vdev.c revision 271776
1168404Spjd/*
2168404Spjd * CDDL HEADER START
3168404Spjd *
4168404Spjd * The contents of this file are subject to the terms of the
5168404Spjd * Common Development and Distribution License (the "License").
6168404Spjd * You may not use this file except in compliance with the License.
7168404Spjd *
8168404Spjd * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9168404Spjd * or http://www.opensolaris.org/os/licensing.
10168404Spjd * See the License for the specific language governing permissions
11168404Spjd * and limitations under the License.
12168404Spjd *
13168404Spjd * When distributing Covered Code, include this CDDL HEADER in each
14168404Spjd * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15168404Spjd * If applicable, add the following below this CDDL HEADER, with the
16168404Spjd * fields enclosed by brackets "[]" replaced with your own identifying
17168404Spjd * information: Portions Copyright [yyyy] [name of copyright owner]
18168404Spjd *
19168404Spjd * CDDL HEADER END
20168404Spjd */
21168404Spjd
22168404Spjd/*
23219089Spjd * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24228103Smm * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25265740Sdelphij * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
26247348Smm * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27168404Spjd */
28168404Spjd
29168404Spjd#include <sys/zfs_context.h>
30168404Spjd#include <sys/fm/fs/zfs.h>
31168404Spjd#include <sys/spa.h>
32168404Spjd#include <sys/spa_impl.h>
33168404Spjd#include <sys/dmu.h>
34168404Spjd#include <sys/dmu_tx.h>
35168404Spjd#include <sys/vdev_impl.h>
36168404Spjd#include <sys/uberblock_impl.h>
37168404Spjd#include <sys/metaslab.h>
38168404Spjd#include <sys/metaslab_impl.h>
39168404Spjd#include <sys/space_map.h>
40262093Savg#include <sys/space_reftree.h>
41168404Spjd#include <sys/zio.h>
42168404Spjd#include <sys/zap.h>
43168404Spjd#include <sys/fs/zfs.h>
44185029Spjd#include <sys/arc.h>
45213197Smm#include <sys/zil.h>
46219089Spjd#include <sys/dsl_scan.h>
47240868Spjd#include <sys/trim_map.h>
48168404Spjd
49168404SpjdSYSCTL_DECL(_vfs_zfs);
50168404SpjdSYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
51168404Spjd
52168404Spjd/*
53168404Spjd * Virtual device management.
54168404Spjd */
55168404Spjd
56266122Ssmh/*
57254591Sgibbs * The limit for ZFS to automatically increase a top-level vdev's ashift
58254591Sgibbs * from logical ashift to physical ashift.
59254591Sgibbs *
60254591Sgibbs * Example: one or more 512B emulation child vdevs
61254591Sgibbs *          child->vdev_ashift = 9 (512 bytes)
62254591Sgibbs *          child->vdev_physical_ashift = 12 (4096 bytes)
63254591Sgibbs *          zfs_max_auto_ashift = 11 (2048 bytes)
64266122Ssmh *          zfs_min_auto_ashift = 9 (512 bytes)
65254591Sgibbs *
66266122Ssmh * On pool creation or the addition of a new top-level vdev, ZFS will
67266122Ssmh * increase the ashift of the top-level vdev to 2048 as limited by
68266122Ssmh * zfs_max_auto_ashift.
69254591Sgibbs *
70254591Sgibbs * Example: one or more 512B emulation child vdevs
71254591Sgibbs *          child->vdev_ashift = 9 (512 bytes)
72254591Sgibbs *          child->vdev_physical_ashift = 12 (4096 bytes)
73254591Sgibbs *          zfs_max_auto_ashift = 13 (8192 bytes)
74266122Ssmh *          zfs_min_auto_ashift = 9 (512 bytes)
75254591Sgibbs *
76266122Ssmh * On pool creation or the addition of a new top-level vdev, ZFS will
77266122Ssmh * increase the ashift of the top-level vdev to 4096 to match the
78266122Ssmh * max vdev_physical_ashift.
79266122Ssmh *
80266122Ssmh * Example: one or more 512B emulation child vdevs
81266122Ssmh *          child->vdev_ashift = 9 (512 bytes)
82266122Ssmh *          child->vdev_physical_ashift = 9 (512 bytes)
83266122Ssmh *          zfs_max_auto_ashift = 13 (8192 bytes)
84266122Ssmh *          zfs_min_auto_ashift = 12 (4096 bytes)
85266122Ssmh *
86266122Ssmh * On pool creation or the addition of a new top-level vdev, ZFS will
87266122Ssmh * increase the ashift of the top-level vdev to 4096 to match the
88266122Ssmh * zfs_min_auto_ashift.
89254591Sgibbs */
90254591Sgibbsstatic uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
91266122Ssmhstatic uint64_t zfs_min_auto_ashift = SPA_MINASHIFT;
92254591Sgibbs
93254591Sgibbsstatic int
94254591Sgibbssysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
95254591Sgibbs{
96254591Sgibbs	uint64_t val;
97254591Sgibbs	int err;
98254591Sgibbs
99254591Sgibbs	val = zfs_max_auto_ashift;
100254591Sgibbs	err = sysctl_handle_64(oidp, &val, 0, req);
101254591Sgibbs	if (err != 0 || req->newptr == NULL)
102254591Sgibbs		return (err);
103254591Sgibbs
104266122Ssmh	if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift)
105266122Ssmh		return (EINVAL);
106254591Sgibbs
107254591Sgibbs	zfs_max_auto_ashift = val;
108254591Sgibbs
109254591Sgibbs	return (0);
110254591Sgibbs}
111254591SgibbsSYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
112254591Sgibbs    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
113254591Sgibbs    sysctl_vfs_zfs_max_auto_ashift, "QU",
114266122Ssmh    "Max ashift used when optimising for logical -> physical sectors size on "
115266122Ssmh    "new top-level vdevs.");
116254591Sgibbs
117266122Ssmhstatic int
118266122Ssmhsysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)
119266122Ssmh{
120266122Ssmh	uint64_t val;
121266122Ssmh	int err;
122266122Ssmh
123266122Ssmh	val = zfs_min_auto_ashift;
124266122Ssmh	err = sysctl_handle_64(oidp, &val, 0, req);
125266122Ssmh	if (err != 0 || req->newptr == NULL)
126266122Ssmh		return (err);
127266122Ssmh
128266122Ssmh	if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift)
129266122Ssmh		return (EINVAL);
130266122Ssmh
131266122Ssmh	zfs_min_auto_ashift = val;
132266122Ssmh
133266122Ssmh	return (0);
134266122Ssmh}
135266122SsmhSYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift,
136266122Ssmh    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
137266122Ssmh    sysctl_vfs_zfs_min_auto_ashift, "QU",
138266122Ssmh    "Min ashift used when creating new top-level vdevs.");
139266122Ssmh
140168404Spjdstatic vdev_ops_t *vdev_ops_table[] = {
141168404Spjd	&vdev_root_ops,
142168404Spjd	&vdev_raidz_ops,
143168404Spjd	&vdev_mirror_ops,
144168404Spjd	&vdev_replacing_ops,
145168404Spjd	&vdev_spare_ops,
146168404Spjd#ifdef _KERNEL
147168404Spjd	&vdev_geom_ops,
148168404Spjd#else
149168404Spjd	&vdev_disk_ops,
150185029Spjd#endif
151168404Spjd	&vdev_file_ops,
152168404Spjd	&vdev_missing_ops,
153219089Spjd	&vdev_hole_ops,
154168404Spjd	NULL
155168404Spjd};
156168404Spjd
157168404Spjd
158168404Spjd/*
159168404Spjd * Given a vdev type, return the appropriate ops vector.
160168404Spjd */
161168404Spjdstatic vdev_ops_t *
162168404Spjdvdev_getops(const char *type)
163168404Spjd{
164168404Spjd	vdev_ops_t *ops, **opspp;
165168404Spjd
166168404Spjd	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
167168404Spjd		if (strcmp(ops->vdev_op_type, type) == 0)
168168404Spjd			break;
169168404Spjd
170168404Spjd	return (ops);
171168404Spjd}
172168404Spjd
173168404Spjd/*
174168404Spjd * Default asize function: return the MAX of psize with the asize of
175168404Spjd * all children.  This is what's used by anything other than RAID-Z.
176168404Spjd */
177168404Spjduint64_t
178168404Spjdvdev_default_asize(vdev_t *vd, uint64_t psize)
179168404Spjd{
180168404Spjd	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
181168404Spjd	uint64_t csize;
182168404Spjd
183219089Spjd	for (int c = 0; c < vd->vdev_children; c++) {
184168404Spjd		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
185168404Spjd		asize = MAX(asize, csize);
186168404Spjd	}
187168404Spjd
188168404Spjd	return (asize);
189168404Spjd}
190168404Spjd
191168404Spjd/*
192219089Spjd * Get the minimum allocatable size. We define the allocatable size as
193219089Spjd * the vdev's asize rounded to the nearest metaslab. This allows us to
194219089Spjd * replace or attach devices which don't have the same physical size but
195219089Spjd * can still satisfy the same number of allocations.
196168404Spjd */
197168404Spjduint64_t
198219089Spjdvdev_get_min_asize(vdev_t *vd)
199168404Spjd{
200219089Spjd	vdev_t *pvd = vd->vdev_parent;
201168404Spjd
202219089Spjd	/*
203236155Smm	 * If our parent is NULL (inactive spare or cache) or is the root,
204219089Spjd	 * just return our own asize.
205219089Spjd	 */
206219089Spjd	if (pvd == NULL)
207219089Spjd		return (vd->vdev_asize);
208168404Spjd
209168404Spjd	/*
210219089Spjd	 * The top-level vdev just returns the allocatable size rounded
211219089Spjd	 * to the nearest metaslab.
212168404Spjd	 */
213219089Spjd	if (vd == vd->vdev_top)
214219089Spjd		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
215168404Spjd
216219089Spjd	/*
217219089Spjd	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
218219089Spjd	 * so each child must provide at least 1/Nth of its asize.
219219089Spjd	 */
220219089Spjd	if (pvd->vdev_ops == &vdev_raidz_ops)
221219089Spjd		return (pvd->vdev_min_asize / pvd->vdev_children);
222168404Spjd
223219089Spjd	return (pvd->vdev_min_asize);
224219089Spjd}
225168404Spjd
226219089Spjdvoid
227219089Spjdvdev_set_min_asize(vdev_t *vd)
228219089Spjd{
229219089Spjd	vd->vdev_min_asize = vdev_get_min_asize(vd);
230219089Spjd
231219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
232219089Spjd		vdev_set_min_asize(vd->vdev_child[c]);
233168404Spjd}
234168404Spjd
235168404Spjdvdev_t *
236168404Spjdvdev_lookup_top(spa_t *spa, uint64_t vdev)
237168404Spjd{
238168404Spjd	vdev_t *rvd = spa->spa_root_vdev;
239168404Spjd
240185029Spjd	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
241185029Spjd
242185029Spjd	if (vdev < rvd->vdev_children) {
243185029Spjd		ASSERT(rvd->vdev_child[vdev] != NULL);
244168404Spjd		return (rvd->vdev_child[vdev]);
245185029Spjd	}
246168404Spjd
247168404Spjd	return (NULL);
248168404Spjd}
249168404Spjd
250168404Spjdvdev_t *
251168404Spjdvdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
252168404Spjd{
253168404Spjd	vdev_t *mvd;
254168404Spjd
255168404Spjd	if (vd->vdev_guid == guid)
256168404Spjd		return (vd);
257168404Spjd
258219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
259168404Spjd		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
260168404Spjd		    NULL)
261168404Spjd			return (mvd);
262168404Spjd
263168404Spjd	return (NULL);
264168404Spjd}
265168404Spjd
266168404Spjdvoid
267168404Spjdvdev_add_child(vdev_t *pvd, vdev_t *cvd)
268168404Spjd{
269168404Spjd	size_t oldsize, newsize;
270168404Spjd	uint64_t id = cvd->vdev_id;
271168404Spjd	vdev_t **newchild;
272168404Spjd
273185029Spjd	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
274168404Spjd	ASSERT(cvd->vdev_parent == NULL);
275168404Spjd
276168404Spjd	cvd->vdev_parent = pvd;
277168404Spjd
278168404Spjd	if (pvd == NULL)
279168404Spjd		return;
280168404Spjd
281168404Spjd	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
282168404Spjd
283168404Spjd	oldsize = pvd->vdev_children * sizeof (vdev_t *);
284168404Spjd	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
285168404Spjd	newsize = pvd->vdev_children * sizeof (vdev_t *);
286168404Spjd
287168404Spjd	newchild = kmem_zalloc(newsize, KM_SLEEP);
288168404Spjd	if (pvd->vdev_child != NULL) {
289168404Spjd		bcopy(pvd->vdev_child, newchild, oldsize);
290168404Spjd		kmem_free(pvd->vdev_child, oldsize);
291168404Spjd	}
292168404Spjd
293168404Spjd	pvd->vdev_child = newchild;
294168404Spjd	pvd->vdev_child[id] = cvd;
295168404Spjd
296168404Spjd	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
297168404Spjd	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
298168404Spjd
299168404Spjd	/*
300168404Spjd	 * Walk up all ancestors to update guid sum.
301168404Spjd	 */
302168404Spjd	for (; pvd != NULL; pvd = pvd->vdev_parent)
303168404Spjd		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
304168404Spjd}
305168404Spjd
306168404Spjdvoid
307168404Spjdvdev_remove_child(vdev_t *pvd, vdev_t *cvd)
308168404Spjd{
309168404Spjd	int c;
310168404Spjd	uint_t id = cvd->vdev_id;
311168404Spjd
312168404Spjd	ASSERT(cvd->vdev_parent == pvd);
313168404Spjd
314168404Spjd	if (pvd == NULL)
315168404Spjd		return;
316168404Spjd
317168404Spjd	ASSERT(id < pvd->vdev_children);
318168404Spjd	ASSERT(pvd->vdev_child[id] == cvd);
319168404Spjd
320168404Spjd	pvd->vdev_child[id] = NULL;
321168404Spjd	cvd->vdev_parent = NULL;
322168404Spjd
323168404Spjd	for (c = 0; c < pvd->vdev_children; c++)
324168404Spjd		if (pvd->vdev_child[c])
325168404Spjd			break;
326168404Spjd
327168404Spjd	if (c == pvd->vdev_children) {
328168404Spjd		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
329168404Spjd		pvd->vdev_child = NULL;
330168404Spjd		pvd->vdev_children = 0;
331168404Spjd	}
332168404Spjd
333168404Spjd	/*
334168404Spjd	 * Walk up all ancestors to update guid sum.
335168404Spjd	 */
336168404Spjd	for (; pvd != NULL; pvd = pvd->vdev_parent)
337168404Spjd		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
338168404Spjd}
339168404Spjd
340168404Spjd/*
341168404Spjd * Remove any holes in the child array.
342168404Spjd */
343168404Spjdvoid
344168404Spjdvdev_compact_children(vdev_t *pvd)
345168404Spjd{
346168404Spjd	vdev_t **newchild, *cvd;
347168404Spjd	int oldc = pvd->vdev_children;
348219089Spjd	int newc;
349168404Spjd
350185029Spjd	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
351168404Spjd
352219089Spjd	for (int c = newc = 0; c < oldc; c++)
353168404Spjd		if (pvd->vdev_child[c])
354168404Spjd			newc++;
355168404Spjd
356168404Spjd	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
357168404Spjd
358219089Spjd	for (int c = newc = 0; c < oldc; c++) {
359168404Spjd		if ((cvd = pvd->vdev_child[c]) != NULL) {
360168404Spjd			newchild[newc] = cvd;
361168404Spjd			cvd->vdev_id = newc++;
362168404Spjd		}
363168404Spjd	}
364168404Spjd
365168404Spjd	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
366168404Spjd	pvd->vdev_child = newchild;
367168404Spjd	pvd->vdev_children = newc;
368168404Spjd}
369168404Spjd
370168404Spjd/*
371168404Spjd * Allocate and minimally initialize a vdev_t.
372168404Spjd */
373219089Spjdvdev_t *
374168404Spjdvdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
375168404Spjd{
376168404Spjd	vdev_t *vd;
377168404Spjd
378168404Spjd	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
379168404Spjd
380168404Spjd	if (spa->spa_root_vdev == NULL) {
381168404Spjd		ASSERT(ops == &vdev_root_ops);
382168404Spjd		spa->spa_root_vdev = vd;
383228103Smm		spa->spa_load_guid = spa_generate_guid(NULL);
384168404Spjd	}
385168404Spjd
386219089Spjd	if (guid == 0 && ops != &vdev_hole_ops) {
387168404Spjd		if (spa->spa_root_vdev == vd) {
388168404Spjd			/*
389168404Spjd			 * The root vdev's guid will also be the pool guid,
390168404Spjd			 * which must be unique among all pools.
391168404Spjd			 */
392219089Spjd			guid = spa_generate_guid(NULL);
393168404Spjd		} else {
394168404Spjd			/*
395168404Spjd			 * Any other vdev's guid must be unique within the pool.
396168404Spjd			 */
397219089Spjd			guid = spa_generate_guid(spa);
398168404Spjd		}
399168404Spjd		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
400168404Spjd	}
401168404Spjd
402168404Spjd	vd->vdev_spa = spa;
403168404Spjd	vd->vdev_id = id;
404168404Spjd	vd->vdev_guid = guid;
405168404Spjd	vd->vdev_guid_sum = guid;
406168404Spjd	vd->vdev_ops = ops;
407168404Spjd	vd->vdev_state = VDEV_STATE_CLOSED;
408219089Spjd	vd->vdev_ishole = (ops == &vdev_hole_ops);
409168404Spjd
410168404Spjd	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
411168404Spjd	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
412185029Spjd	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
413209962Smm	for (int t = 0; t < DTL_TYPES; t++) {
414262093Savg		vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
415209962Smm		    &vd->vdev_dtl_lock);
416209962Smm	}
417168404Spjd	txg_list_create(&vd->vdev_ms_list,
418168404Spjd	    offsetof(struct metaslab, ms_txg_node));
419168404Spjd	txg_list_create(&vd->vdev_dtl_list,
420168404Spjd	    offsetof(struct vdev, vdev_dtl_node));
421168404Spjd	vd->vdev_stat.vs_timestamp = gethrtime();
422185029Spjd	vdev_queue_init(vd);
423185029Spjd	vdev_cache_init(vd);
424168404Spjd
425168404Spjd	return (vd);
426168404Spjd}
427168404Spjd
428168404Spjd/*
429168404Spjd * Allocate a new vdev.  The 'alloctype' is used to control whether we are
430168404Spjd * creating a new vdev or loading an existing one - the behavior is slightly
431168404Spjd * different for each case.
432168404Spjd */
433168404Spjdint
434168404Spjdvdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
435168404Spjd    int alloctype)
436168404Spjd{
437168404Spjd	vdev_ops_t *ops;
438168404Spjd	char *type;
439185029Spjd	uint64_t guid = 0, islog, nparity;
440168404Spjd	vdev_t *vd;
441168404Spjd
442185029Spjd	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
443168404Spjd
444168404Spjd	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
445249195Smm		return (SET_ERROR(EINVAL));
446168404Spjd
447168404Spjd	if ((ops = vdev_getops(type)) == NULL)
448249195Smm		return (SET_ERROR(EINVAL));
449168404Spjd
450168404Spjd	/*
451168404Spjd	 * If this is a load, get the vdev guid from the nvlist.
452168404Spjd	 * Otherwise, vdev_alloc_common() will generate one for us.
453168404Spjd	 */
454168404Spjd	if (alloctype == VDEV_ALLOC_LOAD) {
455168404Spjd		uint64_t label_id;
456168404Spjd
457168404Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
458168404Spjd		    label_id != id)
459249195Smm			return (SET_ERROR(EINVAL));
460168404Spjd
461168404Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
462249195Smm			return (SET_ERROR(EINVAL));
463168404Spjd	} else if (alloctype == VDEV_ALLOC_SPARE) {
464168404Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
465249195Smm			return (SET_ERROR(EINVAL));
466185029Spjd	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
467185029Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
468249195Smm			return (SET_ERROR(EINVAL));
469219089Spjd	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
470219089Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
471249195Smm			return (SET_ERROR(EINVAL));
472168404Spjd	}
473168404Spjd
474168404Spjd	/*
475168404Spjd	 * The first allocated vdev must be of type 'root'.
476168404Spjd	 */
477168404Spjd	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
478249195Smm		return (SET_ERROR(EINVAL));
479168404Spjd
480185029Spjd	/*
481185029Spjd	 * Determine whether we're a log vdev.
482185029Spjd	 */
483185029Spjd	islog = 0;
484185029Spjd	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
485185029Spjd	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
486249195Smm		return (SET_ERROR(ENOTSUP));
487168404Spjd
488219089Spjd	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
489249195Smm		return (SET_ERROR(ENOTSUP));
490219089Spjd
491168404Spjd	/*
492185029Spjd	 * Set the nparity property for RAID-Z vdevs.
493168404Spjd	 */
494185029Spjd	nparity = -1ULL;
495168404Spjd	if (ops == &vdev_raidz_ops) {
496168404Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
497185029Spjd		    &nparity) == 0) {
498219089Spjd			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
499249195Smm				return (SET_ERROR(EINVAL));
500168404Spjd			/*
501219089Spjd			 * Previous versions could only support 1 or 2 parity
502219089Spjd			 * device.
503168404Spjd			 */
504219089Spjd			if (nparity > 1 &&
505219089Spjd			    spa_version(spa) < SPA_VERSION_RAIDZ2)
506249195Smm				return (SET_ERROR(ENOTSUP));
507219089Spjd			if (nparity > 2 &&
508219089Spjd			    spa_version(spa) < SPA_VERSION_RAIDZ3)
509249195Smm				return (SET_ERROR(ENOTSUP));
510168404Spjd		} else {
511168404Spjd			/*
512168404Spjd			 * We require the parity to be specified for SPAs that
513168404Spjd			 * support multiple parity levels.
514168404Spjd			 */
515219089Spjd			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
516249195Smm				return (SET_ERROR(EINVAL));
517168404Spjd			/*
518168404Spjd			 * Otherwise, we default to 1 parity device for RAID-Z.
519168404Spjd			 */
520185029Spjd			nparity = 1;
521168404Spjd		}
522168404Spjd	} else {
523185029Spjd		nparity = 0;
524168404Spjd	}
525185029Spjd	ASSERT(nparity != -1ULL);
526168404Spjd
527185029Spjd	vd = vdev_alloc_common(spa, id, guid, ops);
528185029Spjd
529185029Spjd	vd->vdev_islog = islog;
530185029Spjd	vd->vdev_nparity = nparity;
531185029Spjd
532185029Spjd	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
533185029Spjd		vd->vdev_path = spa_strdup(vd->vdev_path);
534185029Spjd	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
535185029Spjd		vd->vdev_devid = spa_strdup(vd->vdev_devid);
536185029Spjd	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
537185029Spjd	    &vd->vdev_physpath) == 0)
538185029Spjd		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
539209962Smm	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
540209962Smm		vd->vdev_fru = spa_strdup(vd->vdev_fru);
541185029Spjd
542168404Spjd	/*
543168404Spjd	 * Set the whole_disk property.  If it's not specified, leave the value
544168404Spjd	 * as -1.
545168404Spjd	 */
546168404Spjd	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
547168404Spjd	    &vd->vdev_wholedisk) != 0)
548168404Spjd		vd->vdev_wholedisk = -1ULL;
549168404Spjd
550168404Spjd	/*
551168404Spjd	 * Look for the 'not present' flag.  This will only be set if the device
552168404Spjd	 * was not present at the time of import.
553168404Spjd	 */
554209962Smm	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
555209962Smm	    &vd->vdev_not_present);
556168404Spjd
557168404Spjd	/*
558168404Spjd	 * Get the alignment requirement.
559168404Spjd	 */
560168404Spjd	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
561168404Spjd
562168404Spjd	/*
563219089Spjd	 * Retrieve the vdev creation time.
564219089Spjd	 */
565219089Spjd	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
566219089Spjd	    &vd->vdev_crtxg);
567219089Spjd
568219089Spjd	/*
569168404Spjd	 * If we're a top-level vdev, try to load the allocation parameters.
570168404Spjd	 */
571219089Spjd	if (parent && !parent->vdev_parent &&
572219089Spjd	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
573168404Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
574168404Spjd		    &vd->vdev_ms_array);
575168404Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
576168404Spjd		    &vd->vdev_ms_shift);
577168404Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
578168404Spjd		    &vd->vdev_asize);
579219089Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
580219089Spjd		    &vd->vdev_removing);
581168404Spjd	}
582168404Spjd
583230514Smm	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
584219089Spjd		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
585219089Spjd		    alloctype == VDEV_ALLOC_ADD ||
586219089Spjd		    alloctype == VDEV_ALLOC_SPLIT ||
587219089Spjd		    alloctype == VDEV_ALLOC_ROOTPOOL);
588219089Spjd		vd->vdev_mg = metaslab_group_create(islog ?
589219089Spjd		    spa_log_class(spa) : spa_normal_class(spa), vd);
590219089Spjd	}
591219089Spjd
592168404Spjd	/*
593185029Spjd	 * If we're a leaf vdev, try to load the DTL object and other state.
594168404Spjd	 */
595185029Spjd	if (vd->vdev_ops->vdev_op_leaf &&
596219089Spjd	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
597219089Spjd	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
598185029Spjd		if (alloctype == VDEV_ALLOC_LOAD) {
599185029Spjd			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
600262093Savg			    &vd->vdev_dtl_object);
601185029Spjd			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
602185029Spjd			    &vd->vdev_unspare);
603185029Spjd		}
604219089Spjd
605219089Spjd		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
606219089Spjd			uint64_t spare = 0;
607219089Spjd
608219089Spjd			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
609219089Spjd			    &spare) == 0 && spare)
610219089Spjd				spa_spare_add(vd);
611219089Spjd		}
612219089Spjd
613168404Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
614168404Spjd		    &vd->vdev_offline);
615185029Spjd
616254112Sdelphij		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
617254112Sdelphij		    &vd->vdev_resilver_txg);
618219089Spjd
619185029Spjd		/*
620185029Spjd		 * When importing a pool, we want to ignore the persistent fault
621185029Spjd		 * state, as the diagnosis made on another system may not be
622219089Spjd		 * valid in the current context.  Local vdevs will
623219089Spjd		 * remain in the faulted state.
624185029Spjd		 */
625219089Spjd		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
626185029Spjd			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
627185029Spjd			    &vd->vdev_faulted);
628185029Spjd			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
629185029Spjd			    &vd->vdev_degraded);
630185029Spjd			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
631185029Spjd			    &vd->vdev_removed);
632219089Spjd
633219089Spjd			if (vd->vdev_faulted || vd->vdev_degraded) {
634219089Spjd				char *aux;
635219089Spjd
636219089Spjd				vd->vdev_label_aux =
637219089Spjd				    VDEV_AUX_ERR_EXCEEDED;
638219089Spjd				if (nvlist_lookup_string(nv,
639219089Spjd				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
640219089Spjd				    strcmp(aux, "external") == 0)
641219089Spjd					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
642219089Spjd			}
643185029Spjd		}
644168404Spjd	}
645168404Spjd
646168404Spjd	/*
647168404Spjd	 * Add ourselves to the parent's list of children.
648168404Spjd	 */
649168404Spjd	vdev_add_child(parent, vd);
650168404Spjd
651168404Spjd	*vdp = vd;
652168404Spjd
653168404Spjd	return (0);
654168404Spjd}
655168404Spjd
656168404Spjdvoid
657168404Spjdvdev_free(vdev_t *vd)
658168404Spjd{
659185029Spjd	spa_t *spa = vd->vdev_spa;
660168404Spjd
661168404Spjd	/*
662168404Spjd	 * vdev_free() implies closing the vdev first.  This is simpler than
663168404Spjd	 * trying to ensure complicated semantics for all callers.
664168404Spjd	 */
665168404Spjd	vdev_close(vd);
666168404Spjd
667185029Spjd	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
668219089Spjd	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
669168404Spjd
670168404Spjd	/*
671168404Spjd	 * Free all children.
672168404Spjd	 */
673219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
674168404Spjd		vdev_free(vd->vdev_child[c]);
675168404Spjd
676168404Spjd	ASSERT(vd->vdev_child == NULL);
677168404Spjd	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
678168404Spjd
679168404Spjd	/*
680168404Spjd	 * Discard allocation state.
681168404Spjd	 */
682219089Spjd	if (vd->vdev_mg != NULL) {
683168404Spjd		vdev_metaslab_fini(vd);
684219089Spjd		metaslab_group_destroy(vd->vdev_mg);
685219089Spjd	}
686168404Spjd
687240415Smm	ASSERT0(vd->vdev_stat.vs_space);
688240415Smm	ASSERT0(vd->vdev_stat.vs_dspace);
689240415Smm	ASSERT0(vd->vdev_stat.vs_alloc);
690168404Spjd
691168404Spjd	/*
692168404Spjd	 * Remove this vdev from its parent's child list.
693168404Spjd	 */
694168404Spjd	vdev_remove_child(vd->vdev_parent, vd);
695168404Spjd
696168404Spjd	ASSERT(vd->vdev_parent == NULL);
697168404Spjd
698185029Spjd	/*
699185029Spjd	 * Clean up vdev structure.
700185029Spjd	 */
701185029Spjd	vdev_queue_fini(vd);
702185029Spjd	vdev_cache_fini(vd);
703185029Spjd
704185029Spjd	if (vd->vdev_path)
705185029Spjd		spa_strfree(vd->vdev_path);
706185029Spjd	if (vd->vdev_devid)
707185029Spjd		spa_strfree(vd->vdev_devid);
708185029Spjd	if (vd->vdev_physpath)
709185029Spjd		spa_strfree(vd->vdev_physpath);
710209962Smm	if (vd->vdev_fru)
711209962Smm		spa_strfree(vd->vdev_fru);
712185029Spjd
713185029Spjd	if (vd->vdev_isspare)
714185029Spjd		spa_spare_remove(vd);
715185029Spjd	if (vd->vdev_isl2cache)
716185029Spjd		spa_l2cache_remove(vd);
717185029Spjd
718185029Spjd	txg_list_destroy(&vd->vdev_ms_list);
719185029Spjd	txg_list_destroy(&vd->vdev_dtl_list);
720209962Smm
721185029Spjd	mutex_enter(&vd->vdev_dtl_lock);
722262093Savg	space_map_close(vd->vdev_dtl_sm);
723209962Smm	for (int t = 0; t < DTL_TYPES; t++) {
724262093Savg		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
725262093Savg		range_tree_destroy(vd->vdev_dtl[t]);
726209962Smm	}
727185029Spjd	mutex_exit(&vd->vdev_dtl_lock);
728209962Smm
729185029Spjd	mutex_destroy(&vd->vdev_dtl_lock);
730185029Spjd	mutex_destroy(&vd->vdev_stat_lock);
731185029Spjd	mutex_destroy(&vd->vdev_probe_lock);
732185029Spjd
733185029Spjd	if (vd == spa->spa_root_vdev)
734185029Spjd		spa->spa_root_vdev = NULL;
735185029Spjd
736185029Spjd	kmem_free(vd, sizeof (vdev_t));
737168404Spjd}
738168404Spjd
739168404Spjd/*
740168404Spjd * Transfer top-level vdev state from svd to tvd.
741168404Spjd */
742168404Spjdstatic void
743168404Spjdvdev_top_transfer(vdev_t *svd, vdev_t *tvd)
744168404Spjd{
745168404Spjd	spa_t *spa = svd->vdev_spa;
746168404Spjd	metaslab_t *msp;
747168404Spjd	vdev_t *vd;
748168404Spjd	int t;
749168404Spjd
750168404Spjd	ASSERT(tvd == tvd->vdev_top);
751168404Spjd
752168404Spjd	tvd->vdev_ms_array = svd->vdev_ms_array;
753168404Spjd	tvd->vdev_ms_shift = svd->vdev_ms_shift;
754168404Spjd	tvd->vdev_ms_count = svd->vdev_ms_count;
755168404Spjd
756168404Spjd	svd->vdev_ms_array = 0;
757168404Spjd	svd->vdev_ms_shift = 0;
758168404Spjd	svd->vdev_ms_count = 0;
759168404Spjd
760230514Smm	if (tvd->vdev_mg)
761230514Smm		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
762168404Spjd	tvd->vdev_mg = svd->vdev_mg;
763168404Spjd	tvd->vdev_ms = svd->vdev_ms;
764168404Spjd
765168404Spjd	svd->vdev_mg = NULL;
766168404Spjd	svd->vdev_ms = NULL;
767168404Spjd
768168404Spjd	if (tvd->vdev_mg != NULL)
769168404Spjd		tvd->vdev_mg->mg_vd = tvd;
770168404Spjd
771168404Spjd	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
772168404Spjd	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
773168404Spjd	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
774168404Spjd
775168404Spjd	svd->vdev_stat.vs_alloc = 0;
776168404Spjd	svd->vdev_stat.vs_space = 0;
777168404Spjd	svd->vdev_stat.vs_dspace = 0;
778168404Spjd
779168404Spjd	for (t = 0; t < TXG_SIZE; t++) {
780168404Spjd		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
781168404Spjd			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
782168404Spjd		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
783168404Spjd			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
784168404Spjd		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
785168404Spjd			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
786168404Spjd	}
787168404Spjd
788185029Spjd	if (list_link_active(&svd->vdev_config_dirty_node)) {
789168404Spjd		vdev_config_clean(svd);
790168404Spjd		vdev_config_dirty(tvd);
791168404Spjd	}
792168404Spjd
793185029Spjd	if (list_link_active(&svd->vdev_state_dirty_node)) {
794185029Spjd		vdev_state_clean(svd);
795185029Spjd		vdev_state_dirty(tvd);
796185029Spjd	}
797168404Spjd
798168404Spjd	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
799168404Spjd	svd->vdev_deflate_ratio = 0;
800185029Spjd
801185029Spjd	tvd->vdev_islog = svd->vdev_islog;
802185029Spjd	svd->vdev_islog = 0;
803168404Spjd}
804168404Spjd
805168404Spjdstatic void
806168404Spjdvdev_top_update(vdev_t *tvd, vdev_t *vd)
807168404Spjd{
808168404Spjd	if (vd == NULL)
809168404Spjd		return;
810168404Spjd
811168404Spjd	vd->vdev_top = tvd;
812168404Spjd
813219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
814168404Spjd		vdev_top_update(tvd, vd->vdev_child[c]);
815168404Spjd}
816168404Spjd
817168404Spjd/*
818168404Spjd * Add a mirror/replacing vdev above an existing vdev.
819168404Spjd */
820168404Spjdvdev_t *
821168404Spjdvdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
822168404Spjd{
823168404Spjd	spa_t *spa = cvd->vdev_spa;
824168404Spjd	vdev_t *pvd = cvd->vdev_parent;
825168404Spjd	vdev_t *mvd;
826168404Spjd
827185029Spjd	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
828168404Spjd
829168404Spjd	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
830168404Spjd
831168404Spjd	mvd->vdev_asize = cvd->vdev_asize;
832219089Spjd	mvd->vdev_min_asize = cvd->vdev_min_asize;
833236155Smm	mvd->vdev_max_asize = cvd->vdev_max_asize;
834168404Spjd	mvd->vdev_ashift = cvd->vdev_ashift;
835254591Sgibbs	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
836254591Sgibbs	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
837168404Spjd	mvd->vdev_state = cvd->vdev_state;
838219089Spjd	mvd->vdev_crtxg = cvd->vdev_crtxg;
839168404Spjd
840168404Spjd	vdev_remove_child(pvd, cvd);
841168404Spjd	vdev_add_child(pvd, mvd);
842168404Spjd	cvd->vdev_id = mvd->vdev_children;
843168404Spjd	vdev_add_child(mvd, cvd);
844168404Spjd	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
845168404Spjd
846168404Spjd	if (mvd == mvd->vdev_top)
847168404Spjd		vdev_top_transfer(cvd, mvd);
848168404Spjd
849168404Spjd	return (mvd);
850168404Spjd}
851168404Spjd
852168404Spjd/*
853168404Spjd * Remove a 1-way mirror/replacing vdev from the tree.
854168404Spjd */
855168404Spjdvoid
856168404Spjdvdev_remove_parent(vdev_t *cvd)
857168404Spjd{
858168404Spjd	vdev_t *mvd = cvd->vdev_parent;
859168404Spjd	vdev_t *pvd = mvd->vdev_parent;
860168404Spjd
861185029Spjd	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
862168404Spjd
863168404Spjd	ASSERT(mvd->vdev_children == 1);
864168404Spjd	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
865168404Spjd	    mvd->vdev_ops == &vdev_replacing_ops ||
866168404Spjd	    mvd->vdev_ops == &vdev_spare_ops);
867168404Spjd	cvd->vdev_ashift = mvd->vdev_ashift;
868254591Sgibbs	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
869254591Sgibbs	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
870168404Spjd
871168404Spjd	vdev_remove_child(mvd, cvd);
872168404Spjd	vdev_remove_child(pvd, mvd);
873209962Smm
874185029Spjd	/*
875185029Spjd	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
876185029Spjd	 * Otherwise, we could have detached an offline device, and when we
877185029Spjd	 * go to import the pool we'll think we have two top-level vdevs,
878185029Spjd	 * instead of a different version of the same top-level vdev.
879185029Spjd	 */
880209962Smm	if (mvd->vdev_top == mvd) {
881209962Smm		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
882219089Spjd		cvd->vdev_orig_guid = cvd->vdev_guid;
883209962Smm		cvd->vdev_guid += guid_delta;
884209962Smm		cvd->vdev_guid_sum += guid_delta;
885209962Smm	}
886168404Spjd	cvd->vdev_id = mvd->vdev_id;
887168404Spjd	vdev_add_child(pvd, cvd);
888168404Spjd	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
889168404Spjd
890168404Spjd	if (cvd == cvd->vdev_top)
891168404Spjd		vdev_top_transfer(mvd, cvd);
892168404Spjd
893168404Spjd	ASSERT(mvd->vdev_children == 0);
894168404Spjd	vdev_free(mvd);
895168404Spjd}
896168404Spjd
897168404Spjdint
898168404Spjdvdev_metaslab_init(vdev_t *vd, uint64_t txg)
899168404Spjd{
900168404Spjd	spa_t *spa = vd->vdev_spa;
901168404Spjd	objset_t *mos = spa->spa_meta_objset;
902168404Spjd	uint64_t m;
903168404Spjd	uint64_t oldc = vd->vdev_ms_count;
904168404Spjd	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
905168404Spjd	metaslab_t **mspp;
906168404Spjd	int error;
907168404Spjd
908219089Spjd	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
909219089Spjd
910219089Spjd	/*
911219089Spjd	 * This vdev is not being allocated from yet or is a hole.
912219089Spjd	 */
913219089Spjd	if (vd->vdev_ms_shift == 0)
914168404Spjd		return (0);
915168404Spjd
916219089Spjd	ASSERT(!vd->vdev_ishole);
917219089Spjd
918213197Smm	/*
919213197Smm	 * Compute the raidz-deflation ratio.  Note, we hard-code
920213197Smm	 * in 128k (1 << 17) because it is the current "typical" blocksize.
921213197Smm	 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
922213197Smm	 * or we will inconsistently account for existing bp's.
923213197Smm	 */
924213197Smm	vd->vdev_deflate_ratio = (1 << 17) /
925213197Smm	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
926213197Smm
927168404Spjd	ASSERT(oldc <= newc);
928168404Spjd
929168404Spjd	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
930168404Spjd
931168404Spjd	if (oldc != 0) {
932168404Spjd		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
933168404Spjd		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
934168404Spjd	}
935168404Spjd
936168404Spjd	vd->vdev_ms = mspp;
937168404Spjd	vd->vdev_ms_count = newc;
938168404Spjd
939168404Spjd	for (m = oldc; m < newc; m++) {
940262093Savg		uint64_t object = 0;
941262093Savg
942168404Spjd		if (txg == 0) {
943168404Spjd			error = dmu_read(mos, vd->vdev_ms_array,
944209962Smm			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
945209962Smm			    DMU_READ_PREFETCH);
946168404Spjd			if (error)
947168404Spjd				return (error);
948168404Spjd		}
949262093Savg		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, m, object, txg);
950168404Spjd	}
951168404Spjd
952219089Spjd	if (txg == 0)
953219089Spjd		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
954219089Spjd
955219089Spjd	/*
956219089Spjd	 * If the vdev is being removed we don't activate
957219089Spjd	 * the metaslabs since we want to ensure that no new
958219089Spjd	 * allocations are performed on this device.
959219089Spjd	 */
960219089Spjd	if (oldc == 0 && !vd->vdev_removing)
961219089Spjd		metaslab_group_activate(vd->vdev_mg);
962219089Spjd
963219089Spjd	if (txg == 0)
964219089Spjd		spa_config_exit(spa, SCL_ALLOC, FTAG);
965219089Spjd
966168404Spjd	return (0);
967168404Spjd}
968168404Spjd
969168404Spjdvoid
970168404Spjdvdev_metaslab_fini(vdev_t *vd)
971168404Spjd{
972168404Spjd	uint64_t m;
973168404Spjd	uint64_t count = vd->vdev_ms_count;
974168404Spjd
975168404Spjd	if (vd->vdev_ms != NULL) {
976219089Spjd		metaslab_group_passivate(vd->vdev_mg);
977262093Savg		for (m = 0; m < count; m++) {
978262093Savg			metaslab_t *msp = vd->vdev_ms[m];
979262093Savg
980262093Savg			if (msp != NULL)
981262093Savg				metaslab_fini(msp);
982262093Savg		}
983168404Spjd		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
984168404Spjd		vd->vdev_ms = NULL;
985168404Spjd	}
986168404Spjd}
987168404Spjd
988185029Spjdtypedef struct vdev_probe_stats {
989185029Spjd	boolean_t	vps_readable;
990185029Spjd	boolean_t	vps_writeable;
991185029Spjd	int		vps_flags;
992185029Spjd} vdev_probe_stats_t;
993185029Spjd
994185029Spjdstatic void
995185029Spjdvdev_probe_done(zio_t *zio)
996185029Spjd{
997209962Smm	spa_t *spa = zio->io_spa;
998209962Smm	vdev_t *vd = zio->io_vd;
999185029Spjd	vdev_probe_stats_t *vps = zio->io_private;
1000185029Spjd
1001209962Smm	ASSERT(vd->vdev_probe_zio != NULL);
1002209962Smm
1003185029Spjd	if (zio->io_type == ZIO_TYPE_READ) {
1004185029Spjd		if (zio->io_error == 0)
1005185029Spjd			vps->vps_readable = 1;
1006209962Smm		if (zio->io_error == 0 && spa_writeable(spa)) {
1007209962Smm			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1008185029Spjd			    zio->io_offset, zio->io_size, zio->io_data,
1009185029Spjd			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1010185029Spjd			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1011185029Spjd		} else {
1012185029Spjd			zio_buf_free(zio->io_data, zio->io_size);
1013185029Spjd		}
1014185029Spjd	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1015185029Spjd		if (zio->io_error == 0)
1016185029Spjd			vps->vps_writeable = 1;
1017185029Spjd		zio_buf_free(zio->io_data, zio->io_size);
1018185029Spjd	} else if (zio->io_type == ZIO_TYPE_NULL) {
1019209962Smm		zio_t *pio;
1020185029Spjd
1021185029Spjd		vd->vdev_cant_read |= !vps->vps_readable;
1022185029Spjd		vd->vdev_cant_write |= !vps->vps_writeable;
1023185029Spjd
1024185029Spjd		if (vdev_readable(vd) &&
1025209962Smm		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1026185029Spjd			zio->io_error = 0;
1027185029Spjd		} else {
1028185029Spjd			ASSERT(zio->io_error != 0);
1029185029Spjd			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1030209962Smm			    spa, vd, NULL, 0, 0);
1031249195Smm			zio->io_error = SET_ERROR(ENXIO);
1032185029Spjd		}
1033209962Smm
1034209962Smm		mutex_enter(&vd->vdev_probe_lock);
1035209962Smm		ASSERT(vd->vdev_probe_zio == zio);
1036209962Smm		vd->vdev_probe_zio = NULL;
1037209962Smm		mutex_exit(&vd->vdev_probe_lock);
1038209962Smm
1039209962Smm		while ((pio = zio_walk_parents(zio)) != NULL)
1040209962Smm			if (!vdev_accessible(vd, pio))
1041249195Smm				pio->io_error = SET_ERROR(ENXIO);
1042209962Smm
1043185029Spjd		kmem_free(vps, sizeof (*vps));
1044185029Spjd	}
1045185029Spjd}
1046185029Spjd
1047168404Spjd/*
1048251631Sdelphij * Determine whether this device is accessible.
1049251631Sdelphij *
1050251631Sdelphij * Read and write to several known locations: the pad regions of each
1051251631Sdelphij * vdev label but the first, which we leave alone in case it contains
1052251631Sdelphij * a VTOC.
1053185029Spjd */
1054185029Spjdzio_t *
1055209962Smmvdev_probe(vdev_t *vd, zio_t *zio)
1056185029Spjd{
1057185029Spjd	spa_t *spa = vd->vdev_spa;
1058209962Smm	vdev_probe_stats_t *vps = NULL;
1059209962Smm	zio_t *pio;
1060185029Spjd
1061209962Smm	ASSERT(vd->vdev_ops->vdev_op_leaf);
1062185029Spjd
1063209962Smm	/*
1064209962Smm	 * Don't probe the probe.
1065209962Smm	 */
1066209962Smm	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1067209962Smm		return (NULL);
1068185029Spjd
1069209962Smm	/*
1070209962Smm	 * To prevent 'probe storms' when a device fails, we create
1071209962Smm	 * just one probe i/o at a time.  All zios that want to probe
1072209962Smm	 * this vdev will become parents of the probe io.
1073209962Smm	 */
1074209962Smm	mutex_enter(&vd->vdev_probe_lock);
1075209962Smm
1076209962Smm	if ((pio = vd->vdev_probe_zio) == NULL) {
1077209962Smm		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1078209962Smm
1079209962Smm		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1080209962Smm		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1081213198Smm		    ZIO_FLAG_TRYHARD;
1082209962Smm
1083209962Smm		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1084209962Smm			/*
1085209962Smm			 * vdev_cant_read and vdev_cant_write can only
1086209962Smm			 * transition from TRUE to FALSE when we have the
1087209962Smm			 * SCL_ZIO lock as writer; otherwise they can only
1088209962Smm			 * transition from FALSE to TRUE.  This ensures that
1089209962Smm			 * any zio looking at these values can assume that
1090209962Smm			 * failures persist for the life of the I/O.  That's
1091209962Smm			 * important because when a device has intermittent
1092209962Smm			 * connectivity problems, we want to ensure that
1093209962Smm			 * they're ascribed to the device (ENXIO) and not
1094209962Smm			 * the zio (EIO).
1095209962Smm			 *
1096209962Smm			 * Since we hold SCL_ZIO as writer here, clear both
1097209962Smm			 * values so the probe can reevaluate from first
1098209962Smm			 * principles.
1099209962Smm			 */
1100209962Smm			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1101209962Smm			vd->vdev_cant_read = B_FALSE;
1102209962Smm			vd->vdev_cant_write = B_FALSE;
1103209962Smm		}
1104209962Smm
1105209962Smm		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1106209962Smm		    vdev_probe_done, vps,
1107209962Smm		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1108209962Smm
1109219089Spjd		/*
1110219089Spjd		 * We can't change the vdev state in this context, so we
1111219089Spjd		 * kick off an async task to do it on our behalf.
1112219089Spjd		 */
1113209962Smm		if (zio != NULL) {
1114209962Smm			vd->vdev_probe_wanted = B_TRUE;
1115209962Smm			spa_async_request(spa, SPA_ASYNC_PROBE);
1116209962Smm		}
1117185029Spjd	}
1118185029Spjd
1119209962Smm	if (zio != NULL)
1120209962Smm		zio_add_child(zio, pio);
1121185029Spjd
1122209962Smm	mutex_exit(&vd->vdev_probe_lock);
1123185029Spjd
1124209962Smm	if (vps == NULL) {
1125209962Smm		ASSERT(zio != NULL);
1126209962Smm		return (NULL);
1127209962Smm	}
1128185029Spjd
1129185029Spjd	for (int l = 1; l < VDEV_LABELS; l++) {
1130209962Smm		zio_nowait(zio_read_phys(pio, vd,
1131185029Spjd		    vdev_label_offset(vd->vdev_psize, l,
1132209962Smm		    offsetof(vdev_label_t, vl_pad2)),
1133209962Smm		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1134185029Spjd		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1135185029Spjd		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1136185029Spjd	}
1137185029Spjd
1138209962Smm	if (zio == NULL)
1139209962Smm		return (pio);
1140209962Smm
1141209962Smm	zio_nowait(pio);
1142209962Smm	return (NULL);
1143185029Spjd}
1144185029Spjd
1145219089Spjdstatic void
1146219089Spjdvdev_open_child(void *arg)
1147219089Spjd{
1148219089Spjd	vdev_t *vd = arg;
1149219089Spjd
1150219089Spjd	vd->vdev_open_thread = curthread;
1151219089Spjd	vd->vdev_open_error = vdev_open(vd);
1152219089Spjd	vd->vdev_open_thread = NULL;
1153219089Spjd}
1154219089Spjd
1155219089Spjdboolean_t
1156219089Spjdvdev_uses_zvols(vdev_t *vd)
1157219089Spjd{
1158219089Spjd	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1159219089Spjd	    strlen(ZVOL_DIR)) == 0)
1160219089Spjd		return (B_TRUE);
1161219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
1162219089Spjd		if (vdev_uses_zvols(vd->vdev_child[c]))
1163219089Spjd			return (B_TRUE);
1164219089Spjd	return (B_FALSE);
1165219089Spjd}
1166219089Spjd
1167219089Spjdvoid
1168219089Spjdvdev_open_children(vdev_t *vd)
1169219089Spjd{
1170219089Spjd	taskq_t *tq;
1171219089Spjd	int children = vd->vdev_children;
1172219089Spjd
1173219089Spjd	/*
1174219089Spjd	 * in order to handle pools on top of zvols, do the opens
1175219089Spjd	 * in a single thread so that the same thread holds the
1176219089Spjd	 * spa_namespace_lock
1177219089Spjd	 */
1178219089Spjd	if (B_TRUE || vdev_uses_zvols(vd)) {
1179219089Spjd		for (int c = 0; c < children; c++)
1180219089Spjd			vd->vdev_child[c]->vdev_open_error =
1181219089Spjd			    vdev_open(vd->vdev_child[c]);
1182219089Spjd		return;
1183219089Spjd	}
1184219089Spjd	tq = taskq_create("vdev_open", children, minclsyspri,
1185219089Spjd	    children, children, TASKQ_PREPOPULATE);
1186219089Spjd
1187219089Spjd	for (int c = 0; c < children; c++)
1188219089Spjd		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1189219089Spjd		    TQ_SLEEP) != 0);
1190219089Spjd
1191219089Spjd	taskq_destroy(tq);
1192219089Spjd}
1193219089Spjd
1194185029Spjd/*
1195168404Spjd * Prepare a virtual device for access.
1196168404Spjd */
1197168404Spjdint
1198168404Spjdvdev_open(vdev_t *vd)
1199168404Spjd{
1200209962Smm	spa_t *spa = vd->vdev_spa;
1201168404Spjd	int error;
1202168404Spjd	uint64_t osize = 0;
1203236155Smm	uint64_t max_osize = 0;
1204236155Smm	uint64_t asize, max_asize, psize;
1205254591Sgibbs	uint64_t logical_ashift = 0;
1206254591Sgibbs	uint64_t physical_ashift = 0;
1207168404Spjd
1208219089Spjd	ASSERT(vd->vdev_open_thread == curthread ||
1209219089Spjd	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1210168404Spjd	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1211168404Spjd	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1212168404Spjd	    vd->vdev_state == VDEV_STATE_OFFLINE);
1213168404Spjd
1214168404Spjd	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1215213197Smm	vd->vdev_cant_read = B_FALSE;
1216213197Smm	vd->vdev_cant_write = B_FALSE;
1217219089Spjd	vd->vdev_min_asize = vdev_get_min_asize(vd);
1218168404Spjd
1219219089Spjd	/*
1220219089Spjd	 * If this vdev is not removed, check its fault status.  If it's
1221219089Spjd	 * faulted, bail out of the open.
1222219089Spjd	 */
1223185029Spjd	if (!vd->vdev_removed && vd->vdev_faulted) {
1224168404Spjd		ASSERT(vd->vdev_children == 0);
1225219089Spjd		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1226219089Spjd		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1227185029Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1228219089Spjd		    vd->vdev_label_aux);
1229249195Smm		return (SET_ERROR(ENXIO));
1230185029Spjd	} else if (vd->vdev_offline) {
1231185029Spjd		ASSERT(vd->vdev_children == 0);
1232168404Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1233249195Smm		return (SET_ERROR(ENXIO));
1234168404Spjd	}
1235168404Spjd
1236254591Sgibbs	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1237254591Sgibbs	    &logical_ashift, &physical_ashift);
1238168404Spjd
1239219089Spjd	/*
1240219089Spjd	 * Reset the vdev_reopening flag so that we actually close
1241219089Spjd	 * the vdev on error.
1242219089Spjd	 */
1243219089Spjd	vd->vdev_reopening = B_FALSE;
1244168404Spjd	if (zio_injection_enabled && error == 0)
1245213198Smm		error = zio_handle_device_injection(vd, NULL, ENXIO);
1246168404Spjd
1247185029Spjd	if (error) {
1248185029Spjd		if (vd->vdev_removed &&
1249185029Spjd		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1250185029Spjd			vd->vdev_removed = B_FALSE;
1251168404Spjd
1252168404Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1253168404Spjd		    vd->vdev_stat.vs_aux);
1254168404Spjd		return (error);
1255168404Spjd	}
1256168404Spjd
1257185029Spjd	vd->vdev_removed = B_FALSE;
1258168404Spjd
1259219089Spjd	/*
1260219089Spjd	 * Recheck the faulted flag now that we have confirmed that
1261219089Spjd	 * the vdev is accessible.  If we're faulted, bail.
1262219089Spjd	 */
1263219089Spjd	if (vd->vdev_faulted) {
1264219089Spjd		ASSERT(vd->vdev_children == 0);
1265219089Spjd		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1266219089Spjd		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1267219089Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1268219089Spjd		    vd->vdev_label_aux);
1269249195Smm		return (SET_ERROR(ENXIO));
1270219089Spjd	}
1271219089Spjd
1272185029Spjd	if (vd->vdev_degraded) {
1273185029Spjd		ASSERT(vd->vdev_children == 0);
1274185029Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1275185029Spjd		    VDEV_AUX_ERR_EXCEEDED);
1276185029Spjd	} else {
1277219089Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1278185029Spjd	}
1279185029Spjd
1280219089Spjd	/*
1281219089Spjd	 * For hole or missing vdevs we just return success.
1282219089Spjd	 */
1283219089Spjd	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1284219089Spjd		return (0);
1285219089Spjd
1286240868Spjd	if (vd->vdev_ops->vdev_op_leaf) {
1287240868Spjd		vd->vdev_notrim = B_FALSE;
1288240868Spjd		trim_map_create(vd);
1289240868Spjd	}
1290240868Spjd
1291219089Spjd	for (int c = 0; c < vd->vdev_children; c++) {
1292168404Spjd		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1293168404Spjd			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1294168404Spjd			    VDEV_AUX_NONE);
1295168404Spjd			break;
1296168404Spjd		}
1297219089Spjd	}
1298168404Spjd
1299168404Spjd	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1300236155Smm	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1301168404Spjd
1302168404Spjd	if (vd->vdev_children == 0) {
1303168404Spjd		if (osize < SPA_MINDEVSIZE) {
1304168404Spjd			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1305168404Spjd			    VDEV_AUX_TOO_SMALL);
1306249195Smm			return (SET_ERROR(EOVERFLOW));
1307168404Spjd		}
1308168404Spjd		psize = osize;
1309168404Spjd		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1310236155Smm		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1311236155Smm		    VDEV_LABEL_END_SIZE);
1312168404Spjd	} else {
1313168404Spjd		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1314168404Spjd		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1315168404Spjd			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1316168404Spjd			    VDEV_AUX_TOO_SMALL);
1317249195Smm			return (SET_ERROR(EOVERFLOW));
1318168404Spjd		}
1319168404Spjd		psize = 0;
1320168404Spjd		asize = osize;
1321236155Smm		max_asize = max_osize;
1322168404Spjd	}
1323168404Spjd
1324168404Spjd	vd->vdev_psize = psize;
1325168404Spjd
1326219089Spjd	/*
1327219089Spjd	 * Make sure the allocatable size hasn't shrunk.
1328219089Spjd	 */
1329219089Spjd	if (asize < vd->vdev_min_asize) {
1330219089Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1331219089Spjd		    VDEV_AUX_BAD_LABEL);
1332249195Smm		return (SET_ERROR(EINVAL));
1333219089Spjd	}
1334219089Spjd
1335254591Sgibbs	vd->vdev_physical_ashift =
1336254591Sgibbs	    MAX(physical_ashift, vd->vdev_physical_ashift);
1337254591Sgibbs	vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1338254591Sgibbs	vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1339254591Sgibbs
1340254591Sgibbs	if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1341254591Sgibbs		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1342254591Sgibbs		    VDEV_AUX_ASHIFT_TOO_BIG);
1343254591Sgibbs		return (EINVAL);
1344254591Sgibbs	}
1345254591Sgibbs
1346168404Spjd	if (vd->vdev_asize == 0) {
1347168404Spjd		/*
1348168404Spjd		 * This is the first-ever open, so use the computed values.
1349168404Spjd		 * For testing purposes, a higher ashift can be requested.
1350168404Spjd		 */
1351168404Spjd		vd->vdev_asize = asize;
1352236155Smm		vd->vdev_max_asize = max_asize;
1353168404Spjd	} else {
1354168404Spjd		/*
1355254591Sgibbs		 * Make sure the alignment requirement hasn't increased.
1356168404Spjd		 */
1357254591Sgibbs		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1358253441Sdelphij		    vd->vdev_ops->vdev_op_leaf) {
1359254591Sgibbs			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1360254591Sgibbs			    VDEV_AUX_BAD_LABEL);
1361254591Sgibbs			return (EINVAL);
1362168404Spjd		}
1363236155Smm		vd->vdev_max_asize = max_asize;
1364219089Spjd	}
1365168404Spjd
1366219089Spjd	/*
1367219089Spjd	 * If all children are healthy and the asize has increased,
1368219089Spjd	 * then we've experienced dynamic LUN growth.  If automatic
1369219089Spjd	 * expansion is enabled then use the additional space.
1370219089Spjd	 */
1371219089Spjd	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1372219089Spjd	    (vd->vdev_expanding || spa->spa_autoexpand))
1373219089Spjd		vd->vdev_asize = asize;
1374168404Spjd
1375219089Spjd	vdev_set_min_asize(vd);
1376168404Spjd
1377168404Spjd	/*
1378185029Spjd	 * Ensure we can issue some IO before declaring the
1379185029Spjd	 * vdev open for business.
1380185029Spjd	 */
1381185029Spjd	if (vd->vdev_ops->vdev_op_leaf &&
1382185029Spjd	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1383219089Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1384219089Spjd		    VDEV_AUX_ERR_EXCEEDED);
1385185029Spjd		return (error);
1386185029Spjd	}
1387185029Spjd
1388185029Spjd	/*
1389185029Spjd	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1390209962Smm	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1391209962Smm	 * since this would just restart the scrub we are already doing.
1392168404Spjd	 */
1393209962Smm	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1394209962Smm	    vdev_resilver_needed(vd, NULL, NULL))
1395209962Smm		spa_async_request(spa, SPA_ASYNC_RESILVER);
1396168404Spjd
1397168404Spjd	return (0);
1398168404Spjd}
1399168404Spjd
1400168404Spjd/*
1401168404Spjd * Called once the vdevs are all opened, this routine validates the label
1402168404Spjd * contents.  This needs to be done before vdev_load() so that we don't
1403185029Spjd * inadvertently do repair I/Os to the wrong device.
1404168404Spjd *
1405230514Smm * If 'strict' is false ignore the spa guid check. This is necessary because
1406230514Smm * if the machine crashed during a re-guid the new guid might have been written
1407230514Smm * to all of the vdev labels, but not the cached config. The strict check
1408230514Smm * will be performed when the pool is opened again using the mos config.
1409230514Smm *
1410168404Spjd * This function will only return failure if one of the vdevs indicates that it
1411168404Spjd * has since been destroyed or exported.  This is only possible if
1412168404Spjd * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1413168404Spjd * will be updated but the function will return 0.
1414168404Spjd */
1415168404Spjdint
1416230514Smmvdev_validate(vdev_t *vd, boolean_t strict)
1417168404Spjd{
1418168404Spjd	spa_t *spa = vd->vdev_spa;
1419168404Spjd	nvlist_t *label;
1420219089Spjd	uint64_t guid = 0, top_guid;
1421168404Spjd	uint64_t state;
1422168404Spjd
1423219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
1424230514Smm		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1425249195Smm			return (SET_ERROR(EBADF));
1426168404Spjd
1427168404Spjd	/*
1428168404Spjd	 * If the device has already failed, or was marked offline, don't do
1429168404Spjd	 * any further validation.  Otherwise, label I/O will fail and we will
1430168404Spjd	 * overwrite the previous state.
1431168404Spjd	 */
1432185029Spjd	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1433219089Spjd		uint64_t aux_guid = 0;
1434219089Spjd		nvlist_t *nvl;
1435246631Smm		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1436246631Smm		    spa_last_synced_txg(spa) : -1ULL;
1437168404Spjd
1438239620Smm		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1439168404Spjd			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1440168404Spjd			    VDEV_AUX_BAD_LABEL);
1441168404Spjd			return (0);
1442168404Spjd		}
1443168404Spjd
1444219089Spjd		/*
1445219089Spjd		 * Determine if this vdev has been split off into another
1446219089Spjd		 * pool.  If so, then refuse to open it.
1447219089Spjd		 */
1448219089Spjd		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1449219089Spjd		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1450219089Spjd			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1451219089Spjd			    VDEV_AUX_SPLIT_POOL);
1452219089Spjd			nvlist_free(label);
1453219089Spjd			return (0);
1454219089Spjd		}
1455219089Spjd
1456230514Smm		if (strict && (nvlist_lookup_uint64(label,
1457230514Smm		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1458230514Smm		    guid != spa_guid(spa))) {
1459168404Spjd			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1460168404Spjd			    VDEV_AUX_CORRUPT_DATA);
1461168404Spjd			nvlist_free(label);
1462168404Spjd			return (0);
1463168404Spjd		}
1464168404Spjd
1465219089Spjd		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1466219089Spjd		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1467219089Spjd		    &aux_guid) != 0)
1468219089Spjd			aux_guid = 0;
1469219089Spjd
1470185029Spjd		/*
1471185029Spjd		 * If this vdev just became a top-level vdev because its
1472185029Spjd		 * sibling was detached, it will have adopted the parent's
1473185029Spjd		 * vdev guid -- but the label may or may not be on disk yet.
1474185029Spjd		 * Fortunately, either version of the label will have the
1475185029Spjd		 * same top guid, so if we're a top-level vdev, we can
1476185029Spjd		 * safely compare to that instead.
1477219089Spjd		 *
1478219089Spjd		 * If we split this vdev off instead, then we also check the
1479219089Spjd		 * original pool's guid.  We don't want to consider the vdev
1480219089Spjd		 * corrupt if it is partway through a split operation.
1481185029Spjd		 */
1482168404Spjd		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1483185029Spjd		    &guid) != 0 ||
1484185029Spjd		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1485185029Spjd		    &top_guid) != 0 ||
1486219089Spjd		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1487185029Spjd		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1488168404Spjd			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1489168404Spjd			    VDEV_AUX_CORRUPT_DATA);
1490168404Spjd			nvlist_free(label);
1491168404Spjd			return (0);
1492168404Spjd		}
1493168404Spjd
1494168404Spjd		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1495168404Spjd		    &state) != 0) {
1496168404Spjd			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1497168404Spjd			    VDEV_AUX_CORRUPT_DATA);
1498168404Spjd			nvlist_free(label);
1499168404Spjd			return (0);
1500168404Spjd		}
1501168404Spjd
1502168404Spjd		nvlist_free(label);
1503168404Spjd
1504209962Smm		/*
1505219089Spjd		 * If this is a verbatim import, no need to check the
1506209962Smm		 * state of the pool.
1507209962Smm		 */
1508219089Spjd		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1509219089Spjd		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1510168404Spjd		    state != POOL_STATE_ACTIVE)
1511249195Smm			return (SET_ERROR(EBADF));
1512185029Spjd
1513185029Spjd		/*
1514185029Spjd		 * If we were able to open and validate a vdev that was
1515185029Spjd		 * previously marked permanently unavailable, clear that state
1516185029Spjd		 * now.
1517185029Spjd		 */
1518185029Spjd		if (vd->vdev_not_present)
1519185029Spjd			vd->vdev_not_present = 0;
1520168404Spjd	}
1521168404Spjd
1522168404Spjd	return (0);
1523168404Spjd}
1524168404Spjd
1525168404Spjd/*
1526168404Spjd * Close a virtual device.
1527168404Spjd */
1528168404Spjdvoid
1529168404Spjdvdev_close(vdev_t *vd)
1530168404Spjd{
1531209962Smm	spa_t *spa = vd->vdev_spa;
1532219089Spjd	vdev_t *pvd = vd->vdev_parent;
1533209962Smm
1534209962Smm	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1535209962Smm
1536219089Spjd	/*
1537219089Spjd	 * If our parent is reopening, then we are as well, unless we are
1538219089Spjd	 * going offline.
1539219089Spjd	 */
1540219089Spjd	if (pvd != NULL && pvd->vdev_reopening)
1541219089Spjd		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1542219089Spjd
1543168404Spjd	vd->vdev_ops->vdev_op_close(vd);
1544168404Spjd
1545185029Spjd	vdev_cache_purge(vd);
1546168404Spjd
1547240868Spjd	if (vd->vdev_ops->vdev_op_leaf)
1548240868Spjd		trim_map_destroy(vd);
1549240868Spjd
1550168404Spjd	/*
1551219089Spjd	 * We record the previous state before we close it, so that if we are
1552168404Spjd	 * doing a reopen(), we don't generate FMA ereports if we notice that
1553168404Spjd	 * it's still faulted.
1554168404Spjd	 */
1555168404Spjd	vd->vdev_prevstate = vd->vdev_state;
1556168404Spjd
1557168404Spjd	if (vd->vdev_offline)
1558168404Spjd		vd->vdev_state = VDEV_STATE_OFFLINE;
1559168404Spjd	else
1560168404Spjd		vd->vdev_state = VDEV_STATE_CLOSED;
1561168404Spjd	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1562168404Spjd}
1563168404Spjd
1564168404Spjdvoid
1565219089Spjdvdev_hold(vdev_t *vd)
1566219089Spjd{
1567219089Spjd	spa_t *spa = vd->vdev_spa;
1568219089Spjd
1569219089Spjd	ASSERT(spa_is_root(spa));
1570219089Spjd	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1571219089Spjd		return;
1572219089Spjd
1573219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
1574219089Spjd		vdev_hold(vd->vdev_child[c]);
1575219089Spjd
1576219089Spjd	if (vd->vdev_ops->vdev_op_leaf)
1577219089Spjd		vd->vdev_ops->vdev_op_hold(vd);
1578219089Spjd}
1579219089Spjd
1580219089Spjdvoid
1581219089Spjdvdev_rele(vdev_t *vd)
1582219089Spjd{
1583219089Spjd	spa_t *spa = vd->vdev_spa;
1584219089Spjd
1585219089Spjd	ASSERT(spa_is_root(spa));
1586219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
1587219089Spjd		vdev_rele(vd->vdev_child[c]);
1588219089Spjd
1589219089Spjd	if (vd->vdev_ops->vdev_op_leaf)
1590219089Spjd		vd->vdev_ops->vdev_op_rele(vd);
1591219089Spjd}
1592219089Spjd
1593219089Spjd/*
1594219089Spjd * Reopen all interior vdevs and any unopened leaves.  We don't actually
1595219089Spjd * reopen leaf vdevs which had previously been opened as they might deadlock
1596219089Spjd * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1597219089Spjd * If the leaf has never been opened then open it, as usual.
1598219089Spjd */
1599219089Spjdvoid
1600168404Spjdvdev_reopen(vdev_t *vd)
1601168404Spjd{
1602168404Spjd	spa_t *spa = vd->vdev_spa;
1603168404Spjd
1604185029Spjd	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1605168404Spjd
1606219089Spjd	/* set the reopening flag unless we're taking the vdev offline */
1607219089Spjd	vd->vdev_reopening = !vd->vdev_offline;
1608168404Spjd	vdev_close(vd);
1609168404Spjd	(void) vdev_open(vd);
1610168404Spjd
1611168404Spjd	/*
1612168404Spjd	 * Call vdev_validate() here to make sure we have the same device.
1613168404Spjd	 * Otherwise, a device with an invalid label could be successfully
1614168404Spjd	 * opened in response to vdev_reopen().
1615168404Spjd	 */
1616185029Spjd	if (vd->vdev_aux) {
1617185029Spjd		(void) vdev_validate_aux(vd);
1618185029Spjd		if (vdev_readable(vd) && vdev_writeable(vd) &&
1619209962Smm		    vd->vdev_aux == &spa->spa_l2cache &&
1620219089Spjd		    !l2arc_vdev_present(vd))
1621219089Spjd			l2arc_add_vdev(spa, vd);
1622185029Spjd	} else {
1623246631Smm		(void) vdev_validate(vd, B_TRUE);
1624185029Spjd	}
1625168404Spjd
1626168404Spjd	/*
1627185029Spjd	 * Reassess parent vdev's health.
1628168404Spjd	 */
1629185029Spjd	vdev_propagate_state(vd);
1630168404Spjd}
1631168404Spjd
1632168404Spjdint
1633168404Spjdvdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1634168404Spjd{
1635168404Spjd	int error;
1636168404Spjd
1637168404Spjd	/*
1638168404Spjd	 * Normally, partial opens (e.g. of a mirror) are allowed.
1639168404Spjd	 * For a create, however, we want to fail the request if
1640168404Spjd	 * there are any components we can't open.
1641168404Spjd	 */
1642168404Spjd	error = vdev_open(vd);
1643168404Spjd
1644168404Spjd	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1645168404Spjd		vdev_close(vd);
1646168404Spjd		return (error ? error : ENXIO);
1647168404Spjd	}
1648168404Spjd
1649168404Spjd	/*
1650262093Savg	 * Recursively load DTLs and initialize all labels.
1651168404Spjd	 */
1652262093Savg	if ((error = vdev_dtl_load(vd)) != 0 ||
1653262093Savg	    (error = vdev_label_init(vd, txg, isreplacing ?
1654168404Spjd	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1655168404Spjd		vdev_close(vd);
1656168404Spjd		return (error);
1657168404Spjd	}
1658168404Spjd
1659168404Spjd	return (0);
1660168404Spjd}
1661168404Spjd
1662168404Spjdvoid
1663219089Spjdvdev_metaslab_set_size(vdev_t *vd)
1664168404Spjd{
1665168404Spjd	/*
1666168404Spjd	 * Aim for roughly 200 metaslabs per vdev.
1667168404Spjd	 */
1668265740Sdelphij	vd->vdev_ms_shift = highbit64(vd->vdev_asize / 200);
1669168404Spjd	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1670168404Spjd}
1671168404Spjd
1672254591Sgibbs/*
1673266122Ssmh * Maximize performance by inflating the configured ashift for top level
1674266122Ssmh * vdevs to be as close to the physical ashift as possible while maintaining
1675266122Ssmh * administrator defined limits and ensuring it doesn't go below the
1676266122Ssmh * logical ashift.
1677254591Sgibbs */
1678168404Spjdvoid
1679254591Sgibbsvdev_ashift_optimize(vdev_t *vd)
1680254591Sgibbs{
1681266122Ssmh	if (vd == vd->vdev_top) {
1682266122Ssmh		if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1683266122Ssmh			vd->vdev_ashift = MIN(
1684266122Ssmh			    MAX(zfs_max_auto_ashift, vd->vdev_ashift),
1685266122Ssmh			    MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift));
1686266122Ssmh		} else {
1687266122Ssmh			/*
1688266122Ssmh			 * Unusual case where logical ashift > physical ashift
1689266122Ssmh			 * so we can't cap the calculated ashift based on max
1690266122Ssmh			 * ashift as that would cause failures.
1691266122Ssmh			 * We still check if we need to increase it to match
1692266122Ssmh			 * the min ashift.
1693266122Ssmh			 */
1694266122Ssmh			vd->vdev_ashift = MAX(zfs_min_auto_ashift,
1695266122Ssmh			    vd->vdev_ashift);
1696266122Ssmh		}
1697254591Sgibbs	}
1698254591Sgibbs}
1699254591Sgibbs
1700254591Sgibbsvoid
1701168404Spjdvdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1702168404Spjd{
1703168404Spjd	ASSERT(vd == vd->vdev_top);
1704219089Spjd	ASSERT(!vd->vdev_ishole);
1705168404Spjd	ASSERT(ISP2(flags));
1706219089Spjd	ASSERT(spa_writeable(vd->vdev_spa));
1707168404Spjd
1708168404Spjd	if (flags & VDD_METASLAB)
1709168404Spjd		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1710168404Spjd
1711168404Spjd	if (flags & VDD_DTL)
1712168404Spjd		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1713168404Spjd
1714168404Spjd	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1715168404Spjd}
1716168404Spjd
1717262093Savgvoid
1718262093Savgvdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1719262093Savg{
1720262093Savg	for (int c = 0; c < vd->vdev_children; c++)
1721262093Savg		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1722262093Savg
1723262093Savg	if (vd->vdev_ops->vdev_op_leaf)
1724262093Savg		vdev_dirty(vd->vdev_top, flags, vd, txg);
1725262093Savg}
1726262093Savg
1727209962Smm/*
1728209962Smm * DTLs.
1729209962Smm *
1730209962Smm * A vdev's DTL (dirty time log) is the set of transaction groups for which
1731219089Spjd * the vdev has less than perfect replication.  There are four kinds of DTL:
1732209962Smm *
1733209962Smm * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1734209962Smm *
1735209962Smm * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1736209962Smm *
1737209962Smm * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1738209962Smm *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1739209962Smm *	txgs that was scrubbed.
1740209962Smm *
1741209962Smm * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1742209962Smm *	persistent errors or just some device being offline.
1743209962Smm *	Unlike the other three, the DTL_OUTAGE map is not generally
1744209962Smm *	maintained; it's only computed when needed, typically to
1745209962Smm *	determine whether a device can be detached.
1746209962Smm *
1747209962Smm * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1748209962Smm * either has the data or it doesn't.
1749209962Smm *
1750209962Smm * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1751209962Smm * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1752209962Smm * if any child is less than fully replicated, then so is its parent.
1753209962Smm * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1754209962Smm * comprising only those txgs which appear in 'maxfaults' or more children;
1755209962Smm * those are the txgs we don't have enough replication to read.  For example,
1756209962Smm * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1757209962Smm * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1758209962Smm * two child DTL_MISSING maps.
1759209962Smm *
1760209962Smm * It should be clear from the above that to compute the DTLs and outage maps
1761209962Smm * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1762209962Smm * Therefore, that is all we keep on disk.  When loading the pool, or after
1763209962Smm * a configuration change, we generate all other DTLs from first principles.
1764209962Smm */
1765168404Spjdvoid
1766209962Smmvdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1767168404Spjd{
1768262093Savg	range_tree_t *rt = vd->vdev_dtl[t];
1769209962Smm
1770209962Smm	ASSERT(t < DTL_TYPES);
1771209962Smm	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1772219089Spjd	ASSERT(spa_writeable(vd->vdev_spa));
1773209962Smm
1774262093Savg	mutex_enter(rt->rt_lock);
1775262093Savg	if (!range_tree_contains(rt, txg, size))
1776262093Savg		range_tree_add(rt, txg, size);
1777262093Savg	mutex_exit(rt->rt_lock);
1778168404Spjd}
1779168404Spjd
1780209962Smmboolean_t
1781209962Smmvdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1782168404Spjd{
1783262093Savg	range_tree_t *rt = vd->vdev_dtl[t];
1784209962Smm	boolean_t dirty = B_FALSE;
1785168404Spjd
1786209962Smm	ASSERT(t < DTL_TYPES);
1787209962Smm	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1788168404Spjd
1789262093Savg	mutex_enter(rt->rt_lock);
1790262093Savg	if (range_tree_space(rt) != 0)
1791262093Savg		dirty = range_tree_contains(rt, txg, size);
1792262093Savg	mutex_exit(rt->rt_lock);
1793168404Spjd
1794168404Spjd	return (dirty);
1795168404Spjd}
1796168404Spjd
1797209962Smmboolean_t
1798209962Smmvdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1799209962Smm{
1800262093Savg	range_tree_t *rt = vd->vdev_dtl[t];
1801209962Smm	boolean_t empty;
1802209962Smm
1803262093Savg	mutex_enter(rt->rt_lock);
1804262093Savg	empty = (range_tree_space(rt) == 0);
1805262093Savg	mutex_exit(rt->rt_lock);
1806209962Smm
1807209962Smm	return (empty);
1808209962Smm}
1809209962Smm
1810168404Spjd/*
1811254112Sdelphij * Returns the lowest txg in the DTL range.
1812254112Sdelphij */
1813254112Sdelphijstatic uint64_t
1814254112Sdelphijvdev_dtl_min(vdev_t *vd)
1815254112Sdelphij{
1816262093Savg	range_seg_t *rs;
1817254112Sdelphij
1818254112Sdelphij	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1819262093Savg	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1820254112Sdelphij	ASSERT0(vd->vdev_children);
1821254112Sdelphij
1822262093Savg	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1823262093Savg	return (rs->rs_start - 1);
1824254112Sdelphij}
1825254112Sdelphij
1826254112Sdelphij/*
1827254112Sdelphij * Returns the highest txg in the DTL.
1828254112Sdelphij */
1829254112Sdelphijstatic uint64_t
1830254112Sdelphijvdev_dtl_max(vdev_t *vd)
1831254112Sdelphij{
1832262093Savg	range_seg_t *rs;
1833254112Sdelphij
1834254112Sdelphij	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1835262093Savg	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1836254112Sdelphij	ASSERT0(vd->vdev_children);
1837254112Sdelphij
1838262093Savg	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1839262093Savg	return (rs->rs_end);
1840254112Sdelphij}
1841254112Sdelphij
1842254112Sdelphij/*
1843254112Sdelphij * Determine if a resilvering vdev should remove any DTL entries from
1844254112Sdelphij * its range. If the vdev was resilvering for the entire duration of the
1845254112Sdelphij * scan then it should excise that range from its DTLs. Otherwise, this
1846254112Sdelphij * vdev is considered partially resilvered and should leave its DTL
1847254112Sdelphij * entries intact. The comment in vdev_dtl_reassess() describes how we
1848254112Sdelphij * excise the DTLs.
1849254112Sdelphij */
1850254112Sdelphijstatic boolean_t
1851254112Sdelphijvdev_dtl_should_excise(vdev_t *vd)
1852254112Sdelphij{
1853254112Sdelphij	spa_t *spa = vd->vdev_spa;
1854254112Sdelphij	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1855254112Sdelphij
1856254112Sdelphij	ASSERT0(scn->scn_phys.scn_errors);
1857254112Sdelphij	ASSERT0(vd->vdev_children);
1858254112Sdelphij
1859254112Sdelphij	if (vd->vdev_resilver_txg == 0 ||
1860262093Savg	    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1861254112Sdelphij		return (B_TRUE);
1862254112Sdelphij
1863254112Sdelphij	/*
1864254112Sdelphij	 * When a resilver is initiated the scan will assign the scn_max_txg
1865254112Sdelphij	 * value to the highest txg value that exists in all DTLs. If this
1866254112Sdelphij	 * device's max DTL is not part of this scan (i.e. it is not in
1867254112Sdelphij	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1868254112Sdelphij	 * for excision.
1869254112Sdelphij	 */
1870254112Sdelphij	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1871254112Sdelphij		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1872254112Sdelphij		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1873254112Sdelphij		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1874254112Sdelphij		return (B_TRUE);
1875254112Sdelphij	}
1876254112Sdelphij	return (B_FALSE);
1877254112Sdelphij}
1878254112Sdelphij
1879254112Sdelphij/*
1880168404Spjd * Reassess DTLs after a config change or scrub completion.
1881168404Spjd */
1882168404Spjdvoid
1883168404Spjdvdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1884168404Spjd{
1885168404Spjd	spa_t *spa = vd->vdev_spa;
1886209962Smm	avl_tree_t reftree;
1887209962Smm	int minref;
1888168404Spjd
1889209962Smm	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1890168404Spjd
1891209962Smm	for (int c = 0; c < vd->vdev_children; c++)
1892209962Smm		vdev_dtl_reassess(vd->vdev_child[c], txg,
1893209962Smm		    scrub_txg, scrub_done);
1894209962Smm
1895219089Spjd	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1896209962Smm		return;
1897209962Smm
1898209962Smm	if (vd->vdev_ops->vdev_op_leaf) {
1899219089Spjd		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1900219089Spjd
1901168404Spjd		mutex_enter(&vd->vdev_dtl_lock);
1902254112Sdelphij
1903254112Sdelphij		/*
1904254112Sdelphij		 * If we've completed a scan cleanly then determine
1905254112Sdelphij		 * if this vdev should remove any DTLs. We only want to
1906254112Sdelphij		 * excise regions on vdevs that were available during
1907254112Sdelphij		 * the entire duration of this scan.
1908254112Sdelphij		 */
1909185029Spjd		if (scrub_txg != 0 &&
1910219089Spjd		    (spa->spa_scrub_started ||
1911254112Sdelphij		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1912254112Sdelphij		    vdev_dtl_should_excise(vd)) {
1913185029Spjd			/*
1914185029Spjd			 * We completed a scrub up to scrub_txg.  If we
1915185029Spjd			 * did it without rebooting, then the scrub dtl
1916185029Spjd			 * will be valid, so excise the old region and
1917185029Spjd			 * fold in the scrub dtl.  Otherwise, leave the
1918185029Spjd			 * dtl as-is if there was an error.
1919209962Smm			 *
1920209962Smm			 * There's little trick here: to excise the beginning
1921209962Smm			 * of the DTL_MISSING map, we put it into a reference
1922209962Smm			 * tree and then add a segment with refcnt -1 that
1923209962Smm			 * covers the range [0, scrub_txg).  This means
1924209962Smm			 * that each txg in that range has refcnt -1 or 0.
1925209962Smm			 * We then add DTL_SCRUB with a refcnt of 2, so that
1926209962Smm			 * entries in the range [0, scrub_txg) will have a
1927209962Smm			 * positive refcnt -- either 1 or 2.  We then convert
1928209962Smm			 * the reference tree into the new DTL_MISSING map.
1929185029Spjd			 */
1930262093Savg			space_reftree_create(&reftree);
1931262093Savg			space_reftree_add_map(&reftree,
1932262093Savg			    vd->vdev_dtl[DTL_MISSING], 1);
1933262093Savg			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1934262093Savg			space_reftree_add_map(&reftree,
1935262093Savg			    vd->vdev_dtl[DTL_SCRUB], 2);
1936262093Savg			space_reftree_generate_map(&reftree,
1937262093Savg			    vd->vdev_dtl[DTL_MISSING], 1);
1938262093Savg			space_reftree_destroy(&reftree);
1939168404Spjd		}
1940262093Savg		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1941262093Savg		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1942262093Savg		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1943168404Spjd		if (scrub_done)
1944262093Savg			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1945262093Savg		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1946209962Smm		if (!vdev_readable(vd))
1947262093Savg			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1948209962Smm		else
1949262093Savg			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1950262093Savg			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1951254112Sdelphij
1952254112Sdelphij		/*
1953254112Sdelphij		 * If the vdev was resilvering and no longer has any
1954271776Ssmh		 * DTLs then reset its resilvering flag and dirty
1955271776Ssmh		 * the top level so that we persist the change.
1956254112Sdelphij		 */
1957254112Sdelphij		if (vd->vdev_resilver_txg != 0 &&
1958262093Savg		    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1959271776Ssmh		    range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
1960254112Sdelphij			vd->vdev_resilver_txg = 0;
1961271776Ssmh			vdev_config_dirty(vd->vdev_top);
1962271776Ssmh		}
1963254112Sdelphij
1964168404Spjd		mutex_exit(&vd->vdev_dtl_lock);
1965185029Spjd
1966168404Spjd		if (txg != 0)
1967168404Spjd			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1968168404Spjd		return;
1969168404Spjd	}
1970168404Spjd
1971168404Spjd	mutex_enter(&vd->vdev_dtl_lock);
1972209962Smm	for (int t = 0; t < DTL_TYPES; t++) {
1973209962Smm		/* account for child's outage in parent's missing map */
1974209962Smm		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1975209962Smm		if (t == DTL_SCRUB)
1976209962Smm			continue;			/* leaf vdevs only */
1977209962Smm		if (t == DTL_PARTIAL)
1978209962Smm			minref = 1;			/* i.e. non-zero */
1979209962Smm		else if (vd->vdev_nparity != 0)
1980209962Smm			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1981209962Smm		else
1982209962Smm			minref = vd->vdev_children;	/* any kind of mirror */
1983262093Savg		space_reftree_create(&reftree);
1984209962Smm		for (int c = 0; c < vd->vdev_children; c++) {
1985209962Smm			vdev_t *cvd = vd->vdev_child[c];
1986209962Smm			mutex_enter(&cvd->vdev_dtl_lock);
1987262093Savg			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1988209962Smm			mutex_exit(&cvd->vdev_dtl_lock);
1989209962Smm		}
1990262093Savg		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1991262093Savg		space_reftree_destroy(&reftree);
1992209962Smm	}
1993168404Spjd	mutex_exit(&vd->vdev_dtl_lock);
1994168404Spjd}
1995168404Spjd
1996262093Savgint
1997168404Spjdvdev_dtl_load(vdev_t *vd)
1998168404Spjd{
1999168404Spjd	spa_t *spa = vd->vdev_spa;
2000168404Spjd	objset_t *mos = spa->spa_meta_objset;
2001262093Savg	int error = 0;
2002168404Spjd
2003262093Savg	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2004262093Savg		ASSERT(!vd->vdev_ishole);
2005168404Spjd
2006262093Savg		error = space_map_open(&vd->vdev_dtl_sm, mos,
2007262093Savg		    vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2008262093Savg		if (error)
2009262093Savg			return (error);
2010262093Savg		ASSERT(vd->vdev_dtl_sm != NULL);
2011168404Spjd
2012262093Savg		mutex_enter(&vd->vdev_dtl_lock);
2013219089Spjd
2014262093Savg		/*
2015262093Savg		 * Now that we've opened the space_map we need to update
2016262093Savg		 * the in-core DTL.
2017262093Savg		 */
2018262093Savg		space_map_update(vd->vdev_dtl_sm);
2019262093Savg
2020262093Savg		error = space_map_load(vd->vdev_dtl_sm,
2021262093Savg		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2022262093Savg		mutex_exit(&vd->vdev_dtl_lock);
2023262093Savg
2024168404Spjd		return (error);
2025262093Savg	}
2026168404Spjd
2027262093Savg	for (int c = 0; c < vd->vdev_children; c++) {
2028262093Savg		error = vdev_dtl_load(vd->vdev_child[c]);
2029262093Savg		if (error != 0)
2030262093Savg			break;
2031262093Savg	}
2032168404Spjd
2033168404Spjd	return (error);
2034168404Spjd}
2035168404Spjd
2036168404Spjdvoid
2037168404Spjdvdev_dtl_sync(vdev_t *vd, uint64_t txg)
2038168404Spjd{
2039168404Spjd	spa_t *spa = vd->vdev_spa;
2040262093Savg	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2041168404Spjd	objset_t *mos = spa->spa_meta_objset;
2042262093Savg	range_tree_t *rtsync;
2043262093Savg	kmutex_t rtlock;
2044168404Spjd	dmu_tx_t *tx;
2045262093Savg	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2046168404Spjd
2047219089Spjd	ASSERT(!vd->vdev_ishole);
2048262093Savg	ASSERT(vd->vdev_ops->vdev_op_leaf);
2049219089Spjd
2050168404Spjd	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2051168404Spjd
2052262093Savg	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2053262093Savg		mutex_enter(&vd->vdev_dtl_lock);
2054262093Savg		space_map_free(vd->vdev_dtl_sm, tx);
2055262093Savg		space_map_close(vd->vdev_dtl_sm);
2056262093Savg		vd->vdev_dtl_sm = NULL;
2057262093Savg		mutex_exit(&vd->vdev_dtl_lock);
2058168404Spjd		dmu_tx_commit(tx);
2059168404Spjd		return;
2060168404Spjd	}
2061168404Spjd
2062262093Savg	if (vd->vdev_dtl_sm == NULL) {
2063262093Savg		uint64_t new_object;
2064262093Savg
2065262093Savg		new_object = space_map_alloc(mos, tx);
2066262093Savg		VERIFY3U(new_object, !=, 0);
2067262093Savg
2068262093Savg		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2069262093Savg		    0, -1ULL, 0, &vd->vdev_dtl_lock));
2070262093Savg		ASSERT(vd->vdev_dtl_sm != NULL);
2071168404Spjd	}
2072168404Spjd
2073262093Savg	bzero(&rtlock, sizeof(rtlock));
2074262093Savg	mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2075168404Spjd
2076262093Savg	rtsync = range_tree_create(NULL, NULL, &rtlock);
2077168404Spjd
2078262093Savg	mutex_enter(&rtlock);
2079168404Spjd
2080168404Spjd	mutex_enter(&vd->vdev_dtl_lock);
2081262093Savg	range_tree_walk(rt, range_tree_add, rtsync);
2082168404Spjd	mutex_exit(&vd->vdev_dtl_lock);
2083168404Spjd
2084262093Savg	space_map_truncate(vd->vdev_dtl_sm, tx);
2085262093Savg	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2086262093Savg	range_tree_vacate(rtsync, NULL, NULL);
2087168404Spjd
2088262093Savg	range_tree_destroy(rtsync);
2089168404Spjd
2090262093Savg	mutex_exit(&rtlock);
2091262093Savg	mutex_destroy(&rtlock);
2092168404Spjd
2093262093Savg	/*
2094262093Savg	 * If the object for the space map has changed then dirty
2095262093Savg	 * the top level so that we update the config.
2096262093Savg	 */
2097262093Savg	if (object != space_map_object(vd->vdev_dtl_sm)) {
2098262093Savg		zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2099262093Savg		    "new object %llu", txg, spa_name(spa), object,
2100262093Savg		    space_map_object(vd->vdev_dtl_sm));
2101262093Savg		vdev_config_dirty(vd->vdev_top);
2102262093Savg	}
2103168404Spjd
2104168404Spjd	dmu_tx_commit(tx);
2105262093Savg
2106262093Savg	mutex_enter(&vd->vdev_dtl_lock);
2107262093Savg	space_map_update(vd->vdev_dtl_sm);
2108262093Savg	mutex_exit(&vd->vdev_dtl_lock);
2109168404Spjd}
2110168404Spjd
2111185029Spjd/*
2112209962Smm * Determine whether the specified vdev can be offlined/detached/removed
2113209962Smm * without losing data.
2114209962Smm */
2115209962Smmboolean_t
2116209962Smmvdev_dtl_required(vdev_t *vd)
2117209962Smm{
2118209962Smm	spa_t *spa = vd->vdev_spa;
2119209962Smm	vdev_t *tvd = vd->vdev_top;
2120209962Smm	uint8_t cant_read = vd->vdev_cant_read;
2121209962Smm	boolean_t required;
2122209962Smm
2123209962Smm	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2124209962Smm
2125209962Smm	if (vd == spa->spa_root_vdev || vd == tvd)
2126209962Smm		return (B_TRUE);
2127209962Smm
2128209962Smm	/*
2129209962Smm	 * Temporarily mark the device as unreadable, and then determine
2130209962Smm	 * whether this results in any DTL outages in the top-level vdev.
2131209962Smm	 * If not, we can safely offline/detach/remove the device.
2132209962Smm	 */
2133209962Smm	vd->vdev_cant_read = B_TRUE;
2134209962Smm	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2135209962Smm	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2136209962Smm	vd->vdev_cant_read = cant_read;
2137209962Smm	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2138209962Smm
2139219089Spjd	if (!required && zio_injection_enabled)
2140219089Spjd		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2141219089Spjd
2142209962Smm	return (required);
2143209962Smm}
2144209962Smm
2145209962Smm/*
2146185029Spjd * Determine if resilver is needed, and if so the txg range.
2147185029Spjd */
2148185029Spjdboolean_t
2149185029Spjdvdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2150185029Spjd{
2151185029Spjd	boolean_t needed = B_FALSE;
2152185029Spjd	uint64_t thismin = UINT64_MAX;
2153185029Spjd	uint64_t thismax = 0;
2154185029Spjd
2155185029Spjd	if (vd->vdev_children == 0) {
2156185029Spjd		mutex_enter(&vd->vdev_dtl_lock);
2157262093Savg		if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2158209962Smm		    vdev_writeable(vd)) {
2159185029Spjd
2160254112Sdelphij			thismin = vdev_dtl_min(vd);
2161254112Sdelphij			thismax = vdev_dtl_max(vd);
2162185029Spjd			needed = B_TRUE;
2163185029Spjd		}
2164185029Spjd		mutex_exit(&vd->vdev_dtl_lock);
2165185029Spjd	} else {
2166209962Smm		for (int c = 0; c < vd->vdev_children; c++) {
2167185029Spjd			vdev_t *cvd = vd->vdev_child[c];
2168185029Spjd			uint64_t cmin, cmax;
2169185029Spjd
2170185029Spjd			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2171185029Spjd				thismin = MIN(thismin, cmin);
2172185029Spjd				thismax = MAX(thismax, cmax);
2173185029Spjd				needed = B_TRUE;
2174185029Spjd			}
2175185029Spjd		}
2176185029Spjd	}
2177185029Spjd
2178185029Spjd	if (needed && minp) {
2179185029Spjd		*minp = thismin;
2180185029Spjd		*maxp = thismax;
2181185029Spjd	}
2182185029Spjd	return (needed);
2183185029Spjd}
2184185029Spjd
2185168404Spjdvoid
2186168404Spjdvdev_load(vdev_t *vd)
2187168404Spjd{
2188168404Spjd	/*
2189168404Spjd	 * Recursively load all children.
2190168404Spjd	 */
2191209962Smm	for (int c = 0; c < vd->vdev_children; c++)
2192168404Spjd		vdev_load(vd->vdev_child[c]);
2193168404Spjd
2194168404Spjd	/*
2195168404Spjd	 * If this is a top-level vdev, initialize its metaslabs.
2196168404Spjd	 */
2197219089Spjd	if (vd == vd->vdev_top && !vd->vdev_ishole &&
2198168404Spjd	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2199168404Spjd	    vdev_metaslab_init(vd, 0) != 0))
2200168404Spjd		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2201168404Spjd		    VDEV_AUX_CORRUPT_DATA);
2202168404Spjd
2203168404Spjd	/*
2204168404Spjd	 * If this is a leaf vdev, load its DTL.
2205168404Spjd	 */
2206168404Spjd	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2207168404Spjd		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2208168404Spjd		    VDEV_AUX_CORRUPT_DATA);
2209168404Spjd}
2210168404Spjd
2211168404Spjd/*
2212185029Spjd * The special vdev case is used for hot spares and l2cache devices.  Its
2213185029Spjd * sole purpose it to set the vdev state for the associated vdev.  To do this,
2214185029Spjd * we make sure that we can open the underlying device, then try to read the
2215185029Spjd * label, and make sure that the label is sane and that it hasn't been
2216185029Spjd * repurposed to another pool.
2217168404Spjd */
2218168404Spjdint
2219185029Spjdvdev_validate_aux(vdev_t *vd)
2220168404Spjd{
2221168404Spjd	nvlist_t *label;
2222168404Spjd	uint64_t guid, version;
2223168404Spjd	uint64_t state;
2224168404Spjd
2225185029Spjd	if (!vdev_readable(vd))
2226185029Spjd		return (0);
2227185029Spjd
2228239620Smm	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2229168404Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2230168404Spjd		    VDEV_AUX_CORRUPT_DATA);
2231168404Spjd		return (-1);
2232168404Spjd	}
2233168404Spjd
2234168404Spjd	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2235236884Smm	    !SPA_VERSION_IS_SUPPORTED(version) ||
2236168404Spjd	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2237168404Spjd	    guid != vd->vdev_guid ||
2238168404Spjd	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2239168404Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2240168404Spjd		    VDEV_AUX_CORRUPT_DATA);
2241168404Spjd		nvlist_free(label);
2242168404Spjd		return (-1);
2243168404Spjd	}
2244168404Spjd
2245168404Spjd	/*
2246168404Spjd	 * We don't actually check the pool state here.  If it's in fact in
2247168404Spjd	 * use by another pool, we update this fact on the fly when requested.
2248168404Spjd	 */
2249168404Spjd	nvlist_free(label);
2250168404Spjd	return (0);
2251168404Spjd}
2252168404Spjd
2253168404Spjdvoid
2254219089Spjdvdev_remove(vdev_t *vd, uint64_t txg)
2255219089Spjd{
2256219089Spjd	spa_t *spa = vd->vdev_spa;
2257219089Spjd	objset_t *mos = spa->spa_meta_objset;
2258219089Spjd	dmu_tx_t *tx;
2259219089Spjd
2260219089Spjd	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2261219089Spjd
2262219089Spjd	if (vd->vdev_ms != NULL) {
2263269773Sdelphij		metaslab_group_t *mg = vd->vdev_mg;
2264269773Sdelphij
2265269773Sdelphij		metaslab_group_histogram_verify(mg);
2266269773Sdelphij		metaslab_class_histogram_verify(mg->mg_class);
2267269773Sdelphij
2268219089Spjd		for (int m = 0; m < vd->vdev_ms_count; m++) {
2269219089Spjd			metaslab_t *msp = vd->vdev_ms[m];
2270219089Spjd
2271262093Savg			if (msp == NULL || msp->ms_sm == NULL)
2272219089Spjd				continue;
2273219089Spjd
2274262093Savg			mutex_enter(&msp->ms_lock);
2275269773Sdelphij			/*
2276269773Sdelphij			 * If the metaslab was not loaded when the vdev
2277269773Sdelphij			 * was removed then the histogram accounting may
2278269773Sdelphij			 * not be accurate. Update the histogram information
2279269773Sdelphij			 * here so that we ensure that the metaslab group
2280269773Sdelphij			 * and metaslab class are up-to-date.
2281269773Sdelphij			 */
2282269773Sdelphij			metaslab_group_histogram_remove(mg, msp);
2283269773Sdelphij
2284262093Savg			VERIFY0(space_map_allocated(msp->ms_sm));
2285262093Savg			space_map_free(msp->ms_sm, tx);
2286262093Savg			space_map_close(msp->ms_sm);
2287262093Savg			msp->ms_sm = NULL;
2288262093Savg			mutex_exit(&msp->ms_lock);
2289219089Spjd		}
2290269773Sdelphij
2291269773Sdelphij		metaslab_group_histogram_verify(mg);
2292269773Sdelphij		metaslab_class_histogram_verify(mg->mg_class);
2293269773Sdelphij		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2294269773Sdelphij			ASSERT0(mg->mg_histogram[i]);
2295269773Sdelphij
2296219089Spjd	}
2297219089Spjd
2298219089Spjd	if (vd->vdev_ms_array) {
2299219089Spjd		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2300219089Spjd		vd->vdev_ms_array = 0;
2301219089Spjd	}
2302219089Spjd	dmu_tx_commit(tx);
2303219089Spjd}
2304219089Spjd
2305219089Spjdvoid
2306168404Spjdvdev_sync_done(vdev_t *vd, uint64_t txg)
2307168404Spjd{
2308168404Spjd	metaslab_t *msp;
2309211931Smm	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2310168404Spjd
2311219089Spjd	ASSERT(!vd->vdev_ishole);
2312219089Spjd
2313168404Spjd	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2314168404Spjd		metaslab_sync_done(msp, txg);
2315211931Smm
2316211931Smm	if (reassess)
2317211931Smm		metaslab_sync_reassess(vd->vdev_mg);
2318168404Spjd}
2319168404Spjd
2320168404Spjdvoid
2321168404Spjdvdev_sync(vdev_t *vd, uint64_t txg)
2322168404Spjd{
2323168404Spjd	spa_t *spa = vd->vdev_spa;
2324168404Spjd	vdev_t *lvd;
2325168404Spjd	metaslab_t *msp;
2326168404Spjd	dmu_tx_t *tx;
2327168404Spjd
2328219089Spjd	ASSERT(!vd->vdev_ishole);
2329219089Spjd
2330168404Spjd	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2331168404Spjd		ASSERT(vd == vd->vdev_top);
2332168404Spjd		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2333168404Spjd		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2334168404Spjd		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2335168404Spjd		ASSERT(vd->vdev_ms_array != 0);
2336168404Spjd		vdev_config_dirty(vd);
2337168404Spjd		dmu_tx_commit(tx);
2338168404Spjd	}
2339168404Spjd
2340219089Spjd	/*
2341219089Spjd	 * Remove the metadata associated with this vdev once it's empty.
2342219089Spjd	 */
2343219089Spjd	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2344219089Spjd		vdev_remove(vd, txg);
2345219089Spjd
2346168404Spjd	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2347168404Spjd		metaslab_sync(msp, txg);
2348168404Spjd		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2349168404Spjd	}
2350168404Spjd
2351168404Spjd	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2352168404Spjd		vdev_dtl_sync(lvd, txg);
2353168404Spjd
2354168404Spjd	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2355168404Spjd}
2356168404Spjd
2357168404Spjduint64_t
2358168404Spjdvdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2359168404Spjd{
2360168404Spjd	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2361168404Spjd}
2362168404Spjd
2363185029Spjd/*
2364185029Spjd * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2365185029Spjd * not be opened, and no I/O is attempted.
2366185029Spjd */
2367185029Spjdint
2368219089Spjdvdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2369168404Spjd{
2370219089Spjd	vdev_t *vd, *tvd;
2371168404Spjd
2372219089Spjd	spa_vdev_state_enter(spa, SCL_NONE);
2373185029Spjd
2374185029Spjd	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2375185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2376185029Spjd
2377185029Spjd	if (!vd->vdev_ops->vdev_op_leaf)
2378185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2379185029Spjd
2380219089Spjd	tvd = vd->vdev_top;
2381219089Spjd
2382185029Spjd	/*
2383219089Spjd	 * We don't directly use the aux state here, but if we do a
2384219089Spjd	 * vdev_reopen(), we need this value to be present to remember why we
2385219089Spjd	 * were faulted.
2386219089Spjd	 */
2387219089Spjd	vd->vdev_label_aux = aux;
2388219089Spjd
2389219089Spjd	/*
2390185029Spjd	 * Faulted state takes precedence over degraded.
2391185029Spjd	 */
2392219089Spjd	vd->vdev_delayed_close = B_FALSE;
2393185029Spjd	vd->vdev_faulted = 1ULL;
2394185029Spjd	vd->vdev_degraded = 0ULL;
2395219089Spjd	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2396185029Spjd
2397185029Spjd	/*
2398219089Spjd	 * If this device has the only valid copy of the data, then
2399219089Spjd	 * back off and simply mark the vdev as degraded instead.
2400185029Spjd	 */
2401219089Spjd	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2402185029Spjd		vd->vdev_degraded = 1ULL;
2403185029Spjd		vd->vdev_faulted = 0ULL;
2404185029Spjd
2405185029Spjd		/*
2406185029Spjd		 * If we reopen the device and it's not dead, only then do we
2407185029Spjd		 * mark it degraded.
2408185029Spjd		 */
2409219089Spjd		vdev_reopen(tvd);
2410185029Spjd
2411219089Spjd		if (vdev_readable(vd))
2412219089Spjd			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2413185029Spjd	}
2414185029Spjd
2415185029Spjd	return (spa_vdev_state_exit(spa, vd, 0));
2416168404Spjd}
2417168404Spjd
2418185029Spjd/*
2419185029Spjd * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2420185029Spjd * user that something is wrong.  The vdev continues to operate as normal as far
2421185029Spjd * as I/O is concerned.
2422185029Spjd */
2423185029Spjdint
2424219089Spjdvdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2425168404Spjd{
2426185029Spjd	vdev_t *vd;
2427168404Spjd
2428219089Spjd	spa_vdev_state_enter(spa, SCL_NONE);
2429168404Spjd
2430185029Spjd	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2431185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2432168404Spjd
2433185029Spjd	if (!vd->vdev_ops->vdev_op_leaf)
2434185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2435185029Spjd
2436185029Spjd	/*
2437185029Spjd	 * If the vdev is already faulted, then don't do anything.
2438185029Spjd	 */
2439185029Spjd	if (vd->vdev_faulted || vd->vdev_degraded)
2440185029Spjd		return (spa_vdev_state_exit(spa, NULL, 0));
2441185029Spjd
2442185029Spjd	vd->vdev_degraded = 1ULL;
2443185029Spjd	if (!vdev_is_dead(vd))
2444185029Spjd		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2445219089Spjd		    aux);
2446185029Spjd
2447185029Spjd	return (spa_vdev_state_exit(spa, vd, 0));
2448168404Spjd}
2449168404Spjd
2450185029Spjd/*
2451251631Sdelphij * Online the given vdev.
2452251631Sdelphij *
2453251631Sdelphij * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2454251631Sdelphij * spare device should be detached when the device finishes resilvering.
2455251631Sdelphij * Second, the online should be treated like a 'test' online case, so no FMA
2456251631Sdelphij * events are generated if the device fails to open.
2457185029Spjd */
2458168404Spjdint
2459185029Spjdvdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2460168404Spjd{
2461219089Spjd	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2462168404Spjd
2463219089Spjd	spa_vdev_state_enter(spa, SCL_NONE);
2464168404Spjd
2465185029Spjd	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2466185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2467168404Spjd
2468168404Spjd	if (!vd->vdev_ops->vdev_op_leaf)
2469185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2470168404Spjd
2471219089Spjd	tvd = vd->vdev_top;
2472168404Spjd	vd->vdev_offline = B_FALSE;
2473168404Spjd	vd->vdev_tmpoffline = B_FALSE;
2474185029Spjd	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2475185029Spjd	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2476219089Spjd
2477219089Spjd	/* XXX - L2ARC 1.0 does not support expansion */
2478219089Spjd	if (!vd->vdev_aux) {
2479219089Spjd		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2480219089Spjd			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2481219089Spjd	}
2482219089Spjd
2483219089Spjd	vdev_reopen(tvd);
2484185029Spjd	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2485168404Spjd
2486219089Spjd	if (!vd->vdev_aux) {
2487219089Spjd		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2488219089Spjd			pvd->vdev_expanding = B_FALSE;
2489219089Spjd	}
2490219089Spjd
2491185029Spjd	if (newstate)
2492185029Spjd		*newstate = vd->vdev_state;
2493185029Spjd	if ((flags & ZFS_ONLINE_UNSPARE) &&
2494185029Spjd	    !vdev_is_dead(vd) && vd->vdev_parent &&
2495185029Spjd	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2496185029Spjd	    vd->vdev_parent->vdev_child[0] == vd)
2497185029Spjd		vd->vdev_unspare = B_TRUE;
2498168404Spjd
2499219089Spjd	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2500219089Spjd
2501219089Spjd		/* XXX - L2ARC 1.0 does not support expansion */
2502219089Spjd		if (vd->vdev_aux)
2503219089Spjd			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2504219089Spjd		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2505219089Spjd	}
2506209962Smm	return (spa_vdev_state_exit(spa, vd, 0));
2507168404Spjd}
2508168404Spjd
2509219089Spjdstatic int
2510219089Spjdvdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2511168404Spjd{
2512213197Smm	vdev_t *vd, *tvd;
2513219089Spjd	int error = 0;
2514219089Spjd	uint64_t generation;
2515219089Spjd	metaslab_group_t *mg;
2516168404Spjd
2517219089Spjdtop:
2518219089Spjd	spa_vdev_state_enter(spa, SCL_ALLOC);
2519168404Spjd
2520185029Spjd	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2521185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2522168404Spjd
2523168404Spjd	if (!vd->vdev_ops->vdev_op_leaf)
2524185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2525168404Spjd
2526213197Smm	tvd = vd->vdev_top;
2527219089Spjd	mg = tvd->vdev_mg;
2528219089Spjd	generation = spa->spa_config_generation + 1;
2529213197Smm
2530168404Spjd	/*
2531168404Spjd	 * If the device isn't already offline, try to offline it.
2532168404Spjd	 */
2533168404Spjd	if (!vd->vdev_offline) {
2534168404Spjd		/*
2535209962Smm		 * If this device has the only valid copy of some data,
2536213197Smm		 * don't allow it to be offlined. Log devices are always
2537213197Smm		 * expendable.
2538168404Spjd		 */
2539213197Smm		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2540213197Smm		    vdev_dtl_required(vd))
2541185029Spjd			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2542168404Spjd
2543168404Spjd		/*
2544219089Spjd		 * If the top-level is a slog and it has had allocations
2545219089Spjd		 * then proceed.  We check that the vdev's metaslab group
2546219089Spjd		 * is not NULL since it's possible that we may have just
2547219089Spjd		 * added this vdev but not yet initialized its metaslabs.
2548219089Spjd		 */
2549219089Spjd		if (tvd->vdev_islog && mg != NULL) {
2550219089Spjd			/*
2551219089Spjd			 * Prevent any future allocations.
2552219089Spjd			 */
2553219089Spjd			metaslab_group_passivate(mg);
2554219089Spjd			(void) spa_vdev_state_exit(spa, vd, 0);
2555219089Spjd
2556219089Spjd			error = spa_offline_log(spa);
2557219089Spjd
2558219089Spjd			spa_vdev_state_enter(spa, SCL_ALLOC);
2559219089Spjd
2560219089Spjd			/*
2561219089Spjd			 * Check to see if the config has changed.
2562219089Spjd			 */
2563219089Spjd			if (error || generation != spa->spa_config_generation) {
2564219089Spjd				metaslab_group_activate(mg);
2565219089Spjd				if (error)
2566219089Spjd					return (spa_vdev_state_exit(spa,
2567219089Spjd					    vd, error));
2568219089Spjd				(void) spa_vdev_state_exit(spa, vd, 0);
2569219089Spjd				goto top;
2570219089Spjd			}
2571240415Smm			ASSERT0(tvd->vdev_stat.vs_alloc);
2572219089Spjd		}
2573219089Spjd
2574219089Spjd		/*
2575168404Spjd		 * Offline this device and reopen its top-level vdev.
2576213197Smm		 * If the top-level vdev is a log device then just offline
2577213197Smm		 * it. Otherwise, if this action results in the top-level
2578213197Smm		 * vdev becoming unusable, undo it and fail the request.
2579168404Spjd		 */
2580168404Spjd		vd->vdev_offline = B_TRUE;
2581213197Smm		vdev_reopen(tvd);
2582213197Smm
2583213197Smm		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2584213197Smm		    vdev_is_dead(tvd)) {
2585168404Spjd			vd->vdev_offline = B_FALSE;
2586213197Smm			vdev_reopen(tvd);
2587185029Spjd			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2588168404Spjd		}
2589219089Spjd
2590219089Spjd		/*
2591219089Spjd		 * Add the device back into the metaslab rotor so that
2592219089Spjd		 * once we online the device it's open for business.
2593219089Spjd		 */
2594219089Spjd		if (tvd->vdev_islog && mg != NULL)
2595219089Spjd			metaslab_group_activate(mg);
2596168404Spjd	}
2597168404Spjd
2598185029Spjd	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2599168404Spjd
2600219089Spjd	return (spa_vdev_state_exit(spa, vd, 0));
2601219089Spjd}
2602213197Smm
2603219089Spjdint
2604219089Spjdvdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2605219089Spjd{
2606219089Spjd	int error;
2607213197Smm
2608219089Spjd	mutex_enter(&spa->spa_vdev_top_lock);
2609219089Spjd	error = vdev_offline_locked(spa, guid, flags);
2610219089Spjd	mutex_exit(&spa->spa_vdev_top_lock);
2611219089Spjd
2612219089Spjd	return (error);
2613168404Spjd}
2614168404Spjd
2615168404Spjd/*
2616168404Spjd * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2617168404Spjd * vdev_offline(), we assume the spa config is locked.  We also clear all
2618168404Spjd * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2619168404Spjd */
2620168404Spjdvoid
2621168404Spjdvdev_clear(spa_t *spa, vdev_t *vd)
2622168404Spjd{
2623185029Spjd	vdev_t *rvd = spa->spa_root_vdev;
2624168404Spjd
2625185029Spjd	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2626185029Spjd
2627168404Spjd	if (vd == NULL)
2628185029Spjd		vd = rvd;
2629168404Spjd
2630168404Spjd	vd->vdev_stat.vs_read_errors = 0;
2631168404Spjd	vd->vdev_stat.vs_write_errors = 0;
2632168404Spjd	vd->vdev_stat.vs_checksum_errors = 0;
2633168404Spjd
2634185029Spjd	for (int c = 0; c < vd->vdev_children; c++)
2635168404Spjd		vdev_clear(spa, vd->vdev_child[c]);
2636185029Spjd
2637253991Smav	if (vd == rvd) {
2638253991Smav		for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
2639253991Smav			vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2640253991Smav
2641253991Smav		for (int c = 0; c < spa->spa_spares.sav_count; c++)
2642253991Smav			vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2643253991Smav	}
2644253991Smav
2645185029Spjd	/*
2646185029Spjd	 * If we're in the FAULTED state or have experienced failed I/O, then
2647185029Spjd	 * clear the persistent state and attempt to reopen the device.  We
2648185029Spjd	 * also mark the vdev config dirty, so that the new faulted state is
2649185029Spjd	 * written out to disk.
2650185029Spjd	 */
2651185029Spjd	if (vd->vdev_faulted || vd->vdev_degraded ||
2652185029Spjd	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2653185029Spjd
2654219089Spjd		/*
2655219089Spjd		 * When reopening in reponse to a clear event, it may be due to
2656219089Spjd		 * a fmadm repair request.  In this case, if the device is
2657219089Spjd		 * still broken, we want to still post the ereport again.
2658219089Spjd		 */
2659219089Spjd		vd->vdev_forcefault = B_TRUE;
2660219089Spjd
2661219089Spjd		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2662185029Spjd		vd->vdev_cant_read = B_FALSE;
2663185029Spjd		vd->vdev_cant_write = B_FALSE;
2664185029Spjd
2665219089Spjd		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2666185029Spjd
2667219089Spjd		vd->vdev_forcefault = B_FALSE;
2668219089Spjd
2669219089Spjd		if (vd != rvd && vdev_writeable(vd->vdev_top))
2670185029Spjd			vdev_state_dirty(vd->vdev_top);
2671185029Spjd
2672185029Spjd		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2673185029Spjd			spa_async_request(spa, SPA_ASYNC_RESILVER);
2674185029Spjd
2675185029Spjd		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2676185029Spjd	}
2677219089Spjd
2678219089Spjd	/*
2679219089Spjd	 * When clearing a FMA-diagnosed fault, we always want to
2680219089Spjd	 * unspare the device, as we assume that the original spare was
2681219089Spjd	 * done in response to the FMA fault.
2682219089Spjd	 */
2683219089Spjd	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2684219089Spjd	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2685219089Spjd	    vd->vdev_parent->vdev_child[0] == vd)
2686219089Spjd		vd->vdev_unspare = B_TRUE;
2687168404Spjd}
2688168404Spjd
2689185029Spjdboolean_t
2690168404Spjdvdev_is_dead(vdev_t *vd)
2691168404Spjd{
2692219089Spjd	/*
2693219089Spjd	 * Holes and missing devices are always considered "dead".
2694219089Spjd	 * This simplifies the code since we don't have to check for
2695219089Spjd	 * these types of devices in the various code paths.
2696219089Spjd	 * Instead we rely on the fact that we skip over dead devices
2697219089Spjd	 * before issuing I/O to them.
2698219089Spjd	 */
2699219089Spjd	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2700219089Spjd	    vd->vdev_ops == &vdev_missing_ops);
2701168404Spjd}
2702168404Spjd
2703185029Spjdboolean_t
2704185029Spjdvdev_readable(vdev_t *vd)
2705168404Spjd{
2706185029Spjd	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2707185029Spjd}
2708168404Spjd
2709185029Spjdboolean_t
2710185029Spjdvdev_writeable(vdev_t *vd)
2711185029Spjd{
2712185029Spjd	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2713185029Spjd}
2714168404Spjd
2715185029Spjdboolean_t
2716208370Smmvdev_allocatable(vdev_t *vd)
2717208370Smm{
2718209962Smm	uint64_t state = vd->vdev_state;
2719209962Smm
2720208370Smm	/*
2721209962Smm	 * We currently allow allocations from vdevs which may be in the
2722208370Smm	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2723208370Smm	 * fails to reopen then we'll catch it later when we're holding
2724209962Smm	 * the proper locks.  Note that we have to get the vdev state
2725209962Smm	 * in a local variable because although it changes atomically,
2726209962Smm	 * we're asking two separate questions about it.
2727208370Smm	 */
2728209962Smm	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2729219089Spjd	    !vd->vdev_cant_write && !vd->vdev_ishole);
2730208370Smm}
2731208370Smm
2732208370Smmboolean_t
2733185029Spjdvdev_accessible(vdev_t *vd, zio_t *zio)
2734185029Spjd{
2735185029Spjd	ASSERT(zio->io_vd == vd);
2736168404Spjd
2737185029Spjd	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2738185029Spjd		return (B_FALSE);
2739168404Spjd
2740185029Spjd	if (zio->io_type == ZIO_TYPE_READ)
2741185029Spjd		return (!vd->vdev_cant_read);
2742168404Spjd
2743185029Spjd	if (zio->io_type == ZIO_TYPE_WRITE)
2744185029Spjd		return (!vd->vdev_cant_write);
2745168404Spjd
2746185029Spjd	return (B_TRUE);
2747168404Spjd}
2748168404Spjd
2749168404Spjd/*
2750168404Spjd * Get statistics for the given vdev.
2751168404Spjd */
2752168404Spjdvoid
2753168404Spjdvdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2754168404Spjd{
2755269773Sdelphij	spa_t *spa = vd->vdev_spa;
2756269773Sdelphij	vdev_t *rvd = spa->spa_root_vdev;
2757168404Spjd
2758269773Sdelphij	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2759269773Sdelphij
2760168404Spjd	mutex_enter(&vd->vdev_stat_lock);
2761168404Spjd	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2762168404Spjd	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2763168404Spjd	vs->vs_state = vd->vdev_state;
2764219089Spjd	vs->vs_rsize = vdev_get_min_asize(vd);
2765219089Spjd	if (vd->vdev_ops->vdev_op_leaf)
2766219089Spjd		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2767236155Smm	vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2768254591Sgibbs	vs->vs_configured_ashift = vd->vdev_top != NULL
2769254591Sgibbs	    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
2770254591Sgibbs	vs->vs_logical_ashift = vd->vdev_logical_ashift;
2771254591Sgibbs	vs->vs_physical_ashift = vd->vdev_physical_ashift;
2772270128Sdelphij	if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2773269773Sdelphij		vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2774270128Sdelphij	}
2775168404Spjd
2776168404Spjd	/*
2777168404Spjd	 * If we're getting stats on the root vdev, aggregate the I/O counts
2778168404Spjd	 * over all top-level vdevs (i.e. the direct children of the root).
2779168404Spjd	 */
2780168404Spjd	if (vd == rvd) {
2781185029Spjd		for (int c = 0; c < rvd->vdev_children; c++) {
2782168404Spjd			vdev_t *cvd = rvd->vdev_child[c];
2783168404Spjd			vdev_stat_t *cvs = &cvd->vdev_stat;
2784168404Spjd
2785185029Spjd			for (int t = 0; t < ZIO_TYPES; t++) {
2786168404Spjd				vs->vs_ops[t] += cvs->vs_ops[t];
2787168404Spjd				vs->vs_bytes[t] += cvs->vs_bytes[t];
2788168404Spjd			}
2789219089Spjd			cvs->vs_scan_removing = cvd->vdev_removing;
2790168404Spjd		}
2791168404Spjd	}
2792269773Sdelphij	mutex_exit(&vd->vdev_stat_lock);
2793168404Spjd}
2794168404Spjd
2795168404Spjdvoid
2796185029Spjdvdev_clear_stats(vdev_t *vd)
2797168404Spjd{
2798185029Spjd	mutex_enter(&vd->vdev_stat_lock);
2799185029Spjd	vd->vdev_stat.vs_space = 0;
2800185029Spjd	vd->vdev_stat.vs_dspace = 0;
2801185029Spjd	vd->vdev_stat.vs_alloc = 0;
2802185029Spjd	mutex_exit(&vd->vdev_stat_lock);
2803185029Spjd}
2804185029Spjd
2805185029Spjdvoid
2806219089Spjdvdev_scan_stat_init(vdev_t *vd)
2807219089Spjd{
2808219089Spjd	vdev_stat_t *vs = &vd->vdev_stat;
2809219089Spjd
2810219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
2811219089Spjd		vdev_scan_stat_init(vd->vdev_child[c]);
2812219089Spjd
2813219089Spjd	mutex_enter(&vd->vdev_stat_lock);
2814219089Spjd	vs->vs_scan_processed = 0;
2815219089Spjd	mutex_exit(&vd->vdev_stat_lock);
2816219089Spjd}
2817219089Spjd
2818219089Spjdvoid
2819185029Spjdvdev_stat_update(zio_t *zio, uint64_t psize)
2820185029Spjd{
2821209962Smm	spa_t *spa = zio->io_spa;
2822209962Smm	vdev_t *rvd = spa->spa_root_vdev;
2823185029Spjd	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2824168404Spjd	vdev_t *pvd;
2825168404Spjd	uint64_t txg = zio->io_txg;
2826168404Spjd	vdev_stat_t *vs = &vd->vdev_stat;
2827168404Spjd	zio_type_t type = zio->io_type;
2828168404Spjd	int flags = zio->io_flags;
2829168404Spjd
2830185029Spjd	/*
2831185029Spjd	 * If this i/o is a gang leader, it didn't do any actual work.
2832185029Spjd	 */
2833185029Spjd	if (zio->io_gang_tree)
2834185029Spjd		return;
2835185029Spjd
2836168404Spjd	if (zio->io_error == 0) {
2837185029Spjd		/*
2838185029Spjd		 * If this is a root i/o, don't count it -- we've already
2839185029Spjd		 * counted the top-level vdevs, and vdev_get_stats() will
2840185029Spjd		 * aggregate them when asked.  This reduces contention on
2841185029Spjd		 * the root vdev_stat_lock and implicitly handles blocks
2842185029Spjd		 * that compress away to holes, for which there is no i/o.
2843185029Spjd		 * (Holes never create vdev children, so all the counters
2844185029Spjd		 * remain zero, which is what we want.)
2845185029Spjd		 *
2846185029Spjd		 * Note: this only applies to successful i/o (io_error == 0)
2847185029Spjd		 * because unlike i/o counts, errors are not additive.
2848185029Spjd		 * When reading a ditto block, for example, failure of
2849185029Spjd		 * one top-level vdev does not imply a root-level error.
2850185029Spjd		 */
2851185029Spjd		if (vd == rvd)
2852185029Spjd			return;
2853185029Spjd
2854185029Spjd		ASSERT(vd == zio->io_vd);
2855209962Smm
2856209962Smm		if (flags & ZIO_FLAG_IO_BYPASS)
2857209962Smm			return;
2858209962Smm
2859209962Smm		mutex_enter(&vd->vdev_stat_lock);
2860209962Smm
2861185029Spjd		if (flags & ZIO_FLAG_IO_REPAIR) {
2862219089Spjd			if (flags & ZIO_FLAG_SCAN_THREAD) {
2863219089Spjd				dsl_scan_phys_t *scn_phys =
2864219089Spjd				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2865219089Spjd				uint64_t *processed = &scn_phys->scn_processed;
2866219089Spjd
2867219089Spjd				/* XXX cleanup? */
2868219089Spjd				if (vd->vdev_ops->vdev_op_leaf)
2869219089Spjd					atomic_add_64(processed, psize);
2870219089Spjd				vs->vs_scan_processed += psize;
2871219089Spjd			}
2872219089Spjd
2873209962Smm			if (flags & ZIO_FLAG_SELF_HEAL)
2874185029Spjd				vs->vs_self_healed += psize;
2875168404Spjd		}
2876209962Smm
2877209962Smm		vs->vs_ops[type]++;
2878209962Smm		vs->vs_bytes[type] += psize;
2879209962Smm
2880209962Smm		mutex_exit(&vd->vdev_stat_lock);
2881168404Spjd		return;
2882168404Spjd	}
2883168404Spjd
2884168404Spjd	if (flags & ZIO_FLAG_SPECULATIVE)
2885168404Spjd		return;
2886168404Spjd
2887213198Smm	/*
2888213198Smm	 * If this is an I/O error that is going to be retried, then ignore the
2889213198Smm	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2890213198Smm	 * hard errors, when in reality they can happen for any number of
2891213198Smm	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2892213198Smm	 */
2893213198Smm	if (zio->io_error == EIO &&
2894213198Smm	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2895213198Smm		return;
2896213198Smm
2897219089Spjd	/*
2898219089Spjd	 * Intent logs writes won't propagate their error to the root
2899219089Spjd	 * I/O so don't mark these types of failures as pool-level
2900219089Spjd	 * errors.
2901219089Spjd	 */
2902219089Spjd	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2903219089Spjd		return;
2904219089Spjd
2905185029Spjd	mutex_enter(&vd->vdev_stat_lock);
2906209962Smm	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2907185029Spjd		if (zio->io_error == ECKSUM)
2908185029Spjd			vs->vs_checksum_errors++;
2909185029Spjd		else
2910185029Spjd			vs->vs_read_errors++;
2911168404Spjd	}
2912209962Smm	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2913185029Spjd		vs->vs_write_errors++;
2914185029Spjd	mutex_exit(&vd->vdev_stat_lock);
2915168404Spjd
2916209962Smm	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2917209962Smm	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2918219089Spjd	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2919219089Spjd	    spa->spa_claiming)) {
2920209962Smm		/*
2921219089Spjd		 * This is either a normal write (not a repair), or it's
2922219089Spjd		 * a repair induced by the scrub thread, or it's a repair
2923219089Spjd		 * made by zil_claim() during spa_load() in the first txg.
2924219089Spjd		 * In the normal case, we commit the DTL change in the same
2925219089Spjd		 * txg as the block was born.  In the scrub-induced repair
2926219089Spjd		 * case, we know that scrubs run in first-pass syncing context,
2927219089Spjd		 * so we commit the DTL change in spa_syncing_txg(spa).
2928219089Spjd		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2929209962Smm		 *
2930209962Smm		 * We currently do not make DTL entries for failed spontaneous
2931209962Smm		 * self-healing writes triggered by normal (non-scrubbing)
2932209962Smm		 * reads, because we have no transactional context in which to
2933209962Smm		 * do so -- and it's not clear that it'd be desirable anyway.
2934209962Smm		 */
2935209962Smm		if (vd->vdev_ops->vdev_op_leaf) {
2936209962Smm			uint64_t commit_txg = txg;
2937219089Spjd			if (flags & ZIO_FLAG_SCAN_THREAD) {
2938209962Smm				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2939209962Smm				ASSERT(spa_sync_pass(spa) == 1);
2940209962Smm				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2941219089Spjd				commit_txg = spa_syncing_txg(spa);
2942219089Spjd			} else if (spa->spa_claiming) {
2943219089Spjd				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2944219089Spjd				commit_txg = spa_first_txg(spa);
2945209962Smm			}
2946219089Spjd			ASSERT(commit_txg >= spa_syncing_txg(spa));
2947209962Smm			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2948168404Spjd				return;
2949209962Smm			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2950209962Smm				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2951209962Smm			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2952168404Spjd		}
2953209962Smm		if (vd != rvd)
2954209962Smm			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2955168404Spjd	}
2956168404Spjd}
2957168404Spjd
2958168404Spjd/*
2959219089Spjd * Update the in-core space usage stats for this vdev, its metaslab class,
2960219089Spjd * and the root vdev.
2961168404Spjd */
2962168404Spjdvoid
2963219089Spjdvdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2964219089Spjd    int64_t space_delta)
2965168404Spjd{
2966168404Spjd	int64_t dspace_delta = space_delta;
2967185029Spjd	spa_t *spa = vd->vdev_spa;
2968185029Spjd	vdev_t *rvd = spa->spa_root_vdev;
2969219089Spjd	metaslab_group_t *mg = vd->vdev_mg;
2970219089Spjd	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2971168404Spjd
2972185029Spjd	ASSERT(vd == vd->vdev_top);
2973168404Spjd
2974185029Spjd	/*
2975185029Spjd	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2976185029Spjd	 * factor.  We must calculate this here and not at the root vdev
2977185029Spjd	 * because the root vdev's psize-to-asize is simply the max of its
2978185029Spjd	 * childrens', thus not accurate enough for us.
2979185029Spjd	 */
2980185029Spjd	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2981213197Smm	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2982185029Spjd	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2983185029Spjd	    vd->vdev_deflate_ratio;
2984185029Spjd
2985185029Spjd	mutex_enter(&vd->vdev_stat_lock);
2986219089Spjd	vd->vdev_stat.vs_alloc += alloc_delta;
2987185029Spjd	vd->vdev_stat.vs_space += space_delta;
2988185029Spjd	vd->vdev_stat.vs_dspace += dspace_delta;
2989185029Spjd	mutex_exit(&vd->vdev_stat_lock);
2990185029Spjd
2991219089Spjd	if (mc == spa_normal_class(spa)) {
2992185029Spjd		mutex_enter(&rvd->vdev_stat_lock);
2993219089Spjd		rvd->vdev_stat.vs_alloc += alloc_delta;
2994185029Spjd		rvd->vdev_stat.vs_space += space_delta;
2995185029Spjd		rvd->vdev_stat.vs_dspace += dspace_delta;
2996185029Spjd		mutex_exit(&rvd->vdev_stat_lock);
2997185029Spjd	}
2998219089Spjd
2999219089Spjd	if (mc != NULL) {
3000219089Spjd		ASSERT(rvd == vd->vdev_parent);
3001219089Spjd		ASSERT(vd->vdev_ms_count != 0);
3002219089Spjd
3003219089Spjd		metaslab_class_space_update(mc,
3004219089Spjd		    alloc_delta, defer_delta, space_delta, dspace_delta);
3005219089Spjd	}
3006168404Spjd}
3007168404Spjd
3008168404Spjd/*
3009168404Spjd * Mark a top-level vdev's config as dirty, placing it on the dirty list
3010168404Spjd * so that it will be written out next time the vdev configuration is synced.
3011168404Spjd * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3012168404Spjd */
3013168404Spjdvoid
3014168404Spjdvdev_config_dirty(vdev_t *vd)
3015168404Spjd{
3016168404Spjd	spa_t *spa = vd->vdev_spa;
3017168404Spjd	vdev_t *rvd = spa->spa_root_vdev;
3018168404Spjd	int c;
3019168404Spjd
3020219089Spjd	ASSERT(spa_writeable(spa));
3021219089Spjd
3022168404Spjd	/*
3023209962Smm	 * If this is an aux vdev (as with l2cache and spare devices), then we
3024209962Smm	 * update the vdev config manually and set the sync flag.
3025185029Spjd	 */
3026185029Spjd	if (vd->vdev_aux != NULL) {
3027185029Spjd		spa_aux_vdev_t *sav = vd->vdev_aux;
3028185029Spjd		nvlist_t **aux;
3029185029Spjd		uint_t naux;
3030185029Spjd
3031185029Spjd		for (c = 0; c < sav->sav_count; c++) {
3032185029Spjd			if (sav->sav_vdevs[c] == vd)
3033185029Spjd				break;
3034185029Spjd		}
3035185029Spjd
3036185029Spjd		if (c == sav->sav_count) {
3037185029Spjd			/*
3038185029Spjd			 * We're being removed.  There's nothing more to do.
3039185029Spjd			 */
3040185029Spjd			ASSERT(sav->sav_sync == B_TRUE);
3041185029Spjd			return;
3042185029Spjd		}
3043185029Spjd
3044185029Spjd		sav->sav_sync = B_TRUE;
3045185029Spjd
3046209962Smm		if (nvlist_lookup_nvlist_array(sav->sav_config,
3047209962Smm		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3048209962Smm			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3049209962Smm			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3050209962Smm		}
3051185029Spjd
3052185029Spjd		ASSERT(c < naux);
3053185029Spjd
3054185029Spjd		/*
3055185029Spjd		 * Setting the nvlist in the middle if the array is a little
3056185029Spjd		 * sketchy, but it will work.
3057185029Spjd		 */
3058185029Spjd		nvlist_free(aux[c]);
3059219089Spjd		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3060185029Spjd
3061185029Spjd		return;
3062185029Spjd	}
3063185029Spjd
3064185029Spjd	/*
3065185029Spjd	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
3066185029Spjd	 * must either hold SCL_CONFIG as writer, or must be the sync thread
3067185029Spjd	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3068168404Spjd	 * so this is sufficient to ensure mutual exclusion.
3069168404Spjd	 */
3070185029Spjd	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3071185029Spjd	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3072185029Spjd	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3073168404Spjd
3074168404Spjd	if (vd == rvd) {
3075168404Spjd		for (c = 0; c < rvd->vdev_children; c++)
3076168404Spjd			vdev_config_dirty(rvd->vdev_child[c]);
3077168404Spjd	} else {
3078168404Spjd		ASSERT(vd == vd->vdev_top);
3079168404Spjd
3080219089Spjd		if (!list_link_active(&vd->vdev_config_dirty_node) &&
3081219089Spjd		    !vd->vdev_ishole)
3082185029Spjd			list_insert_head(&spa->spa_config_dirty_list, vd);
3083168404Spjd	}
3084168404Spjd}
3085168404Spjd
3086168404Spjdvoid
3087168404Spjdvdev_config_clean(vdev_t *vd)
3088168404Spjd{
3089168404Spjd	spa_t *spa = vd->vdev_spa;
3090168404Spjd
3091185029Spjd	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3092185029Spjd	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3093185029Spjd	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3094168404Spjd
3095185029Spjd	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3096185029Spjd	list_remove(&spa->spa_config_dirty_list, vd);
3097168404Spjd}
3098168404Spjd
3099185029Spjd/*
3100185029Spjd * Mark a top-level vdev's state as dirty, so that the next pass of
3101185029Spjd * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3102185029Spjd * the state changes from larger config changes because they require
3103185029Spjd * much less locking, and are often needed for administrative actions.
3104185029Spjd */
3105168404Spjdvoid
3106185029Spjdvdev_state_dirty(vdev_t *vd)
3107185029Spjd{
3108185029Spjd	spa_t *spa = vd->vdev_spa;
3109185029Spjd
3110219089Spjd	ASSERT(spa_writeable(spa));
3111185029Spjd	ASSERT(vd == vd->vdev_top);
3112185029Spjd
3113185029Spjd	/*
3114185029Spjd	 * The state list is protected by the SCL_STATE lock.  The caller
3115185029Spjd	 * must either hold SCL_STATE as writer, or must be the sync thread
3116185029Spjd	 * (which holds SCL_STATE as reader).  There's only one sync thread,
3117185029Spjd	 * so this is sufficient to ensure mutual exclusion.
3118185029Spjd	 */
3119185029Spjd	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3120185029Spjd	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3121185029Spjd	    spa_config_held(spa, SCL_STATE, RW_READER)));
3122185029Spjd
3123219089Spjd	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3124185029Spjd		list_insert_head(&spa->spa_state_dirty_list, vd);
3125185029Spjd}
3126185029Spjd
3127185029Spjdvoid
3128185029Spjdvdev_state_clean(vdev_t *vd)
3129185029Spjd{
3130185029Spjd	spa_t *spa = vd->vdev_spa;
3131185029Spjd
3132185029Spjd	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3133185029Spjd	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3134185029Spjd	    spa_config_held(spa, SCL_STATE, RW_READER)));
3135185029Spjd
3136185029Spjd	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3137185029Spjd	list_remove(&spa->spa_state_dirty_list, vd);
3138185029Spjd}
3139185029Spjd
3140185029Spjd/*
3141185029Spjd * Propagate vdev state up from children to parent.
3142185029Spjd */
3143185029Spjdvoid
3144168404Spjdvdev_propagate_state(vdev_t *vd)
3145168404Spjd{
3146209962Smm	spa_t *spa = vd->vdev_spa;
3147209962Smm	vdev_t *rvd = spa->spa_root_vdev;
3148168404Spjd	int degraded = 0, faulted = 0;
3149168404Spjd	int corrupted = 0;
3150168404Spjd	vdev_t *child;
3151168404Spjd
3152185029Spjd	if (vd->vdev_children > 0) {
3153219089Spjd		for (int c = 0; c < vd->vdev_children; c++) {
3154185029Spjd			child = vd->vdev_child[c];
3155168404Spjd
3156219089Spjd			/*
3157219089Spjd			 * Don't factor holes into the decision.
3158219089Spjd			 */
3159219089Spjd			if (child->vdev_ishole)
3160219089Spjd				continue;
3161219089Spjd
3162185029Spjd			if (!vdev_readable(child) ||
3163209962Smm			    (!vdev_writeable(child) && spa_writeable(spa))) {
3164185029Spjd				/*
3165185029Spjd				 * Root special: if there is a top-level log
3166185029Spjd				 * device, treat the root vdev as if it were
3167185029Spjd				 * degraded.
3168185029Spjd				 */
3169185029Spjd				if (child->vdev_islog && vd == rvd)
3170185029Spjd					degraded++;
3171185029Spjd				else
3172185029Spjd					faulted++;
3173185029Spjd			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3174185029Spjd				degraded++;
3175185029Spjd			}
3176185029Spjd
3177185029Spjd			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3178185029Spjd				corrupted++;
3179185029Spjd		}
3180185029Spjd
3181185029Spjd		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3182185029Spjd
3183185029Spjd		/*
3184185029Spjd		 * Root special: if there is a top-level vdev that cannot be
3185185029Spjd		 * opened due to corrupted metadata, then propagate the root
3186185029Spjd		 * vdev's aux state as 'corrupt' rather than 'insufficient
3187185029Spjd		 * replicas'.
3188185029Spjd		 */
3189185029Spjd		if (corrupted && vd == rvd &&
3190185029Spjd		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3191185029Spjd			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3192185029Spjd			    VDEV_AUX_CORRUPT_DATA);
3193168404Spjd	}
3194168404Spjd
3195185029Spjd	if (vd->vdev_parent)
3196185029Spjd		vdev_propagate_state(vd->vdev_parent);
3197168404Spjd}
3198168404Spjd
3199168404Spjd/*
3200168404Spjd * Set a vdev's state.  If this is during an open, we don't update the parent
3201168404Spjd * state, because we're in the process of opening children depth-first.
3202168404Spjd * Otherwise, we propagate the change to the parent.
3203168404Spjd *
3204168404Spjd * If this routine places a device in a faulted state, an appropriate ereport is
3205168404Spjd * generated.
3206168404Spjd */
3207168404Spjdvoid
3208168404Spjdvdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3209168404Spjd{
3210168404Spjd	uint64_t save_state;
3211185029Spjd	spa_t *spa = vd->vdev_spa;
3212168404Spjd
3213168404Spjd	if (state == vd->vdev_state) {
3214168404Spjd		vd->vdev_stat.vs_aux = aux;
3215168404Spjd		return;
3216168404Spjd	}
3217168404Spjd
3218168404Spjd	save_state = vd->vdev_state;
3219168404Spjd
3220168404Spjd	vd->vdev_state = state;
3221168404Spjd	vd->vdev_stat.vs_aux = aux;
3222168404Spjd
3223173373Spjd	/*
3224173373Spjd	 * If we are setting the vdev state to anything but an open state, then
3225219089Spjd	 * always close the underlying device unless the device has requested
3226219089Spjd	 * a delayed close (i.e. we're about to remove or fault the device).
3227219089Spjd	 * Otherwise, we keep accessible but invalid devices open forever.
3228219089Spjd	 * We don't call vdev_close() itself, because that implies some extra
3229219089Spjd	 * checks (offline, etc) that we don't want here.  This is limited to
3230219089Spjd	 * leaf devices, because otherwise closing the device will affect other
3231219089Spjd	 * children.
3232173373Spjd	 */
3233219089Spjd	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3234219089Spjd	    vd->vdev_ops->vdev_op_leaf)
3235173373Spjd		vd->vdev_ops->vdev_op_close(vd);
3236173373Spjd
3237219089Spjd	/*
3238219089Spjd	 * If we have brought this vdev back into service, we need
3239219089Spjd	 * to notify fmd so that it can gracefully repair any outstanding
3240219089Spjd	 * cases due to a missing device.  We do this in all cases, even those
3241219089Spjd	 * that probably don't correlate to a repaired fault.  This is sure to
3242219089Spjd	 * catch all cases, and we let the zfs-retire agent sort it out.  If
3243219089Spjd	 * this is a transient state it's OK, as the retire agent will
3244219089Spjd	 * double-check the state of the vdev before repairing it.
3245219089Spjd	 */
3246219089Spjd	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3247219089Spjd	    vd->vdev_prevstate != state)
3248219089Spjd		zfs_post_state_change(spa, vd);
3249219089Spjd
3250185029Spjd	if (vd->vdev_removed &&
3251185029Spjd	    state == VDEV_STATE_CANT_OPEN &&
3252185029Spjd	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3253168404Spjd		/*
3254185029Spjd		 * If the previous state is set to VDEV_STATE_REMOVED, then this
3255185029Spjd		 * device was previously marked removed and someone attempted to
3256185029Spjd		 * reopen it.  If this failed due to a nonexistent device, then
3257185029Spjd		 * keep the device in the REMOVED state.  We also let this be if
3258185029Spjd		 * it is one of our special test online cases, which is only
3259185029Spjd		 * attempting to online the device and shouldn't generate an FMA
3260185029Spjd		 * fault.
3261185029Spjd		 */
3262185029Spjd		vd->vdev_state = VDEV_STATE_REMOVED;
3263185029Spjd		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3264185029Spjd	} else if (state == VDEV_STATE_REMOVED) {
3265185029Spjd		vd->vdev_removed = B_TRUE;
3266185029Spjd	} else if (state == VDEV_STATE_CANT_OPEN) {
3267185029Spjd		/*
3268219089Spjd		 * If we fail to open a vdev during an import or recovery, we
3269219089Spjd		 * mark it as "not available", which signifies that it was
3270219089Spjd		 * never there to begin with.  Failure to open such a device
3271219089Spjd		 * is not considered an error.
3272168404Spjd		 */
3273219089Spjd		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3274219089Spjd		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3275168404Spjd		    vd->vdev_ops->vdev_op_leaf)
3276168404Spjd			vd->vdev_not_present = 1;
3277168404Spjd
3278168404Spjd		/*
3279168404Spjd		 * Post the appropriate ereport.  If the 'prevstate' field is
3280168404Spjd		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3281168404Spjd		 * that this is part of a vdev_reopen().  In this case, we don't
3282168404Spjd		 * want to post the ereport if the device was already in the
3283168404Spjd		 * CANT_OPEN state beforehand.
3284185029Spjd		 *
3285185029Spjd		 * If the 'checkremove' flag is set, then this is an attempt to
3286185029Spjd		 * online the device in response to an insertion event.  If we
3287185029Spjd		 * hit this case, then we have detected an insertion event for a
3288185029Spjd		 * faulted or offline device that wasn't in the removed state.
3289185029Spjd		 * In this scenario, we don't post an ereport because we are
3290185029Spjd		 * about to replace the device, or attempt an online with
3291185029Spjd		 * vdev_forcefault, which will generate the fault for us.
3292168404Spjd		 */
3293185029Spjd		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3294185029Spjd		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3295185029Spjd		    vd != spa->spa_root_vdev) {
3296168404Spjd			const char *class;
3297168404Spjd
3298168404Spjd			switch (aux) {
3299168404Spjd			case VDEV_AUX_OPEN_FAILED:
3300168404Spjd				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3301168404Spjd				break;
3302168404Spjd			case VDEV_AUX_CORRUPT_DATA:
3303168404Spjd				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3304168404Spjd				break;
3305168404Spjd			case VDEV_AUX_NO_REPLICAS:
3306168404Spjd				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3307168404Spjd				break;
3308168404Spjd			case VDEV_AUX_BAD_GUID_SUM:
3309168404Spjd				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3310168404Spjd				break;
3311168404Spjd			case VDEV_AUX_TOO_SMALL:
3312168404Spjd				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3313168404Spjd				break;
3314168404Spjd			case VDEV_AUX_BAD_LABEL:
3315168404Spjd				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3316168404Spjd				break;
3317168404Spjd			default:
3318168404Spjd				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3319168404Spjd			}
3320168404Spjd
3321185029Spjd			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3322168404Spjd		}
3323185029Spjd
3324185029Spjd		/* Erase any notion of persistent removed state */
3325185029Spjd		vd->vdev_removed = B_FALSE;
3326185029Spjd	} else {
3327185029Spjd		vd->vdev_removed = B_FALSE;
3328168404Spjd	}
3329168404Spjd
3330209962Smm	if (!isopen && vd->vdev_parent)
3331209962Smm		vdev_propagate_state(vd->vdev_parent);
3332185029Spjd}
3333168404Spjd
3334185029Spjd/*
3335185029Spjd * Check the vdev configuration to ensure that it's capable of supporting
3336193163Sdfr * a root pool.
3337193163Sdfr *
3338193163Sdfr * On Solaris, we do not support RAID-Z or partial configuration.  In
3339193163Sdfr * addition, only a single top-level vdev is allowed and none of the
3340193163Sdfr * leaves can be wholedisks.
3341193163Sdfr *
3342193163Sdfr * For FreeBSD, we can boot from any configuration. There is a
3343193163Sdfr * limitation that the boot filesystem must be either uncompressed or
3344193163Sdfr * compresses with lzjb compression but I'm not sure how to enforce
3345193163Sdfr * that here.
3346185029Spjd */
3347185029Spjdboolean_t
3348185029Spjdvdev_is_bootable(vdev_t *vd)
3349185029Spjd{
3350213197Smm#ifdef sun
3351185029Spjd	if (!vd->vdev_ops->vdev_op_leaf) {
3352185029Spjd		char *vdev_type = vd->vdev_ops->vdev_op_type;
3353185029Spjd
3354185029Spjd		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3355185029Spjd		    vd->vdev_children > 1) {
3356185029Spjd			return (B_FALSE);
3357185029Spjd		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3358185029Spjd		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3359185029Spjd			return (B_FALSE);
3360185029Spjd		}
3361185029Spjd	} else if (vd->vdev_wholedisk == 1) {
3362185029Spjd		return (B_FALSE);
3363185029Spjd	}
3364185029Spjd
3365219089Spjd	for (int c = 0; c < vd->vdev_children; c++) {
3366185029Spjd		if (!vdev_is_bootable(vd->vdev_child[c]))
3367185029Spjd			return (B_FALSE);
3368185029Spjd	}
3369213197Smm#endif	/* sun */
3370185029Spjd	return (B_TRUE);
3371168404Spjd}
3372213197Smm
3373219089Spjd/*
3374219089Spjd * Load the state from the original vdev tree (ovd) which
3375219089Spjd * we've retrieved from the MOS config object. If the original
3376219089Spjd * vdev was offline or faulted then we transfer that state to the
3377219089Spjd * device in the current vdev tree (nvd).
3378219089Spjd */
3379213197Smmvoid
3380219089Spjdvdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3381213197Smm{
3382219089Spjd	spa_t *spa = nvd->vdev_spa;
3383213197Smm
3384219089Spjd	ASSERT(nvd->vdev_top->vdev_islog);
3385219089Spjd	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3386219089Spjd	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3387213197Smm
3388219089Spjd	for (int c = 0; c < nvd->vdev_children; c++)
3389219089Spjd		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3390213197Smm
3391219089Spjd	if (nvd->vdev_ops->vdev_op_leaf) {
3392213197Smm		/*
3393219089Spjd		 * Restore the persistent vdev state
3394213197Smm		 */
3395219089Spjd		nvd->vdev_offline = ovd->vdev_offline;
3396219089Spjd		nvd->vdev_faulted = ovd->vdev_faulted;
3397219089Spjd		nvd->vdev_degraded = ovd->vdev_degraded;
3398219089Spjd		nvd->vdev_removed = ovd->vdev_removed;
3399213197Smm	}
3400213197Smm}
3401219089Spjd
3402219089Spjd/*
3403219089Spjd * Determine if a log device has valid content.  If the vdev was
3404219089Spjd * removed or faulted in the MOS config then we know that
3405219089Spjd * the content on the log device has already been written to the pool.
3406219089Spjd */
3407219089Spjdboolean_t
3408219089Spjdvdev_log_state_valid(vdev_t *vd)
3409219089Spjd{
3410219089Spjd	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3411219089Spjd	    !vd->vdev_removed)
3412219089Spjd		return (B_TRUE);
3413219089Spjd
3414219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
3415219089Spjd		if (vdev_log_state_valid(vd->vdev_child[c]))
3416219089Spjd			return (B_TRUE);
3417219089Spjd
3418219089Spjd	return (B_FALSE);
3419219089Spjd}
3420219089Spjd
3421219089Spjd/*
3422219089Spjd * Expand a vdev if possible.
3423219089Spjd */
3424219089Spjdvoid
3425219089Spjdvdev_expand(vdev_t *vd, uint64_t txg)
3426219089Spjd{
3427219089Spjd	ASSERT(vd->vdev_top == vd);
3428219089Spjd	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3429219089Spjd
3430219089Spjd	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3431219089Spjd		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3432219089Spjd		vdev_config_dirty(vd);
3433219089Spjd	}
3434219089Spjd}
3435219089Spjd
3436219089Spjd/*
3437219089Spjd * Split a vdev.
3438219089Spjd */
3439219089Spjdvoid
3440219089Spjdvdev_split(vdev_t *vd)
3441219089Spjd{
3442219089Spjd	vdev_t *cvd, *pvd = vd->vdev_parent;
3443219089Spjd
3444219089Spjd	vdev_remove_child(pvd, vd);
3445219089Spjd	vdev_compact_children(pvd);
3446219089Spjd
3447219089Spjd	cvd = pvd->vdev_child[0];
3448219089Spjd	if (pvd->vdev_children == 1) {
3449219089Spjd		vdev_remove_parent(cvd);
3450219089Spjd		cvd->vdev_splitting = B_TRUE;
3451219089Spjd	}
3452219089Spjd	vdev_propagate_state(cvd);
3453219089Spjd}
3454247265Smm
3455247265Smmvoid
3456247265Smmvdev_deadman(vdev_t *vd)
3457247265Smm{
3458247265Smm	for (int c = 0; c < vd->vdev_children; c++) {
3459247265Smm		vdev_t *cvd = vd->vdev_child[c];
3460247265Smm
3461247265Smm		vdev_deadman(cvd);
3462247265Smm	}
3463247265Smm
3464247265Smm	if (vd->vdev_ops->vdev_op_leaf) {
3465247265Smm		vdev_queue_t *vq = &vd->vdev_queue;
3466247265Smm
3467247265Smm		mutex_enter(&vq->vq_lock);
3468260763Savg		if (avl_numnodes(&vq->vq_active_tree) > 0) {
3469247265Smm			spa_t *spa = vd->vdev_spa;
3470247265Smm			zio_t *fio;
3471247265Smm			uint64_t delta;
3472247265Smm
3473247265Smm			/*
3474247265Smm			 * Look at the head of all the pending queues,
3475247265Smm			 * if any I/O has been outstanding for longer than
3476247265Smm			 * the spa_deadman_synctime we panic the system.
3477247265Smm			 */
3478260763Savg			fio = avl_first(&vq->vq_active_tree);
3479249206Smm			delta = gethrtime() - fio->io_timestamp;
3480249206Smm			if (delta > spa_deadman_synctime(spa)) {
3481249206Smm				zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3482249206Smm				    "delta %lluns, last io %lluns",
3483247265Smm				    fio->io_timestamp, delta,
3484247265Smm				    vq->vq_io_complete_ts);
3485247265Smm				fm_panic("I/O to pool '%s' appears to be "
3486247348Smm				    "hung on vdev guid %llu at '%s'.",
3487247348Smm				    spa_name(spa),
3488247348Smm				    (long long unsigned int) vd->vdev_guid,
3489247348Smm				    vd->vdev_path);
3490247265Smm			}
3491247265Smm		}
3492247265Smm		mutex_exit(&vq->vq_lock);
3493247265Smm	}
3494247265Smm}
3495