vdev.c revision 297077
1168404Spjd/*
2168404Spjd * CDDL HEADER START
3168404Spjd *
4168404Spjd * The contents of this file are subject to the terms of the
5168404Spjd * Common Development and Distribution License (the "License").
6168404Spjd * You may not use this file except in compliance with the License.
7168404Spjd *
8168404Spjd * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9168404Spjd * or http://www.opensolaris.org/os/licensing.
10168404Spjd * See the License for the specific language governing permissions
11168404Spjd * and limitations under the License.
12168404Spjd *
13168404Spjd * When distributing Covered Code, include this CDDL HEADER in each
14168404Spjd * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15168404Spjd * If applicable, add the following below this CDDL HEADER, with the
16168404Spjd * fields enclosed by brackets "[]" replaced with your own identifying
17168404Spjd * information: Portions Copyright [yyyy] [name of copyright owner]
18168404Spjd *
19168404Spjd * CDDL HEADER END
20168404Spjd */
21168404Spjd
22168404Spjd/*
23219089Spjd * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24285001Savg * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25285001Savg * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
26247348Smm * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27168404Spjd */
28168404Spjd
29168404Spjd#include <sys/zfs_context.h>
30168404Spjd#include <sys/fm/fs/zfs.h>
31168404Spjd#include <sys/spa.h>
32168404Spjd#include <sys/spa_impl.h>
33168404Spjd#include <sys/dmu.h>
34168404Spjd#include <sys/dmu_tx.h>
35168404Spjd#include <sys/vdev_impl.h>
36168404Spjd#include <sys/uberblock_impl.h>
37168404Spjd#include <sys/metaslab.h>
38168404Spjd#include <sys/metaslab_impl.h>
39168404Spjd#include <sys/space_map.h>
40262093Savg#include <sys/space_reftree.h>
41168404Spjd#include <sys/zio.h>
42168404Spjd#include <sys/zap.h>
43168404Spjd#include <sys/fs/zfs.h>
44185029Spjd#include <sys/arc.h>
45213197Smm#include <sys/zil.h>
46219089Spjd#include <sys/dsl_scan.h>
47240868Spjd#include <sys/trim_map.h>
48168404Spjd
49168404SpjdSYSCTL_DECL(_vfs_zfs);
50168404SpjdSYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
51168404Spjd
52168404Spjd/*
53168404Spjd * Virtual device management.
54168404Spjd */
55168404Spjd
56266122Ssmh/*
57254591Sgibbs * The limit for ZFS to automatically increase a top-level vdev's ashift
58254591Sgibbs * from logical ashift to physical ashift.
59254591Sgibbs *
60254591Sgibbs * Example: one or more 512B emulation child vdevs
61254591Sgibbs *          child->vdev_ashift = 9 (512 bytes)
62254591Sgibbs *          child->vdev_physical_ashift = 12 (4096 bytes)
63254591Sgibbs *          zfs_max_auto_ashift = 11 (2048 bytes)
64266122Ssmh *          zfs_min_auto_ashift = 9 (512 bytes)
65254591Sgibbs *
66266122Ssmh * On pool creation or the addition of a new top-level vdev, ZFS will
67266122Ssmh * increase the ashift of the top-level vdev to 2048 as limited by
68266122Ssmh * zfs_max_auto_ashift.
69254591Sgibbs *
70254591Sgibbs * Example: one or more 512B emulation child vdevs
71254591Sgibbs *          child->vdev_ashift = 9 (512 bytes)
72254591Sgibbs *          child->vdev_physical_ashift = 12 (4096 bytes)
73254591Sgibbs *          zfs_max_auto_ashift = 13 (8192 bytes)
74266122Ssmh *          zfs_min_auto_ashift = 9 (512 bytes)
75254591Sgibbs *
76266122Ssmh * On pool creation or the addition of a new top-level vdev, ZFS will
77266122Ssmh * increase the ashift of the top-level vdev to 4096 to match the
78266122Ssmh * max vdev_physical_ashift.
79266122Ssmh *
80266122Ssmh * Example: one or more 512B emulation child vdevs
81266122Ssmh *          child->vdev_ashift = 9 (512 bytes)
82266122Ssmh *          child->vdev_physical_ashift = 9 (512 bytes)
83266122Ssmh *          zfs_max_auto_ashift = 13 (8192 bytes)
84266122Ssmh *          zfs_min_auto_ashift = 12 (4096 bytes)
85266122Ssmh *
86266122Ssmh * On pool creation or the addition of a new top-level vdev, ZFS will
87266122Ssmh * increase the ashift of the top-level vdev to 4096 to match the
88266122Ssmh * zfs_min_auto_ashift.
89254591Sgibbs */
90254591Sgibbsstatic uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
91266122Ssmhstatic uint64_t zfs_min_auto_ashift = SPA_MINASHIFT;
92254591Sgibbs
93254591Sgibbsstatic int
94254591Sgibbssysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
95254591Sgibbs{
96254591Sgibbs	uint64_t val;
97254591Sgibbs	int err;
98254591Sgibbs
99254591Sgibbs	val = zfs_max_auto_ashift;
100254591Sgibbs	err = sysctl_handle_64(oidp, &val, 0, req);
101254591Sgibbs	if (err != 0 || req->newptr == NULL)
102254591Sgibbs		return (err);
103254591Sgibbs
104266122Ssmh	if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift)
105266122Ssmh		return (EINVAL);
106254591Sgibbs
107254591Sgibbs	zfs_max_auto_ashift = val;
108254591Sgibbs
109254591Sgibbs	return (0);
110254591Sgibbs}
111254591SgibbsSYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
112254591Sgibbs    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
113254591Sgibbs    sysctl_vfs_zfs_max_auto_ashift, "QU",
114266122Ssmh    "Max ashift used when optimising for logical -> physical sectors size on "
115266122Ssmh    "new top-level vdevs.");
116254591Sgibbs
117266122Ssmhstatic int
118266122Ssmhsysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)
119266122Ssmh{
120266122Ssmh	uint64_t val;
121266122Ssmh	int err;
122266122Ssmh
123266122Ssmh	val = zfs_min_auto_ashift;
124266122Ssmh	err = sysctl_handle_64(oidp, &val, 0, req);
125266122Ssmh	if (err != 0 || req->newptr == NULL)
126266122Ssmh		return (err);
127266122Ssmh
128266122Ssmh	if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift)
129266122Ssmh		return (EINVAL);
130266122Ssmh
131266122Ssmh	zfs_min_auto_ashift = val;
132266122Ssmh
133266122Ssmh	return (0);
134266122Ssmh}
135266122SsmhSYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift,
136266122Ssmh    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
137266122Ssmh    sysctl_vfs_zfs_min_auto_ashift, "QU",
138266122Ssmh    "Min ashift used when creating new top-level vdevs.");
139266122Ssmh
140168404Spjdstatic vdev_ops_t *vdev_ops_table[] = {
141168404Spjd	&vdev_root_ops,
142168404Spjd	&vdev_raidz_ops,
143168404Spjd	&vdev_mirror_ops,
144168404Spjd	&vdev_replacing_ops,
145168404Spjd	&vdev_spare_ops,
146168404Spjd#ifdef _KERNEL
147168404Spjd	&vdev_geom_ops,
148168404Spjd#else
149168404Spjd	&vdev_disk_ops,
150185029Spjd#endif
151168404Spjd	&vdev_file_ops,
152168404Spjd	&vdev_missing_ops,
153219089Spjd	&vdev_hole_ops,
154168404Spjd	NULL
155168404Spjd};
156168404Spjd
157168404Spjd
158168404Spjd/*
159273343Sdelphij * When a vdev is added, it will be divided into approximately (but no
160273343Sdelphij * more than) this number of metaslabs.
161273343Sdelphij */
162273343Sdelphijint metaslabs_per_vdev = 200;
163273343SdelphijSYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, metaslabs_per_vdev, CTLFLAG_RDTUN,
164273343Sdelphij    &metaslabs_per_vdev, 0,
165273343Sdelphij    "When a vdev is added, how many metaslabs the vdev should be divided into");
166273343Sdelphij
167273343Sdelphij/*
168168404Spjd * Given a vdev type, return the appropriate ops vector.
169168404Spjd */
170168404Spjdstatic vdev_ops_t *
171168404Spjdvdev_getops(const char *type)
172168404Spjd{
173168404Spjd	vdev_ops_t *ops, **opspp;
174168404Spjd
175168404Spjd	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
176168404Spjd		if (strcmp(ops->vdev_op_type, type) == 0)
177168404Spjd			break;
178168404Spjd
179168404Spjd	return (ops);
180168404Spjd}
181168404Spjd
182168404Spjd/*
183168404Spjd * Default asize function: return the MAX of psize with the asize of
184168404Spjd * all children.  This is what's used by anything other than RAID-Z.
185168404Spjd */
186168404Spjduint64_t
187168404Spjdvdev_default_asize(vdev_t *vd, uint64_t psize)
188168404Spjd{
189168404Spjd	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
190168404Spjd	uint64_t csize;
191168404Spjd
192219089Spjd	for (int c = 0; c < vd->vdev_children; c++) {
193168404Spjd		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
194168404Spjd		asize = MAX(asize, csize);
195168404Spjd	}
196168404Spjd
197168404Spjd	return (asize);
198168404Spjd}
199168404Spjd
200168404Spjd/*
201219089Spjd * Get the minimum allocatable size. We define the allocatable size as
202219089Spjd * the vdev's asize rounded to the nearest metaslab. This allows us to
203219089Spjd * replace or attach devices which don't have the same physical size but
204219089Spjd * can still satisfy the same number of allocations.
205168404Spjd */
206168404Spjduint64_t
207219089Spjdvdev_get_min_asize(vdev_t *vd)
208168404Spjd{
209219089Spjd	vdev_t *pvd = vd->vdev_parent;
210168404Spjd
211219089Spjd	/*
212236155Smm	 * If our parent is NULL (inactive spare or cache) or is the root,
213219089Spjd	 * just return our own asize.
214219089Spjd	 */
215219089Spjd	if (pvd == NULL)
216219089Spjd		return (vd->vdev_asize);
217168404Spjd
218168404Spjd	/*
219219089Spjd	 * The top-level vdev just returns the allocatable size rounded
220219089Spjd	 * to the nearest metaslab.
221168404Spjd	 */
222219089Spjd	if (vd == vd->vdev_top)
223219089Spjd		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
224168404Spjd
225219089Spjd	/*
226219089Spjd	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
227219089Spjd	 * so each child must provide at least 1/Nth of its asize.
228219089Spjd	 */
229219089Spjd	if (pvd->vdev_ops == &vdev_raidz_ops)
230219089Spjd		return (pvd->vdev_min_asize / pvd->vdev_children);
231168404Spjd
232219089Spjd	return (pvd->vdev_min_asize);
233219089Spjd}
234168404Spjd
235219089Spjdvoid
236219089Spjdvdev_set_min_asize(vdev_t *vd)
237219089Spjd{
238219089Spjd	vd->vdev_min_asize = vdev_get_min_asize(vd);
239219089Spjd
240219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
241219089Spjd		vdev_set_min_asize(vd->vdev_child[c]);
242168404Spjd}
243168404Spjd
244168404Spjdvdev_t *
245168404Spjdvdev_lookup_top(spa_t *spa, uint64_t vdev)
246168404Spjd{
247168404Spjd	vdev_t *rvd = spa->spa_root_vdev;
248168404Spjd
249185029Spjd	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
250185029Spjd
251185029Spjd	if (vdev < rvd->vdev_children) {
252185029Spjd		ASSERT(rvd->vdev_child[vdev] != NULL);
253168404Spjd		return (rvd->vdev_child[vdev]);
254185029Spjd	}
255168404Spjd
256168404Spjd	return (NULL);
257168404Spjd}
258168404Spjd
259168404Spjdvdev_t *
260168404Spjdvdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
261168404Spjd{
262168404Spjd	vdev_t *mvd;
263168404Spjd
264168404Spjd	if (vd->vdev_guid == guid)
265168404Spjd		return (vd);
266168404Spjd
267219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
268168404Spjd		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
269168404Spjd		    NULL)
270168404Spjd			return (mvd);
271168404Spjd
272168404Spjd	return (NULL);
273168404Spjd}
274168404Spjd
275288569Smavstatic int
276288569Smavvdev_count_leaves_impl(vdev_t *vd)
277288569Smav{
278288569Smav	int n = 0;
279288569Smav
280288569Smav	if (vd->vdev_ops->vdev_op_leaf)
281288569Smav		return (1);
282288569Smav
283288569Smav	for (int c = 0; c < vd->vdev_children; c++)
284288569Smav		n += vdev_count_leaves_impl(vd->vdev_child[c]);
285288569Smav
286288569Smav	return (n);
287288569Smav}
288288569Smav
289288569Smavint
290288569Smavvdev_count_leaves(spa_t *spa)
291288569Smav{
292288569Smav	return (vdev_count_leaves_impl(spa->spa_root_vdev));
293288569Smav}
294288569Smav
295168404Spjdvoid
296168404Spjdvdev_add_child(vdev_t *pvd, vdev_t *cvd)
297168404Spjd{
298168404Spjd	size_t oldsize, newsize;
299168404Spjd	uint64_t id = cvd->vdev_id;
300168404Spjd	vdev_t **newchild;
301285001Savg	spa_t *spa = cvd->vdev_spa;
302168404Spjd
303285001Savg	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
304168404Spjd	ASSERT(cvd->vdev_parent == NULL);
305168404Spjd
306168404Spjd	cvd->vdev_parent = pvd;
307168404Spjd
308168404Spjd	if (pvd == NULL)
309168404Spjd		return;
310168404Spjd
311168404Spjd	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
312168404Spjd
313168404Spjd	oldsize = pvd->vdev_children * sizeof (vdev_t *);
314168404Spjd	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
315168404Spjd	newsize = pvd->vdev_children * sizeof (vdev_t *);
316168404Spjd
317168404Spjd	newchild = kmem_zalloc(newsize, KM_SLEEP);
318168404Spjd	if (pvd->vdev_child != NULL) {
319168404Spjd		bcopy(pvd->vdev_child, newchild, oldsize);
320168404Spjd		kmem_free(pvd->vdev_child, oldsize);
321168404Spjd	}
322168404Spjd
323168404Spjd	pvd->vdev_child = newchild;
324168404Spjd	pvd->vdev_child[id] = cvd;
325168404Spjd
326168404Spjd	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
327168404Spjd	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
328168404Spjd
329168404Spjd	/*
330168404Spjd	 * Walk up all ancestors to update guid sum.
331168404Spjd	 */
332168404Spjd	for (; pvd != NULL; pvd = pvd->vdev_parent)
333168404Spjd		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
334168404Spjd}
335168404Spjd
336168404Spjdvoid
337168404Spjdvdev_remove_child(vdev_t *pvd, vdev_t *cvd)
338168404Spjd{
339168404Spjd	int c;
340168404Spjd	uint_t id = cvd->vdev_id;
341168404Spjd
342168404Spjd	ASSERT(cvd->vdev_parent == pvd);
343168404Spjd
344168404Spjd	if (pvd == NULL)
345168404Spjd		return;
346168404Spjd
347168404Spjd	ASSERT(id < pvd->vdev_children);
348168404Spjd	ASSERT(pvd->vdev_child[id] == cvd);
349168404Spjd
350168404Spjd	pvd->vdev_child[id] = NULL;
351168404Spjd	cvd->vdev_parent = NULL;
352168404Spjd
353168404Spjd	for (c = 0; c < pvd->vdev_children; c++)
354168404Spjd		if (pvd->vdev_child[c])
355168404Spjd			break;
356168404Spjd
357168404Spjd	if (c == pvd->vdev_children) {
358168404Spjd		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
359168404Spjd		pvd->vdev_child = NULL;
360168404Spjd		pvd->vdev_children = 0;
361168404Spjd	}
362168404Spjd
363168404Spjd	/*
364168404Spjd	 * Walk up all ancestors to update guid sum.
365168404Spjd	 */
366168404Spjd	for (; pvd != NULL; pvd = pvd->vdev_parent)
367168404Spjd		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
368168404Spjd}
369168404Spjd
370168404Spjd/*
371168404Spjd * Remove any holes in the child array.
372168404Spjd */
373168404Spjdvoid
374168404Spjdvdev_compact_children(vdev_t *pvd)
375168404Spjd{
376168404Spjd	vdev_t **newchild, *cvd;
377168404Spjd	int oldc = pvd->vdev_children;
378219089Spjd	int newc;
379168404Spjd
380185029Spjd	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
381168404Spjd
382219089Spjd	for (int c = newc = 0; c < oldc; c++)
383168404Spjd		if (pvd->vdev_child[c])
384168404Spjd			newc++;
385168404Spjd
386168404Spjd	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
387168404Spjd
388219089Spjd	for (int c = newc = 0; c < oldc; c++) {
389168404Spjd		if ((cvd = pvd->vdev_child[c]) != NULL) {
390168404Spjd			newchild[newc] = cvd;
391168404Spjd			cvd->vdev_id = newc++;
392168404Spjd		}
393168404Spjd	}
394168404Spjd
395168404Spjd	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
396168404Spjd	pvd->vdev_child = newchild;
397168404Spjd	pvd->vdev_children = newc;
398168404Spjd}
399168404Spjd
400168404Spjd/*
401168404Spjd * Allocate and minimally initialize a vdev_t.
402168404Spjd */
403219089Spjdvdev_t *
404168404Spjdvdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
405168404Spjd{
406168404Spjd	vdev_t *vd;
407168404Spjd
408168404Spjd	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
409168404Spjd
410168404Spjd	if (spa->spa_root_vdev == NULL) {
411168404Spjd		ASSERT(ops == &vdev_root_ops);
412168404Spjd		spa->spa_root_vdev = vd;
413228103Smm		spa->spa_load_guid = spa_generate_guid(NULL);
414168404Spjd	}
415168404Spjd
416219089Spjd	if (guid == 0 && ops != &vdev_hole_ops) {
417168404Spjd		if (spa->spa_root_vdev == vd) {
418168404Spjd			/*
419168404Spjd			 * The root vdev's guid will also be the pool guid,
420168404Spjd			 * which must be unique among all pools.
421168404Spjd			 */
422219089Spjd			guid = spa_generate_guid(NULL);
423168404Spjd		} else {
424168404Spjd			/*
425168404Spjd			 * Any other vdev's guid must be unique within the pool.
426168404Spjd			 */
427219089Spjd			guid = spa_generate_guid(spa);
428168404Spjd		}
429168404Spjd		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
430168404Spjd	}
431168404Spjd
432168404Spjd	vd->vdev_spa = spa;
433168404Spjd	vd->vdev_id = id;
434168404Spjd	vd->vdev_guid = guid;
435168404Spjd	vd->vdev_guid_sum = guid;
436168404Spjd	vd->vdev_ops = ops;
437168404Spjd	vd->vdev_state = VDEV_STATE_CLOSED;
438219089Spjd	vd->vdev_ishole = (ops == &vdev_hole_ops);
439168404Spjd
440168404Spjd	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
441168404Spjd	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
442185029Spjd	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
443209962Smm	for (int t = 0; t < DTL_TYPES; t++) {
444262093Savg		vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
445209962Smm		    &vd->vdev_dtl_lock);
446209962Smm	}
447168404Spjd	txg_list_create(&vd->vdev_ms_list,
448168404Spjd	    offsetof(struct metaslab, ms_txg_node));
449168404Spjd	txg_list_create(&vd->vdev_dtl_list,
450168404Spjd	    offsetof(struct vdev, vdev_dtl_node));
451168404Spjd	vd->vdev_stat.vs_timestamp = gethrtime();
452185029Spjd	vdev_queue_init(vd);
453185029Spjd	vdev_cache_init(vd);
454168404Spjd
455168404Spjd	return (vd);
456168404Spjd}
457168404Spjd
458168404Spjd/*
459168404Spjd * Allocate a new vdev.  The 'alloctype' is used to control whether we are
460168404Spjd * creating a new vdev or loading an existing one - the behavior is slightly
461168404Spjd * different for each case.
462168404Spjd */
463168404Spjdint
464168404Spjdvdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
465168404Spjd    int alloctype)
466168404Spjd{
467168404Spjd	vdev_ops_t *ops;
468168404Spjd	char *type;
469185029Spjd	uint64_t guid = 0, islog, nparity;
470168404Spjd	vdev_t *vd;
471168404Spjd
472185029Spjd	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
473168404Spjd
474168404Spjd	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
475249195Smm		return (SET_ERROR(EINVAL));
476168404Spjd
477168404Spjd	if ((ops = vdev_getops(type)) == NULL)
478249195Smm		return (SET_ERROR(EINVAL));
479168404Spjd
480168404Spjd	/*
481168404Spjd	 * If this is a load, get the vdev guid from the nvlist.
482168404Spjd	 * Otherwise, vdev_alloc_common() will generate one for us.
483168404Spjd	 */
484168404Spjd	if (alloctype == VDEV_ALLOC_LOAD) {
485168404Spjd		uint64_t label_id;
486168404Spjd
487168404Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
488168404Spjd		    label_id != id)
489249195Smm			return (SET_ERROR(EINVAL));
490168404Spjd
491168404Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
492249195Smm			return (SET_ERROR(EINVAL));
493168404Spjd	} else if (alloctype == VDEV_ALLOC_SPARE) {
494168404Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
495249195Smm			return (SET_ERROR(EINVAL));
496185029Spjd	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
497185029Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
498249195Smm			return (SET_ERROR(EINVAL));
499219089Spjd	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
500219089Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
501249195Smm			return (SET_ERROR(EINVAL));
502168404Spjd	}
503168404Spjd
504168404Spjd	/*
505168404Spjd	 * The first allocated vdev must be of type 'root'.
506168404Spjd	 */
507168404Spjd	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
508249195Smm		return (SET_ERROR(EINVAL));
509168404Spjd
510185029Spjd	/*
511185029Spjd	 * Determine whether we're a log vdev.
512185029Spjd	 */
513185029Spjd	islog = 0;
514185029Spjd	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
515185029Spjd	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
516249195Smm		return (SET_ERROR(ENOTSUP));
517168404Spjd
518219089Spjd	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
519249195Smm		return (SET_ERROR(ENOTSUP));
520219089Spjd
521168404Spjd	/*
522185029Spjd	 * Set the nparity property for RAID-Z vdevs.
523168404Spjd	 */
524185029Spjd	nparity = -1ULL;
525168404Spjd	if (ops == &vdev_raidz_ops) {
526168404Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
527185029Spjd		    &nparity) == 0) {
528219089Spjd			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
529249195Smm				return (SET_ERROR(EINVAL));
530168404Spjd			/*
531219089Spjd			 * Previous versions could only support 1 or 2 parity
532219089Spjd			 * device.
533168404Spjd			 */
534219089Spjd			if (nparity > 1 &&
535219089Spjd			    spa_version(spa) < SPA_VERSION_RAIDZ2)
536249195Smm				return (SET_ERROR(ENOTSUP));
537219089Spjd			if (nparity > 2 &&
538219089Spjd			    spa_version(spa) < SPA_VERSION_RAIDZ3)
539249195Smm				return (SET_ERROR(ENOTSUP));
540168404Spjd		} else {
541168404Spjd			/*
542168404Spjd			 * We require the parity to be specified for SPAs that
543168404Spjd			 * support multiple parity levels.
544168404Spjd			 */
545219089Spjd			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
546249195Smm				return (SET_ERROR(EINVAL));
547168404Spjd			/*
548168404Spjd			 * Otherwise, we default to 1 parity device for RAID-Z.
549168404Spjd			 */
550185029Spjd			nparity = 1;
551168404Spjd		}
552168404Spjd	} else {
553185029Spjd		nparity = 0;
554168404Spjd	}
555185029Spjd	ASSERT(nparity != -1ULL);
556168404Spjd
557185029Spjd	vd = vdev_alloc_common(spa, id, guid, ops);
558185029Spjd
559185029Spjd	vd->vdev_islog = islog;
560185029Spjd	vd->vdev_nparity = nparity;
561185029Spjd
562185029Spjd	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
563185029Spjd		vd->vdev_path = spa_strdup(vd->vdev_path);
564185029Spjd	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
565185029Spjd		vd->vdev_devid = spa_strdup(vd->vdev_devid);
566185029Spjd	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
567185029Spjd	    &vd->vdev_physpath) == 0)
568185029Spjd		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
569209962Smm	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
570209962Smm		vd->vdev_fru = spa_strdup(vd->vdev_fru);
571185029Spjd
572168404Spjd	/*
573168404Spjd	 * Set the whole_disk property.  If it's not specified, leave the value
574168404Spjd	 * as -1.
575168404Spjd	 */
576168404Spjd	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
577168404Spjd	    &vd->vdev_wholedisk) != 0)
578168404Spjd		vd->vdev_wholedisk = -1ULL;
579168404Spjd
580168404Spjd	/*
581168404Spjd	 * Look for the 'not present' flag.  This will only be set if the device
582168404Spjd	 * was not present at the time of import.
583168404Spjd	 */
584209962Smm	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
585209962Smm	    &vd->vdev_not_present);
586168404Spjd
587168404Spjd	/*
588168404Spjd	 * Get the alignment requirement.
589168404Spjd	 */
590168404Spjd	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
591168404Spjd
592168404Spjd	/*
593219089Spjd	 * Retrieve the vdev creation time.
594219089Spjd	 */
595219089Spjd	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
596219089Spjd	    &vd->vdev_crtxg);
597219089Spjd
598219089Spjd	/*
599168404Spjd	 * If we're a top-level vdev, try to load the allocation parameters.
600168404Spjd	 */
601219089Spjd	if (parent && !parent->vdev_parent &&
602219089Spjd	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
603168404Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
604168404Spjd		    &vd->vdev_ms_array);
605168404Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
606168404Spjd		    &vd->vdev_ms_shift);
607168404Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
608168404Spjd		    &vd->vdev_asize);
609219089Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
610219089Spjd		    &vd->vdev_removing);
611168404Spjd	}
612168404Spjd
613230514Smm	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
614219089Spjd		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
615219089Spjd		    alloctype == VDEV_ALLOC_ADD ||
616219089Spjd		    alloctype == VDEV_ALLOC_SPLIT ||
617219089Spjd		    alloctype == VDEV_ALLOC_ROOTPOOL);
618219089Spjd		vd->vdev_mg = metaslab_group_create(islog ?
619219089Spjd		    spa_log_class(spa) : spa_normal_class(spa), vd);
620219089Spjd	}
621219089Spjd
622168404Spjd	/*
623185029Spjd	 * If we're a leaf vdev, try to load the DTL object and other state.
624168404Spjd	 */
625185029Spjd	if (vd->vdev_ops->vdev_op_leaf &&
626219089Spjd	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
627219089Spjd	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
628185029Spjd		if (alloctype == VDEV_ALLOC_LOAD) {
629185029Spjd			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
630262093Savg			    &vd->vdev_dtl_object);
631185029Spjd			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
632185029Spjd			    &vd->vdev_unspare);
633185029Spjd		}
634219089Spjd
635219089Spjd		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
636219089Spjd			uint64_t spare = 0;
637219089Spjd
638219089Spjd			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
639219089Spjd			    &spare) == 0 && spare)
640219089Spjd				spa_spare_add(vd);
641219089Spjd		}
642219089Spjd
643168404Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
644168404Spjd		    &vd->vdev_offline);
645185029Spjd
646254112Sdelphij		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
647254112Sdelphij		    &vd->vdev_resilver_txg);
648219089Spjd
649185029Spjd		/*
650185029Spjd		 * When importing a pool, we want to ignore the persistent fault
651185029Spjd		 * state, as the diagnosis made on another system may not be
652219089Spjd		 * valid in the current context.  Local vdevs will
653219089Spjd		 * remain in the faulted state.
654185029Spjd		 */
655219089Spjd		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
656185029Spjd			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
657185029Spjd			    &vd->vdev_faulted);
658185029Spjd			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
659185029Spjd			    &vd->vdev_degraded);
660185029Spjd			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
661185029Spjd			    &vd->vdev_removed);
662219089Spjd
663219089Spjd			if (vd->vdev_faulted || vd->vdev_degraded) {
664219089Spjd				char *aux;
665219089Spjd
666219089Spjd				vd->vdev_label_aux =
667219089Spjd				    VDEV_AUX_ERR_EXCEEDED;
668219089Spjd				if (nvlist_lookup_string(nv,
669219089Spjd				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
670219089Spjd				    strcmp(aux, "external") == 0)
671219089Spjd					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
672219089Spjd			}
673185029Spjd		}
674168404Spjd	}
675168404Spjd
676168404Spjd	/*
677168404Spjd	 * Add ourselves to the parent's list of children.
678168404Spjd	 */
679168404Spjd	vdev_add_child(parent, vd);
680168404Spjd
681168404Spjd	*vdp = vd;
682168404Spjd
683168404Spjd	return (0);
684168404Spjd}
685168404Spjd
686168404Spjdvoid
687168404Spjdvdev_free(vdev_t *vd)
688168404Spjd{
689185029Spjd	spa_t *spa = vd->vdev_spa;
690168404Spjd
691168404Spjd	/*
692168404Spjd	 * vdev_free() implies closing the vdev first.  This is simpler than
693168404Spjd	 * trying to ensure complicated semantics for all callers.
694168404Spjd	 */
695168404Spjd	vdev_close(vd);
696168404Spjd
697185029Spjd	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
698219089Spjd	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
699168404Spjd
700168404Spjd	/*
701168404Spjd	 * Free all children.
702168404Spjd	 */
703219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
704168404Spjd		vdev_free(vd->vdev_child[c]);
705168404Spjd
706168404Spjd	ASSERT(vd->vdev_child == NULL);
707168404Spjd	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
708168404Spjd
709168404Spjd	/*
710168404Spjd	 * Discard allocation state.
711168404Spjd	 */
712219089Spjd	if (vd->vdev_mg != NULL) {
713168404Spjd		vdev_metaslab_fini(vd);
714219089Spjd		metaslab_group_destroy(vd->vdev_mg);
715219089Spjd	}
716168404Spjd
717240415Smm	ASSERT0(vd->vdev_stat.vs_space);
718240415Smm	ASSERT0(vd->vdev_stat.vs_dspace);
719240415Smm	ASSERT0(vd->vdev_stat.vs_alloc);
720168404Spjd
721168404Spjd	/*
722168404Spjd	 * Remove this vdev from its parent's child list.
723168404Spjd	 */
724168404Spjd	vdev_remove_child(vd->vdev_parent, vd);
725168404Spjd
726168404Spjd	ASSERT(vd->vdev_parent == NULL);
727168404Spjd
728185029Spjd	/*
729185029Spjd	 * Clean up vdev structure.
730185029Spjd	 */
731185029Spjd	vdev_queue_fini(vd);
732185029Spjd	vdev_cache_fini(vd);
733185029Spjd
734185029Spjd	if (vd->vdev_path)
735185029Spjd		spa_strfree(vd->vdev_path);
736185029Spjd	if (vd->vdev_devid)
737185029Spjd		spa_strfree(vd->vdev_devid);
738185029Spjd	if (vd->vdev_physpath)
739185029Spjd		spa_strfree(vd->vdev_physpath);
740209962Smm	if (vd->vdev_fru)
741209962Smm		spa_strfree(vd->vdev_fru);
742185029Spjd
743185029Spjd	if (vd->vdev_isspare)
744185029Spjd		spa_spare_remove(vd);
745185029Spjd	if (vd->vdev_isl2cache)
746185029Spjd		spa_l2cache_remove(vd);
747185029Spjd
748185029Spjd	txg_list_destroy(&vd->vdev_ms_list);
749185029Spjd	txg_list_destroy(&vd->vdev_dtl_list);
750209962Smm
751185029Spjd	mutex_enter(&vd->vdev_dtl_lock);
752262093Savg	space_map_close(vd->vdev_dtl_sm);
753209962Smm	for (int t = 0; t < DTL_TYPES; t++) {
754262093Savg		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
755262093Savg		range_tree_destroy(vd->vdev_dtl[t]);
756209962Smm	}
757185029Spjd	mutex_exit(&vd->vdev_dtl_lock);
758209962Smm
759185029Spjd	mutex_destroy(&vd->vdev_dtl_lock);
760185029Spjd	mutex_destroy(&vd->vdev_stat_lock);
761185029Spjd	mutex_destroy(&vd->vdev_probe_lock);
762185029Spjd
763185029Spjd	if (vd == spa->spa_root_vdev)
764185029Spjd		spa->spa_root_vdev = NULL;
765185029Spjd
766185029Spjd	kmem_free(vd, sizeof (vdev_t));
767168404Spjd}
768168404Spjd
769168404Spjd/*
770168404Spjd * Transfer top-level vdev state from svd to tvd.
771168404Spjd */
772168404Spjdstatic void
773168404Spjdvdev_top_transfer(vdev_t *svd, vdev_t *tvd)
774168404Spjd{
775168404Spjd	spa_t *spa = svd->vdev_spa;
776168404Spjd	metaslab_t *msp;
777168404Spjd	vdev_t *vd;
778168404Spjd	int t;
779168404Spjd
780168404Spjd	ASSERT(tvd == tvd->vdev_top);
781168404Spjd
782168404Spjd	tvd->vdev_ms_array = svd->vdev_ms_array;
783168404Spjd	tvd->vdev_ms_shift = svd->vdev_ms_shift;
784168404Spjd	tvd->vdev_ms_count = svd->vdev_ms_count;
785168404Spjd
786168404Spjd	svd->vdev_ms_array = 0;
787168404Spjd	svd->vdev_ms_shift = 0;
788168404Spjd	svd->vdev_ms_count = 0;
789168404Spjd
790230514Smm	if (tvd->vdev_mg)
791230514Smm		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
792168404Spjd	tvd->vdev_mg = svd->vdev_mg;
793168404Spjd	tvd->vdev_ms = svd->vdev_ms;
794168404Spjd
795168404Spjd	svd->vdev_mg = NULL;
796168404Spjd	svd->vdev_ms = NULL;
797168404Spjd
798168404Spjd	if (tvd->vdev_mg != NULL)
799168404Spjd		tvd->vdev_mg->mg_vd = tvd;
800168404Spjd
801168404Spjd	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
802168404Spjd	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
803168404Spjd	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
804168404Spjd
805168404Spjd	svd->vdev_stat.vs_alloc = 0;
806168404Spjd	svd->vdev_stat.vs_space = 0;
807168404Spjd	svd->vdev_stat.vs_dspace = 0;
808168404Spjd
809168404Spjd	for (t = 0; t < TXG_SIZE; t++) {
810168404Spjd		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
811168404Spjd			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
812168404Spjd		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
813168404Spjd			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
814168404Spjd		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
815168404Spjd			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
816168404Spjd	}
817168404Spjd
818185029Spjd	if (list_link_active(&svd->vdev_config_dirty_node)) {
819168404Spjd		vdev_config_clean(svd);
820168404Spjd		vdev_config_dirty(tvd);
821168404Spjd	}
822168404Spjd
823185029Spjd	if (list_link_active(&svd->vdev_state_dirty_node)) {
824185029Spjd		vdev_state_clean(svd);
825185029Spjd		vdev_state_dirty(tvd);
826185029Spjd	}
827168404Spjd
828168404Spjd	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
829168404Spjd	svd->vdev_deflate_ratio = 0;
830185029Spjd
831185029Spjd	tvd->vdev_islog = svd->vdev_islog;
832185029Spjd	svd->vdev_islog = 0;
833168404Spjd}
834168404Spjd
835168404Spjdstatic void
836168404Spjdvdev_top_update(vdev_t *tvd, vdev_t *vd)
837168404Spjd{
838168404Spjd	if (vd == NULL)
839168404Spjd		return;
840168404Spjd
841168404Spjd	vd->vdev_top = tvd;
842168404Spjd
843219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
844168404Spjd		vdev_top_update(tvd, vd->vdev_child[c]);
845168404Spjd}
846168404Spjd
847168404Spjd/*
848168404Spjd * Add a mirror/replacing vdev above an existing vdev.
849168404Spjd */
850168404Spjdvdev_t *
851168404Spjdvdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
852168404Spjd{
853168404Spjd	spa_t *spa = cvd->vdev_spa;
854168404Spjd	vdev_t *pvd = cvd->vdev_parent;
855168404Spjd	vdev_t *mvd;
856168404Spjd
857185029Spjd	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
858168404Spjd
859168404Spjd	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
860168404Spjd
861168404Spjd	mvd->vdev_asize = cvd->vdev_asize;
862219089Spjd	mvd->vdev_min_asize = cvd->vdev_min_asize;
863236155Smm	mvd->vdev_max_asize = cvd->vdev_max_asize;
864168404Spjd	mvd->vdev_ashift = cvd->vdev_ashift;
865254591Sgibbs	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
866254591Sgibbs	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
867168404Spjd	mvd->vdev_state = cvd->vdev_state;
868219089Spjd	mvd->vdev_crtxg = cvd->vdev_crtxg;
869168404Spjd
870168404Spjd	vdev_remove_child(pvd, cvd);
871168404Spjd	vdev_add_child(pvd, mvd);
872168404Spjd	cvd->vdev_id = mvd->vdev_children;
873168404Spjd	vdev_add_child(mvd, cvd);
874168404Spjd	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
875168404Spjd
876168404Spjd	if (mvd == mvd->vdev_top)
877168404Spjd		vdev_top_transfer(cvd, mvd);
878168404Spjd
879168404Spjd	return (mvd);
880168404Spjd}
881168404Spjd
882168404Spjd/*
883168404Spjd * Remove a 1-way mirror/replacing vdev from the tree.
884168404Spjd */
885168404Spjdvoid
886168404Spjdvdev_remove_parent(vdev_t *cvd)
887168404Spjd{
888168404Spjd	vdev_t *mvd = cvd->vdev_parent;
889168404Spjd	vdev_t *pvd = mvd->vdev_parent;
890168404Spjd
891185029Spjd	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
892168404Spjd
893168404Spjd	ASSERT(mvd->vdev_children == 1);
894168404Spjd	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
895168404Spjd	    mvd->vdev_ops == &vdev_replacing_ops ||
896168404Spjd	    mvd->vdev_ops == &vdev_spare_ops);
897168404Spjd	cvd->vdev_ashift = mvd->vdev_ashift;
898254591Sgibbs	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
899254591Sgibbs	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
900168404Spjd
901168404Spjd	vdev_remove_child(mvd, cvd);
902168404Spjd	vdev_remove_child(pvd, mvd);
903209962Smm
904185029Spjd	/*
905185029Spjd	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
906185029Spjd	 * Otherwise, we could have detached an offline device, and when we
907185029Spjd	 * go to import the pool we'll think we have two top-level vdevs,
908185029Spjd	 * instead of a different version of the same top-level vdev.
909185029Spjd	 */
910209962Smm	if (mvd->vdev_top == mvd) {
911209962Smm		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
912219089Spjd		cvd->vdev_orig_guid = cvd->vdev_guid;
913209962Smm		cvd->vdev_guid += guid_delta;
914209962Smm		cvd->vdev_guid_sum += guid_delta;
915209962Smm	}
916168404Spjd	cvd->vdev_id = mvd->vdev_id;
917168404Spjd	vdev_add_child(pvd, cvd);
918168404Spjd	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
919168404Spjd
920168404Spjd	if (cvd == cvd->vdev_top)
921168404Spjd		vdev_top_transfer(mvd, cvd);
922168404Spjd
923168404Spjd	ASSERT(mvd->vdev_children == 0);
924168404Spjd	vdev_free(mvd);
925168404Spjd}
926168404Spjd
927168404Spjdint
928168404Spjdvdev_metaslab_init(vdev_t *vd, uint64_t txg)
929168404Spjd{
930168404Spjd	spa_t *spa = vd->vdev_spa;
931168404Spjd	objset_t *mos = spa->spa_meta_objset;
932168404Spjd	uint64_t m;
933168404Spjd	uint64_t oldc = vd->vdev_ms_count;
934168404Spjd	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
935168404Spjd	metaslab_t **mspp;
936168404Spjd	int error;
937168404Spjd
938219089Spjd	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
939219089Spjd
940219089Spjd	/*
941219089Spjd	 * This vdev is not being allocated from yet or is a hole.
942219089Spjd	 */
943219089Spjd	if (vd->vdev_ms_shift == 0)
944168404Spjd		return (0);
945168404Spjd
946219089Spjd	ASSERT(!vd->vdev_ishole);
947219089Spjd
948213197Smm	/*
949213197Smm	 * Compute the raidz-deflation ratio.  Note, we hard-code
950276081Sdelphij	 * in 128k (1 << 17) because it is the "typical" blocksize.
951276081Sdelphij	 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
952276081Sdelphij	 * otherwise it would inconsistently account for existing bp's.
953213197Smm	 */
954213197Smm	vd->vdev_deflate_ratio = (1 << 17) /
955213197Smm	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
956213197Smm
957168404Spjd	ASSERT(oldc <= newc);
958168404Spjd
959168404Spjd	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
960168404Spjd
961168404Spjd	if (oldc != 0) {
962168404Spjd		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
963168404Spjd		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
964168404Spjd	}
965168404Spjd
966168404Spjd	vd->vdev_ms = mspp;
967168404Spjd	vd->vdev_ms_count = newc;
968168404Spjd
969168404Spjd	for (m = oldc; m < newc; m++) {
970262093Savg		uint64_t object = 0;
971262093Savg
972168404Spjd		if (txg == 0) {
973168404Spjd			error = dmu_read(mos, vd->vdev_ms_array,
974209962Smm			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
975209962Smm			    DMU_READ_PREFETCH);
976168404Spjd			if (error)
977168404Spjd				return (error);
978168404Spjd		}
979277553Sdelphij
980277553Sdelphij		error = metaslab_init(vd->vdev_mg, m, object, txg,
981277553Sdelphij		    &(vd->vdev_ms[m]));
982277553Sdelphij		if (error)
983277553Sdelphij			return (error);
984168404Spjd	}
985168404Spjd
986219089Spjd	if (txg == 0)
987219089Spjd		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
988219089Spjd
989219089Spjd	/*
990219089Spjd	 * If the vdev is being removed we don't activate
991219089Spjd	 * the metaslabs since we want to ensure that no new
992219089Spjd	 * allocations are performed on this device.
993219089Spjd	 */
994219089Spjd	if (oldc == 0 && !vd->vdev_removing)
995219089Spjd		metaslab_group_activate(vd->vdev_mg);
996219089Spjd
997219089Spjd	if (txg == 0)
998219089Spjd		spa_config_exit(spa, SCL_ALLOC, FTAG);
999219089Spjd
1000168404Spjd	return (0);
1001168404Spjd}
1002168404Spjd
1003168404Spjdvoid
1004168404Spjdvdev_metaslab_fini(vdev_t *vd)
1005168404Spjd{
1006168404Spjd	uint64_t m;
1007168404Spjd	uint64_t count = vd->vdev_ms_count;
1008168404Spjd
1009168404Spjd	if (vd->vdev_ms != NULL) {
1010219089Spjd		metaslab_group_passivate(vd->vdev_mg);
1011262093Savg		for (m = 0; m < count; m++) {
1012262093Savg			metaslab_t *msp = vd->vdev_ms[m];
1013262093Savg
1014262093Savg			if (msp != NULL)
1015262093Savg				metaslab_fini(msp);
1016262093Savg		}
1017168404Spjd		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1018168404Spjd		vd->vdev_ms = NULL;
1019168404Spjd	}
1020168404Spjd}
1021168404Spjd
1022185029Spjdtypedef struct vdev_probe_stats {
1023185029Spjd	boolean_t	vps_readable;
1024185029Spjd	boolean_t	vps_writeable;
1025185029Spjd	int		vps_flags;
1026185029Spjd} vdev_probe_stats_t;
1027185029Spjd
1028185029Spjdstatic void
1029185029Spjdvdev_probe_done(zio_t *zio)
1030185029Spjd{
1031209962Smm	spa_t *spa = zio->io_spa;
1032209962Smm	vdev_t *vd = zio->io_vd;
1033185029Spjd	vdev_probe_stats_t *vps = zio->io_private;
1034185029Spjd
1035209962Smm	ASSERT(vd->vdev_probe_zio != NULL);
1036209962Smm
1037185029Spjd	if (zio->io_type == ZIO_TYPE_READ) {
1038185029Spjd		if (zio->io_error == 0)
1039185029Spjd			vps->vps_readable = 1;
1040209962Smm		if (zio->io_error == 0 && spa_writeable(spa)) {
1041209962Smm			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1042185029Spjd			    zio->io_offset, zio->io_size, zio->io_data,
1043185029Spjd			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1044185029Spjd			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1045185029Spjd		} else {
1046185029Spjd			zio_buf_free(zio->io_data, zio->io_size);
1047185029Spjd		}
1048185029Spjd	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1049185029Spjd		if (zio->io_error == 0)
1050185029Spjd			vps->vps_writeable = 1;
1051185029Spjd		zio_buf_free(zio->io_data, zio->io_size);
1052185029Spjd	} else if (zio->io_type == ZIO_TYPE_NULL) {
1053209962Smm		zio_t *pio;
1054185029Spjd
1055185029Spjd		vd->vdev_cant_read |= !vps->vps_readable;
1056185029Spjd		vd->vdev_cant_write |= !vps->vps_writeable;
1057185029Spjd
1058185029Spjd		if (vdev_readable(vd) &&
1059209962Smm		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1060185029Spjd			zio->io_error = 0;
1061185029Spjd		} else {
1062185029Spjd			ASSERT(zio->io_error != 0);
1063185029Spjd			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1064209962Smm			    spa, vd, NULL, 0, 0);
1065249195Smm			zio->io_error = SET_ERROR(ENXIO);
1066185029Spjd		}
1067209962Smm
1068209962Smm		mutex_enter(&vd->vdev_probe_lock);
1069209962Smm		ASSERT(vd->vdev_probe_zio == zio);
1070209962Smm		vd->vdev_probe_zio = NULL;
1071209962Smm		mutex_exit(&vd->vdev_probe_lock);
1072209962Smm
1073209962Smm		while ((pio = zio_walk_parents(zio)) != NULL)
1074209962Smm			if (!vdev_accessible(vd, pio))
1075249195Smm				pio->io_error = SET_ERROR(ENXIO);
1076209962Smm
1077185029Spjd		kmem_free(vps, sizeof (*vps));
1078185029Spjd	}
1079185029Spjd}
1080185029Spjd
1081168404Spjd/*
1082251631Sdelphij * Determine whether this device is accessible.
1083251631Sdelphij *
1084251631Sdelphij * Read and write to several known locations: the pad regions of each
1085251631Sdelphij * vdev label but the first, which we leave alone in case it contains
1086251631Sdelphij * a VTOC.
1087185029Spjd */
1088185029Spjdzio_t *
1089209962Smmvdev_probe(vdev_t *vd, zio_t *zio)
1090185029Spjd{
1091185029Spjd	spa_t *spa = vd->vdev_spa;
1092209962Smm	vdev_probe_stats_t *vps = NULL;
1093209962Smm	zio_t *pio;
1094185029Spjd
1095209962Smm	ASSERT(vd->vdev_ops->vdev_op_leaf);
1096185029Spjd
1097209962Smm	/*
1098209962Smm	 * Don't probe the probe.
1099209962Smm	 */
1100209962Smm	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1101209962Smm		return (NULL);
1102185029Spjd
1103209962Smm	/*
1104209962Smm	 * To prevent 'probe storms' when a device fails, we create
1105209962Smm	 * just one probe i/o at a time.  All zios that want to probe
1106209962Smm	 * this vdev will become parents of the probe io.
1107209962Smm	 */
1108209962Smm	mutex_enter(&vd->vdev_probe_lock);
1109209962Smm
1110209962Smm	if ((pio = vd->vdev_probe_zio) == NULL) {
1111209962Smm		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1112209962Smm
1113209962Smm		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1114209962Smm		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1115213198Smm		    ZIO_FLAG_TRYHARD;
1116209962Smm
1117209962Smm		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1118209962Smm			/*
1119209962Smm			 * vdev_cant_read and vdev_cant_write can only
1120209962Smm			 * transition from TRUE to FALSE when we have the
1121209962Smm			 * SCL_ZIO lock as writer; otherwise they can only
1122209962Smm			 * transition from FALSE to TRUE.  This ensures that
1123209962Smm			 * any zio looking at these values can assume that
1124209962Smm			 * failures persist for the life of the I/O.  That's
1125209962Smm			 * important because when a device has intermittent
1126209962Smm			 * connectivity problems, we want to ensure that
1127209962Smm			 * they're ascribed to the device (ENXIO) and not
1128209962Smm			 * the zio (EIO).
1129209962Smm			 *
1130209962Smm			 * Since we hold SCL_ZIO as writer here, clear both
1131209962Smm			 * values so the probe can reevaluate from first
1132209962Smm			 * principles.
1133209962Smm			 */
1134209962Smm			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1135209962Smm			vd->vdev_cant_read = B_FALSE;
1136209962Smm			vd->vdev_cant_write = B_FALSE;
1137209962Smm		}
1138209962Smm
1139209962Smm		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1140209962Smm		    vdev_probe_done, vps,
1141209962Smm		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1142209962Smm
1143219089Spjd		/*
1144219089Spjd		 * We can't change the vdev state in this context, so we
1145219089Spjd		 * kick off an async task to do it on our behalf.
1146219089Spjd		 */
1147209962Smm		if (zio != NULL) {
1148209962Smm			vd->vdev_probe_wanted = B_TRUE;
1149209962Smm			spa_async_request(spa, SPA_ASYNC_PROBE);
1150209962Smm		}
1151185029Spjd	}
1152185029Spjd
1153209962Smm	if (zio != NULL)
1154209962Smm		zio_add_child(zio, pio);
1155185029Spjd
1156209962Smm	mutex_exit(&vd->vdev_probe_lock);
1157185029Spjd
1158209962Smm	if (vps == NULL) {
1159209962Smm		ASSERT(zio != NULL);
1160209962Smm		return (NULL);
1161209962Smm	}
1162185029Spjd
1163185029Spjd	for (int l = 1; l < VDEV_LABELS; l++) {
1164209962Smm		zio_nowait(zio_read_phys(pio, vd,
1165185029Spjd		    vdev_label_offset(vd->vdev_psize, l,
1166209962Smm		    offsetof(vdev_label_t, vl_pad2)),
1167209962Smm		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1168185029Spjd		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1169185029Spjd		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1170185029Spjd	}
1171185029Spjd
1172209962Smm	if (zio == NULL)
1173209962Smm		return (pio);
1174209962Smm
1175209962Smm	zio_nowait(pio);
1176209962Smm	return (NULL);
1177185029Spjd}
1178185029Spjd
1179219089Spjdstatic void
1180219089Spjdvdev_open_child(void *arg)
1181219089Spjd{
1182219089Spjd	vdev_t *vd = arg;
1183219089Spjd
1184219089Spjd	vd->vdev_open_thread = curthread;
1185219089Spjd	vd->vdev_open_error = vdev_open(vd);
1186219089Spjd	vd->vdev_open_thread = NULL;
1187219089Spjd}
1188219089Spjd
1189219089Spjdboolean_t
1190219089Spjdvdev_uses_zvols(vdev_t *vd)
1191219089Spjd{
1192219089Spjd	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1193219089Spjd	    strlen(ZVOL_DIR)) == 0)
1194219089Spjd		return (B_TRUE);
1195219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
1196219089Spjd		if (vdev_uses_zvols(vd->vdev_child[c]))
1197219089Spjd			return (B_TRUE);
1198219089Spjd	return (B_FALSE);
1199219089Spjd}
1200219089Spjd
1201219089Spjdvoid
1202219089Spjdvdev_open_children(vdev_t *vd)
1203219089Spjd{
1204219089Spjd	taskq_t *tq;
1205219089Spjd	int children = vd->vdev_children;
1206219089Spjd
1207219089Spjd	/*
1208219089Spjd	 * in order to handle pools on top of zvols, do the opens
1209219089Spjd	 * in a single thread so that the same thread holds the
1210219089Spjd	 * spa_namespace_lock
1211219089Spjd	 */
1212219089Spjd	if (B_TRUE || vdev_uses_zvols(vd)) {
1213219089Spjd		for (int c = 0; c < children; c++)
1214219089Spjd			vd->vdev_child[c]->vdev_open_error =
1215219089Spjd			    vdev_open(vd->vdev_child[c]);
1216219089Spjd		return;
1217219089Spjd	}
1218219089Spjd	tq = taskq_create("vdev_open", children, minclsyspri,
1219219089Spjd	    children, children, TASKQ_PREPOPULATE);
1220219089Spjd
1221219089Spjd	for (int c = 0; c < children; c++)
1222219089Spjd		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1223219089Spjd		    TQ_SLEEP) != 0);
1224219089Spjd
1225219089Spjd	taskq_destroy(tq);
1226219089Spjd}
1227219089Spjd
1228185029Spjd/*
1229168404Spjd * Prepare a virtual device for access.
1230168404Spjd */
1231168404Spjdint
1232168404Spjdvdev_open(vdev_t *vd)
1233168404Spjd{
1234209962Smm	spa_t *spa = vd->vdev_spa;
1235168404Spjd	int error;
1236168404Spjd	uint64_t osize = 0;
1237236155Smm	uint64_t max_osize = 0;
1238236155Smm	uint64_t asize, max_asize, psize;
1239254591Sgibbs	uint64_t logical_ashift = 0;
1240254591Sgibbs	uint64_t physical_ashift = 0;
1241168404Spjd
1242219089Spjd	ASSERT(vd->vdev_open_thread == curthread ||
1243219089Spjd	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1244168404Spjd	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1245168404Spjd	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1246168404Spjd	    vd->vdev_state == VDEV_STATE_OFFLINE);
1247168404Spjd
1248168404Spjd	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1249213197Smm	vd->vdev_cant_read = B_FALSE;
1250213197Smm	vd->vdev_cant_write = B_FALSE;
1251274800Ssmh	vd->vdev_notrim = B_FALSE;
1252219089Spjd	vd->vdev_min_asize = vdev_get_min_asize(vd);
1253168404Spjd
1254219089Spjd	/*
1255219089Spjd	 * If this vdev is not removed, check its fault status.  If it's
1256219089Spjd	 * faulted, bail out of the open.
1257219089Spjd	 */
1258185029Spjd	if (!vd->vdev_removed && vd->vdev_faulted) {
1259168404Spjd		ASSERT(vd->vdev_children == 0);
1260219089Spjd		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1261219089Spjd		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1262185029Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1263219089Spjd		    vd->vdev_label_aux);
1264249195Smm		return (SET_ERROR(ENXIO));
1265185029Spjd	} else if (vd->vdev_offline) {
1266185029Spjd		ASSERT(vd->vdev_children == 0);
1267168404Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1268249195Smm		return (SET_ERROR(ENXIO));
1269168404Spjd	}
1270168404Spjd
1271254591Sgibbs	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1272254591Sgibbs	    &logical_ashift, &physical_ashift);
1273168404Spjd
1274219089Spjd	/*
1275219089Spjd	 * Reset the vdev_reopening flag so that we actually close
1276219089Spjd	 * the vdev on error.
1277219089Spjd	 */
1278219089Spjd	vd->vdev_reopening = B_FALSE;
1279168404Spjd	if (zio_injection_enabled && error == 0)
1280213198Smm		error = zio_handle_device_injection(vd, NULL, ENXIO);
1281168404Spjd
1282185029Spjd	if (error) {
1283185029Spjd		if (vd->vdev_removed &&
1284185029Spjd		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1285185029Spjd			vd->vdev_removed = B_FALSE;
1286168404Spjd
1287168404Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1288168404Spjd		    vd->vdev_stat.vs_aux);
1289168404Spjd		return (error);
1290168404Spjd	}
1291168404Spjd
1292185029Spjd	vd->vdev_removed = B_FALSE;
1293168404Spjd
1294219089Spjd	/*
1295219089Spjd	 * Recheck the faulted flag now that we have confirmed that
1296219089Spjd	 * the vdev is accessible.  If we're faulted, bail.
1297219089Spjd	 */
1298219089Spjd	if (vd->vdev_faulted) {
1299219089Spjd		ASSERT(vd->vdev_children == 0);
1300219089Spjd		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1301219089Spjd		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1302219089Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1303219089Spjd		    vd->vdev_label_aux);
1304249195Smm		return (SET_ERROR(ENXIO));
1305219089Spjd	}
1306219089Spjd
1307185029Spjd	if (vd->vdev_degraded) {
1308185029Spjd		ASSERT(vd->vdev_children == 0);
1309185029Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1310185029Spjd		    VDEV_AUX_ERR_EXCEEDED);
1311185029Spjd	} else {
1312219089Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1313185029Spjd	}
1314185029Spjd
1315219089Spjd	/*
1316219089Spjd	 * For hole or missing vdevs we just return success.
1317219089Spjd	 */
1318219089Spjd	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1319219089Spjd		return (0);
1320219089Spjd
1321274800Ssmh	if (zfs_trim_enabled && !vd->vdev_notrim && vd->vdev_ops->vdev_op_leaf)
1322240868Spjd		trim_map_create(vd);
1323240868Spjd
1324219089Spjd	for (int c = 0; c < vd->vdev_children; c++) {
1325168404Spjd		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1326168404Spjd			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1327168404Spjd			    VDEV_AUX_NONE);
1328168404Spjd			break;
1329168404Spjd		}
1330219089Spjd	}
1331168404Spjd
1332168404Spjd	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1333236155Smm	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1334168404Spjd
1335168404Spjd	if (vd->vdev_children == 0) {
1336168404Spjd		if (osize < SPA_MINDEVSIZE) {
1337168404Spjd			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1338168404Spjd			    VDEV_AUX_TOO_SMALL);
1339249195Smm			return (SET_ERROR(EOVERFLOW));
1340168404Spjd		}
1341168404Spjd		psize = osize;
1342168404Spjd		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1343236155Smm		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1344236155Smm		    VDEV_LABEL_END_SIZE);
1345168404Spjd	} else {
1346168404Spjd		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1347168404Spjd		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1348168404Spjd			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1349168404Spjd			    VDEV_AUX_TOO_SMALL);
1350249195Smm			return (SET_ERROR(EOVERFLOW));
1351168404Spjd		}
1352168404Spjd		psize = 0;
1353168404Spjd		asize = osize;
1354236155Smm		max_asize = max_osize;
1355168404Spjd	}
1356168404Spjd
1357168404Spjd	vd->vdev_psize = psize;
1358168404Spjd
1359219089Spjd	/*
1360219089Spjd	 * Make sure the allocatable size hasn't shrunk.
1361219089Spjd	 */
1362219089Spjd	if (asize < vd->vdev_min_asize) {
1363219089Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1364219089Spjd		    VDEV_AUX_BAD_LABEL);
1365249195Smm		return (SET_ERROR(EINVAL));
1366219089Spjd	}
1367219089Spjd
1368254591Sgibbs	vd->vdev_physical_ashift =
1369254591Sgibbs	    MAX(physical_ashift, vd->vdev_physical_ashift);
1370254591Sgibbs	vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1371254591Sgibbs	vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1372254591Sgibbs
1373254591Sgibbs	if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1374254591Sgibbs		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1375254591Sgibbs		    VDEV_AUX_ASHIFT_TOO_BIG);
1376254591Sgibbs		return (EINVAL);
1377254591Sgibbs	}
1378254591Sgibbs
1379168404Spjd	if (vd->vdev_asize == 0) {
1380168404Spjd		/*
1381168404Spjd		 * This is the first-ever open, so use the computed values.
1382168404Spjd		 * For testing purposes, a higher ashift can be requested.
1383168404Spjd		 */
1384168404Spjd		vd->vdev_asize = asize;
1385236155Smm		vd->vdev_max_asize = max_asize;
1386168404Spjd	} else {
1387168404Spjd		/*
1388254591Sgibbs		 * Make sure the alignment requirement hasn't increased.
1389168404Spjd		 */
1390254591Sgibbs		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1391253441Sdelphij		    vd->vdev_ops->vdev_op_leaf) {
1392254591Sgibbs			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1393254591Sgibbs			    VDEV_AUX_BAD_LABEL);
1394254591Sgibbs			return (EINVAL);
1395168404Spjd		}
1396236155Smm		vd->vdev_max_asize = max_asize;
1397219089Spjd	}
1398168404Spjd
1399219089Spjd	/*
1400219089Spjd	 * If all children are healthy and the asize has increased,
1401219089Spjd	 * then we've experienced dynamic LUN growth.  If automatic
1402219089Spjd	 * expansion is enabled then use the additional space.
1403219089Spjd	 */
1404219089Spjd	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1405219089Spjd	    (vd->vdev_expanding || spa->spa_autoexpand))
1406219089Spjd		vd->vdev_asize = asize;
1407168404Spjd
1408219089Spjd	vdev_set_min_asize(vd);
1409168404Spjd
1410168404Spjd	/*
1411185029Spjd	 * Ensure we can issue some IO before declaring the
1412185029Spjd	 * vdev open for business.
1413185029Spjd	 */
1414185029Spjd	if (vd->vdev_ops->vdev_op_leaf &&
1415185029Spjd	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1416219089Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1417219089Spjd		    VDEV_AUX_ERR_EXCEEDED);
1418185029Spjd		return (error);
1419185029Spjd	}
1420185029Spjd
1421185029Spjd	/*
1422285001Savg	 * Track the min and max ashift values for normal data devices.
1423285001Savg	 */
1424285001Savg	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1425285001Savg	    !vd->vdev_islog && vd->vdev_aux == NULL) {
1426285001Savg		if (vd->vdev_ashift > spa->spa_max_ashift)
1427285001Savg			spa->spa_max_ashift = vd->vdev_ashift;
1428285001Savg		if (vd->vdev_ashift < spa->spa_min_ashift)
1429285001Savg			spa->spa_min_ashift = vd->vdev_ashift;
1430285001Savg	}
1431285001Savg
1432285001Savg	/*
1433185029Spjd	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1434209962Smm	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1435209962Smm	 * since this would just restart the scrub we are already doing.
1436168404Spjd	 */
1437209962Smm	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1438209962Smm	    vdev_resilver_needed(vd, NULL, NULL))
1439209962Smm		spa_async_request(spa, SPA_ASYNC_RESILVER);
1440168404Spjd
1441168404Spjd	return (0);
1442168404Spjd}
1443168404Spjd
1444168404Spjd/*
1445168404Spjd * Called once the vdevs are all opened, this routine validates the label
1446168404Spjd * contents.  This needs to be done before vdev_load() so that we don't
1447185029Spjd * inadvertently do repair I/Os to the wrong device.
1448168404Spjd *
1449230514Smm * If 'strict' is false ignore the spa guid check. This is necessary because
1450230514Smm * if the machine crashed during a re-guid the new guid might have been written
1451230514Smm * to all of the vdev labels, but not the cached config. The strict check
1452230514Smm * will be performed when the pool is opened again using the mos config.
1453230514Smm *
1454168404Spjd * This function will only return failure if one of the vdevs indicates that it
1455168404Spjd * has since been destroyed or exported.  This is only possible if
1456168404Spjd * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1457168404Spjd * will be updated but the function will return 0.
1458168404Spjd */
1459168404Spjdint
1460230514Smmvdev_validate(vdev_t *vd, boolean_t strict)
1461168404Spjd{
1462168404Spjd	spa_t *spa = vd->vdev_spa;
1463168404Spjd	nvlist_t *label;
1464219089Spjd	uint64_t guid = 0, top_guid;
1465168404Spjd	uint64_t state;
1466168404Spjd
1467219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
1468230514Smm		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1469249195Smm			return (SET_ERROR(EBADF));
1470168404Spjd
1471168404Spjd	/*
1472168404Spjd	 * If the device has already failed, or was marked offline, don't do
1473168404Spjd	 * any further validation.  Otherwise, label I/O will fail and we will
1474168404Spjd	 * overwrite the previous state.
1475168404Spjd	 */
1476185029Spjd	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1477219089Spjd		uint64_t aux_guid = 0;
1478219089Spjd		nvlist_t *nvl;
1479246631Smm		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1480246631Smm		    spa_last_synced_txg(spa) : -1ULL;
1481168404Spjd
1482239620Smm		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1483168404Spjd			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1484168404Spjd			    VDEV_AUX_BAD_LABEL);
1485168404Spjd			return (0);
1486168404Spjd		}
1487168404Spjd
1488219089Spjd		/*
1489219089Spjd		 * Determine if this vdev has been split off into another
1490219089Spjd		 * pool.  If so, then refuse to open it.
1491219089Spjd		 */
1492219089Spjd		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1493219089Spjd		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1494219089Spjd			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1495219089Spjd			    VDEV_AUX_SPLIT_POOL);
1496219089Spjd			nvlist_free(label);
1497219089Spjd			return (0);
1498219089Spjd		}
1499219089Spjd
1500230514Smm		if (strict && (nvlist_lookup_uint64(label,
1501230514Smm		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1502230514Smm		    guid != spa_guid(spa))) {
1503168404Spjd			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1504168404Spjd			    VDEV_AUX_CORRUPT_DATA);
1505168404Spjd			nvlist_free(label);
1506168404Spjd			return (0);
1507168404Spjd		}
1508168404Spjd
1509219089Spjd		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1510219089Spjd		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1511219089Spjd		    &aux_guid) != 0)
1512219089Spjd			aux_guid = 0;
1513219089Spjd
1514185029Spjd		/*
1515185029Spjd		 * If this vdev just became a top-level vdev because its
1516185029Spjd		 * sibling was detached, it will have adopted the parent's
1517185029Spjd		 * vdev guid -- but the label may or may not be on disk yet.
1518185029Spjd		 * Fortunately, either version of the label will have the
1519185029Spjd		 * same top guid, so if we're a top-level vdev, we can
1520185029Spjd		 * safely compare to that instead.
1521219089Spjd		 *
1522219089Spjd		 * If we split this vdev off instead, then we also check the
1523219089Spjd		 * original pool's guid.  We don't want to consider the vdev
1524219089Spjd		 * corrupt if it is partway through a split operation.
1525185029Spjd		 */
1526168404Spjd		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1527185029Spjd		    &guid) != 0 ||
1528185029Spjd		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1529185029Spjd		    &top_guid) != 0 ||
1530219089Spjd		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1531185029Spjd		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1532168404Spjd			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1533168404Spjd			    VDEV_AUX_CORRUPT_DATA);
1534168404Spjd			nvlist_free(label);
1535168404Spjd			return (0);
1536168404Spjd		}
1537168404Spjd
1538168404Spjd		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1539168404Spjd		    &state) != 0) {
1540168404Spjd			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1541168404Spjd			    VDEV_AUX_CORRUPT_DATA);
1542168404Spjd			nvlist_free(label);
1543168404Spjd			return (0);
1544168404Spjd		}
1545168404Spjd
1546168404Spjd		nvlist_free(label);
1547168404Spjd
1548209962Smm		/*
1549219089Spjd		 * If this is a verbatim import, no need to check the
1550209962Smm		 * state of the pool.
1551209962Smm		 */
1552219089Spjd		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1553219089Spjd		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1554168404Spjd		    state != POOL_STATE_ACTIVE)
1555249195Smm			return (SET_ERROR(EBADF));
1556185029Spjd
1557185029Spjd		/*
1558185029Spjd		 * If we were able to open and validate a vdev that was
1559185029Spjd		 * previously marked permanently unavailable, clear that state
1560185029Spjd		 * now.
1561185029Spjd		 */
1562185029Spjd		if (vd->vdev_not_present)
1563185029Spjd			vd->vdev_not_present = 0;
1564168404Spjd	}
1565168404Spjd
1566168404Spjd	return (0);
1567168404Spjd}
1568168404Spjd
1569168404Spjd/*
1570168404Spjd * Close a virtual device.
1571168404Spjd */
1572168404Spjdvoid
1573168404Spjdvdev_close(vdev_t *vd)
1574168404Spjd{
1575209962Smm	spa_t *spa = vd->vdev_spa;
1576219089Spjd	vdev_t *pvd = vd->vdev_parent;
1577209962Smm
1578209962Smm	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1579209962Smm
1580219089Spjd	/*
1581219089Spjd	 * If our parent is reopening, then we are as well, unless we are
1582219089Spjd	 * going offline.
1583219089Spjd	 */
1584219089Spjd	if (pvd != NULL && pvd->vdev_reopening)
1585219089Spjd		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1586219089Spjd
1587168404Spjd	vd->vdev_ops->vdev_op_close(vd);
1588168404Spjd
1589185029Spjd	vdev_cache_purge(vd);
1590168404Spjd
1591240868Spjd	if (vd->vdev_ops->vdev_op_leaf)
1592240868Spjd		trim_map_destroy(vd);
1593240868Spjd
1594168404Spjd	/*
1595219089Spjd	 * We record the previous state before we close it, so that if we are
1596168404Spjd	 * doing a reopen(), we don't generate FMA ereports if we notice that
1597168404Spjd	 * it's still faulted.
1598168404Spjd	 */
1599168404Spjd	vd->vdev_prevstate = vd->vdev_state;
1600168404Spjd
1601168404Spjd	if (vd->vdev_offline)
1602168404Spjd		vd->vdev_state = VDEV_STATE_OFFLINE;
1603168404Spjd	else
1604168404Spjd		vd->vdev_state = VDEV_STATE_CLOSED;
1605168404Spjd	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1606168404Spjd}
1607168404Spjd
1608168404Spjdvoid
1609219089Spjdvdev_hold(vdev_t *vd)
1610219089Spjd{
1611219089Spjd	spa_t *spa = vd->vdev_spa;
1612219089Spjd
1613219089Spjd	ASSERT(spa_is_root(spa));
1614219089Spjd	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1615219089Spjd		return;
1616219089Spjd
1617219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
1618219089Spjd		vdev_hold(vd->vdev_child[c]);
1619219089Spjd
1620219089Spjd	if (vd->vdev_ops->vdev_op_leaf)
1621219089Spjd		vd->vdev_ops->vdev_op_hold(vd);
1622219089Spjd}
1623219089Spjd
1624219089Spjdvoid
1625219089Spjdvdev_rele(vdev_t *vd)
1626219089Spjd{
1627219089Spjd	spa_t *spa = vd->vdev_spa;
1628219089Spjd
1629219089Spjd	ASSERT(spa_is_root(spa));
1630219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
1631219089Spjd		vdev_rele(vd->vdev_child[c]);
1632219089Spjd
1633219089Spjd	if (vd->vdev_ops->vdev_op_leaf)
1634219089Spjd		vd->vdev_ops->vdev_op_rele(vd);
1635219089Spjd}
1636219089Spjd
1637219089Spjd/*
1638219089Spjd * Reopen all interior vdevs and any unopened leaves.  We don't actually
1639219089Spjd * reopen leaf vdevs which had previously been opened as they might deadlock
1640219089Spjd * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1641219089Spjd * If the leaf has never been opened then open it, as usual.
1642219089Spjd */
1643219089Spjdvoid
1644168404Spjdvdev_reopen(vdev_t *vd)
1645168404Spjd{
1646168404Spjd	spa_t *spa = vd->vdev_spa;
1647168404Spjd
1648185029Spjd	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1649168404Spjd
1650219089Spjd	/* set the reopening flag unless we're taking the vdev offline */
1651219089Spjd	vd->vdev_reopening = !vd->vdev_offline;
1652168404Spjd	vdev_close(vd);
1653168404Spjd	(void) vdev_open(vd);
1654168404Spjd
1655168404Spjd	/*
1656168404Spjd	 * Call vdev_validate() here to make sure we have the same device.
1657168404Spjd	 * Otherwise, a device with an invalid label could be successfully
1658168404Spjd	 * opened in response to vdev_reopen().
1659168404Spjd	 */
1660185029Spjd	if (vd->vdev_aux) {
1661185029Spjd		(void) vdev_validate_aux(vd);
1662185029Spjd		if (vdev_readable(vd) && vdev_writeable(vd) &&
1663209962Smm		    vd->vdev_aux == &spa->spa_l2cache &&
1664219089Spjd		    !l2arc_vdev_present(vd))
1665219089Spjd			l2arc_add_vdev(spa, vd);
1666185029Spjd	} else {
1667246631Smm		(void) vdev_validate(vd, B_TRUE);
1668185029Spjd	}
1669168404Spjd
1670168404Spjd	/*
1671185029Spjd	 * Reassess parent vdev's health.
1672168404Spjd	 */
1673185029Spjd	vdev_propagate_state(vd);
1674168404Spjd}
1675168404Spjd
1676168404Spjdint
1677168404Spjdvdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1678168404Spjd{
1679168404Spjd	int error;
1680168404Spjd
1681168404Spjd	/*
1682168404Spjd	 * Normally, partial opens (e.g. of a mirror) are allowed.
1683168404Spjd	 * For a create, however, we want to fail the request if
1684168404Spjd	 * there are any components we can't open.
1685168404Spjd	 */
1686168404Spjd	error = vdev_open(vd);
1687168404Spjd
1688168404Spjd	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1689168404Spjd		vdev_close(vd);
1690168404Spjd		return (error ? error : ENXIO);
1691168404Spjd	}
1692168404Spjd
1693168404Spjd	/*
1694262093Savg	 * Recursively load DTLs and initialize all labels.
1695168404Spjd	 */
1696262093Savg	if ((error = vdev_dtl_load(vd)) != 0 ||
1697262093Savg	    (error = vdev_label_init(vd, txg, isreplacing ?
1698168404Spjd	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1699168404Spjd		vdev_close(vd);
1700168404Spjd		return (error);
1701168404Spjd	}
1702168404Spjd
1703168404Spjd	return (0);
1704168404Spjd}
1705168404Spjd
1706168404Spjdvoid
1707219089Spjdvdev_metaslab_set_size(vdev_t *vd)
1708168404Spjd{
1709168404Spjd	/*
1710273343Sdelphij	 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1711168404Spjd	 */
1712273343Sdelphij	vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1713168404Spjd	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1714168404Spjd}
1715168404Spjd
1716254591Sgibbs/*
1717266122Ssmh * Maximize performance by inflating the configured ashift for top level
1718266122Ssmh * vdevs to be as close to the physical ashift as possible while maintaining
1719266122Ssmh * administrator defined limits and ensuring it doesn't go below the
1720266122Ssmh * logical ashift.
1721254591Sgibbs */
1722168404Spjdvoid
1723254591Sgibbsvdev_ashift_optimize(vdev_t *vd)
1724254591Sgibbs{
1725266122Ssmh	if (vd == vd->vdev_top) {
1726266122Ssmh		if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1727266122Ssmh			vd->vdev_ashift = MIN(
1728266122Ssmh			    MAX(zfs_max_auto_ashift, vd->vdev_ashift),
1729266122Ssmh			    MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift));
1730266122Ssmh		} else {
1731266122Ssmh			/*
1732266122Ssmh			 * Unusual case where logical ashift > physical ashift
1733266122Ssmh			 * so we can't cap the calculated ashift based on max
1734266122Ssmh			 * ashift as that would cause failures.
1735266122Ssmh			 * We still check if we need to increase it to match
1736266122Ssmh			 * the min ashift.
1737266122Ssmh			 */
1738266122Ssmh			vd->vdev_ashift = MAX(zfs_min_auto_ashift,
1739266122Ssmh			    vd->vdev_ashift);
1740266122Ssmh		}
1741254591Sgibbs	}
1742254591Sgibbs}
1743254591Sgibbs
1744254591Sgibbsvoid
1745168404Spjdvdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1746168404Spjd{
1747168404Spjd	ASSERT(vd == vd->vdev_top);
1748219089Spjd	ASSERT(!vd->vdev_ishole);
1749168404Spjd	ASSERT(ISP2(flags));
1750219089Spjd	ASSERT(spa_writeable(vd->vdev_spa));
1751168404Spjd
1752168404Spjd	if (flags & VDD_METASLAB)
1753168404Spjd		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1754168404Spjd
1755168404Spjd	if (flags & VDD_DTL)
1756168404Spjd		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1757168404Spjd
1758168404Spjd	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1759168404Spjd}
1760168404Spjd
1761262093Savgvoid
1762262093Savgvdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1763262093Savg{
1764262093Savg	for (int c = 0; c < vd->vdev_children; c++)
1765262093Savg		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1766262093Savg
1767262093Savg	if (vd->vdev_ops->vdev_op_leaf)
1768262093Savg		vdev_dirty(vd->vdev_top, flags, vd, txg);
1769262093Savg}
1770262093Savg
1771209962Smm/*
1772209962Smm * DTLs.
1773209962Smm *
1774209962Smm * A vdev's DTL (dirty time log) is the set of transaction groups for which
1775219089Spjd * the vdev has less than perfect replication.  There are four kinds of DTL:
1776209962Smm *
1777209962Smm * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1778209962Smm *
1779209962Smm * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1780209962Smm *
1781209962Smm * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1782209962Smm *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1783209962Smm *	txgs that was scrubbed.
1784209962Smm *
1785209962Smm * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1786209962Smm *	persistent errors or just some device being offline.
1787209962Smm *	Unlike the other three, the DTL_OUTAGE map is not generally
1788209962Smm *	maintained; it's only computed when needed, typically to
1789209962Smm *	determine whether a device can be detached.
1790209962Smm *
1791209962Smm * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1792209962Smm * either has the data or it doesn't.
1793209962Smm *
1794209962Smm * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1795209962Smm * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1796209962Smm * if any child is less than fully replicated, then so is its parent.
1797209962Smm * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1798209962Smm * comprising only those txgs which appear in 'maxfaults' or more children;
1799209962Smm * those are the txgs we don't have enough replication to read.  For example,
1800209962Smm * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1801209962Smm * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1802209962Smm * two child DTL_MISSING maps.
1803209962Smm *
1804209962Smm * It should be clear from the above that to compute the DTLs and outage maps
1805209962Smm * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1806209962Smm * Therefore, that is all we keep on disk.  When loading the pool, or after
1807209962Smm * a configuration change, we generate all other DTLs from first principles.
1808209962Smm */
1809168404Spjdvoid
1810209962Smmvdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1811168404Spjd{
1812262093Savg	range_tree_t *rt = vd->vdev_dtl[t];
1813209962Smm
1814209962Smm	ASSERT(t < DTL_TYPES);
1815209962Smm	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1816219089Spjd	ASSERT(spa_writeable(vd->vdev_spa));
1817209962Smm
1818262093Savg	mutex_enter(rt->rt_lock);
1819262093Savg	if (!range_tree_contains(rt, txg, size))
1820262093Savg		range_tree_add(rt, txg, size);
1821262093Savg	mutex_exit(rt->rt_lock);
1822168404Spjd}
1823168404Spjd
1824209962Smmboolean_t
1825209962Smmvdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1826168404Spjd{
1827262093Savg	range_tree_t *rt = vd->vdev_dtl[t];
1828209962Smm	boolean_t dirty = B_FALSE;
1829168404Spjd
1830209962Smm	ASSERT(t < DTL_TYPES);
1831209962Smm	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1832168404Spjd
1833262093Savg	mutex_enter(rt->rt_lock);
1834262093Savg	if (range_tree_space(rt) != 0)
1835262093Savg		dirty = range_tree_contains(rt, txg, size);
1836262093Savg	mutex_exit(rt->rt_lock);
1837168404Spjd
1838168404Spjd	return (dirty);
1839168404Spjd}
1840168404Spjd
1841209962Smmboolean_t
1842209962Smmvdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1843209962Smm{
1844262093Savg	range_tree_t *rt = vd->vdev_dtl[t];
1845209962Smm	boolean_t empty;
1846209962Smm
1847262093Savg	mutex_enter(rt->rt_lock);
1848262093Savg	empty = (range_tree_space(rt) == 0);
1849262093Savg	mutex_exit(rt->rt_lock);
1850209962Smm
1851209962Smm	return (empty);
1852209962Smm}
1853209962Smm
1854168404Spjd/*
1855254112Sdelphij * Returns the lowest txg in the DTL range.
1856254112Sdelphij */
1857254112Sdelphijstatic uint64_t
1858254112Sdelphijvdev_dtl_min(vdev_t *vd)
1859254112Sdelphij{
1860262093Savg	range_seg_t *rs;
1861254112Sdelphij
1862254112Sdelphij	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1863262093Savg	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1864254112Sdelphij	ASSERT0(vd->vdev_children);
1865254112Sdelphij
1866262093Savg	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1867262093Savg	return (rs->rs_start - 1);
1868254112Sdelphij}
1869254112Sdelphij
1870254112Sdelphij/*
1871254112Sdelphij * Returns the highest txg in the DTL.
1872254112Sdelphij */
1873254112Sdelphijstatic uint64_t
1874254112Sdelphijvdev_dtl_max(vdev_t *vd)
1875254112Sdelphij{
1876262093Savg	range_seg_t *rs;
1877254112Sdelphij
1878254112Sdelphij	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1879262093Savg	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1880254112Sdelphij	ASSERT0(vd->vdev_children);
1881254112Sdelphij
1882262093Savg	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1883262093Savg	return (rs->rs_end);
1884254112Sdelphij}
1885254112Sdelphij
1886254112Sdelphij/*
1887254112Sdelphij * Determine if a resilvering vdev should remove any DTL entries from
1888254112Sdelphij * its range. If the vdev was resilvering for the entire duration of the
1889254112Sdelphij * scan then it should excise that range from its DTLs. Otherwise, this
1890254112Sdelphij * vdev is considered partially resilvered and should leave its DTL
1891254112Sdelphij * entries intact. The comment in vdev_dtl_reassess() describes how we
1892254112Sdelphij * excise the DTLs.
1893254112Sdelphij */
1894254112Sdelphijstatic boolean_t
1895254112Sdelphijvdev_dtl_should_excise(vdev_t *vd)
1896254112Sdelphij{
1897254112Sdelphij	spa_t *spa = vd->vdev_spa;
1898254112Sdelphij	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1899254112Sdelphij
1900254112Sdelphij	ASSERT0(scn->scn_phys.scn_errors);
1901254112Sdelphij	ASSERT0(vd->vdev_children);
1902254112Sdelphij
1903254112Sdelphij	if (vd->vdev_resilver_txg == 0 ||
1904262093Savg	    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1905254112Sdelphij		return (B_TRUE);
1906254112Sdelphij
1907254112Sdelphij	/*
1908254112Sdelphij	 * When a resilver is initiated the scan will assign the scn_max_txg
1909254112Sdelphij	 * value to the highest txg value that exists in all DTLs. If this
1910254112Sdelphij	 * device's max DTL is not part of this scan (i.e. it is not in
1911254112Sdelphij	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1912254112Sdelphij	 * for excision.
1913254112Sdelphij	 */
1914254112Sdelphij	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1915254112Sdelphij		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1916254112Sdelphij		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1917254112Sdelphij		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1918254112Sdelphij		return (B_TRUE);
1919254112Sdelphij	}
1920254112Sdelphij	return (B_FALSE);
1921254112Sdelphij}
1922254112Sdelphij
1923254112Sdelphij/*
1924168404Spjd * Reassess DTLs after a config change or scrub completion.
1925168404Spjd */
1926168404Spjdvoid
1927168404Spjdvdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1928168404Spjd{
1929168404Spjd	spa_t *spa = vd->vdev_spa;
1930209962Smm	avl_tree_t reftree;
1931209962Smm	int minref;
1932168404Spjd
1933209962Smm	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1934168404Spjd
1935209962Smm	for (int c = 0; c < vd->vdev_children; c++)
1936209962Smm		vdev_dtl_reassess(vd->vdev_child[c], txg,
1937209962Smm		    scrub_txg, scrub_done);
1938209962Smm
1939219089Spjd	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1940209962Smm		return;
1941209962Smm
1942209962Smm	if (vd->vdev_ops->vdev_op_leaf) {
1943219089Spjd		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1944219089Spjd
1945168404Spjd		mutex_enter(&vd->vdev_dtl_lock);
1946254112Sdelphij
1947254112Sdelphij		/*
1948254112Sdelphij		 * If we've completed a scan cleanly then determine
1949254112Sdelphij		 * if this vdev should remove any DTLs. We only want to
1950254112Sdelphij		 * excise regions on vdevs that were available during
1951254112Sdelphij		 * the entire duration of this scan.
1952254112Sdelphij		 */
1953185029Spjd		if (scrub_txg != 0 &&
1954219089Spjd		    (spa->spa_scrub_started ||
1955254112Sdelphij		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1956254112Sdelphij		    vdev_dtl_should_excise(vd)) {
1957185029Spjd			/*
1958185029Spjd			 * We completed a scrub up to scrub_txg.  If we
1959185029Spjd			 * did it without rebooting, then the scrub dtl
1960185029Spjd			 * will be valid, so excise the old region and
1961185029Spjd			 * fold in the scrub dtl.  Otherwise, leave the
1962185029Spjd			 * dtl as-is if there was an error.
1963209962Smm			 *
1964209962Smm			 * There's little trick here: to excise the beginning
1965209962Smm			 * of the DTL_MISSING map, we put it into a reference
1966209962Smm			 * tree and then add a segment with refcnt -1 that
1967209962Smm			 * covers the range [0, scrub_txg).  This means
1968209962Smm			 * that each txg in that range has refcnt -1 or 0.
1969209962Smm			 * We then add DTL_SCRUB with a refcnt of 2, so that
1970209962Smm			 * entries in the range [0, scrub_txg) will have a
1971209962Smm			 * positive refcnt -- either 1 or 2.  We then convert
1972209962Smm			 * the reference tree into the new DTL_MISSING map.
1973185029Spjd			 */
1974262093Savg			space_reftree_create(&reftree);
1975262093Savg			space_reftree_add_map(&reftree,
1976262093Savg			    vd->vdev_dtl[DTL_MISSING], 1);
1977262093Savg			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1978262093Savg			space_reftree_add_map(&reftree,
1979262093Savg			    vd->vdev_dtl[DTL_SCRUB], 2);
1980262093Savg			space_reftree_generate_map(&reftree,
1981262093Savg			    vd->vdev_dtl[DTL_MISSING], 1);
1982262093Savg			space_reftree_destroy(&reftree);
1983168404Spjd		}
1984262093Savg		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1985262093Savg		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1986262093Savg		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1987168404Spjd		if (scrub_done)
1988262093Savg			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1989262093Savg		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1990209962Smm		if (!vdev_readable(vd))
1991262093Savg			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1992209962Smm		else
1993262093Savg			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1994262093Savg			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1995254112Sdelphij
1996254112Sdelphij		/*
1997254112Sdelphij		 * If the vdev was resilvering and no longer has any
1998271776Ssmh		 * DTLs then reset its resilvering flag and dirty
1999271776Ssmh		 * the top level so that we persist the change.
2000254112Sdelphij		 */
2001254112Sdelphij		if (vd->vdev_resilver_txg != 0 &&
2002262093Savg		    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
2003271776Ssmh		    range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
2004254112Sdelphij			vd->vdev_resilver_txg = 0;
2005271776Ssmh			vdev_config_dirty(vd->vdev_top);
2006271776Ssmh		}
2007254112Sdelphij
2008168404Spjd		mutex_exit(&vd->vdev_dtl_lock);
2009185029Spjd
2010168404Spjd		if (txg != 0)
2011168404Spjd			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2012168404Spjd		return;
2013168404Spjd	}
2014168404Spjd
2015168404Spjd	mutex_enter(&vd->vdev_dtl_lock);
2016209962Smm	for (int t = 0; t < DTL_TYPES; t++) {
2017209962Smm		/* account for child's outage in parent's missing map */
2018209962Smm		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2019209962Smm		if (t == DTL_SCRUB)
2020209962Smm			continue;			/* leaf vdevs only */
2021209962Smm		if (t == DTL_PARTIAL)
2022209962Smm			minref = 1;			/* i.e. non-zero */
2023209962Smm		else if (vd->vdev_nparity != 0)
2024209962Smm			minref = vd->vdev_nparity + 1;	/* RAID-Z */
2025209962Smm		else
2026209962Smm			minref = vd->vdev_children;	/* any kind of mirror */
2027262093Savg		space_reftree_create(&reftree);
2028209962Smm		for (int c = 0; c < vd->vdev_children; c++) {
2029209962Smm			vdev_t *cvd = vd->vdev_child[c];
2030209962Smm			mutex_enter(&cvd->vdev_dtl_lock);
2031262093Savg			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2032209962Smm			mutex_exit(&cvd->vdev_dtl_lock);
2033209962Smm		}
2034262093Savg		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2035262093Savg		space_reftree_destroy(&reftree);
2036209962Smm	}
2037168404Spjd	mutex_exit(&vd->vdev_dtl_lock);
2038168404Spjd}
2039168404Spjd
2040262093Savgint
2041168404Spjdvdev_dtl_load(vdev_t *vd)
2042168404Spjd{
2043168404Spjd	spa_t *spa = vd->vdev_spa;
2044168404Spjd	objset_t *mos = spa->spa_meta_objset;
2045262093Savg	int error = 0;
2046168404Spjd
2047262093Savg	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2048262093Savg		ASSERT(!vd->vdev_ishole);
2049168404Spjd
2050262093Savg		error = space_map_open(&vd->vdev_dtl_sm, mos,
2051262093Savg		    vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2052262093Savg		if (error)
2053262093Savg			return (error);
2054262093Savg		ASSERT(vd->vdev_dtl_sm != NULL);
2055168404Spjd
2056262093Savg		mutex_enter(&vd->vdev_dtl_lock);
2057219089Spjd
2058262093Savg		/*
2059262093Savg		 * Now that we've opened the space_map we need to update
2060262093Savg		 * the in-core DTL.
2061262093Savg		 */
2062262093Savg		space_map_update(vd->vdev_dtl_sm);
2063262093Savg
2064262093Savg		error = space_map_load(vd->vdev_dtl_sm,
2065262093Savg		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2066262093Savg		mutex_exit(&vd->vdev_dtl_lock);
2067262093Savg
2068168404Spjd		return (error);
2069262093Savg	}
2070168404Spjd
2071262093Savg	for (int c = 0; c < vd->vdev_children; c++) {
2072262093Savg		error = vdev_dtl_load(vd->vdev_child[c]);
2073262093Savg		if (error != 0)
2074262093Savg			break;
2075262093Savg	}
2076168404Spjd
2077168404Spjd	return (error);
2078168404Spjd}
2079168404Spjd
2080168404Spjdvoid
2081168404Spjdvdev_dtl_sync(vdev_t *vd, uint64_t txg)
2082168404Spjd{
2083168404Spjd	spa_t *spa = vd->vdev_spa;
2084262093Savg	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2085168404Spjd	objset_t *mos = spa->spa_meta_objset;
2086262093Savg	range_tree_t *rtsync;
2087262093Savg	kmutex_t rtlock;
2088168404Spjd	dmu_tx_t *tx;
2089262093Savg	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2090168404Spjd
2091219089Spjd	ASSERT(!vd->vdev_ishole);
2092262093Savg	ASSERT(vd->vdev_ops->vdev_op_leaf);
2093219089Spjd
2094168404Spjd	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2095168404Spjd
2096262093Savg	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2097262093Savg		mutex_enter(&vd->vdev_dtl_lock);
2098262093Savg		space_map_free(vd->vdev_dtl_sm, tx);
2099262093Savg		space_map_close(vd->vdev_dtl_sm);
2100262093Savg		vd->vdev_dtl_sm = NULL;
2101262093Savg		mutex_exit(&vd->vdev_dtl_lock);
2102168404Spjd		dmu_tx_commit(tx);
2103168404Spjd		return;
2104168404Spjd	}
2105168404Spjd
2106262093Savg	if (vd->vdev_dtl_sm == NULL) {
2107262093Savg		uint64_t new_object;
2108262093Savg
2109262093Savg		new_object = space_map_alloc(mos, tx);
2110262093Savg		VERIFY3U(new_object, !=, 0);
2111262093Savg
2112262093Savg		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2113262093Savg		    0, -1ULL, 0, &vd->vdev_dtl_lock));
2114262093Savg		ASSERT(vd->vdev_dtl_sm != NULL);
2115168404Spjd	}
2116168404Spjd
2117262093Savg	bzero(&rtlock, sizeof(rtlock));
2118262093Savg	mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2119168404Spjd
2120262093Savg	rtsync = range_tree_create(NULL, NULL, &rtlock);
2121168404Spjd
2122262093Savg	mutex_enter(&rtlock);
2123168404Spjd
2124168404Spjd	mutex_enter(&vd->vdev_dtl_lock);
2125262093Savg	range_tree_walk(rt, range_tree_add, rtsync);
2126168404Spjd	mutex_exit(&vd->vdev_dtl_lock);
2127168404Spjd
2128262093Savg	space_map_truncate(vd->vdev_dtl_sm, tx);
2129262093Savg	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2130262093Savg	range_tree_vacate(rtsync, NULL, NULL);
2131168404Spjd
2132262093Savg	range_tree_destroy(rtsync);
2133168404Spjd
2134262093Savg	mutex_exit(&rtlock);
2135262093Savg	mutex_destroy(&rtlock);
2136168404Spjd
2137262093Savg	/*
2138262093Savg	 * If the object for the space map has changed then dirty
2139262093Savg	 * the top level so that we update the config.
2140262093Savg	 */
2141262093Savg	if (object != space_map_object(vd->vdev_dtl_sm)) {
2142262093Savg		zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2143262093Savg		    "new object %llu", txg, spa_name(spa), object,
2144262093Savg		    space_map_object(vd->vdev_dtl_sm));
2145262093Savg		vdev_config_dirty(vd->vdev_top);
2146262093Savg	}
2147168404Spjd
2148168404Spjd	dmu_tx_commit(tx);
2149262093Savg
2150262093Savg	mutex_enter(&vd->vdev_dtl_lock);
2151262093Savg	space_map_update(vd->vdev_dtl_sm);
2152262093Savg	mutex_exit(&vd->vdev_dtl_lock);
2153168404Spjd}
2154168404Spjd
2155185029Spjd/*
2156209962Smm * Determine whether the specified vdev can be offlined/detached/removed
2157209962Smm * without losing data.
2158209962Smm */
2159209962Smmboolean_t
2160209962Smmvdev_dtl_required(vdev_t *vd)
2161209962Smm{
2162209962Smm	spa_t *spa = vd->vdev_spa;
2163209962Smm	vdev_t *tvd = vd->vdev_top;
2164209962Smm	uint8_t cant_read = vd->vdev_cant_read;
2165209962Smm	boolean_t required;
2166209962Smm
2167209962Smm	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2168209962Smm
2169209962Smm	if (vd == spa->spa_root_vdev || vd == tvd)
2170209962Smm		return (B_TRUE);
2171209962Smm
2172209962Smm	/*
2173209962Smm	 * Temporarily mark the device as unreadable, and then determine
2174209962Smm	 * whether this results in any DTL outages in the top-level vdev.
2175209962Smm	 * If not, we can safely offline/detach/remove the device.
2176209962Smm	 */
2177209962Smm	vd->vdev_cant_read = B_TRUE;
2178209962Smm	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2179209962Smm	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2180209962Smm	vd->vdev_cant_read = cant_read;
2181209962Smm	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2182209962Smm
2183219089Spjd	if (!required && zio_injection_enabled)
2184219089Spjd		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2185219089Spjd
2186209962Smm	return (required);
2187209962Smm}
2188209962Smm
2189209962Smm/*
2190185029Spjd * Determine if resilver is needed, and if so the txg range.
2191185029Spjd */
2192185029Spjdboolean_t
2193185029Spjdvdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2194185029Spjd{
2195185029Spjd	boolean_t needed = B_FALSE;
2196185029Spjd	uint64_t thismin = UINT64_MAX;
2197185029Spjd	uint64_t thismax = 0;
2198185029Spjd
2199185029Spjd	if (vd->vdev_children == 0) {
2200185029Spjd		mutex_enter(&vd->vdev_dtl_lock);
2201262093Savg		if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2202209962Smm		    vdev_writeable(vd)) {
2203185029Spjd
2204254112Sdelphij			thismin = vdev_dtl_min(vd);
2205254112Sdelphij			thismax = vdev_dtl_max(vd);
2206185029Spjd			needed = B_TRUE;
2207185029Spjd		}
2208185029Spjd		mutex_exit(&vd->vdev_dtl_lock);
2209185029Spjd	} else {
2210209962Smm		for (int c = 0; c < vd->vdev_children; c++) {
2211185029Spjd			vdev_t *cvd = vd->vdev_child[c];
2212185029Spjd			uint64_t cmin, cmax;
2213185029Spjd
2214185029Spjd			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2215185029Spjd				thismin = MIN(thismin, cmin);
2216185029Spjd				thismax = MAX(thismax, cmax);
2217185029Spjd				needed = B_TRUE;
2218185029Spjd			}
2219185029Spjd		}
2220185029Spjd	}
2221185029Spjd
2222185029Spjd	if (needed && minp) {
2223185029Spjd		*minp = thismin;
2224185029Spjd		*maxp = thismax;
2225185029Spjd	}
2226185029Spjd	return (needed);
2227185029Spjd}
2228185029Spjd
2229168404Spjdvoid
2230168404Spjdvdev_load(vdev_t *vd)
2231168404Spjd{
2232168404Spjd	/*
2233168404Spjd	 * Recursively load all children.
2234168404Spjd	 */
2235209962Smm	for (int c = 0; c < vd->vdev_children; c++)
2236168404Spjd		vdev_load(vd->vdev_child[c]);
2237168404Spjd
2238168404Spjd	/*
2239168404Spjd	 * If this is a top-level vdev, initialize its metaslabs.
2240168404Spjd	 */
2241219089Spjd	if (vd == vd->vdev_top && !vd->vdev_ishole &&
2242168404Spjd	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2243168404Spjd	    vdev_metaslab_init(vd, 0) != 0))
2244168404Spjd		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2245168404Spjd		    VDEV_AUX_CORRUPT_DATA);
2246168404Spjd
2247168404Spjd	/*
2248168404Spjd	 * If this is a leaf vdev, load its DTL.
2249168404Spjd	 */
2250168404Spjd	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2251168404Spjd		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2252168404Spjd		    VDEV_AUX_CORRUPT_DATA);
2253168404Spjd}
2254168404Spjd
2255168404Spjd/*
2256185029Spjd * The special vdev case is used for hot spares and l2cache devices.  Its
2257185029Spjd * sole purpose it to set the vdev state for the associated vdev.  To do this,
2258185029Spjd * we make sure that we can open the underlying device, then try to read the
2259185029Spjd * label, and make sure that the label is sane and that it hasn't been
2260185029Spjd * repurposed to another pool.
2261168404Spjd */
2262168404Spjdint
2263185029Spjdvdev_validate_aux(vdev_t *vd)
2264168404Spjd{
2265168404Spjd	nvlist_t *label;
2266168404Spjd	uint64_t guid, version;
2267168404Spjd	uint64_t state;
2268168404Spjd
2269185029Spjd	if (!vdev_readable(vd))
2270185029Spjd		return (0);
2271185029Spjd
2272239620Smm	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2273168404Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2274168404Spjd		    VDEV_AUX_CORRUPT_DATA);
2275168404Spjd		return (-1);
2276168404Spjd	}
2277168404Spjd
2278168404Spjd	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2279236884Smm	    !SPA_VERSION_IS_SUPPORTED(version) ||
2280168404Spjd	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2281168404Spjd	    guid != vd->vdev_guid ||
2282168404Spjd	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2283168404Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2284168404Spjd		    VDEV_AUX_CORRUPT_DATA);
2285168404Spjd		nvlist_free(label);
2286168404Spjd		return (-1);
2287168404Spjd	}
2288168404Spjd
2289168404Spjd	/*
2290168404Spjd	 * We don't actually check the pool state here.  If it's in fact in
2291168404Spjd	 * use by another pool, we update this fact on the fly when requested.
2292168404Spjd	 */
2293168404Spjd	nvlist_free(label);
2294168404Spjd	return (0);
2295168404Spjd}
2296168404Spjd
2297168404Spjdvoid
2298219089Spjdvdev_remove(vdev_t *vd, uint64_t txg)
2299219089Spjd{
2300219089Spjd	spa_t *spa = vd->vdev_spa;
2301219089Spjd	objset_t *mos = spa->spa_meta_objset;
2302219089Spjd	dmu_tx_t *tx;
2303219089Spjd
2304219089Spjd	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2305219089Spjd
2306219089Spjd	if (vd->vdev_ms != NULL) {
2307269773Sdelphij		metaslab_group_t *mg = vd->vdev_mg;
2308269773Sdelphij
2309269773Sdelphij		metaslab_group_histogram_verify(mg);
2310269773Sdelphij		metaslab_class_histogram_verify(mg->mg_class);
2311269773Sdelphij
2312219089Spjd		for (int m = 0; m < vd->vdev_ms_count; m++) {
2313219089Spjd			metaslab_t *msp = vd->vdev_ms[m];
2314219089Spjd
2315262093Savg			if (msp == NULL || msp->ms_sm == NULL)
2316219089Spjd				continue;
2317219089Spjd
2318262093Savg			mutex_enter(&msp->ms_lock);
2319269773Sdelphij			/*
2320269773Sdelphij			 * If the metaslab was not loaded when the vdev
2321269773Sdelphij			 * was removed then the histogram accounting may
2322269773Sdelphij			 * not be accurate. Update the histogram information
2323269773Sdelphij			 * here so that we ensure that the metaslab group
2324269773Sdelphij			 * and metaslab class are up-to-date.
2325269773Sdelphij			 */
2326269773Sdelphij			metaslab_group_histogram_remove(mg, msp);
2327269773Sdelphij
2328262093Savg			VERIFY0(space_map_allocated(msp->ms_sm));
2329262093Savg			space_map_free(msp->ms_sm, tx);
2330262093Savg			space_map_close(msp->ms_sm);
2331262093Savg			msp->ms_sm = NULL;
2332262093Savg			mutex_exit(&msp->ms_lock);
2333219089Spjd		}
2334269773Sdelphij
2335269773Sdelphij		metaslab_group_histogram_verify(mg);
2336269773Sdelphij		metaslab_class_histogram_verify(mg->mg_class);
2337269773Sdelphij		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2338269773Sdelphij			ASSERT0(mg->mg_histogram[i]);
2339269773Sdelphij
2340219089Spjd	}
2341219089Spjd
2342219089Spjd	if (vd->vdev_ms_array) {
2343219089Spjd		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2344219089Spjd		vd->vdev_ms_array = 0;
2345219089Spjd	}
2346219089Spjd	dmu_tx_commit(tx);
2347219089Spjd}
2348219089Spjd
2349219089Spjdvoid
2350168404Spjdvdev_sync_done(vdev_t *vd, uint64_t txg)
2351168404Spjd{
2352168404Spjd	metaslab_t *msp;
2353211931Smm	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2354168404Spjd
2355219089Spjd	ASSERT(!vd->vdev_ishole);
2356219089Spjd
2357168404Spjd	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2358168404Spjd		metaslab_sync_done(msp, txg);
2359211931Smm
2360211931Smm	if (reassess)
2361211931Smm		metaslab_sync_reassess(vd->vdev_mg);
2362168404Spjd}
2363168404Spjd
2364168404Spjdvoid
2365168404Spjdvdev_sync(vdev_t *vd, uint64_t txg)
2366168404Spjd{
2367168404Spjd	spa_t *spa = vd->vdev_spa;
2368168404Spjd	vdev_t *lvd;
2369168404Spjd	metaslab_t *msp;
2370168404Spjd	dmu_tx_t *tx;
2371168404Spjd
2372219089Spjd	ASSERT(!vd->vdev_ishole);
2373219089Spjd
2374168404Spjd	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2375168404Spjd		ASSERT(vd == vd->vdev_top);
2376168404Spjd		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2377168404Spjd		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2378168404Spjd		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2379168404Spjd		ASSERT(vd->vdev_ms_array != 0);
2380168404Spjd		vdev_config_dirty(vd);
2381168404Spjd		dmu_tx_commit(tx);
2382168404Spjd	}
2383168404Spjd
2384219089Spjd	/*
2385219089Spjd	 * Remove the metadata associated with this vdev once it's empty.
2386219089Spjd	 */
2387219089Spjd	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2388219089Spjd		vdev_remove(vd, txg);
2389219089Spjd
2390168404Spjd	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2391168404Spjd		metaslab_sync(msp, txg);
2392168404Spjd		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2393168404Spjd	}
2394168404Spjd
2395168404Spjd	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2396168404Spjd		vdev_dtl_sync(lvd, txg);
2397168404Spjd
2398168404Spjd	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2399168404Spjd}
2400168404Spjd
2401168404Spjduint64_t
2402168404Spjdvdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2403168404Spjd{
2404168404Spjd	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2405168404Spjd}
2406168404Spjd
2407185029Spjd/*
2408185029Spjd * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2409185029Spjd * not be opened, and no I/O is attempted.
2410185029Spjd */
2411185029Spjdint
2412219089Spjdvdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2413168404Spjd{
2414219089Spjd	vdev_t *vd, *tvd;
2415168404Spjd
2416219089Spjd	spa_vdev_state_enter(spa, SCL_NONE);
2417185029Spjd
2418185029Spjd	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2419185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2420185029Spjd
2421185029Spjd	if (!vd->vdev_ops->vdev_op_leaf)
2422185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2423185029Spjd
2424219089Spjd	tvd = vd->vdev_top;
2425219089Spjd
2426185029Spjd	/*
2427219089Spjd	 * We don't directly use the aux state here, but if we do a
2428219089Spjd	 * vdev_reopen(), we need this value to be present to remember why we
2429219089Spjd	 * were faulted.
2430219089Spjd	 */
2431219089Spjd	vd->vdev_label_aux = aux;
2432219089Spjd
2433219089Spjd	/*
2434185029Spjd	 * Faulted state takes precedence over degraded.
2435185029Spjd	 */
2436219089Spjd	vd->vdev_delayed_close = B_FALSE;
2437185029Spjd	vd->vdev_faulted = 1ULL;
2438185029Spjd	vd->vdev_degraded = 0ULL;
2439219089Spjd	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2440185029Spjd
2441185029Spjd	/*
2442219089Spjd	 * If this device has the only valid copy of the data, then
2443219089Spjd	 * back off and simply mark the vdev as degraded instead.
2444185029Spjd	 */
2445219089Spjd	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2446185029Spjd		vd->vdev_degraded = 1ULL;
2447185029Spjd		vd->vdev_faulted = 0ULL;
2448185029Spjd
2449185029Spjd		/*
2450185029Spjd		 * If we reopen the device and it's not dead, only then do we
2451185029Spjd		 * mark it degraded.
2452185029Spjd		 */
2453219089Spjd		vdev_reopen(tvd);
2454185029Spjd
2455219089Spjd		if (vdev_readable(vd))
2456219089Spjd			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2457185029Spjd	}
2458185029Spjd
2459185029Spjd	return (spa_vdev_state_exit(spa, vd, 0));
2460168404Spjd}
2461168404Spjd
2462185029Spjd/*
2463185029Spjd * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2464185029Spjd * user that something is wrong.  The vdev continues to operate as normal as far
2465185029Spjd * as I/O is concerned.
2466185029Spjd */
2467185029Spjdint
2468219089Spjdvdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2469168404Spjd{
2470185029Spjd	vdev_t *vd;
2471168404Spjd
2472219089Spjd	spa_vdev_state_enter(spa, SCL_NONE);
2473168404Spjd
2474185029Spjd	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2475185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2476168404Spjd
2477185029Spjd	if (!vd->vdev_ops->vdev_op_leaf)
2478185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2479185029Spjd
2480185029Spjd	/*
2481185029Spjd	 * If the vdev is already faulted, then don't do anything.
2482185029Spjd	 */
2483185029Spjd	if (vd->vdev_faulted || vd->vdev_degraded)
2484185029Spjd		return (spa_vdev_state_exit(spa, NULL, 0));
2485185029Spjd
2486185029Spjd	vd->vdev_degraded = 1ULL;
2487185029Spjd	if (!vdev_is_dead(vd))
2488185029Spjd		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2489219089Spjd		    aux);
2490185029Spjd
2491185029Spjd	return (spa_vdev_state_exit(spa, vd, 0));
2492168404Spjd}
2493168404Spjd
2494185029Spjd/*
2495251631Sdelphij * Online the given vdev.
2496251631Sdelphij *
2497251631Sdelphij * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2498251631Sdelphij * spare device should be detached when the device finishes resilvering.
2499251631Sdelphij * Second, the online should be treated like a 'test' online case, so no FMA
2500251631Sdelphij * events are generated if the device fails to open.
2501185029Spjd */
2502168404Spjdint
2503185029Spjdvdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2504168404Spjd{
2505219089Spjd	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2506290745Smav	boolean_t postevent = B_FALSE;
2507168404Spjd
2508219089Spjd	spa_vdev_state_enter(spa, SCL_NONE);
2509168404Spjd
2510185029Spjd	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2511185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2512168404Spjd
2513168404Spjd	if (!vd->vdev_ops->vdev_op_leaf)
2514185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2515168404Spjd
2516290745Smav	postevent =
2517290745Smav	    (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ?
2518290745Smav	    B_TRUE : B_FALSE;
2519290745Smav
2520219089Spjd	tvd = vd->vdev_top;
2521168404Spjd	vd->vdev_offline = B_FALSE;
2522168404Spjd	vd->vdev_tmpoffline = B_FALSE;
2523185029Spjd	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2524185029Spjd	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2525219089Spjd
2526219089Spjd	/* XXX - L2ARC 1.0 does not support expansion */
2527219089Spjd	if (!vd->vdev_aux) {
2528219089Spjd		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2529219089Spjd			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2530219089Spjd	}
2531219089Spjd
2532219089Spjd	vdev_reopen(tvd);
2533185029Spjd	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2534168404Spjd
2535219089Spjd	if (!vd->vdev_aux) {
2536219089Spjd		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2537219089Spjd			pvd->vdev_expanding = B_FALSE;
2538219089Spjd	}
2539219089Spjd
2540185029Spjd	if (newstate)
2541185029Spjd		*newstate = vd->vdev_state;
2542185029Spjd	if ((flags & ZFS_ONLINE_UNSPARE) &&
2543185029Spjd	    !vdev_is_dead(vd) && vd->vdev_parent &&
2544185029Spjd	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2545185029Spjd	    vd->vdev_parent->vdev_child[0] == vd)
2546185029Spjd		vd->vdev_unspare = B_TRUE;
2547168404Spjd
2548219089Spjd	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2549219089Spjd
2550219089Spjd		/* XXX - L2ARC 1.0 does not support expansion */
2551219089Spjd		if (vd->vdev_aux)
2552219089Spjd			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2553219089Spjd		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2554219089Spjd	}
2555290745Smav
2556290745Smav	if (postevent)
2557290745Smav		spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2558290745Smav
2559209962Smm	return (spa_vdev_state_exit(spa, vd, 0));
2560168404Spjd}
2561168404Spjd
2562219089Spjdstatic int
2563219089Spjdvdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2564168404Spjd{
2565213197Smm	vdev_t *vd, *tvd;
2566219089Spjd	int error = 0;
2567219089Spjd	uint64_t generation;
2568219089Spjd	metaslab_group_t *mg;
2569168404Spjd
2570219089Spjdtop:
2571219089Spjd	spa_vdev_state_enter(spa, SCL_ALLOC);
2572168404Spjd
2573185029Spjd	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2574185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2575168404Spjd
2576168404Spjd	if (!vd->vdev_ops->vdev_op_leaf)
2577185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2578168404Spjd
2579213197Smm	tvd = vd->vdev_top;
2580219089Spjd	mg = tvd->vdev_mg;
2581219089Spjd	generation = spa->spa_config_generation + 1;
2582213197Smm
2583168404Spjd	/*
2584168404Spjd	 * If the device isn't already offline, try to offline it.
2585168404Spjd	 */
2586168404Spjd	if (!vd->vdev_offline) {
2587168404Spjd		/*
2588209962Smm		 * If this device has the only valid copy of some data,
2589213197Smm		 * don't allow it to be offlined. Log devices are always
2590213197Smm		 * expendable.
2591168404Spjd		 */
2592213197Smm		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2593213197Smm		    vdev_dtl_required(vd))
2594185029Spjd			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2595168404Spjd
2596168404Spjd		/*
2597219089Spjd		 * If the top-level is a slog and it has had allocations
2598219089Spjd		 * then proceed.  We check that the vdev's metaslab group
2599219089Spjd		 * is not NULL since it's possible that we may have just
2600219089Spjd		 * added this vdev but not yet initialized its metaslabs.
2601219089Spjd		 */
2602219089Spjd		if (tvd->vdev_islog && mg != NULL) {
2603219089Spjd			/*
2604219089Spjd			 * Prevent any future allocations.
2605219089Spjd			 */
2606219089Spjd			metaslab_group_passivate(mg);
2607219089Spjd			(void) spa_vdev_state_exit(spa, vd, 0);
2608219089Spjd
2609219089Spjd			error = spa_offline_log(spa);
2610219089Spjd
2611219089Spjd			spa_vdev_state_enter(spa, SCL_ALLOC);
2612219089Spjd
2613219089Spjd			/*
2614219089Spjd			 * Check to see if the config has changed.
2615219089Spjd			 */
2616219089Spjd			if (error || generation != spa->spa_config_generation) {
2617219089Spjd				metaslab_group_activate(mg);
2618219089Spjd				if (error)
2619219089Spjd					return (spa_vdev_state_exit(spa,
2620219089Spjd					    vd, error));
2621219089Spjd				(void) spa_vdev_state_exit(spa, vd, 0);
2622219089Spjd				goto top;
2623219089Spjd			}
2624240415Smm			ASSERT0(tvd->vdev_stat.vs_alloc);
2625219089Spjd		}
2626219089Spjd
2627219089Spjd		/*
2628168404Spjd		 * Offline this device and reopen its top-level vdev.
2629213197Smm		 * If the top-level vdev is a log device then just offline
2630213197Smm		 * it. Otherwise, if this action results in the top-level
2631213197Smm		 * vdev becoming unusable, undo it and fail the request.
2632168404Spjd		 */
2633168404Spjd		vd->vdev_offline = B_TRUE;
2634213197Smm		vdev_reopen(tvd);
2635213197Smm
2636213197Smm		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2637213197Smm		    vdev_is_dead(tvd)) {
2638168404Spjd			vd->vdev_offline = B_FALSE;
2639213197Smm			vdev_reopen(tvd);
2640185029Spjd			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2641168404Spjd		}
2642219089Spjd
2643219089Spjd		/*
2644219089Spjd		 * Add the device back into the metaslab rotor so that
2645219089Spjd		 * once we online the device it's open for business.
2646219089Spjd		 */
2647219089Spjd		if (tvd->vdev_islog && mg != NULL)
2648219089Spjd			metaslab_group_activate(mg);
2649168404Spjd	}
2650168404Spjd
2651185029Spjd	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2652168404Spjd
2653219089Spjd	return (spa_vdev_state_exit(spa, vd, 0));
2654219089Spjd}
2655213197Smm
2656219089Spjdint
2657219089Spjdvdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2658219089Spjd{
2659219089Spjd	int error;
2660213197Smm
2661219089Spjd	mutex_enter(&spa->spa_vdev_top_lock);
2662219089Spjd	error = vdev_offline_locked(spa, guid, flags);
2663219089Spjd	mutex_exit(&spa->spa_vdev_top_lock);
2664219089Spjd
2665219089Spjd	return (error);
2666168404Spjd}
2667168404Spjd
2668168404Spjd/*
2669168404Spjd * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2670168404Spjd * vdev_offline(), we assume the spa config is locked.  We also clear all
2671168404Spjd * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2672168404Spjd */
2673168404Spjdvoid
2674168404Spjdvdev_clear(spa_t *spa, vdev_t *vd)
2675168404Spjd{
2676185029Spjd	vdev_t *rvd = spa->spa_root_vdev;
2677168404Spjd
2678185029Spjd	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2679185029Spjd
2680168404Spjd	if (vd == NULL)
2681185029Spjd		vd = rvd;
2682168404Spjd
2683168404Spjd	vd->vdev_stat.vs_read_errors = 0;
2684168404Spjd	vd->vdev_stat.vs_write_errors = 0;
2685168404Spjd	vd->vdev_stat.vs_checksum_errors = 0;
2686168404Spjd
2687185029Spjd	for (int c = 0; c < vd->vdev_children; c++)
2688168404Spjd		vdev_clear(spa, vd->vdev_child[c]);
2689185029Spjd
2690253991Smav	if (vd == rvd) {
2691253991Smav		for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
2692253991Smav			vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2693253991Smav
2694253991Smav		for (int c = 0; c < spa->spa_spares.sav_count; c++)
2695253991Smav			vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2696253991Smav	}
2697253991Smav
2698185029Spjd	/*
2699185029Spjd	 * If we're in the FAULTED state or have experienced failed I/O, then
2700185029Spjd	 * clear the persistent state and attempt to reopen the device.  We
2701185029Spjd	 * also mark the vdev config dirty, so that the new faulted state is
2702185029Spjd	 * written out to disk.
2703185029Spjd	 */
2704185029Spjd	if (vd->vdev_faulted || vd->vdev_degraded ||
2705185029Spjd	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2706185029Spjd
2707219089Spjd		/*
2708219089Spjd		 * When reopening in reponse to a clear event, it may be due to
2709219089Spjd		 * a fmadm repair request.  In this case, if the device is
2710219089Spjd		 * still broken, we want to still post the ereport again.
2711219089Spjd		 */
2712219089Spjd		vd->vdev_forcefault = B_TRUE;
2713219089Spjd
2714219089Spjd		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2715185029Spjd		vd->vdev_cant_read = B_FALSE;
2716185029Spjd		vd->vdev_cant_write = B_FALSE;
2717185029Spjd
2718219089Spjd		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2719185029Spjd
2720219089Spjd		vd->vdev_forcefault = B_FALSE;
2721219089Spjd
2722219089Spjd		if (vd != rvd && vdev_writeable(vd->vdev_top))
2723185029Spjd			vdev_state_dirty(vd->vdev_top);
2724185029Spjd
2725185029Spjd		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2726185029Spjd			spa_async_request(spa, SPA_ASYNC_RESILVER);
2727185029Spjd
2728185029Spjd		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2729185029Spjd	}
2730219089Spjd
2731219089Spjd	/*
2732219089Spjd	 * When clearing a FMA-diagnosed fault, we always want to
2733219089Spjd	 * unspare the device, as we assume that the original spare was
2734219089Spjd	 * done in response to the FMA fault.
2735219089Spjd	 */
2736219089Spjd	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2737219089Spjd	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2738219089Spjd	    vd->vdev_parent->vdev_child[0] == vd)
2739219089Spjd		vd->vdev_unspare = B_TRUE;
2740168404Spjd}
2741168404Spjd
2742185029Spjdboolean_t
2743168404Spjdvdev_is_dead(vdev_t *vd)
2744168404Spjd{
2745219089Spjd	/*
2746219089Spjd	 * Holes and missing devices are always considered "dead".
2747219089Spjd	 * This simplifies the code since we don't have to check for
2748219089Spjd	 * these types of devices in the various code paths.
2749219089Spjd	 * Instead we rely on the fact that we skip over dead devices
2750219089Spjd	 * before issuing I/O to them.
2751219089Spjd	 */
2752219089Spjd	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2753219089Spjd	    vd->vdev_ops == &vdev_missing_ops);
2754168404Spjd}
2755168404Spjd
2756185029Spjdboolean_t
2757185029Spjdvdev_readable(vdev_t *vd)
2758168404Spjd{
2759185029Spjd	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2760185029Spjd}
2761168404Spjd
2762185029Spjdboolean_t
2763185029Spjdvdev_writeable(vdev_t *vd)
2764185029Spjd{
2765185029Spjd	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2766185029Spjd}
2767168404Spjd
2768185029Spjdboolean_t
2769208370Smmvdev_allocatable(vdev_t *vd)
2770208370Smm{
2771209962Smm	uint64_t state = vd->vdev_state;
2772209962Smm
2773208370Smm	/*
2774209962Smm	 * We currently allow allocations from vdevs which may be in the
2775208370Smm	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2776208370Smm	 * fails to reopen then we'll catch it later when we're holding
2777209962Smm	 * the proper locks.  Note that we have to get the vdev state
2778209962Smm	 * in a local variable because although it changes atomically,
2779209962Smm	 * we're asking two separate questions about it.
2780208370Smm	 */
2781209962Smm	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2782219089Spjd	    !vd->vdev_cant_write && !vd->vdev_ishole);
2783208370Smm}
2784208370Smm
2785208370Smmboolean_t
2786185029Spjdvdev_accessible(vdev_t *vd, zio_t *zio)
2787185029Spjd{
2788185029Spjd	ASSERT(zio->io_vd == vd);
2789168404Spjd
2790185029Spjd	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2791185029Spjd		return (B_FALSE);
2792168404Spjd
2793185029Spjd	if (zio->io_type == ZIO_TYPE_READ)
2794185029Spjd		return (!vd->vdev_cant_read);
2795168404Spjd
2796185029Spjd	if (zio->io_type == ZIO_TYPE_WRITE)
2797185029Spjd		return (!vd->vdev_cant_write);
2798168404Spjd
2799185029Spjd	return (B_TRUE);
2800168404Spjd}
2801168404Spjd
2802168404Spjd/*
2803168404Spjd * Get statistics for the given vdev.
2804168404Spjd */
2805168404Spjdvoid
2806168404Spjdvdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2807168404Spjd{
2808269773Sdelphij	spa_t *spa = vd->vdev_spa;
2809269773Sdelphij	vdev_t *rvd = spa->spa_root_vdev;
2810168404Spjd
2811269773Sdelphij	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2812269773Sdelphij
2813168404Spjd	mutex_enter(&vd->vdev_stat_lock);
2814168404Spjd	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2815168404Spjd	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2816168404Spjd	vs->vs_state = vd->vdev_state;
2817219089Spjd	vs->vs_rsize = vdev_get_min_asize(vd);
2818219089Spjd	if (vd->vdev_ops->vdev_op_leaf)
2819219089Spjd		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2820290402Ssmh	if (vd->vdev_max_asize != 0)
2821290402Ssmh		vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2822254591Sgibbs	vs->vs_configured_ashift = vd->vdev_top != NULL
2823254591Sgibbs	    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
2824254591Sgibbs	vs->vs_logical_ashift = vd->vdev_logical_ashift;
2825254591Sgibbs	vs->vs_physical_ashift = vd->vdev_physical_ashift;
2826270128Sdelphij	if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2827269773Sdelphij		vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2828270128Sdelphij	}
2829168404Spjd
2830168404Spjd	/*
2831168404Spjd	 * If we're getting stats on the root vdev, aggregate the I/O counts
2832168404Spjd	 * over all top-level vdevs (i.e. the direct children of the root).
2833168404Spjd	 */
2834168404Spjd	if (vd == rvd) {
2835185029Spjd		for (int c = 0; c < rvd->vdev_children; c++) {
2836168404Spjd			vdev_t *cvd = rvd->vdev_child[c];
2837168404Spjd			vdev_stat_t *cvs = &cvd->vdev_stat;
2838168404Spjd
2839185029Spjd			for (int t = 0; t < ZIO_TYPES; t++) {
2840168404Spjd				vs->vs_ops[t] += cvs->vs_ops[t];
2841168404Spjd				vs->vs_bytes[t] += cvs->vs_bytes[t];
2842168404Spjd			}
2843219089Spjd			cvs->vs_scan_removing = cvd->vdev_removing;
2844168404Spjd		}
2845168404Spjd	}
2846269773Sdelphij	mutex_exit(&vd->vdev_stat_lock);
2847168404Spjd}
2848168404Spjd
2849168404Spjdvoid
2850185029Spjdvdev_clear_stats(vdev_t *vd)
2851168404Spjd{
2852185029Spjd	mutex_enter(&vd->vdev_stat_lock);
2853185029Spjd	vd->vdev_stat.vs_space = 0;
2854185029Spjd	vd->vdev_stat.vs_dspace = 0;
2855185029Spjd	vd->vdev_stat.vs_alloc = 0;
2856185029Spjd	mutex_exit(&vd->vdev_stat_lock);
2857185029Spjd}
2858185029Spjd
2859185029Spjdvoid
2860219089Spjdvdev_scan_stat_init(vdev_t *vd)
2861219089Spjd{
2862219089Spjd	vdev_stat_t *vs = &vd->vdev_stat;
2863219089Spjd
2864219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
2865219089Spjd		vdev_scan_stat_init(vd->vdev_child[c]);
2866219089Spjd
2867219089Spjd	mutex_enter(&vd->vdev_stat_lock);
2868219089Spjd	vs->vs_scan_processed = 0;
2869219089Spjd	mutex_exit(&vd->vdev_stat_lock);
2870219089Spjd}
2871219089Spjd
2872219089Spjdvoid
2873185029Spjdvdev_stat_update(zio_t *zio, uint64_t psize)
2874185029Spjd{
2875209962Smm	spa_t *spa = zio->io_spa;
2876209962Smm	vdev_t *rvd = spa->spa_root_vdev;
2877185029Spjd	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2878168404Spjd	vdev_t *pvd;
2879168404Spjd	uint64_t txg = zio->io_txg;
2880168404Spjd	vdev_stat_t *vs = &vd->vdev_stat;
2881168404Spjd	zio_type_t type = zio->io_type;
2882168404Spjd	int flags = zio->io_flags;
2883168404Spjd
2884185029Spjd	/*
2885185029Spjd	 * If this i/o is a gang leader, it didn't do any actual work.
2886185029Spjd	 */
2887185029Spjd	if (zio->io_gang_tree)
2888185029Spjd		return;
2889185029Spjd
2890168404Spjd	if (zio->io_error == 0) {
2891185029Spjd		/*
2892185029Spjd		 * If this is a root i/o, don't count it -- we've already
2893185029Spjd		 * counted the top-level vdevs, and vdev_get_stats() will
2894185029Spjd		 * aggregate them when asked.  This reduces contention on
2895185029Spjd		 * the root vdev_stat_lock and implicitly handles blocks
2896185029Spjd		 * that compress away to holes, for which there is no i/o.
2897185029Spjd		 * (Holes never create vdev children, so all the counters
2898185029Spjd		 * remain zero, which is what we want.)
2899185029Spjd		 *
2900185029Spjd		 * Note: this only applies to successful i/o (io_error == 0)
2901185029Spjd		 * because unlike i/o counts, errors are not additive.
2902185029Spjd		 * When reading a ditto block, for example, failure of
2903185029Spjd		 * one top-level vdev does not imply a root-level error.
2904185029Spjd		 */
2905185029Spjd		if (vd == rvd)
2906185029Spjd			return;
2907185029Spjd
2908185029Spjd		ASSERT(vd == zio->io_vd);
2909209962Smm
2910209962Smm		if (flags & ZIO_FLAG_IO_BYPASS)
2911209962Smm			return;
2912209962Smm
2913209962Smm		mutex_enter(&vd->vdev_stat_lock);
2914209962Smm
2915185029Spjd		if (flags & ZIO_FLAG_IO_REPAIR) {
2916219089Spjd			if (flags & ZIO_FLAG_SCAN_THREAD) {
2917219089Spjd				dsl_scan_phys_t *scn_phys =
2918219089Spjd				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2919219089Spjd				uint64_t *processed = &scn_phys->scn_processed;
2920219089Spjd
2921219089Spjd				/* XXX cleanup? */
2922219089Spjd				if (vd->vdev_ops->vdev_op_leaf)
2923219089Spjd					atomic_add_64(processed, psize);
2924219089Spjd				vs->vs_scan_processed += psize;
2925219089Spjd			}
2926219089Spjd
2927209962Smm			if (flags & ZIO_FLAG_SELF_HEAL)
2928185029Spjd				vs->vs_self_healed += psize;
2929168404Spjd		}
2930209962Smm
2931209962Smm		vs->vs_ops[type]++;
2932209962Smm		vs->vs_bytes[type] += psize;
2933209962Smm
2934209962Smm		mutex_exit(&vd->vdev_stat_lock);
2935168404Spjd		return;
2936168404Spjd	}
2937168404Spjd
2938168404Spjd	if (flags & ZIO_FLAG_SPECULATIVE)
2939168404Spjd		return;
2940168404Spjd
2941213198Smm	/*
2942213198Smm	 * If this is an I/O error that is going to be retried, then ignore the
2943213198Smm	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2944213198Smm	 * hard errors, when in reality they can happen for any number of
2945213198Smm	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2946213198Smm	 */
2947213198Smm	if (zio->io_error == EIO &&
2948213198Smm	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2949213198Smm		return;
2950213198Smm
2951219089Spjd	/*
2952219089Spjd	 * Intent logs writes won't propagate their error to the root
2953219089Spjd	 * I/O so don't mark these types of failures as pool-level
2954219089Spjd	 * errors.
2955219089Spjd	 */
2956219089Spjd	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2957219089Spjd		return;
2958219089Spjd
2959185029Spjd	mutex_enter(&vd->vdev_stat_lock);
2960209962Smm	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2961185029Spjd		if (zio->io_error == ECKSUM)
2962185029Spjd			vs->vs_checksum_errors++;
2963185029Spjd		else
2964185029Spjd			vs->vs_read_errors++;
2965168404Spjd	}
2966209962Smm	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2967185029Spjd		vs->vs_write_errors++;
2968185029Spjd	mutex_exit(&vd->vdev_stat_lock);
2969168404Spjd
2970209962Smm	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2971209962Smm	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2972219089Spjd	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2973219089Spjd	    spa->spa_claiming)) {
2974209962Smm		/*
2975219089Spjd		 * This is either a normal write (not a repair), or it's
2976219089Spjd		 * a repair induced by the scrub thread, or it's a repair
2977219089Spjd		 * made by zil_claim() during spa_load() in the first txg.
2978219089Spjd		 * In the normal case, we commit the DTL change in the same
2979219089Spjd		 * txg as the block was born.  In the scrub-induced repair
2980219089Spjd		 * case, we know that scrubs run in first-pass syncing context,
2981219089Spjd		 * so we commit the DTL change in spa_syncing_txg(spa).
2982219089Spjd		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2983209962Smm		 *
2984209962Smm		 * We currently do not make DTL entries for failed spontaneous
2985209962Smm		 * self-healing writes triggered by normal (non-scrubbing)
2986209962Smm		 * reads, because we have no transactional context in which to
2987209962Smm		 * do so -- and it's not clear that it'd be desirable anyway.
2988209962Smm		 */
2989209962Smm		if (vd->vdev_ops->vdev_op_leaf) {
2990209962Smm			uint64_t commit_txg = txg;
2991219089Spjd			if (flags & ZIO_FLAG_SCAN_THREAD) {
2992209962Smm				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2993209962Smm				ASSERT(spa_sync_pass(spa) == 1);
2994209962Smm				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2995219089Spjd				commit_txg = spa_syncing_txg(spa);
2996219089Spjd			} else if (spa->spa_claiming) {
2997219089Spjd				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2998219089Spjd				commit_txg = spa_first_txg(spa);
2999209962Smm			}
3000219089Spjd			ASSERT(commit_txg >= spa_syncing_txg(spa));
3001209962Smm			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3002168404Spjd				return;
3003209962Smm			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3004209962Smm				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3005209962Smm			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3006168404Spjd		}
3007209962Smm		if (vd != rvd)
3008209962Smm			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3009168404Spjd	}
3010168404Spjd}
3011168404Spjd
3012168404Spjd/*
3013219089Spjd * Update the in-core space usage stats for this vdev, its metaslab class,
3014219089Spjd * and the root vdev.
3015168404Spjd */
3016168404Spjdvoid
3017219089Spjdvdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3018219089Spjd    int64_t space_delta)
3019168404Spjd{
3020168404Spjd	int64_t dspace_delta = space_delta;
3021185029Spjd	spa_t *spa = vd->vdev_spa;
3022185029Spjd	vdev_t *rvd = spa->spa_root_vdev;
3023219089Spjd	metaslab_group_t *mg = vd->vdev_mg;
3024219089Spjd	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3025168404Spjd
3026185029Spjd	ASSERT(vd == vd->vdev_top);
3027168404Spjd
3028185029Spjd	/*
3029185029Spjd	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3030185029Spjd	 * factor.  We must calculate this here and not at the root vdev
3031185029Spjd	 * because the root vdev's psize-to-asize is simply the max of its
3032185029Spjd	 * childrens', thus not accurate enough for us.
3033185029Spjd	 */
3034185029Spjd	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3035213197Smm	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3036185029Spjd	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3037185029Spjd	    vd->vdev_deflate_ratio;
3038185029Spjd
3039185029Spjd	mutex_enter(&vd->vdev_stat_lock);
3040219089Spjd	vd->vdev_stat.vs_alloc += alloc_delta;
3041185029Spjd	vd->vdev_stat.vs_space += space_delta;
3042185029Spjd	vd->vdev_stat.vs_dspace += dspace_delta;
3043185029Spjd	mutex_exit(&vd->vdev_stat_lock);
3044185029Spjd
3045219089Spjd	if (mc == spa_normal_class(spa)) {
3046185029Spjd		mutex_enter(&rvd->vdev_stat_lock);
3047219089Spjd		rvd->vdev_stat.vs_alloc += alloc_delta;
3048185029Spjd		rvd->vdev_stat.vs_space += space_delta;
3049185029Spjd		rvd->vdev_stat.vs_dspace += dspace_delta;
3050185029Spjd		mutex_exit(&rvd->vdev_stat_lock);
3051185029Spjd	}
3052219089Spjd
3053219089Spjd	if (mc != NULL) {
3054219089Spjd		ASSERT(rvd == vd->vdev_parent);
3055219089Spjd		ASSERT(vd->vdev_ms_count != 0);
3056219089Spjd
3057219089Spjd		metaslab_class_space_update(mc,
3058219089Spjd		    alloc_delta, defer_delta, space_delta, dspace_delta);
3059219089Spjd	}
3060168404Spjd}
3061168404Spjd
3062168404Spjd/*
3063168404Spjd * Mark a top-level vdev's config as dirty, placing it on the dirty list
3064168404Spjd * so that it will be written out next time the vdev configuration is synced.
3065168404Spjd * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3066168404Spjd */
3067168404Spjdvoid
3068168404Spjdvdev_config_dirty(vdev_t *vd)
3069168404Spjd{
3070168404Spjd	spa_t *spa = vd->vdev_spa;
3071168404Spjd	vdev_t *rvd = spa->spa_root_vdev;
3072168404Spjd	int c;
3073168404Spjd
3074219089Spjd	ASSERT(spa_writeable(spa));
3075219089Spjd
3076168404Spjd	/*
3077209962Smm	 * If this is an aux vdev (as with l2cache and spare devices), then we
3078209962Smm	 * update the vdev config manually and set the sync flag.
3079185029Spjd	 */
3080185029Spjd	if (vd->vdev_aux != NULL) {
3081185029Spjd		spa_aux_vdev_t *sav = vd->vdev_aux;
3082185029Spjd		nvlist_t **aux;
3083185029Spjd		uint_t naux;
3084185029Spjd
3085185029Spjd		for (c = 0; c < sav->sav_count; c++) {
3086185029Spjd			if (sav->sav_vdevs[c] == vd)
3087185029Spjd				break;
3088185029Spjd		}
3089185029Spjd
3090185029Spjd		if (c == sav->sav_count) {
3091185029Spjd			/*
3092185029Spjd			 * We're being removed.  There's nothing more to do.
3093185029Spjd			 */
3094185029Spjd			ASSERT(sav->sav_sync == B_TRUE);
3095185029Spjd			return;
3096185029Spjd		}
3097185029Spjd
3098185029Spjd		sav->sav_sync = B_TRUE;
3099185029Spjd
3100209962Smm		if (nvlist_lookup_nvlist_array(sav->sav_config,
3101209962Smm		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3102209962Smm			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3103209962Smm			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3104209962Smm		}
3105185029Spjd
3106185029Spjd		ASSERT(c < naux);
3107185029Spjd
3108185029Spjd		/*
3109185029Spjd		 * Setting the nvlist in the middle if the array is a little
3110185029Spjd		 * sketchy, but it will work.
3111185029Spjd		 */
3112185029Spjd		nvlist_free(aux[c]);
3113219089Spjd		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3114185029Spjd
3115185029Spjd		return;
3116185029Spjd	}
3117185029Spjd
3118185029Spjd	/*
3119185029Spjd	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
3120185029Spjd	 * must either hold SCL_CONFIG as writer, or must be the sync thread
3121185029Spjd	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3122168404Spjd	 * so this is sufficient to ensure mutual exclusion.
3123168404Spjd	 */
3124185029Spjd	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3125185029Spjd	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3126185029Spjd	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3127168404Spjd
3128168404Spjd	if (vd == rvd) {
3129168404Spjd		for (c = 0; c < rvd->vdev_children; c++)
3130168404Spjd			vdev_config_dirty(rvd->vdev_child[c]);
3131168404Spjd	} else {
3132168404Spjd		ASSERT(vd == vd->vdev_top);
3133168404Spjd
3134219089Spjd		if (!list_link_active(&vd->vdev_config_dirty_node) &&
3135219089Spjd		    !vd->vdev_ishole)
3136185029Spjd			list_insert_head(&spa->spa_config_dirty_list, vd);
3137168404Spjd	}
3138168404Spjd}
3139168404Spjd
3140168404Spjdvoid
3141168404Spjdvdev_config_clean(vdev_t *vd)
3142168404Spjd{
3143168404Spjd	spa_t *spa = vd->vdev_spa;
3144168404Spjd
3145185029Spjd	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3146185029Spjd	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3147185029Spjd	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3148168404Spjd
3149185029Spjd	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3150185029Spjd	list_remove(&spa->spa_config_dirty_list, vd);
3151168404Spjd}
3152168404Spjd
3153185029Spjd/*
3154185029Spjd * Mark a top-level vdev's state as dirty, so that the next pass of
3155185029Spjd * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3156185029Spjd * the state changes from larger config changes because they require
3157185029Spjd * much less locking, and are often needed for administrative actions.
3158185029Spjd */
3159168404Spjdvoid
3160185029Spjdvdev_state_dirty(vdev_t *vd)
3161185029Spjd{
3162185029Spjd	spa_t *spa = vd->vdev_spa;
3163185029Spjd
3164219089Spjd	ASSERT(spa_writeable(spa));
3165185029Spjd	ASSERT(vd == vd->vdev_top);
3166185029Spjd
3167185029Spjd	/*
3168185029Spjd	 * The state list is protected by the SCL_STATE lock.  The caller
3169185029Spjd	 * must either hold SCL_STATE as writer, or must be the sync thread
3170185029Spjd	 * (which holds SCL_STATE as reader).  There's only one sync thread,
3171185029Spjd	 * so this is sufficient to ensure mutual exclusion.
3172185029Spjd	 */
3173185029Spjd	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3174185029Spjd	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3175185029Spjd	    spa_config_held(spa, SCL_STATE, RW_READER)));
3176185029Spjd
3177219089Spjd	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3178185029Spjd		list_insert_head(&spa->spa_state_dirty_list, vd);
3179185029Spjd}
3180185029Spjd
3181185029Spjdvoid
3182185029Spjdvdev_state_clean(vdev_t *vd)
3183185029Spjd{
3184185029Spjd	spa_t *spa = vd->vdev_spa;
3185185029Spjd
3186185029Spjd	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3187185029Spjd	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3188185029Spjd	    spa_config_held(spa, SCL_STATE, RW_READER)));
3189185029Spjd
3190185029Spjd	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3191185029Spjd	list_remove(&spa->spa_state_dirty_list, vd);
3192185029Spjd}
3193185029Spjd
3194185029Spjd/*
3195185029Spjd * Propagate vdev state up from children to parent.
3196185029Spjd */
3197185029Spjdvoid
3198168404Spjdvdev_propagate_state(vdev_t *vd)
3199168404Spjd{
3200209962Smm	spa_t *spa = vd->vdev_spa;
3201209962Smm	vdev_t *rvd = spa->spa_root_vdev;
3202168404Spjd	int degraded = 0, faulted = 0;
3203168404Spjd	int corrupted = 0;
3204168404Spjd	vdev_t *child;
3205168404Spjd
3206185029Spjd	if (vd->vdev_children > 0) {
3207219089Spjd		for (int c = 0; c < vd->vdev_children; c++) {
3208185029Spjd			child = vd->vdev_child[c];
3209168404Spjd
3210219089Spjd			/*
3211219089Spjd			 * Don't factor holes into the decision.
3212219089Spjd			 */
3213219089Spjd			if (child->vdev_ishole)
3214219089Spjd				continue;
3215219089Spjd
3216185029Spjd			if (!vdev_readable(child) ||
3217209962Smm			    (!vdev_writeable(child) && spa_writeable(spa))) {
3218185029Spjd				/*
3219185029Spjd				 * Root special: if there is a top-level log
3220185029Spjd				 * device, treat the root vdev as if it were
3221185029Spjd				 * degraded.
3222185029Spjd				 */
3223185029Spjd				if (child->vdev_islog && vd == rvd)
3224185029Spjd					degraded++;
3225185029Spjd				else
3226185029Spjd					faulted++;
3227185029Spjd			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3228185029Spjd				degraded++;
3229185029Spjd			}
3230185029Spjd
3231185029Spjd			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3232185029Spjd				corrupted++;
3233185029Spjd		}
3234185029Spjd
3235185029Spjd		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3236185029Spjd
3237185029Spjd		/*
3238185029Spjd		 * Root special: if there is a top-level vdev that cannot be
3239185029Spjd		 * opened due to corrupted metadata, then propagate the root
3240185029Spjd		 * vdev's aux state as 'corrupt' rather than 'insufficient
3241185029Spjd		 * replicas'.
3242185029Spjd		 */
3243185029Spjd		if (corrupted && vd == rvd &&
3244185029Spjd		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3245185029Spjd			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3246185029Spjd			    VDEV_AUX_CORRUPT_DATA);
3247168404Spjd	}
3248168404Spjd
3249185029Spjd	if (vd->vdev_parent)
3250185029Spjd		vdev_propagate_state(vd->vdev_parent);
3251168404Spjd}
3252168404Spjd
3253168404Spjd/*
3254168404Spjd * Set a vdev's state.  If this is during an open, we don't update the parent
3255168404Spjd * state, because we're in the process of opening children depth-first.
3256168404Spjd * Otherwise, we propagate the change to the parent.
3257168404Spjd *
3258168404Spjd * If this routine places a device in a faulted state, an appropriate ereport is
3259168404Spjd * generated.
3260168404Spjd */
3261168404Spjdvoid
3262168404Spjdvdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3263168404Spjd{
3264168404Spjd	uint64_t save_state;
3265185029Spjd	spa_t *spa = vd->vdev_spa;
3266168404Spjd
3267168404Spjd	if (state == vd->vdev_state) {
3268168404Spjd		vd->vdev_stat.vs_aux = aux;
3269168404Spjd		return;
3270168404Spjd	}
3271168404Spjd
3272168404Spjd	save_state = vd->vdev_state;
3273168404Spjd
3274168404Spjd	vd->vdev_state = state;
3275168404Spjd	vd->vdev_stat.vs_aux = aux;
3276168404Spjd
3277173373Spjd	/*
3278173373Spjd	 * If we are setting the vdev state to anything but an open state, then
3279219089Spjd	 * always close the underlying device unless the device has requested
3280219089Spjd	 * a delayed close (i.e. we're about to remove or fault the device).
3281219089Spjd	 * Otherwise, we keep accessible but invalid devices open forever.
3282219089Spjd	 * We don't call vdev_close() itself, because that implies some extra
3283219089Spjd	 * checks (offline, etc) that we don't want here.  This is limited to
3284219089Spjd	 * leaf devices, because otherwise closing the device will affect other
3285219089Spjd	 * children.
3286173373Spjd	 */
3287219089Spjd	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3288219089Spjd	    vd->vdev_ops->vdev_op_leaf)
3289173373Spjd		vd->vdev_ops->vdev_op_close(vd);
3290173373Spjd
3291219089Spjd	/*
3292219089Spjd	 * If we have brought this vdev back into service, we need
3293219089Spjd	 * to notify fmd so that it can gracefully repair any outstanding
3294219089Spjd	 * cases due to a missing device.  We do this in all cases, even those
3295219089Spjd	 * that probably don't correlate to a repaired fault.  This is sure to
3296219089Spjd	 * catch all cases, and we let the zfs-retire agent sort it out.  If
3297219089Spjd	 * this is a transient state it's OK, as the retire agent will
3298219089Spjd	 * double-check the state of the vdev before repairing it.
3299219089Spjd	 */
3300219089Spjd	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3301219089Spjd	    vd->vdev_prevstate != state)
3302219089Spjd		zfs_post_state_change(spa, vd);
3303219089Spjd
3304185029Spjd	if (vd->vdev_removed &&
3305185029Spjd	    state == VDEV_STATE_CANT_OPEN &&
3306185029Spjd	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3307168404Spjd		/*
3308185029Spjd		 * If the previous state is set to VDEV_STATE_REMOVED, then this
3309185029Spjd		 * device was previously marked removed and someone attempted to
3310185029Spjd		 * reopen it.  If this failed due to a nonexistent device, then
3311185029Spjd		 * keep the device in the REMOVED state.  We also let this be if
3312185029Spjd		 * it is one of our special test online cases, which is only
3313185029Spjd		 * attempting to online the device and shouldn't generate an FMA
3314185029Spjd		 * fault.
3315185029Spjd		 */
3316185029Spjd		vd->vdev_state = VDEV_STATE_REMOVED;
3317185029Spjd		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3318185029Spjd	} else if (state == VDEV_STATE_REMOVED) {
3319185029Spjd		vd->vdev_removed = B_TRUE;
3320185029Spjd	} else if (state == VDEV_STATE_CANT_OPEN) {
3321185029Spjd		/*
3322219089Spjd		 * If we fail to open a vdev during an import or recovery, we
3323219089Spjd		 * mark it as "not available", which signifies that it was
3324219089Spjd		 * never there to begin with.  Failure to open such a device
3325219089Spjd		 * is not considered an error.
3326168404Spjd		 */
3327219089Spjd		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3328219089Spjd		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3329168404Spjd		    vd->vdev_ops->vdev_op_leaf)
3330168404Spjd			vd->vdev_not_present = 1;
3331168404Spjd
3332168404Spjd		/*
3333168404Spjd		 * Post the appropriate ereport.  If the 'prevstate' field is
3334168404Spjd		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3335168404Spjd		 * that this is part of a vdev_reopen().  In this case, we don't
3336168404Spjd		 * want to post the ereport if the device was already in the
3337168404Spjd		 * CANT_OPEN state beforehand.
3338185029Spjd		 *
3339185029Spjd		 * If the 'checkremove' flag is set, then this is an attempt to
3340185029Spjd		 * online the device in response to an insertion event.  If we
3341185029Spjd		 * hit this case, then we have detected an insertion event for a
3342185029Spjd		 * faulted or offline device that wasn't in the removed state.
3343185029Spjd		 * In this scenario, we don't post an ereport because we are
3344185029Spjd		 * about to replace the device, or attempt an online with
3345185029Spjd		 * vdev_forcefault, which will generate the fault for us.
3346168404Spjd		 */
3347185029Spjd		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3348185029Spjd		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3349185029Spjd		    vd != spa->spa_root_vdev) {
3350168404Spjd			const char *class;
3351168404Spjd
3352168404Spjd			switch (aux) {
3353168404Spjd			case VDEV_AUX_OPEN_FAILED:
3354168404Spjd				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3355168404Spjd				break;
3356168404Spjd			case VDEV_AUX_CORRUPT_DATA:
3357168404Spjd				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3358168404Spjd				break;
3359168404Spjd			case VDEV_AUX_NO_REPLICAS:
3360168404Spjd				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3361168404Spjd				break;
3362168404Spjd			case VDEV_AUX_BAD_GUID_SUM:
3363168404Spjd				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3364168404Spjd				break;
3365168404Spjd			case VDEV_AUX_TOO_SMALL:
3366168404Spjd				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3367168404Spjd				break;
3368168404Spjd			case VDEV_AUX_BAD_LABEL:
3369168404Spjd				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3370168404Spjd				break;
3371168404Spjd			default:
3372168404Spjd				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3373168404Spjd			}
3374168404Spjd
3375185029Spjd			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3376168404Spjd		}
3377185029Spjd
3378185029Spjd		/* Erase any notion of persistent removed state */
3379185029Spjd		vd->vdev_removed = B_FALSE;
3380185029Spjd	} else {
3381185029Spjd		vd->vdev_removed = B_FALSE;
3382168404Spjd	}
3383168404Spjd
3384209962Smm	if (!isopen && vd->vdev_parent)
3385209962Smm		vdev_propagate_state(vd->vdev_parent);
3386185029Spjd}
3387168404Spjd
3388185029Spjd/*
3389185029Spjd * Check the vdev configuration to ensure that it's capable of supporting
3390193163Sdfr * a root pool.
3391193163Sdfr *
3392193163Sdfr * On Solaris, we do not support RAID-Z or partial configuration.  In
3393193163Sdfr * addition, only a single top-level vdev is allowed and none of the
3394193163Sdfr * leaves can be wholedisks.
3395193163Sdfr *
3396193163Sdfr * For FreeBSD, we can boot from any configuration. There is a
3397193163Sdfr * limitation that the boot filesystem must be either uncompressed or
3398193163Sdfr * compresses with lzjb compression but I'm not sure how to enforce
3399193163Sdfr * that here.
3400185029Spjd */
3401185029Spjdboolean_t
3402185029Spjdvdev_is_bootable(vdev_t *vd)
3403185029Spjd{
3404297077Smav#ifdef illumos
3405185029Spjd	if (!vd->vdev_ops->vdev_op_leaf) {
3406185029Spjd		char *vdev_type = vd->vdev_ops->vdev_op_type;
3407185029Spjd
3408185029Spjd		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3409185029Spjd		    vd->vdev_children > 1) {
3410185029Spjd			return (B_FALSE);
3411185029Spjd		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3412185029Spjd		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3413185029Spjd			return (B_FALSE);
3414185029Spjd		}
3415185029Spjd	}
3416185029Spjd
3417219089Spjd	for (int c = 0; c < vd->vdev_children; c++) {
3418185029Spjd		if (!vdev_is_bootable(vd->vdev_child[c]))
3419185029Spjd			return (B_FALSE);
3420185029Spjd	}
3421297077Smav#endif	/* illumos */
3422185029Spjd	return (B_TRUE);
3423168404Spjd}
3424213197Smm
3425219089Spjd/*
3426219089Spjd * Load the state from the original vdev tree (ovd) which
3427219089Spjd * we've retrieved from the MOS config object. If the original
3428219089Spjd * vdev was offline or faulted then we transfer that state to the
3429219089Spjd * device in the current vdev tree (nvd).
3430219089Spjd */
3431213197Smmvoid
3432219089Spjdvdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3433213197Smm{
3434219089Spjd	spa_t *spa = nvd->vdev_spa;
3435213197Smm
3436219089Spjd	ASSERT(nvd->vdev_top->vdev_islog);
3437219089Spjd	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3438219089Spjd	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3439213197Smm
3440219089Spjd	for (int c = 0; c < nvd->vdev_children; c++)
3441219089Spjd		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3442213197Smm
3443219089Spjd	if (nvd->vdev_ops->vdev_op_leaf) {
3444213197Smm		/*
3445219089Spjd		 * Restore the persistent vdev state
3446213197Smm		 */
3447219089Spjd		nvd->vdev_offline = ovd->vdev_offline;
3448219089Spjd		nvd->vdev_faulted = ovd->vdev_faulted;
3449219089Spjd		nvd->vdev_degraded = ovd->vdev_degraded;
3450219089Spjd		nvd->vdev_removed = ovd->vdev_removed;
3451213197Smm	}
3452213197Smm}
3453219089Spjd
3454219089Spjd/*
3455219089Spjd * Determine if a log device has valid content.  If the vdev was
3456219089Spjd * removed or faulted in the MOS config then we know that
3457219089Spjd * the content on the log device has already been written to the pool.
3458219089Spjd */
3459219089Spjdboolean_t
3460219089Spjdvdev_log_state_valid(vdev_t *vd)
3461219089Spjd{
3462219089Spjd	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3463219089Spjd	    !vd->vdev_removed)
3464219089Spjd		return (B_TRUE);
3465219089Spjd
3466219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
3467219089Spjd		if (vdev_log_state_valid(vd->vdev_child[c]))
3468219089Spjd			return (B_TRUE);
3469219089Spjd
3470219089Spjd	return (B_FALSE);
3471219089Spjd}
3472219089Spjd
3473219089Spjd/*
3474219089Spjd * Expand a vdev if possible.
3475219089Spjd */
3476219089Spjdvoid
3477219089Spjdvdev_expand(vdev_t *vd, uint64_t txg)
3478219089Spjd{
3479219089Spjd	ASSERT(vd->vdev_top == vd);
3480219089Spjd	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3481219089Spjd
3482219089Spjd	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3483219089Spjd		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3484219089Spjd		vdev_config_dirty(vd);
3485219089Spjd	}
3486219089Spjd}
3487219089Spjd
3488219089Spjd/*
3489219089Spjd * Split a vdev.
3490219089Spjd */
3491219089Spjdvoid
3492219089Spjdvdev_split(vdev_t *vd)
3493219089Spjd{
3494219089Spjd	vdev_t *cvd, *pvd = vd->vdev_parent;
3495219089Spjd
3496219089Spjd	vdev_remove_child(pvd, vd);
3497219089Spjd	vdev_compact_children(pvd);
3498219089Spjd
3499219089Spjd	cvd = pvd->vdev_child[0];
3500219089Spjd	if (pvd->vdev_children == 1) {
3501219089Spjd		vdev_remove_parent(cvd);
3502219089Spjd		cvd->vdev_splitting = B_TRUE;
3503219089Spjd	}
3504219089Spjd	vdev_propagate_state(cvd);
3505219089Spjd}
3506247265Smm
3507247265Smmvoid
3508247265Smmvdev_deadman(vdev_t *vd)
3509247265Smm{
3510247265Smm	for (int c = 0; c < vd->vdev_children; c++) {
3511247265Smm		vdev_t *cvd = vd->vdev_child[c];
3512247265Smm
3513247265Smm		vdev_deadman(cvd);
3514247265Smm	}
3515247265Smm
3516247265Smm	if (vd->vdev_ops->vdev_op_leaf) {
3517247265Smm		vdev_queue_t *vq = &vd->vdev_queue;
3518247265Smm
3519247265Smm		mutex_enter(&vq->vq_lock);
3520260763Savg		if (avl_numnodes(&vq->vq_active_tree) > 0) {
3521247265Smm			spa_t *spa = vd->vdev_spa;
3522247265Smm			zio_t *fio;
3523247265Smm			uint64_t delta;
3524247265Smm
3525247265Smm			/*
3526247265Smm			 * Look at the head of all the pending queues,
3527247265Smm			 * if any I/O has been outstanding for longer than
3528247265Smm			 * the spa_deadman_synctime we panic the system.
3529247265Smm			 */
3530260763Savg			fio = avl_first(&vq->vq_active_tree);
3531249206Smm			delta = gethrtime() - fio->io_timestamp;
3532249206Smm			if (delta > spa_deadman_synctime(spa)) {
3533249206Smm				zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3534249206Smm				    "delta %lluns, last io %lluns",
3535247265Smm				    fio->io_timestamp, delta,
3536247265Smm				    vq->vq_io_complete_ts);
3537247265Smm				fm_panic("I/O to pool '%s' appears to be "
3538247348Smm				    "hung on vdev guid %llu at '%s'.",
3539247348Smm				    spa_name(spa),
3540247348Smm				    (long long unsigned int) vd->vdev_guid,
3541247348Smm				    vd->vdev_path);
3542247265Smm			}
3543247265Smm		}
3544247265Smm		mutex_exit(&vq->vq_lock);
3545247265Smm	}
3546247265Smm}
3547