vdev.c revision 249206
1168404Spjd/*
2168404Spjd * CDDL HEADER START
3168404Spjd *
4168404Spjd * The contents of this file are subject to the terms of the
5168404Spjd * Common Development and Distribution License (the "License").
6168404Spjd * You may not use this file except in compliance with the License.
7168404Spjd *
8168404Spjd * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9168404Spjd * or http://www.opensolaris.org/os/licensing.
10168404Spjd * See the License for the specific language governing permissions
11168404Spjd * and limitations under the License.
12168404Spjd *
13168404Spjd * When distributing Covered Code, include this CDDL HEADER in each
14168404Spjd * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15168404Spjd * If applicable, add the following below this CDDL HEADER, with the
16168404Spjd * fields enclosed by brackets "[]" replaced with your own identifying
17168404Spjd * information: Portions Copyright [yyyy] [name of copyright owner]
18168404Spjd *
19168404Spjd * CDDL HEADER END
20168404Spjd */
21168404Spjd
22168404Spjd/*
23219089Spjd * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24228103Smm * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25249195Smm * Copyright (c) 2013 by Delphix. All rights reserved.
26247348Smm * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27168404Spjd */
28168404Spjd
29168404Spjd#include <sys/zfs_context.h>
30168404Spjd#include <sys/fm/fs/zfs.h>
31168404Spjd#include <sys/spa.h>
32168404Spjd#include <sys/spa_impl.h>
33168404Spjd#include <sys/dmu.h>
34168404Spjd#include <sys/dmu_tx.h>
35168404Spjd#include <sys/vdev_impl.h>
36168404Spjd#include <sys/uberblock_impl.h>
37168404Spjd#include <sys/metaslab.h>
38168404Spjd#include <sys/metaslab_impl.h>
39168404Spjd#include <sys/space_map.h>
40168404Spjd#include <sys/zio.h>
41168404Spjd#include <sys/zap.h>
42168404Spjd#include <sys/fs/zfs.h>
43185029Spjd#include <sys/arc.h>
44213197Smm#include <sys/zil.h>
45219089Spjd#include <sys/dsl_scan.h>
46240868Spjd#include <sys/trim_map.h>
47168404Spjd
48168404SpjdSYSCTL_DECL(_vfs_zfs);
49168404SpjdSYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
50168404Spjd
51168404Spjd/*
52168404Spjd * Virtual device management.
53168404Spjd */
54168404Spjd
55168404Spjdstatic vdev_ops_t *vdev_ops_table[] = {
56168404Spjd	&vdev_root_ops,
57168404Spjd	&vdev_raidz_ops,
58168404Spjd	&vdev_mirror_ops,
59168404Spjd	&vdev_replacing_ops,
60168404Spjd	&vdev_spare_ops,
61168404Spjd#ifdef _KERNEL
62168404Spjd	&vdev_geom_ops,
63168404Spjd#else
64168404Spjd	&vdev_disk_ops,
65185029Spjd#endif
66168404Spjd	&vdev_file_ops,
67168404Spjd	&vdev_missing_ops,
68219089Spjd	&vdev_hole_ops,
69168404Spjd	NULL
70168404Spjd};
71168404Spjd
72168404Spjd
73168404Spjd/*
74168404Spjd * Given a vdev type, return the appropriate ops vector.
75168404Spjd */
76168404Spjdstatic vdev_ops_t *
77168404Spjdvdev_getops(const char *type)
78168404Spjd{
79168404Spjd	vdev_ops_t *ops, **opspp;
80168404Spjd
81168404Spjd	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
82168404Spjd		if (strcmp(ops->vdev_op_type, type) == 0)
83168404Spjd			break;
84168404Spjd
85168404Spjd	return (ops);
86168404Spjd}
87168404Spjd
88168404Spjd/*
89168404Spjd * Default asize function: return the MAX of psize with the asize of
90168404Spjd * all children.  This is what's used by anything other than RAID-Z.
91168404Spjd */
92168404Spjduint64_t
93168404Spjdvdev_default_asize(vdev_t *vd, uint64_t psize)
94168404Spjd{
95168404Spjd	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
96168404Spjd	uint64_t csize;
97168404Spjd
98219089Spjd	for (int c = 0; c < vd->vdev_children; c++) {
99168404Spjd		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
100168404Spjd		asize = MAX(asize, csize);
101168404Spjd	}
102168404Spjd
103168404Spjd	return (asize);
104168404Spjd}
105168404Spjd
106168404Spjd/*
107219089Spjd * Get the minimum allocatable size. We define the allocatable size as
108219089Spjd * the vdev's asize rounded to the nearest metaslab. This allows us to
109219089Spjd * replace or attach devices which don't have the same physical size but
110219089Spjd * can still satisfy the same number of allocations.
111168404Spjd */
112168404Spjduint64_t
113219089Spjdvdev_get_min_asize(vdev_t *vd)
114168404Spjd{
115219089Spjd	vdev_t *pvd = vd->vdev_parent;
116168404Spjd
117219089Spjd	/*
118236155Smm	 * If our parent is NULL (inactive spare or cache) or is the root,
119219089Spjd	 * just return our own asize.
120219089Spjd	 */
121219089Spjd	if (pvd == NULL)
122219089Spjd		return (vd->vdev_asize);
123168404Spjd
124168404Spjd	/*
125219089Spjd	 * The top-level vdev just returns the allocatable size rounded
126219089Spjd	 * to the nearest metaslab.
127168404Spjd	 */
128219089Spjd	if (vd == vd->vdev_top)
129219089Spjd		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
130168404Spjd
131219089Spjd	/*
132219089Spjd	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
133219089Spjd	 * so each child must provide at least 1/Nth of its asize.
134219089Spjd	 */
135219089Spjd	if (pvd->vdev_ops == &vdev_raidz_ops)
136219089Spjd		return (pvd->vdev_min_asize / pvd->vdev_children);
137168404Spjd
138219089Spjd	return (pvd->vdev_min_asize);
139219089Spjd}
140168404Spjd
141219089Spjdvoid
142219089Spjdvdev_set_min_asize(vdev_t *vd)
143219089Spjd{
144219089Spjd	vd->vdev_min_asize = vdev_get_min_asize(vd);
145219089Spjd
146219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
147219089Spjd		vdev_set_min_asize(vd->vdev_child[c]);
148168404Spjd}
149168404Spjd
150168404Spjdvdev_t *
151168404Spjdvdev_lookup_top(spa_t *spa, uint64_t vdev)
152168404Spjd{
153168404Spjd	vdev_t *rvd = spa->spa_root_vdev;
154168404Spjd
155185029Spjd	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
156185029Spjd
157185029Spjd	if (vdev < rvd->vdev_children) {
158185029Spjd		ASSERT(rvd->vdev_child[vdev] != NULL);
159168404Spjd		return (rvd->vdev_child[vdev]);
160185029Spjd	}
161168404Spjd
162168404Spjd	return (NULL);
163168404Spjd}
164168404Spjd
165168404Spjdvdev_t *
166168404Spjdvdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
167168404Spjd{
168168404Spjd	vdev_t *mvd;
169168404Spjd
170168404Spjd	if (vd->vdev_guid == guid)
171168404Spjd		return (vd);
172168404Spjd
173219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
174168404Spjd		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
175168404Spjd		    NULL)
176168404Spjd			return (mvd);
177168404Spjd
178168404Spjd	return (NULL);
179168404Spjd}
180168404Spjd
181168404Spjdvoid
182168404Spjdvdev_add_child(vdev_t *pvd, vdev_t *cvd)
183168404Spjd{
184168404Spjd	size_t oldsize, newsize;
185168404Spjd	uint64_t id = cvd->vdev_id;
186168404Spjd	vdev_t **newchild;
187168404Spjd
188185029Spjd	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
189168404Spjd	ASSERT(cvd->vdev_parent == NULL);
190168404Spjd
191168404Spjd	cvd->vdev_parent = pvd;
192168404Spjd
193168404Spjd	if (pvd == NULL)
194168404Spjd		return;
195168404Spjd
196168404Spjd	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
197168404Spjd
198168404Spjd	oldsize = pvd->vdev_children * sizeof (vdev_t *);
199168404Spjd	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
200168404Spjd	newsize = pvd->vdev_children * sizeof (vdev_t *);
201168404Spjd
202168404Spjd	newchild = kmem_zalloc(newsize, KM_SLEEP);
203168404Spjd	if (pvd->vdev_child != NULL) {
204168404Spjd		bcopy(pvd->vdev_child, newchild, oldsize);
205168404Spjd		kmem_free(pvd->vdev_child, oldsize);
206168404Spjd	}
207168404Spjd
208168404Spjd	pvd->vdev_child = newchild;
209168404Spjd	pvd->vdev_child[id] = cvd;
210168404Spjd
211168404Spjd	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
212168404Spjd	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
213168404Spjd
214168404Spjd	/*
215168404Spjd	 * Walk up all ancestors to update guid sum.
216168404Spjd	 */
217168404Spjd	for (; pvd != NULL; pvd = pvd->vdev_parent)
218168404Spjd		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
219168404Spjd}
220168404Spjd
221168404Spjdvoid
222168404Spjdvdev_remove_child(vdev_t *pvd, vdev_t *cvd)
223168404Spjd{
224168404Spjd	int c;
225168404Spjd	uint_t id = cvd->vdev_id;
226168404Spjd
227168404Spjd	ASSERT(cvd->vdev_parent == pvd);
228168404Spjd
229168404Spjd	if (pvd == NULL)
230168404Spjd		return;
231168404Spjd
232168404Spjd	ASSERT(id < pvd->vdev_children);
233168404Spjd	ASSERT(pvd->vdev_child[id] == cvd);
234168404Spjd
235168404Spjd	pvd->vdev_child[id] = NULL;
236168404Spjd	cvd->vdev_parent = NULL;
237168404Spjd
238168404Spjd	for (c = 0; c < pvd->vdev_children; c++)
239168404Spjd		if (pvd->vdev_child[c])
240168404Spjd			break;
241168404Spjd
242168404Spjd	if (c == pvd->vdev_children) {
243168404Spjd		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
244168404Spjd		pvd->vdev_child = NULL;
245168404Spjd		pvd->vdev_children = 0;
246168404Spjd	}
247168404Spjd
248168404Spjd	/*
249168404Spjd	 * Walk up all ancestors to update guid sum.
250168404Spjd	 */
251168404Spjd	for (; pvd != NULL; pvd = pvd->vdev_parent)
252168404Spjd		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
253168404Spjd}
254168404Spjd
255168404Spjd/*
256168404Spjd * Remove any holes in the child array.
257168404Spjd */
258168404Spjdvoid
259168404Spjdvdev_compact_children(vdev_t *pvd)
260168404Spjd{
261168404Spjd	vdev_t **newchild, *cvd;
262168404Spjd	int oldc = pvd->vdev_children;
263219089Spjd	int newc;
264168404Spjd
265185029Spjd	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
266168404Spjd
267219089Spjd	for (int c = newc = 0; c < oldc; c++)
268168404Spjd		if (pvd->vdev_child[c])
269168404Spjd			newc++;
270168404Spjd
271168404Spjd	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
272168404Spjd
273219089Spjd	for (int c = newc = 0; c < oldc; c++) {
274168404Spjd		if ((cvd = pvd->vdev_child[c]) != NULL) {
275168404Spjd			newchild[newc] = cvd;
276168404Spjd			cvd->vdev_id = newc++;
277168404Spjd		}
278168404Spjd	}
279168404Spjd
280168404Spjd	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
281168404Spjd	pvd->vdev_child = newchild;
282168404Spjd	pvd->vdev_children = newc;
283168404Spjd}
284168404Spjd
285168404Spjd/*
286168404Spjd * Allocate and minimally initialize a vdev_t.
287168404Spjd */
288219089Spjdvdev_t *
289168404Spjdvdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
290168404Spjd{
291168404Spjd	vdev_t *vd;
292168404Spjd
293168404Spjd	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
294168404Spjd
295168404Spjd	if (spa->spa_root_vdev == NULL) {
296168404Spjd		ASSERT(ops == &vdev_root_ops);
297168404Spjd		spa->spa_root_vdev = vd;
298228103Smm		spa->spa_load_guid = spa_generate_guid(NULL);
299168404Spjd	}
300168404Spjd
301219089Spjd	if (guid == 0 && ops != &vdev_hole_ops) {
302168404Spjd		if (spa->spa_root_vdev == vd) {
303168404Spjd			/*
304168404Spjd			 * The root vdev's guid will also be the pool guid,
305168404Spjd			 * which must be unique among all pools.
306168404Spjd			 */
307219089Spjd			guid = spa_generate_guid(NULL);
308168404Spjd		} else {
309168404Spjd			/*
310168404Spjd			 * Any other vdev's guid must be unique within the pool.
311168404Spjd			 */
312219089Spjd			guid = spa_generate_guid(spa);
313168404Spjd		}
314168404Spjd		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
315168404Spjd	}
316168404Spjd
317168404Spjd	vd->vdev_spa = spa;
318168404Spjd	vd->vdev_id = id;
319168404Spjd	vd->vdev_guid = guid;
320168404Spjd	vd->vdev_guid_sum = guid;
321168404Spjd	vd->vdev_ops = ops;
322168404Spjd	vd->vdev_state = VDEV_STATE_CLOSED;
323219089Spjd	vd->vdev_ishole = (ops == &vdev_hole_ops);
324168404Spjd
325168404Spjd	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
326168404Spjd	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
327185029Spjd	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
328209962Smm	for (int t = 0; t < DTL_TYPES; t++) {
329209962Smm		space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
330209962Smm		    &vd->vdev_dtl_lock);
331209962Smm	}
332168404Spjd	txg_list_create(&vd->vdev_ms_list,
333168404Spjd	    offsetof(struct metaslab, ms_txg_node));
334168404Spjd	txg_list_create(&vd->vdev_dtl_list,
335168404Spjd	    offsetof(struct vdev, vdev_dtl_node));
336168404Spjd	vd->vdev_stat.vs_timestamp = gethrtime();
337185029Spjd	vdev_queue_init(vd);
338185029Spjd	vdev_cache_init(vd);
339168404Spjd
340168404Spjd	return (vd);
341168404Spjd}
342168404Spjd
343168404Spjd/*
344168404Spjd * Allocate a new vdev.  The 'alloctype' is used to control whether we are
345168404Spjd * creating a new vdev or loading an existing one - the behavior is slightly
346168404Spjd * different for each case.
347168404Spjd */
348168404Spjdint
349168404Spjdvdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
350168404Spjd    int alloctype)
351168404Spjd{
352168404Spjd	vdev_ops_t *ops;
353168404Spjd	char *type;
354185029Spjd	uint64_t guid = 0, islog, nparity;
355168404Spjd	vdev_t *vd;
356168404Spjd
357185029Spjd	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
358168404Spjd
359168404Spjd	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
360249195Smm		return (SET_ERROR(EINVAL));
361168404Spjd
362168404Spjd	if ((ops = vdev_getops(type)) == NULL)
363249195Smm		return (SET_ERROR(EINVAL));
364168404Spjd
365168404Spjd	/*
366168404Spjd	 * If this is a load, get the vdev guid from the nvlist.
367168404Spjd	 * Otherwise, vdev_alloc_common() will generate one for us.
368168404Spjd	 */
369168404Spjd	if (alloctype == VDEV_ALLOC_LOAD) {
370168404Spjd		uint64_t label_id;
371168404Spjd
372168404Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
373168404Spjd		    label_id != id)
374249195Smm			return (SET_ERROR(EINVAL));
375168404Spjd
376168404Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
377249195Smm			return (SET_ERROR(EINVAL));
378168404Spjd	} else if (alloctype == VDEV_ALLOC_SPARE) {
379168404Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
380249195Smm			return (SET_ERROR(EINVAL));
381185029Spjd	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
382185029Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
383249195Smm			return (SET_ERROR(EINVAL));
384219089Spjd	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
385219089Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
386249195Smm			return (SET_ERROR(EINVAL));
387168404Spjd	}
388168404Spjd
389168404Spjd	/*
390168404Spjd	 * The first allocated vdev must be of type 'root'.
391168404Spjd	 */
392168404Spjd	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
393249195Smm		return (SET_ERROR(EINVAL));
394168404Spjd
395185029Spjd	/*
396185029Spjd	 * Determine whether we're a log vdev.
397185029Spjd	 */
398185029Spjd	islog = 0;
399185029Spjd	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
400185029Spjd	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
401249195Smm		return (SET_ERROR(ENOTSUP));
402168404Spjd
403219089Spjd	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
404249195Smm		return (SET_ERROR(ENOTSUP));
405219089Spjd
406168404Spjd	/*
407185029Spjd	 * Set the nparity property for RAID-Z vdevs.
408168404Spjd	 */
409185029Spjd	nparity = -1ULL;
410168404Spjd	if (ops == &vdev_raidz_ops) {
411168404Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
412185029Spjd		    &nparity) == 0) {
413219089Spjd			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
414249195Smm				return (SET_ERROR(EINVAL));
415168404Spjd			/*
416219089Spjd			 * Previous versions could only support 1 or 2 parity
417219089Spjd			 * device.
418168404Spjd			 */
419219089Spjd			if (nparity > 1 &&
420219089Spjd			    spa_version(spa) < SPA_VERSION_RAIDZ2)
421249195Smm				return (SET_ERROR(ENOTSUP));
422219089Spjd			if (nparity > 2 &&
423219089Spjd			    spa_version(spa) < SPA_VERSION_RAIDZ3)
424249195Smm				return (SET_ERROR(ENOTSUP));
425168404Spjd		} else {
426168404Spjd			/*
427168404Spjd			 * We require the parity to be specified for SPAs that
428168404Spjd			 * support multiple parity levels.
429168404Spjd			 */
430219089Spjd			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
431249195Smm				return (SET_ERROR(EINVAL));
432168404Spjd			/*
433168404Spjd			 * Otherwise, we default to 1 parity device for RAID-Z.
434168404Spjd			 */
435185029Spjd			nparity = 1;
436168404Spjd		}
437168404Spjd	} else {
438185029Spjd		nparity = 0;
439168404Spjd	}
440185029Spjd	ASSERT(nparity != -1ULL);
441168404Spjd
442185029Spjd	vd = vdev_alloc_common(spa, id, guid, ops);
443185029Spjd
444185029Spjd	vd->vdev_islog = islog;
445185029Spjd	vd->vdev_nparity = nparity;
446185029Spjd
447185029Spjd	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
448185029Spjd		vd->vdev_path = spa_strdup(vd->vdev_path);
449185029Spjd	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
450185029Spjd		vd->vdev_devid = spa_strdup(vd->vdev_devid);
451185029Spjd	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
452185029Spjd	    &vd->vdev_physpath) == 0)
453185029Spjd		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
454209962Smm	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
455209962Smm		vd->vdev_fru = spa_strdup(vd->vdev_fru);
456185029Spjd
457168404Spjd	/*
458168404Spjd	 * Set the whole_disk property.  If it's not specified, leave the value
459168404Spjd	 * as -1.
460168404Spjd	 */
461168404Spjd	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
462168404Spjd	    &vd->vdev_wholedisk) != 0)
463168404Spjd		vd->vdev_wholedisk = -1ULL;
464168404Spjd
465168404Spjd	/*
466168404Spjd	 * Look for the 'not present' flag.  This will only be set if the device
467168404Spjd	 * was not present at the time of import.
468168404Spjd	 */
469209962Smm	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
470209962Smm	    &vd->vdev_not_present);
471168404Spjd
472168404Spjd	/*
473168404Spjd	 * Get the alignment requirement.
474168404Spjd	 */
475168404Spjd	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
476168404Spjd
477168404Spjd	/*
478219089Spjd	 * Retrieve the vdev creation time.
479219089Spjd	 */
480219089Spjd	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
481219089Spjd	    &vd->vdev_crtxg);
482219089Spjd
483219089Spjd	/*
484168404Spjd	 * If we're a top-level vdev, try to load the allocation parameters.
485168404Spjd	 */
486219089Spjd	if (parent && !parent->vdev_parent &&
487219089Spjd	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
488168404Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
489168404Spjd		    &vd->vdev_ms_array);
490168404Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
491168404Spjd		    &vd->vdev_ms_shift);
492168404Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
493168404Spjd		    &vd->vdev_asize);
494219089Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
495219089Spjd		    &vd->vdev_removing);
496168404Spjd	}
497168404Spjd
498230514Smm	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
499219089Spjd		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
500219089Spjd		    alloctype == VDEV_ALLOC_ADD ||
501219089Spjd		    alloctype == VDEV_ALLOC_SPLIT ||
502219089Spjd		    alloctype == VDEV_ALLOC_ROOTPOOL);
503219089Spjd		vd->vdev_mg = metaslab_group_create(islog ?
504219089Spjd		    spa_log_class(spa) : spa_normal_class(spa), vd);
505219089Spjd	}
506219089Spjd
507168404Spjd	/*
508185029Spjd	 * If we're a leaf vdev, try to load the DTL object and other state.
509168404Spjd	 */
510185029Spjd	if (vd->vdev_ops->vdev_op_leaf &&
511219089Spjd	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
512219089Spjd	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
513185029Spjd		if (alloctype == VDEV_ALLOC_LOAD) {
514185029Spjd			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
515209962Smm			    &vd->vdev_dtl_smo.smo_object);
516185029Spjd			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
517185029Spjd			    &vd->vdev_unspare);
518185029Spjd		}
519219089Spjd
520219089Spjd		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
521219089Spjd			uint64_t spare = 0;
522219089Spjd
523219089Spjd			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
524219089Spjd			    &spare) == 0 && spare)
525219089Spjd				spa_spare_add(vd);
526219089Spjd		}
527219089Spjd
528168404Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
529168404Spjd		    &vd->vdev_offline);
530185029Spjd
531219089Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
532219089Spjd		    &vd->vdev_resilvering);
533219089Spjd
534185029Spjd		/*
535185029Spjd		 * When importing a pool, we want to ignore the persistent fault
536185029Spjd		 * state, as the diagnosis made on another system may not be
537219089Spjd		 * valid in the current context.  Local vdevs will
538219089Spjd		 * remain in the faulted state.
539185029Spjd		 */
540219089Spjd		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
541185029Spjd			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
542185029Spjd			    &vd->vdev_faulted);
543185029Spjd			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
544185029Spjd			    &vd->vdev_degraded);
545185029Spjd			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
546185029Spjd			    &vd->vdev_removed);
547219089Spjd
548219089Spjd			if (vd->vdev_faulted || vd->vdev_degraded) {
549219089Spjd				char *aux;
550219089Spjd
551219089Spjd				vd->vdev_label_aux =
552219089Spjd				    VDEV_AUX_ERR_EXCEEDED;
553219089Spjd				if (nvlist_lookup_string(nv,
554219089Spjd				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
555219089Spjd				    strcmp(aux, "external") == 0)
556219089Spjd					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
557219089Spjd			}
558185029Spjd		}
559168404Spjd	}
560168404Spjd
561168404Spjd	/*
562168404Spjd	 * Add ourselves to the parent's list of children.
563168404Spjd	 */
564168404Spjd	vdev_add_child(parent, vd);
565168404Spjd
566168404Spjd	*vdp = vd;
567168404Spjd
568168404Spjd	return (0);
569168404Spjd}
570168404Spjd
571168404Spjdvoid
572168404Spjdvdev_free(vdev_t *vd)
573168404Spjd{
574185029Spjd	spa_t *spa = vd->vdev_spa;
575168404Spjd
576168404Spjd	/*
577168404Spjd	 * vdev_free() implies closing the vdev first.  This is simpler than
578168404Spjd	 * trying to ensure complicated semantics for all callers.
579168404Spjd	 */
580168404Spjd	vdev_close(vd);
581168404Spjd
582185029Spjd	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
583219089Spjd	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
584168404Spjd
585168404Spjd	/*
586168404Spjd	 * Free all children.
587168404Spjd	 */
588219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
589168404Spjd		vdev_free(vd->vdev_child[c]);
590168404Spjd
591168404Spjd	ASSERT(vd->vdev_child == NULL);
592168404Spjd	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
593168404Spjd
594168404Spjd	/*
595168404Spjd	 * Discard allocation state.
596168404Spjd	 */
597219089Spjd	if (vd->vdev_mg != NULL) {
598168404Spjd		vdev_metaslab_fini(vd);
599219089Spjd		metaslab_group_destroy(vd->vdev_mg);
600219089Spjd	}
601168404Spjd
602240415Smm	ASSERT0(vd->vdev_stat.vs_space);
603240415Smm	ASSERT0(vd->vdev_stat.vs_dspace);
604240415Smm	ASSERT0(vd->vdev_stat.vs_alloc);
605168404Spjd
606168404Spjd	/*
607168404Spjd	 * Remove this vdev from its parent's child list.
608168404Spjd	 */
609168404Spjd	vdev_remove_child(vd->vdev_parent, vd);
610168404Spjd
611168404Spjd	ASSERT(vd->vdev_parent == NULL);
612168404Spjd
613185029Spjd	/*
614185029Spjd	 * Clean up vdev structure.
615185029Spjd	 */
616185029Spjd	vdev_queue_fini(vd);
617185029Spjd	vdev_cache_fini(vd);
618185029Spjd
619185029Spjd	if (vd->vdev_path)
620185029Spjd		spa_strfree(vd->vdev_path);
621185029Spjd	if (vd->vdev_devid)
622185029Spjd		spa_strfree(vd->vdev_devid);
623185029Spjd	if (vd->vdev_physpath)
624185029Spjd		spa_strfree(vd->vdev_physpath);
625209962Smm	if (vd->vdev_fru)
626209962Smm		spa_strfree(vd->vdev_fru);
627185029Spjd
628185029Spjd	if (vd->vdev_isspare)
629185029Spjd		spa_spare_remove(vd);
630185029Spjd	if (vd->vdev_isl2cache)
631185029Spjd		spa_l2cache_remove(vd);
632185029Spjd
633185029Spjd	txg_list_destroy(&vd->vdev_ms_list);
634185029Spjd	txg_list_destroy(&vd->vdev_dtl_list);
635209962Smm
636185029Spjd	mutex_enter(&vd->vdev_dtl_lock);
637209962Smm	for (int t = 0; t < DTL_TYPES; t++) {
638209962Smm		space_map_unload(&vd->vdev_dtl[t]);
639209962Smm		space_map_destroy(&vd->vdev_dtl[t]);
640209962Smm	}
641185029Spjd	mutex_exit(&vd->vdev_dtl_lock);
642209962Smm
643185029Spjd	mutex_destroy(&vd->vdev_dtl_lock);
644185029Spjd	mutex_destroy(&vd->vdev_stat_lock);
645185029Spjd	mutex_destroy(&vd->vdev_probe_lock);
646185029Spjd
647185029Spjd	if (vd == spa->spa_root_vdev)
648185029Spjd		spa->spa_root_vdev = NULL;
649185029Spjd
650185029Spjd	kmem_free(vd, sizeof (vdev_t));
651168404Spjd}
652168404Spjd
653168404Spjd/*
654168404Spjd * Transfer top-level vdev state from svd to tvd.
655168404Spjd */
656168404Spjdstatic void
657168404Spjdvdev_top_transfer(vdev_t *svd, vdev_t *tvd)
658168404Spjd{
659168404Spjd	spa_t *spa = svd->vdev_spa;
660168404Spjd	metaslab_t *msp;
661168404Spjd	vdev_t *vd;
662168404Spjd	int t;
663168404Spjd
664168404Spjd	ASSERT(tvd == tvd->vdev_top);
665168404Spjd
666168404Spjd	tvd->vdev_ms_array = svd->vdev_ms_array;
667168404Spjd	tvd->vdev_ms_shift = svd->vdev_ms_shift;
668168404Spjd	tvd->vdev_ms_count = svd->vdev_ms_count;
669168404Spjd
670168404Spjd	svd->vdev_ms_array = 0;
671168404Spjd	svd->vdev_ms_shift = 0;
672168404Spjd	svd->vdev_ms_count = 0;
673168404Spjd
674230514Smm	if (tvd->vdev_mg)
675230514Smm		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
676168404Spjd	tvd->vdev_mg = svd->vdev_mg;
677168404Spjd	tvd->vdev_ms = svd->vdev_ms;
678168404Spjd
679168404Spjd	svd->vdev_mg = NULL;
680168404Spjd	svd->vdev_ms = NULL;
681168404Spjd
682168404Spjd	if (tvd->vdev_mg != NULL)
683168404Spjd		tvd->vdev_mg->mg_vd = tvd;
684168404Spjd
685168404Spjd	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
686168404Spjd	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
687168404Spjd	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
688168404Spjd
689168404Spjd	svd->vdev_stat.vs_alloc = 0;
690168404Spjd	svd->vdev_stat.vs_space = 0;
691168404Spjd	svd->vdev_stat.vs_dspace = 0;
692168404Spjd
693168404Spjd	for (t = 0; t < TXG_SIZE; t++) {
694168404Spjd		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
695168404Spjd			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
696168404Spjd		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
697168404Spjd			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
698168404Spjd		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
699168404Spjd			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
700168404Spjd	}
701168404Spjd
702185029Spjd	if (list_link_active(&svd->vdev_config_dirty_node)) {
703168404Spjd		vdev_config_clean(svd);
704168404Spjd		vdev_config_dirty(tvd);
705168404Spjd	}
706168404Spjd
707185029Spjd	if (list_link_active(&svd->vdev_state_dirty_node)) {
708185029Spjd		vdev_state_clean(svd);
709185029Spjd		vdev_state_dirty(tvd);
710185029Spjd	}
711168404Spjd
712168404Spjd	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
713168404Spjd	svd->vdev_deflate_ratio = 0;
714185029Spjd
715185029Spjd	tvd->vdev_islog = svd->vdev_islog;
716185029Spjd	svd->vdev_islog = 0;
717168404Spjd}
718168404Spjd
719168404Spjdstatic void
720168404Spjdvdev_top_update(vdev_t *tvd, vdev_t *vd)
721168404Spjd{
722168404Spjd	if (vd == NULL)
723168404Spjd		return;
724168404Spjd
725168404Spjd	vd->vdev_top = tvd;
726168404Spjd
727219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
728168404Spjd		vdev_top_update(tvd, vd->vdev_child[c]);
729168404Spjd}
730168404Spjd
731168404Spjd/*
732168404Spjd * Add a mirror/replacing vdev above an existing vdev.
733168404Spjd */
734168404Spjdvdev_t *
735168404Spjdvdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
736168404Spjd{
737168404Spjd	spa_t *spa = cvd->vdev_spa;
738168404Spjd	vdev_t *pvd = cvd->vdev_parent;
739168404Spjd	vdev_t *mvd;
740168404Spjd
741185029Spjd	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
742168404Spjd
743168404Spjd	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
744168404Spjd
745168404Spjd	mvd->vdev_asize = cvd->vdev_asize;
746219089Spjd	mvd->vdev_min_asize = cvd->vdev_min_asize;
747236155Smm	mvd->vdev_max_asize = cvd->vdev_max_asize;
748168404Spjd	mvd->vdev_ashift = cvd->vdev_ashift;
749168404Spjd	mvd->vdev_state = cvd->vdev_state;
750219089Spjd	mvd->vdev_crtxg = cvd->vdev_crtxg;
751168404Spjd
752168404Spjd	vdev_remove_child(pvd, cvd);
753168404Spjd	vdev_add_child(pvd, mvd);
754168404Spjd	cvd->vdev_id = mvd->vdev_children;
755168404Spjd	vdev_add_child(mvd, cvd);
756168404Spjd	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
757168404Spjd
758168404Spjd	if (mvd == mvd->vdev_top)
759168404Spjd		vdev_top_transfer(cvd, mvd);
760168404Spjd
761168404Spjd	return (mvd);
762168404Spjd}
763168404Spjd
764168404Spjd/*
765168404Spjd * Remove a 1-way mirror/replacing vdev from the tree.
766168404Spjd */
767168404Spjdvoid
768168404Spjdvdev_remove_parent(vdev_t *cvd)
769168404Spjd{
770168404Spjd	vdev_t *mvd = cvd->vdev_parent;
771168404Spjd	vdev_t *pvd = mvd->vdev_parent;
772168404Spjd
773185029Spjd	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
774168404Spjd
775168404Spjd	ASSERT(mvd->vdev_children == 1);
776168404Spjd	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
777168404Spjd	    mvd->vdev_ops == &vdev_replacing_ops ||
778168404Spjd	    mvd->vdev_ops == &vdev_spare_ops);
779168404Spjd	cvd->vdev_ashift = mvd->vdev_ashift;
780168404Spjd
781168404Spjd	vdev_remove_child(mvd, cvd);
782168404Spjd	vdev_remove_child(pvd, mvd);
783209962Smm
784185029Spjd	/*
785185029Spjd	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
786185029Spjd	 * Otherwise, we could have detached an offline device, and when we
787185029Spjd	 * go to import the pool we'll think we have two top-level vdevs,
788185029Spjd	 * instead of a different version of the same top-level vdev.
789185029Spjd	 */
790209962Smm	if (mvd->vdev_top == mvd) {
791209962Smm		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
792219089Spjd		cvd->vdev_orig_guid = cvd->vdev_guid;
793209962Smm		cvd->vdev_guid += guid_delta;
794209962Smm		cvd->vdev_guid_sum += guid_delta;
795209962Smm	}
796168404Spjd	cvd->vdev_id = mvd->vdev_id;
797168404Spjd	vdev_add_child(pvd, cvd);
798168404Spjd	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
799168404Spjd
800168404Spjd	if (cvd == cvd->vdev_top)
801168404Spjd		vdev_top_transfer(mvd, cvd);
802168404Spjd
803168404Spjd	ASSERT(mvd->vdev_children == 0);
804168404Spjd	vdev_free(mvd);
805168404Spjd}
806168404Spjd
807168404Spjdint
808168404Spjdvdev_metaslab_init(vdev_t *vd, uint64_t txg)
809168404Spjd{
810168404Spjd	spa_t *spa = vd->vdev_spa;
811168404Spjd	objset_t *mos = spa->spa_meta_objset;
812168404Spjd	uint64_t m;
813168404Spjd	uint64_t oldc = vd->vdev_ms_count;
814168404Spjd	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
815168404Spjd	metaslab_t **mspp;
816168404Spjd	int error;
817168404Spjd
818219089Spjd	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
819219089Spjd
820219089Spjd	/*
821219089Spjd	 * This vdev is not being allocated from yet or is a hole.
822219089Spjd	 */
823219089Spjd	if (vd->vdev_ms_shift == 0)
824168404Spjd		return (0);
825168404Spjd
826219089Spjd	ASSERT(!vd->vdev_ishole);
827219089Spjd
828213197Smm	/*
829213197Smm	 * Compute the raidz-deflation ratio.  Note, we hard-code
830213197Smm	 * in 128k (1 << 17) because it is the current "typical" blocksize.
831213197Smm	 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
832213197Smm	 * or we will inconsistently account for existing bp's.
833213197Smm	 */
834213197Smm	vd->vdev_deflate_ratio = (1 << 17) /
835213197Smm	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
836213197Smm
837168404Spjd	ASSERT(oldc <= newc);
838168404Spjd
839168404Spjd	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
840168404Spjd
841168404Spjd	if (oldc != 0) {
842168404Spjd		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
843168404Spjd		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
844168404Spjd	}
845168404Spjd
846168404Spjd	vd->vdev_ms = mspp;
847168404Spjd	vd->vdev_ms_count = newc;
848168404Spjd
849168404Spjd	for (m = oldc; m < newc; m++) {
850168404Spjd		space_map_obj_t smo = { 0, 0, 0 };
851168404Spjd		if (txg == 0) {
852168404Spjd			uint64_t object = 0;
853168404Spjd			error = dmu_read(mos, vd->vdev_ms_array,
854209962Smm			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
855209962Smm			    DMU_READ_PREFETCH);
856168404Spjd			if (error)
857168404Spjd				return (error);
858168404Spjd			if (object != 0) {
859168404Spjd				dmu_buf_t *db;
860168404Spjd				error = dmu_bonus_hold(mos, object, FTAG, &db);
861168404Spjd				if (error)
862168404Spjd					return (error);
863185029Spjd				ASSERT3U(db->db_size, >=, sizeof (smo));
864185029Spjd				bcopy(db->db_data, &smo, sizeof (smo));
865168404Spjd				ASSERT3U(smo.smo_object, ==, object);
866168404Spjd				dmu_buf_rele(db, FTAG);
867168404Spjd			}
868168404Spjd		}
869168404Spjd		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
870168404Spjd		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
871168404Spjd	}
872168404Spjd
873219089Spjd	if (txg == 0)
874219089Spjd		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
875219089Spjd
876219089Spjd	/*
877219089Spjd	 * If the vdev is being removed we don't activate
878219089Spjd	 * the metaslabs since we want to ensure that no new
879219089Spjd	 * allocations are performed on this device.
880219089Spjd	 */
881219089Spjd	if (oldc == 0 && !vd->vdev_removing)
882219089Spjd		metaslab_group_activate(vd->vdev_mg);
883219089Spjd
884219089Spjd	if (txg == 0)
885219089Spjd		spa_config_exit(spa, SCL_ALLOC, FTAG);
886219089Spjd
887168404Spjd	return (0);
888168404Spjd}
889168404Spjd
890168404Spjdvoid
891168404Spjdvdev_metaslab_fini(vdev_t *vd)
892168404Spjd{
893168404Spjd	uint64_t m;
894168404Spjd	uint64_t count = vd->vdev_ms_count;
895168404Spjd
896168404Spjd	if (vd->vdev_ms != NULL) {
897219089Spjd		metaslab_group_passivate(vd->vdev_mg);
898168404Spjd		for (m = 0; m < count; m++)
899168404Spjd			if (vd->vdev_ms[m] != NULL)
900168404Spjd				metaslab_fini(vd->vdev_ms[m]);
901168404Spjd		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
902168404Spjd		vd->vdev_ms = NULL;
903168404Spjd	}
904168404Spjd}
905168404Spjd
906185029Spjdtypedef struct vdev_probe_stats {
907185029Spjd	boolean_t	vps_readable;
908185029Spjd	boolean_t	vps_writeable;
909185029Spjd	int		vps_flags;
910185029Spjd} vdev_probe_stats_t;
911185029Spjd
912185029Spjdstatic void
913185029Spjdvdev_probe_done(zio_t *zio)
914185029Spjd{
915209962Smm	spa_t *spa = zio->io_spa;
916209962Smm	vdev_t *vd = zio->io_vd;
917185029Spjd	vdev_probe_stats_t *vps = zio->io_private;
918185029Spjd
919209962Smm	ASSERT(vd->vdev_probe_zio != NULL);
920209962Smm
921185029Spjd	if (zio->io_type == ZIO_TYPE_READ) {
922185029Spjd		if (zio->io_error == 0)
923185029Spjd			vps->vps_readable = 1;
924209962Smm		if (zio->io_error == 0 && spa_writeable(spa)) {
925209962Smm			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
926185029Spjd			    zio->io_offset, zio->io_size, zio->io_data,
927185029Spjd			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
928185029Spjd			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
929185029Spjd		} else {
930185029Spjd			zio_buf_free(zio->io_data, zio->io_size);
931185029Spjd		}
932185029Spjd	} else if (zio->io_type == ZIO_TYPE_WRITE) {
933185029Spjd		if (zio->io_error == 0)
934185029Spjd			vps->vps_writeable = 1;
935185029Spjd		zio_buf_free(zio->io_data, zio->io_size);
936185029Spjd	} else if (zio->io_type == ZIO_TYPE_NULL) {
937209962Smm		zio_t *pio;
938185029Spjd
939185029Spjd		vd->vdev_cant_read |= !vps->vps_readable;
940185029Spjd		vd->vdev_cant_write |= !vps->vps_writeable;
941185029Spjd
942185029Spjd		if (vdev_readable(vd) &&
943209962Smm		    (vdev_writeable(vd) || !spa_writeable(spa))) {
944185029Spjd			zio->io_error = 0;
945185029Spjd		} else {
946185029Spjd			ASSERT(zio->io_error != 0);
947185029Spjd			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
948209962Smm			    spa, vd, NULL, 0, 0);
949249195Smm			zio->io_error = SET_ERROR(ENXIO);
950185029Spjd		}
951209962Smm
952209962Smm		mutex_enter(&vd->vdev_probe_lock);
953209962Smm		ASSERT(vd->vdev_probe_zio == zio);
954209962Smm		vd->vdev_probe_zio = NULL;
955209962Smm		mutex_exit(&vd->vdev_probe_lock);
956209962Smm
957209962Smm		while ((pio = zio_walk_parents(zio)) != NULL)
958209962Smm			if (!vdev_accessible(vd, pio))
959249195Smm				pio->io_error = SET_ERROR(ENXIO);
960209962Smm
961185029Spjd		kmem_free(vps, sizeof (*vps));
962185029Spjd	}
963185029Spjd}
964185029Spjd
965168404Spjd/*
966185029Spjd * Determine whether this device is accessible by reading and writing
967185029Spjd * to several known locations: the pad regions of each vdev label
968185029Spjd * but the first (which we leave alone in case it contains a VTOC).
969185029Spjd */
970185029Spjdzio_t *
971209962Smmvdev_probe(vdev_t *vd, zio_t *zio)
972185029Spjd{
973185029Spjd	spa_t *spa = vd->vdev_spa;
974209962Smm	vdev_probe_stats_t *vps = NULL;
975209962Smm	zio_t *pio;
976185029Spjd
977209962Smm	ASSERT(vd->vdev_ops->vdev_op_leaf);
978185029Spjd
979209962Smm	/*
980209962Smm	 * Don't probe the probe.
981209962Smm	 */
982209962Smm	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
983209962Smm		return (NULL);
984185029Spjd
985209962Smm	/*
986209962Smm	 * To prevent 'probe storms' when a device fails, we create
987209962Smm	 * just one probe i/o at a time.  All zios that want to probe
988209962Smm	 * this vdev will become parents of the probe io.
989209962Smm	 */
990209962Smm	mutex_enter(&vd->vdev_probe_lock);
991209962Smm
992209962Smm	if ((pio = vd->vdev_probe_zio) == NULL) {
993209962Smm		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
994209962Smm
995209962Smm		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
996209962Smm		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
997213198Smm		    ZIO_FLAG_TRYHARD;
998209962Smm
999209962Smm		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1000209962Smm			/*
1001209962Smm			 * vdev_cant_read and vdev_cant_write can only
1002209962Smm			 * transition from TRUE to FALSE when we have the
1003209962Smm			 * SCL_ZIO lock as writer; otherwise they can only
1004209962Smm			 * transition from FALSE to TRUE.  This ensures that
1005209962Smm			 * any zio looking at these values can assume that
1006209962Smm			 * failures persist for the life of the I/O.  That's
1007209962Smm			 * important because when a device has intermittent
1008209962Smm			 * connectivity problems, we want to ensure that
1009209962Smm			 * they're ascribed to the device (ENXIO) and not
1010209962Smm			 * the zio (EIO).
1011209962Smm			 *
1012209962Smm			 * Since we hold SCL_ZIO as writer here, clear both
1013209962Smm			 * values so the probe can reevaluate from first
1014209962Smm			 * principles.
1015209962Smm			 */
1016209962Smm			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1017209962Smm			vd->vdev_cant_read = B_FALSE;
1018209962Smm			vd->vdev_cant_write = B_FALSE;
1019209962Smm		}
1020209962Smm
1021209962Smm		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1022209962Smm		    vdev_probe_done, vps,
1023209962Smm		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1024209962Smm
1025219089Spjd		/*
1026219089Spjd		 * We can't change the vdev state in this context, so we
1027219089Spjd		 * kick off an async task to do it on our behalf.
1028219089Spjd		 */
1029209962Smm		if (zio != NULL) {
1030209962Smm			vd->vdev_probe_wanted = B_TRUE;
1031209962Smm			spa_async_request(spa, SPA_ASYNC_PROBE);
1032209962Smm		}
1033185029Spjd	}
1034185029Spjd
1035209962Smm	if (zio != NULL)
1036209962Smm		zio_add_child(zio, pio);
1037185029Spjd
1038209962Smm	mutex_exit(&vd->vdev_probe_lock);
1039185029Spjd
1040209962Smm	if (vps == NULL) {
1041209962Smm		ASSERT(zio != NULL);
1042209962Smm		return (NULL);
1043209962Smm	}
1044185029Spjd
1045185029Spjd	for (int l = 1; l < VDEV_LABELS; l++) {
1046209962Smm		zio_nowait(zio_read_phys(pio, vd,
1047185029Spjd		    vdev_label_offset(vd->vdev_psize, l,
1048209962Smm		    offsetof(vdev_label_t, vl_pad2)),
1049209962Smm		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1050185029Spjd		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1051185029Spjd		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1052185029Spjd	}
1053185029Spjd
1054209962Smm	if (zio == NULL)
1055209962Smm		return (pio);
1056209962Smm
1057209962Smm	zio_nowait(pio);
1058209962Smm	return (NULL);
1059185029Spjd}
1060185029Spjd
1061219089Spjdstatic void
1062219089Spjdvdev_open_child(void *arg)
1063219089Spjd{
1064219089Spjd	vdev_t *vd = arg;
1065219089Spjd
1066219089Spjd	vd->vdev_open_thread = curthread;
1067219089Spjd	vd->vdev_open_error = vdev_open(vd);
1068219089Spjd	vd->vdev_open_thread = NULL;
1069219089Spjd}
1070219089Spjd
1071219089Spjdboolean_t
1072219089Spjdvdev_uses_zvols(vdev_t *vd)
1073219089Spjd{
1074219089Spjd	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1075219089Spjd	    strlen(ZVOL_DIR)) == 0)
1076219089Spjd		return (B_TRUE);
1077219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
1078219089Spjd		if (vdev_uses_zvols(vd->vdev_child[c]))
1079219089Spjd			return (B_TRUE);
1080219089Spjd	return (B_FALSE);
1081219089Spjd}
1082219089Spjd
1083219089Spjdvoid
1084219089Spjdvdev_open_children(vdev_t *vd)
1085219089Spjd{
1086219089Spjd	taskq_t *tq;
1087219089Spjd	int children = vd->vdev_children;
1088219089Spjd
1089219089Spjd	/*
1090219089Spjd	 * in order to handle pools on top of zvols, do the opens
1091219089Spjd	 * in a single thread so that the same thread holds the
1092219089Spjd	 * spa_namespace_lock
1093219089Spjd	 */
1094219089Spjd	if (B_TRUE || vdev_uses_zvols(vd)) {
1095219089Spjd		for (int c = 0; c < children; c++)
1096219089Spjd			vd->vdev_child[c]->vdev_open_error =
1097219089Spjd			    vdev_open(vd->vdev_child[c]);
1098219089Spjd		return;
1099219089Spjd	}
1100219089Spjd	tq = taskq_create("vdev_open", children, minclsyspri,
1101219089Spjd	    children, children, TASKQ_PREPOPULATE);
1102219089Spjd
1103219089Spjd	for (int c = 0; c < children; c++)
1104219089Spjd		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1105219089Spjd		    TQ_SLEEP) != 0);
1106219089Spjd
1107219089Spjd	taskq_destroy(tq);
1108219089Spjd}
1109219089Spjd
1110185029Spjd/*
1111168404Spjd * Prepare a virtual device for access.
1112168404Spjd */
1113168404Spjdint
1114168404Spjdvdev_open(vdev_t *vd)
1115168404Spjd{
1116209962Smm	spa_t *spa = vd->vdev_spa;
1117168404Spjd	int error;
1118168404Spjd	uint64_t osize = 0;
1119236155Smm	uint64_t max_osize = 0;
1120236155Smm	uint64_t asize, max_asize, psize;
1121168404Spjd	uint64_t ashift = 0;
1122168404Spjd
1123219089Spjd	ASSERT(vd->vdev_open_thread == curthread ||
1124219089Spjd	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1125168404Spjd	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1126168404Spjd	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1127168404Spjd	    vd->vdev_state == VDEV_STATE_OFFLINE);
1128168404Spjd
1129168404Spjd	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1130213197Smm	vd->vdev_cant_read = B_FALSE;
1131213197Smm	vd->vdev_cant_write = B_FALSE;
1132219089Spjd	vd->vdev_min_asize = vdev_get_min_asize(vd);
1133168404Spjd
1134219089Spjd	/*
1135219089Spjd	 * If this vdev is not removed, check its fault status.  If it's
1136219089Spjd	 * faulted, bail out of the open.
1137219089Spjd	 */
1138185029Spjd	if (!vd->vdev_removed && vd->vdev_faulted) {
1139168404Spjd		ASSERT(vd->vdev_children == 0);
1140219089Spjd		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1141219089Spjd		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1142185029Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1143219089Spjd		    vd->vdev_label_aux);
1144249195Smm		return (SET_ERROR(ENXIO));
1145185029Spjd	} else if (vd->vdev_offline) {
1146185029Spjd		ASSERT(vd->vdev_children == 0);
1147168404Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1148249195Smm		return (SET_ERROR(ENXIO));
1149168404Spjd	}
1150168404Spjd
1151236155Smm	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1152168404Spjd
1153219089Spjd	/*
1154219089Spjd	 * Reset the vdev_reopening flag so that we actually close
1155219089Spjd	 * the vdev on error.
1156219089Spjd	 */
1157219089Spjd	vd->vdev_reopening = B_FALSE;
1158168404Spjd	if (zio_injection_enabled && error == 0)
1159213198Smm		error = zio_handle_device_injection(vd, NULL, ENXIO);
1160168404Spjd
1161185029Spjd	if (error) {
1162185029Spjd		if (vd->vdev_removed &&
1163185029Spjd		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1164185029Spjd			vd->vdev_removed = B_FALSE;
1165168404Spjd
1166168404Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1167168404Spjd		    vd->vdev_stat.vs_aux);
1168168404Spjd		return (error);
1169168404Spjd	}
1170168404Spjd
1171185029Spjd	vd->vdev_removed = B_FALSE;
1172168404Spjd
1173219089Spjd	/*
1174219089Spjd	 * Recheck the faulted flag now that we have confirmed that
1175219089Spjd	 * the vdev is accessible.  If we're faulted, bail.
1176219089Spjd	 */
1177219089Spjd	if (vd->vdev_faulted) {
1178219089Spjd		ASSERT(vd->vdev_children == 0);
1179219089Spjd		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1180219089Spjd		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1181219089Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1182219089Spjd		    vd->vdev_label_aux);
1183249195Smm		return (SET_ERROR(ENXIO));
1184219089Spjd	}
1185219089Spjd
1186185029Spjd	if (vd->vdev_degraded) {
1187185029Spjd		ASSERT(vd->vdev_children == 0);
1188185029Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1189185029Spjd		    VDEV_AUX_ERR_EXCEEDED);
1190185029Spjd	} else {
1191219089Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1192185029Spjd	}
1193185029Spjd
1194219089Spjd	/*
1195219089Spjd	 * For hole or missing vdevs we just return success.
1196219089Spjd	 */
1197219089Spjd	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1198219089Spjd		return (0);
1199219089Spjd
1200240868Spjd	if (vd->vdev_ops->vdev_op_leaf) {
1201240868Spjd		vd->vdev_notrim = B_FALSE;
1202240868Spjd		trim_map_create(vd);
1203240868Spjd	}
1204240868Spjd
1205219089Spjd	for (int c = 0; c < vd->vdev_children; c++) {
1206168404Spjd		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1207168404Spjd			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1208168404Spjd			    VDEV_AUX_NONE);
1209168404Spjd			break;
1210168404Spjd		}
1211219089Spjd	}
1212168404Spjd
1213168404Spjd	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1214236155Smm	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1215168404Spjd
1216168404Spjd	if (vd->vdev_children == 0) {
1217168404Spjd		if (osize < SPA_MINDEVSIZE) {
1218168404Spjd			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1219168404Spjd			    VDEV_AUX_TOO_SMALL);
1220249195Smm			return (SET_ERROR(EOVERFLOW));
1221168404Spjd		}
1222168404Spjd		psize = osize;
1223168404Spjd		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1224236155Smm		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1225236155Smm		    VDEV_LABEL_END_SIZE);
1226168404Spjd	} else {
1227168404Spjd		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1228168404Spjd		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1229168404Spjd			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1230168404Spjd			    VDEV_AUX_TOO_SMALL);
1231249195Smm			return (SET_ERROR(EOVERFLOW));
1232168404Spjd		}
1233168404Spjd		psize = 0;
1234168404Spjd		asize = osize;
1235236155Smm		max_asize = max_osize;
1236168404Spjd	}
1237168404Spjd
1238168404Spjd	vd->vdev_psize = psize;
1239168404Spjd
1240219089Spjd	/*
1241219089Spjd	 * Make sure the allocatable size hasn't shrunk.
1242219089Spjd	 */
1243219089Spjd	if (asize < vd->vdev_min_asize) {
1244219089Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1245219089Spjd		    VDEV_AUX_BAD_LABEL);
1246249195Smm		return (SET_ERROR(EINVAL));
1247219089Spjd	}
1248219089Spjd
1249168404Spjd	if (vd->vdev_asize == 0) {
1250168404Spjd		/*
1251168404Spjd		 * This is the first-ever open, so use the computed values.
1252168404Spjd		 * For testing purposes, a higher ashift can be requested.
1253168404Spjd		 */
1254168404Spjd		vd->vdev_asize = asize;
1255236155Smm		vd->vdev_max_asize = max_asize;
1256168404Spjd		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1257168404Spjd	} else {
1258168404Spjd		/*
1259168404Spjd		 * Make sure the alignment requirement hasn't increased.
1260168404Spjd		 */
1261168404Spjd		if (ashift > vd->vdev_top->vdev_ashift) {
1262168404Spjd			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1263168404Spjd			    VDEV_AUX_BAD_LABEL);
1264168404Spjd			return (EINVAL);
1265168404Spjd		}
1266236155Smm		vd->vdev_max_asize = max_asize;
1267219089Spjd	}
1268168404Spjd
1269219089Spjd	/*
1270219089Spjd	 * If all children are healthy and the asize has increased,
1271219089Spjd	 * then we've experienced dynamic LUN growth.  If automatic
1272219089Spjd	 * expansion is enabled then use the additional space.
1273219089Spjd	 */
1274219089Spjd	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1275219089Spjd	    (vd->vdev_expanding || spa->spa_autoexpand))
1276219089Spjd		vd->vdev_asize = asize;
1277168404Spjd
1278219089Spjd	vdev_set_min_asize(vd);
1279168404Spjd
1280168404Spjd	/*
1281185029Spjd	 * Ensure we can issue some IO before declaring the
1282185029Spjd	 * vdev open for business.
1283185029Spjd	 */
1284185029Spjd	if (vd->vdev_ops->vdev_op_leaf &&
1285185029Spjd	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1286219089Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1287219089Spjd		    VDEV_AUX_ERR_EXCEEDED);
1288185029Spjd		return (error);
1289185029Spjd	}
1290185029Spjd
1291185029Spjd	/*
1292185029Spjd	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1293209962Smm	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1294209962Smm	 * since this would just restart the scrub we are already doing.
1295168404Spjd	 */
1296209962Smm	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1297209962Smm	    vdev_resilver_needed(vd, NULL, NULL))
1298209962Smm		spa_async_request(spa, SPA_ASYNC_RESILVER);
1299168404Spjd
1300168404Spjd	return (0);
1301168404Spjd}
1302168404Spjd
1303168404Spjd/*
1304168404Spjd * Called once the vdevs are all opened, this routine validates the label
1305168404Spjd * contents.  This needs to be done before vdev_load() so that we don't
1306185029Spjd * inadvertently do repair I/Os to the wrong device.
1307168404Spjd *
1308230514Smm * If 'strict' is false ignore the spa guid check. This is necessary because
1309230514Smm * if the machine crashed during a re-guid the new guid might have been written
1310230514Smm * to all of the vdev labels, but not the cached config. The strict check
1311230514Smm * will be performed when the pool is opened again using the mos config.
1312230514Smm *
1313168404Spjd * This function will only return failure if one of the vdevs indicates that it
1314168404Spjd * has since been destroyed or exported.  This is only possible if
1315168404Spjd * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1316168404Spjd * will be updated but the function will return 0.
1317168404Spjd */
1318168404Spjdint
1319230514Smmvdev_validate(vdev_t *vd, boolean_t strict)
1320168404Spjd{
1321168404Spjd	spa_t *spa = vd->vdev_spa;
1322168404Spjd	nvlist_t *label;
1323219089Spjd	uint64_t guid = 0, top_guid;
1324168404Spjd	uint64_t state;
1325168404Spjd
1326219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
1327230514Smm		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1328249195Smm			return (SET_ERROR(EBADF));
1329168404Spjd
1330168404Spjd	/*
1331168404Spjd	 * If the device has already failed, or was marked offline, don't do
1332168404Spjd	 * any further validation.  Otherwise, label I/O will fail and we will
1333168404Spjd	 * overwrite the previous state.
1334168404Spjd	 */
1335185029Spjd	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1336219089Spjd		uint64_t aux_guid = 0;
1337219089Spjd		nvlist_t *nvl;
1338246631Smm		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1339246631Smm		    spa_last_synced_txg(spa) : -1ULL;
1340168404Spjd
1341239620Smm		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1342168404Spjd			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1343168404Spjd			    VDEV_AUX_BAD_LABEL);
1344168404Spjd			return (0);
1345168404Spjd		}
1346168404Spjd
1347219089Spjd		/*
1348219089Spjd		 * Determine if this vdev has been split off into another
1349219089Spjd		 * pool.  If so, then refuse to open it.
1350219089Spjd		 */
1351219089Spjd		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1352219089Spjd		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1353219089Spjd			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1354219089Spjd			    VDEV_AUX_SPLIT_POOL);
1355219089Spjd			nvlist_free(label);
1356219089Spjd			return (0);
1357219089Spjd		}
1358219089Spjd
1359230514Smm		if (strict && (nvlist_lookup_uint64(label,
1360230514Smm		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1361230514Smm		    guid != spa_guid(spa))) {
1362168404Spjd			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1363168404Spjd			    VDEV_AUX_CORRUPT_DATA);
1364168404Spjd			nvlist_free(label);
1365168404Spjd			return (0);
1366168404Spjd		}
1367168404Spjd
1368219089Spjd		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1369219089Spjd		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1370219089Spjd		    &aux_guid) != 0)
1371219089Spjd			aux_guid = 0;
1372219089Spjd
1373185029Spjd		/*
1374185029Spjd		 * If this vdev just became a top-level vdev because its
1375185029Spjd		 * sibling was detached, it will have adopted the parent's
1376185029Spjd		 * vdev guid -- but the label may or may not be on disk yet.
1377185029Spjd		 * Fortunately, either version of the label will have the
1378185029Spjd		 * same top guid, so if we're a top-level vdev, we can
1379185029Spjd		 * safely compare to that instead.
1380219089Spjd		 *
1381219089Spjd		 * If we split this vdev off instead, then we also check the
1382219089Spjd		 * original pool's guid.  We don't want to consider the vdev
1383219089Spjd		 * corrupt if it is partway through a split operation.
1384185029Spjd		 */
1385168404Spjd		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1386185029Spjd		    &guid) != 0 ||
1387185029Spjd		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1388185029Spjd		    &top_guid) != 0 ||
1389219089Spjd		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1390185029Spjd		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1391168404Spjd			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1392168404Spjd			    VDEV_AUX_CORRUPT_DATA);
1393168404Spjd			nvlist_free(label);
1394168404Spjd			return (0);
1395168404Spjd		}
1396168404Spjd
1397168404Spjd		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1398168404Spjd		    &state) != 0) {
1399168404Spjd			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1400168404Spjd			    VDEV_AUX_CORRUPT_DATA);
1401168404Spjd			nvlist_free(label);
1402168404Spjd			return (0);
1403168404Spjd		}
1404168404Spjd
1405168404Spjd		nvlist_free(label);
1406168404Spjd
1407209962Smm		/*
1408219089Spjd		 * If this is a verbatim import, no need to check the
1409209962Smm		 * state of the pool.
1410209962Smm		 */
1411219089Spjd		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1412219089Spjd		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1413168404Spjd		    state != POOL_STATE_ACTIVE)
1414249195Smm			return (SET_ERROR(EBADF));
1415185029Spjd
1416185029Spjd		/*
1417185029Spjd		 * If we were able to open and validate a vdev that was
1418185029Spjd		 * previously marked permanently unavailable, clear that state
1419185029Spjd		 * now.
1420185029Spjd		 */
1421185029Spjd		if (vd->vdev_not_present)
1422185029Spjd			vd->vdev_not_present = 0;
1423168404Spjd	}
1424168404Spjd
1425168404Spjd	return (0);
1426168404Spjd}
1427168404Spjd
1428168404Spjd/*
1429168404Spjd * Close a virtual device.
1430168404Spjd */
1431168404Spjdvoid
1432168404Spjdvdev_close(vdev_t *vd)
1433168404Spjd{
1434209962Smm	spa_t *spa = vd->vdev_spa;
1435219089Spjd	vdev_t *pvd = vd->vdev_parent;
1436209962Smm
1437209962Smm	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1438209962Smm
1439219089Spjd	/*
1440219089Spjd	 * If our parent is reopening, then we are as well, unless we are
1441219089Spjd	 * going offline.
1442219089Spjd	 */
1443219089Spjd	if (pvd != NULL && pvd->vdev_reopening)
1444219089Spjd		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1445219089Spjd
1446168404Spjd	vd->vdev_ops->vdev_op_close(vd);
1447168404Spjd
1448185029Spjd	vdev_cache_purge(vd);
1449168404Spjd
1450240868Spjd	if (vd->vdev_ops->vdev_op_leaf)
1451240868Spjd		trim_map_destroy(vd);
1452240868Spjd
1453168404Spjd	/*
1454219089Spjd	 * We record the previous state before we close it, so that if we are
1455168404Spjd	 * doing a reopen(), we don't generate FMA ereports if we notice that
1456168404Spjd	 * it's still faulted.
1457168404Spjd	 */
1458168404Spjd	vd->vdev_prevstate = vd->vdev_state;
1459168404Spjd
1460168404Spjd	if (vd->vdev_offline)
1461168404Spjd		vd->vdev_state = VDEV_STATE_OFFLINE;
1462168404Spjd	else
1463168404Spjd		vd->vdev_state = VDEV_STATE_CLOSED;
1464168404Spjd	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1465168404Spjd}
1466168404Spjd
1467168404Spjdvoid
1468219089Spjdvdev_hold(vdev_t *vd)
1469219089Spjd{
1470219089Spjd	spa_t *spa = vd->vdev_spa;
1471219089Spjd
1472219089Spjd	ASSERT(spa_is_root(spa));
1473219089Spjd	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1474219089Spjd		return;
1475219089Spjd
1476219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
1477219089Spjd		vdev_hold(vd->vdev_child[c]);
1478219089Spjd
1479219089Spjd	if (vd->vdev_ops->vdev_op_leaf)
1480219089Spjd		vd->vdev_ops->vdev_op_hold(vd);
1481219089Spjd}
1482219089Spjd
1483219089Spjdvoid
1484219089Spjdvdev_rele(vdev_t *vd)
1485219089Spjd{
1486219089Spjd	spa_t *spa = vd->vdev_spa;
1487219089Spjd
1488219089Spjd	ASSERT(spa_is_root(spa));
1489219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
1490219089Spjd		vdev_rele(vd->vdev_child[c]);
1491219089Spjd
1492219089Spjd	if (vd->vdev_ops->vdev_op_leaf)
1493219089Spjd		vd->vdev_ops->vdev_op_rele(vd);
1494219089Spjd}
1495219089Spjd
1496219089Spjd/*
1497219089Spjd * Reopen all interior vdevs and any unopened leaves.  We don't actually
1498219089Spjd * reopen leaf vdevs which had previously been opened as they might deadlock
1499219089Spjd * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1500219089Spjd * If the leaf has never been opened then open it, as usual.
1501219089Spjd */
1502219089Spjdvoid
1503168404Spjdvdev_reopen(vdev_t *vd)
1504168404Spjd{
1505168404Spjd	spa_t *spa = vd->vdev_spa;
1506168404Spjd
1507185029Spjd	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1508168404Spjd
1509219089Spjd	/* set the reopening flag unless we're taking the vdev offline */
1510219089Spjd	vd->vdev_reopening = !vd->vdev_offline;
1511168404Spjd	vdev_close(vd);
1512168404Spjd	(void) vdev_open(vd);
1513168404Spjd
1514168404Spjd	/*
1515168404Spjd	 * Call vdev_validate() here to make sure we have the same device.
1516168404Spjd	 * Otherwise, a device with an invalid label could be successfully
1517168404Spjd	 * opened in response to vdev_reopen().
1518168404Spjd	 */
1519185029Spjd	if (vd->vdev_aux) {
1520185029Spjd		(void) vdev_validate_aux(vd);
1521185029Spjd		if (vdev_readable(vd) && vdev_writeable(vd) &&
1522209962Smm		    vd->vdev_aux == &spa->spa_l2cache &&
1523219089Spjd		    !l2arc_vdev_present(vd))
1524219089Spjd			l2arc_add_vdev(spa, vd);
1525185029Spjd	} else {
1526246631Smm		(void) vdev_validate(vd, B_TRUE);
1527185029Spjd	}
1528168404Spjd
1529168404Spjd	/*
1530185029Spjd	 * Reassess parent vdev's health.
1531168404Spjd	 */
1532185029Spjd	vdev_propagate_state(vd);
1533168404Spjd}
1534168404Spjd
1535168404Spjdint
1536168404Spjdvdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1537168404Spjd{
1538168404Spjd	int error;
1539168404Spjd
1540168404Spjd	/*
1541168404Spjd	 * Normally, partial opens (e.g. of a mirror) are allowed.
1542168404Spjd	 * For a create, however, we want to fail the request if
1543168404Spjd	 * there are any components we can't open.
1544168404Spjd	 */
1545168404Spjd	error = vdev_open(vd);
1546168404Spjd
1547168404Spjd	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1548168404Spjd		vdev_close(vd);
1549168404Spjd		return (error ? error : ENXIO);
1550168404Spjd	}
1551168404Spjd
1552168404Spjd	/*
1553168404Spjd	 * Recursively initialize all labels.
1554168404Spjd	 */
1555168404Spjd	if ((error = vdev_label_init(vd, txg, isreplacing ?
1556168404Spjd	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1557168404Spjd		vdev_close(vd);
1558168404Spjd		return (error);
1559168404Spjd	}
1560168404Spjd
1561168404Spjd	return (0);
1562168404Spjd}
1563168404Spjd
1564168404Spjdvoid
1565219089Spjdvdev_metaslab_set_size(vdev_t *vd)
1566168404Spjd{
1567168404Spjd	/*
1568168404Spjd	 * Aim for roughly 200 metaslabs per vdev.
1569168404Spjd	 */
1570168404Spjd	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1571168404Spjd	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1572168404Spjd}
1573168404Spjd
1574168404Spjdvoid
1575168404Spjdvdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1576168404Spjd{
1577168404Spjd	ASSERT(vd == vd->vdev_top);
1578219089Spjd	ASSERT(!vd->vdev_ishole);
1579168404Spjd	ASSERT(ISP2(flags));
1580219089Spjd	ASSERT(spa_writeable(vd->vdev_spa));
1581168404Spjd
1582168404Spjd	if (flags & VDD_METASLAB)
1583168404Spjd		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1584168404Spjd
1585168404Spjd	if (flags & VDD_DTL)
1586168404Spjd		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1587168404Spjd
1588168404Spjd	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1589168404Spjd}
1590168404Spjd
1591209962Smm/*
1592209962Smm * DTLs.
1593209962Smm *
1594209962Smm * A vdev's DTL (dirty time log) is the set of transaction groups for which
1595219089Spjd * the vdev has less than perfect replication.  There are four kinds of DTL:
1596209962Smm *
1597209962Smm * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1598209962Smm *
1599209962Smm * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1600209962Smm *
1601209962Smm * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1602209962Smm *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1603209962Smm *	txgs that was scrubbed.
1604209962Smm *
1605209962Smm * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1606209962Smm *	persistent errors or just some device being offline.
1607209962Smm *	Unlike the other three, the DTL_OUTAGE map is not generally
1608209962Smm *	maintained; it's only computed when needed, typically to
1609209962Smm *	determine whether a device can be detached.
1610209962Smm *
1611209962Smm * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1612209962Smm * either has the data or it doesn't.
1613209962Smm *
1614209962Smm * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1615209962Smm * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1616209962Smm * if any child is less than fully replicated, then so is its parent.
1617209962Smm * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1618209962Smm * comprising only those txgs which appear in 'maxfaults' or more children;
1619209962Smm * those are the txgs we don't have enough replication to read.  For example,
1620209962Smm * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1621209962Smm * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1622209962Smm * two child DTL_MISSING maps.
1623209962Smm *
1624209962Smm * It should be clear from the above that to compute the DTLs and outage maps
1625209962Smm * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1626209962Smm * Therefore, that is all we keep on disk.  When loading the pool, or after
1627209962Smm * a configuration change, we generate all other DTLs from first principles.
1628209962Smm */
1629168404Spjdvoid
1630209962Smmvdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1631168404Spjd{
1632209962Smm	space_map_t *sm = &vd->vdev_dtl[t];
1633209962Smm
1634209962Smm	ASSERT(t < DTL_TYPES);
1635209962Smm	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1636219089Spjd	ASSERT(spa_writeable(vd->vdev_spa));
1637209962Smm
1638168404Spjd	mutex_enter(sm->sm_lock);
1639168404Spjd	if (!space_map_contains(sm, txg, size))
1640168404Spjd		space_map_add(sm, txg, size);
1641168404Spjd	mutex_exit(sm->sm_lock);
1642168404Spjd}
1643168404Spjd
1644209962Smmboolean_t
1645209962Smmvdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1646168404Spjd{
1647209962Smm	space_map_t *sm = &vd->vdev_dtl[t];
1648209962Smm	boolean_t dirty = B_FALSE;
1649168404Spjd
1650209962Smm	ASSERT(t < DTL_TYPES);
1651209962Smm	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1652168404Spjd
1653168404Spjd	mutex_enter(sm->sm_lock);
1654209962Smm	if (sm->sm_space != 0)
1655209962Smm		dirty = space_map_contains(sm, txg, size);
1656168404Spjd	mutex_exit(sm->sm_lock);
1657168404Spjd
1658168404Spjd	return (dirty);
1659168404Spjd}
1660168404Spjd
1661209962Smmboolean_t
1662209962Smmvdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1663209962Smm{
1664209962Smm	space_map_t *sm = &vd->vdev_dtl[t];
1665209962Smm	boolean_t empty;
1666209962Smm
1667209962Smm	mutex_enter(sm->sm_lock);
1668209962Smm	empty = (sm->sm_space == 0);
1669209962Smm	mutex_exit(sm->sm_lock);
1670209962Smm
1671209962Smm	return (empty);
1672209962Smm}
1673209962Smm
1674168404Spjd/*
1675168404Spjd * Reassess DTLs after a config change or scrub completion.
1676168404Spjd */
1677168404Spjdvoid
1678168404Spjdvdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1679168404Spjd{
1680168404Spjd	spa_t *spa = vd->vdev_spa;
1681209962Smm	avl_tree_t reftree;
1682209962Smm	int minref;
1683168404Spjd
1684209962Smm	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1685168404Spjd
1686209962Smm	for (int c = 0; c < vd->vdev_children; c++)
1687209962Smm		vdev_dtl_reassess(vd->vdev_child[c], txg,
1688209962Smm		    scrub_txg, scrub_done);
1689209962Smm
1690219089Spjd	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1691209962Smm		return;
1692209962Smm
1693209962Smm	if (vd->vdev_ops->vdev_op_leaf) {
1694219089Spjd		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1695219089Spjd
1696168404Spjd		mutex_enter(&vd->vdev_dtl_lock);
1697185029Spjd		if (scrub_txg != 0 &&
1698219089Spjd		    (spa->spa_scrub_started ||
1699219089Spjd		    (scn && scn->scn_phys.scn_errors == 0))) {
1700185029Spjd			/*
1701185029Spjd			 * We completed a scrub up to scrub_txg.  If we
1702185029Spjd			 * did it without rebooting, then the scrub dtl
1703185029Spjd			 * will be valid, so excise the old region and
1704185029Spjd			 * fold in the scrub dtl.  Otherwise, leave the
1705185029Spjd			 * dtl as-is if there was an error.
1706209962Smm			 *
1707209962Smm			 * There's little trick here: to excise the beginning
1708209962Smm			 * of the DTL_MISSING map, we put it into a reference
1709209962Smm			 * tree and then add a segment with refcnt -1 that
1710209962Smm			 * covers the range [0, scrub_txg).  This means
1711209962Smm			 * that each txg in that range has refcnt -1 or 0.
1712209962Smm			 * We then add DTL_SCRUB with a refcnt of 2, so that
1713209962Smm			 * entries in the range [0, scrub_txg) will have a
1714209962Smm			 * positive refcnt -- either 1 or 2.  We then convert
1715209962Smm			 * the reference tree into the new DTL_MISSING map.
1716185029Spjd			 */
1717209962Smm			space_map_ref_create(&reftree);
1718209962Smm			space_map_ref_add_map(&reftree,
1719209962Smm			    &vd->vdev_dtl[DTL_MISSING], 1);
1720209962Smm			space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1721209962Smm			space_map_ref_add_map(&reftree,
1722209962Smm			    &vd->vdev_dtl[DTL_SCRUB], 2);
1723209962Smm			space_map_ref_generate_map(&reftree,
1724209962Smm			    &vd->vdev_dtl[DTL_MISSING], 1);
1725209962Smm			space_map_ref_destroy(&reftree);
1726168404Spjd		}
1727209962Smm		space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1728209962Smm		space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1729209962Smm		    space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1730168404Spjd		if (scrub_done)
1731209962Smm			space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1732209962Smm		space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1733209962Smm		if (!vdev_readable(vd))
1734209962Smm			space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1735209962Smm		else
1736209962Smm			space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1737209962Smm			    space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1738168404Spjd		mutex_exit(&vd->vdev_dtl_lock);
1739185029Spjd
1740168404Spjd		if (txg != 0)
1741168404Spjd			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1742168404Spjd		return;
1743168404Spjd	}
1744168404Spjd
1745168404Spjd	mutex_enter(&vd->vdev_dtl_lock);
1746209962Smm	for (int t = 0; t < DTL_TYPES; t++) {
1747209962Smm		/* account for child's outage in parent's missing map */
1748209962Smm		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1749209962Smm		if (t == DTL_SCRUB)
1750209962Smm			continue;			/* leaf vdevs only */
1751209962Smm		if (t == DTL_PARTIAL)
1752209962Smm			minref = 1;			/* i.e. non-zero */
1753209962Smm		else if (vd->vdev_nparity != 0)
1754209962Smm			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1755209962Smm		else
1756209962Smm			minref = vd->vdev_children;	/* any kind of mirror */
1757209962Smm		space_map_ref_create(&reftree);
1758209962Smm		for (int c = 0; c < vd->vdev_children; c++) {
1759209962Smm			vdev_t *cvd = vd->vdev_child[c];
1760209962Smm			mutex_enter(&cvd->vdev_dtl_lock);
1761209962Smm			space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1762209962Smm			mutex_exit(&cvd->vdev_dtl_lock);
1763209962Smm		}
1764209962Smm		space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1765209962Smm		space_map_ref_destroy(&reftree);
1766209962Smm	}
1767168404Spjd	mutex_exit(&vd->vdev_dtl_lock);
1768168404Spjd}
1769168404Spjd
1770168404Spjdstatic int
1771168404Spjdvdev_dtl_load(vdev_t *vd)
1772168404Spjd{
1773168404Spjd	spa_t *spa = vd->vdev_spa;
1774209962Smm	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1775168404Spjd	objset_t *mos = spa->spa_meta_objset;
1776168404Spjd	dmu_buf_t *db;
1777168404Spjd	int error;
1778168404Spjd
1779168404Spjd	ASSERT(vd->vdev_children == 0);
1780168404Spjd
1781168404Spjd	if (smo->smo_object == 0)
1782168404Spjd		return (0);
1783168404Spjd
1784219089Spjd	ASSERT(!vd->vdev_ishole);
1785219089Spjd
1786168404Spjd	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1787168404Spjd		return (error);
1788168404Spjd
1789185029Spjd	ASSERT3U(db->db_size, >=, sizeof (*smo));
1790185029Spjd	bcopy(db->db_data, smo, sizeof (*smo));
1791168404Spjd	dmu_buf_rele(db, FTAG);
1792168404Spjd
1793168404Spjd	mutex_enter(&vd->vdev_dtl_lock);
1794209962Smm	error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1795209962Smm	    NULL, SM_ALLOC, smo, mos);
1796168404Spjd	mutex_exit(&vd->vdev_dtl_lock);
1797168404Spjd
1798168404Spjd	return (error);
1799168404Spjd}
1800168404Spjd
1801168404Spjdvoid
1802168404Spjdvdev_dtl_sync(vdev_t *vd, uint64_t txg)
1803168404Spjd{
1804168404Spjd	spa_t *spa = vd->vdev_spa;
1805209962Smm	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1806209962Smm	space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1807168404Spjd	objset_t *mos = spa->spa_meta_objset;
1808168404Spjd	space_map_t smsync;
1809168404Spjd	kmutex_t smlock;
1810168404Spjd	dmu_buf_t *db;
1811168404Spjd	dmu_tx_t *tx;
1812168404Spjd
1813219089Spjd	ASSERT(!vd->vdev_ishole);
1814219089Spjd
1815168404Spjd	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1816168404Spjd
1817168404Spjd	if (vd->vdev_detached) {
1818168404Spjd		if (smo->smo_object != 0) {
1819168404Spjd			int err = dmu_object_free(mos, smo->smo_object, tx);
1820240415Smm			ASSERT0(err);
1821168404Spjd			smo->smo_object = 0;
1822168404Spjd		}
1823168404Spjd		dmu_tx_commit(tx);
1824168404Spjd		return;
1825168404Spjd	}
1826168404Spjd
1827168404Spjd	if (smo->smo_object == 0) {
1828168404Spjd		ASSERT(smo->smo_objsize == 0);
1829168404Spjd		ASSERT(smo->smo_alloc == 0);
1830168404Spjd		smo->smo_object = dmu_object_alloc(mos,
1831168404Spjd		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1832168404Spjd		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1833168404Spjd		ASSERT(smo->smo_object != 0);
1834168404Spjd		vdev_config_dirty(vd->vdev_top);
1835168404Spjd	}
1836168404Spjd
1837168404Spjd	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1838168404Spjd
1839168404Spjd	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1840168404Spjd	    &smlock);
1841168404Spjd
1842168404Spjd	mutex_enter(&smlock);
1843168404Spjd
1844168404Spjd	mutex_enter(&vd->vdev_dtl_lock);
1845168404Spjd	space_map_walk(sm, space_map_add, &smsync);
1846168404Spjd	mutex_exit(&vd->vdev_dtl_lock);
1847168404Spjd
1848168404Spjd	space_map_truncate(smo, mos, tx);
1849168404Spjd	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1850247398Smm	space_map_vacate(&smsync, NULL, NULL);
1851168404Spjd
1852168404Spjd	space_map_destroy(&smsync);
1853168404Spjd
1854168404Spjd	mutex_exit(&smlock);
1855168404Spjd	mutex_destroy(&smlock);
1856168404Spjd
1857168404Spjd	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1858168404Spjd	dmu_buf_will_dirty(db, tx);
1859185029Spjd	ASSERT3U(db->db_size, >=, sizeof (*smo));
1860185029Spjd	bcopy(smo, db->db_data, sizeof (*smo));
1861168404Spjd	dmu_buf_rele(db, FTAG);
1862168404Spjd
1863168404Spjd	dmu_tx_commit(tx);
1864168404Spjd}
1865168404Spjd
1866185029Spjd/*
1867209962Smm * Determine whether the specified vdev can be offlined/detached/removed
1868209962Smm * without losing data.
1869209962Smm */
1870209962Smmboolean_t
1871209962Smmvdev_dtl_required(vdev_t *vd)
1872209962Smm{
1873209962Smm	spa_t *spa = vd->vdev_spa;
1874209962Smm	vdev_t *tvd = vd->vdev_top;
1875209962Smm	uint8_t cant_read = vd->vdev_cant_read;
1876209962Smm	boolean_t required;
1877209962Smm
1878209962Smm	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1879209962Smm
1880209962Smm	if (vd == spa->spa_root_vdev || vd == tvd)
1881209962Smm		return (B_TRUE);
1882209962Smm
1883209962Smm	/*
1884209962Smm	 * Temporarily mark the device as unreadable, and then determine
1885209962Smm	 * whether this results in any DTL outages in the top-level vdev.
1886209962Smm	 * If not, we can safely offline/detach/remove the device.
1887209962Smm	 */
1888209962Smm	vd->vdev_cant_read = B_TRUE;
1889209962Smm	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1890209962Smm	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1891209962Smm	vd->vdev_cant_read = cant_read;
1892209962Smm	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1893209962Smm
1894219089Spjd	if (!required && zio_injection_enabled)
1895219089Spjd		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1896219089Spjd
1897209962Smm	return (required);
1898209962Smm}
1899209962Smm
1900209962Smm/*
1901185029Spjd * Determine if resilver is needed, and if so the txg range.
1902185029Spjd */
1903185029Spjdboolean_t
1904185029Spjdvdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1905185029Spjd{
1906185029Spjd	boolean_t needed = B_FALSE;
1907185029Spjd	uint64_t thismin = UINT64_MAX;
1908185029Spjd	uint64_t thismax = 0;
1909185029Spjd
1910185029Spjd	if (vd->vdev_children == 0) {
1911185029Spjd		mutex_enter(&vd->vdev_dtl_lock);
1912209962Smm		if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1913209962Smm		    vdev_writeable(vd)) {
1914185029Spjd			space_seg_t *ss;
1915185029Spjd
1916209962Smm			ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1917185029Spjd			thismin = ss->ss_start - 1;
1918209962Smm			ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1919185029Spjd			thismax = ss->ss_end;
1920185029Spjd			needed = B_TRUE;
1921185029Spjd		}
1922185029Spjd		mutex_exit(&vd->vdev_dtl_lock);
1923185029Spjd	} else {
1924209962Smm		for (int c = 0; c < vd->vdev_children; c++) {
1925185029Spjd			vdev_t *cvd = vd->vdev_child[c];
1926185029Spjd			uint64_t cmin, cmax;
1927185029Spjd
1928185029Spjd			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1929185029Spjd				thismin = MIN(thismin, cmin);
1930185029Spjd				thismax = MAX(thismax, cmax);
1931185029Spjd				needed = B_TRUE;
1932185029Spjd			}
1933185029Spjd		}
1934185029Spjd	}
1935185029Spjd
1936185029Spjd	if (needed && minp) {
1937185029Spjd		*minp = thismin;
1938185029Spjd		*maxp = thismax;
1939185029Spjd	}
1940185029Spjd	return (needed);
1941185029Spjd}
1942185029Spjd
1943168404Spjdvoid
1944168404Spjdvdev_load(vdev_t *vd)
1945168404Spjd{
1946168404Spjd	/*
1947168404Spjd	 * Recursively load all children.
1948168404Spjd	 */
1949209962Smm	for (int c = 0; c < vd->vdev_children; c++)
1950168404Spjd		vdev_load(vd->vdev_child[c]);
1951168404Spjd
1952168404Spjd	/*
1953168404Spjd	 * If this is a top-level vdev, initialize its metaslabs.
1954168404Spjd	 */
1955219089Spjd	if (vd == vd->vdev_top && !vd->vdev_ishole &&
1956168404Spjd	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1957168404Spjd	    vdev_metaslab_init(vd, 0) != 0))
1958168404Spjd		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1959168404Spjd		    VDEV_AUX_CORRUPT_DATA);
1960168404Spjd
1961168404Spjd	/*
1962168404Spjd	 * If this is a leaf vdev, load its DTL.
1963168404Spjd	 */
1964168404Spjd	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1965168404Spjd		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1966168404Spjd		    VDEV_AUX_CORRUPT_DATA);
1967168404Spjd}
1968168404Spjd
1969168404Spjd/*
1970185029Spjd * The special vdev case is used for hot spares and l2cache devices.  Its
1971185029Spjd * sole purpose it to set the vdev state for the associated vdev.  To do this,
1972185029Spjd * we make sure that we can open the underlying device, then try to read the
1973185029Spjd * label, and make sure that the label is sane and that it hasn't been
1974185029Spjd * repurposed to another pool.
1975168404Spjd */
1976168404Spjdint
1977185029Spjdvdev_validate_aux(vdev_t *vd)
1978168404Spjd{
1979168404Spjd	nvlist_t *label;
1980168404Spjd	uint64_t guid, version;
1981168404Spjd	uint64_t state;
1982168404Spjd
1983185029Spjd	if (!vdev_readable(vd))
1984185029Spjd		return (0);
1985185029Spjd
1986239620Smm	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
1987168404Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1988168404Spjd		    VDEV_AUX_CORRUPT_DATA);
1989168404Spjd		return (-1);
1990168404Spjd	}
1991168404Spjd
1992168404Spjd	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1993236884Smm	    !SPA_VERSION_IS_SUPPORTED(version) ||
1994168404Spjd	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1995168404Spjd	    guid != vd->vdev_guid ||
1996168404Spjd	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1997168404Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1998168404Spjd		    VDEV_AUX_CORRUPT_DATA);
1999168404Spjd		nvlist_free(label);
2000168404Spjd		return (-1);
2001168404Spjd	}
2002168404Spjd
2003168404Spjd	/*
2004168404Spjd	 * We don't actually check the pool state here.  If it's in fact in
2005168404Spjd	 * use by another pool, we update this fact on the fly when requested.
2006168404Spjd	 */
2007168404Spjd	nvlist_free(label);
2008168404Spjd	return (0);
2009168404Spjd}
2010168404Spjd
2011168404Spjdvoid
2012219089Spjdvdev_remove(vdev_t *vd, uint64_t txg)
2013219089Spjd{
2014219089Spjd	spa_t *spa = vd->vdev_spa;
2015219089Spjd	objset_t *mos = spa->spa_meta_objset;
2016219089Spjd	dmu_tx_t *tx;
2017219089Spjd
2018219089Spjd	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2019219089Spjd
2020219089Spjd	if (vd->vdev_dtl_smo.smo_object) {
2021240415Smm		ASSERT0(vd->vdev_dtl_smo.smo_alloc);
2022219089Spjd		(void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2023219089Spjd		vd->vdev_dtl_smo.smo_object = 0;
2024219089Spjd	}
2025219089Spjd
2026219089Spjd	if (vd->vdev_ms != NULL) {
2027219089Spjd		for (int m = 0; m < vd->vdev_ms_count; m++) {
2028219089Spjd			metaslab_t *msp = vd->vdev_ms[m];
2029219089Spjd
2030219089Spjd			if (msp == NULL || msp->ms_smo.smo_object == 0)
2031219089Spjd				continue;
2032219089Spjd
2033240415Smm			ASSERT0(msp->ms_smo.smo_alloc);
2034219089Spjd			(void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2035219089Spjd			msp->ms_smo.smo_object = 0;
2036219089Spjd		}
2037219089Spjd	}
2038219089Spjd
2039219089Spjd	if (vd->vdev_ms_array) {
2040219089Spjd		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2041219089Spjd		vd->vdev_ms_array = 0;
2042219089Spjd		vd->vdev_ms_shift = 0;
2043219089Spjd	}
2044219089Spjd	dmu_tx_commit(tx);
2045219089Spjd}
2046219089Spjd
2047219089Spjdvoid
2048168404Spjdvdev_sync_done(vdev_t *vd, uint64_t txg)
2049168404Spjd{
2050168404Spjd	metaslab_t *msp;
2051211931Smm	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2052168404Spjd
2053219089Spjd	ASSERT(!vd->vdev_ishole);
2054219089Spjd
2055168404Spjd	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2056168404Spjd		metaslab_sync_done(msp, txg);
2057211931Smm
2058211931Smm	if (reassess)
2059211931Smm		metaslab_sync_reassess(vd->vdev_mg);
2060168404Spjd}
2061168404Spjd
2062168404Spjdvoid
2063168404Spjdvdev_sync(vdev_t *vd, uint64_t txg)
2064168404Spjd{
2065168404Spjd	spa_t *spa = vd->vdev_spa;
2066168404Spjd	vdev_t *lvd;
2067168404Spjd	metaslab_t *msp;
2068168404Spjd	dmu_tx_t *tx;
2069168404Spjd
2070219089Spjd	ASSERT(!vd->vdev_ishole);
2071219089Spjd
2072168404Spjd	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2073168404Spjd		ASSERT(vd == vd->vdev_top);
2074168404Spjd		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2075168404Spjd		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2076168404Spjd		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2077168404Spjd		ASSERT(vd->vdev_ms_array != 0);
2078168404Spjd		vdev_config_dirty(vd);
2079168404Spjd		dmu_tx_commit(tx);
2080168404Spjd	}
2081168404Spjd
2082219089Spjd	/*
2083219089Spjd	 * Remove the metadata associated with this vdev once it's empty.
2084219089Spjd	 */
2085219089Spjd	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2086219089Spjd		vdev_remove(vd, txg);
2087219089Spjd
2088168404Spjd	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2089168404Spjd		metaslab_sync(msp, txg);
2090168404Spjd		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2091168404Spjd	}
2092168404Spjd
2093168404Spjd	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2094168404Spjd		vdev_dtl_sync(lvd, txg);
2095168404Spjd
2096168404Spjd	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2097168404Spjd}
2098168404Spjd
2099168404Spjduint64_t
2100168404Spjdvdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2101168404Spjd{
2102168404Spjd	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2103168404Spjd}
2104168404Spjd
2105185029Spjd/*
2106185029Spjd * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2107185029Spjd * not be opened, and no I/O is attempted.
2108185029Spjd */
2109185029Spjdint
2110219089Spjdvdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2111168404Spjd{
2112219089Spjd	vdev_t *vd, *tvd;
2113168404Spjd
2114219089Spjd	spa_vdev_state_enter(spa, SCL_NONE);
2115185029Spjd
2116185029Spjd	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2117185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2118185029Spjd
2119185029Spjd	if (!vd->vdev_ops->vdev_op_leaf)
2120185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2121185029Spjd
2122219089Spjd	tvd = vd->vdev_top;
2123219089Spjd
2124185029Spjd	/*
2125219089Spjd	 * We don't directly use the aux state here, but if we do a
2126219089Spjd	 * vdev_reopen(), we need this value to be present to remember why we
2127219089Spjd	 * were faulted.
2128219089Spjd	 */
2129219089Spjd	vd->vdev_label_aux = aux;
2130219089Spjd
2131219089Spjd	/*
2132185029Spjd	 * Faulted state takes precedence over degraded.
2133185029Spjd	 */
2134219089Spjd	vd->vdev_delayed_close = B_FALSE;
2135185029Spjd	vd->vdev_faulted = 1ULL;
2136185029Spjd	vd->vdev_degraded = 0ULL;
2137219089Spjd	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2138185029Spjd
2139185029Spjd	/*
2140219089Spjd	 * If this device has the only valid copy of the data, then
2141219089Spjd	 * back off and simply mark the vdev as degraded instead.
2142185029Spjd	 */
2143219089Spjd	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2144185029Spjd		vd->vdev_degraded = 1ULL;
2145185029Spjd		vd->vdev_faulted = 0ULL;
2146185029Spjd
2147185029Spjd		/*
2148185029Spjd		 * If we reopen the device and it's not dead, only then do we
2149185029Spjd		 * mark it degraded.
2150185029Spjd		 */
2151219089Spjd		vdev_reopen(tvd);
2152185029Spjd
2153219089Spjd		if (vdev_readable(vd))
2154219089Spjd			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2155185029Spjd	}
2156185029Spjd
2157185029Spjd	return (spa_vdev_state_exit(spa, vd, 0));
2158168404Spjd}
2159168404Spjd
2160185029Spjd/*
2161185029Spjd * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2162185029Spjd * user that something is wrong.  The vdev continues to operate as normal as far
2163185029Spjd * as I/O is concerned.
2164185029Spjd */
2165185029Spjdint
2166219089Spjdvdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2167168404Spjd{
2168185029Spjd	vdev_t *vd;
2169168404Spjd
2170219089Spjd	spa_vdev_state_enter(spa, SCL_NONE);
2171168404Spjd
2172185029Spjd	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2173185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2174168404Spjd
2175185029Spjd	if (!vd->vdev_ops->vdev_op_leaf)
2176185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2177185029Spjd
2178185029Spjd	/*
2179185029Spjd	 * If the vdev is already faulted, then don't do anything.
2180185029Spjd	 */
2181185029Spjd	if (vd->vdev_faulted || vd->vdev_degraded)
2182185029Spjd		return (spa_vdev_state_exit(spa, NULL, 0));
2183185029Spjd
2184185029Spjd	vd->vdev_degraded = 1ULL;
2185185029Spjd	if (!vdev_is_dead(vd))
2186185029Spjd		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2187219089Spjd		    aux);
2188185029Spjd
2189185029Spjd	return (spa_vdev_state_exit(spa, vd, 0));
2190168404Spjd}
2191168404Spjd
2192185029Spjd/*
2193185029Spjd * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2194185029Spjd * any attached spare device should be detached when the device finishes
2195185029Spjd * resilvering.  Second, the online should be treated like a 'test' online case,
2196185029Spjd * so no FMA events are generated if the device fails to open.
2197185029Spjd */
2198168404Spjdint
2199185029Spjdvdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2200168404Spjd{
2201219089Spjd	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2202168404Spjd
2203219089Spjd	spa_vdev_state_enter(spa, SCL_NONE);
2204168404Spjd
2205185029Spjd	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2206185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2207168404Spjd
2208168404Spjd	if (!vd->vdev_ops->vdev_op_leaf)
2209185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2210168404Spjd
2211219089Spjd	tvd = vd->vdev_top;
2212168404Spjd	vd->vdev_offline = B_FALSE;
2213168404Spjd	vd->vdev_tmpoffline = B_FALSE;
2214185029Spjd	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2215185029Spjd	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2216219089Spjd
2217219089Spjd	/* XXX - L2ARC 1.0 does not support expansion */
2218219089Spjd	if (!vd->vdev_aux) {
2219219089Spjd		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2220219089Spjd			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2221219089Spjd	}
2222219089Spjd
2223219089Spjd	vdev_reopen(tvd);
2224185029Spjd	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2225168404Spjd
2226219089Spjd	if (!vd->vdev_aux) {
2227219089Spjd		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2228219089Spjd			pvd->vdev_expanding = B_FALSE;
2229219089Spjd	}
2230219089Spjd
2231185029Spjd	if (newstate)
2232185029Spjd		*newstate = vd->vdev_state;
2233185029Spjd	if ((flags & ZFS_ONLINE_UNSPARE) &&
2234185029Spjd	    !vdev_is_dead(vd) && vd->vdev_parent &&
2235185029Spjd	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2236185029Spjd	    vd->vdev_parent->vdev_child[0] == vd)
2237185029Spjd		vd->vdev_unspare = B_TRUE;
2238168404Spjd
2239219089Spjd	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2240219089Spjd
2241219089Spjd		/* XXX - L2ARC 1.0 does not support expansion */
2242219089Spjd		if (vd->vdev_aux)
2243219089Spjd			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2244219089Spjd		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2245219089Spjd	}
2246209962Smm	return (spa_vdev_state_exit(spa, vd, 0));
2247168404Spjd}
2248168404Spjd
2249219089Spjdstatic int
2250219089Spjdvdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2251168404Spjd{
2252213197Smm	vdev_t *vd, *tvd;
2253219089Spjd	int error = 0;
2254219089Spjd	uint64_t generation;
2255219089Spjd	metaslab_group_t *mg;
2256168404Spjd
2257219089Spjdtop:
2258219089Spjd	spa_vdev_state_enter(spa, SCL_ALLOC);
2259168404Spjd
2260185029Spjd	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2261185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2262168404Spjd
2263168404Spjd	if (!vd->vdev_ops->vdev_op_leaf)
2264185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2265168404Spjd
2266213197Smm	tvd = vd->vdev_top;
2267219089Spjd	mg = tvd->vdev_mg;
2268219089Spjd	generation = spa->spa_config_generation + 1;
2269213197Smm
2270168404Spjd	/*
2271168404Spjd	 * If the device isn't already offline, try to offline it.
2272168404Spjd	 */
2273168404Spjd	if (!vd->vdev_offline) {
2274168404Spjd		/*
2275209962Smm		 * If this device has the only valid copy of some data,
2276213197Smm		 * don't allow it to be offlined. Log devices are always
2277213197Smm		 * expendable.
2278168404Spjd		 */
2279213197Smm		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2280213197Smm		    vdev_dtl_required(vd))
2281185029Spjd			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2282168404Spjd
2283168404Spjd		/*
2284219089Spjd		 * If the top-level is a slog and it has had allocations
2285219089Spjd		 * then proceed.  We check that the vdev's metaslab group
2286219089Spjd		 * is not NULL since it's possible that we may have just
2287219089Spjd		 * added this vdev but not yet initialized its metaslabs.
2288219089Spjd		 */
2289219089Spjd		if (tvd->vdev_islog && mg != NULL) {
2290219089Spjd			/*
2291219089Spjd			 * Prevent any future allocations.
2292219089Spjd			 */
2293219089Spjd			metaslab_group_passivate(mg);
2294219089Spjd			(void) spa_vdev_state_exit(spa, vd, 0);
2295219089Spjd
2296219089Spjd			error = spa_offline_log(spa);
2297219089Spjd
2298219089Spjd			spa_vdev_state_enter(spa, SCL_ALLOC);
2299219089Spjd
2300219089Spjd			/*
2301219089Spjd			 * Check to see if the config has changed.
2302219089Spjd			 */
2303219089Spjd			if (error || generation != spa->spa_config_generation) {
2304219089Spjd				metaslab_group_activate(mg);
2305219089Spjd				if (error)
2306219089Spjd					return (spa_vdev_state_exit(spa,
2307219089Spjd					    vd, error));
2308219089Spjd				(void) spa_vdev_state_exit(spa, vd, 0);
2309219089Spjd				goto top;
2310219089Spjd			}
2311240415Smm			ASSERT0(tvd->vdev_stat.vs_alloc);
2312219089Spjd		}
2313219089Spjd
2314219089Spjd		/*
2315168404Spjd		 * Offline this device and reopen its top-level vdev.
2316213197Smm		 * If the top-level vdev is a log device then just offline
2317213197Smm		 * it. Otherwise, if this action results in the top-level
2318213197Smm		 * vdev becoming unusable, undo it and fail the request.
2319168404Spjd		 */
2320168404Spjd		vd->vdev_offline = B_TRUE;
2321213197Smm		vdev_reopen(tvd);
2322213197Smm
2323213197Smm		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2324213197Smm		    vdev_is_dead(tvd)) {
2325168404Spjd			vd->vdev_offline = B_FALSE;
2326213197Smm			vdev_reopen(tvd);
2327185029Spjd			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2328168404Spjd		}
2329219089Spjd
2330219089Spjd		/*
2331219089Spjd		 * Add the device back into the metaslab rotor so that
2332219089Spjd		 * once we online the device it's open for business.
2333219089Spjd		 */
2334219089Spjd		if (tvd->vdev_islog && mg != NULL)
2335219089Spjd			metaslab_group_activate(mg);
2336168404Spjd	}
2337168404Spjd
2338185029Spjd	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2339168404Spjd
2340219089Spjd	return (spa_vdev_state_exit(spa, vd, 0));
2341219089Spjd}
2342213197Smm
2343219089Spjdint
2344219089Spjdvdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2345219089Spjd{
2346219089Spjd	int error;
2347213197Smm
2348219089Spjd	mutex_enter(&spa->spa_vdev_top_lock);
2349219089Spjd	error = vdev_offline_locked(spa, guid, flags);
2350219089Spjd	mutex_exit(&spa->spa_vdev_top_lock);
2351219089Spjd
2352219089Spjd	return (error);
2353168404Spjd}
2354168404Spjd
2355168404Spjd/*
2356168404Spjd * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2357168404Spjd * vdev_offline(), we assume the spa config is locked.  We also clear all
2358168404Spjd * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2359168404Spjd */
2360168404Spjdvoid
2361168404Spjdvdev_clear(spa_t *spa, vdev_t *vd)
2362168404Spjd{
2363185029Spjd	vdev_t *rvd = spa->spa_root_vdev;
2364168404Spjd
2365185029Spjd	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2366185029Spjd
2367168404Spjd	if (vd == NULL)
2368185029Spjd		vd = rvd;
2369168404Spjd
2370168404Spjd	vd->vdev_stat.vs_read_errors = 0;
2371168404Spjd	vd->vdev_stat.vs_write_errors = 0;
2372168404Spjd	vd->vdev_stat.vs_checksum_errors = 0;
2373168404Spjd
2374185029Spjd	for (int c = 0; c < vd->vdev_children; c++)
2375168404Spjd		vdev_clear(spa, vd->vdev_child[c]);
2376185029Spjd
2377185029Spjd	/*
2378185029Spjd	 * If we're in the FAULTED state or have experienced failed I/O, then
2379185029Spjd	 * clear the persistent state and attempt to reopen the device.  We
2380185029Spjd	 * also mark the vdev config dirty, so that the new faulted state is
2381185029Spjd	 * written out to disk.
2382185029Spjd	 */
2383185029Spjd	if (vd->vdev_faulted || vd->vdev_degraded ||
2384185029Spjd	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2385185029Spjd
2386219089Spjd		/*
2387219089Spjd		 * When reopening in reponse to a clear event, it may be due to
2388219089Spjd		 * a fmadm repair request.  In this case, if the device is
2389219089Spjd		 * still broken, we want to still post the ereport again.
2390219089Spjd		 */
2391219089Spjd		vd->vdev_forcefault = B_TRUE;
2392219089Spjd
2393219089Spjd		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2394185029Spjd		vd->vdev_cant_read = B_FALSE;
2395185029Spjd		vd->vdev_cant_write = B_FALSE;
2396185029Spjd
2397219089Spjd		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2398185029Spjd
2399219089Spjd		vd->vdev_forcefault = B_FALSE;
2400219089Spjd
2401219089Spjd		if (vd != rvd && vdev_writeable(vd->vdev_top))
2402185029Spjd			vdev_state_dirty(vd->vdev_top);
2403185029Spjd
2404185029Spjd		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2405185029Spjd			spa_async_request(spa, SPA_ASYNC_RESILVER);
2406185029Spjd
2407185029Spjd		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2408185029Spjd	}
2409219089Spjd
2410219089Spjd	/*
2411219089Spjd	 * When clearing a FMA-diagnosed fault, we always want to
2412219089Spjd	 * unspare the device, as we assume that the original spare was
2413219089Spjd	 * done in response to the FMA fault.
2414219089Spjd	 */
2415219089Spjd	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2416219089Spjd	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2417219089Spjd	    vd->vdev_parent->vdev_child[0] == vd)
2418219089Spjd		vd->vdev_unspare = B_TRUE;
2419168404Spjd}
2420168404Spjd
2421185029Spjdboolean_t
2422168404Spjdvdev_is_dead(vdev_t *vd)
2423168404Spjd{
2424219089Spjd	/*
2425219089Spjd	 * Holes and missing devices are always considered "dead".
2426219089Spjd	 * This simplifies the code since we don't have to check for
2427219089Spjd	 * these types of devices in the various code paths.
2428219089Spjd	 * Instead we rely on the fact that we skip over dead devices
2429219089Spjd	 * before issuing I/O to them.
2430219089Spjd	 */
2431219089Spjd	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2432219089Spjd	    vd->vdev_ops == &vdev_missing_ops);
2433168404Spjd}
2434168404Spjd
2435185029Spjdboolean_t
2436185029Spjdvdev_readable(vdev_t *vd)
2437168404Spjd{
2438185029Spjd	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2439185029Spjd}
2440168404Spjd
2441185029Spjdboolean_t
2442185029Spjdvdev_writeable(vdev_t *vd)
2443185029Spjd{
2444185029Spjd	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2445185029Spjd}
2446168404Spjd
2447185029Spjdboolean_t
2448208370Smmvdev_allocatable(vdev_t *vd)
2449208370Smm{
2450209962Smm	uint64_t state = vd->vdev_state;
2451209962Smm
2452208370Smm	/*
2453209962Smm	 * We currently allow allocations from vdevs which may be in the
2454208370Smm	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2455208370Smm	 * fails to reopen then we'll catch it later when we're holding
2456209962Smm	 * the proper locks.  Note that we have to get the vdev state
2457209962Smm	 * in a local variable because although it changes atomically,
2458209962Smm	 * we're asking two separate questions about it.
2459208370Smm	 */
2460209962Smm	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2461219089Spjd	    !vd->vdev_cant_write && !vd->vdev_ishole);
2462208370Smm}
2463208370Smm
2464208370Smmboolean_t
2465185029Spjdvdev_accessible(vdev_t *vd, zio_t *zio)
2466185029Spjd{
2467185029Spjd	ASSERT(zio->io_vd == vd);
2468168404Spjd
2469185029Spjd	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2470185029Spjd		return (B_FALSE);
2471168404Spjd
2472185029Spjd	if (zio->io_type == ZIO_TYPE_READ)
2473185029Spjd		return (!vd->vdev_cant_read);
2474168404Spjd
2475185029Spjd	if (zio->io_type == ZIO_TYPE_WRITE)
2476185029Spjd		return (!vd->vdev_cant_write);
2477168404Spjd
2478185029Spjd	return (B_TRUE);
2479168404Spjd}
2480168404Spjd
2481168404Spjd/*
2482168404Spjd * Get statistics for the given vdev.
2483168404Spjd */
2484168404Spjdvoid
2485168404Spjdvdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2486168404Spjd{
2487168404Spjd	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2488168404Spjd
2489168404Spjd	mutex_enter(&vd->vdev_stat_lock);
2490168404Spjd	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2491168404Spjd	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2492168404Spjd	vs->vs_state = vd->vdev_state;
2493219089Spjd	vs->vs_rsize = vdev_get_min_asize(vd);
2494219089Spjd	if (vd->vdev_ops->vdev_op_leaf)
2495219089Spjd		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2496236155Smm	vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2497168404Spjd	mutex_exit(&vd->vdev_stat_lock);
2498168404Spjd
2499168404Spjd	/*
2500168404Spjd	 * If we're getting stats on the root vdev, aggregate the I/O counts
2501168404Spjd	 * over all top-level vdevs (i.e. the direct children of the root).
2502168404Spjd	 */
2503168404Spjd	if (vd == rvd) {
2504185029Spjd		for (int c = 0; c < rvd->vdev_children; c++) {
2505168404Spjd			vdev_t *cvd = rvd->vdev_child[c];
2506168404Spjd			vdev_stat_t *cvs = &cvd->vdev_stat;
2507168404Spjd
2508168404Spjd			mutex_enter(&vd->vdev_stat_lock);
2509185029Spjd			for (int t = 0; t < ZIO_TYPES; t++) {
2510168404Spjd				vs->vs_ops[t] += cvs->vs_ops[t];
2511168404Spjd				vs->vs_bytes[t] += cvs->vs_bytes[t];
2512168404Spjd			}
2513219089Spjd			cvs->vs_scan_removing = cvd->vdev_removing;
2514168404Spjd			mutex_exit(&vd->vdev_stat_lock);
2515168404Spjd		}
2516168404Spjd	}
2517168404Spjd}
2518168404Spjd
2519168404Spjdvoid
2520185029Spjdvdev_clear_stats(vdev_t *vd)
2521168404Spjd{
2522185029Spjd	mutex_enter(&vd->vdev_stat_lock);
2523185029Spjd	vd->vdev_stat.vs_space = 0;
2524185029Spjd	vd->vdev_stat.vs_dspace = 0;
2525185029Spjd	vd->vdev_stat.vs_alloc = 0;
2526185029Spjd	mutex_exit(&vd->vdev_stat_lock);
2527185029Spjd}
2528185029Spjd
2529185029Spjdvoid
2530219089Spjdvdev_scan_stat_init(vdev_t *vd)
2531219089Spjd{
2532219089Spjd	vdev_stat_t *vs = &vd->vdev_stat;
2533219089Spjd
2534219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
2535219089Spjd		vdev_scan_stat_init(vd->vdev_child[c]);
2536219089Spjd
2537219089Spjd	mutex_enter(&vd->vdev_stat_lock);
2538219089Spjd	vs->vs_scan_processed = 0;
2539219089Spjd	mutex_exit(&vd->vdev_stat_lock);
2540219089Spjd}
2541219089Spjd
2542219089Spjdvoid
2543185029Spjdvdev_stat_update(zio_t *zio, uint64_t psize)
2544185029Spjd{
2545209962Smm	spa_t *spa = zio->io_spa;
2546209962Smm	vdev_t *rvd = spa->spa_root_vdev;
2547185029Spjd	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2548168404Spjd	vdev_t *pvd;
2549168404Spjd	uint64_t txg = zio->io_txg;
2550168404Spjd	vdev_stat_t *vs = &vd->vdev_stat;
2551168404Spjd	zio_type_t type = zio->io_type;
2552168404Spjd	int flags = zio->io_flags;
2553168404Spjd
2554185029Spjd	/*
2555185029Spjd	 * If this i/o is a gang leader, it didn't do any actual work.
2556185029Spjd	 */
2557185029Spjd	if (zio->io_gang_tree)
2558185029Spjd		return;
2559185029Spjd
2560168404Spjd	if (zio->io_error == 0) {
2561185029Spjd		/*
2562185029Spjd		 * If this is a root i/o, don't count it -- we've already
2563185029Spjd		 * counted the top-level vdevs, and vdev_get_stats() will
2564185029Spjd		 * aggregate them when asked.  This reduces contention on
2565185029Spjd		 * the root vdev_stat_lock and implicitly handles blocks
2566185029Spjd		 * that compress away to holes, for which there is no i/o.
2567185029Spjd		 * (Holes never create vdev children, so all the counters
2568185029Spjd		 * remain zero, which is what we want.)
2569185029Spjd		 *
2570185029Spjd		 * Note: this only applies to successful i/o (io_error == 0)
2571185029Spjd		 * because unlike i/o counts, errors are not additive.
2572185029Spjd		 * When reading a ditto block, for example, failure of
2573185029Spjd		 * one top-level vdev does not imply a root-level error.
2574185029Spjd		 */
2575185029Spjd		if (vd == rvd)
2576185029Spjd			return;
2577185029Spjd
2578185029Spjd		ASSERT(vd == zio->io_vd);
2579209962Smm
2580209962Smm		if (flags & ZIO_FLAG_IO_BYPASS)
2581209962Smm			return;
2582209962Smm
2583209962Smm		mutex_enter(&vd->vdev_stat_lock);
2584209962Smm
2585185029Spjd		if (flags & ZIO_FLAG_IO_REPAIR) {
2586219089Spjd			if (flags & ZIO_FLAG_SCAN_THREAD) {
2587219089Spjd				dsl_scan_phys_t *scn_phys =
2588219089Spjd				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2589219089Spjd				uint64_t *processed = &scn_phys->scn_processed;
2590219089Spjd
2591219089Spjd				/* XXX cleanup? */
2592219089Spjd				if (vd->vdev_ops->vdev_op_leaf)
2593219089Spjd					atomic_add_64(processed, psize);
2594219089Spjd				vs->vs_scan_processed += psize;
2595219089Spjd			}
2596219089Spjd
2597209962Smm			if (flags & ZIO_FLAG_SELF_HEAL)
2598185029Spjd				vs->vs_self_healed += psize;
2599168404Spjd		}
2600209962Smm
2601209962Smm		vs->vs_ops[type]++;
2602209962Smm		vs->vs_bytes[type] += psize;
2603209962Smm
2604209962Smm		mutex_exit(&vd->vdev_stat_lock);
2605168404Spjd		return;
2606168404Spjd	}
2607168404Spjd
2608168404Spjd	if (flags & ZIO_FLAG_SPECULATIVE)
2609168404Spjd		return;
2610168404Spjd
2611213198Smm	/*
2612213198Smm	 * If this is an I/O error that is going to be retried, then ignore the
2613213198Smm	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2614213198Smm	 * hard errors, when in reality they can happen for any number of
2615213198Smm	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2616213198Smm	 */
2617213198Smm	if (zio->io_error == EIO &&
2618213198Smm	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2619213198Smm		return;
2620213198Smm
2621219089Spjd	/*
2622219089Spjd	 * Intent logs writes won't propagate their error to the root
2623219089Spjd	 * I/O so don't mark these types of failures as pool-level
2624219089Spjd	 * errors.
2625219089Spjd	 */
2626219089Spjd	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2627219089Spjd		return;
2628219089Spjd
2629185029Spjd	mutex_enter(&vd->vdev_stat_lock);
2630209962Smm	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2631185029Spjd		if (zio->io_error == ECKSUM)
2632185029Spjd			vs->vs_checksum_errors++;
2633185029Spjd		else
2634185029Spjd			vs->vs_read_errors++;
2635168404Spjd	}
2636209962Smm	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2637185029Spjd		vs->vs_write_errors++;
2638185029Spjd	mutex_exit(&vd->vdev_stat_lock);
2639168404Spjd
2640209962Smm	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2641209962Smm	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2642219089Spjd	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2643219089Spjd	    spa->spa_claiming)) {
2644209962Smm		/*
2645219089Spjd		 * This is either a normal write (not a repair), or it's
2646219089Spjd		 * a repair induced by the scrub thread, or it's a repair
2647219089Spjd		 * made by zil_claim() during spa_load() in the first txg.
2648219089Spjd		 * In the normal case, we commit the DTL change in the same
2649219089Spjd		 * txg as the block was born.  In the scrub-induced repair
2650219089Spjd		 * case, we know that scrubs run in first-pass syncing context,
2651219089Spjd		 * so we commit the DTL change in spa_syncing_txg(spa).
2652219089Spjd		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2653209962Smm		 *
2654209962Smm		 * We currently do not make DTL entries for failed spontaneous
2655209962Smm		 * self-healing writes triggered by normal (non-scrubbing)
2656209962Smm		 * reads, because we have no transactional context in which to
2657209962Smm		 * do so -- and it's not clear that it'd be desirable anyway.
2658209962Smm		 */
2659209962Smm		if (vd->vdev_ops->vdev_op_leaf) {
2660209962Smm			uint64_t commit_txg = txg;
2661219089Spjd			if (flags & ZIO_FLAG_SCAN_THREAD) {
2662209962Smm				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2663209962Smm				ASSERT(spa_sync_pass(spa) == 1);
2664209962Smm				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2665219089Spjd				commit_txg = spa_syncing_txg(spa);
2666219089Spjd			} else if (spa->spa_claiming) {
2667219089Spjd				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2668219089Spjd				commit_txg = spa_first_txg(spa);
2669209962Smm			}
2670219089Spjd			ASSERT(commit_txg >= spa_syncing_txg(spa));
2671209962Smm			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2672168404Spjd				return;
2673209962Smm			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2674209962Smm				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2675209962Smm			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2676168404Spjd		}
2677209962Smm		if (vd != rvd)
2678209962Smm			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2679168404Spjd	}
2680168404Spjd}
2681168404Spjd
2682168404Spjd/*
2683219089Spjd * Update the in-core space usage stats for this vdev, its metaslab class,
2684219089Spjd * and the root vdev.
2685168404Spjd */
2686168404Spjdvoid
2687219089Spjdvdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2688219089Spjd    int64_t space_delta)
2689168404Spjd{
2690168404Spjd	int64_t dspace_delta = space_delta;
2691185029Spjd	spa_t *spa = vd->vdev_spa;
2692185029Spjd	vdev_t *rvd = spa->spa_root_vdev;
2693219089Spjd	metaslab_group_t *mg = vd->vdev_mg;
2694219089Spjd	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2695168404Spjd
2696185029Spjd	ASSERT(vd == vd->vdev_top);
2697168404Spjd
2698185029Spjd	/*
2699185029Spjd	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2700185029Spjd	 * factor.  We must calculate this here and not at the root vdev
2701185029Spjd	 * because the root vdev's psize-to-asize is simply the max of its
2702185029Spjd	 * childrens', thus not accurate enough for us.
2703185029Spjd	 */
2704185029Spjd	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2705213197Smm	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2706185029Spjd	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2707185029Spjd	    vd->vdev_deflate_ratio;
2708185029Spjd
2709185029Spjd	mutex_enter(&vd->vdev_stat_lock);
2710219089Spjd	vd->vdev_stat.vs_alloc += alloc_delta;
2711185029Spjd	vd->vdev_stat.vs_space += space_delta;
2712185029Spjd	vd->vdev_stat.vs_dspace += dspace_delta;
2713185029Spjd	mutex_exit(&vd->vdev_stat_lock);
2714185029Spjd
2715219089Spjd	if (mc == spa_normal_class(spa)) {
2716185029Spjd		mutex_enter(&rvd->vdev_stat_lock);
2717219089Spjd		rvd->vdev_stat.vs_alloc += alloc_delta;
2718185029Spjd		rvd->vdev_stat.vs_space += space_delta;
2719185029Spjd		rvd->vdev_stat.vs_dspace += dspace_delta;
2720185029Spjd		mutex_exit(&rvd->vdev_stat_lock);
2721185029Spjd	}
2722219089Spjd
2723219089Spjd	if (mc != NULL) {
2724219089Spjd		ASSERT(rvd == vd->vdev_parent);
2725219089Spjd		ASSERT(vd->vdev_ms_count != 0);
2726219089Spjd
2727219089Spjd		metaslab_class_space_update(mc,
2728219089Spjd		    alloc_delta, defer_delta, space_delta, dspace_delta);
2729219089Spjd	}
2730168404Spjd}
2731168404Spjd
2732168404Spjd/*
2733168404Spjd * Mark a top-level vdev's config as dirty, placing it on the dirty list
2734168404Spjd * so that it will be written out next time the vdev configuration is synced.
2735168404Spjd * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2736168404Spjd */
2737168404Spjdvoid
2738168404Spjdvdev_config_dirty(vdev_t *vd)
2739168404Spjd{
2740168404Spjd	spa_t *spa = vd->vdev_spa;
2741168404Spjd	vdev_t *rvd = spa->spa_root_vdev;
2742168404Spjd	int c;
2743168404Spjd
2744219089Spjd	ASSERT(spa_writeable(spa));
2745219089Spjd
2746168404Spjd	/*
2747209962Smm	 * If this is an aux vdev (as with l2cache and spare devices), then we
2748209962Smm	 * update the vdev config manually and set the sync flag.
2749185029Spjd	 */
2750185029Spjd	if (vd->vdev_aux != NULL) {
2751185029Spjd		spa_aux_vdev_t *sav = vd->vdev_aux;
2752185029Spjd		nvlist_t **aux;
2753185029Spjd		uint_t naux;
2754185029Spjd
2755185029Spjd		for (c = 0; c < sav->sav_count; c++) {
2756185029Spjd			if (sav->sav_vdevs[c] == vd)
2757185029Spjd				break;
2758185029Spjd		}
2759185029Spjd
2760185029Spjd		if (c == sav->sav_count) {
2761185029Spjd			/*
2762185029Spjd			 * We're being removed.  There's nothing more to do.
2763185029Spjd			 */
2764185029Spjd			ASSERT(sav->sav_sync == B_TRUE);
2765185029Spjd			return;
2766185029Spjd		}
2767185029Spjd
2768185029Spjd		sav->sav_sync = B_TRUE;
2769185029Spjd
2770209962Smm		if (nvlist_lookup_nvlist_array(sav->sav_config,
2771209962Smm		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2772209962Smm			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2773209962Smm			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2774209962Smm		}
2775185029Spjd
2776185029Spjd		ASSERT(c < naux);
2777185029Spjd
2778185029Spjd		/*
2779185029Spjd		 * Setting the nvlist in the middle if the array is a little
2780185029Spjd		 * sketchy, but it will work.
2781185029Spjd		 */
2782185029Spjd		nvlist_free(aux[c]);
2783219089Spjd		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2784185029Spjd
2785185029Spjd		return;
2786185029Spjd	}
2787185029Spjd
2788185029Spjd	/*
2789185029Spjd	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2790185029Spjd	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2791185029Spjd	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2792168404Spjd	 * so this is sufficient to ensure mutual exclusion.
2793168404Spjd	 */
2794185029Spjd	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2795185029Spjd	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2796185029Spjd	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2797168404Spjd
2798168404Spjd	if (vd == rvd) {
2799168404Spjd		for (c = 0; c < rvd->vdev_children; c++)
2800168404Spjd			vdev_config_dirty(rvd->vdev_child[c]);
2801168404Spjd	} else {
2802168404Spjd		ASSERT(vd == vd->vdev_top);
2803168404Spjd
2804219089Spjd		if (!list_link_active(&vd->vdev_config_dirty_node) &&
2805219089Spjd		    !vd->vdev_ishole)
2806185029Spjd			list_insert_head(&spa->spa_config_dirty_list, vd);
2807168404Spjd	}
2808168404Spjd}
2809168404Spjd
2810168404Spjdvoid
2811168404Spjdvdev_config_clean(vdev_t *vd)
2812168404Spjd{
2813168404Spjd	spa_t *spa = vd->vdev_spa;
2814168404Spjd
2815185029Spjd	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2816185029Spjd	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2817185029Spjd	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2818168404Spjd
2819185029Spjd	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2820185029Spjd	list_remove(&spa->spa_config_dirty_list, vd);
2821168404Spjd}
2822168404Spjd
2823185029Spjd/*
2824185029Spjd * Mark a top-level vdev's state as dirty, so that the next pass of
2825185029Spjd * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2826185029Spjd * the state changes from larger config changes because they require
2827185029Spjd * much less locking, and are often needed for administrative actions.
2828185029Spjd */
2829168404Spjdvoid
2830185029Spjdvdev_state_dirty(vdev_t *vd)
2831185029Spjd{
2832185029Spjd	spa_t *spa = vd->vdev_spa;
2833185029Spjd
2834219089Spjd	ASSERT(spa_writeable(spa));
2835185029Spjd	ASSERT(vd == vd->vdev_top);
2836185029Spjd
2837185029Spjd	/*
2838185029Spjd	 * The state list is protected by the SCL_STATE lock.  The caller
2839185029Spjd	 * must either hold SCL_STATE as writer, or must be the sync thread
2840185029Spjd	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2841185029Spjd	 * so this is sufficient to ensure mutual exclusion.
2842185029Spjd	 */
2843185029Spjd	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2844185029Spjd	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2845185029Spjd	    spa_config_held(spa, SCL_STATE, RW_READER)));
2846185029Spjd
2847219089Spjd	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2848185029Spjd		list_insert_head(&spa->spa_state_dirty_list, vd);
2849185029Spjd}
2850185029Spjd
2851185029Spjdvoid
2852185029Spjdvdev_state_clean(vdev_t *vd)
2853185029Spjd{
2854185029Spjd	spa_t *spa = vd->vdev_spa;
2855185029Spjd
2856185029Spjd	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2857185029Spjd	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2858185029Spjd	    spa_config_held(spa, SCL_STATE, RW_READER)));
2859185029Spjd
2860185029Spjd	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2861185029Spjd	list_remove(&spa->spa_state_dirty_list, vd);
2862185029Spjd}
2863185029Spjd
2864185029Spjd/*
2865185029Spjd * Propagate vdev state up from children to parent.
2866185029Spjd */
2867185029Spjdvoid
2868168404Spjdvdev_propagate_state(vdev_t *vd)
2869168404Spjd{
2870209962Smm	spa_t *spa = vd->vdev_spa;
2871209962Smm	vdev_t *rvd = spa->spa_root_vdev;
2872168404Spjd	int degraded = 0, faulted = 0;
2873168404Spjd	int corrupted = 0;
2874168404Spjd	vdev_t *child;
2875168404Spjd
2876185029Spjd	if (vd->vdev_children > 0) {
2877219089Spjd		for (int c = 0; c < vd->vdev_children; c++) {
2878185029Spjd			child = vd->vdev_child[c];
2879168404Spjd
2880219089Spjd			/*
2881219089Spjd			 * Don't factor holes into the decision.
2882219089Spjd			 */
2883219089Spjd			if (child->vdev_ishole)
2884219089Spjd				continue;
2885219089Spjd
2886185029Spjd			if (!vdev_readable(child) ||
2887209962Smm			    (!vdev_writeable(child) && spa_writeable(spa))) {
2888185029Spjd				/*
2889185029Spjd				 * Root special: if there is a top-level log
2890185029Spjd				 * device, treat the root vdev as if it were
2891185029Spjd				 * degraded.
2892185029Spjd				 */
2893185029Spjd				if (child->vdev_islog && vd == rvd)
2894185029Spjd					degraded++;
2895185029Spjd				else
2896185029Spjd					faulted++;
2897185029Spjd			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2898185029Spjd				degraded++;
2899185029Spjd			}
2900185029Spjd
2901185029Spjd			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2902185029Spjd				corrupted++;
2903185029Spjd		}
2904185029Spjd
2905185029Spjd		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2906185029Spjd
2907185029Spjd		/*
2908185029Spjd		 * Root special: if there is a top-level vdev that cannot be
2909185029Spjd		 * opened due to corrupted metadata, then propagate the root
2910185029Spjd		 * vdev's aux state as 'corrupt' rather than 'insufficient
2911185029Spjd		 * replicas'.
2912185029Spjd		 */
2913185029Spjd		if (corrupted && vd == rvd &&
2914185029Spjd		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2915185029Spjd			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2916185029Spjd			    VDEV_AUX_CORRUPT_DATA);
2917168404Spjd	}
2918168404Spjd
2919185029Spjd	if (vd->vdev_parent)
2920185029Spjd		vdev_propagate_state(vd->vdev_parent);
2921168404Spjd}
2922168404Spjd
2923168404Spjd/*
2924168404Spjd * Set a vdev's state.  If this is during an open, we don't update the parent
2925168404Spjd * state, because we're in the process of opening children depth-first.
2926168404Spjd * Otherwise, we propagate the change to the parent.
2927168404Spjd *
2928168404Spjd * If this routine places a device in a faulted state, an appropriate ereport is
2929168404Spjd * generated.
2930168404Spjd */
2931168404Spjdvoid
2932168404Spjdvdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2933168404Spjd{
2934168404Spjd	uint64_t save_state;
2935185029Spjd	spa_t *spa = vd->vdev_spa;
2936168404Spjd
2937168404Spjd	if (state == vd->vdev_state) {
2938168404Spjd		vd->vdev_stat.vs_aux = aux;
2939168404Spjd		return;
2940168404Spjd	}
2941168404Spjd
2942168404Spjd	save_state = vd->vdev_state;
2943168404Spjd
2944168404Spjd	vd->vdev_state = state;
2945168404Spjd	vd->vdev_stat.vs_aux = aux;
2946168404Spjd
2947173373Spjd	/*
2948173373Spjd	 * If we are setting the vdev state to anything but an open state, then
2949219089Spjd	 * always close the underlying device unless the device has requested
2950219089Spjd	 * a delayed close (i.e. we're about to remove or fault the device).
2951219089Spjd	 * Otherwise, we keep accessible but invalid devices open forever.
2952219089Spjd	 * We don't call vdev_close() itself, because that implies some extra
2953219089Spjd	 * checks (offline, etc) that we don't want here.  This is limited to
2954219089Spjd	 * leaf devices, because otherwise closing the device will affect other
2955219089Spjd	 * children.
2956173373Spjd	 */
2957219089Spjd	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2958219089Spjd	    vd->vdev_ops->vdev_op_leaf)
2959173373Spjd		vd->vdev_ops->vdev_op_close(vd);
2960173373Spjd
2961219089Spjd	/*
2962219089Spjd	 * If we have brought this vdev back into service, we need
2963219089Spjd	 * to notify fmd so that it can gracefully repair any outstanding
2964219089Spjd	 * cases due to a missing device.  We do this in all cases, even those
2965219089Spjd	 * that probably don't correlate to a repaired fault.  This is sure to
2966219089Spjd	 * catch all cases, and we let the zfs-retire agent sort it out.  If
2967219089Spjd	 * this is a transient state it's OK, as the retire agent will
2968219089Spjd	 * double-check the state of the vdev before repairing it.
2969219089Spjd	 */
2970219089Spjd	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2971219089Spjd	    vd->vdev_prevstate != state)
2972219089Spjd		zfs_post_state_change(spa, vd);
2973219089Spjd
2974185029Spjd	if (vd->vdev_removed &&
2975185029Spjd	    state == VDEV_STATE_CANT_OPEN &&
2976185029Spjd	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2977168404Spjd		/*
2978185029Spjd		 * If the previous state is set to VDEV_STATE_REMOVED, then this
2979185029Spjd		 * device was previously marked removed and someone attempted to
2980185029Spjd		 * reopen it.  If this failed due to a nonexistent device, then
2981185029Spjd		 * keep the device in the REMOVED state.  We also let this be if
2982185029Spjd		 * it is one of our special test online cases, which is only
2983185029Spjd		 * attempting to online the device and shouldn't generate an FMA
2984185029Spjd		 * fault.
2985185029Spjd		 */
2986185029Spjd		vd->vdev_state = VDEV_STATE_REMOVED;
2987185029Spjd		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2988185029Spjd	} else if (state == VDEV_STATE_REMOVED) {
2989185029Spjd		vd->vdev_removed = B_TRUE;
2990185029Spjd	} else if (state == VDEV_STATE_CANT_OPEN) {
2991185029Spjd		/*
2992219089Spjd		 * If we fail to open a vdev during an import or recovery, we
2993219089Spjd		 * mark it as "not available", which signifies that it was
2994219089Spjd		 * never there to begin with.  Failure to open such a device
2995219089Spjd		 * is not considered an error.
2996168404Spjd		 */
2997219089Spjd		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2998219089Spjd		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
2999168404Spjd		    vd->vdev_ops->vdev_op_leaf)
3000168404Spjd			vd->vdev_not_present = 1;
3001168404Spjd
3002168404Spjd		/*
3003168404Spjd		 * Post the appropriate ereport.  If the 'prevstate' field is
3004168404Spjd		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3005168404Spjd		 * that this is part of a vdev_reopen().  In this case, we don't
3006168404Spjd		 * want to post the ereport if the device was already in the
3007168404Spjd		 * CANT_OPEN state beforehand.
3008185029Spjd		 *
3009185029Spjd		 * If the 'checkremove' flag is set, then this is an attempt to
3010185029Spjd		 * online the device in response to an insertion event.  If we
3011185029Spjd		 * hit this case, then we have detected an insertion event for a
3012185029Spjd		 * faulted or offline device that wasn't in the removed state.
3013185029Spjd		 * In this scenario, we don't post an ereport because we are
3014185029Spjd		 * about to replace the device, or attempt an online with
3015185029Spjd		 * vdev_forcefault, which will generate the fault for us.
3016168404Spjd		 */
3017185029Spjd		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3018185029Spjd		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3019185029Spjd		    vd != spa->spa_root_vdev) {
3020168404Spjd			const char *class;
3021168404Spjd
3022168404Spjd			switch (aux) {
3023168404Spjd			case VDEV_AUX_OPEN_FAILED:
3024168404Spjd				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3025168404Spjd				break;
3026168404Spjd			case VDEV_AUX_CORRUPT_DATA:
3027168404Spjd				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3028168404Spjd				break;
3029168404Spjd			case VDEV_AUX_NO_REPLICAS:
3030168404Spjd				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3031168404Spjd				break;
3032168404Spjd			case VDEV_AUX_BAD_GUID_SUM:
3033168404Spjd				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3034168404Spjd				break;
3035168404Spjd			case VDEV_AUX_TOO_SMALL:
3036168404Spjd				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3037168404Spjd				break;
3038168404Spjd			case VDEV_AUX_BAD_LABEL:
3039168404Spjd				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3040168404Spjd				break;
3041168404Spjd			default:
3042168404Spjd				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3043168404Spjd			}
3044168404Spjd
3045185029Spjd			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3046168404Spjd		}
3047185029Spjd
3048185029Spjd		/* Erase any notion of persistent removed state */
3049185029Spjd		vd->vdev_removed = B_FALSE;
3050185029Spjd	} else {
3051185029Spjd		vd->vdev_removed = B_FALSE;
3052168404Spjd	}
3053168404Spjd
3054209962Smm	if (!isopen && vd->vdev_parent)
3055209962Smm		vdev_propagate_state(vd->vdev_parent);
3056185029Spjd}
3057168404Spjd
3058185029Spjd/*
3059185029Spjd * Check the vdev configuration to ensure that it's capable of supporting
3060193163Sdfr * a root pool.
3061193163Sdfr *
3062193163Sdfr * On Solaris, we do not support RAID-Z or partial configuration.  In
3063193163Sdfr * addition, only a single top-level vdev is allowed and none of the
3064193163Sdfr * leaves can be wholedisks.
3065193163Sdfr *
3066193163Sdfr * For FreeBSD, we can boot from any configuration. There is a
3067193163Sdfr * limitation that the boot filesystem must be either uncompressed or
3068193163Sdfr * compresses with lzjb compression but I'm not sure how to enforce
3069193163Sdfr * that here.
3070185029Spjd */
3071185029Spjdboolean_t
3072185029Spjdvdev_is_bootable(vdev_t *vd)
3073185029Spjd{
3074213197Smm#ifdef sun
3075185029Spjd	if (!vd->vdev_ops->vdev_op_leaf) {
3076185029Spjd		char *vdev_type = vd->vdev_ops->vdev_op_type;
3077185029Spjd
3078185029Spjd		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3079185029Spjd		    vd->vdev_children > 1) {
3080185029Spjd			return (B_FALSE);
3081185029Spjd		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3082185029Spjd		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3083185029Spjd			return (B_FALSE);
3084185029Spjd		}
3085185029Spjd	} else if (vd->vdev_wholedisk == 1) {
3086185029Spjd		return (B_FALSE);
3087185029Spjd	}
3088185029Spjd
3089219089Spjd	for (int c = 0; c < vd->vdev_children; c++) {
3090185029Spjd		if (!vdev_is_bootable(vd->vdev_child[c]))
3091185029Spjd			return (B_FALSE);
3092185029Spjd	}
3093213197Smm#endif	/* sun */
3094185029Spjd	return (B_TRUE);
3095168404Spjd}
3096213197Smm
3097219089Spjd/*
3098219089Spjd * Load the state from the original vdev tree (ovd) which
3099219089Spjd * we've retrieved from the MOS config object. If the original
3100219089Spjd * vdev was offline or faulted then we transfer that state to the
3101219089Spjd * device in the current vdev tree (nvd).
3102219089Spjd */
3103213197Smmvoid
3104219089Spjdvdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3105213197Smm{
3106219089Spjd	spa_t *spa = nvd->vdev_spa;
3107213197Smm
3108219089Spjd	ASSERT(nvd->vdev_top->vdev_islog);
3109219089Spjd	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3110219089Spjd	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3111213197Smm
3112219089Spjd	for (int c = 0; c < nvd->vdev_children; c++)
3113219089Spjd		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3114213197Smm
3115219089Spjd	if (nvd->vdev_ops->vdev_op_leaf) {
3116213197Smm		/*
3117219089Spjd		 * Restore the persistent vdev state
3118213197Smm		 */
3119219089Spjd		nvd->vdev_offline = ovd->vdev_offline;
3120219089Spjd		nvd->vdev_faulted = ovd->vdev_faulted;
3121219089Spjd		nvd->vdev_degraded = ovd->vdev_degraded;
3122219089Spjd		nvd->vdev_removed = ovd->vdev_removed;
3123213197Smm	}
3124213197Smm}
3125219089Spjd
3126219089Spjd/*
3127219089Spjd * Determine if a log device has valid content.  If the vdev was
3128219089Spjd * removed or faulted in the MOS config then we know that
3129219089Spjd * the content on the log device has already been written to the pool.
3130219089Spjd */
3131219089Spjdboolean_t
3132219089Spjdvdev_log_state_valid(vdev_t *vd)
3133219089Spjd{
3134219089Spjd	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3135219089Spjd	    !vd->vdev_removed)
3136219089Spjd		return (B_TRUE);
3137219089Spjd
3138219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
3139219089Spjd		if (vdev_log_state_valid(vd->vdev_child[c]))
3140219089Spjd			return (B_TRUE);
3141219089Spjd
3142219089Spjd	return (B_FALSE);
3143219089Spjd}
3144219089Spjd
3145219089Spjd/*
3146219089Spjd * Expand a vdev if possible.
3147219089Spjd */
3148219089Spjdvoid
3149219089Spjdvdev_expand(vdev_t *vd, uint64_t txg)
3150219089Spjd{
3151219089Spjd	ASSERT(vd->vdev_top == vd);
3152219089Spjd	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3153219089Spjd
3154219089Spjd	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3155219089Spjd		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3156219089Spjd		vdev_config_dirty(vd);
3157219089Spjd	}
3158219089Spjd}
3159219089Spjd
3160219089Spjd/*
3161219089Spjd * Split a vdev.
3162219089Spjd */
3163219089Spjdvoid
3164219089Spjdvdev_split(vdev_t *vd)
3165219089Spjd{
3166219089Spjd	vdev_t *cvd, *pvd = vd->vdev_parent;
3167219089Spjd
3168219089Spjd	vdev_remove_child(pvd, vd);
3169219089Spjd	vdev_compact_children(pvd);
3170219089Spjd
3171219089Spjd	cvd = pvd->vdev_child[0];
3172219089Spjd	if (pvd->vdev_children == 1) {
3173219089Spjd		vdev_remove_parent(cvd);
3174219089Spjd		cvd->vdev_splitting = B_TRUE;
3175219089Spjd	}
3176219089Spjd	vdev_propagate_state(cvd);
3177219089Spjd}
3178247265Smm
3179247265Smmvoid
3180247265Smmvdev_deadman(vdev_t *vd)
3181247265Smm{
3182247265Smm	for (int c = 0; c < vd->vdev_children; c++) {
3183247265Smm		vdev_t *cvd = vd->vdev_child[c];
3184247265Smm
3185247265Smm		vdev_deadman(cvd);
3186247265Smm	}
3187247265Smm
3188247265Smm	if (vd->vdev_ops->vdev_op_leaf) {
3189247265Smm		vdev_queue_t *vq = &vd->vdev_queue;
3190247265Smm
3191247265Smm		mutex_enter(&vq->vq_lock);
3192247265Smm		if (avl_numnodes(&vq->vq_pending_tree) > 0) {
3193247265Smm			spa_t *spa = vd->vdev_spa;
3194247265Smm			zio_t *fio;
3195247265Smm			uint64_t delta;
3196247265Smm
3197247265Smm			/*
3198247265Smm			 * Look at the head of all the pending queues,
3199247265Smm			 * if any I/O has been outstanding for longer than
3200247265Smm			 * the spa_deadman_synctime we panic the system.
3201247265Smm			 */
3202247265Smm			fio = avl_first(&vq->vq_pending_tree);
3203249206Smm			delta = gethrtime() - fio->io_timestamp;
3204249206Smm			if (delta > spa_deadman_synctime(spa)) {
3205249206Smm				zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3206249206Smm				    "delta %lluns, last io %lluns",
3207247265Smm				    fio->io_timestamp, delta,
3208247265Smm				    vq->vq_io_complete_ts);
3209247265Smm				fm_panic("I/O to pool '%s' appears to be "
3210247348Smm				    "hung on vdev guid %llu at '%s'.",
3211247348Smm				    spa_name(spa),
3212247348Smm				    (long long unsigned int) vd->vdev_guid,
3213247348Smm				    vd->vdev_path);
3214247265Smm			}
3215247265Smm		}
3216247265Smm		mutex_exit(&vq->vq_lock);
3217247265Smm	}
3218247265Smm}
3219