vdev.c revision 253441
1168404Spjd/*
2168404Spjd * CDDL HEADER START
3168404Spjd *
4168404Spjd * The contents of this file are subject to the terms of the
5168404Spjd * Common Development and Distribution License (the "License").
6168404Spjd * You may not use this file except in compliance with the License.
7168404Spjd *
8168404Spjd * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9168404Spjd * or http://www.opensolaris.org/os/licensing.
10168404Spjd * See the License for the specific language governing permissions
11168404Spjd * and limitations under the License.
12168404Spjd *
13168404Spjd * When distributing Covered Code, include this CDDL HEADER in each
14168404Spjd * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15168404Spjd * If applicable, add the following below this CDDL HEADER, with the
16168404Spjd * fields enclosed by brackets "[]" replaced with your own identifying
17168404Spjd * information: Portions Copyright [yyyy] [name of copyright owner]
18168404Spjd *
19168404Spjd * CDDL HEADER END
20168404Spjd */
21168404Spjd
22168404Spjd/*
23219089Spjd * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24228103Smm * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25249195Smm * Copyright (c) 2013 by Delphix. All rights reserved.
26247348Smm * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27168404Spjd */
28168404Spjd
29168404Spjd#include <sys/zfs_context.h>
30168404Spjd#include <sys/fm/fs/zfs.h>
31168404Spjd#include <sys/spa.h>
32168404Spjd#include <sys/spa_impl.h>
33168404Spjd#include <sys/dmu.h>
34168404Spjd#include <sys/dmu_tx.h>
35168404Spjd#include <sys/vdev_impl.h>
36168404Spjd#include <sys/uberblock_impl.h>
37168404Spjd#include <sys/metaslab.h>
38168404Spjd#include <sys/metaslab_impl.h>
39168404Spjd#include <sys/space_map.h>
40168404Spjd#include <sys/zio.h>
41168404Spjd#include <sys/zap.h>
42168404Spjd#include <sys/fs/zfs.h>
43185029Spjd#include <sys/arc.h>
44213197Smm#include <sys/zil.h>
45219089Spjd#include <sys/dsl_scan.h>
46240868Spjd#include <sys/trim_map.h>
47168404Spjd
48168404SpjdSYSCTL_DECL(_vfs_zfs);
49168404SpjdSYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
50168404Spjd
51168404Spjd/*
52168404Spjd * Virtual device management.
53168404Spjd */
54168404Spjd
55168404Spjdstatic vdev_ops_t *vdev_ops_table[] = {
56168404Spjd	&vdev_root_ops,
57168404Spjd	&vdev_raidz_ops,
58168404Spjd	&vdev_mirror_ops,
59168404Spjd	&vdev_replacing_ops,
60168404Spjd	&vdev_spare_ops,
61168404Spjd#ifdef _KERNEL
62168404Spjd	&vdev_geom_ops,
63168404Spjd#else
64168404Spjd	&vdev_disk_ops,
65185029Spjd#endif
66168404Spjd	&vdev_file_ops,
67168404Spjd	&vdev_missing_ops,
68219089Spjd	&vdev_hole_ops,
69168404Spjd	NULL
70168404Spjd};
71168404Spjd
72168404Spjd
73168404Spjd/*
74168404Spjd * Given a vdev type, return the appropriate ops vector.
75168404Spjd */
76168404Spjdstatic vdev_ops_t *
77168404Spjdvdev_getops(const char *type)
78168404Spjd{
79168404Spjd	vdev_ops_t *ops, **opspp;
80168404Spjd
81168404Spjd	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
82168404Spjd		if (strcmp(ops->vdev_op_type, type) == 0)
83168404Spjd			break;
84168404Spjd
85168404Spjd	return (ops);
86168404Spjd}
87168404Spjd
88168404Spjd/*
89168404Spjd * Default asize function: return the MAX of psize with the asize of
90168404Spjd * all children.  This is what's used by anything other than RAID-Z.
91168404Spjd */
92168404Spjduint64_t
93168404Spjdvdev_default_asize(vdev_t *vd, uint64_t psize)
94168404Spjd{
95168404Spjd	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
96168404Spjd	uint64_t csize;
97168404Spjd
98219089Spjd	for (int c = 0; c < vd->vdev_children; c++) {
99168404Spjd		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
100168404Spjd		asize = MAX(asize, csize);
101168404Spjd	}
102168404Spjd
103168404Spjd	return (asize);
104168404Spjd}
105168404Spjd
106168404Spjd/*
107219089Spjd * Get the minimum allocatable size. We define the allocatable size as
108219089Spjd * the vdev's asize rounded to the nearest metaslab. This allows us to
109219089Spjd * replace or attach devices which don't have the same physical size but
110219089Spjd * can still satisfy the same number of allocations.
111168404Spjd */
112168404Spjduint64_t
113219089Spjdvdev_get_min_asize(vdev_t *vd)
114168404Spjd{
115219089Spjd	vdev_t *pvd = vd->vdev_parent;
116168404Spjd
117219089Spjd	/*
118236155Smm	 * If our parent is NULL (inactive spare or cache) or is the root,
119219089Spjd	 * just return our own asize.
120219089Spjd	 */
121219089Spjd	if (pvd == NULL)
122219089Spjd		return (vd->vdev_asize);
123168404Spjd
124168404Spjd	/*
125219089Spjd	 * The top-level vdev just returns the allocatable size rounded
126219089Spjd	 * to the nearest metaslab.
127168404Spjd	 */
128219089Spjd	if (vd == vd->vdev_top)
129219089Spjd		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
130168404Spjd
131219089Spjd	/*
132219089Spjd	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
133219089Spjd	 * so each child must provide at least 1/Nth of its asize.
134219089Spjd	 */
135219089Spjd	if (pvd->vdev_ops == &vdev_raidz_ops)
136219089Spjd		return (pvd->vdev_min_asize / pvd->vdev_children);
137168404Spjd
138219089Spjd	return (pvd->vdev_min_asize);
139219089Spjd}
140168404Spjd
141219089Spjdvoid
142219089Spjdvdev_set_min_asize(vdev_t *vd)
143219089Spjd{
144219089Spjd	vd->vdev_min_asize = vdev_get_min_asize(vd);
145219089Spjd
146219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
147219089Spjd		vdev_set_min_asize(vd->vdev_child[c]);
148168404Spjd}
149168404Spjd
150168404Spjdvdev_t *
151168404Spjdvdev_lookup_top(spa_t *spa, uint64_t vdev)
152168404Spjd{
153168404Spjd	vdev_t *rvd = spa->spa_root_vdev;
154168404Spjd
155185029Spjd	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
156185029Spjd
157185029Spjd	if (vdev < rvd->vdev_children) {
158185029Spjd		ASSERT(rvd->vdev_child[vdev] != NULL);
159168404Spjd		return (rvd->vdev_child[vdev]);
160185029Spjd	}
161168404Spjd
162168404Spjd	return (NULL);
163168404Spjd}
164168404Spjd
165168404Spjdvdev_t *
166168404Spjdvdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
167168404Spjd{
168168404Spjd	vdev_t *mvd;
169168404Spjd
170168404Spjd	if (vd->vdev_guid == guid)
171168404Spjd		return (vd);
172168404Spjd
173219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
174168404Spjd		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
175168404Spjd		    NULL)
176168404Spjd			return (mvd);
177168404Spjd
178168404Spjd	return (NULL);
179168404Spjd}
180168404Spjd
181168404Spjdvoid
182168404Spjdvdev_add_child(vdev_t *pvd, vdev_t *cvd)
183168404Spjd{
184168404Spjd	size_t oldsize, newsize;
185168404Spjd	uint64_t id = cvd->vdev_id;
186168404Spjd	vdev_t **newchild;
187168404Spjd
188185029Spjd	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
189168404Spjd	ASSERT(cvd->vdev_parent == NULL);
190168404Spjd
191168404Spjd	cvd->vdev_parent = pvd;
192168404Spjd
193168404Spjd	if (pvd == NULL)
194168404Spjd		return;
195168404Spjd
196168404Spjd	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
197168404Spjd
198168404Spjd	oldsize = pvd->vdev_children * sizeof (vdev_t *);
199168404Spjd	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
200168404Spjd	newsize = pvd->vdev_children * sizeof (vdev_t *);
201168404Spjd
202168404Spjd	newchild = kmem_zalloc(newsize, KM_SLEEP);
203168404Spjd	if (pvd->vdev_child != NULL) {
204168404Spjd		bcopy(pvd->vdev_child, newchild, oldsize);
205168404Spjd		kmem_free(pvd->vdev_child, oldsize);
206168404Spjd	}
207168404Spjd
208168404Spjd	pvd->vdev_child = newchild;
209168404Spjd	pvd->vdev_child[id] = cvd;
210168404Spjd
211168404Spjd	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
212168404Spjd	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
213168404Spjd
214168404Spjd	/*
215168404Spjd	 * Walk up all ancestors to update guid sum.
216168404Spjd	 */
217168404Spjd	for (; pvd != NULL; pvd = pvd->vdev_parent)
218168404Spjd		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
219168404Spjd}
220168404Spjd
221168404Spjdvoid
222168404Spjdvdev_remove_child(vdev_t *pvd, vdev_t *cvd)
223168404Spjd{
224168404Spjd	int c;
225168404Spjd	uint_t id = cvd->vdev_id;
226168404Spjd
227168404Spjd	ASSERT(cvd->vdev_parent == pvd);
228168404Spjd
229168404Spjd	if (pvd == NULL)
230168404Spjd		return;
231168404Spjd
232168404Spjd	ASSERT(id < pvd->vdev_children);
233168404Spjd	ASSERT(pvd->vdev_child[id] == cvd);
234168404Spjd
235168404Spjd	pvd->vdev_child[id] = NULL;
236168404Spjd	cvd->vdev_parent = NULL;
237168404Spjd
238168404Spjd	for (c = 0; c < pvd->vdev_children; c++)
239168404Spjd		if (pvd->vdev_child[c])
240168404Spjd			break;
241168404Spjd
242168404Spjd	if (c == pvd->vdev_children) {
243168404Spjd		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
244168404Spjd		pvd->vdev_child = NULL;
245168404Spjd		pvd->vdev_children = 0;
246168404Spjd	}
247168404Spjd
248168404Spjd	/*
249168404Spjd	 * Walk up all ancestors to update guid sum.
250168404Spjd	 */
251168404Spjd	for (; pvd != NULL; pvd = pvd->vdev_parent)
252168404Spjd		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
253168404Spjd}
254168404Spjd
255168404Spjd/*
256168404Spjd * Remove any holes in the child array.
257168404Spjd */
258168404Spjdvoid
259168404Spjdvdev_compact_children(vdev_t *pvd)
260168404Spjd{
261168404Spjd	vdev_t **newchild, *cvd;
262168404Spjd	int oldc = pvd->vdev_children;
263219089Spjd	int newc;
264168404Spjd
265185029Spjd	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
266168404Spjd
267219089Spjd	for (int c = newc = 0; c < oldc; c++)
268168404Spjd		if (pvd->vdev_child[c])
269168404Spjd			newc++;
270168404Spjd
271168404Spjd	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
272168404Spjd
273219089Spjd	for (int c = newc = 0; c < oldc; c++) {
274168404Spjd		if ((cvd = pvd->vdev_child[c]) != NULL) {
275168404Spjd			newchild[newc] = cvd;
276168404Spjd			cvd->vdev_id = newc++;
277168404Spjd		}
278168404Spjd	}
279168404Spjd
280168404Spjd	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
281168404Spjd	pvd->vdev_child = newchild;
282168404Spjd	pvd->vdev_children = newc;
283168404Spjd}
284168404Spjd
285168404Spjd/*
286168404Spjd * Allocate and minimally initialize a vdev_t.
287168404Spjd */
288219089Spjdvdev_t *
289168404Spjdvdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
290168404Spjd{
291168404Spjd	vdev_t *vd;
292168404Spjd
293168404Spjd	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
294168404Spjd
295168404Spjd	if (spa->spa_root_vdev == NULL) {
296168404Spjd		ASSERT(ops == &vdev_root_ops);
297168404Spjd		spa->spa_root_vdev = vd;
298228103Smm		spa->spa_load_guid = spa_generate_guid(NULL);
299168404Spjd	}
300168404Spjd
301219089Spjd	if (guid == 0 && ops != &vdev_hole_ops) {
302168404Spjd		if (spa->spa_root_vdev == vd) {
303168404Spjd			/*
304168404Spjd			 * The root vdev's guid will also be the pool guid,
305168404Spjd			 * which must be unique among all pools.
306168404Spjd			 */
307219089Spjd			guid = spa_generate_guid(NULL);
308168404Spjd		} else {
309168404Spjd			/*
310168404Spjd			 * Any other vdev's guid must be unique within the pool.
311168404Spjd			 */
312219089Spjd			guid = spa_generate_guid(spa);
313168404Spjd		}
314168404Spjd		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
315168404Spjd	}
316168404Spjd
317168404Spjd	vd->vdev_spa = spa;
318168404Spjd	vd->vdev_id = id;
319168404Spjd	vd->vdev_guid = guid;
320168404Spjd	vd->vdev_guid_sum = guid;
321168404Spjd	vd->vdev_ops = ops;
322168404Spjd	vd->vdev_state = VDEV_STATE_CLOSED;
323219089Spjd	vd->vdev_ishole = (ops == &vdev_hole_ops);
324168404Spjd
325168404Spjd	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
326168404Spjd	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
327185029Spjd	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
328209962Smm	for (int t = 0; t < DTL_TYPES; t++) {
329209962Smm		space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
330209962Smm		    &vd->vdev_dtl_lock);
331209962Smm	}
332168404Spjd	txg_list_create(&vd->vdev_ms_list,
333168404Spjd	    offsetof(struct metaslab, ms_txg_node));
334168404Spjd	txg_list_create(&vd->vdev_dtl_list,
335168404Spjd	    offsetof(struct vdev, vdev_dtl_node));
336168404Spjd	vd->vdev_stat.vs_timestamp = gethrtime();
337185029Spjd	vdev_queue_init(vd);
338185029Spjd	vdev_cache_init(vd);
339168404Spjd
340168404Spjd	return (vd);
341168404Spjd}
342168404Spjd
343168404Spjd/*
344168404Spjd * Allocate a new vdev.  The 'alloctype' is used to control whether we are
345168404Spjd * creating a new vdev or loading an existing one - the behavior is slightly
346168404Spjd * different for each case.
347168404Spjd */
348168404Spjdint
349168404Spjdvdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
350168404Spjd    int alloctype)
351168404Spjd{
352168404Spjd	vdev_ops_t *ops;
353168404Spjd	char *type;
354185029Spjd	uint64_t guid = 0, islog, nparity;
355168404Spjd	vdev_t *vd;
356168404Spjd
357185029Spjd	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
358168404Spjd
359168404Spjd	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
360249195Smm		return (SET_ERROR(EINVAL));
361168404Spjd
362168404Spjd	if ((ops = vdev_getops(type)) == NULL)
363249195Smm		return (SET_ERROR(EINVAL));
364168404Spjd
365168404Spjd	/*
366168404Spjd	 * If this is a load, get the vdev guid from the nvlist.
367168404Spjd	 * Otherwise, vdev_alloc_common() will generate one for us.
368168404Spjd	 */
369168404Spjd	if (alloctype == VDEV_ALLOC_LOAD) {
370168404Spjd		uint64_t label_id;
371168404Spjd
372168404Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
373168404Spjd		    label_id != id)
374249195Smm			return (SET_ERROR(EINVAL));
375168404Spjd
376168404Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
377249195Smm			return (SET_ERROR(EINVAL));
378168404Spjd	} else if (alloctype == VDEV_ALLOC_SPARE) {
379168404Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
380249195Smm			return (SET_ERROR(EINVAL));
381185029Spjd	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
382185029Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
383249195Smm			return (SET_ERROR(EINVAL));
384219089Spjd	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
385219089Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
386249195Smm			return (SET_ERROR(EINVAL));
387168404Spjd	}
388168404Spjd
389168404Spjd	/*
390168404Spjd	 * The first allocated vdev must be of type 'root'.
391168404Spjd	 */
392168404Spjd	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
393249195Smm		return (SET_ERROR(EINVAL));
394168404Spjd
395185029Spjd	/*
396185029Spjd	 * Determine whether we're a log vdev.
397185029Spjd	 */
398185029Spjd	islog = 0;
399185029Spjd	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
400185029Spjd	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
401249195Smm		return (SET_ERROR(ENOTSUP));
402168404Spjd
403219089Spjd	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
404249195Smm		return (SET_ERROR(ENOTSUP));
405219089Spjd
406168404Spjd	/*
407185029Spjd	 * Set the nparity property for RAID-Z vdevs.
408168404Spjd	 */
409185029Spjd	nparity = -1ULL;
410168404Spjd	if (ops == &vdev_raidz_ops) {
411168404Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
412185029Spjd		    &nparity) == 0) {
413219089Spjd			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
414249195Smm				return (SET_ERROR(EINVAL));
415168404Spjd			/*
416219089Spjd			 * Previous versions could only support 1 or 2 parity
417219089Spjd			 * device.
418168404Spjd			 */
419219089Spjd			if (nparity > 1 &&
420219089Spjd			    spa_version(spa) < SPA_VERSION_RAIDZ2)
421249195Smm				return (SET_ERROR(ENOTSUP));
422219089Spjd			if (nparity > 2 &&
423219089Spjd			    spa_version(spa) < SPA_VERSION_RAIDZ3)
424249195Smm				return (SET_ERROR(ENOTSUP));
425168404Spjd		} else {
426168404Spjd			/*
427168404Spjd			 * We require the parity to be specified for SPAs that
428168404Spjd			 * support multiple parity levels.
429168404Spjd			 */
430219089Spjd			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
431249195Smm				return (SET_ERROR(EINVAL));
432168404Spjd			/*
433168404Spjd			 * Otherwise, we default to 1 parity device for RAID-Z.
434168404Spjd			 */
435185029Spjd			nparity = 1;
436168404Spjd		}
437168404Spjd	} else {
438185029Spjd		nparity = 0;
439168404Spjd	}
440185029Spjd	ASSERT(nparity != -1ULL);
441168404Spjd
442185029Spjd	vd = vdev_alloc_common(spa, id, guid, ops);
443185029Spjd
444185029Spjd	vd->vdev_islog = islog;
445185029Spjd	vd->vdev_nparity = nparity;
446185029Spjd
447185029Spjd	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
448185029Spjd		vd->vdev_path = spa_strdup(vd->vdev_path);
449185029Spjd	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
450185029Spjd		vd->vdev_devid = spa_strdup(vd->vdev_devid);
451185029Spjd	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
452185029Spjd	    &vd->vdev_physpath) == 0)
453185029Spjd		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
454209962Smm	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
455209962Smm		vd->vdev_fru = spa_strdup(vd->vdev_fru);
456185029Spjd
457168404Spjd	/*
458168404Spjd	 * Set the whole_disk property.  If it's not specified, leave the value
459168404Spjd	 * as -1.
460168404Spjd	 */
461168404Spjd	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
462168404Spjd	    &vd->vdev_wholedisk) != 0)
463168404Spjd		vd->vdev_wholedisk = -1ULL;
464168404Spjd
465168404Spjd	/*
466168404Spjd	 * Look for the 'not present' flag.  This will only be set if the device
467168404Spjd	 * was not present at the time of import.
468168404Spjd	 */
469209962Smm	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
470209962Smm	    &vd->vdev_not_present);
471168404Spjd
472168404Spjd	/*
473168404Spjd	 * Get the alignment requirement.
474168404Spjd	 */
475168404Spjd	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
476168404Spjd
477168404Spjd	/*
478219089Spjd	 * Retrieve the vdev creation time.
479219089Spjd	 */
480219089Spjd	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
481219089Spjd	    &vd->vdev_crtxg);
482219089Spjd
483219089Spjd	/*
484168404Spjd	 * If we're a top-level vdev, try to load the allocation parameters.
485168404Spjd	 */
486219089Spjd	if (parent && !parent->vdev_parent &&
487219089Spjd	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
488168404Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
489168404Spjd		    &vd->vdev_ms_array);
490168404Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
491168404Spjd		    &vd->vdev_ms_shift);
492168404Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
493168404Spjd		    &vd->vdev_asize);
494219089Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
495219089Spjd		    &vd->vdev_removing);
496168404Spjd	}
497168404Spjd
498230514Smm	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
499219089Spjd		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
500219089Spjd		    alloctype == VDEV_ALLOC_ADD ||
501219089Spjd		    alloctype == VDEV_ALLOC_SPLIT ||
502219089Spjd		    alloctype == VDEV_ALLOC_ROOTPOOL);
503219089Spjd		vd->vdev_mg = metaslab_group_create(islog ?
504219089Spjd		    spa_log_class(spa) : spa_normal_class(spa), vd);
505219089Spjd	}
506219089Spjd
507168404Spjd	/*
508185029Spjd	 * If we're a leaf vdev, try to load the DTL object and other state.
509168404Spjd	 */
510185029Spjd	if (vd->vdev_ops->vdev_op_leaf &&
511219089Spjd	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
512219089Spjd	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
513185029Spjd		if (alloctype == VDEV_ALLOC_LOAD) {
514185029Spjd			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
515209962Smm			    &vd->vdev_dtl_smo.smo_object);
516185029Spjd			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
517185029Spjd			    &vd->vdev_unspare);
518185029Spjd		}
519219089Spjd
520219089Spjd		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
521219089Spjd			uint64_t spare = 0;
522219089Spjd
523219089Spjd			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
524219089Spjd			    &spare) == 0 && spare)
525219089Spjd				spa_spare_add(vd);
526219089Spjd		}
527219089Spjd
528168404Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
529168404Spjd		    &vd->vdev_offline);
530185029Spjd
531219089Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
532219089Spjd		    &vd->vdev_resilvering);
533219089Spjd
534185029Spjd		/*
535185029Spjd		 * When importing a pool, we want to ignore the persistent fault
536185029Spjd		 * state, as the diagnosis made on another system may not be
537219089Spjd		 * valid in the current context.  Local vdevs will
538219089Spjd		 * remain in the faulted state.
539185029Spjd		 */
540219089Spjd		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
541185029Spjd			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
542185029Spjd			    &vd->vdev_faulted);
543185029Spjd			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
544185029Spjd			    &vd->vdev_degraded);
545185029Spjd			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
546185029Spjd			    &vd->vdev_removed);
547219089Spjd
548219089Spjd			if (vd->vdev_faulted || vd->vdev_degraded) {
549219089Spjd				char *aux;
550219089Spjd
551219089Spjd				vd->vdev_label_aux =
552219089Spjd				    VDEV_AUX_ERR_EXCEEDED;
553219089Spjd				if (nvlist_lookup_string(nv,
554219089Spjd				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
555219089Spjd				    strcmp(aux, "external") == 0)
556219089Spjd					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
557219089Spjd			}
558185029Spjd		}
559168404Spjd	}
560168404Spjd
561168404Spjd	/*
562168404Spjd	 * Add ourselves to the parent's list of children.
563168404Spjd	 */
564168404Spjd	vdev_add_child(parent, vd);
565168404Spjd
566168404Spjd	*vdp = vd;
567168404Spjd
568168404Spjd	return (0);
569168404Spjd}
570168404Spjd
571168404Spjdvoid
572168404Spjdvdev_free(vdev_t *vd)
573168404Spjd{
574185029Spjd	spa_t *spa = vd->vdev_spa;
575168404Spjd
576168404Spjd	/*
577168404Spjd	 * vdev_free() implies closing the vdev first.  This is simpler than
578168404Spjd	 * trying to ensure complicated semantics for all callers.
579168404Spjd	 */
580168404Spjd	vdev_close(vd);
581168404Spjd
582185029Spjd	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
583219089Spjd	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
584168404Spjd
585168404Spjd	/*
586168404Spjd	 * Free all children.
587168404Spjd	 */
588219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
589168404Spjd		vdev_free(vd->vdev_child[c]);
590168404Spjd
591168404Spjd	ASSERT(vd->vdev_child == NULL);
592168404Spjd	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
593168404Spjd
594168404Spjd	/*
595168404Spjd	 * Discard allocation state.
596168404Spjd	 */
597219089Spjd	if (vd->vdev_mg != NULL) {
598168404Spjd		vdev_metaslab_fini(vd);
599219089Spjd		metaslab_group_destroy(vd->vdev_mg);
600219089Spjd	}
601168404Spjd
602240415Smm	ASSERT0(vd->vdev_stat.vs_space);
603240415Smm	ASSERT0(vd->vdev_stat.vs_dspace);
604240415Smm	ASSERT0(vd->vdev_stat.vs_alloc);
605168404Spjd
606168404Spjd	/*
607168404Spjd	 * Remove this vdev from its parent's child list.
608168404Spjd	 */
609168404Spjd	vdev_remove_child(vd->vdev_parent, vd);
610168404Spjd
611168404Spjd	ASSERT(vd->vdev_parent == NULL);
612168404Spjd
613185029Spjd	/*
614185029Spjd	 * Clean up vdev structure.
615185029Spjd	 */
616185029Spjd	vdev_queue_fini(vd);
617185029Spjd	vdev_cache_fini(vd);
618185029Spjd
619185029Spjd	if (vd->vdev_path)
620185029Spjd		spa_strfree(vd->vdev_path);
621185029Spjd	if (vd->vdev_devid)
622185029Spjd		spa_strfree(vd->vdev_devid);
623185029Spjd	if (vd->vdev_physpath)
624185029Spjd		spa_strfree(vd->vdev_physpath);
625209962Smm	if (vd->vdev_fru)
626209962Smm		spa_strfree(vd->vdev_fru);
627185029Spjd
628185029Spjd	if (vd->vdev_isspare)
629185029Spjd		spa_spare_remove(vd);
630185029Spjd	if (vd->vdev_isl2cache)
631185029Spjd		spa_l2cache_remove(vd);
632185029Spjd
633185029Spjd	txg_list_destroy(&vd->vdev_ms_list);
634185029Spjd	txg_list_destroy(&vd->vdev_dtl_list);
635209962Smm
636185029Spjd	mutex_enter(&vd->vdev_dtl_lock);
637209962Smm	for (int t = 0; t < DTL_TYPES; t++) {
638209962Smm		space_map_unload(&vd->vdev_dtl[t]);
639209962Smm		space_map_destroy(&vd->vdev_dtl[t]);
640209962Smm	}
641185029Spjd	mutex_exit(&vd->vdev_dtl_lock);
642209962Smm
643185029Spjd	mutex_destroy(&vd->vdev_dtl_lock);
644185029Spjd	mutex_destroy(&vd->vdev_stat_lock);
645185029Spjd	mutex_destroy(&vd->vdev_probe_lock);
646185029Spjd
647185029Spjd	if (vd == spa->spa_root_vdev)
648185029Spjd		spa->spa_root_vdev = NULL;
649185029Spjd
650185029Spjd	kmem_free(vd, sizeof (vdev_t));
651168404Spjd}
652168404Spjd
653168404Spjd/*
654168404Spjd * Transfer top-level vdev state from svd to tvd.
655168404Spjd */
656168404Spjdstatic void
657168404Spjdvdev_top_transfer(vdev_t *svd, vdev_t *tvd)
658168404Spjd{
659168404Spjd	spa_t *spa = svd->vdev_spa;
660168404Spjd	metaslab_t *msp;
661168404Spjd	vdev_t *vd;
662168404Spjd	int t;
663168404Spjd
664168404Spjd	ASSERT(tvd == tvd->vdev_top);
665168404Spjd
666168404Spjd	tvd->vdev_ms_array = svd->vdev_ms_array;
667168404Spjd	tvd->vdev_ms_shift = svd->vdev_ms_shift;
668168404Spjd	tvd->vdev_ms_count = svd->vdev_ms_count;
669168404Spjd
670168404Spjd	svd->vdev_ms_array = 0;
671168404Spjd	svd->vdev_ms_shift = 0;
672168404Spjd	svd->vdev_ms_count = 0;
673168404Spjd
674230514Smm	if (tvd->vdev_mg)
675230514Smm		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
676168404Spjd	tvd->vdev_mg = svd->vdev_mg;
677168404Spjd	tvd->vdev_ms = svd->vdev_ms;
678168404Spjd
679168404Spjd	svd->vdev_mg = NULL;
680168404Spjd	svd->vdev_ms = NULL;
681168404Spjd
682168404Spjd	if (tvd->vdev_mg != NULL)
683168404Spjd		tvd->vdev_mg->mg_vd = tvd;
684168404Spjd
685168404Spjd	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
686168404Spjd	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
687168404Spjd	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
688168404Spjd
689168404Spjd	svd->vdev_stat.vs_alloc = 0;
690168404Spjd	svd->vdev_stat.vs_space = 0;
691168404Spjd	svd->vdev_stat.vs_dspace = 0;
692168404Spjd
693168404Spjd	for (t = 0; t < TXG_SIZE; t++) {
694168404Spjd		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
695168404Spjd			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
696168404Spjd		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
697168404Spjd			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
698168404Spjd		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
699168404Spjd			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
700168404Spjd	}
701168404Spjd
702185029Spjd	if (list_link_active(&svd->vdev_config_dirty_node)) {
703168404Spjd		vdev_config_clean(svd);
704168404Spjd		vdev_config_dirty(tvd);
705168404Spjd	}
706168404Spjd
707185029Spjd	if (list_link_active(&svd->vdev_state_dirty_node)) {
708185029Spjd		vdev_state_clean(svd);
709185029Spjd		vdev_state_dirty(tvd);
710185029Spjd	}
711168404Spjd
712168404Spjd	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
713168404Spjd	svd->vdev_deflate_ratio = 0;
714185029Spjd
715185029Spjd	tvd->vdev_islog = svd->vdev_islog;
716185029Spjd	svd->vdev_islog = 0;
717168404Spjd}
718168404Spjd
719168404Spjdstatic void
720168404Spjdvdev_top_update(vdev_t *tvd, vdev_t *vd)
721168404Spjd{
722168404Spjd	if (vd == NULL)
723168404Spjd		return;
724168404Spjd
725168404Spjd	vd->vdev_top = tvd;
726168404Spjd
727219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
728168404Spjd		vdev_top_update(tvd, vd->vdev_child[c]);
729168404Spjd}
730168404Spjd
731168404Spjd/*
732168404Spjd * Add a mirror/replacing vdev above an existing vdev.
733168404Spjd */
734168404Spjdvdev_t *
735168404Spjdvdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
736168404Spjd{
737168404Spjd	spa_t *spa = cvd->vdev_spa;
738168404Spjd	vdev_t *pvd = cvd->vdev_parent;
739168404Spjd	vdev_t *mvd;
740168404Spjd
741185029Spjd	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
742168404Spjd
743168404Spjd	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
744168404Spjd
745168404Spjd	mvd->vdev_asize = cvd->vdev_asize;
746219089Spjd	mvd->vdev_min_asize = cvd->vdev_min_asize;
747236155Smm	mvd->vdev_max_asize = cvd->vdev_max_asize;
748168404Spjd	mvd->vdev_ashift = cvd->vdev_ashift;
749168404Spjd	mvd->vdev_state = cvd->vdev_state;
750219089Spjd	mvd->vdev_crtxg = cvd->vdev_crtxg;
751168404Spjd
752168404Spjd	vdev_remove_child(pvd, cvd);
753168404Spjd	vdev_add_child(pvd, mvd);
754168404Spjd	cvd->vdev_id = mvd->vdev_children;
755168404Spjd	vdev_add_child(mvd, cvd);
756168404Spjd	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
757168404Spjd
758168404Spjd	if (mvd == mvd->vdev_top)
759168404Spjd		vdev_top_transfer(cvd, mvd);
760168404Spjd
761168404Spjd	return (mvd);
762168404Spjd}
763168404Spjd
764168404Spjd/*
765168404Spjd * Remove a 1-way mirror/replacing vdev from the tree.
766168404Spjd */
767168404Spjdvoid
768168404Spjdvdev_remove_parent(vdev_t *cvd)
769168404Spjd{
770168404Spjd	vdev_t *mvd = cvd->vdev_parent;
771168404Spjd	vdev_t *pvd = mvd->vdev_parent;
772168404Spjd
773185029Spjd	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
774168404Spjd
775168404Spjd	ASSERT(mvd->vdev_children == 1);
776168404Spjd	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
777168404Spjd	    mvd->vdev_ops == &vdev_replacing_ops ||
778168404Spjd	    mvd->vdev_ops == &vdev_spare_ops);
779168404Spjd	cvd->vdev_ashift = mvd->vdev_ashift;
780168404Spjd
781168404Spjd	vdev_remove_child(mvd, cvd);
782168404Spjd	vdev_remove_child(pvd, mvd);
783209962Smm
784185029Spjd	/*
785185029Spjd	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
786185029Spjd	 * Otherwise, we could have detached an offline device, and when we
787185029Spjd	 * go to import the pool we'll think we have two top-level vdevs,
788185029Spjd	 * instead of a different version of the same top-level vdev.
789185029Spjd	 */
790209962Smm	if (mvd->vdev_top == mvd) {
791209962Smm		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
792219089Spjd		cvd->vdev_orig_guid = cvd->vdev_guid;
793209962Smm		cvd->vdev_guid += guid_delta;
794209962Smm		cvd->vdev_guid_sum += guid_delta;
795209962Smm	}
796168404Spjd	cvd->vdev_id = mvd->vdev_id;
797168404Spjd	vdev_add_child(pvd, cvd);
798168404Spjd	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
799168404Spjd
800168404Spjd	if (cvd == cvd->vdev_top)
801168404Spjd		vdev_top_transfer(mvd, cvd);
802168404Spjd
803168404Spjd	ASSERT(mvd->vdev_children == 0);
804168404Spjd	vdev_free(mvd);
805168404Spjd}
806168404Spjd
807168404Spjdint
808168404Spjdvdev_metaslab_init(vdev_t *vd, uint64_t txg)
809168404Spjd{
810168404Spjd	spa_t *spa = vd->vdev_spa;
811168404Spjd	objset_t *mos = spa->spa_meta_objset;
812168404Spjd	uint64_t m;
813168404Spjd	uint64_t oldc = vd->vdev_ms_count;
814168404Spjd	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
815168404Spjd	metaslab_t **mspp;
816168404Spjd	int error;
817168404Spjd
818219089Spjd	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
819219089Spjd
820219089Spjd	/*
821219089Spjd	 * This vdev is not being allocated from yet or is a hole.
822219089Spjd	 */
823219089Spjd	if (vd->vdev_ms_shift == 0)
824168404Spjd		return (0);
825168404Spjd
826219089Spjd	ASSERT(!vd->vdev_ishole);
827219089Spjd
828213197Smm	/*
829213197Smm	 * Compute the raidz-deflation ratio.  Note, we hard-code
830213197Smm	 * in 128k (1 << 17) because it is the current "typical" blocksize.
831213197Smm	 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
832213197Smm	 * or we will inconsistently account for existing bp's.
833213197Smm	 */
834213197Smm	vd->vdev_deflate_ratio = (1 << 17) /
835213197Smm	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
836213197Smm
837168404Spjd	ASSERT(oldc <= newc);
838168404Spjd
839168404Spjd	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
840168404Spjd
841168404Spjd	if (oldc != 0) {
842168404Spjd		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
843168404Spjd		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
844168404Spjd	}
845168404Spjd
846168404Spjd	vd->vdev_ms = mspp;
847168404Spjd	vd->vdev_ms_count = newc;
848168404Spjd
849168404Spjd	for (m = oldc; m < newc; m++) {
850168404Spjd		space_map_obj_t smo = { 0, 0, 0 };
851168404Spjd		if (txg == 0) {
852168404Spjd			uint64_t object = 0;
853168404Spjd			error = dmu_read(mos, vd->vdev_ms_array,
854209962Smm			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
855209962Smm			    DMU_READ_PREFETCH);
856168404Spjd			if (error)
857168404Spjd				return (error);
858168404Spjd			if (object != 0) {
859168404Spjd				dmu_buf_t *db;
860168404Spjd				error = dmu_bonus_hold(mos, object, FTAG, &db);
861168404Spjd				if (error)
862168404Spjd					return (error);
863185029Spjd				ASSERT3U(db->db_size, >=, sizeof (smo));
864185029Spjd				bcopy(db->db_data, &smo, sizeof (smo));
865168404Spjd				ASSERT3U(smo.smo_object, ==, object);
866168404Spjd				dmu_buf_rele(db, FTAG);
867168404Spjd			}
868168404Spjd		}
869168404Spjd		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
870168404Spjd		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
871168404Spjd	}
872168404Spjd
873219089Spjd	if (txg == 0)
874219089Spjd		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
875219089Spjd
876219089Spjd	/*
877219089Spjd	 * If the vdev is being removed we don't activate
878219089Spjd	 * the metaslabs since we want to ensure that no new
879219089Spjd	 * allocations are performed on this device.
880219089Spjd	 */
881219089Spjd	if (oldc == 0 && !vd->vdev_removing)
882219089Spjd		metaslab_group_activate(vd->vdev_mg);
883219089Spjd
884219089Spjd	if (txg == 0)
885219089Spjd		spa_config_exit(spa, SCL_ALLOC, FTAG);
886219089Spjd
887168404Spjd	return (0);
888168404Spjd}
889168404Spjd
890168404Spjdvoid
891168404Spjdvdev_metaslab_fini(vdev_t *vd)
892168404Spjd{
893168404Spjd	uint64_t m;
894168404Spjd	uint64_t count = vd->vdev_ms_count;
895168404Spjd
896168404Spjd	if (vd->vdev_ms != NULL) {
897219089Spjd		metaslab_group_passivate(vd->vdev_mg);
898168404Spjd		for (m = 0; m < count; m++)
899168404Spjd			if (vd->vdev_ms[m] != NULL)
900168404Spjd				metaslab_fini(vd->vdev_ms[m]);
901168404Spjd		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
902168404Spjd		vd->vdev_ms = NULL;
903168404Spjd	}
904168404Spjd}
905168404Spjd
906185029Spjdtypedef struct vdev_probe_stats {
907185029Spjd	boolean_t	vps_readable;
908185029Spjd	boolean_t	vps_writeable;
909185029Spjd	int		vps_flags;
910185029Spjd} vdev_probe_stats_t;
911185029Spjd
912185029Spjdstatic void
913185029Spjdvdev_probe_done(zio_t *zio)
914185029Spjd{
915209962Smm	spa_t *spa = zio->io_spa;
916209962Smm	vdev_t *vd = zio->io_vd;
917185029Spjd	vdev_probe_stats_t *vps = zio->io_private;
918185029Spjd
919209962Smm	ASSERT(vd->vdev_probe_zio != NULL);
920209962Smm
921185029Spjd	if (zio->io_type == ZIO_TYPE_READ) {
922185029Spjd		if (zio->io_error == 0)
923185029Spjd			vps->vps_readable = 1;
924209962Smm		if (zio->io_error == 0 && spa_writeable(spa)) {
925209962Smm			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
926185029Spjd			    zio->io_offset, zio->io_size, zio->io_data,
927185029Spjd			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
928185029Spjd			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
929185029Spjd		} else {
930185029Spjd			zio_buf_free(zio->io_data, zio->io_size);
931185029Spjd		}
932185029Spjd	} else if (zio->io_type == ZIO_TYPE_WRITE) {
933185029Spjd		if (zio->io_error == 0)
934185029Spjd			vps->vps_writeable = 1;
935185029Spjd		zio_buf_free(zio->io_data, zio->io_size);
936185029Spjd	} else if (zio->io_type == ZIO_TYPE_NULL) {
937209962Smm		zio_t *pio;
938185029Spjd
939185029Spjd		vd->vdev_cant_read |= !vps->vps_readable;
940185029Spjd		vd->vdev_cant_write |= !vps->vps_writeable;
941185029Spjd
942185029Spjd		if (vdev_readable(vd) &&
943209962Smm		    (vdev_writeable(vd) || !spa_writeable(spa))) {
944185029Spjd			zio->io_error = 0;
945185029Spjd		} else {
946185029Spjd			ASSERT(zio->io_error != 0);
947185029Spjd			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
948209962Smm			    spa, vd, NULL, 0, 0);
949249195Smm			zio->io_error = SET_ERROR(ENXIO);
950185029Spjd		}
951209962Smm
952209962Smm		mutex_enter(&vd->vdev_probe_lock);
953209962Smm		ASSERT(vd->vdev_probe_zio == zio);
954209962Smm		vd->vdev_probe_zio = NULL;
955209962Smm		mutex_exit(&vd->vdev_probe_lock);
956209962Smm
957209962Smm		while ((pio = zio_walk_parents(zio)) != NULL)
958209962Smm			if (!vdev_accessible(vd, pio))
959249195Smm				pio->io_error = SET_ERROR(ENXIO);
960209962Smm
961185029Spjd		kmem_free(vps, sizeof (*vps));
962185029Spjd	}
963185029Spjd}
964185029Spjd
965168404Spjd/*
966251631Sdelphij * Determine whether this device is accessible.
967251631Sdelphij *
968251631Sdelphij * Read and write to several known locations: the pad regions of each
969251631Sdelphij * vdev label but the first, which we leave alone in case it contains
970251631Sdelphij * a VTOC.
971185029Spjd */
972185029Spjdzio_t *
973209962Smmvdev_probe(vdev_t *vd, zio_t *zio)
974185029Spjd{
975185029Spjd	spa_t *spa = vd->vdev_spa;
976209962Smm	vdev_probe_stats_t *vps = NULL;
977209962Smm	zio_t *pio;
978185029Spjd
979209962Smm	ASSERT(vd->vdev_ops->vdev_op_leaf);
980185029Spjd
981209962Smm	/*
982209962Smm	 * Don't probe the probe.
983209962Smm	 */
984209962Smm	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
985209962Smm		return (NULL);
986185029Spjd
987209962Smm	/*
988209962Smm	 * To prevent 'probe storms' when a device fails, we create
989209962Smm	 * just one probe i/o at a time.  All zios that want to probe
990209962Smm	 * this vdev will become parents of the probe io.
991209962Smm	 */
992209962Smm	mutex_enter(&vd->vdev_probe_lock);
993209962Smm
994209962Smm	if ((pio = vd->vdev_probe_zio) == NULL) {
995209962Smm		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
996209962Smm
997209962Smm		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
998209962Smm		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
999213198Smm		    ZIO_FLAG_TRYHARD;
1000209962Smm
1001209962Smm		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1002209962Smm			/*
1003209962Smm			 * vdev_cant_read and vdev_cant_write can only
1004209962Smm			 * transition from TRUE to FALSE when we have the
1005209962Smm			 * SCL_ZIO lock as writer; otherwise they can only
1006209962Smm			 * transition from FALSE to TRUE.  This ensures that
1007209962Smm			 * any zio looking at these values can assume that
1008209962Smm			 * failures persist for the life of the I/O.  That's
1009209962Smm			 * important because when a device has intermittent
1010209962Smm			 * connectivity problems, we want to ensure that
1011209962Smm			 * they're ascribed to the device (ENXIO) and not
1012209962Smm			 * the zio (EIO).
1013209962Smm			 *
1014209962Smm			 * Since we hold SCL_ZIO as writer here, clear both
1015209962Smm			 * values so the probe can reevaluate from first
1016209962Smm			 * principles.
1017209962Smm			 */
1018209962Smm			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1019209962Smm			vd->vdev_cant_read = B_FALSE;
1020209962Smm			vd->vdev_cant_write = B_FALSE;
1021209962Smm		}
1022209962Smm
1023209962Smm		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1024209962Smm		    vdev_probe_done, vps,
1025209962Smm		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1026209962Smm
1027219089Spjd		/*
1028219089Spjd		 * We can't change the vdev state in this context, so we
1029219089Spjd		 * kick off an async task to do it on our behalf.
1030219089Spjd		 */
1031209962Smm		if (zio != NULL) {
1032209962Smm			vd->vdev_probe_wanted = B_TRUE;
1033209962Smm			spa_async_request(spa, SPA_ASYNC_PROBE);
1034209962Smm		}
1035185029Spjd	}
1036185029Spjd
1037209962Smm	if (zio != NULL)
1038209962Smm		zio_add_child(zio, pio);
1039185029Spjd
1040209962Smm	mutex_exit(&vd->vdev_probe_lock);
1041185029Spjd
1042209962Smm	if (vps == NULL) {
1043209962Smm		ASSERT(zio != NULL);
1044209962Smm		return (NULL);
1045209962Smm	}
1046185029Spjd
1047185029Spjd	for (int l = 1; l < VDEV_LABELS; l++) {
1048209962Smm		zio_nowait(zio_read_phys(pio, vd,
1049185029Spjd		    vdev_label_offset(vd->vdev_psize, l,
1050209962Smm		    offsetof(vdev_label_t, vl_pad2)),
1051209962Smm		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1052185029Spjd		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1053185029Spjd		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1054185029Spjd	}
1055185029Spjd
1056209962Smm	if (zio == NULL)
1057209962Smm		return (pio);
1058209962Smm
1059209962Smm	zio_nowait(pio);
1060209962Smm	return (NULL);
1061185029Spjd}
1062185029Spjd
1063219089Spjdstatic void
1064219089Spjdvdev_open_child(void *arg)
1065219089Spjd{
1066219089Spjd	vdev_t *vd = arg;
1067219089Spjd
1068219089Spjd	vd->vdev_open_thread = curthread;
1069219089Spjd	vd->vdev_open_error = vdev_open(vd);
1070219089Spjd	vd->vdev_open_thread = NULL;
1071219089Spjd}
1072219089Spjd
1073219089Spjdboolean_t
1074219089Spjdvdev_uses_zvols(vdev_t *vd)
1075219089Spjd{
1076219089Spjd	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1077219089Spjd	    strlen(ZVOL_DIR)) == 0)
1078219089Spjd		return (B_TRUE);
1079219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
1080219089Spjd		if (vdev_uses_zvols(vd->vdev_child[c]))
1081219089Spjd			return (B_TRUE);
1082219089Spjd	return (B_FALSE);
1083219089Spjd}
1084219089Spjd
1085219089Spjdvoid
1086219089Spjdvdev_open_children(vdev_t *vd)
1087219089Spjd{
1088219089Spjd	taskq_t *tq;
1089219089Spjd	int children = vd->vdev_children;
1090219089Spjd
1091219089Spjd	/*
1092219089Spjd	 * in order to handle pools on top of zvols, do the opens
1093219089Spjd	 * in a single thread so that the same thread holds the
1094219089Spjd	 * spa_namespace_lock
1095219089Spjd	 */
1096219089Spjd	if (B_TRUE || vdev_uses_zvols(vd)) {
1097219089Spjd		for (int c = 0; c < children; c++)
1098219089Spjd			vd->vdev_child[c]->vdev_open_error =
1099219089Spjd			    vdev_open(vd->vdev_child[c]);
1100219089Spjd		return;
1101219089Spjd	}
1102219089Spjd	tq = taskq_create("vdev_open", children, minclsyspri,
1103219089Spjd	    children, children, TASKQ_PREPOPULATE);
1104219089Spjd
1105219089Spjd	for (int c = 0; c < children; c++)
1106219089Spjd		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1107219089Spjd		    TQ_SLEEP) != 0);
1108219089Spjd
1109219089Spjd	taskq_destroy(tq);
1110219089Spjd}
1111219089Spjd
1112185029Spjd/*
1113168404Spjd * Prepare a virtual device for access.
1114168404Spjd */
1115168404Spjdint
1116168404Spjdvdev_open(vdev_t *vd)
1117168404Spjd{
1118209962Smm	spa_t *spa = vd->vdev_spa;
1119168404Spjd	int error;
1120168404Spjd	uint64_t osize = 0;
1121236155Smm	uint64_t max_osize = 0;
1122236155Smm	uint64_t asize, max_asize, psize;
1123168404Spjd	uint64_t ashift = 0;
1124168404Spjd
1125219089Spjd	ASSERT(vd->vdev_open_thread == curthread ||
1126219089Spjd	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1127168404Spjd	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1128168404Spjd	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1129168404Spjd	    vd->vdev_state == VDEV_STATE_OFFLINE);
1130168404Spjd
1131168404Spjd	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1132213197Smm	vd->vdev_cant_read = B_FALSE;
1133213197Smm	vd->vdev_cant_write = B_FALSE;
1134219089Spjd	vd->vdev_min_asize = vdev_get_min_asize(vd);
1135168404Spjd
1136219089Spjd	/*
1137219089Spjd	 * If this vdev is not removed, check its fault status.  If it's
1138219089Spjd	 * faulted, bail out of the open.
1139219089Spjd	 */
1140185029Spjd	if (!vd->vdev_removed && vd->vdev_faulted) {
1141168404Spjd		ASSERT(vd->vdev_children == 0);
1142219089Spjd		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1143219089Spjd		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1144185029Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1145219089Spjd		    vd->vdev_label_aux);
1146249195Smm		return (SET_ERROR(ENXIO));
1147185029Spjd	} else if (vd->vdev_offline) {
1148185029Spjd		ASSERT(vd->vdev_children == 0);
1149168404Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1150249195Smm		return (SET_ERROR(ENXIO));
1151168404Spjd	}
1152168404Spjd
1153236155Smm	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1154168404Spjd
1155219089Spjd	/*
1156219089Spjd	 * Reset the vdev_reopening flag so that we actually close
1157219089Spjd	 * the vdev on error.
1158219089Spjd	 */
1159219089Spjd	vd->vdev_reopening = B_FALSE;
1160168404Spjd	if (zio_injection_enabled && error == 0)
1161213198Smm		error = zio_handle_device_injection(vd, NULL, ENXIO);
1162168404Spjd
1163185029Spjd	if (error) {
1164185029Spjd		if (vd->vdev_removed &&
1165185029Spjd		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1166185029Spjd			vd->vdev_removed = B_FALSE;
1167168404Spjd
1168168404Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1169168404Spjd		    vd->vdev_stat.vs_aux);
1170168404Spjd		return (error);
1171168404Spjd	}
1172168404Spjd
1173185029Spjd	vd->vdev_removed = B_FALSE;
1174168404Spjd
1175219089Spjd	/*
1176219089Spjd	 * Recheck the faulted flag now that we have confirmed that
1177219089Spjd	 * the vdev is accessible.  If we're faulted, bail.
1178219089Spjd	 */
1179219089Spjd	if (vd->vdev_faulted) {
1180219089Spjd		ASSERT(vd->vdev_children == 0);
1181219089Spjd		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1182219089Spjd		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1183219089Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1184219089Spjd		    vd->vdev_label_aux);
1185249195Smm		return (SET_ERROR(ENXIO));
1186219089Spjd	}
1187219089Spjd
1188185029Spjd	if (vd->vdev_degraded) {
1189185029Spjd		ASSERT(vd->vdev_children == 0);
1190185029Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1191185029Spjd		    VDEV_AUX_ERR_EXCEEDED);
1192185029Spjd	} else {
1193219089Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1194185029Spjd	}
1195185029Spjd
1196219089Spjd	/*
1197219089Spjd	 * For hole or missing vdevs we just return success.
1198219089Spjd	 */
1199219089Spjd	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1200219089Spjd		return (0);
1201219089Spjd
1202240868Spjd	if (vd->vdev_ops->vdev_op_leaf) {
1203240868Spjd		vd->vdev_notrim = B_FALSE;
1204240868Spjd		trim_map_create(vd);
1205240868Spjd	}
1206240868Spjd
1207219089Spjd	for (int c = 0; c < vd->vdev_children; c++) {
1208168404Spjd		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1209168404Spjd			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1210168404Spjd			    VDEV_AUX_NONE);
1211168404Spjd			break;
1212168404Spjd		}
1213219089Spjd	}
1214168404Spjd
1215168404Spjd	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1216236155Smm	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1217168404Spjd
1218168404Spjd	if (vd->vdev_children == 0) {
1219168404Spjd		if (osize < SPA_MINDEVSIZE) {
1220168404Spjd			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1221168404Spjd			    VDEV_AUX_TOO_SMALL);
1222249195Smm			return (SET_ERROR(EOVERFLOW));
1223168404Spjd		}
1224168404Spjd		psize = osize;
1225168404Spjd		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1226236155Smm		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1227236155Smm		    VDEV_LABEL_END_SIZE);
1228168404Spjd	} else {
1229168404Spjd		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1230168404Spjd		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1231168404Spjd			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1232168404Spjd			    VDEV_AUX_TOO_SMALL);
1233249195Smm			return (SET_ERROR(EOVERFLOW));
1234168404Spjd		}
1235168404Spjd		psize = 0;
1236168404Spjd		asize = osize;
1237236155Smm		max_asize = max_osize;
1238168404Spjd	}
1239168404Spjd
1240168404Spjd	vd->vdev_psize = psize;
1241168404Spjd
1242219089Spjd	/*
1243219089Spjd	 * Make sure the allocatable size hasn't shrunk.
1244219089Spjd	 */
1245219089Spjd	if (asize < vd->vdev_min_asize) {
1246219089Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1247219089Spjd		    VDEV_AUX_BAD_LABEL);
1248249195Smm		return (SET_ERROR(EINVAL));
1249219089Spjd	}
1250219089Spjd
1251168404Spjd	if (vd->vdev_asize == 0) {
1252168404Spjd		/*
1253168404Spjd		 * This is the first-ever open, so use the computed values.
1254168404Spjd		 * For testing purposes, a higher ashift can be requested.
1255168404Spjd		 */
1256168404Spjd		vd->vdev_asize = asize;
1257236155Smm		vd->vdev_max_asize = max_asize;
1258168404Spjd		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1259168404Spjd	} else {
1260168404Spjd		/*
1261253441Sdelphij		 * Detect if the alignment requirement has increased.
1262253441Sdelphij		 * We don't want to make the pool unavailable, just
1263253441Sdelphij		 * issue a warning instead.
1264168404Spjd		 */
1265253441Sdelphij		if (ashift > vd->vdev_top->vdev_ashift &&
1266253441Sdelphij		    vd->vdev_ops->vdev_op_leaf) {
1267253441Sdelphij			cmn_err(CE_WARN,
1268253441Sdelphij			    "Disk, '%s', has a block alignment that is "
1269253441Sdelphij			    "larger than the pool's alignment\n",
1270253441Sdelphij			    vd->vdev_path);
1271168404Spjd		}
1272236155Smm		vd->vdev_max_asize = max_asize;
1273219089Spjd	}
1274168404Spjd
1275219089Spjd	/*
1276219089Spjd	 * If all children are healthy and the asize has increased,
1277219089Spjd	 * then we've experienced dynamic LUN growth.  If automatic
1278219089Spjd	 * expansion is enabled then use the additional space.
1279219089Spjd	 */
1280219089Spjd	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1281219089Spjd	    (vd->vdev_expanding || spa->spa_autoexpand))
1282219089Spjd		vd->vdev_asize = asize;
1283168404Spjd
1284219089Spjd	vdev_set_min_asize(vd);
1285168404Spjd
1286168404Spjd	/*
1287185029Spjd	 * Ensure we can issue some IO before declaring the
1288185029Spjd	 * vdev open for business.
1289185029Spjd	 */
1290185029Spjd	if (vd->vdev_ops->vdev_op_leaf &&
1291185029Spjd	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1292219089Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1293219089Spjd		    VDEV_AUX_ERR_EXCEEDED);
1294185029Spjd		return (error);
1295185029Spjd	}
1296185029Spjd
1297185029Spjd	/*
1298185029Spjd	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1299209962Smm	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1300209962Smm	 * since this would just restart the scrub we are already doing.
1301168404Spjd	 */
1302209962Smm	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1303209962Smm	    vdev_resilver_needed(vd, NULL, NULL))
1304209962Smm		spa_async_request(spa, SPA_ASYNC_RESILVER);
1305168404Spjd
1306168404Spjd	return (0);
1307168404Spjd}
1308168404Spjd
1309168404Spjd/*
1310168404Spjd * Called once the vdevs are all opened, this routine validates the label
1311168404Spjd * contents.  This needs to be done before vdev_load() so that we don't
1312185029Spjd * inadvertently do repair I/Os to the wrong device.
1313168404Spjd *
1314230514Smm * If 'strict' is false ignore the spa guid check. This is necessary because
1315230514Smm * if the machine crashed during a re-guid the new guid might have been written
1316230514Smm * to all of the vdev labels, but not the cached config. The strict check
1317230514Smm * will be performed when the pool is opened again using the mos config.
1318230514Smm *
1319168404Spjd * This function will only return failure if one of the vdevs indicates that it
1320168404Spjd * has since been destroyed or exported.  This is only possible if
1321168404Spjd * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1322168404Spjd * will be updated but the function will return 0.
1323168404Spjd */
1324168404Spjdint
1325230514Smmvdev_validate(vdev_t *vd, boolean_t strict)
1326168404Spjd{
1327168404Spjd	spa_t *spa = vd->vdev_spa;
1328168404Spjd	nvlist_t *label;
1329219089Spjd	uint64_t guid = 0, top_guid;
1330168404Spjd	uint64_t state;
1331168404Spjd
1332219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
1333230514Smm		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1334249195Smm			return (SET_ERROR(EBADF));
1335168404Spjd
1336168404Spjd	/*
1337168404Spjd	 * If the device has already failed, or was marked offline, don't do
1338168404Spjd	 * any further validation.  Otherwise, label I/O will fail and we will
1339168404Spjd	 * overwrite the previous state.
1340168404Spjd	 */
1341185029Spjd	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1342219089Spjd		uint64_t aux_guid = 0;
1343219089Spjd		nvlist_t *nvl;
1344246631Smm		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1345246631Smm		    spa_last_synced_txg(spa) : -1ULL;
1346168404Spjd
1347239620Smm		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1348168404Spjd			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1349168404Spjd			    VDEV_AUX_BAD_LABEL);
1350168404Spjd			return (0);
1351168404Spjd		}
1352168404Spjd
1353219089Spjd		/*
1354219089Spjd		 * Determine if this vdev has been split off into another
1355219089Spjd		 * pool.  If so, then refuse to open it.
1356219089Spjd		 */
1357219089Spjd		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1358219089Spjd		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1359219089Spjd			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1360219089Spjd			    VDEV_AUX_SPLIT_POOL);
1361219089Spjd			nvlist_free(label);
1362219089Spjd			return (0);
1363219089Spjd		}
1364219089Spjd
1365230514Smm		if (strict && (nvlist_lookup_uint64(label,
1366230514Smm		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1367230514Smm		    guid != spa_guid(spa))) {
1368168404Spjd			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1369168404Spjd			    VDEV_AUX_CORRUPT_DATA);
1370168404Spjd			nvlist_free(label);
1371168404Spjd			return (0);
1372168404Spjd		}
1373168404Spjd
1374219089Spjd		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1375219089Spjd		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1376219089Spjd		    &aux_guid) != 0)
1377219089Spjd			aux_guid = 0;
1378219089Spjd
1379185029Spjd		/*
1380185029Spjd		 * If this vdev just became a top-level vdev because its
1381185029Spjd		 * sibling was detached, it will have adopted the parent's
1382185029Spjd		 * vdev guid -- but the label may or may not be on disk yet.
1383185029Spjd		 * Fortunately, either version of the label will have the
1384185029Spjd		 * same top guid, so if we're a top-level vdev, we can
1385185029Spjd		 * safely compare to that instead.
1386219089Spjd		 *
1387219089Spjd		 * If we split this vdev off instead, then we also check the
1388219089Spjd		 * original pool's guid.  We don't want to consider the vdev
1389219089Spjd		 * corrupt if it is partway through a split operation.
1390185029Spjd		 */
1391168404Spjd		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1392185029Spjd		    &guid) != 0 ||
1393185029Spjd		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1394185029Spjd		    &top_guid) != 0 ||
1395219089Spjd		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1396185029Spjd		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1397168404Spjd			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1398168404Spjd			    VDEV_AUX_CORRUPT_DATA);
1399168404Spjd			nvlist_free(label);
1400168404Spjd			return (0);
1401168404Spjd		}
1402168404Spjd
1403168404Spjd		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1404168404Spjd		    &state) != 0) {
1405168404Spjd			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1406168404Spjd			    VDEV_AUX_CORRUPT_DATA);
1407168404Spjd			nvlist_free(label);
1408168404Spjd			return (0);
1409168404Spjd		}
1410168404Spjd
1411168404Spjd		nvlist_free(label);
1412168404Spjd
1413209962Smm		/*
1414219089Spjd		 * If this is a verbatim import, no need to check the
1415209962Smm		 * state of the pool.
1416209962Smm		 */
1417219089Spjd		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1418219089Spjd		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1419168404Spjd		    state != POOL_STATE_ACTIVE)
1420249195Smm			return (SET_ERROR(EBADF));
1421185029Spjd
1422185029Spjd		/*
1423185029Spjd		 * If we were able to open and validate a vdev that was
1424185029Spjd		 * previously marked permanently unavailable, clear that state
1425185029Spjd		 * now.
1426185029Spjd		 */
1427185029Spjd		if (vd->vdev_not_present)
1428185029Spjd			vd->vdev_not_present = 0;
1429168404Spjd	}
1430168404Spjd
1431168404Spjd	return (0);
1432168404Spjd}
1433168404Spjd
1434168404Spjd/*
1435168404Spjd * Close a virtual device.
1436168404Spjd */
1437168404Spjdvoid
1438168404Spjdvdev_close(vdev_t *vd)
1439168404Spjd{
1440209962Smm	spa_t *spa = vd->vdev_spa;
1441219089Spjd	vdev_t *pvd = vd->vdev_parent;
1442209962Smm
1443209962Smm	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1444209962Smm
1445219089Spjd	/*
1446219089Spjd	 * If our parent is reopening, then we are as well, unless we are
1447219089Spjd	 * going offline.
1448219089Spjd	 */
1449219089Spjd	if (pvd != NULL && pvd->vdev_reopening)
1450219089Spjd		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1451219089Spjd
1452168404Spjd	vd->vdev_ops->vdev_op_close(vd);
1453168404Spjd
1454185029Spjd	vdev_cache_purge(vd);
1455168404Spjd
1456240868Spjd	if (vd->vdev_ops->vdev_op_leaf)
1457240868Spjd		trim_map_destroy(vd);
1458240868Spjd
1459168404Spjd	/*
1460219089Spjd	 * We record the previous state before we close it, so that if we are
1461168404Spjd	 * doing a reopen(), we don't generate FMA ereports if we notice that
1462168404Spjd	 * it's still faulted.
1463168404Spjd	 */
1464168404Spjd	vd->vdev_prevstate = vd->vdev_state;
1465168404Spjd
1466168404Spjd	if (vd->vdev_offline)
1467168404Spjd		vd->vdev_state = VDEV_STATE_OFFLINE;
1468168404Spjd	else
1469168404Spjd		vd->vdev_state = VDEV_STATE_CLOSED;
1470168404Spjd	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1471168404Spjd}
1472168404Spjd
1473168404Spjdvoid
1474219089Spjdvdev_hold(vdev_t *vd)
1475219089Spjd{
1476219089Spjd	spa_t *spa = vd->vdev_spa;
1477219089Spjd
1478219089Spjd	ASSERT(spa_is_root(spa));
1479219089Spjd	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1480219089Spjd		return;
1481219089Spjd
1482219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
1483219089Spjd		vdev_hold(vd->vdev_child[c]);
1484219089Spjd
1485219089Spjd	if (vd->vdev_ops->vdev_op_leaf)
1486219089Spjd		vd->vdev_ops->vdev_op_hold(vd);
1487219089Spjd}
1488219089Spjd
1489219089Spjdvoid
1490219089Spjdvdev_rele(vdev_t *vd)
1491219089Spjd{
1492219089Spjd	spa_t *spa = vd->vdev_spa;
1493219089Spjd
1494219089Spjd	ASSERT(spa_is_root(spa));
1495219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
1496219089Spjd		vdev_rele(vd->vdev_child[c]);
1497219089Spjd
1498219089Spjd	if (vd->vdev_ops->vdev_op_leaf)
1499219089Spjd		vd->vdev_ops->vdev_op_rele(vd);
1500219089Spjd}
1501219089Spjd
1502219089Spjd/*
1503219089Spjd * Reopen all interior vdevs and any unopened leaves.  We don't actually
1504219089Spjd * reopen leaf vdevs which had previously been opened as they might deadlock
1505219089Spjd * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1506219089Spjd * If the leaf has never been opened then open it, as usual.
1507219089Spjd */
1508219089Spjdvoid
1509168404Spjdvdev_reopen(vdev_t *vd)
1510168404Spjd{
1511168404Spjd	spa_t *spa = vd->vdev_spa;
1512168404Spjd
1513185029Spjd	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1514168404Spjd
1515219089Spjd	/* set the reopening flag unless we're taking the vdev offline */
1516219089Spjd	vd->vdev_reopening = !vd->vdev_offline;
1517168404Spjd	vdev_close(vd);
1518168404Spjd	(void) vdev_open(vd);
1519168404Spjd
1520168404Spjd	/*
1521168404Spjd	 * Call vdev_validate() here to make sure we have the same device.
1522168404Spjd	 * Otherwise, a device with an invalid label could be successfully
1523168404Spjd	 * opened in response to vdev_reopen().
1524168404Spjd	 */
1525185029Spjd	if (vd->vdev_aux) {
1526185029Spjd		(void) vdev_validate_aux(vd);
1527185029Spjd		if (vdev_readable(vd) && vdev_writeable(vd) &&
1528209962Smm		    vd->vdev_aux == &spa->spa_l2cache &&
1529219089Spjd		    !l2arc_vdev_present(vd))
1530219089Spjd			l2arc_add_vdev(spa, vd);
1531185029Spjd	} else {
1532246631Smm		(void) vdev_validate(vd, B_TRUE);
1533185029Spjd	}
1534168404Spjd
1535168404Spjd	/*
1536185029Spjd	 * Reassess parent vdev's health.
1537168404Spjd	 */
1538185029Spjd	vdev_propagate_state(vd);
1539168404Spjd}
1540168404Spjd
1541168404Spjdint
1542168404Spjdvdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1543168404Spjd{
1544168404Spjd	int error;
1545168404Spjd
1546168404Spjd	/*
1547168404Spjd	 * Normally, partial opens (e.g. of a mirror) are allowed.
1548168404Spjd	 * For a create, however, we want to fail the request if
1549168404Spjd	 * there are any components we can't open.
1550168404Spjd	 */
1551168404Spjd	error = vdev_open(vd);
1552168404Spjd
1553168404Spjd	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1554168404Spjd		vdev_close(vd);
1555168404Spjd		return (error ? error : ENXIO);
1556168404Spjd	}
1557168404Spjd
1558168404Spjd	/*
1559168404Spjd	 * Recursively initialize all labels.
1560168404Spjd	 */
1561168404Spjd	if ((error = vdev_label_init(vd, txg, isreplacing ?
1562168404Spjd	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1563168404Spjd		vdev_close(vd);
1564168404Spjd		return (error);
1565168404Spjd	}
1566168404Spjd
1567168404Spjd	return (0);
1568168404Spjd}
1569168404Spjd
1570168404Spjdvoid
1571219089Spjdvdev_metaslab_set_size(vdev_t *vd)
1572168404Spjd{
1573168404Spjd	/*
1574168404Spjd	 * Aim for roughly 200 metaslabs per vdev.
1575168404Spjd	 */
1576168404Spjd	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1577168404Spjd	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1578168404Spjd}
1579168404Spjd
1580168404Spjdvoid
1581168404Spjdvdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1582168404Spjd{
1583168404Spjd	ASSERT(vd == vd->vdev_top);
1584219089Spjd	ASSERT(!vd->vdev_ishole);
1585168404Spjd	ASSERT(ISP2(flags));
1586219089Spjd	ASSERT(spa_writeable(vd->vdev_spa));
1587168404Spjd
1588168404Spjd	if (flags & VDD_METASLAB)
1589168404Spjd		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1590168404Spjd
1591168404Spjd	if (flags & VDD_DTL)
1592168404Spjd		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1593168404Spjd
1594168404Spjd	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1595168404Spjd}
1596168404Spjd
1597209962Smm/*
1598209962Smm * DTLs.
1599209962Smm *
1600209962Smm * A vdev's DTL (dirty time log) is the set of transaction groups for which
1601219089Spjd * the vdev has less than perfect replication.  There are four kinds of DTL:
1602209962Smm *
1603209962Smm * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1604209962Smm *
1605209962Smm * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1606209962Smm *
1607209962Smm * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1608209962Smm *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1609209962Smm *	txgs that was scrubbed.
1610209962Smm *
1611209962Smm * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1612209962Smm *	persistent errors or just some device being offline.
1613209962Smm *	Unlike the other three, the DTL_OUTAGE map is not generally
1614209962Smm *	maintained; it's only computed when needed, typically to
1615209962Smm *	determine whether a device can be detached.
1616209962Smm *
1617209962Smm * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1618209962Smm * either has the data or it doesn't.
1619209962Smm *
1620209962Smm * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1621209962Smm * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1622209962Smm * if any child is less than fully replicated, then so is its parent.
1623209962Smm * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1624209962Smm * comprising only those txgs which appear in 'maxfaults' or more children;
1625209962Smm * those are the txgs we don't have enough replication to read.  For example,
1626209962Smm * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1627209962Smm * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1628209962Smm * two child DTL_MISSING maps.
1629209962Smm *
1630209962Smm * It should be clear from the above that to compute the DTLs and outage maps
1631209962Smm * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1632209962Smm * Therefore, that is all we keep on disk.  When loading the pool, or after
1633209962Smm * a configuration change, we generate all other DTLs from first principles.
1634209962Smm */
1635168404Spjdvoid
1636209962Smmvdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1637168404Spjd{
1638209962Smm	space_map_t *sm = &vd->vdev_dtl[t];
1639209962Smm
1640209962Smm	ASSERT(t < DTL_TYPES);
1641209962Smm	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1642219089Spjd	ASSERT(spa_writeable(vd->vdev_spa));
1643209962Smm
1644168404Spjd	mutex_enter(sm->sm_lock);
1645168404Spjd	if (!space_map_contains(sm, txg, size))
1646168404Spjd		space_map_add(sm, txg, size);
1647168404Spjd	mutex_exit(sm->sm_lock);
1648168404Spjd}
1649168404Spjd
1650209962Smmboolean_t
1651209962Smmvdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1652168404Spjd{
1653209962Smm	space_map_t *sm = &vd->vdev_dtl[t];
1654209962Smm	boolean_t dirty = B_FALSE;
1655168404Spjd
1656209962Smm	ASSERT(t < DTL_TYPES);
1657209962Smm	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1658168404Spjd
1659168404Spjd	mutex_enter(sm->sm_lock);
1660209962Smm	if (sm->sm_space != 0)
1661209962Smm		dirty = space_map_contains(sm, txg, size);
1662168404Spjd	mutex_exit(sm->sm_lock);
1663168404Spjd
1664168404Spjd	return (dirty);
1665168404Spjd}
1666168404Spjd
1667209962Smmboolean_t
1668209962Smmvdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1669209962Smm{
1670209962Smm	space_map_t *sm = &vd->vdev_dtl[t];
1671209962Smm	boolean_t empty;
1672209962Smm
1673209962Smm	mutex_enter(sm->sm_lock);
1674209962Smm	empty = (sm->sm_space == 0);
1675209962Smm	mutex_exit(sm->sm_lock);
1676209962Smm
1677209962Smm	return (empty);
1678209962Smm}
1679209962Smm
1680168404Spjd/*
1681168404Spjd * Reassess DTLs after a config change or scrub completion.
1682168404Spjd */
1683168404Spjdvoid
1684168404Spjdvdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1685168404Spjd{
1686168404Spjd	spa_t *spa = vd->vdev_spa;
1687209962Smm	avl_tree_t reftree;
1688209962Smm	int minref;
1689168404Spjd
1690209962Smm	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1691168404Spjd
1692209962Smm	for (int c = 0; c < vd->vdev_children; c++)
1693209962Smm		vdev_dtl_reassess(vd->vdev_child[c], txg,
1694209962Smm		    scrub_txg, scrub_done);
1695209962Smm
1696219089Spjd	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1697209962Smm		return;
1698209962Smm
1699209962Smm	if (vd->vdev_ops->vdev_op_leaf) {
1700219089Spjd		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1701219089Spjd
1702168404Spjd		mutex_enter(&vd->vdev_dtl_lock);
1703185029Spjd		if (scrub_txg != 0 &&
1704219089Spjd		    (spa->spa_scrub_started ||
1705219089Spjd		    (scn && scn->scn_phys.scn_errors == 0))) {
1706185029Spjd			/*
1707185029Spjd			 * We completed a scrub up to scrub_txg.  If we
1708185029Spjd			 * did it without rebooting, then the scrub dtl
1709185029Spjd			 * will be valid, so excise the old region and
1710185029Spjd			 * fold in the scrub dtl.  Otherwise, leave the
1711185029Spjd			 * dtl as-is if there was an error.
1712209962Smm			 *
1713209962Smm			 * There's little trick here: to excise the beginning
1714209962Smm			 * of the DTL_MISSING map, we put it into a reference
1715209962Smm			 * tree and then add a segment with refcnt -1 that
1716209962Smm			 * covers the range [0, scrub_txg).  This means
1717209962Smm			 * that each txg in that range has refcnt -1 or 0.
1718209962Smm			 * We then add DTL_SCRUB with a refcnt of 2, so that
1719209962Smm			 * entries in the range [0, scrub_txg) will have a
1720209962Smm			 * positive refcnt -- either 1 or 2.  We then convert
1721209962Smm			 * the reference tree into the new DTL_MISSING map.
1722185029Spjd			 */
1723209962Smm			space_map_ref_create(&reftree);
1724209962Smm			space_map_ref_add_map(&reftree,
1725209962Smm			    &vd->vdev_dtl[DTL_MISSING], 1);
1726209962Smm			space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1727209962Smm			space_map_ref_add_map(&reftree,
1728209962Smm			    &vd->vdev_dtl[DTL_SCRUB], 2);
1729209962Smm			space_map_ref_generate_map(&reftree,
1730209962Smm			    &vd->vdev_dtl[DTL_MISSING], 1);
1731209962Smm			space_map_ref_destroy(&reftree);
1732168404Spjd		}
1733209962Smm		space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1734209962Smm		space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1735209962Smm		    space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1736168404Spjd		if (scrub_done)
1737209962Smm			space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1738209962Smm		space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1739209962Smm		if (!vdev_readable(vd))
1740209962Smm			space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1741209962Smm		else
1742209962Smm			space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1743209962Smm			    space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1744168404Spjd		mutex_exit(&vd->vdev_dtl_lock);
1745185029Spjd
1746168404Spjd		if (txg != 0)
1747168404Spjd			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1748168404Spjd		return;
1749168404Spjd	}
1750168404Spjd
1751168404Spjd	mutex_enter(&vd->vdev_dtl_lock);
1752209962Smm	for (int t = 0; t < DTL_TYPES; t++) {
1753209962Smm		/* account for child's outage in parent's missing map */
1754209962Smm		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1755209962Smm		if (t == DTL_SCRUB)
1756209962Smm			continue;			/* leaf vdevs only */
1757209962Smm		if (t == DTL_PARTIAL)
1758209962Smm			minref = 1;			/* i.e. non-zero */
1759209962Smm		else if (vd->vdev_nparity != 0)
1760209962Smm			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1761209962Smm		else
1762209962Smm			minref = vd->vdev_children;	/* any kind of mirror */
1763209962Smm		space_map_ref_create(&reftree);
1764209962Smm		for (int c = 0; c < vd->vdev_children; c++) {
1765209962Smm			vdev_t *cvd = vd->vdev_child[c];
1766209962Smm			mutex_enter(&cvd->vdev_dtl_lock);
1767209962Smm			space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1768209962Smm			mutex_exit(&cvd->vdev_dtl_lock);
1769209962Smm		}
1770209962Smm		space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1771209962Smm		space_map_ref_destroy(&reftree);
1772209962Smm	}
1773168404Spjd	mutex_exit(&vd->vdev_dtl_lock);
1774168404Spjd}
1775168404Spjd
1776168404Spjdstatic int
1777168404Spjdvdev_dtl_load(vdev_t *vd)
1778168404Spjd{
1779168404Spjd	spa_t *spa = vd->vdev_spa;
1780209962Smm	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1781168404Spjd	objset_t *mos = spa->spa_meta_objset;
1782168404Spjd	dmu_buf_t *db;
1783168404Spjd	int error;
1784168404Spjd
1785168404Spjd	ASSERT(vd->vdev_children == 0);
1786168404Spjd
1787168404Spjd	if (smo->smo_object == 0)
1788168404Spjd		return (0);
1789168404Spjd
1790219089Spjd	ASSERT(!vd->vdev_ishole);
1791219089Spjd
1792168404Spjd	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1793168404Spjd		return (error);
1794168404Spjd
1795185029Spjd	ASSERT3U(db->db_size, >=, sizeof (*smo));
1796185029Spjd	bcopy(db->db_data, smo, sizeof (*smo));
1797168404Spjd	dmu_buf_rele(db, FTAG);
1798168404Spjd
1799168404Spjd	mutex_enter(&vd->vdev_dtl_lock);
1800209962Smm	error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1801209962Smm	    NULL, SM_ALLOC, smo, mos);
1802168404Spjd	mutex_exit(&vd->vdev_dtl_lock);
1803168404Spjd
1804168404Spjd	return (error);
1805168404Spjd}
1806168404Spjd
1807168404Spjdvoid
1808168404Spjdvdev_dtl_sync(vdev_t *vd, uint64_t txg)
1809168404Spjd{
1810168404Spjd	spa_t *spa = vd->vdev_spa;
1811209962Smm	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1812209962Smm	space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1813168404Spjd	objset_t *mos = spa->spa_meta_objset;
1814168404Spjd	space_map_t smsync;
1815168404Spjd	kmutex_t smlock;
1816168404Spjd	dmu_buf_t *db;
1817168404Spjd	dmu_tx_t *tx;
1818168404Spjd
1819219089Spjd	ASSERT(!vd->vdev_ishole);
1820219089Spjd
1821168404Spjd	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1822168404Spjd
1823168404Spjd	if (vd->vdev_detached) {
1824168404Spjd		if (smo->smo_object != 0) {
1825168404Spjd			int err = dmu_object_free(mos, smo->smo_object, tx);
1826240415Smm			ASSERT0(err);
1827168404Spjd			smo->smo_object = 0;
1828168404Spjd		}
1829168404Spjd		dmu_tx_commit(tx);
1830168404Spjd		return;
1831168404Spjd	}
1832168404Spjd
1833168404Spjd	if (smo->smo_object == 0) {
1834168404Spjd		ASSERT(smo->smo_objsize == 0);
1835168404Spjd		ASSERT(smo->smo_alloc == 0);
1836168404Spjd		smo->smo_object = dmu_object_alloc(mos,
1837168404Spjd		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1838168404Spjd		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1839168404Spjd		ASSERT(smo->smo_object != 0);
1840168404Spjd		vdev_config_dirty(vd->vdev_top);
1841168404Spjd	}
1842168404Spjd
1843252060Ssmh	bzero(&smlock, sizeof (smlock));
1844168404Spjd	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1845168404Spjd
1846168404Spjd	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1847168404Spjd	    &smlock);
1848168404Spjd
1849168404Spjd	mutex_enter(&smlock);
1850168404Spjd
1851168404Spjd	mutex_enter(&vd->vdev_dtl_lock);
1852168404Spjd	space_map_walk(sm, space_map_add, &smsync);
1853168404Spjd	mutex_exit(&vd->vdev_dtl_lock);
1854168404Spjd
1855168404Spjd	space_map_truncate(smo, mos, tx);
1856168404Spjd	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1857247398Smm	space_map_vacate(&smsync, NULL, NULL);
1858168404Spjd
1859168404Spjd	space_map_destroy(&smsync);
1860168404Spjd
1861168404Spjd	mutex_exit(&smlock);
1862168404Spjd	mutex_destroy(&smlock);
1863168404Spjd
1864168404Spjd	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1865168404Spjd	dmu_buf_will_dirty(db, tx);
1866185029Spjd	ASSERT3U(db->db_size, >=, sizeof (*smo));
1867185029Spjd	bcopy(smo, db->db_data, sizeof (*smo));
1868168404Spjd	dmu_buf_rele(db, FTAG);
1869168404Spjd
1870168404Spjd	dmu_tx_commit(tx);
1871168404Spjd}
1872168404Spjd
1873185029Spjd/*
1874209962Smm * Determine whether the specified vdev can be offlined/detached/removed
1875209962Smm * without losing data.
1876209962Smm */
1877209962Smmboolean_t
1878209962Smmvdev_dtl_required(vdev_t *vd)
1879209962Smm{
1880209962Smm	spa_t *spa = vd->vdev_spa;
1881209962Smm	vdev_t *tvd = vd->vdev_top;
1882209962Smm	uint8_t cant_read = vd->vdev_cant_read;
1883209962Smm	boolean_t required;
1884209962Smm
1885209962Smm	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1886209962Smm
1887209962Smm	if (vd == spa->spa_root_vdev || vd == tvd)
1888209962Smm		return (B_TRUE);
1889209962Smm
1890209962Smm	/*
1891209962Smm	 * Temporarily mark the device as unreadable, and then determine
1892209962Smm	 * whether this results in any DTL outages in the top-level vdev.
1893209962Smm	 * If not, we can safely offline/detach/remove the device.
1894209962Smm	 */
1895209962Smm	vd->vdev_cant_read = B_TRUE;
1896209962Smm	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1897209962Smm	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1898209962Smm	vd->vdev_cant_read = cant_read;
1899209962Smm	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1900209962Smm
1901219089Spjd	if (!required && zio_injection_enabled)
1902219089Spjd		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1903219089Spjd
1904209962Smm	return (required);
1905209962Smm}
1906209962Smm
1907209962Smm/*
1908185029Spjd * Determine if resilver is needed, and if so the txg range.
1909185029Spjd */
1910185029Spjdboolean_t
1911185029Spjdvdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1912185029Spjd{
1913185029Spjd	boolean_t needed = B_FALSE;
1914185029Spjd	uint64_t thismin = UINT64_MAX;
1915185029Spjd	uint64_t thismax = 0;
1916185029Spjd
1917185029Spjd	if (vd->vdev_children == 0) {
1918185029Spjd		mutex_enter(&vd->vdev_dtl_lock);
1919209962Smm		if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1920209962Smm		    vdev_writeable(vd)) {
1921185029Spjd			space_seg_t *ss;
1922185029Spjd
1923209962Smm			ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1924185029Spjd			thismin = ss->ss_start - 1;
1925209962Smm			ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1926185029Spjd			thismax = ss->ss_end;
1927185029Spjd			needed = B_TRUE;
1928185029Spjd		}
1929185029Spjd		mutex_exit(&vd->vdev_dtl_lock);
1930185029Spjd	} else {
1931209962Smm		for (int c = 0; c < vd->vdev_children; c++) {
1932185029Spjd			vdev_t *cvd = vd->vdev_child[c];
1933185029Spjd			uint64_t cmin, cmax;
1934185029Spjd
1935185029Spjd			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1936185029Spjd				thismin = MIN(thismin, cmin);
1937185029Spjd				thismax = MAX(thismax, cmax);
1938185029Spjd				needed = B_TRUE;
1939185029Spjd			}
1940185029Spjd		}
1941185029Spjd	}
1942185029Spjd
1943185029Spjd	if (needed && minp) {
1944185029Spjd		*minp = thismin;
1945185029Spjd		*maxp = thismax;
1946185029Spjd	}
1947185029Spjd	return (needed);
1948185029Spjd}
1949185029Spjd
1950168404Spjdvoid
1951168404Spjdvdev_load(vdev_t *vd)
1952168404Spjd{
1953168404Spjd	/*
1954168404Spjd	 * Recursively load all children.
1955168404Spjd	 */
1956209962Smm	for (int c = 0; c < vd->vdev_children; c++)
1957168404Spjd		vdev_load(vd->vdev_child[c]);
1958168404Spjd
1959168404Spjd	/*
1960168404Spjd	 * If this is a top-level vdev, initialize its metaslabs.
1961168404Spjd	 */
1962219089Spjd	if (vd == vd->vdev_top && !vd->vdev_ishole &&
1963168404Spjd	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1964168404Spjd	    vdev_metaslab_init(vd, 0) != 0))
1965168404Spjd		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1966168404Spjd		    VDEV_AUX_CORRUPT_DATA);
1967168404Spjd
1968168404Spjd	/*
1969168404Spjd	 * If this is a leaf vdev, load its DTL.
1970168404Spjd	 */
1971168404Spjd	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1972168404Spjd		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1973168404Spjd		    VDEV_AUX_CORRUPT_DATA);
1974168404Spjd}
1975168404Spjd
1976168404Spjd/*
1977185029Spjd * The special vdev case is used for hot spares and l2cache devices.  Its
1978185029Spjd * sole purpose it to set the vdev state for the associated vdev.  To do this,
1979185029Spjd * we make sure that we can open the underlying device, then try to read the
1980185029Spjd * label, and make sure that the label is sane and that it hasn't been
1981185029Spjd * repurposed to another pool.
1982168404Spjd */
1983168404Spjdint
1984185029Spjdvdev_validate_aux(vdev_t *vd)
1985168404Spjd{
1986168404Spjd	nvlist_t *label;
1987168404Spjd	uint64_t guid, version;
1988168404Spjd	uint64_t state;
1989168404Spjd
1990185029Spjd	if (!vdev_readable(vd))
1991185029Spjd		return (0);
1992185029Spjd
1993239620Smm	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
1994168404Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1995168404Spjd		    VDEV_AUX_CORRUPT_DATA);
1996168404Spjd		return (-1);
1997168404Spjd	}
1998168404Spjd
1999168404Spjd	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2000236884Smm	    !SPA_VERSION_IS_SUPPORTED(version) ||
2001168404Spjd	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2002168404Spjd	    guid != vd->vdev_guid ||
2003168404Spjd	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2004168404Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2005168404Spjd		    VDEV_AUX_CORRUPT_DATA);
2006168404Spjd		nvlist_free(label);
2007168404Spjd		return (-1);
2008168404Spjd	}
2009168404Spjd
2010168404Spjd	/*
2011168404Spjd	 * We don't actually check the pool state here.  If it's in fact in
2012168404Spjd	 * use by another pool, we update this fact on the fly when requested.
2013168404Spjd	 */
2014168404Spjd	nvlist_free(label);
2015168404Spjd	return (0);
2016168404Spjd}
2017168404Spjd
2018168404Spjdvoid
2019219089Spjdvdev_remove(vdev_t *vd, uint64_t txg)
2020219089Spjd{
2021219089Spjd	spa_t *spa = vd->vdev_spa;
2022219089Spjd	objset_t *mos = spa->spa_meta_objset;
2023219089Spjd	dmu_tx_t *tx;
2024219089Spjd
2025219089Spjd	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2026219089Spjd
2027219089Spjd	if (vd->vdev_dtl_smo.smo_object) {
2028240415Smm		ASSERT0(vd->vdev_dtl_smo.smo_alloc);
2029219089Spjd		(void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2030219089Spjd		vd->vdev_dtl_smo.smo_object = 0;
2031219089Spjd	}
2032219089Spjd
2033219089Spjd	if (vd->vdev_ms != NULL) {
2034219089Spjd		for (int m = 0; m < vd->vdev_ms_count; m++) {
2035219089Spjd			metaslab_t *msp = vd->vdev_ms[m];
2036219089Spjd
2037219089Spjd			if (msp == NULL || msp->ms_smo.smo_object == 0)
2038219089Spjd				continue;
2039219089Spjd
2040240415Smm			ASSERT0(msp->ms_smo.smo_alloc);
2041219089Spjd			(void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2042219089Spjd			msp->ms_smo.smo_object = 0;
2043219089Spjd		}
2044219089Spjd	}
2045219089Spjd
2046219089Spjd	if (vd->vdev_ms_array) {
2047219089Spjd		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2048219089Spjd		vd->vdev_ms_array = 0;
2049219089Spjd		vd->vdev_ms_shift = 0;
2050219089Spjd	}
2051219089Spjd	dmu_tx_commit(tx);
2052219089Spjd}
2053219089Spjd
2054219089Spjdvoid
2055168404Spjdvdev_sync_done(vdev_t *vd, uint64_t txg)
2056168404Spjd{
2057168404Spjd	metaslab_t *msp;
2058211931Smm	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2059168404Spjd
2060219089Spjd	ASSERT(!vd->vdev_ishole);
2061219089Spjd
2062168404Spjd	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2063168404Spjd		metaslab_sync_done(msp, txg);
2064211931Smm
2065211931Smm	if (reassess)
2066211931Smm		metaslab_sync_reassess(vd->vdev_mg);
2067168404Spjd}
2068168404Spjd
2069168404Spjdvoid
2070168404Spjdvdev_sync(vdev_t *vd, uint64_t txg)
2071168404Spjd{
2072168404Spjd	spa_t *spa = vd->vdev_spa;
2073168404Spjd	vdev_t *lvd;
2074168404Spjd	metaslab_t *msp;
2075168404Spjd	dmu_tx_t *tx;
2076168404Spjd
2077219089Spjd	ASSERT(!vd->vdev_ishole);
2078219089Spjd
2079168404Spjd	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2080168404Spjd		ASSERT(vd == vd->vdev_top);
2081168404Spjd		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2082168404Spjd		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2083168404Spjd		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2084168404Spjd		ASSERT(vd->vdev_ms_array != 0);
2085168404Spjd		vdev_config_dirty(vd);
2086168404Spjd		dmu_tx_commit(tx);
2087168404Spjd	}
2088168404Spjd
2089219089Spjd	/*
2090219089Spjd	 * Remove the metadata associated with this vdev once it's empty.
2091219089Spjd	 */
2092219089Spjd	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2093219089Spjd		vdev_remove(vd, txg);
2094219089Spjd
2095168404Spjd	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2096168404Spjd		metaslab_sync(msp, txg);
2097168404Spjd		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2098168404Spjd	}
2099168404Spjd
2100168404Spjd	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2101168404Spjd		vdev_dtl_sync(lvd, txg);
2102168404Spjd
2103168404Spjd	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2104168404Spjd}
2105168404Spjd
2106168404Spjduint64_t
2107168404Spjdvdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2108168404Spjd{
2109168404Spjd	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2110168404Spjd}
2111168404Spjd
2112185029Spjd/*
2113185029Spjd * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2114185029Spjd * not be opened, and no I/O is attempted.
2115185029Spjd */
2116185029Spjdint
2117219089Spjdvdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2118168404Spjd{
2119219089Spjd	vdev_t *vd, *tvd;
2120168404Spjd
2121219089Spjd	spa_vdev_state_enter(spa, SCL_NONE);
2122185029Spjd
2123185029Spjd	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2124185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2125185029Spjd
2126185029Spjd	if (!vd->vdev_ops->vdev_op_leaf)
2127185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2128185029Spjd
2129219089Spjd	tvd = vd->vdev_top;
2130219089Spjd
2131185029Spjd	/*
2132219089Spjd	 * We don't directly use the aux state here, but if we do a
2133219089Spjd	 * vdev_reopen(), we need this value to be present to remember why we
2134219089Spjd	 * were faulted.
2135219089Spjd	 */
2136219089Spjd	vd->vdev_label_aux = aux;
2137219089Spjd
2138219089Spjd	/*
2139185029Spjd	 * Faulted state takes precedence over degraded.
2140185029Spjd	 */
2141219089Spjd	vd->vdev_delayed_close = B_FALSE;
2142185029Spjd	vd->vdev_faulted = 1ULL;
2143185029Spjd	vd->vdev_degraded = 0ULL;
2144219089Spjd	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2145185029Spjd
2146185029Spjd	/*
2147219089Spjd	 * If this device has the only valid copy of the data, then
2148219089Spjd	 * back off and simply mark the vdev as degraded instead.
2149185029Spjd	 */
2150219089Spjd	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2151185029Spjd		vd->vdev_degraded = 1ULL;
2152185029Spjd		vd->vdev_faulted = 0ULL;
2153185029Spjd
2154185029Spjd		/*
2155185029Spjd		 * If we reopen the device and it's not dead, only then do we
2156185029Spjd		 * mark it degraded.
2157185029Spjd		 */
2158219089Spjd		vdev_reopen(tvd);
2159185029Spjd
2160219089Spjd		if (vdev_readable(vd))
2161219089Spjd			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2162185029Spjd	}
2163185029Spjd
2164185029Spjd	return (spa_vdev_state_exit(spa, vd, 0));
2165168404Spjd}
2166168404Spjd
2167185029Spjd/*
2168185029Spjd * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2169185029Spjd * user that something is wrong.  The vdev continues to operate as normal as far
2170185029Spjd * as I/O is concerned.
2171185029Spjd */
2172185029Spjdint
2173219089Spjdvdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2174168404Spjd{
2175185029Spjd	vdev_t *vd;
2176168404Spjd
2177219089Spjd	spa_vdev_state_enter(spa, SCL_NONE);
2178168404Spjd
2179185029Spjd	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2180185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2181168404Spjd
2182185029Spjd	if (!vd->vdev_ops->vdev_op_leaf)
2183185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2184185029Spjd
2185185029Spjd	/*
2186185029Spjd	 * If the vdev is already faulted, then don't do anything.
2187185029Spjd	 */
2188185029Spjd	if (vd->vdev_faulted || vd->vdev_degraded)
2189185029Spjd		return (spa_vdev_state_exit(spa, NULL, 0));
2190185029Spjd
2191185029Spjd	vd->vdev_degraded = 1ULL;
2192185029Spjd	if (!vdev_is_dead(vd))
2193185029Spjd		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2194219089Spjd		    aux);
2195185029Spjd
2196185029Spjd	return (spa_vdev_state_exit(spa, vd, 0));
2197168404Spjd}
2198168404Spjd
2199185029Spjd/*
2200251631Sdelphij * Online the given vdev.
2201251631Sdelphij *
2202251631Sdelphij * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2203251631Sdelphij * spare device should be detached when the device finishes resilvering.
2204251631Sdelphij * Second, the online should be treated like a 'test' online case, so no FMA
2205251631Sdelphij * events are generated if the device fails to open.
2206185029Spjd */
2207168404Spjdint
2208185029Spjdvdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2209168404Spjd{
2210219089Spjd	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2211168404Spjd
2212219089Spjd	spa_vdev_state_enter(spa, SCL_NONE);
2213168404Spjd
2214185029Spjd	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2215185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2216168404Spjd
2217168404Spjd	if (!vd->vdev_ops->vdev_op_leaf)
2218185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2219168404Spjd
2220219089Spjd	tvd = vd->vdev_top;
2221168404Spjd	vd->vdev_offline = B_FALSE;
2222168404Spjd	vd->vdev_tmpoffline = B_FALSE;
2223185029Spjd	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2224185029Spjd	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2225219089Spjd
2226219089Spjd	/* XXX - L2ARC 1.0 does not support expansion */
2227219089Spjd	if (!vd->vdev_aux) {
2228219089Spjd		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2229219089Spjd			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2230219089Spjd	}
2231219089Spjd
2232219089Spjd	vdev_reopen(tvd);
2233185029Spjd	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2234168404Spjd
2235219089Spjd	if (!vd->vdev_aux) {
2236219089Spjd		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2237219089Spjd			pvd->vdev_expanding = B_FALSE;
2238219089Spjd	}
2239219089Spjd
2240185029Spjd	if (newstate)
2241185029Spjd		*newstate = vd->vdev_state;
2242185029Spjd	if ((flags & ZFS_ONLINE_UNSPARE) &&
2243185029Spjd	    !vdev_is_dead(vd) && vd->vdev_parent &&
2244185029Spjd	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2245185029Spjd	    vd->vdev_parent->vdev_child[0] == vd)
2246185029Spjd		vd->vdev_unspare = B_TRUE;
2247168404Spjd
2248219089Spjd	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2249219089Spjd
2250219089Spjd		/* XXX - L2ARC 1.0 does not support expansion */
2251219089Spjd		if (vd->vdev_aux)
2252219089Spjd			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2253219089Spjd		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2254219089Spjd	}
2255209962Smm	return (spa_vdev_state_exit(spa, vd, 0));
2256168404Spjd}
2257168404Spjd
2258219089Spjdstatic int
2259219089Spjdvdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2260168404Spjd{
2261213197Smm	vdev_t *vd, *tvd;
2262219089Spjd	int error = 0;
2263219089Spjd	uint64_t generation;
2264219089Spjd	metaslab_group_t *mg;
2265168404Spjd
2266219089Spjdtop:
2267219089Spjd	spa_vdev_state_enter(spa, SCL_ALLOC);
2268168404Spjd
2269185029Spjd	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2270185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2271168404Spjd
2272168404Spjd	if (!vd->vdev_ops->vdev_op_leaf)
2273185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2274168404Spjd
2275213197Smm	tvd = vd->vdev_top;
2276219089Spjd	mg = tvd->vdev_mg;
2277219089Spjd	generation = spa->spa_config_generation + 1;
2278213197Smm
2279168404Spjd	/*
2280168404Spjd	 * If the device isn't already offline, try to offline it.
2281168404Spjd	 */
2282168404Spjd	if (!vd->vdev_offline) {
2283168404Spjd		/*
2284209962Smm		 * If this device has the only valid copy of some data,
2285213197Smm		 * don't allow it to be offlined. Log devices are always
2286213197Smm		 * expendable.
2287168404Spjd		 */
2288213197Smm		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2289213197Smm		    vdev_dtl_required(vd))
2290185029Spjd			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2291168404Spjd
2292168404Spjd		/*
2293219089Spjd		 * If the top-level is a slog and it has had allocations
2294219089Spjd		 * then proceed.  We check that the vdev's metaslab group
2295219089Spjd		 * is not NULL since it's possible that we may have just
2296219089Spjd		 * added this vdev but not yet initialized its metaslabs.
2297219089Spjd		 */
2298219089Spjd		if (tvd->vdev_islog && mg != NULL) {
2299219089Spjd			/*
2300219089Spjd			 * Prevent any future allocations.
2301219089Spjd			 */
2302219089Spjd			metaslab_group_passivate(mg);
2303219089Spjd			(void) spa_vdev_state_exit(spa, vd, 0);
2304219089Spjd
2305219089Spjd			error = spa_offline_log(spa);
2306219089Spjd
2307219089Spjd			spa_vdev_state_enter(spa, SCL_ALLOC);
2308219089Spjd
2309219089Spjd			/*
2310219089Spjd			 * Check to see if the config has changed.
2311219089Spjd			 */
2312219089Spjd			if (error || generation != spa->spa_config_generation) {
2313219089Spjd				metaslab_group_activate(mg);
2314219089Spjd				if (error)
2315219089Spjd					return (spa_vdev_state_exit(spa,
2316219089Spjd					    vd, error));
2317219089Spjd				(void) spa_vdev_state_exit(spa, vd, 0);
2318219089Spjd				goto top;
2319219089Spjd			}
2320240415Smm			ASSERT0(tvd->vdev_stat.vs_alloc);
2321219089Spjd		}
2322219089Spjd
2323219089Spjd		/*
2324168404Spjd		 * Offline this device and reopen its top-level vdev.
2325213197Smm		 * If the top-level vdev is a log device then just offline
2326213197Smm		 * it. Otherwise, if this action results in the top-level
2327213197Smm		 * vdev becoming unusable, undo it and fail the request.
2328168404Spjd		 */
2329168404Spjd		vd->vdev_offline = B_TRUE;
2330213197Smm		vdev_reopen(tvd);
2331213197Smm
2332213197Smm		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2333213197Smm		    vdev_is_dead(tvd)) {
2334168404Spjd			vd->vdev_offline = B_FALSE;
2335213197Smm			vdev_reopen(tvd);
2336185029Spjd			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2337168404Spjd		}
2338219089Spjd
2339219089Spjd		/*
2340219089Spjd		 * Add the device back into the metaslab rotor so that
2341219089Spjd		 * once we online the device it's open for business.
2342219089Spjd		 */
2343219089Spjd		if (tvd->vdev_islog && mg != NULL)
2344219089Spjd			metaslab_group_activate(mg);
2345168404Spjd	}
2346168404Spjd
2347185029Spjd	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2348168404Spjd
2349219089Spjd	return (spa_vdev_state_exit(spa, vd, 0));
2350219089Spjd}
2351213197Smm
2352219089Spjdint
2353219089Spjdvdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2354219089Spjd{
2355219089Spjd	int error;
2356213197Smm
2357219089Spjd	mutex_enter(&spa->spa_vdev_top_lock);
2358219089Spjd	error = vdev_offline_locked(spa, guid, flags);
2359219089Spjd	mutex_exit(&spa->spa_vdev_top_lock);
2360219089Spjd
2361219089Spjd	return (error);
2362168404Spjd}
2363168404Spjd
2364168404Spjd/*
2365168404Spjd * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2366168404Spjd * vdev_offline(), we assume the spa config is locked.  We also clear all
2367168404Spjd * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2368168404Spjd */
2369168404Spjdvoid
2370168404Spjdvdev_clear(spa_t *spa, vdev_t *vd)
2371168404Spjd{
2372185029Spjd	vdev_t *rvd = spa->spa_root_vdev;
2373168404Spjd
2374185029Spjd	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2375185029Spjd
2376168404Spjd	if (vd == NULL)
2377185029Spjd		vd = rvd;
2378168404Spjd
2379168404Spjd	vd->vdev_stat.vs_read_errors = 0;
2380168404Spjd	vd->vdev_stat.vs_write_errors = 0;
2381168404Spjd	vd->vdev_stat.vs_checksum_errors = 0;
2382168404Spjd
2383185029Spjd	for (int c = 0; c < vd->vdev_children; c++)
2384168404Spjd		vdev_clear(spa, vd->vdev_child[c]);
2385185029Spjd
2386185029Spjd	/*
2387185029Spjd	 * If we're in the FAULTED state or have experienced failed I/O, then
2388185029Spjd	 * clear the persistent state and attempt to reopen the device.  We
2389185029Spjd	 * also mark the vdev config dirty, so that the new faulted state is
2390185029Spjd	 * written out to disk.
2391185029Spjd	 */
2392185029Spjd	if (vd->vdev_faulted || vd->vdev_degraded ||
2393185029Spjd	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2394185029Spjd
2395219089Spjd		/*
2396219089Spjd		 * When reopening in reponse to a clear event, it may be due to
2397219089Spjd		 * a fmadm repair request.  In this case, if the device is
2398219089Spjd		 * still broken, we want to still post the ereport again.
2399219089Spjd		 */
2400219089Spjd		vd->vdev_forcefault = B_TRUE;
2401219089Spjd
2402219089Spjd		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2403185029Spjd		vd->vdev_cant_read = B_FALSE;
2404185029Spjd		vd->vdev_cant_write = B_FALSE;
2405185029Spjd
2406219089Spjd		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2407185029Spjd
2408219089Spjd		vd->vdev_forcefault = B_FALSE;
2409219089Spjd
2410219089Spjd		if (vd != rvd && vdev_writeable(vd->vdev_top))
2411185029Spjd			vdev_state_dirty(vd->vdev_top);
2412185029Spjd
2413185029Spjd		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2414185029Spjd			spa_async_request(spa, SPA_ASYNC_RESILVER);
2415185029Spjd
2416185029Spjd		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2417185029Spjd	}
2418219089Spjd
2419219089Spjd	/*
2420219089Spjd	 * When clearing a FMA-diagnosed fault, we always want to
2421219089Spjd	 * unspare the device, as we assume that the original spare was
2422219089Spjd	 * done in response to the FMA fault.
2423219089Spjd	 */
2424219089Spjd	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2425219089Spjd	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2426219089Spjd	    vd->vdev_parent->vdev_child[0] == vd)
2427219089Spjd		vd->vdev_unspare = B_TRUE;
2428168404Spjd}
2429168404Spjd
2430185029Spjdboolean_t
2431168404Spjdvdev_is_dead(vdev_t *vd)
2432168404Spjd{
2433219089Spjd	/*
2434219089Spjd	 * Holes and missing devices are always considered "dead".
2435219089Spjd	 * This simplifies the code since we don't have to check for
2436219089Spjd	 * these types of devices in the various code paths.
2437219089Spjd	 * Instead we rely on the fact that we skip over dead devices
2438219089Spjd	 * before issuing I/O to them.
2439219089Spjd	 */
2440219089Spjd	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2441219089Spjd	    vd->vdev_ops == &vdev_missing_ops);
2442168404Spjd}
2443168404Spjd
2444185029Spjdboolean_t
2445185029Spjdvdev_readable(vdev_t *vd)
2446168404Spjd{
2447185029Spjd	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2448185029Spjd}
2449168404Spjd
2450185029Spjdboolean_t
2451185029Spjdvdev_writeable(vdev_t *vd)
2452185029Spjd{
2453185029Spjd	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2454185029Spjd}
2455168404Spjd
2456185029Spjdboolean_t
2457208370Smmvdev_allocatable(vdev_t *vd)
2458208370Smm{
2459209962Smm	uint64_t state = vd->vdev_state;
2460209962Smm
2461208370Smm	/*
2462209962Smm	 * We currently allow allocations from vdevs which may be in the
2463208370Smm	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2464208370Smm	 * fails to reopen then we'll catch it later when we're holding
2465209962Smm	 * the proper locks.  Note that we have to get the vdev state
2466209962Smm	 * in a local variable because although it changes atomically,
2467209962Smm	 * we're asking two separate questions about it.
2468208370Smm	 */
2469209962Smm	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2470219089Spjd	    !vd->vdev_cant_write && !vd->vdev_ishole);
2471208370Smm}
2472208370Smm
2473208370Smmboolean_t
2474185029Spjdvdev_accessible(vdev_t *vd, zio_t *zio)
2475185029Spjd{
2476185029Spjd	ASSERT(zio->io_vd == vd);
2477168404Spjd
2478185029Spjd	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2479185029Spjd		return (B_FALSE);
2480168404Spjd
2481185029Spjd	if (zio->io_type == ZIO_TYPE_READ)
2482185029Spjd		return (!vd->vdev_cant_read);
2483168404Spjd
2484185029Spjd	if (zio->io_type == ZIO_TYPE_WRITE)
2485185029Spjd		return (!vd->vdev_cant_write);
2486168404Spjd
2487185029Spjd	return (B_TRUE);
2488168404Spjd}
2489168404Spjd
2490168404Spjd/*
2491168404Spjd * Get statistics for the given vdev.
2492168404Spjd */
2493168404Spjdvoid
2494168404Spjdvdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2495168404Spjd{
2496168404Spjd	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2497168404Spjd
2498168404Spjd	mutex_enter(&vd->vdev_stat_lock);
2499168404Spjd	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2500168404Spjd	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2501168404Spjd	vs->vs_state = vd->vdev_state;
2502219089Spjd	vs->vs_rsize = vdev_get_min_asize(vd);
2503219089Spjd	if (vd->vdev_ops->vdev_op_leaf)
2504219089Spjd		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2505236155Smm	vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2506168404Spjd	mutex_exit(&vd->vdev_stat_lock);
2507168404Spjd
2508168404Spjd	/*
2509168404Spjd	 * If we're getting stats on the root vdev, aggregate the I/O counts
2510168404Spjd	 * over all top-level vdevs (i.e. the direct children of the root).
2511168404Spjd	 */
2512168404Spjd	if (vd == rvd) {
2513185029Spjd		for (int c = 0; c < rvd->vdev_children; c++) {
2514168404Spjd			vdev_t *cvd = rvd->vdev_child[c];
2515168404Spjd			vdev_stat_t *cvs = &cvd->vdev_stat;
2516168404Spjd
2517168404Spjd			mutex_enter(&vd->vdev_stat_lock);
2518185029Spjd			for (int t = 0; t < ZIO_TYPES; t++) {
2519168404Spjd				vs->vs_ops[t] += cvs->vs_ops[t];
2520168404Spjd				vs->vs_bytes[t] += cvs->vs_bytes[t];
2521168404Spjd			}
2522219089Spjd			cvs->vs_scan_removing = cvd->vdev_removing;
2523168404Spjd			mutex_exit(&vd->vdev_stat_lock);
2524168404Spjd		}
2525168404Spjd	}
2526168404Spjd}
2527168404Spjd
2528168404Spjdvoid
2529185029Spjdvdev_clear_stats(vdev_t *vd)
2530168404Spjd{
2531185029Spjd	mutex_enter(&vd->vdev_stat_lock);
2532185029Spjd	vd->vdev_stat.vs_space = 0;
2533185029Spjd	vd->vdev_stat.vs_dspace = 0;
2534185029Spjd	vd->vdev_stat.vs_alloc = 0;
2535185029Spjd	mutex_exit(&vd->vdev_stat_lock);
2536185029Spjd}
2537185029Spjd
2538185029Spjdvoid
2539219089Spjdvdev_scan_stat_init(vdev_t *vd)
2540219089Spjd{
2541219089Spjd	vdev_stat_t *vs = &vd->vdev_stat;
2542219089Spjd
2543219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
2544219089Spjd		vdev_scan_stat_init(vd->vdev_child[c]);
2545219089Spjd
2546219089Spjd	mutex_enter(&vd->vdev_stat_lock);
2547219089Spjd	vs->vs_scan_processed = 0;
2548219089Spjd	mutex_exit(&vd->vdev_stat_lock);
2549219089Spjd}
2550219089Spjd
2551219089Spjdvoid
2552185029Spjdvdev_stat_update(zio_t *zio, uint64_t psize)
2553185029Spjd{
2554209962Smm	spa_t *spa = zio->io_spa;
2555209962Smm	vdev_t *rvd = spa->spa_root_vdev;
2556185029Spjd	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2557168404Spjd	vdev_t *pvd;
2558168404Spjd	uint64_t txg = zio->io_txg;
2559168404Spjd	vdev_stat_t *vs = &vd->vdev_stat;
2560168404Spjd	zio_type_t type = zio->io_type;
2561168404Spjd	int flags = zio->io_flags;
2562168404Spjd
2563185029Spjd	/*
2564185029Spjd	 * If this i/o is a gang leader, it didn't do any actual work.
2565185029Spjd	 */
2566185029Spjd	if (zio->io_gang_tree)
2567185029Spjd		return;
2568185029Spjd
2569168404Spjd	if (zio->io_error == 0) {
2570185029Spjd		/*
2571185029Spjd		 * If this is a root i/o, don't count it -- we've already
2572185029Spjd		 * counted the top-level vdevs, and vdev_get_stats() will
2573185029Spjd		 * aggregate them when asked.  This reduces contention on
2574185029Spjd		 * the root vdev_stat_lock and implicitly handles blocks
2575185029Spjd		 * that compress away to holes, for which there is no i/o.
2576185029Spjd		 * (Holes never create vdev children, so all the counters
2577185029Spjd		 * remain zero, which is what we want.)
2578185029Spjd		 *
2579185029Spjd		 * Note: this only applies to successful i/o (io_error == 0)
2580185029Spjd		 * because unlike i/o counts, errors are not additive.
2581185029Spjd		 * When reading a ditto block, for example, failure of
2582185029Spjd		 * one top-level vdev does not imply a root-level error.
2583185029Spjd		 */
2584185029Spjd		if (vd == rvd)
2585185029Spjd			return;
2586185029Spjd
2587185029Spjd		ASSERT(vd == zio->io_vd);
2588209962Smm
2589209962Smm		if (flags & ZIO_FLAG_IO_BYPASS)
2590209962Smm			return;
2591209962Smm
2592209962Smm		mutex_enter(&vd->vdev_stat_lock);
2593209962Smm
2594185029Spjd		if (flags & ZIO_FLAG_IO_REPAIR) {
2595219089Spjd			if (flags & ZIO_FLAG_SCAN_THREAD) {
2596219089Spjd				dsl_scan_phys_t *scn_phys =
2597219089Spjd				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2598219089Spjd				uint64_t *processed = &scn_phys->scn_processed;
2599219089Spjd
2600219089Spjd				/* XXX cleanup? */
2601219089Spjd				if (vd->vdev_ops->vdev_op_leaf)
2602219089Spjd					atomic_add_64(processed, psize);
2603219089Spjd				vs->vs_scan_processed += psize;
2604219089Spjd			}
2605219089Spjd
2606209962Smm			if (flags & ZIO_FLAG_SELF_HEAL)
2607185029Spjd				vs->vs_self_healed += psize;
2608168404Spjd		}
2609209962Smm
2610209962Smm		vs->vs_ops[type]++;
2611209962Smm		vs->vs_bytes[type] += psize;
2612209962Smm
2613209962Smm		mutex_exit(&vd->vdev_stat_lock);
2614168404Spjd		return;
2615168404Spjd	}
2616168404Spjd
2617168404Spjd	if (flags & ZIO_FLAG_SPECULATIVE)
2618168404Spjd		return;
2619168404Spjd
2620213198Smm	/*
2621213198Smm	 * If this is an I/O error that is going to be retried, then ignore the
2622213198Smm	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2623213198Smm	 * hard errors, when in reality they can happen for any number of
2624213198Smm	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2625213198Smm	 */
2626213198Smm	if (zio->io_error == EIO &&
2627213198Smm	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2628213198Smm		return;
2629213198Smm
2630219089Spjd	/*
2631219089Spjd	 * Intent logs writes won't propagate their error to the root
2632219089Spjd	 * I/O so don't mark these types of failures as pool-level
2633219089Spjd	 * errors.
2634219089Spjd	 */
2635219089Spjd	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2636219089Spjd		return;
2637219089Spjd
2638185029Spjd	mutex_enter(&vd->vdev_stat_lock);
2639209962Smm	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2640185029Spjd		if (zio->io_error == ECKSUM)
2641185029Spjd			vs->vs_checksum_errors++;
2642185029Spjd		else
2643185029Spjd			vs->vs_read_errors++;
2644168404Spjd	}
2645209962Smm	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2646185029Spjd		vs->vs_write_errors++;
2647185029Spjd	mutex_exit(&vd->vdev_stat_lock);
2648168404Spjd
2649209962Smm	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2650209962Smm	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2651219089Spjd	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2652219089Spjd	    spa->spa_claiming)) {
2653209962Smm		/*
2654219089Spjd		 * This is either a normal write (not a repair), or it's
2655219089Spjd		 * a repair induced by the scrub thread, or it's a repair
2656219089Spjd		 * made by zil_claim() during spa_load() in the first txg.
2657219089Spjd		 * In the normal case, we commit the DTL change in the same
2658219089Spjd		 * txg as the block was born.  In the scrub-induced repair
2659219089Spjd		 * case, we know that scrubs run in first-pass syncing context,
2660219089Spjd		 * so we commit the DTL change in spa_syncing_txg(spa).
2661219089Spjd		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2662209962Smm		 *
2663209962Smm		 * We currently do not make DTL entries for failed spontaneous
2664209962Smm		 * self-healing writes triggered by normal (non-scrubbing)
2665209962Smm		 * reads, because we have no transactional context in which to
2666209962Smm		 * do so -- and it's not clear that it'd be desirable anyway.
2667209962Smm		 */
2668209962Smm		if (vd->vdev_ops->vdev_op_leaf) {
2669209962Smm			uint64_t commit_txg = txg;
2670219089Spjd			if (flags & ZIO_FLAG_SCAN_THREAD) {
2671209962Smm				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2672209962Smm				ASSERT(spa_sync_pass(spa) == 1);
2673209962Smm				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2674219089Spjd				commit_txg = spa_syncing_txg(spa);
2675219089Spjd			} else if (spa->spa_claiming) {
2676219089Spjd				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2677219089Spjd				commit_txg = spa_first_txg(spa);
2678209962Smm			}
2679219089Spjd			ASSERT(commit_txg >= spa_syncing_txg(spa));
2680209962Smm			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2681168404Spjd				return;
2682209962Smm			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2683209962Smm				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2684209962Smm			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2685168404Spjd		}
2686209962Smm		if (vd != rvd)
2687209962Smm			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2688168404Spjd	}
2689168404Spjd}
2690168404Spjd
2691168404Spjd/*
2692219089Spjd * Update the in-core space usage stats for this vdev, its metaslab class,
2693219089Spjd * and the root vdev.
2694168404Spjd */
2695168404Spjdvoid
2696219089Spjdvdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2697219089Spjd    int64_t space_delta)
2698168404Spjd{
2699168404Spjd	int64_t dspace_delta = space_delta;
2700185029Spjd	spa_t *spa = vd->vdev_spa;
2701185029Spjd	vdev_t *rvd = spa->spa_root_vdev;
2702219089Spjd	metaslab_group_t *mg = vd->vdev_mg;
2703219089Spjd	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2704168404Spjd
2705185029Spjd	ASSERT(vd == vd->vdev_top);
2706168404Spjd
2707185029Spjd	/*
2708185029Spjd	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2709185029Spjd	 * factor.  We must calculate this here and not at the root vdev
2710185029Spjd	 * because the root vdev's psize-to-asize is simply the max of its
2711185029Spjd	 * childrens', thus not accurate enough for us.
2712185029Spjd	 */
2713185029Spjd	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2714213197Smm	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2715185029Spjd	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2716185029Spjd	    vd->vdev_deflate_ratio;
2717185029Spjd
2718185029Spjd	mutex_enter(&vd->vdev_stat_lock);
2719219089Spjd	vd->vdev_stat.vs_alloc += alloc_delta;
2720185029Spjd	vd->vdev_stat.vs_space += space_delta;
2721185029Spjd	vd->vdev_stat.vs_dspace += dspace_delta;
2722185029Spjd	mutex_exit(&vd->vdev_stat_lock);
2723185029Spjd
2724219089Spjd	if (mc == spa_normal_class(spa)) {
2725185029Spjd		mutex_enter(&rvd->vdev_stat_lock);
2726219089Spjd		rvd->vdev_stat.vs_alloc += alloc_delta;
2727185029Spjd		rvd->vdev_stat.vs_space += space_delta;
2728185029Spjd		rvd->vdev_stat.vs_dspace += dspace_delta;
2729185029Spjd		mutex_exit(&rvd->vdev_stat_lock);
2730185029Spjd	}
2731219089Spjd
2732219089Spjd	if (mc != NULL) {
2733219089Spjd		ASSERT(rvd == vd->vdev_parent);
2734219089Spjd		ASSERT(vd->vdev_ms_count != 0);
2735219089Spjd
2736219089Spjd		metaslab_class_space_update(mc,
2737219089Spjd		    alloc_delta, defer_delta, space_delta, dspace_delta);
2738219089Spjd	}
2739168404Spjd}
2740168404Spjd
2741168404Spjd/*
2742168404Spjd * Mark a top-level vdev's config as dirty, placing it on the dirty list
2743168404Spjd * so that it will be written out next time the vdev configuration is synced.
2744168404Spjd * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2745168404Spjd */
2746168404Spjdvoid
2747168404Spjdvdev_config_dirty(vdev_t *vd)
2748168404Spjd{
2749168404Spjd	spa_t *spa = vd->vdev_spa;
2750168404Spjd	vdev_t *rvd = spa->spa_root_vdev;
2751168404Spjd	int c;
2752168404Spjd
2753219089Spjd	ASSERT(spa_writeable(spa));
2754219089Spjd
2755168404Spjd	/*
2756209962Smm	 * If this is an aux vdev (as with l2cache and spare devices), then we
2757209962Smm	 * update the vdev config manually and set the sync flag.
2758185029Spjd	 */
2759185029Spjd	if (vd->vdev_aux != NULL) {
2760185029Spjd		spa_aux_vdev_t *sav = vd->vdev_aux;
2761185029Spjd		nvlist_t **aux;
2762185029Spjd		uint_t naux;
2763185029Spjd
2764185029Spjd		for (c = 0; c < sav->sav_count; c++) {
2765185029Spjd			if (sav->sav_vdevs[c] == vd)
2766185029Spjd				break;
2767185029Spjd		}
2768185029Spjd
2769185029Spjd		if (c == sav->sav_count) {
2770185029Spjd			/*
2771185029Spjd			 * We're being removed.  There's nothing more to do.
2772185029Spjd			 */
2773185029Spjd			ASSERT(sav->sav_sync == B_TRUE);
2774185029Spjd			return;
2775185029Spjd		}
2776185029Spjd
2777185029Spjd		sav->sav_sync = B_TRUE;
2778185029Spjd
2779209962Smm		if (nvlist_lookup_nvlist_array(sav->sav_config,
2780209962Smm		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2781209962Smm			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2782209962Smm			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2783209962Smm		}
2784185029Spjd
2785185029Spjd		ASSERT(c < naux);
2786185029Spjd
2787185029Spjd		/*
2788185029Spjd		 * Setting the nvlist in the middle if the array is a little
2789185029Spjd		 * sketchy, but it will work.
2790185029Spjd		 */
2791185029Spjd		nvlist_free(aux[c]);
2792219089Spjd		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2793185029Spjd
2794185029Spjd		return;
2795185029Spjd	}
2796185029Spjd
2797185029Spjd	/*
2798185029Spjd	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2799185029Spjd	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2800185029Spjd	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2801168404Spjd	 * so this is sufficient to ensure mutual exclusion.
2802168404Spjd	 */
2803185029Spjd	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2804185029Spjd	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2805185029Spjd	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2806168404Spjd
2807168404Spjd	if (vd == rvd) {
2808168404Spjd		for (c = 0; c < rvd->vdev_children; c++)
2809168404Spjd			vdev_config_dirty(rvd->vdev_child[c]);
2810168404Spjd	} else {
2811168404Spjd		ASSERT(vd == vd->vdev_top);
2812168404Spjd
2813219089Spjd		if (!list_link_active(&vd->vdev_config_dirty_node) &&
2814219089Spjd		    !vd->vdev_ishole)
2815185029Spjd			list_insert_head(&spa->spa_config_dirty_list, vd);
2816168404Spjd	}
2817168404Spjd}
2818168404Spjd
2819168404Spjdvoid
2820168404Spjdvdev_config_clean(vdev_t *vd)
2821168404Spjd{
2822168404Spjd	spa_t *spa = vd->vdev_spa;
2823168404Spjd
2824185029Spjd	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2825185029Spjd	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2826185029Spjd	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2827168404Spjd
2828185029Spjd	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2829185029Spjd	list_remove(&spa->spa_config_dirty_list, vd);
2830168404Spjd}
2831168404Spjd
2832185029Spjd/*
2833185029Spjd * Mark a top-level vdev's state as dirty, so that the next pass of
2834185029Spjd * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2835185029Spjd * the state changes from larger config changes because they require
2836185029Spjd * much less locking, and are often needed for administrative actions.
2837185029Spjd */
2838168404Spjdvoid
2839185029Spjdvdev_state_dirty(vdev_t *vd)
2840185029Spjd{
2841185029Spjd	spa_t *spa = vd->vdev_spa;
2842185029Spjd
2843219089Spjd	ASSERT(spa_writeable(spa));
2844185029Spjd	ASSERT(vd == vd->vdev_top);
2845185029Spjd
2846185029Spjd	/*
2847185029Spjd	 * The state list is protected by the SCL_STATE lock.  The caller
2848185029Spjd	 * must either hold SCL_STATE as writer, or must be the sync thread
2849185029Spjd	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2850185029Spjd	 * so this is sufficient to ensure mutual exclusion.
2851185029Spjd	 */
2852185029Spjd	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2853185029Spjd	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2854185029Spjd	    spa_config_held(spa, SCL_STATE, RW_READER)));
2855185029Spjd
2856219089Spjd	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2857185029Spjd		list_insert_head(&spa->spa_state_dirty_list, vd);
2858185029Spjd}
2859185029Spjd
2860185029Spjdvoid
2861185029Spjdvdev_state_clean(vdev_t *vd)
2862185029Spjd{
2863185029Spjd	spa_t *spa = vd->vdev_spa;
2864185029Spjd
2865185029Spjd	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2866185029Spjd	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2867185029Spjd	    spa_config_held(spa, SCL_STATE, RW_READER)));
2868185029Spjd
2869185029Spjd	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2870185029Spjd	list_remove(&spa->spa_state_dirty_list, vd);
2871185029Spjd}
2872185029Spjd
2873185029Spjd/*
2874185029Spjd * Propagate vdev state up from children to parent.
2875185029Spjd */
2876185029Spjdvoid
2877168404Spjdvdev_propagate_state(vdev_t *vd)
2878168404Spjd{
2879209962Smm	spa_t *spa = vd->vdev_spa;
2880209962Smm	vdev_t *rvd = spa->spa_root_vdev;
2881168404Spjd	int degraded = 0, faulted = 0;
2882168404Spjd	int corrupted = 0;
2883168404Spjd	vdev_t *child;
2884168404Spjd
2885185029Spjd	if (vd->vdev_children > 0) {
2886219089Spjd		for (int c = 0; c < vd->vdev_children; c++) {
2887185029Spjd			child = vd->vdev_child[c];
2888168404Spjd
2889219089Spjd			/*
2890219089Spjd			 * Don't factor holes into the decision.
2891219089Spjd			 */
2892219089Spjd			if (child->vdev_ishole)
2893219089Spjd				continue;
2894219089Spjd
2895185029Spjd			if (!vdev_readable(child) ||
2896209962Smm			    (!vdev_writeable(child) && spa_writeable(spa))) {
2897185029Spjd				/*
2898185029Spjd				 * Root special: if there is a top-level log
2899185029Spjd				 * device, treat the root vdev as if it were
2900185029Spjd				 * degraded.
2901185029Spjd				 */
2902185029Spjd				if (child->vdev_islog && vd == rvd)
2903185029Spjd					degraded++;
2904185029Spjd				else
2905185029Spjd					faulted++;
2906185029Spjd			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2907185029Spjd				degraded++;
2908185029Spjd			}
2909185029Spjd
2910185029Spjd			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2911185029Spjd				corrupted++;
2912185029Spjd		}
2913185029Spjd
2914185029Spjd		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2915185029Spjd
2916185029Spjd		/*
2917185029Spjd		 * Root special: if there is a top-level vdev that cannot be
2918185029Spjd		 * opened due to corrupted metadata, then propagate the root
2919185029Spjd		 * vdev's aux state as 'corrupt' rather than 'insufficient
2920185029Spjd		 * replicas'.
2921185029Spjd		 */
2922185029Spjd		if (corrupted && vd == rvd &&
2923185029Spjd		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2924185029Spjd			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2925185029Spjd			    VDEV_AUX_CORRUPT_DATA);
2926168404Spjd	}
2927168404Spjd
2928185029Spjd	if (vd->vdev_parent)
2929185029Spjd		vdev_propagate_state(vd->vdev_parent);
2930168404Spjd}
2931168404Spjd
2932168404Spjd/*
2933168404Spjd * Set a vdev's state.  If this is during an open, we don't update the parent
2934168404Spjd * state, because we're in the process of opening children depth-first.
2935168404Spjd * Otherwise, we propagate the change to the parent.
2936168404Spjd *
2937168404Spjd * If this routine places a device in a faulted state, an appropriate ereport is
2938168404Spjd * generated.
2939168404Spjd */
2940168404Spjdvoid
2941168404Spjdvdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2942168404Spjd{
2943168404Spjd	uint64_t save_state;
2944185029Spjd	spa_t *spa = vd->vdev_spa;
2945168404Spjd
2946168404Spjd	if (state == vd->vdev_state) {
2947168404Spjd		vd->vdev_stat.vs_aux = aux;
2948168404Spjd		return;
2949168404Spjd	}
2950168404Spjd
2951168404Spjd	save_state = vd->vdev_state;
2952168404Spjd
2953168404Spjd	vd->vdev_state = state;
2954168404Spjd	vd->vdev_stat.vs_aux = aux;
2955168404Spjd
2956173373Spjd	/*
2957173373Spjd	 * If we are setting the vdev state to anything but an open state, then
2958219089Spjd	 * always close the underlying device unless the device has requested
2959219089Spjd	 * a delayed close (i.e. we're about to remove or fault the device).
2960219089Spjd	 * Otherwise, we keep accessible but invalid devices open forever.
2961219089Spjd	 * We don't call vdev_close() itself, because that implies some extra
2962219089Spjd	 * checks (offline, etc) that we don't want here.  This is limited to
2963219089Spjd	 * leaf devices, because otherwise closing the device will affect other
2964219089Spjd	 * children.
2965173373Spjd	 */
2966219089Spjd	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2967219089Spjd	    vd->vdev_ops->vdev_op_leaf)
2968173373Spjd		vd->vdev_ops->vdev_op_close(vd);
2969173373Spjd
2970219089Spjd	/*
2971219089Spjd	 * If we have brought this vdev back into service, we need
2972219089Spjd	 * to notify fmd so that it can gracefully repair any outstanding
2973219089Spjd	 * cases due to a missing device.  We do this in all cases, even those
2974219089Spjd	 * that probably don't correlate to a repaired fault.  This is sure to
2975219089Spjd	 * catch all cases, and we let the zfs-retire agent sort it out.  If
2976219089Spjd	 * this is a transient state it's OK, as the retire agent will
2977219089Spjd	 * double-check the state of the vdev before repairing it.
2978219089Spjd	 */
2979219089Spjd	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2980219089Spjd	    vd->vdev_prevstate != state)
2981219089Spjd		zfs_post_state_change(spa, vd);
2982219089Spjd
2983185029Spjd	if (vd->vdev_removed &&
2984185029Spjd	    state == VDEV_STATE_CANT_OPEN &&
2985185029Spjd	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2986168404Spjd		/*
2987185029Spjd		 * If the previous state is set to VDEV_STATE_REMOVED, then this
2988185029Spjd		 * device was previously marked removed and someone attempted to
2989185029Spjd		 * reopen it.  If this failed due to a nonexistent device, then
2990185029Spjd		 * keep the device in the REMOVED state.  We also let this be if
2991185029Spjd		 * it is one of our special test online cases, which is only
2992185029Spjd		 * attempting to online the device and shouldn't generate an FMA
2993185029Spjd		 * fault.
2994185029Spjd		 */
2995185029Spjd		vd->vdev_state = VDEV_STATE_REMOVED;
2996185029Spjd		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2997185029Spjd	} else if (state == VDEV_STATE_REMOVED) {
2998185029Spjd		vd->vdev_removed = B_TRUE;
2999185029Spjd	} else if (state == VDEV_STATE_CANT_OPEN) {
3000185029Spjd		/*
3001219089Spjd		 * If we fail to open a vdev during an import or recovery, we
3002219089Spjd		 * mark it as "not available", which signifies that it was
3003219089Spjd		 * never there to begin with.  Failure to open such a device
3004219089Spjd		 * is not considered an error.
3005168404Spjd		 */
3006219089Spjd		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3007219089Spjd		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3008168404Spjd		    vd->vdev_ops->vdev_op_leaf)
3009168404Spjd			vd->vdev_not_present = 1;
3010168404Spjd
3011168404Spjd		/*
3012168404Spjd		 * Post the appropriate ereport.  If the 'prevstate' field is
3013168404Spjd		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3014168404Spjd		 * that this is part of a vdev_reopen().  In this case, we don't
3015168404Spjd		 * want to post the ereport if the device was already in the
3016168404Spjd		 * CANT_OPEN state beforehand.
3017185029Spjd		 *
3018185029Spjd		 * If the 'checkremove' flag is set, then this is an attempt to
3019185029Spjd		 * online the device in response to an insertion event.  If we
3020185029Spjd		 * hit this case, then we have detected an insertion event for a
3021185029Spjd		 * faulted or offline device that wasn't in the removed state.
3022185029Spjd		 * In this scenario, we don't post an ereport because we are
3023185029Spjd		 * about to replace the device, or attempt an online with
3024185029Spjd		 * vdev_forcefault, which will generate the fault for us.
3025168404Spjd		 */
3026185029Spjd		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3027185029Spjd		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3028185029Spjd		    vd != spa->spa_root_vdev) {
3029168404Spjd			const char *class;
3030168404Spjd
3031168404Spjd			switch (aux) {
3032168404Spjd			case VDEV_AUX_OPEN_FAILED:
3033168404Spjd				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3034168404Spjd				break;
3035168404Spjd			case VDEV_AUX_CORRUPT_DATA:
3036168404Spjd				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3037168404Spjd				break;
3038168404Spjd			case VDEV_AUX_NO_REPLICAS:
3039168404Spjd				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3040168404Spjd				break;
3041168404Spjd			case VDEV_AUX_BAD_GUID_SUM:
3042168404Spjd				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3043168404Spjd				break;
3044168404Spjd			case VDEV_AUX_TOO_SMALL:
3045168404Spjd				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3046168404Spjd				break;
3047168404Spjd			case VDEV_AUX_BAD_LABEL:
3048168404Spjd				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3049168404Spjd				break;
3050168404Spjd			default:
3051168404Spjd				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3052168404Spjd			}
3053168404Spjd
3054185029Spjd			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3055168404Spjd		}
3056185029Spjd
3057185029Spjd		/* Erase any notion of persistent removed state */
3058185029Spjd		vd->vdev_removed = B_FALSE;
3059185029Spjd	} else {
3060185029Spjd		vd->vdev_removed = B_FALSE;
3061168404Spjd	}
3062168404Spjd
3063209962Smm	if (!isopen && vd->vdev_parent)
3064209962Smm		vdev_propagate_state(vd->vdev_parent);
3065185029Spjd}
3066168404Spjd
3067185029Spjd/*
3068185029Spjd * Check the vdev configuration to ensure that it's capable of supporting
3069193163Sdfr * a root pool.
3070193163Sdfr *
3071193163Sdfr * On Solaris, we do not support RAID-Z or partial configuration.  In
3072193163Sdfr * addition, only a single top-level vdev is allowed and none of the
3073193163Sdfr * leaves can be wholedisks.
3074193163Sdfr *
3075193163Sdfr * For FreeBSD, we can boot from any configuration. There is a
3076193163Sdfr * limitation that the boot filesystem must be either uncompressed or
3077193163Sdfr * compresses with lzjb compression but I'm not sure how to enforce
3078193163Sdfr * that here.
3079185029Spjd */
3080185029Spjdboolean_t
3081185029Spjdvdev_is_bootable(vdev_t *vd)
3082185029Spjd{
3083213197Smm#ifdef sun
3084185029Spjd	if (!vd->vdev_ops->vdev_op_leaf) {
3085185029Spjd		char *vdev_type = vd->vdev_ops->vdev_op_type;
3086185029Spjd
3087185029Spjd		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3088185029Spjd		    vd->vdev_children > 1) {
3089185029Spjd			return (B_FALSE);
3090185029Spjd		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3091185029Spjd		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3092185029Spjd			return (B_FALSE);
3093185029Spjd		}
3094185029Spjd	} else if (vd->vdev_wholedisk == 1) {
3095185029Spjd		return (B_FALSE);
3096185029Spjd	}
3097185029Spjd
3098219089Spjd	for (int c = 0; c < vd->vdev_children; c++) {
3099185029Spjd		if (!vdev_is_bootable(vd->vdev_child[c]))
3100185029Spjd			return (B_FALSE);
3101185029Spjd	}
3102213197Smm#endif	/* sun */
3103185029Spjd	return (B_TRUE);
3104168404Spjd}
3105213197Smm
3106219089Spjd/*
3107219089Spjd * Load the state from the original vdev tree (ovd) which
3108219089Spjd * we've retrieved from the MOS config object. If the original
3109219089Spjd * vdev was offline or faulted then we transfer that state to the
3110219089Spjd * device in the current vdev tree (nvd).
3111219089Spjd */
3112213197Smmvoid
3113219089Spjdvdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3114213197Smm{
3115219089Spjd	spa_t *spa = nvd->vdev_spa;
3116213197Smm
3117219089Spjd	ASSERT(nvd->vdev_top->vdev_islog);
3118219089Spjd	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3119219089Spjd	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3120213197Smm
3121219089Spjd	for (int c = 0; c < nvd->vdev_children; c++)
3122219089Spjd		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3123213197Smm
3124219089Spjd	if (nvd->vdev_ops->vdev_op_leaf) {
3125213197Smm		/*
3126219089Spjd		 * Restore the persistent vdev state
3127213197Smm		 */
3128219089Spjd		nvd->vdev_offline = ovd->vdev_offline;
3129219089Spjd		nvd->vdev_faulted = ovd->vdev_faulted;
3130219089Spjd		nvd->vdev_degraded = ovd->vdev_degraded;
3131219089Spjd		nvd->vdev_removed = ovd->vdev_removed;
3132213197Smm	}
3133213197Smm}
3134219089Spjd
3135219089Spjd/*
3136219089Spjd * Determine if a log device has valid content.  If the vdev was
3137219089Spjd * removed or faulted in the MOS config then we know that
3138219089Spjd * the content on the log device has already been written to the pool.
3139219089Spjd */
3140219089Spjdboolean_t
3141219089Spjdvdev_log_state_valid(vdev_t *vd)
3142219089Spjd{
3143219089Spjd	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3144219089Spjd	    !vd->vdev_removed)
3145219089Spjd		return (B_TRUE);
3146219089Spjd
3147219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
3148219089Spjd		if (vdev_log_state_valid(vd->vdev_child[c]))
3149219089Spjd			return (B_TRUE);
3150219089Spjd
3151219089Spjd	return (B_FALSE);
3152219089Spjd}
3153219089Spjd
3154219089Spjd/*
3155219089Spjd * Expand a vdev if possible.
3156219089Spjd */
3157219089Spjdvoid
3158219089Spjdvdev_expand(vdev_t *vd, uint64_t txg)
3159219089Spjd{
3160219089Spjd	ASSERT(vd->vdev_top == vd);
3161219089Spjd	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3162219089Spjd
3163219089Spjd	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3164219089Spjd		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3165219089Spjd		vdev_config_dirty(vd);
3166219089Spjd	}
3167219089Spjd}
3168219089Spjd
3169219089Spjd/*
3170219089Spjd * Split a vdev.
3171219089Spjd */
3172219089Spjdvoid
3173219089Spjdvdev_split(vdev_t *vd)
3174219089Spjd{
3175219089Spjd	vdev_t *cvd, *pvd = vd->vdev_parent;
3176219089Spjd
3177219089Spjd	vdev_remove_child(pvd, vd);
3178219089Spjd	vdev_compact_children(pvd);
3179219089Spjd
3180219089Spjd	cvd = pvd->vdev_child[0];
3181219089Spjd	if (pvd->vdev_children == 1) {
3182219089Spjd		vdev_remove_parent(cvd);
3183219089Spjd		cvd->vdev_splitting = B_TRUE;
3184219089Spjd	}
3185219089Spjd	vdev_propagate_state(cvd);
3186219089Spjd}
3187247265Smm
3188247265Smmvoid
3189247265Smmvdev_deadman(vdev_t *vd)
3190247265Smm{
3191247265Smm	for (int c = 0; c < vd->vdev_children; c++) {
3192247265Smm		vdev_t *cvd = vd->vdev_child[c];
3193247265Smm
3194247265Smm		vdev_deadman(cvd);
3195247265Smm	}
3196247265Smm
3197247265Smm	if (vd->vdev_ops->vdev_op_leaf) {
3198247265Smm		vdev_queue_t *vq = &vd->vdev_queue;
3199247265Smm
3200247265Smm		mutex_enter(&vq->vq_lock);
3201247265Smm		if (avl_numnodes(&vq->vq_pending_tree) > 0) {
3202247265Smm			spa_t *spa = vd->vdev_spa;
3203247265Smm			zio_t *fio;
3204247265Smm			uint64_t delta;
3205247265Smm
3206247265Smm			/*
3207247265Smm			 * Look at the head of all the pending queues,
3208247265Smm			 * if any I/O has been outstanding for longer than
3209247265Smm			 * the spa_deadman_synctime we panic the system.
3210247265Smm			 */
3211247265Smm			fio = avl_first(&vq->vq_pending_tree);
3212249206Smm			delta = gethrtime() - fio->io_timestamp;
3213249206Smm			if (delta > spa_deadman_synctime(spa)) {
3214249206Smm				zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3215249206Smm				    "delta %lluns, last io %lluns",
3216247265Smm				    fio->io_timestamp, delta,
3217247265Smm				    vq->vq_io_complete_ts);
3218247265Smm				fm_panic("I/O to pool '%s' appears to be "
3219247348Smm				    "hung on vdev guid %llu at '%s'.",
3220247348Smm				    spa_name(spa),
3221247348Smm				    (long long unsigned int) vd->vdev_guid,
3222247348Smm				    vd->vdev_path);
3223247265Smm			}
3224247265Smm		}
3225247265Smm		mutex_exit(&vq->vq_lock);
3226247265Smm	}
3227247265Smm}
3228