all children.
587	 */
588	for (int c = 0; c < vd->vdev_children; c++)
589		vdev_free(vd->vdev_child[c]);
590
591	ASSERT(vd->vdev_child == NULL);
592	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
593
594	/*
595	 * Discard allocation state.
596	 */
597	if (vd->vdev_mg != NULL) {
598		vdev_metaslab_fini(vd);
599		metaslab_group_destroy(vd->vdev_mg);
600	}
601
602	ASSERT0(vd->vdev_stat.vs_space);
603	ASSERT0(vd->vdev_stat.vs_dspace);
604	ASSERT0(vd->vdev_stat.vs_alloc);
605
606	/*
607	 * Remove this vdev from its parent's child list.
608	 */
609	vdev_remove_child(vd->vdev_parent, vd);
610
611	ASSERT(vd->vdev_parent == NULL);
612
613	/*
614	 * Clean up vdev structure.
615	 */
616	vdev_queue_fini(vd);
617	vdev_cache_fini(vd);
618
619	if (vd->vdev_path)
620		spa_strfree(vd->vdev_path);
621	if (vd->vdev_devid)
622		spa_strfree(vd->vdev_devid);
623	if (vd->vdev_physpath)
624		spa_strfree(vd->vdev_physpath);
625	if (vd->vdev_fru)
626		spa_strfree(vd->vdev_fru);
627
628	if (vd->vdev_isspare)
629		spa_spare_remove(vd);
630	if (vd->vdev_isl2cache)
631		spa_l2cache_remove(vd);
632
633	txg_list_destroy(&vd->vdev_ms_list);
634	txg_list_destroy(&vd->vdev_dtl_list);
635
636	mutex_enter(&vd->vdev_dtl_lock);
637	for (int t = 0; t < DTL_TYPES; t++) {
638		space_map_unload(&vd->vdev_dtl[t]);
639		space_map_destroy(&vd->vdev_dtl[t]);
640	}
641	mutex_exit(&vd->vdev_dtl_lock);
642
643	mutex_destroy(&vd->vdev_dtl_lock);
644	mutex_destroy(&vd->vdev_stat_lock);
645	mutex_destroy(&vd->vdev_probe_lock);
646
647	if (vd == spa->spa_root_vdev)
648		spa->spa_root_vdev = NULL;
649
650	kmem_free(vd, sizeof (vdev_t));
651}
652
653/*
654 * Transfer top-level vdev state from svd to tvd.
655 */
656static void
657vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
658{
659	spa_t *spa = svd->vdev_spa;
660	metaslab_t *msp;
661	vdev_t *vd;
662	int t;
663
664	ASSERT(tvd == tvd->vdev_top);
665
666	tvd->vdev_ms_array = svd->vdev_ms_array;
667	tvd->vdev_ms_shift = svd->vdev_ms_shift;
668	tvd->vdev_ms_count = svd->vdev_ms_count;
669
670	svd->vdev_ms_array = 0;
671	svd->vdev_ms_shift = 0;
672	svd->vdev_ms_count = 0;
673
674	if (tvd->vdev_mg)
675		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
676	tvd->vdev_mg = svd->vdev_mg;
677	tvd->vdev_ms = svd->vdev_ms;
678
679	svd->vdev_mg = NULL;
680	svd->vdev_ms = NULL;
681
682	if (tvd->vdev_mg != NULL)
683		tvd->vdev_mg->mg_vd = tvd;
684
685	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
686	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
687	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
688
689	svd->vdev_stat.vs_alloc = 0;
690	svd->vdev_stat.vs_space = 0;
691	svd->vdev_stat.vs_dspace = 0;
692
693	for (t = 0; t < TXG_SIZE; t++) {
694		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
695			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
696		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
697			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
698		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
699			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
700	}
701
702	if (list_link_active(&svd->vdev_config_dirty_node)) {
703		vdev_config_clean(svd);
704		vdev_config_dirty(tvd);
705	}
706
707	if (list_link_active(&svd->vdev_state_dirty_node)) {
708		vdev_state_clean(svd);
709		vdev_state_dirty(tvd);
710	}
711
712	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
713	svd->vdev_deflate_ratio = 0;
714
715	tvd->vdev_islog = svd->vdev_islog;
716	svd->vdev_islog = 0;
717}
718
719static void
720vdev_top_update(vdev_t *tvd, vdev_t *vd)
721{
722	if (vd == NULL)
723		return;
724
725	vd->vdev_top = tvd;
726
727	for (int c = 0; c < vd->vdev_children; c++)
728		vdev_top_update(tvd, vd->vdev_child[c]);
729}
730
731/*
732 * Add a mirror/replacing vdev above an existing vdev.
733 */
734vdev_t *
735vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
736{
737	spa_t *spa = cvd->vdev_spa;
738	vdev_t *pvd = cvd->vdev_parent;
739	vdev_t *mvd;
740
741	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
742
743	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
744
745	mvd->vdev_asize = cvd->vdev_asize;
746	mvd->vdev_min_asize = cvd->vdev_min_asize;
747	mvd->vdev_max_asize = cvd->vdev_max_asize;
748	mvd->vdev_ashift = cvd->vdev_ashift;
749	mvd->vdev_state = cvd->vdev_state;
750	mvd->vdev_crtxg = cvd->vdev_crtxg;
751
752	vdev_remove_child(pvd, cvd);
753	vdev_add_child(pvd, mvd);
754	cvd->vdev_id = mvd->vdev_children;
755	vdev_add_child(mvd, cvd);
756	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
757
758	if (mvd == mvd->vdev_top)
759		vdev_top_transfer(cvd, mvd);
760
761	return (mvd);
762}
763
764/*
765 * Remove a 1-way mirror/replacing vdev from the tree.
766 */
767void
768vdev_remove_parent(vdev_t *cvd)
769{
770	vdev_t *mvd = cvd->vdev_parent;
771	vdev_t *pvd = mvd->vdev_parent;
772
773	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
774
775	ASSERT(mvd->vdev_children == 1);
776	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
777	    mvd->vdev_ops == &vdev_replacing_ops ||
778	    mvd->vdev_ops == &vdev_spare_ops);
779	cvd->vdev_ashift = mvd->vdev_ashift;
780
781	vdev_remove_child(mvd, cvd);
782	vdev_remove_child(pvd, mvd);
783
784	/*
785	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
786	 * Otherwise, we could have detached an offline device, and when we
787	 * go to import the pool we'll think we have two top-level vdevs,
788	 * instead of a different version of the same top-level vdev.
789	 */
790	if (mvd->vdev_top == mvd) {
791		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
792		cvd->vdev_orig_guid = cvd->vdev_guid;
793		cvd->vdev_guid += guid_delta;
794		cvd->vdev_guid_sum += guid_delta;
795	}
796	cvd->vdev_id = mvd->vdev_id;
797	vdev_add_child(pvd, cvd);
798	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
799
800	if (cvd == cvd->vdev_top)
801		vdev_top_transfer(mvd, cvd);
802
803	ASSERT(mvd->vdev_children == 0);
804	vdev_free(mvd);
805}
806
807int
808vdev_metaslab_init(vdev_t *vd, uint64_t txg)
809{
810	spa_t *spa = vd->vdev_spa;
811	objset_t *mos = spa->spa_meta_objset;
812	uint64_t m;
813	uint64_t oldc = vd->vdev_ms_count;
814	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
815	metaslab_t **mspp;
816	int error;
817
818	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
819
820	/*
821	 * This vdev is not being allocated from yet or is a hole.
822	 */
823	if (vd->vdev_ms_shift == 0)
824		return (0);
825
826	ASSERT(!vd->vdev_ishole);
827
828	/*
829	 * Compute the raidz-deflation ratio.  Note, we hard-code
830	 * in 128k (1 << 17) because it is the current "typical" blocksize.
831	 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
832	 * or we will inconsistently account for existing bp's.
833	 */
834	vd->vdev_deflate_ratio = (1 << 17) /
835	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
836
837	ASSERT(oldc <= newc);
838
839	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
840
841	if (oldc != 0) {
842		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
843		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
844	}
845
846	vd->vdev_ms = mspp;
847	vd->vdev_ms_count = newc;
848
849	for (m = oldc; m < newc; m++) {
850		space_map_obj_t smo = { 0, 0, 0 };
851		if (txg == 0) {
852			uint64_t object = 0;
853			error = dmu_read(mos, vd->vdev_ms_array,
854			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
855			    DMU_READ_PREFETCH);
856			if (error)
857				return (error);
858			if (object != 0) {
859				dmu_buf_t *db;
860				error = dmu_bonus_hold(mos, object, FTAG, &db);
861				if (error)
862					return (error);
863				ASSERT3U(db->db_size, >=, sizeof (smo));
864				bcopy(db->db_data, &smo, sizeof (smo));
865				ASSERT3U(smo.smo_object, ==, object);
866				dmu_buf_rele(db, FTAG);
867			}
868		}
869		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
870		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
871	}
872
873	if (txg == 0)
874		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
875
876	/*
877	 * If the vdev is being removed we don't activate
878	 * the metaslabs since we want to ensure that no new
879	 * allocations are performed on this device.
880	 */
881	if (oldc == 0 && !vd->vdev_removing)
882		metaslab_group_activate(vd->vdev_mg);
883
884	if (txg == 0)
885		spa_config_exit(spa, SCL_ALLOC, FTAG);
886
887	return (0);
888}
889
890void
891vdev_metaslab_fini(vdev_t *vd)
892{
893	uint64_t m;
894	uint64_t count = vd->vdev_ms_count;
895
896	if (vd->vdev_ms != NULL) {
897		metaslab_group_passivate(vd->vdev_mg);
898		for (m = 0; m < count; m++)
899			if (vd->vdev_ms[m] != NULL)
900				metaslab_fini(vd->vdev_ms[m]);
901		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
902		vd->vdev_ms = NULL;
903	}
904}
905
906typedef struct vdev_probe_stats {
907	boolean_t	vps_readable;
908	boolean_t	vps_writeable;
909	int		vps_flags;
910} vdev_probe_stats_t;
911
912static void
913vdev_probe_done(zio_t *zio)
914{
915	spa_t *spa = zio->io_spa;
916	vdev_t *vd = zio->io_vd;
917	vdev_probe_stats_t *vps = zio->io_private;
918
919	ASSERT(vd->vdev_probe_zio != NULL);
920
921	if (zio->io_type == ZIO_TYPE_READ) {
922		if (zio->io_error == 0)
923			vps->vps_readable = 1;
924		if (zio->io_error == 0 && spa_writeable(spa)) {
925			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
926			    zio->io_offset, zio->io_size, zio->io_data,
927			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
928			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
929		} else {
930			zio_buf_free(zio->io_data, zio->io_size);
931		}
932	} else if (zio->io_type == ZIO_TYPE_WRITE) {
933		if (zio->io_error == 0)
934			vps->vps_writeable = 1;
935		zio_buf_free(zio->io_data, zio->io_size);
936	} else if (zio->io_type == ZIO_TYPE_NULL) {
937		zio_t *pio;
938
939		vd->vdev_cant_read |= !vps->vps_readable;
940		vd->vdev_cant_write |= !vps->vps_writeable;
941
942		if (vdev_readable(vd) &&
943		    (vdev_writeable(vd) || !spa_writeable(spa))) {
944			zio->io_error = 0;
945		} else {
946			ASSERT(zio->io_error != 0);
947			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
948			    spa, vd, NULL, 0, 0);
949			zio->io_error = SET_ERROR(ENXIO);
950		}
951
952		mutex_enter(&vd->vdev_probe_lock);
953		ASSERT(vd->vdev_probe_zio == zio);
954		vd->vdev_probe_zio = NULL;
955		mutex_exit(&vd->vdev_probe_lock);
956
957		while ((pio = zio_walk_parents(zio)) != NULL)
958			if (!vdev_accessible(vd, pio))
959				pio->io_error = SET_ERROR(ENXIO);
960
961		kmem_free(vps, sizeof (*vps));
962	}
963}
964
965/*
966 * Determine whether this device is accessible.
967 *
968 * Read and write to several known locations: the pad regions of each
969 * vdev label but the first, which we leave alone in case it contains
970 * a VTOC.
971 */
972zio_t *
973vdev_probe(vdev_t *vd, zio_t *zio)
974{
975	spa_t *spa = vd->vdev_spa;
976	vdev_probe_stats_t *vps = NULL;
977	zio_t *pio;
978
979	ASSERT(vd->vdev_ops->vdev_op_leaf);
980
981	/*
982	 * Don't probe the probe.
983	 */
984	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
985		return (NULL);
986
987	/*
988	 * To prevent 'probe storms' when a device fails, we create
989	 * just one probe i/o at a time.  All zios that want to probe
990	 * this vdev will become parents of the probe io.
991	 */
992	mutex_enter(&vd->vdev_probe_lock);
993
994	if ((pio = vd->vdev_probe_zio) == NULL) {
995		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
996
997		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
998		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
999		    ZIO_FLAG_TRYHARD;
1000
1001		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1002			/*
1003			 * vdev_cant_read and vdev_cant_write can only
1004			 * transition from TRUE to FALSE when we have the
1005			 * SCL_ZIO lock as writer; otherwise they can only
1006			 * transition from FALSE to TRUE.  This ensures that
1007			 * any zio looking at these values can assume that
1008			 * failures persist for the life of the I/O.  That's
1009			 * important because when a device has intermittent
1010			 * connectivity problems, we want to ensure that
1011			 * they're ascribed to the device (ENXIO) and not
1012			 * the zio (EIO).
1013			 *
1014			 * Since we hold SCL_ZIO as writer here, clear both
1015			 * values so the probe can reevaluate from first
1016			 * principles.
1017			 */
1018			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1019			vd->vdev_cant_read = B_FALSE;
1020			vd->vdev_cant_write = B_FALSE;
1021		}
1022
1023		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1024		    vdev_probe_done, vps,
1025		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1026
1027		/*
1028		 * We can't change the vdev state in this context, so we
1029		 * kick off an async task to do it on our behalf.
1030		 */
1031		if (zio != NULL) {
1032			vd->vdev_probe_wanted = B_TRUE;
1033			spa_async_request(spa, SPA_ASYNC_PROBE);
1034		}
1035	}
1036
1037	if (zio != NULL)
1038		zio_add_child(zio, pio);
1039
1040	mutex_exit(&vd->vdev_probe_lock);
1041
1042	if (vps == NULL) {
1043		ASSERT(zio != NULL);
1044		return (NULL);
1045	}
1046
1047	for (int l = 1; l < VDEV_LABELS; l++) {
1048		zio_nowait(zio_read_phys(pio, vd,
1049		    vdev_label_offset(vd->vdev_psize, l,
1050		    offsetof(vdev_label_t, vl_pad2)),
1051		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1052		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1053		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1054	}
1055
1056	if (zio == NULL)
1057		return (pio);
1058
1059	zio_nowait(pio);
1060	return (NULL);
1061}
1062
1063static void
1064vdev_open_child(void *arg)
1065{
1066	vdev_t *vd = arg;
1067
1068	vd->vdev_open_thread = curthread;
1069	vd->vdev_open_error = vdev_open(vd);
1070	vd->vdev_open_thread = NULL;
1071}
1072
1073boolean_t
1074vdev_uses_zvols(vdev_t *vd)
1075{
1076	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1077	    strlen(ZVOL_DIR)) == 0)
1078		return (B_TRUE);
1079	for (int c = 0; c < vd->vdev_children; c++)
1080		if (vdev_uses_zvols(vd->vdev_child[c]))
1081			return (B_TRUE);
1082	return (B_FALSE);
1083}
1084
1085void
1086vdev_open_children(vdev_t *vd)
1087{
1088	taskq_t *tq;
1089	int children = vd->vdev_children;
1090
1091	/*
1092	 * in order to handle pools on top of zvols, do the opens
1093	 * in a single thread so that the same thread holds the
1094	 * spa_namespace_lock
1095	 */
1096	if (B_TRUE || vdev_uses_zvols(vd)) {
1097		for (int c = 0; c < children; c++)
1098			vd->vdev_child[c]->vdev_open_error =
1099			    vdev_open(vd->vdev_child[c]);
1100		return;
1101	}
1102	tq = taskq_create("vdev_open", children, minclsyspri,
1103	    children, children, TASKQ_PREPOPULATE);
1104
1105	for (int c = 0; c < children; c++)
1106		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1107		    TQ_SLEEP) != 0);
1108
1109	taskq_destroy(tq);
1110}
1111
1112/*
1113 * Prepare a virtual device for access.
1114 */
1115int
1116vdev_open(vdev_t *vd)
1117{
1118	spa_t *spa = vd->vdev_spa;
1119	int error;
1120	uint64_t osize = 0;
1121	uint64_t max_osize = 0;
1122	uint64_t asize, max_asize, psize;
1123	uint64_t ashift = 0;
1124
1125	ASSERT(vd->vdev_open_thread == curthread ||
1126	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1127	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1128	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1129	    vd->vdev_state == VDEV_STATE_OFFLINE);
1130
1131	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1132	vd->vdev_cant_read = B_FALSE;
1133	vd->vdev_cant_write = B_FALSE;
1134	vd->vdev_min_asize = vdev_get_min_asize(vd);
1135
1136	/*
1137	 * If this vdev is not removed, check its fault status.  If it's
1138	 * faulted, bail out of the open.
1139	 */
1140	if (!vd->vdev_removed && vd->vdev_faulted) {
1141		ASSERT(vd->vdev_children == 0);
1142		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1143		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1144		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1145		    vd->vdev_label_aux);
1146		return (SET_ERROR(ENXIO));
1147	} else if (vd->vdev_offline) {
1148		ASSERT(vd->vdev_children == 0);
1149		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1150		return (SET_ERROR(ENXIO));
1151	}
1152
1153	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1154
1155	/*
1156	 * Reset the vdev_reopening flag so that we actually close
1157	 * the vdev on error.
1158	 */
1159	vd->vdev_reopening = B_FALSE;
1160	if (zio_injection_enabled && error == 0)
1161		error = zio_handle_device_injection(vd, NULL, ENXIO);
1162
1163	if (error) {
1164		if (vd->vdev_removed &&
1165		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1166			vd->vdev_removed = B_FALSE;
1167
1168		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1169		    vd->vdev_stat.vs_aux);
1170		return (error);
1171	}
1172
1173	vd->vdev_removed = B_FALSE;
1174
1175	/*
1176	 * Recheck the faulted flag now that we have confirmed that
1177	 * the vdev is accessible.  If we're faulted, bail.
1178	 */
1179	if (vd->vdev_faulted) {
1180		ASSERT(vd->vdev_children == 0);
1181		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1182		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1183		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1184		    vd->vdev_label_aux);
1185		return (SET_ERROR(ENXIO));
1186	}
1187
1188	if (vd->vdev_degraded) {
1189		ASSERT(vd->vdev_children == 0);
1190		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1191		    VDEV_AUX_ERR_EXCEEDED);
1192	} else {
1193		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1194	}
1195
1196	/*
1197	 * For hole or missing vdevs we just return success.
1198	 */
1199	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1200		return (0);
1201
1202	if (vd->vdev_ops->vdev_op_leaf) {
1203		vd->vdev_notrim = B_FALSE;
1204		trim_map_create(vd);
1205	}
1206
1207	for (int c = 0; c < vd->vdev_children; c++) {
1208		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1209			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1210			    VDEV_AUX_NONE);
1211			break;
1212		}
1213	}
1214
1215	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1216	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1217
1218	if (vd->vdev_children == 0) {
1219		if (osize < SPA_MINDEVSIZE) {
1220			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1221			    VDEV_AUX_TOO_SMALL);
1222			return (SET_ERROR(EOVERFLOW));
1223		}
1224		psize = osize;
1225		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1226		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1227		    VDEV_LABEL_END_SIZE);
1228	} else {
1229		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1230		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1231			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1232			    VDEV_AUX_TOO_SMALL);
1233			return (SET_ERROR(EOVERFLOW));
1234		}
1235		psize = 0;
1236		asize = osize;
1237		max_asize = max_osize;
1238	}
1239
1240	vd->vdev_psize = psize;
1241
1242	/*
1243	 * Make sure the allocatable size hasn't shrunk.
1244	 */
1245	if (asize < vd->vdev_min_asize) {
1246		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1247		    VDEV_AUX_BAD_LABEL);
1248		return (SET_ERROR(EINVAL));
1249	}
1250
1251	if (vd->vdev_asize == 0) {
1252		/*
1253		 * This is the first-ever open, so use the computed values.
1254		 * For testing purposes, a higher ashift can be requested.
1255		 */
1256		vd->vdev_asize = asize;
1257		vd->vdev_max_asize = max_asize;
1258		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1259	} else {
1260		/*
1261		 * Detect if the alignment requirement has increased.
1262		 * We don't want to make the pool unavailable, just
1263		 * issue a warning instead.
1264		 */
1265		if (ashift > vd->vdev_top->vdev_ashift &&
1266		    vd->vdev_ops->vdev_op_leaf) {
1267			cmn_err(CE_WARN,
1268			    "Disk, '%s', has a block alignment that is "
1269			    "larger than the pool's alignment\n",
1270			    vd->vdev_path);
1271		}
1272		vd->vdev_max_asize = max_asize;
1273	}
1274
1275	/*
1276	 * If all children are healthy and the asize has increased,
1277	 * then we've experienced dynamic LUN growth.  If automatic
1278	 * expansion is enabled then use the additional space.
1279	 */
1280	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1281	    (vd->vdev_expanding || spa->spa_autoexpand))
1282		vd->vdev_asize = asize;
1283
1284	vdev_set_min_asize(vd);
1285
1286	/*
1287	 * Ensure we can issue some IO before declaring the
1288	 * vdev open for business.
1289	 */
1290	if (vd->vdev_ops->vdev_op_leaf &&
1291	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1292		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1293		    VDEV_AUX_ERR_EXCEEDED);
1294		return (error);
1295	}
1296
1297	/*
1298	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1299	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1300	 * since this would just restart the scrub we are already doing.
1301	 */
1302	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1303	    vdev_resilver_needed(vd, NULL, NULL))
1304		spa_async_request(spa, SPA_ASYNC_RESILVER);
1305
1306	return (0);
1307}
1308
1309/*
1310 * Called once the vdevs are all opened, this routine validates the label
1311 * contents.  This needs to be done before vdev_load() so that we don't
1312 * inadvertently do repair I/Os to the wrong device.
1313 *
1314 * If 'strict' is false ignore the spa guid check. This is necessary because
1315 * if the machine crashed during a re-guid the new guid might have been written
1316 * to all of the vdev labels, but not the cached config. The strict check
1317 * will be performed when the pool is opened again using the mos config.
1318 *
1319 * This function will only return failure if one of the vdevs indicates that it
1320 * has since been destroyed or exported.  This is only possible if
1321 * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1322 * will be updated but the function will return 0.
1323 */
1324int
1325vdev_validate(vdev_t *vd, boolean_t strict)
1326{
1327	spa_t *spa = vd->vdev_spa;
1328	nvlist_t *label;
1329	uint64_t guid = 0, top_guid;
1330	uint64_t state;
1331
1332	for (int c = 0; c < vd->vdev_children; c++)
1333		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1334			return (SET_ERROR(EBADF));
1335
1336	/*
1337	 * If the device has already failed, or was marked offline, don't do
1338	 * any further validation.  Otherwise, label I/O will fail and we will
1339	 * overwrite the previous state.
1340	 */
1341	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1342		uint64_t aux_guid = 0;
1343		nvlist_t *nvl;
1344		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1345		    spa_last_synced_txg(spa) : -1ULL;
1346
1347		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1348			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1349			    VDEV_AUX_BAD_LABEL);
1350			return (0);
1351		}
1352
1353		/*
1354		 * Determine if this vdev has been split off into another
1355		 * pool.  If so, then refuse to open it.
1356		 */
1357		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1358		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1359			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1360			    VDEV_AUX_SPLIT_POOL);
1361			nvlist_free(label);
1362			return (0);
1363		}
1364
1365		if (strict && (nvlist_lookup_uint64(label,
1366		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1367		    guid != spa_guid(spa))) {
1368			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1369			    VDEV_AUX_CORRUPT_DATA);
1370			nvlist_free(label);
1371			return (0);
1372		}
1373
1374		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1375		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1376		    &aux_guid) != 0)
1377			aux_guid = 0;
1378
1379		/*
1380		 * If this vdev just became a top-level vdev because its
1381		 * sibling was detached, it will have adopted the parent's
1382		 * vdev guid -- but the label may or may not be on disk yet.
1383		 * Fortunately, either version of the label will have the
1384		 * same top guid, so if we're a top-level vdev, we can
1385		 * safely compare to that instead.
1386		 *
1387		 * If we split this vdev off instead, then we also check the
1388		 * original pool's guid.  We don't want to consider the vdev
1389		 * corrupt if it is partway through a split operation.
1390		 */
1391		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1392		    &guid) != 0 ||
1393		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1394		    &top_guid) != 0 ||
1395		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1396		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1397			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1398			    VDEV_AUX_CORRUPT_DATA);
1399			nvlist_free(label);
1400			return (0);
1401		}
1402
1403		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1404		    &state) != 0) {
1405			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1406			    VDEV_AUX_CORRUPT_DATA);
1407			nvlist_free(label);
1408			return (0);
1409		}
1410
1411		nvlist_free(label);
1412
1413		/*
1414		 * If this is a verbatim import, no need to check the
1415		 * state of the pool.
1416		 */
1417		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1418		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1419		    state != POOL_STATE_ACTIVE)
1420			return (SET_ERROR(EBADF));
1421
1422		/*
1423		 * If we were able to open and validate a vdev that was
1424		 * previously marked permanently unavailable, clear that state
1425		 * now.
1426		 */
1427		if (vd->vdev_not_present)
1428			vd->vdev_not_present = 0;
1429	}
1430
1431	return (0);
1432}
1433
1434/*
1435 * Close a virtual device.
1436 */
1437void
1438vdev_close(vdev_t *vd)
1439{
1440	spa_t *spa = vd->vdev_spa;
1441	vdev_t *pvd = vd->vdev_parent;
1442
1443	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1444
1445	/*
1446	 * If our parent is reopening, then we are as well, unless we are
1447	 * going offline.
1448	 */
1449	if (pvd != NULL && pvd->vdev_reopening)
1450		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1451
1452	vd->vdev_ops->vdev_op_close(vd);
1453
1454	vdev_cache_purge(vd);
1455
1456	if (vd->vdev_ops->vdev_op_leaf)
1457		trim_map_destroy(vd);
1458
1459	/*
1460	 * We record the previous state before we close it, so that if we are
1461	 * doing a reopen(), we don't generate FMA ereports if we notice that
1462	 * it's still faulted.
1463	 */
1464	vd->vdev_prevstate = vd->vdev_state;
1465
1466	if (vd->vdev_offline)
1467		vd->vdev_state = VDEV_STATE_OFFLINE;
1468	else
1469		vd->vdev_state = VDEV_STATE_CLOSED;
1470	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1471}
1472
1473void
1474vdev_hold(vdev_t *vd)
1475{
1476	spa_t *spa = vd->vdev_spa;
1477
1478	ASSERT(spa_is_root(spa));
1479	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1480		return;
1481
1482	for (int c = 0; c < vd->vdev_children; c++)
1483		vdev_hold(vd->vdev_child[c]);
1484
1485	if (vd->vdev_ops->vdev_op_leaf)
1486		vd->vdev_ops->vdev_op_hold(vd);
1487}
1488
1489void
1490vdev_rele(vdev_t *vd)
1491{
1492	spa_t *spa = vd->vdev_spa;
1493
1494	ASSERT(spa_is_root(spa));
1495	for (int c = 0; c < vd->vdev_children; c++)
1496		vdev_rele(vd->vdev_child[c]);
1497
1498	if (vd->vdev_ops->vdev_op_leaf)
1499		vd->vdev_ops->vdev_op_rele(vd);
1500}
1501
1502/*
1503 * Reopen all interior vdevs and any unopened leaves.  We don't actually
1504 * reopen leaf vdevs which had previously been opened as they might deadlock
1505 * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1506 * If the leaf has never been opened then open it, as usual.
1507 */
1508void
1509vdev_reopen(vdev_t *vd)
1510{
1511	spa_t *spa = vd->vdev_spa;
1512
1513	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1514
1515	/* set the reopening flag unless we're taking the vdev offline */
1516	vd->vdev_reopening = !vd->vdev_offline;
1517	vdev_close(vd);
1518	(void) vdev_open(vd);
1519
1520	/*
1521	 * Call vdev_validate() here to make sure we have the same device.
1522	 * Otherwise, a device with an invalid label could be successfully
1523	 * opened in response to vdev_reopen().
1524	 */
1525	if (vd->vdev_aux) {
1526		(void) vdev_validate_aux(vd);
1527		if (vdev_readable(vd) && vdev_writeable(vd) &&
1528		    vd->vdev_aux == &spa->spa_l2cache &&
1529		    !l2arc_vdev_present(vd))
1530			l2arc_add_vdev(spa, vd);
1531	} else {
1532		(void) vdev_validate(vd, B_TRUE);
1533	}
1534
1535	/*
1536	 * Reassess parent vdev's health.
1537	 */
1538	vdev_propagate_state(vd);
1539}
1540
1541int
1542vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1543{
1544	int error;
1545
1546	/*
1547	 * Normally, partial opens (e.g. of a mirror) are allowed.
1548	 * For a create, however, we want to fail the request if
1549	 * there are any components we can't open.
1550	 */
1551	error = vdev_open(vd);
1552
1553	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1554		vdev_close(vd);
1555		return (error ? error : ENXIO);
1556	}
1557
1558	/*
1559	 * Recursively initialize all labels.
1560	 */
1561	if ((error = vdev_label_init(vd, txg, isreplacing ?
1562	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1563		vdev_close(vd);
1564		return (error);
1565	}
1566
1567	return (0);
1568}
1569
1570void
1571vdev_metaslab_set_size(vdev_t *vd)
1572{
1573	/*
1574	 * Aim for roughly 200 metaslabs per vdev.
1575	 */
1576	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1577	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1578}
1579
1580void
1581vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1582{
1583	ASSERT(vd == vd->vdev_top);
1584	ASSERT(!vd->vdev_ishole);
1585	ASSERT(ISP2(flags));
1586	ASSERT(spa_writeable(vd->vdev_spa));
1587
1588	if (flags & VDD_METASLAB)
1589		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1590
1591	if (flags & VDD_DTL)
1592		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1593
1594	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1595}
1596
1597/*
1598 * DTLs.
1599 *
1600 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1601 * the vdev has less than perfect replication.  There are four kinds of DTL:
1602 *
1603 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1604 *
1605 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1606 *
1607 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1608 *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1609 *	txgs that was scrubbed.
1610 *
1611 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1612 *	persistent errors or just some device being offline.
1613 *	Unlike the other three, the DTL_OUTAGE map is not generally
1614 *	maintained; it's only computed when needed, typically to
1615 *	determine whether a device can be detached.
1616 *
1617 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1618 * either has the data or it doesn't.
1619 *
1620 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1621 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1622 * if any child is less than fully replicated, then so is its parent.
1623 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1624 * comprising only those txgs which appear in 'maxfaults' or more children;
1625 * those are the txgs we don't have enough replication to read.  For example,
1626 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1627 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1628 * two child DTL_MISSING maps.
1629 *
1630 * It should be clear from the above that to compute the DTLs and outage maps
1631 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1632 * Therefore, that is all we keep on disk.  When loading the pool, or after
1633 * a configuration change, we generate all other DTLs from first principles.
1634 */
1635void
1636vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1637{
1638	space_map_t *sm = &vd->vdev_dtl[t];
1639
1640	ASSERT(t < DTL_TYPES);
1641	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1642	ASSERT(spa_writeable(vd->vdev_spa));
1643
1644	mutex_enter(sm->sm_lock);
1645	if (!space_map_contains(sm, txg, size))
1646		space_map_add(sm, txg, size);
1647	mutex_exit(sm->sm_lock);
1648}
1649
1650boolean_t
1651vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1652{
1653	space_map_t *sm = &vd->vdev_dtl[t];
1654	boolean_t dirty = B_FALSE;
1655
1656	ASSERT(t < DTL_TYPES);
1657	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1658
1659	mutex_enter(sm->sm_lock);
1660	if (sm->sm_space != 0)
1661		dirty = space_map_contains(sm, txg, size);
1662	mutex_exit(sm->sm_lock);
1663
1664	return (dirty);
1665}
1666
1667boolean_t
1668vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1669{
1670	space_map_t *sm = &vd->vdev_dtl[t];
1671	boolean_t empty;
1672
1673	mutex_enter(sm->sm_lock);
1674	empty = (sm->sm_space == 0);
1675	mutex_exit(sm->sm_lock);
1676
1677	return (empty);
1678}
1679
1680/*
1681 * Reassess DTLs after a config change or scrub completion.
1682 */
1683void
1684vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1685{
1686	spa_t *spa = vd->vdev_spa;
1687	avl_tree_t reftree;
1688	int minref;
1689
1690	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1691
1692	for (int c = 0; c < vd->vdev_children; c++)
1693		vdev_dtl_reassess(vd->vdev_child[c], txg,
1694		    scrub_txg, scrub_done);
1695
1696	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1697		return;
1698
1699	if (vd->vdev_ops->vdev_op_leaf) {
1700		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1701
1702		mutex_enter(&vd->vdev_dtl_lock);
1703		if (scrub_txg != 0 &&
1704		    (spa->spa_scrub_started ||
1705		    (scn && scn->scn_phys.scn_errors == 0))) {
1706			/*
1707			 * We completed a scrub up to scrub_txg.  If we
1708			 * did it without rebooting, then the scrub dtl
1709			 * will be valid, so excise the old region and
1710			 * fold in the scrub dtl.  Otherwise, leave the
1711			 * dtl as-is if there was an error.
1712			 *
1713			 * There's little trick here: to excise the beginning
1714			 * of the DTL_MISSING map, we put it into a reference
1715			 * tree and then add a segment with refcnt -1 that
1716			 * covers the range [0, scrub_txg).  This means
1717			 * that each txg in that range has refcnt -1 or 0.
1718			 * We then add DTL_SCRUB with a refcnt of 2, so that
1719			 * entries in the range [0, scrub_txg) will have a
1720			 * positive refcnt -- either 1 or 2.  We then convert
1721			 * the reference tree into the new DTL_MISSING map.
1722			 */
1723			space_map_ref_create(&reftree);
1724			space_map_ref_add_map(&reftree,
1725			    &vd->vdev_dtl[DTL_MISSING], 1);
1726			space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1727			space_map_ref_add_map(&reftree,
1728			    &vd->vdev_dtl[DTL_SCRUB], 2);
1729			space_map_ref_generate_map(&reftree,
1730			    &vd->vdev_dtl[DTL_MISSING], 1);
1731			space_map_ref_destroy(&reftree);
1732		}
1733		space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1734		space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1735		    space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1736		if (scrub_done)
1737			space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1738		space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1739		if (!vdev_readable(vd))
1740			space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1741		else
1742			space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1743			    space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1744		mutex_exit(&vd->vdev_dtl_lock);
1745
1746		if (txg != 0)
1747			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1748		return;
1749	}
1750
1751	mutex_enter(&vd->vdev_dtl_lock);
1752	for (int t = 0; t < DTL_TYPES; t++) {
1753		/* account for child's outage in parent's missing map */
1754		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1755		if (t == DTL_SCRUB)
1756			continue;			/* leaf vdevs only */
1757		if (t == DTL_PARTIAL)
1758			minref = 1;			/* i.e. non-zero */
1759		else if (vd->vdev_nparity != 0)
1760			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1761		else
1762			minref = vd->vdev_children;	/* any kind of mirror */
1763		space_map_ref_create(&reftree);
1764		for (int c = 0; c < vd->vdev_children; c++) {
1765			vdev_t *cvd = vd->vdev_child[c];
1766			mutex_enter(&cvd->vdev_dtl_lock);
1767			space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1768			mutex_exit(&cvd->vdev_dtl_lock);
1769		}
1770		space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1771		space_map_ref_destroy(&reftree);
1772	}
1773	mutex_exit(&vd->vdev_dtl_lock);
1774}
1775
1776static int
1777vdev_dtl_load(vdev_t *vd)
1778{
1779	spa_t *spa = vd->vdev_spa;
1780	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1781	objset_t *mos = spa->spa_meta_objset;
1782	dmu_buf_t *db;
1783	int error;
1784
1785	ASSERT(vd->vdev_children == 0);
1786
1787	if (smo->smo_object == 0)
1788		return (0);
1789
1790	ASSERT(!vd->vdev_ishole);
1791
1792	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1793		return (error);
1794
1795	ASSERT3U(db->db_size, >=, sizeof (*smo));
1796	bcopy(db->db_data, smo, sizeof (*smo));
1797	dmu_buf_rele(db, FTAG);
1798
1799	mutex_enter(&vd->vdev_dtl_lock);
1800	error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1801	    NULL, SM_ALLOC, smo, mos);
1802	mutex_exit(&vd->vdev_dtl_lock);
1803
1804	return (error);
1805}
1806
1807void
1808vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1809{
1810	spa_t *spa = vd->vdev_spa;
1811	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1812	space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1813	objset_t *mos = spa->spa_meta_objset;
1814	space_map_t smsync;
1815	kmutex_t smlock;
1816	dmu_buf_t *db;
1817	dmu_tx_t *tx;
1818
1819	ASSERT(!vd->vdev_ishole);
1820
1821	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1822
1823	if (vd->vdev_detached) {
1824		if (smo->smo_object != 0) {
1825			int err = dmu_object_free(mos, smo->smo_object, tx);
1826			ASSERT0(err);
1827			smo->smo_object = 0;
1828		}
1829		dmu_tx_commit(tx);
1830		return;
1831	}
1832
1833	if (smo->smo_object == 0) {
1834		ASSERT(smo->smo_objsize == 0);
1835		ASSERT(smo->smo_alloc == 0);
1836		smo->smo_object = dmu_object_alloc(mos,
1837		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1838		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1839		ASSERT(smo->smo_object != 0);
1840		vdev_config_dirty(vd->vdev_top);
1841	}
1842
1843	bzero(&smlock, sizeof (smlock));
1844	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1845
1846	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1847	    &smlock);
1848
1849	mutex_enter(&smlock);
1850
1851	mutex_enter(&vd->vdev_dtl_lock);
1852	space_map_walk(sm, space_map_add, &smsync);
1853	mutex_exit(&vd->vdev_dtl_lock);
1854
1855	space_map_truncate(smo, mos, tx);
1856	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1857	space_map_vacate(&smsync, NULL, NULL);
1858
1859	space_map_destroy(&smsync);
1860
1861	mutex_exit(&smlock);
1862	mutex_destroy(&smlock);
1863
1864	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1865	dmu_buf_will_dirty(db, tx);
1866	ASSERT3U(db->db_size, >=, sizeof (*smo));
1867	bcopy(smo, db->db_data, sizeof (*smo));
1868	dmu_buf_rele(db, FTAG);
1869
1870	dmu_tx_commit(tx);
1871}
1872
1873/*
1874 * Determine whether the specified vdev can be offlined/detached/removed
1875 * without losing data.
1876 */
1877boolean_t
1878vdev_dtl_required(vdev_t *vd)
1879{
1880	spa_t *spa = vd->vdev_spa;
1881	vdev_t *tvd = vd->vdev_top;
1882	uint8_t cant_read = vd->vdev_cant_read;
1883	boolean_t required;
1884
1885	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1886
1887	if (vd == spa->spa_root_vdev || vd == tvd)
1888		return (B_TRUE);
1889
1890	/*
1891	 * Temporarily mark the device as unreadable, and then determine
1892	 * whether this results in any DTL outages in the top-level vdev.
1893	 * If not, we can safely offline/detach/remove the device.
1894	 */
1895	vd->vdev_cant_read = B_TRUE;
1896	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1897	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1898	vd->vdev_cant_read = cant_read;
1899	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1900
1901	if (!required && zio_injection_enabled)
1902		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1903
1904	return (required);
1905}
1906
1907/*
1908 * Determine if resilver is needed, and if so the txg range.
1909 */
1910boolean_t
1911vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1912{
1913	boolean_t needed = B_FALSE;
1914	uint64_t thismin = UINT64_MAX;
1915	uint64_t thismax = 0;
1916
1917	if (vd->vdev_children == 0) {
1918		mutex_enter(&vd->vdev_dtl_lock);
1919		if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1920		    vdev_writeable(vd)) {
1921			space_seg_t *ss;
1922
1923			ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1924			thismin = ss->ss_start - 1;
1925			ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1926			thismax = ss->ss_end;
1927			needed = B_TRUE;
1928		}
1929		mutex_exit(&vd->vdev_dtl_lock);
1930	} else {
1931		for (int c = 0; c < vd->vdev_children; c++) {
1932			vdev_t *cvd = vd->vdev_child[c];
1933			uint64_t cmin, cmax;
1934
1935			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1936				thismin = MIN(thismin, cmin);
1937				thismax = MAX(thismax, cmax);
1938				needed = B_TRUE;
1939			}
1940		}
1941	}
1942
1943	if (needed && minp) {
1944		*minp = thismin;
1945		*maxp = thismax;
1946	}
1947	return (needed);
1948}
1949
1950void
1951vdev_load(vdev_t *vd)
1952{
1953	/*
1954	 * Recursively load all children.
1955	 */
1956	for (int c = 0; c < vd->vdev_children; c++)
1957		vdev_load(vd->vdev_child[c]);
1958
1959	/*
1960	 * If this is a top-level vdev, initialize its metaslabs.
1961	 */
1962	if (vd == vd->vdev_top && !vd->vdev_ishole &&
1963	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1964	    vdev_metaslab_init(vd, 0) != 0))
1965		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1966		    VDEV_AUX_CORRUPT_DATA);
1967
1968	/*
1969	 * If this is a leaf vdev, load its DTL.
1970	 */
1971	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1972		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1973		    VDEV_AUX_CORRUPT_DATA);
1974}
1975
1976/*
1977 * The special vdev case is used for hot spares and l2cache devices.  Its
1978 * sole purpose it to set the vdev state for the associated vdev.  To do this,
1979 * we make sure that we can open the underlying device, then try to read the
1980 * label, and make sure that the label is sane and that it hasn't been
1981 * repurposed to another pool.
1982 */
1983int
1984vdev_validate_aux(vdev_t *vd)
1985{
1986	nvlist_t *label;
1987	uint64_t guid, version;
1988	uint64_t state;
1989
1990	if (!vdev_readable(vd))
1991		return (0);
1992
1993	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
1994		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1995		    VDEV_AUX_CORRUPT_DATA);
1996		return (-1);
1997	}
1998
1999	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2000	    !SPA_VERSION_IS_SUPPORTED(version) ||
2001	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2002	    guid != vd->vdev_guid ||
2003	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2004		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2005		    VDEV_AUX_CORRUPT_DATA);
2006		nvlist_free(label);
2007		return (-1);
2008	}
2009
2010	/*
2011	 * We don't actually check the pool state here.  If it's in fact in
2012	 * use by another pool, we update this fact on the fly when requested.
2013	 */
2014	nvlist_free(label);
2015	return (0);
2016}
2017
2018void
2019vdev_remove(vdev_t *vd, uint64_t txg)
2020{
2021	spa_t *spa = vd->vdev_spa;
2022	objset_t *mos = spa->spa_meta_objset;
2023	dmu_tx_t *tx;
2024
2025	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2026
2027	if (vd->vdev_dtl_smo.smo_object) {
2028		ASSERT0(vd->vdev_dtl_smo.smo_alloc);
2029		(void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2030		vd->vdev_dtl_smo.smo_object = 0;
2031	}
2032
2033	if (vd->vdev_ms != NULL) {
2034		for (int m = 0; m < vd->vdev_ms_count; m++) {
2035			metaslab_t *msp = vd->vdev_ms[m];
2036
2037			if (msp == NULL || msp->ms_smo.smo_object == 0)
2038				continue;
2039
2040			ASSERT0(msp->ms_smo.smo_alloc);
2041			(void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2042			msp->ms_smo.smo_object = 0;
2043		}
2044	}
2045
2046	if (vd->vdev_ms_array) {
2047		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2048		vd->vdev_ms_array = 0;
2049		vd->vdev_ms_shift = 0;
2050	}
2051	dmu_tx_commit(tx);
2052}
2053
2054void
2055vdev_sync_done(vdev_t *vd, uint64_t txg)
2056{
2057	metaslab_t *msp;
2058	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2059
2060	ASSERT(!vd->vdev_ishole);
2061
2062	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2063		metaslab_sync_done(msp, txg);
2064
2065	if (reassess)
2066		metaslab_sync_reassess(vd->vdev_mg);
2067}
2068
2069void
2070vdev_sync(vdev_t *vd, uint64_t txg)
2071{
2072	spa_t *spa = vd->vdev_spa;
2073	vdev_t *lvd;
2074	metaslab_t *msp;
2075	dmu_tx_t *tx;
2076
2077	ASSERT(!vd->vdev_ishole);
2078
2079	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2080		ASSERT(vd == vd->vdev_top);
2081		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2082		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2083		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2084		ASSERT(vd->vdev_ms_array != 0);
2085		vdev_config_dirty(vd);
2086		dmu_tx_commit(tx);
2087	}
2088
2089	/*
2090	 * Remove the metadata associated with this vdev once it's empty.
2091	 */
2092	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2093		vdev_remove(vd, txg);
2094
2095	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2096		metaslab_sync(msp, txg);
2097		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2098	}
2099
2100	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2101		vdev_dtl_sync(lvd, txg);
2102
2103	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2104}
2105
2106uint64_t
2107vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2108{
2109	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2110}
2111
2112/*
2113 * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2114 * not be opened, and no I/O is attempted.
2115 */
2116int
2117vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2118{
2119	vdev_t *vd, *tvd;
2120
2121	spa_vdev_state_enter(spa, SCL_NONE);
2122
2123	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2124		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2125
2126	if (!vd->vdev_ops->vdev_op_leaf)
2127		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2128
2129	tvd = vd->vdev_top;
2130
2131	/*
2132	 * We don't directly use the aux state here, but if we do a
2133	 * vdev_reopen(), we need this value to be present to remember why we
2134	 * were faulted.
2135	 */
2136	vd->vdev_label_aux = aux;
2137
2138	/*
2139	 * Faulted state takes precedence over degraded.
2140	 */
2141	vd->vdev_delayed_close = B_FALSE;
2142	vd->vdev_faulted = 1ULL;
2143	vd->vdev_degraded = 0ULL;
2144	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2145
2146	/*
2147	 * If this device has the only valid copy of the data, then
2148	 * back off and simply mark the vdev as degraded instead.
2149	 */
2150	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2151		vd->vdev_degraded = 1ULL;
2152		vd->vdev_faulted = 0ULL;
2153
2154		/*
2155		 * If we reopen the device and it's not dead, only then do we
2156		 * mark it degraded.
2157		 */
2158		vdev_reopen(tvd);
2159
2160		if (vdev_readable(vd))
2161			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2162	}
2163
2164	return (spa_vdev_state_exit(spa, vd, 0));
2165}
2166
2167/*
2168 * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2169 * user that something is wrong.  The vdev continues to operate as normal as far
2170 * as I/O is concerned.
2171 */
2172int
2173vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2174{
2175	vdev_t *vd;
2176
2177	spa_vdev_state_enter(spa, SCL_NONE);
2178
2179	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2180		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2181
2182	if (!vd->vdev_ops->vdev_op_leaf)
2183		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2184
2185	/*
2186	 * If the vdev is already faulted, then don't do anything.
2187	 */
2188	if (vd->vdev_faulted || vd->vdev_degraded)
2189		return (spa_vdev_state_exit(spa, NULL, 0));
2190
2191	vd->vdev_degraded = 1ULL;
2192	if (!vdev_is_dead(vd))
2193		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2194		    aux);
2195
2196	return (spa_vdev_state_exit(spa, vd, 0));
2197}
2198
2199/*
2200 * Online the given vdev.
2201 *
2202 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2203 * spare device should be detached when the device finishes resilvering.
2204 * Second, the online should be treated like a 'test' online case, so no FMA
2205 * events are generated if the device fails to open.
2206 */
2207int
2208vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2209{
2210	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2211
2212	spa_vdev_state_enter(spa, SCL_NONE);
2213
2214	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2215		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2216
2217	if (!vd->vdev_ops->vdev_op_leaf)
2218		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2219
2220	tvd = vd->vdev_top;
2221	vd->vdev_offline = B_FALSE;
2222	vd->vdev_tmpoffline = B_FALSE;
2223	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2224	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2225
2226	/* XXX - L2ARC 1.0 does not support expansion */
2227	if (!vd->vdev_aux) {
2228		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2229			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2230	}
2231
2232	vdev_reopen(tvd);
2233	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2234
2235	if (!vd->vdev_aux) {
2236		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2237			pvd->vdev_expanding = B_FALSE;
2238	}
2239
2240	if (newstate)
2241		*newstate = vd->vdev_state;
2242	if ((flags & ZFS_ONLINE_UNSPARE) &&
2243	    !vdev_is_dead(vd) && vd->vdev_parent &&
2244	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2245	    vd->vdev_parent->vdev_child[0] == vd)
2246		vd->vdev_unspare = B_TRUE;
2247
2248	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2249
2250		/* XXX - L2ARC 1.0 does not support expansion */
2251		if (vd->vdev_aux)
2252			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2253		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2254	}
2255	return (spa_vdev_state_exit(spa, vd, 0));
2256}
2257
2258static int
2259vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2260{
2261	vdev_t *vd, *tvd;
2262	int error = 0;
2263	uint64_t generation;
2264	metaslab_group_t *mg;
2265
2266top:
2267	spa_vdev_state_enter(spa, SCL_ALLOC);
2268
2269	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2270		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2271
2272	if (!vd->vdev_ops->vdev_op_leaf)
2273		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2274
2275	tvd = vd->vdev_top;
2276	mg = tvd->vdev_mg;
2277	generation = spa->spa_config_generation + 1;
2278
2279	/*
2280	 * If the device isn't already offline, try to offline it.
2281	 */
2282	if (!vd->vdev_offline) {
2283		/*
2284		 * If this device has the only valid copy of some data,
2285		 * don't allow it to be offlined. Log devices are always
2286		 * expendable.
2287		 */
2288		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2289		    vdev_dtl_required(vd))
2290			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2291
2292		/*
2293		 * If the top-level is a slog and it has had allocations
2294		 * then proceed.  We check that the vdev's metaslab group
2295		 * is not NULL since it's possible that we may have just
2296		 * added this vdev but not yet initialized its metaslabs.
2297		 */
2298		if (tvd->vdev_islog && mg != NULL) {
2299			/*
2300			 * Prevent any future allocations.
2301			 */
2302			metaslab_group_passivate(mg);
2303			(void) spa_vdev_state_exit(spa, vd, 0);
2304
2305			error = spa_offline_log(spa);
2306
2307			spa_vdev_state_enter(spa, SCL_ALLOC);
2308
2309			/*
2310			 * Check to see if the config has changed.
2311			 */
2312			if (error || generation != spa->spa_config_generation) {
2313				metaslab_group_activate(mg);
2314				if (error)
2315					return (spa_vdev_state_exit(spa,
2316					    vd, error));
2317				(void) spa_vdev_state_exit(spa, vd, 0);
2318				goto top;
2319			}
2320			ASSERT0(tvd->vdev_stat.vs_alloc);
2321		}
2322
2323		/*
2324		 * Offline this device and reopen its top-level vdev.
2325		 * If the top-level vdev is a log device then just offline
2326		 * it. Otherwise, if this action results in the top-level
2327		 * vdev becoming unusable, undo it and fail the request.
2328		 */
2329		vd->vdev_offline = B_TRUE;
2330		vdev_reopen(tvd);
2331
2332		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2333		    vdev_is_dead(tvd)) {
2334			vd->vdev_offline = B_FALSE;
2335			vdev_reopen(tvd);
2336			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2337		}
2338
2339		/*
2340		 * Add the device back into the metaslab rotor so that
2341		 * once we online the device it's open for business.
2342		 */
2343		if (tvd->vdev_islog && mg != NULL)
2344			metaslab_group_activate(mg);
2345	}
2346
2347	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2348
2349	return (spa_vdev_state_exit(spa, vd, 0));
2350}
2351
2352int
2353vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2354{
2355	int error;
2356
2357	mutex_enter(&spa->spa_vdev_top_lock);
2358	error = vdev_offline_locked(spa, guid, flags);
2359	mutex_exit(&spa->spa_vdev_top_lock);
2360
2361	return (error);
2362}
2363
2364/*
2365 * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2366 * vdev_offline(), we assume the spa config is locked.  We also clear all
2367 * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2368 */
2369void
2370vdev_clear(spa_t *spa, vdev_t *vd)
2371{
2372	vdev_t *rvd = spa->spa_root_vdev;
2373
2374	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2375
2376	if (vd == NULL)
2377		vd = rvd;
2378
2379	vd->vdev_stat.vs_read_errors = 0;
2380	vd->vdev_stat.vs_write_errors = 0;
2381	vd->vdev_stat.vs_checksum_errors = 0;
2382
2383	for (int c = 0; c < vd->vdev_children; c++)
2384		vdev_clear(spa, vd->vdev_child[c]);
2385
2386	if (vd == rvd) {
2387		for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
2388			vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2389
2390		for (int c = 0; c < spa->spa_spares.sav_count; c++)
2391			vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2392	}
2393
2394	/*
2395	 * If we're in the FAULTED state or have experienced failed I/O, then
2396	 * clear the persistent state and attempt to reopen the device.  We
2397	 * also mark the vdev config dirty, so that the new faulted state is
2398	 * written out to disk.
2399	 */
2400	if (vd->vdev_faulted || vd->vdev_degraded ||
2401	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2402
2403		/*
2404		 * When reopening in reponse to a clear event, it may be due to
2405		 * a fmadm repair request.  In this case, if the device is
2406		 * still broken, we want to still post the ereport again.
2407		 */
2408		vd->vdev_forcefault = B_TRUE;
2409
2410		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2411		vd->vdev_cant_read = B_FALSE;
2412		vd->vdev_cant_write = B_FALSE;
2413
2414		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2415
2416		vd->vdev_forcefault = B_FALSE;
2417
2418		if (vd != rvd && vdev_writeable(vd->vdev_top))
2419			vdev_state_dirty(vd->vdev_top);
2420
2421		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2422			spa_async_request(spa, SPA_ASYNC_RESILVER);
2423
2424		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2425	}
2426
2427	/*
2428	 * When clearing a FMA-diagnosed fault, we always want to
2429	 * unspare the device, as we assume that the original spare was
2430	 * done in response to the FMA fault.
2431	 */
2432	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2433	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2434	    vd->vdev_parent->vdev_child[0] == vd)
2435		vd->vdev_unspare = B_TRUE;
2436}
2437
2438boolean_t
2439vdev_is_dead(vdev_t *vd)
2440{
2441	/*
2442	 * Holes and missing devices are always considered "dead".
2443	 * This simplifies the code since we don't have to check for
2444	 * these types of devices in the various code paths.
2445	 * Instead we rely on the fact that we skip over dead devices
2446	 * before issuing I/O to them.
2447	 */
2448	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2449	    vd->vdev_ops == &vdev_missing_ops);
2450}
2451
2452boolean_t
2453vdev_readable(vdev_t *vd)
2454{
2455	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2456}
2457
2458boolean_t
2459vdev_writeable(vdev_t *vd)
2460{
2461	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2462}
2463
2464boolean_t
2465vdev_allocatable(vdev_t *vd)
2466{
2467	uint64_t state = vd->vdev_state;
2468
2469	/*
2470	 * We currently allow allocations from vdevs which may be in the
2471	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2472	 * fails to reopen then we'll catch it later when we're holding
2473	 * the proper locks.  Note that we have to get the vdev state
2474	 * in a local variable because although it changes atomically,
2475	 * we're asking two separate questions about it.
2476	 */
2477	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2478	    !vd->vdev_cant_write && !vd->vdev_ishole);
2479}
2480
2481boolean_t
2482vdev_accessible(vdev_t *vd, zio_t *zio)
2483{
2484	ASSERT(zio->io_vd == vd);
2485
2486	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2487		return (B_FALSE);
2488
2489	if (zio->io_type == ZIO_TYPE_READ)
2490		return (!vd->vdev_cant_read);
2491
2492	if (zio->io_type == ZIO_TYPE_WRITE)
2493		return (!vd->vdev_cant_write);
2494
2495	return (B_TRUE);
2496}
2497
2498/*
2499 * Get statistics for the given vdev.
2500 */
2501void
2502vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2503{
2504	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2505
2506	mutex_enter(&vd->vdev_stat_lock);
2507	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2508	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2509	vs->vs_state = vd->vdev_state;
2510	vs->vs_rsize = vdev_get_min_asize(vd);
2511	if (vd->vdev_ops->vdev_op_leaf)
2512		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2513	vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2514	mutex_exit(&vd->vdev_stat_lock);
2515
2516	/*
2517	 * If we're getting stats on the root vdev, aggregate the I/O counts
2518	 * over all top-level vdevs (i.e. the direct children of the root).
2519	 */
2520	if (vd == rvd) {
2521		for (int c = 0; c < rvd->vdev_children; c++) {
2522			vdev_t *cvd = rvd->vdev_child[c];
2523			vdev_stat_t *cvs = &cvd->vdev_stat;
2524
2525			mutex_enter(&vd->vdev_stat_lock);
2526			for (int t = 0; t < ZIO_TYPES; t++) {
2527				vs->vs_ops[t] += cvs->vs_ops[t];
2528				vs->vs_bytes[t] += cvs->vs_bytes[t];
2529			}
2530			cvs->vs_scan_removing = cvd->vdev_removing;
2531			mutex_exit(&vd->vdev_stat_lock);
2532		}
2533	}
2534}
2535
2536void
2537vdev_clear_stats(vdev_t *vd)
2538{
2539	mutex_enter(&vd->vdev_stat_lock);
2540	vd->vdev_stat.vs_space = 0;
2541	vd->vdev_stat.vs_dspace = 0;
2542	vd->vdev_stat.vs_alloc = 0;
2543	mutex_exit(&vd->vdev_stat_lock);
2544}
2545
2546void
2547vdev_scan_stat_init(vdev_t *vd)
2548{
2549	vdev_stat_t *vs = &vd->vdev_stat;
2550
2551	for (int c = 0; c < vd->vdev_children; c++)
2552		vdev_scan_stat_init(vd->vdev_child[c]);
2553
2554	mutex_enter(&vd->vdev_stat_lock);
2555	vs->vs_scan_processed = 0;
2556	mutex_exit(&vd->vdev_stat_lock);
2557}
2558
2559void
2560vdev_stat_update(zio_t *zio, uint64_t psize)
2561{
2562	spa_t *spa = zio->io_spa;
2563	vdev_t *rvd = spa->spa_root_vdev;
2564	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2565	vdev_t *pvd;
2566	uint64_t txg = zio->io_txg;
2567	vdev_stat_t *vs = &vd->vdev_stat;
2568	zio_type_t type = zio->io_type;
2569	int flags = zio->io_flags;
2570
2571	/*
2572	 * If this i/o is a gang leader, it didn't do any actual work.
2573	 */
2574	if (zio->io_gang_tree)
2575		return;
2576
2577	if (zio->io_error == 0) {
2578		/*
2579		 * If this is a root i/o, don't count it -- we've already
2580		 * counted the top-level vdevs, and vdev_get_stats() will
2581		 * aggregate them when asked.  This reduces contention on
2582		 * the root vdev_stat_lock and implicitly handles blocks
2583		 * that compress away to holes, for which there is no i/o.
2584		 * (Holes never create vdev children, so all the counters
2585		 * remain zero, which is what we want.)
2586		 *
2587		 * Note: this only applies to successful i/o (io_error == 0)
2588		 * because unlike i/o counts, errors are not additive.
2589		 * When reading a ditto block, for example, failure of
2590		 * one top-level vdev does not imply a root-level error.
2591		 */
2592		if (vd == rvd)
2593			return;
2594
2595		ASSERT(vd == zio->io_vd);
2596
2597		if (flags & ZIO_FLAG_IO_BYPASS)
2598			return;
2599
2600		mutex_enter(&vd->vdev_stat_lock);
2601
2602		if (flags & ZIO_FLAG_IO_REPAIR) {
2603			if (flags & ZIO_FLAG_SCAN_THREAD) {
2604				dsl_scan_phys_t *scn_phys =
2605				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2606				uint64_t *processed = &scn_phys->scn_processed;
2607
2608				/* XXX cleanup? */
2609				if (vd->vdev_ops->vdev_op_leaf)
2610					atomic_add_64(processed, psize);
2611				vs->vs_scan_processed += psize;
2612			}
2613
2614			if (flags & ZIO_FLAG_SELF_HEAL)
2615				vs->vs_self_healed += psize;
2616		}
2617
2618		vs->vs_ops[type]++;
2619		vs->vs_bytes[type] += psize;
2620
2621		mutex_exit(&vd->vdev_stat_lock);
2622		return;
2623	}
2624
2625	if (flags & ZIO_FLAG_SPECULATIVE)
2626		return;
2627
2628	/*
2629	 * If this is an I/O error that is going to be retried, then ignore the
2630	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2631	 * hard errors, when in reality they can happen for any number of
2632	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2633	 */
2634	if (zio->io_error == EIO &&
2635	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2636		return;
2637
2638	/*
2639	 * Intent logs writes won't propagate their error to the root
2640	 * I/O so don't mark these types of failures as pool-level
2641	 * errors.
2642	 */
2643	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2644		return;
2645
2646	mutex_enter(&vd->vdev_stat_lock);
2647	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2648		if (zio->io_error == ECKSUM)
2649			vs->vs_checksum_errors++;
2650		else
2651			vs->vs_read_errors++;
2652	}
2653	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2654		vs->vs_write_errors++;
2655	mutex_exit(&vd->vdev_stat_lock);
2656
2657	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2658	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2659	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2660	    spa->spa_claiming)) {
2661		/*
2662		 * This is either a normal write (not a repair), or it's
2663		 * a repair induced by the scrub thread, or it's a repair
2664		 * made by zil_claim() during spa_load() in the first txg.
2665		 * In the normal case, we commit the DTL change in the same
2666		 * txg as the block was born.  In the scrub-induced repair
2667		 * case, we know that scrubs run in first-pass syncing context,
2668		 * so we commit the DTL change in spa_syncing_txg(spa).
2669		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2670		 *
2671		 * We currently do not make DTL entries for failed spontaneous
2672		 * self-healing writes triggered by normal (non-scrubbing)
2673		 * reads, because we have no transactional context in which to
2674		 * do so -- and it's not clear that it'd be desirable anyway.
2675		 */
2676		if (vd->vdev_ops->vdev_op_leaf) {
2677			uint64_t commit_txg = txg;
2678			if (flags & ZIO_FLAG_SCAN_THREAD) {
2679				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2680				ASSERT(spa_sync_pass(spa) == 1);
2681				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2682				commit_txg = spa_syncing_txg(spa);
2683			} else if (spa->spa_claiming) {
2684				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2685				commit_txg = spa_first_txg(spa);
2686			}
2687			ASSERT(commit_txg >= spa_syncing_txg(spa));
2688			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2689				return;
2690			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2691				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2692			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2693		}
2694		if (vd != rvd)
2695			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2696	}
2697}
2698
2699/*
2700 * Update the in-core space usage stats for this vdev, its metaslab class,
2701 * and the root vdev.
2702 */
2703void
2704vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2705    int64_t space_delta)
2706{
2707	int64_t dspace_delta = space_delta;
2708	spa_t *spa = vd->vdev_spa;
2709	vdev_t *rvd = spa->spa_root_vdev;
2710	metaslab_group_t *mg = vd->vdev_mg;
2711	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2712
2713	ASSERT(vd == vd->vdev_top);
2714
2715	/*
2716	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2717	 * factor.  We must calculate this here and not at the root vdev
2718	 * because the root vdev's psize-to-asize is simply the max of its
2719	 * childrens', thus not accurate enough for us.
2720	 */
2721	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2722	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2723	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2724	    vd->vdev_deflate_ratio;
2725
2726	mutex_enter(&vd->vdev_stat_lock);
2727	vd->vdev_stat.vs_alloc += alloc_delta;
2728	vd->vdev_stat.vs_space += space_delta;
2729	vd->vdev_stat.vs_dspace += dspace_delta;
2730	mutex_exit(&vd->vdev_stat_lock);
2731
2732	if (mc == spa_normal_class(spa)) {
2733		mutex_enter(&rvd->vdev_stat_lock);
2734		rvd->vdev_stat.vs_alloc += alloc_delta;
2735		rvd->vdev_stat.vs_space += space_delta;
2736		rvd->vdev_stat.vs_dspace += dspace_delta;
2737		mutex_exit(&rvd->vdev_stat_lock);
2738	}
2739
2740	if (mc != NULL) {
2741		ASSERT(rvd == vd->vdev_parent);
2742		ASSERT(vd->vdev_ms_count != 0);
2743
2744		metaslab_class_space_update(mc,
2745		    alloc_delta, defer_delta, space_delta, dspace_delta);
2746	}
2747}
2748
2749/*
2750 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2751 * so that it will be written out next time the vdev configuration is synced.
2752 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2753 */
2754void
2755vdev_config_dirty(vdev_t *vd)
2756{
2757	spa_t *spa = vd->vdev_spa;
2758	vdev_t *rvd = spa->spa_root_vdev;
2759	int c;
2760
2761	ASSERT(spa_writeable(spa));
2762
2763	/*
2764	 * If this is an aux vdev (as with l2cache and spare devices), then we
2765	 * update the vdev config manually and set the sync flag.
2766	 */
2767	if (vd->vdev_aux != NULL) {
2768		spa_aux_vdev_t *sav = vd->vdev_aux;
2769		nvlist_t **aux;
2770		uint_t naux;
2771
2772		for (c = 0; c < sav->sav_count; c++) {
2773			if (sav->sav_vdevs[c] == vd)
2774				break;
2775		}
2776
2777		if (c == sav->sav_count) {
2778			/*
2779			 * We're being removed.  There's nothing more to do.
2780			 */
2781			ASSERT(sav->sav_sync == B_TRUE);
2782			return;
2783		}
2784
2785		sav->sav_sync = B_TRUE;
2786
2787		if (nvlist_lookup_nvlist_array(sav->sav_config,
2788		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2789			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2790			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2791		}
2792
2793		ASSERT(c < naux);
2794
2795		/*
2796		 * Setting the nvlist in the middle if the array is a little
2797		 * sketchy, but it will work.
2798		 */
2799		nvlist_free(aux[c]);
2800		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2801
2802		return;
2803	}
2804
2805	/*
2806	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2807	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2808	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2809	 * so this is sufficient to ensure mutual exclusion.
2810	 */
2811	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2812	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2813	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2814
2815	if (vd == rvd) {
2816		for (c = 0; c < rvd->vdev_children; c++)
2817			vdev_config_dirty(rvd->vdev_child[c]);
2818	} else {
2819		ASSERT(vd == vd->vdev_top);
2820
2821		if (!list_link_active(&vd->vdev_config_dirty_node) &&
2822		    !vd->vdev_ishole)
2823			list_insert_head(&spa->spa_config_dirty_list, vd);
2824	}
2825}
2826
2827void
2828vdev_config_clean(vdev_t *vd)
2829{
2830	spa_t *spa = vd->vdev_spa;
2831
2832	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2833	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2834	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2835
2836	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2837	list_remove(&spa->spa_config_dirty_list, vd);
2838}
2839
2840/*
2841 * Mark a top-level vdev's state as dirty, so that the next pass of
2842 * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2843 * the state changes from larger config changes because they require
2844 * much less locking, and are often needed for administrative actions.
2845 */
2846void
2847vdev_state_dirty(vdev_t *vd)
2848{
2849	spa_t *spa = vd->vdev_spa;
2850
2851	ASSERT(spa_writeable(spa));
2852	ASSERT(vd == vd->vdev_top);
2853
2854	/*
2855	 * The state list is protected by the SCL_STATE lock.  The caller
2856	 * must either hold SCL_STATE as writer, or must be the sync thread
2857	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2858	 * so this is sufficient to ensure mutual exclusion.
2859	 */
2860	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2861	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2862	    spa_config_held(spa, SCL_STATE, RW_READER)));
2863
2864	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2865		list_insert_head(&spa->spa_state_dirty_list, vd);
2866}
2867
2868void
2869vdev_state_clean(vdev_t *vd)
2870{
2871	spa_t *spa = vd->vdev_spa;
2872
2873	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2874	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2875	    spa_config_held(spa, SCL_STATE, RW_READER)));
2876
2877	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2878	list_remove(&spa->spa_state_dirty_list, vd);
2879}
2880
2881/*
2882 * Propagate vdev state up from children to parent.
2883 */
2884void
2885vdev_propagate_state(vdev_t *vd)
2886{
2887	spa_t *spa = vd->vdev_spa;
2888	vdev_t *rvd = spa->spa_root_vdev;
2889	int degraded = 0, faulted = 0;
2890	int corrupted = 0;
2891	vdev_t *child;
2892
2893	if (vd->vdev_children > 0) {
2894		for (int c = 0; c < vd->vdev_children; c++) {
2895			child = vd->vdev_child[c];
2896
2897			/*
2898			 * Don't factor holes into the decision.
2899			 */
2900			if (child->vdev_ishole)
2901				continue;
2902
2903			if (!vdev_readable(child) ||
2904			    (!vdev_writeable(child) && spa_writeable(spa))) {
2905				/*
2906				 * Root special: if there is a top-level log
2907				 * device, treat the root vdev as if it were
2908				 * degraded.
2909				 */
2910				if (child->vdev_islog && vd == rvd)
2911					degraded++;
2912				else
2913					faulted++;
2914			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2915				degraded++;
2916			}
2917
2918			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2919				corrupted++;
2920		}
2921
2922		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2923
2924		/*
2925		 * Root special: if there is a top-level vdev that cannot be
2926		 * opened due to corrupted metadata, then propagate the root
2927		 * vdev's aux state as 'corrupt' rather than 'insufficient
2928		 * replicas'.
2929		 */
2930		if (corrupted && vd == rvd &&
2931		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2932			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2933			    VDEV_AUX_CORRUPT_DATA);
2934	}
2935
2936	if (vd->vdev_parent)
2937		vdev_propagate_state(vd->vdev_parent);
2938}
2939
2940/*
2941 * Set a vdev's state.  If this is during an open, we don't update the parent
2942 * state, because we're in the process of opening children depth-first.
2943 * Otherwise, we propagate the change to the parent.
2944 *
2945 * If this routine places a device in a faulted state, an appropriate ereport is
2946 * generated.
2947 */
2948void
2949vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2950{
2951	uint64_t save_state;
2952	spa_t *spa = vd->vdev_spa;
2953
2954	if (state == vd->vdev_state) {
2955		vd->vdev_stat.vs_aux = aux;
2956		return;
2957	}
2958
2959	save_state = vd->vdev_state;
2960
2961	vd->vdev_state = state;
2962	vd->vdev_stat.vs_aux = aux;
2963
2964	/*
2965	 * If we are setting the vdev state to anything but an open state, then
2966	 * always close the underlying device unless the device has requested
2967	 * a delayed close (i.e. we're about to remove or fault the device).
2968	 * Otherwise, we keep accessible but invalid devices open forever.
2969	 * We don't call vdev_close() itself, because that implies some extra
2970	 * checks (offline, etc) that we don't want here.  This is limited to
2971	 * leaf devices, because otherwise closing the device will affect other
2972	 * children.
2973	 */
2974	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2975	    vd->vdev_ops->vdev_op_leaf)
2976		vd->vdev_ops->vdev_op_close(vd);
2977
2978	/*
2979	 * If we have brought this vdev back into service, we need
2980	 * to notify fmd so that it can gracefully repair any outstanding
2981	 * cases due to a missing device.  We do this in all cases, even those
2982	 * that probably don't correlate to a repaired fault.  This is sure to
2983	 * catch all cases, and we let the zfs-retire agent sort it out.  If
2984	 * this is a transient state it's OK, as the retire agent will
2985	 * double-check the state of the vdev before repairing it.
2986	 */
2987	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2988	    vd->vdev_prevstate != state)
2989		zfs_post_state_change(spa, vd);
2990
2991	if (vd->vdev_removed &&
2992	    state == VDEV_STATE_CANT_OPEN &&
2993	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2994		/*
2995		 * If the previous state is set to VDEV_STATE_REMOVED, then this
2996		 * device was previously marked removed and someone attempted to
2997		 * reopen it.  If this failed due to a nonexistent device, then
2998		 * keep the device in the REMOVED state.  We also let this be if
2999		 * it is one of our special test online cases, which is only
3000		 * attempting to online the device and shouldn't generate an FMA
3001		 * fault.
3002		 */
3003		vd->vdev_state = VDEV_STATE_REMOVED;
3004		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3005	} else if (state == VDEV_STATE_REMOVED) {
3006		vd->vdev_removed = B_TRUE;
3007	} else if (state == VDEV_STATE_CANT_OPEN) {
3008		/*
3009		 * If we fail to open a vdev during an import or recovery, we
3010		 * mark it as "not available", which signifies that it was
3011		 * never there to begin with.  Failure to open such a device
3012		 * is not considered an error.
3013		 */
3014		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3015		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3016		    vd->vdev_ops->vdev_op_leaf)
3017			vd->vdev_not_present = 1;
3018
3019		/*
3020		 * Post the appropriate ereport.  If the 'prevstate' field is
3021		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3022		 * that this is part of a vdev_reopen().  In this case, we don't
3023		 * want to post the ereport if the device was already in the
3024		 * CANT_OPEN state beforehand.
3025		 *
3026		 * If the 'checkremove' flag is set, then this is an attempt to
3027		 * online the device in response to an insertion event.  If we
3028		 * hit this case, then we have detected an insertion event for a
3029		 * faulted or offline device that wasn't in the removed state.
3030		 * In this scenario, we don't post an ereport because we are
3031		 * about to replace the device, or attempt an online with
3032		 * vdev_forcefault, which will generate the fault for us.
3033		 */
3034		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3035		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3036		    vd != spa->spa_root_vdev) {
3037			const char *class;
3038
3039			switch (aux) {
3040			case VDEV_AUX_OPEN_FAILED:
3041				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3042				break;
3043			case VDEV_AUX_CORRUPT_DATA:
3044				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3045				break;
3046			case VDEV_AUX_NO_REPLICAS:
3047				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3048				break;
3049			case VDEV_AUX_BAD_GUID_SUM:
3050				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3051				break;
3052			case VDEV_AUX_TOO_SMALL:
3053				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3054				break;
3055			case VDEV_AUX_BAD_LABEL:
3056				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3057				break;
3058			default:
3059				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3060			}
3061
3062			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3063		}
3064
3065		/* Erase any notion of persistent removed state */
3066		vd->vdev_removed = B_FALSE;
3067	} else {
3068		vd->vdev_removed = B_FALSE;
3069	}
3070
3071	if (!isopen && vd->vdev_parent)
3072		vdev_propagate_state(vd->vdev_parent);
3073}
3074
3075/*
3076 * Check the vdev configuration to ensure that it's capable of supporting
3077 * a root pool.
3078 *
3079 * On Solaris, we do not support RAID-Z or partial configuration.  In
3080 * addition, only a single top-level vdev is allowed and none of the
3081 * leaves can be wholedisks.
3082 *
3083 * For FreeBSD, we can boot from any configuration. There is a
3084 * limitation that the boot filesystem must be either uncompressed or
3085 * compresses with lzjb compression but I'm not sure how to enforce
3086 * that here.
3087 */
3088boolean_t
3089vdev_is_bootable(vdev_t *vd)
3090{
3091#ifdef sun
3092	if (!vd->vdev_ops->vdev_op_leaf) {
3093		char *vdev_type = vd->vdev_ops->vdev_op_type;
3094
3095		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3096		    vd->vdev_children > 1) {
3097			return (B_FALSE);
3098		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3099		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3100			return (B_FALSE);
3101		}
3102	} else if (vd->vdev_wholedisk == 1) {
3103		return (B_FALSE);
3104	}
3105
3106	for (int c = 0; c < vd->vdev_children; c++) {
3107		if (!vdev_is_bootable(vd->vdev_child[c]))
3108			return (B_FALSE);
3109	}
3110#endif	/* sun */
3111	return (B_TRUE);
3112}
3113
3114/*
3115 * Load the state from the original vdev tree (ovd) which
3116 * we've retrieved from the MOS config object. If the original
3117 * vdev was offline or faulted then we transfer that state to the
3118 * device in the current vdev tree (nvd).
3119 */
3120void
3121vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3122{
3123	spa_t *spa = nvd->vdev_spa;
3124
3125	ASSERT(nvd->vdev_top->vdev_islog);
3126	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3127	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3128
3129	for (int c = 0; c < nvd->vdev_children; c++)
3130		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3131
3132	if (nvd->vdev_ops->vdev_op_leaf) {
3133		/*
3134		 * Restore the persistent vdev state
3135		 */
3136		nvd->vdev_offline = ovd->vdev_offline;
3137		nvd->vdev_faulted = ovd->vdev_faulted;
3138		nvd->vdev_degraded = ovd->vdev_degraded;
3139		nvd->vdev_removed = ovd->vdev_removed;
3140	}
3141}
3142
3143/*
3144 * Determine if a log device has valid content.  If the vdev was
3145 * removed or faulted in the MOS config then we know that
3146 * the content on the log device has already been written to the pool.
3147 */
3148boolean_t
3149vdev_log_state_valid(vdev_t *vd)
3150{
3151	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3152	    !vd->vdev_removed)
3153		return (B_TRUE);
3154
3155	for (int c = 0; c < vd->vdev_children; c++)
3156		if (vdev_log_state_valid(vd->vdev_child[c]))
3157			return (B_TRUE);
3158
3159	return (B_FALSE);
3160}
3161
3162/*
3163 * Expand a vdev if possible.
3164 */
3165void
3166vdev_expand(vdev_t *vd, uint64_t txg)
3167{
3168	ASSERT(vd->vdev_top == vd);
3169	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3170
3171	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3172		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3173		vdev_config_dirty(vd);
3174	}
3175}
3176
3177/*
3178 * Split a vdev.
3179 */
3180void
3181vdev_split(vdev_t *vd)
3182{
3183	vdev_t *cvd, *pvd = vd->vdev_parent;
3184
3185	vdev_remove_child(pvd, vd);
3186	vdev_compact_children(pvd);
3187
3188	cvd = pvd->vdev_child[0];
3189	if (pvd->vdev_children == 1) {
3190		vdev_remove_parent(cvd);
3191		cvd->vdev_splitting = B_TRUE;
3192	}
3193	vdev_propagate_state(cvd);
3194}
3195
3196void
3197vdev_deadman(vdev_t *vd)
3198{
3199	for (int c = 0; c < vd->vdev_children; c++) {
3200		vdev_t *cvd = vd->vdev_child[c];
3201
3202		vdev_deadman(cvd);
3203	}
3204
3205	if (vd->vdev_ops->vdev_op_leaf) {
3206		vdev_queue_t *vq = &vd->vdev_queue;
3207
3208		mutex_enter(&vq->vq_lock);
3209		if (avl_numnodes(&vq->vq_pending_tree) > 0) {
3210			spa_t *spa = vd->vdev_spa;
3211			zio_t *fio;
3212			uint64_t delta;
3213
3214			/*
3215			 * Look at the head of all the pending queues,
3216			 * if any I/O has been outstanding for longer than
3217			 * the spa_deadman_synctime we panic the system.
3218			 */
3219			fio = avl_first(&vq->vq_pending_tree);
3220			delta = gethrtime() - fio->io_timestamp;
3221			if (delta > spa_deadman_synctime(spa)) {
3222				zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3223				    "delta %lluns, last io %lluns",
3224				    fio->io_timestamp, delta,
3225				    vq->vq_io_complete_ts);
3226				fm_panic("I/O to pool '%s' appears to be "
3227				    "hung on vdev guid %llu at '%s'.",
3228				    spa_name(spa),
3229				    (long long unsigned int) vd->vdev_guid,
3230				    vd->vdev_path);
3231			}
3232		}
3233		mutex_exit(&vq->vq_lock);
3234	}
3235}
3236