vdev.c revision 249195
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25 * Copyright (c) 2013 by Delphix. All rights reserved.
26 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 */
28
29#include <sys/zfs_context.h>
30#include <sys/fm/fs/zfs.h>
31#include <sys/spa.h>
32#include <sys/spa_impl.h>
33#include <sys/dmu.h>
34#include <sys/dmu_tx.h>
35#include <sys/vdev_impl.h>
36#include <sys/uberblock_impl.h>
37#include <sys/metaslab.h>
38#include <sys/metaslab_impl.h>
39#include <sys/space_map.h>
40#include <sys/zio.h>
41#include <sys/zap.h>
42#include <sys/fs/zfs.h>
43#include <sys/arc.h>
44#include <sys/zil.h>
45#include <sys/dsl_scan.h>
46#include <sys/trim_map.h>
47
48SYSCTL_DECL(_vfs_zfs);
49SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
50
51/*
52 * Virtual device management.
53 */
54
55static vdev_ops_t *vdev_ops_table[] = {
56	&vdev_root_ops,
57	&vdev_raidz_ops,
58	&vdev_mirror_ops,
59	&vdev_replacing_ops,
60	&vdev_spare_ops,
61#ifdef _KERNEL
62	&vdev_geom_ops,
63#else
64	&vdev_disk_ops,
65#endif
66	&vdev_file_ops,
67	&vdev_missing_ops,
68	&vdev_hole_ops,
69	NULL
70};
71
72
73/*
74 * Given a vdev type, return the appropriate ops vector.
75 */
76static vdev_ops_t *
77vdev_getops(const char *type)
78{
79	vdev_ops_t *ops, **opspp;
80
81	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
82		if (strcmp(ops->vdev_op_type, type) == 0)
83			break;
84
85	return (ops);
86}
87
88/*
89 * Default asize function: return the MAX of psize with the asize of
90 * all children.  This is what's used by anything other than RAID-Z.
91 */
92uint64_t
93vdev_default_asize(vdev_t *vd, uint64_t psize)
94{
95	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
96	uint64_t csize;
97
98	for (int c = 0; c < vd->vdev_children; c++) {
99		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
100		asize = MAX(asize, csize);
101	}
102
103	return (asize);
104}
105
106/*
107 * Get the minimum allocatable size. We define the allocatable size as
108 * the vdev's asize rounded to the nearest metaslab. This allows us to
109 * replace or attach devices which don't have the same physical size but
110 * can still satisfy the same number of allocations.
111 */
112uint64_t
113vdev_get_min_asize(vdev_t *vd)
114{
115	vdev_t *pvd = vd->vdev_parent;
116
117	/*
118	 * If our parent is NULL (inactive spare or cache) or is the root,
119	 * just return our own asize.
120	 */
121	if (pvd == NULL)
122		return (vd->vdev_asize);
123
124	/*
125	 * The top-level vdev just returns the allocatable size rounded
126	 * to the nearest metaslab.
127	 */
128	if (vd == vd->vdev_top)
129		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
130
131	/*
132	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
133	 * so each child must provide at least 1/Nth of its asize.
134	 */
135	if (pvd->vdev_ops == &vdev_raidz_ops)
136		return (pvd->vdev_min_asize / pvd->vdev_children);
137
138	return (pvd->vdev_min_asize);
139}
140
141void
142vdev_set_min_asize(vdev_t *vd)
143{
144	vd->vdev_min_asize = vdev_get_min_asize(vd);
145
146	for (int c = 0; c < vd->vdev_children; c++)
147		vdev_set_min_asize(vd->vdev_child[c]);
148}
149
150vdev_t *
151vdev_lookup_top(spa_t *spa, uint64_t vdev)
152{
153	vdev_t *rvd = spa->spa_root_vdev;
154
155	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
156
157	if (vdev < rvd->vdev_children) {
158		ASSERT(rvd->vdev_child[vdev] != NULL);
159		return (rvd->vdev_child[vdev]);
160	}
161
162	return (NULL);
163}
164
165vdev_t *
166vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
167{
168	vdev_t *mvd;
169
170	if (vd->vdev_guid == guid)
171		return (vd);
172
173	for (int c = 0; c < vd->vdev_children; c++)
174		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
175		    NULL)
176			return (mvd);
177
178	return (NULL);
179}
180
181void
182vdev_add_child(vdev_t *pvd, vdev_t *cvd)
183{
184	size_t oldsize, newsize;
185	uint64_t id = cvd->vdev_id;
186	vdev_t **newchild;
187
188	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
189	ASSERT(cvd->vdev_parent == NULL);
190
191	cvd->vdev_parent = pvd;
192
193	if (pvd == NULL)
194		return;
195
196	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
197
198	oldsize = pvd->vdev_children * sizeof (vdev_t *);
199	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
200	newsize = pvd->vdev_children * sizeof (vdev_t *);
201
202	newchild = kmem_zalloc(newsize, KM_SLEEP);
203	if (pvd->vdev_child != NULL) {
204		bcopy(pvd->vdev_child, newchild, oldsize);
205		kmem_free(pvd->vdev_child, oldsize);
206	}
207
208	pvd->vdev_child = newchild;
209	pvd->vdev_child[id] = cvd;
210
211	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
212	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
213
214	/*
215	 * Walk up all ancestors to update guid sum.
216	 */
217	for (; pvd != NULL; pvd = pvd->vdev_parent)
218		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
219}
220
221void
222vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
223{
224	int c;
225	uint_t id = cvd->vdev_id;
226
227	ASSERT(cvd->vdev_parent == pvd);
228
229	if (pvd == NULL)
230		return;
231
232	ASSERT(id < pvd->vdev_children);
233	ASSERT(pvd->vdev_child[id] == cvd);
234
235	pvd->vdev_child[id] = NULL;
236	cvd->vdev_parent = NULL;
237
238	for (c = 0; c < pvd->vdev_children; c++)
239		if (pvd->vdev_child[c])
240			break;
241
242	if (c == pvd->vdev_children) {
243		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
244		pvd->vdev_child = NULL;
245		pvd->vdev_children = 0;
246	}
247
248	/*
249	 * Walk up all ancestors to update guid sum.
250	 */
251	for (; pvd != NULL; pvd = pvd->vdev_parent)
252		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
253}
254
255/*
256 * Remove any holes in the child array.
257 */
258void
259vdev_compact_children(vdev_t *pvd)
260{
261	vdev_t **newchild, *cvd;
262	int oldc = pvd->vdev_children;
263	int newc;
264
265	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
266
267	for (int c = newc = 0; c < oldc; c++)
268		if (pvd->vdev_child[c])
269			newc++;
270
271	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
272
273	for (int c = newc = 0; c < oldc; c++) {
274		if ((cvd = pvd->vdev_child[c]) != NULL) {
275			newchild[newc] = cvd;
276			cvd->vdev_id = newc++;
277		}
278	}
279
280	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
281	pvd->vdev_child = newchild;
282	pvd->vdev_children = newc;
283}
284
285/*
286 * Allocate and minimally initialize a vdev_t.
287 */
288vdev_t *
289vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
290{
291	vdev_t *vd;
292
293	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
294
295	if (spa->spa_root_vdev == NULL) {
296		ASSERT(ops == &vdev_root_ops);
297		spa->spa_root_vdev = vd;
298		spa->spa_load_guid = spa_generate_guid(NULL);
299	}
300
301	if (guid == 0 && ops != &vdev_hole_ops) {
302		if (spa->spa_root_vdev == vd) {
303			/*
304			 * The root vdev's guid will also be the pool guid,
305			 * which must be unique among all pools.
306			 */
307			guid = spa_generate_guid(NULL);
308		} else {
309			/*
310			 * Any other vdev's guid must be unique within the pool.
311			 */
312			guid = spa_generate_guid(spa);
313		}
314		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
315	}
316
317	vd->vdev_spa = spa;
318	vd->vdev_id = id;
319	vd->vdev_guid = guid;
320	vd->vdev_guid_sum = guid;
321	vd->vdev_ops = ops;
322	vd->vdev_state = VDEV_STATE_CLOSED;
323	vd->vdev_ishole = (ops == &vdev_hole_ops);
324
325	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
326	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
327	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
328	for (int t = 0; t < DTL_TYPES; t++) {
329		space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
330		    &vd->vdev_dtl_lock);
331	}
332	txg_list_create(&vd->vdev_ms_list,
333	    offsetof(struct metaslab, ms_txg_node));
334	txg_list_create(&vd->vdev_dtl_list,
335	    offsetof(struct vdev, vdev_dtl_node));
336	vd->vdev_stat.vs_timestamp = gethrtime();
337	vdev_queue_init(vd);
338	vdev_cache_init(vd);
339
340	return (vd);
341}
342
343/*
344 * Allocate a new vdev.  The 'alloctype' is used to control whether we are
345 * creating a new vdev or loading an existing one - the behavior is slightly
346 * different for each case.
347 */
348int
349vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
350    int alloctype)
351{
352	vdev_ops_t *ops;
353	char *type;
354	uint64_t guid = 0, islog, nparity;
355	vdev_t *vd;
356
357	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
358
359	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
360		return (SET_ERROR(EINVAL));
361
362	if ((ops = vdev_getops(type)) == NULL)
363		return (SET_ERROR(EINVAL));
364
365	/*
366	 * If this is a load, get the vdev guid from the nvlist.
367	 * Otherwise, vdev_alloc_common() will generate one for us.
368	 */
369	if (alloctype == VDEV_ALLOC_LOAD) {
370		uint64_t label_id;
371
372		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
373		    label_id != id)
374			return (SET_ERROR(EINVAL));
375
376		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
377			return (SET_ERROR(EINVAL));
378	} else if (alloctype == VDEV_ALLOC_SPARE) {
379		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
380			return (SET_ERROR(EINVAL));
381	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
382		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
383			return (SET_ERROR(EINVAL));
384	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
385		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
386			return (SET_ERROR(EINVAL));
387	}
388
389	/*
390	 * The first allocated vdev must be of type 'root'.
391	 */
392	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
393		return (SET_ERROR(EINVAL));
394
395	/*
396	 * Determine whether we're a log vdev.
397	 */
398	islog = 0;
399	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
400	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
401		return (SET_ERROR(ENOTSUP));
402
403	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
404		return (SET_ERROR(ENOTSUP));
405
406	/*
407	 * Set the nparity property for RAID-Z vdevs.
408	 */
409	nparity = -1ULL;
410	if (ops == &vdev_raidz_ops) {
411		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
412		    &nparity) == 0) {
413			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
414				return (SET_ERROR(EINVAL));
415			/*
416			 * Previous versions could only support 1 or 2 parity
417			 * device.
418			 */
419			if (nparity > 1 &&
420			    spa_version(spa) < SPA_VERSION_RAIDZ2)
421				return (SET_ERROR(ENOTSUP));
422			if (nparity > 2 &&
423			    spa_version(spa) < SPA_VERSION_RAIDZ3)
424				return (SET_ERROR(ENOTSUP));
425		} else {
426			/*
427			 * We require the parity to be specified for SPAs that
428			 * support multiple parity levels.
429			 */
430			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
431				return (SET_ERROR(EINVAL));
432			/*
433			 * Otherwise, we default to 1 parity device for RAID-Z.
434			 */
435			nparity = 1;
436		}
437	} else {
438		nparity = 0;
439	}
440	ASSERT(nparity != -1ULL);
441
442	vd = vdev_alloc_common(spa, id, guid, ops);
443
444	vd->vdev_islog = islog;
445	vd->vdev_nparity = nparity;
446
447	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
448		vd->vdev_path = spa_strdup(vd->vdev_path);
449	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
450		vd->vdev_devid = spa_strdup(vd->vdev_devid);
451	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
452	    &vd->vdev_physpath) == 0)
453		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
454	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
455		vd->vdev_fru = spa_strdup(vd->vdev_fru);
456
457	/*
458	 * Set the whole_disk property.  If it's not specified, leave the value
459	 * as -1.
460	 */
461	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
462	    &vd->vdev_wholedisk) != 0)
463		vd->vdev_wholedisk = -1ULL;
464
465	/*
466	 * Look for the 'not present' flag.  This will only be set if the device
467	 * was not present at the time of import.
468	 */
469	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
470	    &vd->vdev_not_present);
471
472	/*
473	 * Get the alignment requirement.
474	 */
475	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
476
477	/*
478	 * Retrieve the vdev creation time.
479	 */
480	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
481	    &vd->vdev_crtxg);
482
483	/*
484	 * If we're a top-level vdev, try to load the allocation parameters.
485	 */
486	if (parent && !parent->vdev_parent &&
487	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
488		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
489		    &vd->vdev_ms_array);
490		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
491		    &vd->vdev_ms_shift);
492		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
493		    &vd->vdev_asize);
494		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
495		    &vd->vdev_removing);
496	}
497
498	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
499		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
500		    alloctype == VDEV_ALLOC_ADD ||
501		    alloctype == VDEV_ALLOC_SPLIT ||
502		    alloctype == VDEV_ALLOC_ROOTPOOL);
503		vd->vdev_mg = metaslab_group_create(islog ?
504		    spa_log_class(spa) : spa_normal_class(spa), vd);
505	}
506
507	/*
508	 * If we're a leaf vdev, try to load the DTL object and other state.
509	 */
510	if (vd->vdev_ops->vdev_op_leaf &&
511	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
512	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
513		if (alloctype == VDEV_ALLOC_LOAD) {
514			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
515			    &vd->vdev_dtl_smo.smo_object);
516			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
517			    &vd->vdev_unspare);
518		}
519
520		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
521			uint64_t spare = 0;
522
523			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
524			    &spare) == 0 && spare)
525				spa_spare_add(vd);
526		}
527
528		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
529		    &vd->vdev_offline);
530
531		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
532		    &vd->vdev_resilvering);
533
534		/*
535		 * When importing a pool, we want to ignore the persistent fault
536		 * state, as the diagnosis made on another system may not be
537		 * valid in the current context.  Local vdevs will
538		 * remain in the faulted state.
539		 */
540		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
541			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
542			    &vd->vdev_faulted);
543			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
544			    &vd->vdev_degraded);
545			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
546			    &vd->vdev_removed);
547
548			if (vd->vdev_faulted || vd->vdev_degraded) {
549				char *aux;
550
551				vd->vdev_label_aux =
552				    VDEV_AUX_ERR_EXCEEDED;
553				if (nvlist_lookup_string(nv,
554				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
555				    strcmp(aux, "external") == 0)
556					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
557			}
558		}
559	}
560
561	/*
562	 * Add ourselves to the parent's list of children.
563	 */
564	vdev_add_child(parent, vd);
565
566	*vdp = vd;
567
568	return (0);
569}
570
571void
572vdev_free(vdev_t *vd)
573{
574	spa_t *spa = vd->vdev_spa;
575
576	/*
577	 * vdev_free() implies closing the vdev first.  This is simpler than
578	 * trying to ensure complicated semantics for all callers.
579	 */
580	vdev_close(vd);
581
582	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
583	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
584
585	/*
586	 * Free all children.
587	 */
588	for (int c = 0; c < vd->vdev_children; c++)
589		vdev_free(vd->vdev_child[c]);
590
591	ASSERT(vd->vdev_child == NULL);
592	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
593
594	/*
595	 * Discard allocation state.
596	 */
597	if (vd->vdev_mg != NULL) {
598		vdev_metaslab_fini(vd);
599		metaslab_group_destroy(vd->vdev_mg);
600	}
601
602	ASSERT0(vd->vdev_stat.vs_space);
603	ASSERT0(vd->vdev_stat.vs_dspace);
604	ASSERT0(vd->vdev_stat.vs_alloc);
605
606	/*
607	 * Remove this vdev from its parent's child list.
608	 */
609	vdev_remove_child(vd->vdev_parent, vd);
610
611	ASSERT(vd->vdev_parent == NULL);
612
613	/*
614	 * Clean up vdev structure.
615	 */
616	vdev_queue_fini(vd);
617	vdev_cache_fini(vd);
618
619	if (vd->vdev_path)
620		spa_strfree(vd->vdev_path);
621	if (vd->vdev_devid)
622		spa_strfree(vd->vdev_devid);
623	if (vd->vdev_physpath)
624		spa_strfree(vd->vdev_physpath);
625	if (vd->vdev_fru)
626		spa_strfree(vd->vdev_fru);
627
628	if (vd->vdev_isspare)
629		spa_spare_remove(vd);
630	if (vd->vdev_isl2cache)
631		spa_l2cache_remove(vd);
632
633	txg_list_destroy(&vd->vdev_ms_list);
634	txg_list_destroy(&vd->vdev_dtl_list);
635
636	mutex_enter(&vd->vdev_dtl_lock);
637	for (int t = 0; t < DTL_TYPES; t++) {
638		space_map_unload(&vd->vdev_dtl[t]);
639		space_map_destroy(&vd->vdev_dtl[t]);
640	}
641	mutex_exit(&vd->vdev_dtl_lock);
642
643	mutex_destroy(&vd->vdev_dtl_lock);
644	mutex_destroy(&vd->vdev_stat_lock);
645	mutex_destroy(&vd->vdev_probe_lock);
646
647	if (vd == spa->spa_root_vdev)
648		spa->spa_root_vdev = NULL;
649
650	kmem_free(vd, sizeof (vdev_t));
651}
652
653/*
654 * Transfer top-level vdev state from svd to tvd.
655 */
656static void
657vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
658{
659	spa_t *spa = svd->vdev_spa;
660	metaslab_t *msp;
661	vdev_t *vd;
662	int t;
663
664	ASSERT(tvd == tvd->vdev_top);
665
666	tvd->vdev_ms_array = svd->vdev_ms_array;
667	tvd->vdev_ms_shift = svd->vdev_ms_shift;
668	tvd->vdev_ms_count = svd->vdev_ms_count;
669
670	svd->vdev_ms_array = 0;
671	svd->vdev_ms_shift = 0;
672	svd->vdev_ms_count = 0;
673
674	if (tvd->vdev_mg)
675		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
676	tvd->vdev_mg = svd->vdev_mg;
677	tvd->vdev_ms = svd->vdev_ms;
678
679	svd->vdev_mg = NULL;
680	svd->vdev_ms = NULL;
681
682	if (tvd->vdev_mg != NULL)
683		tvd->vdev_mg->mg_vd = tvd;
684
685	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
686	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
687	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
688
689	svd->vdev_stat.vs_alloc = 0;
690	svd->vdev_stat.vs_space = 0;
691	svd->vdev_stat.vs_dspace = 0;
692
693	for (t = 0; t < TXG_SIZE; t++) {
694		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
695			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
696		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
697			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
698		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
699			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
700	}
701
702	if (list_link_active(&svd->vdev_config_dirty_node)) {
703		vdev_config_clean(svd);
704		vdev_config_dirty(tvd);
705	}
706
707	if (list_link_active(&svd->vdev_state_dirty_node)) {
708		vdev_state_clean(svd);
709		vdev_state_dirty(tvd);
710	}
711
712	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
713	svd->vdev_deflate_ratio = 0;
714
715	tvd->vdev_islog = svd->vdev_islog;
716	svd->vdev_islog = 0;
717}
718
719static void
720vdev_top_update(vdev_t *tvd, vdev_t *vd)
721{
722	if (vd == NULL)
723		return;
724
725	vd->vdev_top = tvd;
726
727	for (int c = 0; c < vd->vdev_children; c++)
728		vdev_top_update(tvd, vd->vdev_child[c]);
729}
730
731/*
732 * Add a mirror/replacing vdev above an existing vdev.
733 */
734vdev_t *
735vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
736{
737	spa_t *spa = cvd->vdev_spa;
738	vdev_t *pvd = cvd->vdev_parent;
739	vdev_t *mvd;
740
741	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
742
743	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
744
745	mvd->vdev_asize = cvd->vdev_asize;
746	mvd->vdev_min_asize = cvd->vdev_min_asize;
747	mvd->vdev_max_asize = cvd->vdev_max_asize;
748	mvd->vdev_ashift = cvd->vdev_ashift;
749	mvd->vdev_state = cvd->vdev_state;
750	mvd->vdev_crtxg = cvd->vdev_crtxg;
751
752	vdev_remove_child(pvd, cvd);
753	vdev_add_child(pvd, mvd);
754	cvd->vdev_id = mvd->vdev_children;
755	vdev_add_child(mvd, cvd);
756	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
757
758	if (mvd == mvd->vdev_top)
759		vdev_top_transfer(cvd, mvd);
760
761	return (mvd);
762}
763
764/*
765 * Remove a 1-way mirror/replacing vdev from the tree.
766 */
767void
768vdev_remove_parent(vdev_t *cvd)
769{
770	vdev_t *mvd = cvd->vdev_parent;
771	vdev_t *pvd = mvd->vdev_parent;
772
773	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
774
775	ASSERT(mvd->vdev_children == 1);
776	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
777	    mvd->vdev_ops == &vdev_replacing_ops ||
778	    mvd->vdev_ops == &vdev_spare_ops);
779	cvd->vdev_ashift = mvd->vdev_ashift;
780
781	vdev_remove_child(mvd, cvd);
782	vdev_remove_child(pvd, mvd);
783
784	/*
785	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
786	 * Otherwise, we could have detached an offline device, and when we
787	 * go to import the pool we'll think we have two top-level vdevs,
788	 * instead of a different version of the same top-level vdev.
789	 */
790	if (mvd->vdev_top == mvd) {
791		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
792		cvd->vdev_orig_guid = cvd->vdev_guid;
793		cvd->vdev_guid += guid_delta;
794		cvd->vdev_guid_sum += guid_delta;
795	}
796	cvd->vdev_id = mvd->vdev_id;
797	vdev_add_child(pvd, cvd);
798	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
799
800	if (cvd == cvd->vdev_top)
801		vdev_top_transfer(mvd, cvd);
802
803	ASSERT(mvd->vdev_children == 0);
804	vdev_free(mvd);
805}
806
807int
808vdev_metaslab_init(vdev_t *vd, uint64_t txg)
809{
810	spa_t *spa = vd->vdev_spa;
811	objset_t *mos = spa->spa_meta_objset;
812	uint64_t m;
813	uint64_t oldc = vd->vdev_ms_count;
814	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
815	metaslab_t **mspp;
816	int error;
817
818	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
819
820	/*
821	 * This vdev is not being allocated from yet or is a hole.
822	 */
823	if (vd->vdev_ms_shift == 0)
824		return (0);
825
826	ASSERT(!vd->vdev_ishole);
827
828	/*
829	 * Compute the raidz-deflation ratio.  Note, we hard-code
830	 * in 128k (1 << 17) because it is the current "typical" blocksize.
831	 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
832	 * or we will inconsistently account for existing bp's.
833	 */
834	vd->vdev_deflate_ratio = (1 << 17) /
835	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
836
837	ASSERT(oldc <= newc);
838
839	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
840
841	if (oldc != 0) {
842		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
843		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
844	}
845
846	vd->vdev_ms = mspp;
847	vd->vdev_ms_count = newc;
848
849	for (m = oldc; m < newc; m++) {
850		space_map_obj_t smo = { 0, 0, 0 };
851		if (txg == 0) {
852			uint64_t object = 0;
853			error = dmu_read(mos, vd->vdev_ms_array,
854			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
855			    DMU_READ_PREFETCH);
856			if (error)
857				return (error);
858			if (object != 0) {
859				dmu_buf_t *db;
860				error = dmu_bonus_hold(mos, object, FTAG, &db);
861				if (error)
862					return (error);
863				ASSERT3U(db->db_size, >=, sizeof (smo));
864				bcopy(db->db_data, &smo, sizeof (smo));
865				ASSERT3U(smo.smo_object, ==, object);
866				dmu_buf_rele(db, FTAG);
867			}
868		}
869		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
870		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
871	}
872
873	if (txg == 0)
874		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
875
876	/*
877	 * If the vdev is being removed we don't activate
878	 * the metaslabs since we want to ensure that no new
879	 * allocations are performed on this device.
880	 */
881	if (oldc == 0 && !vd->vdev_removing)
882		metaslab_group_activate(vd->vdev_mg);
883
884	if (txg == 0)
885		spa_config_exit(spa, SCL_ALLOC, FTAG);
886
887	return (0);
888}
889
890void
891vdev_metaslab_fini(vdev_t *vd)
892{
893	uint64_t m;
894	uint64_t count = vd->vdev_ms_count;
895
896	if (vd->vdev_ms != NULL) {
897		metaslab_group_passivate(vd->vdev_mg);
898		for (m = 0; m < count; m++)
899			if (vd->vdev_ms[m] != NULL)
900				metaslab_fini(vd->vdev_ms[m]);
901		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
902		vd->vdev_ms = NULL;
903	}
904}
905
906typedef struct vdev_probe_stats {
907	boolean_t	vps_readable;
908	boolean_t	vps_writeable;
909	int		vps_flags;
910} vdev_probe_stats_t;
911
912static void
913vdev_probe_done(zio_t *zio)
914{
915	spa_t *spa = zio->io_spa;
916	vdev_t *vd = zio->io_vd;
917	vdev_probe_stats_t *vps = zio->io_private;
918
919	ASSERT(vd->vdev_probe_zio != NULL);
920
921	if (zio->io_type == ZIO_TYPE_READ) {
922		if (zio->io_error == 0)
923			vps->vps_readable = 1;
924		if (zio->io_error == 0 && spa_writeable(spa)) {
925			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
926			    zio->io_offset, zio->io_size, zio->io_data,
927			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
928			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
929		} else {
930			zio_buf_free(zio->io_data, zio->io_size);
931		}
932	} else if (zio->io_type == ZIO_TYPE_WRITE) {
933		if (zio->io_error == 0)
934			vps->vps_writeable = 1;
935		zio_buf_free(zio->io_data, zio->io_size);
936	} else if (zio->io_type == ZIO_TYPE_NULL) {
937		zio_t *pio;
938
939		vd->vdev_cant_read |= !vps->vps_readable;
940		vd->vdev_cant_write |= !vps->vps_writeable;
941
942		if (vdev_readable(vd) &&
943		    (vdev_writeable(vd) || !spa_writeable(spa))) {
944			zio->io_error = 0;
945		} else {
946			ASSERT(zio->io_error != 0);
947			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
948			    spa, vd, NULL, 0, 0);
949			zio->io_error = SET_ERROR(ENXIO);
950		}
951
952		mutex_enter(&vd->vdev_probe_lock);
953		ASSERT(vd->vdev_probe_zio == zio);
954		vd->vdev_probe_zio = NULL;
955		mutex_exit(&vd->vdev_probe_lock);
956
957		while ((pio = zio_walk_parents(zio)) != NULL)
958			if (!vdev_accessible(vd, pio))
959				pio->io_error = SET_ERROR(ENXIO);
960
961		kmem_free(vps, sizeof (*vps));
962	}
963}
964
965/*
966 * Determine whether this device is accessible by reading and writing
967 * to several known locations: the pad regions of each vdev label
968 * but the first (which we leave alone in case it contains a VTOC).
969 */
970zio_t *
971vdev_probe(vdev_t *vd, zio_t *zio)
972{
973	spa_t *spa = vd->vdev_spa;
974	vdev_probe_stats_t *vps = NULL;
975	zio_t *pio;
976
977	ASSERT(vd->vdev_ops->vdev_op_leaf);
978
979	/*
980	 * Don't probe the probe.
981	 */
982	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
983		return (NULL);
984
985	/*
986	 * To prevent 'probe storms' when a device fails, we create
987	 * just one probe i/o at a time.  All zios that want to probe
988	 * this vdev will become parents of the probe io.
989	 */
990	mutex_enter(&vd->vdev_probe_lock);
991
992	if ((pio = vd->vdev_probe_zio) == NULL) {
993		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
994
995		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
996		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
997		    ZIO_FLAG_TRYHARD;
998
999		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1000			/*
1001			 * vdev_cant_read and vdev_cant_write can only
1002			 * transition from TRUE to FALSE when we have the
1003			 * SCL_ZIO lock as writer; otherwise they can only
1004			 * transition from FALSE to TRUE.  This ensures that
1005			 * any zio looking at these values can assume that
1006			 * failures persist for the life of the I/O.  That's
1007			 * important because when a device has intermittent
1008			 * connectivity problems, we want to ensure that
1009			 * they're ascribed to the device (ENXIO) and not
1010			 * the zio (EIO).
1011			 *
1012			 * Since we hold SCL_ZIO as writer here, clear both
1013			 * values so the probe can reevaluate from first
1014			 * principles.
1015			 */
1016			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1017			vd->vdev_cant_read = B_FALSE;
1018			vd->vdev_cant_write = B_FALSE;
1019		}
1020
1021		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1022		    vdev_probe_done, vps,
1023		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1024
1025		/*
1026		 * We can't change the vdev state in this context, so we
1027		 * kick off an async task to do it on our behalf.
1028		 */
1029		if (zio != NULL) {
1030			vd->vdev_probe_wanted = B_TRUE;
1031			spa_async_request(spa, SPA_ASYNC_PROBE);
1032		}
1033	}
1034
1035	if (zio != NULL)
1036		zio_add_child(zio, pio);
1037
1038	mutex_exit(&vd->vdev_probe_lock);
1039
1040	if (vps == NULL) {
1041		ASSERT(zio != NULL);
1042		return (NULL);
1043	}
1044
1045	for (int l = 1; l < VDEV_LABELS; l++) {
1046		zio_nowait(zio_read_phys(pio, vd,
1047		    vdev_label_offset(vd->vdev_psize, l,
1048		    offsetof(vdev_label_t, vl_pad2)),
1049		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1050		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1051		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1052	}
1053
1054	if (zio == NULL)
1055		return (pio);
1056
1057	zio_nowait(pio);
1058	return (NULL);
1059}
1060
1061static void
1062vdev_open_child(void *arg)
1063{
1064	vdev_t *vd = arg;
1065
1066	vd->vdev_open_thread = curthread;
1067	vd->vdev_open_error = vdev_open(vd);
1068	vd->vdev_open_thread = NULL;
1069}
1070
1071boolean_t
1072vdev_uses_zvols(vdev_t *vd)
1073{
1074	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1075	    strlen(ZVOL_DIR)) == 0)
1076		return (B_TRUE);
1077	for (int c = 0; c < vd->vdev_children; c++)
1078		if (vdev_uses_zvols(vd->vdev_child[c]))
1079			return (B_TRUE);
1080	return (B_FALSE);
1081}
1082
1083void
1084vdev_open_children(vdev_t *vd)
1085{
1086	taskq_t *tq;
1087	int children = vd->vdev_children;
1088
1089	/*
1090	 * in order to handle pools on top of zvols, do the opens
1091	 * in a single thread so that the same thread holds the
1092	 * spa_namespace_lock
1093	 */
1094	if (B_TRUE || vdev_uses_zvols(vd)) {
1095		for (int c = 0; c < children; c++)
1096			vd->vdev_child[c]->vdev_open_error =
1097			    vdev_open(vd->vdev_child[c]);
1098		return;
1099	}
1100	tq = taskq_create("vdev_open", children, minclsyspri,
1101	    children, children, TASKQ_PREPOPULATE);
1102
1103	for (int c = 0; c < children; c++)
1104		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1105		    TQ_SLEEP) != 0);
1106
1107	taskq_destroy(tq);
1108}
1109
1110/*
1111 * Prepare a virtual device for access.
1112 */
1113int
1114vdev_open(vdev_t *vd)
1115{
1116	spa_t *spa = vd->vdev_spa;
1117	int error;
1118	uint64_t osize = 0;
1119	uint64_t max_osize = 0;
1120	uint64_t asize, max_asize, psize;
1121	uint64_t ashift = 0;
1122
1123	ASSERT(vd->vdev_open_thread == curthread ||
1124	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1125	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1126	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1127	    vd->vdev_state == VDEV_STATE_OFFLINE);
1128
1129	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1130	vd->vdev_cant_read = B_FALSE;
1131	vd->vdev_cant_write = B_FALSE;
1132	vd->vdev_min_asize = vdev_get_min_asize(vd);
1133
1134	/*
1135	 * If this vdev is not removed, check its fault status.  If it's
1136	 * faulted, bail out of the open.
1137	 */
1138	if (!vd->vdev_removed && vd->vdev_faulted) {
1139		ASSERT(vd->vdev_children == 0);
1140		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1141		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1142		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1143		    vd->vdev_label_aux);
1144		return (SET_ERROR(ENXIO));
1145	} else if (vd->vdev_offline) {
1146		ASSERT(vd->vdev_children == 0);
1147		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1148		return (SET_ERROR(ENXIO));
1149	}
1150
1151	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1152
1153	/*
1154	 * Reset the vdev_reopening flag so that we actually close
1155	 * the vdev on error.
1156	 */
1157	vd->vdev_reopening = B_FALSE;
1158	if (zio_injection_enabled && error == 0)
1159		error = zio_handle_device_injection(vd, NULL, ENXIO);
1160
1161	if (error) {
1162		if (vd->vdev_removed &&
1163		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1164			vd->vdev_removed = B_FALSE;
1165
1166		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1167		    vd->vdev_stat.vs_aux);
1168		return (error);
1169	}
1170
1171	vd->vdev_removed = B_FALSE;
1172
1173	/*
1174	 * Recheck the faulted flag now that we have confirmed that
1175	 * the vdev is accessible.  If we're faulted, bail.
1176	 */
1177	if (vd->vdev_faulted) {
1178		ASSERT(vd->vdev_children == 0);
1179		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1180		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1181		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1182		    vd->vdev_label_aux);
1183		return (SET_ERROR(ENXIO));
1184	}
1185
1186	if (vd->vdev_degraded) {
1187		ASSERT(vd->vdev_children == 0);
1188		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1189		    VDEV_AUX_ERR_EXCEEDED);
1190	} else {
1191		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1192	}
1193
1194	/*
1195	 * For hole or missing vdevs we just return success.
1196	 */
1197	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1198		return (0);
1199
1200	if (vd->vdev_ops->vdev_op_leaf) {
1201		vd->vdev_notrim = B_FALSE;
1202		trim_map_create(vd);
1203	}
1204
1205	for (int c = 0; c < vd->vdev_children; c++) {
1206		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1207			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1208			    VDEV_AUX_NONE);
1209			break;
1210		}
1211	}
1212
1213	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1214	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1215
1216	if (vd->vdev_children == 0) {
1217		if (osize < SPA_MINDEVSIZE) {
1218			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1219			    VDEV_AUX_TOO_SMALL);
1220			return (SET_ERROR(EOVERFLOW));
1221		}
1222		psize = osize;
1223		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1224		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1225		    VDEV_LABEL_END_SIZE);
1226	} else {
1227		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1228		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1229			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1230			    VDEV_AUX_TOO_SMALL);
1231			return (SET_ERROR(EOVERFLOW));
1232		}
1233		psize = 0;
1234		asize = osize;
1235		max_asize = max_osize;
1236	}
1237
1238	vd->vdev_psize = psize;
1239
1240	/*
1241	 * Make sure the allocatable size hasn't shrunk.
1242	 */
1243	if (asize < vd->vdev_min_asize) {
1244		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1245		    VDEV_AUX_BAD_LABEL);
1246		return (SET_ERROR(EINVAL));
1247	}
1248
1249	if (vd->vdev_asize == 0) {
1250		/*
1251		 * This is the first-ever open, so use the computed values.
1252		 * For testing purposes, a higher ashift can be requested.
1253		 */
1254		vd->vdev_asize = asize;
1255		vd->vdev_max_asize = max_asize;
1256		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1257	} else {
1258		/*
1259		 * Make sure the alignment requirement hasn't increased.
1260		 */
1261		if (ashift > vd->vdev_top->vdev_ashift) {
1262			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1263			    VDEV_AUX_BAD_LABEL);
1264			return (EINVAL);
1265		}
1266		vd->vdev_max_asize = max_asize;
1267	}
1268
1269	/*
1270	 * If all children are healthy and the asize has increased,
1271	 * then we've experienced dynamic LUN growth.  If automatic
1272	 * expansion is enabled then use the additional space.
1273	 */
1274	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1275	    (vd->vdev_expanding || spa->spa_autoexpand))
1276		vd->vdev_asize = asize;
1277
1278	vdev_set_min_asize(vd);
1279
1280	/*
1281	 * Ensure we can issue some IO before declaring the
1282	 * vdev open for business.
1283	 */
1284	if (vd->vdev_ops->vdev_op_leaf &&
1285	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1286		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1287		    VDEV_AUX_ERR_EXCEEDED);
1288		return (error);
1289	}
1290
1291	/*
1292	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1293	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1294	 * since this would just restart the scrub we are already doing.
1295	 */
1296	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1297	    vdev_resilver_needed(vd, NULL, NULL))
1298		spa_async_request(spa, SPA_ASYNC_RESILVER);
1299
1300	return (0);
1301}
1302
1303/*
1304 * Called once the vdevs are all opened, this routine validates the label
1305 * contents.  This needs to be done before vdev_load() so that we don't
1306 * inadvertently do repair I/Os to the wrong device.
1307 *
1308 * If 'strict' is false ignore the spa guid check. This is necessary because
1309 * if the machine crashed during a re-guid the new guid might have been written
1310 * to all of the vdev labels, but not the cached config. The strict check
1311 * will be performed when the pool is opened again using the mos config.
1312 *
1313 * This function will only return failure if one of the vdevs indicates that it
1314 * has since been destroyed or exported.  This is only possible if
1315 * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1316 * will be updated but the function will return 0.
1317 */
1318int
1319vdev_validate(vdev_t *vd, boolean_t strict)
1320{
1321	spa_t *spa = vd->vdev_spa;
1322	nvlist_t *label;
1323	uint64_t guid = 0, top_guid;
1324	uint64_t state;
1325
1326	for (int c = 0; c < vd->vdev_children; c++)
1327		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1328			return (SET_ERROR(EBADF));
1329
1330	/*
1331	 * If the device has already failed, or was marked offline, don't do
1332	 * any further validation.  Otherwise, label I/O will fail and we will
1333	 * overwrite the previous state.
1334	 */
1335	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1336		uint64_t aux_guid = 0;
1337		nvlist_t *nvl;
1338		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1339		    spa_last_synced_txg(spa) : -1ULL;
1340
1341		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1342			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1343			    VDEV_AUX_BAD_LABEL);
1344			return (0);
1345		}
1346
1347		/*
1348		 * Determine if this vdev has been split off into another
1349		 * pool.  If so, then refuse to open it.
1350		 */
1351		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1352		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1353			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1354			    VDEV_AUX_SPLIT_POOL);
1355			nvlist_free(label);
1356			return (0);
1357		}
1358
1359		if (strict && (nvlist_lookup_uint64(label,
1360		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1361		    guid != spa_guid(spa))) {
1362			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1363			    VDEV_AUX_CORRUPT_DATA);
1364			nvlist_free(label);
1365			return (0);
1366		}
1367
1368		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1369		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1370		    &aux_guid) != 0)
1371			aux_guid = 0;
1372
1373		/*
1374		 * If this vdev just became a top-level vdev because its
1375		 * sibling was detached, it will have adopted the parent's
1376		 * vdev guid -- but the label may or may not be on disk yet.
1377		 * Fortunately, either version of the label will have the
1378		 * same top guid, so if we're a top-level vdev, we can
1379		 * safely compare to that instead.
1380		 *
1381		 * If we split this vdev off instead, then we also check the
1382		 * original pool's guid.  We don't want to consider the vdev
1383		 * corrupt if it is partway through a split operation.
1384		 */
1385		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1386		    &guid) != 0 ||
1387		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1388		    &top_guid) != 0 ||
1389		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1390		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1391			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1392			    VDEV_AUX_CORRUPT_DATA);
1393			nvlist_free(label);
1394			return (0);
1395		}
1396
1397		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1398		    &state) != 0) {
1399			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1400			    VDEV_AUX_CORRUPT_DATA);
1401			nvlist_free(label);
1402			return (0);
1403		}
1404
1405		nvlist_free(label);
1406
1407		/*
1408		 * If this is a verbatim import, no need to check the
1409		 * state of the pool.
1410		 */
1411		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1412		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1413		    state != POOL_STATE_ACTIVE)
1414			return (SET_ERROR(EBADF));
1415
1416		/*
1417		 * If we were able to open and validate a vdev that was
1418		 * previously marked permanently unavailable, clear that state
1419		 * now.
1420		 */
1421		if (vd->vdev_not_present)
1422			vd->vdev_not_present = 0;
1423	}
1424
1425	return (0);
1426}
1427
1428/*
1429 * Close a virtual device.
1430 */
1431void
1432vdev_close(vdev_t *vd)
1433{
1434	spa_t *spa = vd->vdev_spa;
1435	vdev_t *pvd = vd->vdev_parent;
1436
1437	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1438
1439	/*
1440	 * If our parent is reopening, then we are as well, unless we are
1441	 * going offline.
1442	 */
1443	if (pvd != NULL && pvd->vdev_reopening)
1444		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1445
1446	vd->vdev_ops->vdev_op_close(vd);
1447
1448	vdev_cache_purge(vd);
1449
1450	if (vd->vdev_ops->vdev_op_leaf)
1451		trim_map_destroy(vd);
1452
1453	/*
1454	 * We record the previous state before we close it, so that if we are
1455	 * doing a reopen(), we don't generate FMA ereports if we notice that
1456	 * it's still faulted.
1457	 */
1458	vd->vdev_prevstate = vd->vdev_state;
1459
1460	if (vd->vdev_offline)
1461		vd->vdev_state = VDEV_STATE_OFFLINE;
1462	else
1463		vd->vdev_state = VDEV_STATE_CLOSED;
1464	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1465}
1466
1467void
1468vdev_hold(vdev_t *vd)
1469{
1470	spa_t *spa = vd->vdev_spa;
1471
1472	ASSERT(spa_is_root(spa));
1473	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1474		return;
1475
1476	for (int c = 0; c < vd->vdev_children; c++)
1477		vdev_hold(vd->vdev_child[c]);
1478
1479	if (vd->vdev_ops->vdev_op_leaf)
1480		vd->vdev_ops->vdev_op_hold(vd);
1481}
1482
1483void
1484vdev_rele(vdev_t *vd)
1485{
1486	spa_t *spa = vd->vdev_spa;
1487
1488	ASSERT(spa_is_root(spa));
1489	for (int c = 0; c < vd->vdev_children; c++)
1490		vdev_rele(vd->vdev_child[c]);
1491
1492	if (vd->vdev_ops->vdev_op_leaf)
1493		vd->vdev_ops->vdev_op_rele(vd);
1494}
1495
1496/*
1497 * Reopen all interior vdevs and any unopened leaves.  We don't actually
1498 * reopen leaf vdevs which had previously been opened as they might deadlock
1499 * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1500 * If the leaf has never been opened then open it, as usual.
1501 */
1502void
1503vdev_reopen(vdev_t *vd)
1504{
1505	spa_t *spa = vd->vdev_spa;
1506
1507	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1508
1509	/* set the reopening flag unless we're taking the vdev offline */
1510	vd->vdev_reopening = !vd->vdev_offline;
1511	vdev_close(vd);
1512	(void) vdev_open(vd);
1513
1514	/*
1515	 * Call vdev_validate() here to make sure we have the same device.
1516	 * Otherwise, a device with an invalid label could be successfully
1517	 * opened in response to vdev_reopen().
1518	 */
1519	if (vd->vdev_aux) {
1520		(void) vdev_validate_aux(vd);
1521		if (vdev_readable(vd) && vdev_writeable(vd) &&
1522		    vd->vdev_aux == &spa->spa_l2cache &&
1523		    !l2arc_vdev_present(vd))
1524			l2arc_add_vdev(spa, vd);
1525	} else {
1526		(void) vdev_validate(vd, B_TRUE);
1527	}
1528
1529	/*
1530	 * Reassess parent vdev's health.
1531	 */
1532	vdev_propagate_state(vd);
1533}
1534
1535int
1536vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1537{
1538	int error;
1539
1540	/*
1541	 * Normally, partial opens (e.g. of a mirror) are allowed.
1542	 * For a create, however, we want to fail the request if
1543	 * there are any components we can't open.
1544	 */
1545	error = vdev_open(vd);
1546
1547	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1548		vdev_close(vd);
1549		return (error ? error : ENXIO);
1550	}
1551
1552	/*
1553	 * Recursively initialize all labels.
1554	 */
1555	if ((error = vdev_label_init(vd, txg, isreplacing ?
1556	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1557		vdev_close(vd);
1558		return (error);
1559	}
1560
1561	return (0);
1562}
1563
1564void
1565vdev_metaslab_set_size(vdev_t *vd)
1566{
1567	/*
1568	 * Aim for roughly 200 metaslabs per vdev.
1569	 */
1570	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1571	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1572}
1573
1574void
1575vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1576{
1577	ASSERT(vd == vd->vdev_top);
1578	ASSERT(!vd->vdev_ishole);
1579	ASSERT(ISP2(flags));
1580	ASSERT(spa_writeable(vd->vdev_spa));
1581
1582	if (flags & VDD_METASLAB)
1583		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1584
1585	if (flags & VDD_DTL)
1586		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1587
1588	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1589}
1590
1591/*
1592 * DTLs.
1593 *
1594 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1595 * the vdev has less than perfect replication.  There are four kinds of DTL:
1596 *
1597 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1598 *
1599 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1600 *
1601 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1602 *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1603 *	txgs that was scrubbed.
1604 *
1605 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1606 *	persistent errors or just some device being offline.
1607 *	Unlike the other three, the DTL_OUTAGE map is not generally
1608 *	maintained; it's only computed when needed, typically to
1609 *	determine whether a device can be detached.
1610 *
1611 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1612 * either has the data or it doesn't.
1613 *
1614 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1615 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1616 * if any child is less than fully replicated, then so is its parent.
1617 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1618 * comprising only those txgs which appear in 'maxfaults' or more children;
1619 * those are the txgs we don't have enough replication to read.  For example,
1620 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1621 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1622 * two child DTL_MISSING maps.
1623 *
1624 * It should be clear from the above that to compute the DTLs and outage maps
1625 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1626 * Therefore, that is all we keep on disk.  When loading the pool, or after
1627 * a configuration change, we generate all other DTLs from first principles.
1628 */
1629void
1630vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1631{
1632	space_map_t *sm = &vd->vdev_dtl[t];
1633
1634	ASSERT(t < DTL_TYPES);
1635	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1636	ASSERT(spa_writeable(vd->vdev_spa));
1637
1638	mutex_enter(sm->sm_lock);
1639	if (!space_map_contains(sm, txg, size))
1640		space_map_add(sm, txg, size);
1641	mutex_exit(sm->sm_lock);
1642}
1643
1644boolean_t
1645vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1646{
1647	space_map_t *sm = &vd->vdev_dtl[t];
1648	boolean_t dirty = B_FALSE;
1649
1650	ASSERT(t < DTL_TYPES);
1651	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1652
1653	mutex_enter(sm->sm_lock);
1654	if (sm->sm_space != 0)
1655		dirty = space_map_contains(sm, txg, size);
1656	mutex_exit(sm->sm_lock);
1657
1658	return (dirty);
1659}
1660
1661boolean_t
1662vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1663{
1664	space_map_t *sm = &vd->vdev_dtl[t];
1665	boolean_t empty;
1666
1667	mutex_enter(sm->sm_lock);
1668	empty = (sm->sm_space == 0);
1669	mutex_exit(sm->sm_lock);
1670
1671	return (empty);
1672}
1673
1674/*
1675 * Reassess DTLs after a config change or scrub completion.
1676 */
1677void
1678vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1679{
1680	spa_t *spa = vd->vdev_spa;
1681	avl_tree_t reftree;
1682	int minref;
1683
1684	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1685
1686	for (int c = 0; c < vd->vdev_children; c++)
1687		vdev_dtl_reassess(vd->vdev_child[c], txg,
1688		    scrub_txg, scrub_done);
1689
1690	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1691		return;
1692
1693	if (vd->vdev_ops->vdev_op_leaf) {
1694		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1695
1696		mutex_enter(&vd->vdev_dtl_lock);
1697		if (scrub_txg != 0 &&
1698		    (spa->spa_scrub_started ||
1699		    (scn && scn->scn_phys.scn_errors == 0))) {
1700			/*
1701			 * We completed a scrub up to scrub_txg.  If we
1702			 * did it without rebooting, then the scrub dtl
1703			 * will be valid, so excise the old region and
1704			 * fold in the scrub dtl.  Otherwise, leave the
1705			 * dtl as-is if there was an error.
1706			 *
1707			 * There's little trick here: to excise the beginning
1708			 * of the DTL_MISSING map, we put it into a reference
1709			 * tree and then add a segment with refcnt -1 that
1710			 * covers the range [0, scrub_txg).  This means
1711			 * that each txg in that range has refcnt -1 or 0.
1712			 * We then add DTL_SCRUB with a refcnt of 2, so that
1713			 * entries in the range [0, scrub_txg) will have a
1714			 * positive refcnt -- either 1 or 2.  We then convert
1715			 * the reference tree into the new DTL_MISSING map.
1716			 */
1717			space_map_ref_create(&reftree);
1718			space_map_ref_add_map(&reftree,
1719			    &vd->vdev_dtl[DTL_MISSING], 1);
1720			space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1721			space_map_ref_add_map(&reftree,
1722			    &vd->vdev_dtl[DTL_SCRUB], 2);
1723			space_map_ref_generate_map(&reftree,
1724			    &vd->vdev_dtl[DTL_MISSING], 1);
1725			space_map_ref_destroy(&reftree);
1726		}
1727		space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1728		space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1729		    space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1730		if (scrub_done)
1731			space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1732		space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1733		if (!vdev_readable(vd))
1734			space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1735		else
1736			space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1737			    space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1738		mutex_exit(&vd->vdev_dtl_lock);
1739
1740		if (txg != 0)
1741			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1742		return;
1743	}
1744
1745	mutex_enter(&vd->vdev_dtl_lock);
1746	for (int t = 0; t < DTL_TYPES; t++) {
1747		/* account for child's outage in parent's missing map */
1748		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1749		if (t == DTL_SCRUB)
1750			continue;			/* leaf vdevs only */
1751		if (t == DTL_PARTIAL)
1752			minref = 1;			/* i.e. non-zero */
1753		else if (vd->vdev_nparity != 0)
1754			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1755		else
1756			minref = vd->vdev_children;	/* any kind of mirror */
1757		space_map_ref_create(&reftree);
1758		for (int c = 0; c < vd->vdev_children; c++) {
1759			vdev_t *cvd = vd->vdev_child[c];
1760			mutex_enter(&cvd->vdev_dtl_lock);
1761			space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1762			mutex_exit(&cvd->vdev_dtl_lock);
1763		}
1764		space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1765		space_map_ref_destroy(&reftree);
1766	}
1767	mutex_exit(&vd->vdev_dtl_lock);
1768}
1769
1770static int
1771vdev_dtl_load(vdev_t *vd)
1772{
1773	spa_t *spa = vd->vdev_spa;
1774	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1775	objset_t *mos = spa->spa_meta_objset;
1776	dmu_buf_t *db;
1777	int error;
1778
1779	ASSERT(vd->vdev_children == 0);
1780
1781	if (smo->smo_object == 0)
1782		return (0);
1783
1784	ASSERT(!vd->vdev_ishole);
1785
1786	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1787		return (error);
1788
1789	ASSERT3U(db->db_size, >=, sizeof (*smo));
1790	bcopy(db->db_data, smo, sizeof (*smo));
1791	dmu_buf_rele(db, FTAG);
1792
1793	mutex_enter(&vd->vdev_dtl_lock);
1794	error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1795	    NULL, SM_ALLOC, smo, mos);
1796	mutex_exit(&vd->vdev_dtl_lock);
1797
1798	return (error);
1799}
1800
1801void
1802vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1803{
1804	spa_t *spa = vd->vdev_spa;
1805	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1806	space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1807	objset_t *mos = spa->spa_meta_objset;
1808	space_map_t smsync;
1809	kmutex_t smlock;
1810	dmu_buf_t *db;
1811	dmu_tx_t *tx;
1812
1813	ASSERT(!vd->vdev_ishole);
1814
1815	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1816
1817	if (vd->vdev_detached) {
1818		if (smo->smo_object != 0) {
1819			int err = dmu_object_free(mos, smo->smo_object, tx);
1820			ASSERT0(err);
1821			smo->smo_object = 0;
1822		}
1823		dmu_tx_commit(tx);
1824		return;
1825	}
1826
1827	if (smo->smo_object == 0) {
1828		ASSERT(smo->smo_objsize == 0);
1829		ASSERT(smo->smo_alloc == 0);
1830		smo->smo_object = dmu_object_alloc(mos,
1831		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1832		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1833		ASSERT(smo->smo_object != 0);
1834		vdev_config_dirty(vd->vdev_top);
1835	}
1836
1837	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1838
1839	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1840	    &smlock);
1841
1842	mutex_enter(&smlock);
1843
1844	mutex_enter(&vd->vdev_dtl_lock);
1845	space_map_walk(sm, space_map_add, &smsync);
1846	mutex_exit(&vd->vdev_dtl_lock);
1847
1848	space_map_truncate(smo, mos, tx);
1849	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1850	space_map_vacate(&smsync, NULL, NULL);
1851
1852	space_map_destroy(&smsync);
1853
1854	mutex_exit(&smlock);
1855	mutex_destroy(&smlock);
1856
1857	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1858	dmu_buf_will_dirty(db, tx);
1859	ASSERT3U(db->db_size, >=, sizeof (*smo));
1860	bcopy(smo, db->db_data, sizeof (*smo));
1861	dmu_buf_rele(db, FTAG);
1862
1863	dmu_tx_commit(tx);
1864}
1865
1866/*
1867 * Determine whether the specified vdev can be offlined/detached/removed
1868 * without losing data.
1869 */
1870boolean_t
1871vdev_dtl_required(vdev_t *vd)
1872{
1873	spa_t *spa = vd->vdev_spa;
1874	vdev_t *tvd = vd->vdev_top;
1875	uint8_t cant_read = vd->vdev_cant_read;
1876	boolean_t required;
1877
1878	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1879
1880	if (vd == spa->spa_root_vdev || vd == tvd)
1881		return (B_TRUE);
1882
1883	/*
1884	 * Temporarily mark the device as unreadable, and then determine
1885	 * whether this results in any DTL outages in the top-level vdev.
1886	 * If not, we can safely offline/detach/remove the device.
1887	 */
1888	vd->vdev_cant_read = B_TRUE;
1889	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1890	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1891	vd->vdev_cant_read = cant_read;
1892	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1893
1894	if (!required && zio_injection_enabled)
1895		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1896
1897	return (required);
1898}
1899
1900/*
1901 * Determine if resilver is needed, and if so the txg range.
1902 */
1903boolean_t
1904vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1905{
1906	boolean_t needed = B_FALSE;
1907	uint64_t thismin = UINT64_MAX;
1908	uint64_t thismax = 0;
1909
1910	if (vd->vdev_children == 0) {
1911		mutex_enter(&vd->vdev_dtl_lock);
1912		if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1913		    vdev_writeable(vd)) {
1914			space_seg_t *ss;
1915
1916			ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1917			thismin = ss->ss_start - 1;
1918			ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1919			thismax = ss->ss_end;
1920			needed = B_TRUE;
1921		}
1922		mutex_exit(&vd->vdev_dtl_lock);
1923	} else {
1924		for (int c = 0; c < vd->vdev_children; c++) {
1925			vdev_t *cvd = vd->vdev_child[c];
1926			uint64_t cmin, cmax;
1927
1928			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1929				thismin = MIN(thismin, cmin);
1930				thismax = MAX(thismax, cmax);
1931				needed = B_TRUE;
1932			}
1933		}
1934	}
1935
1936	if (needed && minp) {
1937		*minp = thismin;
1938		*maxp = thismax;
1939	}
1940	return (needed);
1941}
1942
1943void
1944vdev_load(vdev_t *vd)
1945{
1946	/*
1947	 * Recursively load all children.
1948	 */
1949	for (int c = 0; c < vd->vdev_children; c++)
1950		vdev_load(vd->vdev_child[c]);
1951
1952	/*
1953	 * If this is a top-level vdev, initialize its metaslabs.
1954	 */
1955	if (vd == vd->vdev_top && !vd->vdev_ishole &&
1956	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1957	    vdev_metaslab_init(vd, 0) != 0))
1958		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1959		    VDEV_AUX_CORRUPT_DATA);
1960
1961	/*
1962	 * If this is a leaf vdev, load its DTL.
1963	 */
1964	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1965		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1966		    VDEV_AUX_CORRUPT_DATA);
1967}
1968
1969/*
1970 * The special vdev case is used for hot spares and l2cache devices.  Its
1971 * sole purpose it to set the vdev state for the associated vdev.  To do this,
1972 * we make sure that we can open the underlying device, then try to read the
1973 * label, and make sure that the label is sane and that it hasn't been
1974 * repurposed to another pool.
1975 */
1976int
1977vdev_validate_aux(vdev_t *vd)
1978{
1979	nvlist_t *label;
1980	uint64_t guid, version;
1981	uint64_t state;
1982
1983	if (!vdev_readable(vd))
1984		return (0);
1985
1986	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
1987		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1988		    VDEV_AUX_CORRUPT_DATA);
1989		return (-1);
1990	}
1991
1992	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1993	    !SPA_VERSION_IS_SUPPORTED(version) ||
1994	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1995	    guid != vd->vdev_guid ||
1996	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1997		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1998		    VDEV_AUX_CORRUPT_DATA);
1999		nvlist_free(label);
2000		return (-1);
2001	}
2002
2003	/*
2004	 * We don't actually check the pool state here.  If it's in fact in
2005	 * use by another pool, we update this fact on the fly when requested.
2006	 */
2007	nvlist_free(label);
2008	return (0);
2009}
2010
2011void
2012vdev_remove(vdev_t *vd, uint64_t txg)
2013{
2014	spa_t *spa = vd->vdev_spa;
2015	objset_t *mos = spa->spa_meta_objset;
2016	dmu_tx_t *tx;
2017
2018	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2019
2020	if (vd->vdev_dtl_smo.smo_object) {
2021		ASSERT0(vd->vdev_dtl_smo.smo_alloc);
2022		(void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2023		vd->vdev_dtl_smo.smo_object = 0;
2024	}
2025
2026	if (vd->vdev_ms != NULL) {
2027		for (int m = 0; m < vd->vdev_ms_count; m++) {
2028			metaslab_t *msp = vd->vdev_ms[m];
2029
2030			if (msp == NULL || msp->ms_smo.smo_object == 0)
2031				continue;
2032
2033			ASSERT0(msp->ms_smo.smo_alloc);
2034			(void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2035			msp->ms_smo.smo_object = 0;
2036		}
2037	}
2038
2039	if (vd->vdev_ms_array) {
2040		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2041		vd->vdev_ms_array = 0;
2042		vd->vdev_ms_shift = 0;
2043	}
2044	dmu_tx_commit(tx);
2045}
2046
2047void
2048vdev_sync_done(vdev_t *vd, uint64_t txg)
2049{
2050	metaslab_t *msp;
2051	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2052
2053	ASSERT(!vd->vdev_ishole);
2054
2055	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2056		metaslab_sync_done(msp, txg);
2057
2058	if (reassess)
2059		metaslab_sync_reassess(vd->vdev_mg);
2060}
2061
2062void
2063vdev_sync(vdev_t *vd, uint64_t txg)
2064{
2065	spa_t *spa = vd->vdev_spa;
2066	vdev_t *lvd;
2067	metaslab_t *msp;
2068	dmu_tx_t *tx;
2069
2070	ASSERT(!vd->vdev_ishole);
2071
2072	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2073		ASSERT(vd == vd->vdev_top);
2074		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2075		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2076		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2077		ASSERT(vd->vdev_ms_array != 0);
2078		vdev_config_dirty(vd);
2079		dmu_tx_commit(tx);
2080	}
2081
2082	/*
2083	 * Remove the metadata associated with this vdev once it's empty.
2084	 */
2085	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2086		vdev_remove(vd, txg);
2087
2088	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2089		metaslab_sync(msp, txg);
2090		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2091	}
2092
2093	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2094		vdev_dtl_sync(lvd, txg);
2095
2096	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2097}
2098
2099uint64_t
2100vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2101{
2102	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2103}
2104
2105/*
2106 * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2107 * not be opened, and no I/O is attempted.
2108 */
2109int
2110vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2111{
2112	vdev_t *vd, *tvd;
2113
2114	spa_vdev_state_enter(spa, SCL_NONE);
2115
2116	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2117		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2118
2119	if (!vd->vdev_ops->vdev_op_leaf)
2120		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2121
2122	tvd = vd->vdev_top;
2123
2124	/*
2125	 * We don't directly use the aux state here, but if we do a
2126	 * vdev_reopen(), we need this value to be present to remember why we
2127	 * were faulted.
2128	 */
2129	vd->vdev_label_aux = aux;
2130
2131	/*
2132	 * Faulted state takes precedence over degraded.
2133	 */
2134	vd->vdev_delayed_close = B_FALSE;
2135	vd->vdev_faulted = 1ULL;
2136	vd->vdev_degraded = 0ULL;
2137	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2138
2139	/*
2140	 * If this device has the only valid copy of the data, then
2141	 * back off and simply mark the vdev as degraded instead.
2142	 */
2143	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2144		vd->vdev_degraded = 1ULL;
2145		vd->vdev_faulted = 0ULL;
2146
2147		/*
2148		 * If we reopen the device and it's not dead, only then do we
2149		 * mark it degraded.
2150		 */
2151		vdev_reopen(tvd);
2152
2153		if (vdev_readable(vd))
2154			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2155	}
2156
2157	return (spa_vdev_state_exit(spa, vd, 0));
2158}
2159
2160/*
2161 * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2162 * user that something is wrong.  The vdev continues to operate as normal as far
2163 * as I/O is concerned.
2164 */
2165int
2166vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2167{
2168	vdev_t *vd;
2169
2170	spa_vdev_state_enter(spa, SCL_NONE);
2171
2172	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2173		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2174
2175	if (!vd->vdev_ops->vdev_op_leaf)
2176		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2177
2178	/*
2179	 * If the vdev is already faulted, then don't do anything.
2180	 */
2181	if (vd->vdev_faulted || vd->vdev_degraded)
2182		return (spa_vdev_state_exit(spa, NULL, 0));
2183
2184	vd->vdev_degraded = 1ULL;
2185	if (!vdev_is_dead(vd))
2186		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2187		    aux);
2188
2189	return (spa_vdev_state_exit(spa, vd, 0));
2190}
2191
2192/*
2193 * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2194 * any attached spare device should be detached when the device finishes
2195 * resilvering.  Second, the online should be treated like a 'test' online case,
2196 * so no FMA events are generated if the device fails to open.
2197 */
2198int
2199vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2200{
2201	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2202
2203	spa_vdev_state_enter(spa, SCL_NONE);
2204
2205	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2206		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2207
2208	if (!vd->vdev_ops->vdev_op_leaf)
2209		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2210
2211	tvd = vd->vdev_top;
2212	vd->vdev_offline = B_FALSE;
2213	vd->vdev_tmpoffline = B_FALSE;
2214	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2215	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2216
2217	/* XXX - L2ARC 1.0 does not support expansion */
2218	if (!vd->vdev_aux) {
2219		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2220			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2221	}
2222
2223	vdev_reopen(tvd);
2224	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2225
2226	if (!vd->vdev_aux) {
2227		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2228			pvd->vdev_expanding = B_FALSE;
2229	}
2230
2231	if (newstate)
2232		*newstate = vd->vdev_state;
2233	if ((flags & ZFS_ONLINE_UNSPARE) &&
2234	    !vdev_is_dead(vd) && vd->vdev_parent &&
2235	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2236	    vd->vdev_parent->vdev_child[0] == vd)
2237		vd->vdev_unspare = B_TRUE;
2238
2239	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2240
2241		/* XXX - L2ARC 1.0 does not support expansion */
2242		if (vd->vdev_aux)
2243			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2244		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2245	}
2246	return (spa_vdev_state_exit(spa, vd, 0));
2247}
2248
2249static int
2250vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2251{
2252	vdev_t *vd, *tvd;
2253	int error = 0;
2254	uint64_t generation;
2255	metaslab_group_t *mg;
2256
2257top:
2258	spa_vdev_state_enter(spa, SCL_ALLOC);
2259
2260	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2261		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2262
2263	if (!vd->vdev_ops->vdev_op_leaf)
2264		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2265
2266	tvd = vd->vdev_top;
2267	mg = tvd->vdev_mg;
2268	generation = spa->spa_config_generation + 1;
2269
2270	/*
2271	 * If the device isn't already offline, try to offline it.
2272	 */
2273	if (!vd->vdev_offline) {
2274		/*
2275		 * If this device has the only valid copy of some data,
2276		 * don't allow it to be offlined. Log devices are always
2277		 * expendable.
2278		 */
2279		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2280		    vdev_dtl_required(vd))
2281			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2282
2283		/*
2284		 * If the top-level is a slog and it has had allocations
2285		 * then proceed.  We check that the vdev's metaslab group
2286		 * is not NULL since it's possible that we may have just
2287		 * added this vdev but not yet initialized its metaslabs.
2288		 */
2289		if (tvd->vdev_islog && mg != NULL) {
2290			/*
2291			 * Prevent any future allocations.
2292			 */
2293			metaslab_group_passivate(mg);
2294			(void) spa_vdev_state_exit(spa, vd, 0);
2295
2296			error = spa_offline_log(spa);
2297
2298			spa_vdev_state_enter(spa, SCL_ALLOC);
2299
2300			/*
2301			 * Check to see if the config has changed.
2302			 */
2303			if (error || generation != spa->spa_config_generation) {
2304				metaslab_group_activate(mg);
2305				if (error)
2306					return (spa_vdev_state_exit(spa,
2307					    vd, error));
2308				(void) spa_vdev_state_exit(spa, vd, 0);
2309				goto top;
2310			}
2311			ASSERT0(tvd->vdev_stat.vs_alloc);
2312		}
2313
2314		/*
2315		 * Offline this device and reopen its top-level vdev.
2316		 * If the top-level vdev is a log device then just offline
2317		 * it. Otherwise, if this action results in the top-level
2318		 * vdev becoming unusable, undo it and fail the request.
2319		 */
2320		vd->vdev_offline = B_TRUE;
2321		vdev_reopen(tvd);
2322
2323		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2324		    vdev_is_dead(tvd)) {
2325			vd->vdev_offline = B_FALSE;
2326			vdev_reopen(tvd);
2327			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2328		}
2329
2330		/*
2331		 * Add the device back into the metaslab rotor so that
2332		 * once we online the device it's open for business.
2333		 */
2334		if (tvd->vdev_islog && mg != NULL)
2335			metaslab_group_activate(mg);
2336	}
2337
2338	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2339
2340	return (spa_vdev_state_exit(spa, vd, 0));
2341}
2342
2343int
2344vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2345{
2346	int error;
2347
2348	mutex_enter(&spa->spa_vdev_top_lock);
2349	error = vdev_offline_locked(spa, guid, flags);
2350	mutex_exit(&spa->spa_vdev_top_lock);
2351
2352	return (error);
2353}
2354
2355/*
2356 * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2357 * vdev_offline(), we assume the spa config is locked.  We also clear all
2358 * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2359 */
2360void
2361vdev_clear(spa_t *spa, vdev_t *vd)
2362{
2363	vdev_t *rvd = spa->spa_root_vdev;
2364
2365	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2366
2367	if (vd == NULL)
2368		vd = rvd;
2369
2370	vd->vdev_stat.vs_read_errors = 0;
2371	vd->vdev_stat.vs_write_errors = 0;
2372	vd->vdev_stat.vs_checksum_errors = 0;
2373
2374	for (int c = 0; c < vd->vdev_children; c++)
2375		vdev_clear(spa, vd->vdev_child[c]);
2376
2377	/*
2378	 * If we're in the FAULTED state or have experienced failed I/O, then
2379	 * clear the persistent state and attempt to reopen the device.  We
2380	 * also mark the vdev config dirty, so that the new faulted state is
2381	 * written out to disk.
2382	 */
2383	if (vd->vdev_faulted || vd->vdev_degraded ||
2384	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2385
2386		/*
2387		 * When reopening in reponse to a clear event, it may be due to
2388		 * a fmadm repair request.  In this case, if the device is
2389		 * still broken, we want to still post the ereport again.
2390		 */
2391		vd->vdev_forcefault = B_TRUE;
2392
2393		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2394		vd->vdev_cant_read = B_FALSE;
2395		vd->vdev_cant_write = B_FALSE;
2396
2397		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2398
2399		vd->vdev_forcefault = B_FALSE;
2400
2401		if (vd != rvd && vdev_writeable(vd->vdev_top))
2402			vdev_state_dirty(vd->vdev_top);
2403
2404		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2405			spa_async_request(spa, SPA_ASYNC_RESILVER);
2406
2407		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2408	}
2409
2410	/*
2411	 * When clearing a FMA-diagnosed fault, we always want to
2412	 * unspare the device, as we assume that the original spare was
2413	 * done in response to the FMA fault.
2414	 */
2415	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2416	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2417	    vd->vdev_parent->vdev_child[0] == vd)
2418		vd->vdev_unspare = B_TRUE;
2419}
2420
2421boolean_t
2422vdev_is_dead(vdev_t *vd)
2423{
2424	/*
2425	 * Holes and missing devices are always considered "dead".
2426	 * This simplifies the code since we don't have to check for
2427	 * these types of devices in the various code paths.
2428	 * Instead we rely on the fact that we skip over dead devices
2429	 * before issuing I/O to them.
2430	 */
2431	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2432	    vd->vdev_ops == &vdev_missing_ops);
2433}
2434
2435boolean_t
2436vdev_readable(vdev_t *vd)
2437{
2438	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2439}
2440
2441boolean_t
2442vdev_writeable(vdev_t *vd)
2443{
2444	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2445}
2446
2447boolean_t
2448vdev_allocatable(vdev_t *vd)
2449{
2450	uint64_t state = vd->vdev_state;
2451
2452	/*
2453	 * We currently allow allocations from vdevs which may be in the
2454	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2455	 * fails to reopen then we'll catch it later when we're holding
2456	 * the proper locks.  Note that we have to get the vdev state
2457	 * in a local variable because although it changes atomically,
2458	 * we're asking two separate questions about it.
2459	 */
2460	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2461	    !vd->vdev_cant_write && !vd->vdev_ishole);
2462}
2463
2464boolean_t
2465vdev_accessible(vdev_t *vd, zio_t *zio)
2466{
2467	ASSERT(zio->io_vd == vd);
2468
2469	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2470		return (B_FALSE);
2471
2472	if (zio->io_type == ZIO_TYPE_READ)
2473		return (!vd->vdev_cant_read);
2474
2475	if (zio->io_type == ZIO_TYPE_WRITE)
2476		return (!vd->vdev_cant_write);
2477
2478	return (B_TRUE);
2479}
2480
2481/*
2482 * Get statistics for the given vdev.
2483 */
2484void
2485vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2486{
2487	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2488
2489	mutex_enter(&vd->vdev_stat_lock);
2490	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2491	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2492	vs->vs_state = vd->vdev_state;
2493	vs->vs_rsize = vdev_get_min_asize(vd);
2494	if (vd->vdev_ops->vdev_op_leaf)
2495		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2496	vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2497	mutex_exit(&vd->vdev_stat_lock);
2498
2499	/*
2500	 * If we're getting stats on the root vdev, aggregate the I/O counts
2501	 * over all top-level vdevs (i.e. the direct children of the root).
2502	 */
2503	if (vd == rvd) {
2504		for (int c = 0; c < rvd->vdev_children; c++) {
2505			vdev_t *cvd = rvd->vdev_child[c];
2506			vdev_stat_t *cvs = &cvd->vdev_stat;
2507
2508			mutex_enter(&vd->vdev_stat_lock);
2509			for (int t = 0; t < ZIO_TYPES; t++) {
2510				vs->vs_ops[t] += cvs->vs_ops[t];
2511				vs->vs_bytes[t] += cvs->vs_bytes[t];
2512			}
2513			cvs->vs_scan_removing = cvd->vdev_removing;
2514			mutex_exit(&vd->vdev_stat_lock);
2515		}
2516	}
2517}
2518
2519void
2520vdev_clear_stats(vdev_t *vd)
2521{
2522	mutex_enter(&vd->vdev_stat_lock);
2523	vd->vdev_stat.vs_space = 0;
2524	vd->vdev_stat.vs_dspace = 0;
2525	vd->vdev_stat.vs_alloc = 0;
2526	mutex_exit(&vd->vdev_stat_lock);
2527}
2528
2529void
2530vdev_scan_stat_init(vdev_t *vd)
2531{
2532	vdev_stat_t *vs = &vd->vdev_stat;
2533
2534	for (int c = 0; c < vd->vdev_children; c++)
2535		vdev_scan_stat_init(vd->vdev_child[c]);
2536
2537	mutex_enter(&vd->vdev_stat_lock);
2538	vs->vs_scan_processed = 0;
2539	mutex_exit(&vd->vdev_stat_lock);
2540}
2541
2542void
2543vdev_stat_update(zio_t *zio, uint64_t psize)
2544{
2545	spa_t *spa = zio->io_spa;
2546	vdev_t *rvd = spa->spa_root_vdev;
2547	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2548	vdev_t *pvd;
2549	uint64_t txg = zio->io_txg;
2550	vdev_stat_t *vs = &vd->vdev_stat;
2551	zio_type_t type = zio->io_type;
2552	int flags = zio->io_flags;
2553
2554	/*
2555	 * If this i/o is a gang leader, it didn't do any actual work.
2556	 */
2557	if (zio->io_gang_tree)
2558		return;
2559
2560	if (zio->io_error == 0) {
2561		/*
2562		 * If this is a root i/o, don't count it -- we've already
2563		 * counted the top-level vdevs, and vdev_get_stats() will
2564		 * aggregate them when asked.  This reduces contention on
2565		 * the root vdev_stat_lock and implicitly handles blocks
2566		 * that compress away to holes, for which there is no i/o.
2567		 * (Holes never create vdev children, so all the counters
2568		 * remain zero, which is what we want.)
2569		 *
2570		 * Note: this only applies to successful i/o (io_error == 0)
2571		 * because unlike i/o counts, errors are not additive.
2572		 * When reading a ditto block, for example, failure of
2573		 * one top-level vdev does not imply a root-level error.
2574		 */
2575		if (vd == rvd)
2576			return;
2577
2578		ASSERT(vd == zio->io_vd);
2579
2580		if (flags & ZIO_FLAG_IO_BYPASS)
2581			return;
2582
2583		mutex_enter(&vd->vdev_stat_lock);
2584
2585		if (flags & ZIO_FLAG_IO_REPAIR) {
2586			if (flags & ZIO_FLAG_SCAN_THREAD) {
2587				dsl_scan_phys_t *scn_phys =
2588				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2589				uint64_t *processed = &scn_phys->scn_processed;
2590
2591				/* XXX cleanup? */
2592				if (vd->vdev_ops->vdev_op_leaf)
2593					atomic_add_64(processed, psize);
2594				vs->vs_scan_processed += psize;
2595			}
2596
2597			if (flags & ZIO_FLAG_SELF_HEAL)
2598				vs->vs_self_healed += psize;
2599		}
2600
2601		vs->vs_ops[type]++;
2602		vs->vs_bytes[type] += psize;
2603
2604		mutex_exit(&vd->vdev_stat_lock);
2605		return;
2606	}
2607
2608	if (flags & ZIO_FLAG_SPECULATIVE)
2609		return;
2610
2611	/*
2612	 * If this is an I/O error that is going to be retried, then ignore the
2613	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2614	 * hard errors, when in reality they can happen for any number of
2615	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2616	 */
2617	if (zio->io_error == EIO &&
2618	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2619		return;
2620
2621	/*
2622	 * Intent logs writes won't propagate their error to the root
2623	 * I/O so don't mark these types of failures as pool-level
2624	 * errors.
2625	 */
2626	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2627		return;
2628
2629	mutex_enter(&vd->vdev_stat_lock);
2630	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2631		if (zio->io_error == ECKSUM)
2632			vs->vs_checksum_errors++;
2633		else
2634			vs->vs_read_errors++;
2635	}
2636	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2637		vs->vs_write_errors++;
2638	mutex_exit(&vd->vdev_stat_lock);
2639
2640	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2641	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2642	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2643	    spa->spa_claiming)) {
2644		/*
2645		 * This is either a normal write (not a repair), or it's
2646		 * a repair induced by the scrub thread, or it's a repair
2647		 * made by zil_claim() during spa_load() in the first txg.
2648		 * In the normal case, we commit the DTL change in the same
2649		 * txg as the block was born.  In the scrub-induced repair
2650		 * case, we know that scrubs run in first-pass syncing context,
2651		 * so we commit the DTL change in spa_syncing_txg(spa).
2652		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2653		 *
2654		 * We currently do not make DTL entries for failed spontaneous
2655		 * self-healing writes triggered by normal (non-scrubbing)
2656		 * reads, because we have no transactional context in which to
2657		 * do so -- and it's not clear that it'd be desirable anyway.
2658		 */
2659		if (vd->vdev_ops->vdev_op_leaf) {
2660			uint64_t commit_txg = txg;
2661			if (flags & ZIO_FLAG_SCAN_THREAD) {
2662				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2663				ASSERT(spa_sync_pass(spa) == 1);
2664				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2665				commit_txg = spa_syncing_txg(spa);
2666			} else if (spa->spa_claiming) {
2667				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2668				commit_txg = spa_first_txg(spa);
2669			}
2670			ASSERT(commit_txg >= spa_syncing_txg(spa));
2671			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2672				return;
2673			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2674				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2675			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2676		}
2677		if (vd != rvd)
2678			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2679	}
2680}
2681
2682/*
2683 * Update the in-core space usage stats for this vdev, its metaslab class,
2684 * and the root vdev.
2685 */
2686void
2687vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2688    int64_t space_delta)
2689{
2690	int64_t dspace_delta = space_delta;
2691	spa_t *spa = vd->vdev_spa;
2692	vdev_t *rvd = spa->spa_root_vdev;
2693	metaslab_group_t *mg = vd->vdev_mg;
2694	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2695
2696	ASSERT(vd == vd->vdev_top);
2697
2698	/*
2699	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2700	 * factor.  We must calculate this here and not at the root vdev
2701	 * because the root vdev's psize-to-asize is simply the max of its
2702	 * childrens', thus not accurate enough for us.
2703	 */
2704	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2705	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2706	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2707	    vd->vdev_deflate_ratio;
2708
2709	mutex_enter(&vd->vdev_stat_lock);
2710	vd->vdev_stat.vs_alloc += alloc_delta;
2711	vd->vdev_stat.vs_space += space_delta;
2712	vd->vdev_stat.vs_dspace += dspace_delta;
2713	mutex_exit(&vd->vdev_stat_lock);
2714
2715	if (mc == spa_normal_class(spa)) {
2716		mutex_enter(&rvd->vdev_stat_lock);
2717		rvd->vdev_stat.vs_alloc += alloc_delta;
2718		rvd->vdev_stat.vs_space += space_delta;
2719		rvd->vdev_stat.vs_dspace += dspace_delta;
2720		mutex_exit(&rvd->vdev_stat_lock);
2721	}
2722
2723	if (mc != NULL) {
2724		ASSERT(rvd == vd->vdev_parent);
2725		ASSERT(vd->vdev_ms_count != 0);
2726
2727		metaslab_class_space_update(mc,
2728		    alloc_delta, defer_delta, space_delta, dspace_delta);
2729	}
2730}
2731
2732/*
2733 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2734 * so that it will be written out next time the vdev configuration is synced.
2735 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2736 */
2737void
2738vdev_config_dirty(vdev_t *vd)
2739{
2740	spa_t *spa = vd->vdev_spa;
2741	vdev_t *rvd = spa->spa_root_vdev;
2742	int c;
2743
2744	ASSERT(spa_writeable(spa));
2745
2746	/*
2747	 * If this is an aux vdev (as with l2cache and spare devices), then we
2748	 * update the vdev config manually and set the sync flag.
2749	 */
2750	if (vd->vdev_aux != NULL) {
2751		spa_aux_vdev_t *sav = vd->vdev_aux;
2752		nvlist_t **aux;
2753		uint_t naux;
2754
2755		for (c = 0; c < sav->sav_count; c++) {
2756			if (sav->sav_vdevs[c] == vd)
2757				break;
2758		}
2759
2760		if (c == sav->sav_count) {
2761			/*
2762			 * We're being removed.  There's nothing more to do.
2763			 */
2764			ASSERT(sav->sav_sync == B_TRUE);
2765			return;
2766		}
2767
2768		sav->sav_sync = B_TRUE;
2769
2770		if (nvlist_lookup_nvlist_array(sav->sav_config,
2771		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2772			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2773			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2774		}
2775
2776		ASSERT(c < naux);
2777
2778		/*
2779		 * Setting the nvlist in the middle if the array is a little
2780		 * sketchy, but it will work.
2781		 */
2782		nvlist_free(aux[c]);
2783		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2784
2785		return;
2786	}
2787
2788	/*
2789	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2790	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2791	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2792	 * so this is sufficient to ensure mutual exclusion.
2793	 */
2794	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2795	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2796	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2797
2798	if (vd == rvd) {
2799		for (c = 0; c < rvd->vdev_children; c++)
2800			vdev_config_dirty(rvd->vdev_child[c]);
2801	} else {
2802		ASSERT(vd == vd->vdev_top);
2803
2804		if (!list_link_active(&vd->vdev_config_dirty_node) &&
2805		    !vd->vdev_ishole)
2806			list_insert_head(&spa->spa_config_dirty_list, vd);
2807	}
2808}
2809
2810void
2811vdev_config_clean(vdev_t *vd)
2812{
2813	spa_t *spa = vd->vdev_spa;
2814
2815	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2816	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2817	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2818
2819	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2820	list_remove(&spa->spa_config_dirty_list, vd);
2821}
2822
2823/*
2824 * Mark a top-level vdev's state as dirty, so that the next pass of
2825 * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2826 * the state changes from larger config changes because they require
2827 * much less locking, and are often needed for administrative actions.
2828 */
2829void
2830vdev_state_dirty(vdev_t *vd)
2831{
2832	spa_t *spa = vd->vdev_spa;
2833
2834	ASSERT(spa_writeable(spa));
2835	ASSERT(vd == vd->vdev_top);
2836
2837	/*
2838	 * The state list is protected by the SCL_STATE lock.  The caller
2839	 * must either hold SCL_STATE as writer, or must be the sync thread
2840	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2841	 * so this is sufficient to ensure mutual exclusion.
2842	 */
2843	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2844	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2845	    spa_config_held(spa, SCL_STATE, RW_READER)));
2846
2847	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2848		list_insert_head(&spa->spa_state_dirty_list, vd);
2849}
2850
2851void
2852vdev_state_clean(vdev_t *vd)
2853{
2854	spa_t *spa = vd->vdev_spa;
2855
2856	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2857	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2858	    spa_config_held(spa, SCL_STATE, RW_READER)));
2859
2860	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2861	list_remove(&spa->spa_state_dirty_list, vd);
2862}
2863
2864/*
2865 * Propagate vdev state up from children to parent.
2866 */
2867void
2868vdev_propagate_state(vdev_t *vd)
2869{
2870	spa_t *spa = vd->vdev_spa;
2871	vdev_t *rvd = spa->spa_root_vdev;
2872	int degraded = 0, faulted = 0;
2873	int corrupted = 0;
2874	vdev_t *child;
2875
2876	if (vd->vdev_children > 0) {
2877		for (int c = 0; c < vd->vdev_children; c++) {
2878			child = vd->vdev_child[c];
2879
2880			/*
2881			 * Don't factor holes into the decision.
2882			 */
2883			if (child->vdev_ishole)
2884				continue;
2885
2886			if (!vdev_readable(child) ||
2887			    (!vdev_writeable(child) && spa_writeable(spa))) {
2888				/*
2889				 * Root special: if there is a top-level log
2890				 * device, treat the root vdev as if it were
2891				 * degraded.
2892				 */
2893				if (child->vdev_islog && vd == rvd)
2894					degraded++;
2895				else
2896					faulted++;
2897			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2898				degraded++;
2899			}
2900
2901			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2902				corrupted++;
2903		}
2904
2905		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2906
2907		/*
2908		 * Root special: if there is a top-level vdev that cannot be
2909		 * opened due to corrupted metadata, then propagate the root
2910		 * vdev's aux state as 'corrupt' rather than 'insufficient
2911		 * replicas'.
2912		 */
2913		if (corrupted && vd == rvd &&
2914		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2915			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2916			    VDEV_AUX_CORRUPT_DATA);
2917	}
2918
2919	if (vd->vdev_parent)
2920		vdev_propagate_state(vd->vdev_parent);
2921}
2922
2923/*
2924 * Set a vdev's state.  If this is during an open, we don't update the parent
2925 * state, because we're in the process of opening children depth-first.
2926 * Otherwise, we propagate the change to the parent.
2927 *
2928 * If this routine places a device in a faulted state, an appropriate ereport is
2929 * generated.
2930 */
2931void
2932vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2933{
2934	uint64_t save_state;
2935	spa_t *spa = vd->vdev_spa;
2936
2937	if (state == vd->vdev_state) {
2938		vd->vdev_stat.vs_aux = aux;
2939		return;
2940	}
2941
2942	save_state = vd->vdev_state;
2943
2944	vd->vdev_state = state;
2945	vd->vdev_stat.vs_aux = aux;
2946
2947	/*
2948	 * If we are setting the vdev state to anything but an open state, then
2949	 * always close the underlying device unless the device has requested
2950	 * a delayed close (i.e. we're about to remove or fault the device).
2951	 * Otherwise, we keep accessible but invalid devices open forever.
2952	 * We don't call vdev_close() itself, because that implies some extra
2953	 * checks (offline, etc) that we don't want here.  This is limited to
2954	 * leaf devices, because otherwise closing the device will affect other
2955	 * children.
2956	 */
2957	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2958	    vd->vdev_ops->vdev_op_leaf)
2959		vd->vdev_ops->vdev_op_close(vd);
2960
2961	/*
2962	 * If we have brought this vdev back into service, we need
2963	 * to notify fmd so that it can gracefully repair any outstanding
2964	 * cases due to a missing device.  We do this in all cases, even those
2965	 * that probably don't correlate to a repaired fault.  This is sure to
2966	 * catch all cases, and we let the zfs-retire agent sort it out.  If
2967	 * this is a transient state it's OK, as the retire agent will
2968	 * double-check the state of the vdev before repairing it.
2969	 */
2970	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2971	    vd->vdev_prevstate != state)
2972		zfs_post_state_change(spa, vd);
2973
2974	if (vd->vdev_removed &&
2975	    state == VDEV_STATE_CANT_OPEN &&
2976	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2977		/*
2978		 * If the previous state is set to VDEV_STATE_REMOVED, then this
2979		 * device was previously marked removed and someone attempted to
2980		 * reopen it.  If this failed due to a nonexistent device, then
2981		 * keep the device in the REMOVED state.  We also let this be if
2982		 * it is one of our special test online cases, which is only
2983		 * attempting to online the device and shouldn't generate an FMA
2984		 * fault.
2985		 */
2986		vd->vdev_state = VDEV_STATE_REMOVED;
2987		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2988	} else if (state == VDEV_STATE_REMOVED) {
2989		vd->vdev_removed = B_TRUE;
2990	} else if (state == VDEV_STATE_CANT_OPEN) {
2991		/*
2992		 * If we fail to open a vdev during an import or recovery, we
2993		 * mark it as "not available", which signifies that it was
2994		 * never there to begin with.  Failure to open such a device
2995		 * is not considered an error.
2996		 */
2997		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2998		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
2999		    vd->vdev_ops->vdev_op_leaf)
3000			vd->vdev_not_present = 1;
3001
3002		/*
3003		 * Post the appropriate ereport.  If the 'prevstate' field is
3004		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3005		 * that this is part of a vdev_reopen().  In this case, we don't
3006		 * want to post the ereport if the device was already in the
3007		 * CANT_OPEN state beforehand.
3008		 *
3009		 * If the 'checkremove' flag is set, then this is an attempt to
3010		 * online the device in response to an insertion event.  If we
3011		 * hit this case, then we have detected an insertion event for a
3012		 * faulted or offline device that wasn't in the removed state.
3013		 * In this scenario, we don't post an ereport because we are
3014		 * about to replace the device, or attempt an online with
3015		 * vdev_forcefault, which will generate the fault for us.
3016		 */
3017		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3018		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3019		    vd != spa->spa_root_vdev) {
3020			const char *class;
3021
3022			switch (aux) {
3023			case VDEV_AUX_OPEN_FAILED:
3024				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3025				break;
3026			case VDEV_AUX_CORRUPT_DATA:
3027				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3028				break;
3029			case VDEV_AUX_NO_REPLICAS:
3030				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3031				break;
3032			case VDEV_AUX_BAD_GUID_SUM:
3033				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3034				break;
3035			case VDEV_AUX_TOO_SMALL:
3036				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3037				break;
3038			case VDEV_AUX_BAD_LABEL:
3039				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3040				break;
3041			default:
3042				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3043			}
3044
3045			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3046		}
3047
3048		/* Erase any notion of persistent removed state */
3049		vd->vdev_removed = B_FALSE;
3050	} else {
3051		vd->vdev_removed = B_FALSE;
3052	}
3053
3054	if (!isopen && vd->vdev_parent)
3055		vdev_propagate_state(vd->vdev_parent);
3056}
3057
3058/*
3059 * Check the vdev configuration to ensure that it's capable of supporting
3060 * a root pool.
3061 *
3062 * On Solaris, we do not support RAID-Z or partial configuration.  In
3063 * addition, only a single top-level vdev is allowed and none of the
3064 * leaves can be wholedisks.
3065 *
3066 * For FreeBSD, we can boot from any configuration. There is a
3067 * limitation that the boot filesystem must be either uncompressed or
3068 * compresses with lzjb compression but I'm not sure how to enforce
3069 * that here.
3070 */
3071boolean_t
3072vdev_is_bootable(vdev_t *vd)
3073{
3074#ifdef sun
3075	if (!vd->vdev_ops->vdev_op_leaf) {
3076		char *vdev_type = vd->vdev_ops->vdev_op_type;
3077
3078		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3079		    vd->vdev_children > 1) {
3080			return (B_FALSE);
3081		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3082		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3083			return (B_FALSE);
3084		}
3085	} else if (vd->vdev_wholedisk == 1) {
3086		return (B_FALSE);
3087	}
3088
3089	for (int c = 0; c < vd->vdev_children; c++) {
3090		if (!vdev_is_bootable(vd->vdev_child[c]))
3091			return (B_FALSE);
3092	}
3093#endif	/* sun */
3094	return (B_TRUE);
3095}
3096
3097/*
3098 * Load the state from the original vdev tree (ovd) which
3099 * we've retrieved from the MOS config object. If the original
3100 * vdev was offline or faulted then we transfer that state to the
3101 * device in the current vdev tree (nvd).
3102 */
3103void
3104vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3105{
3106	spa_t *spa = nvd->vdev_spa;
3107
3108	ASSERT(nvd->vdev_top->vdev_islog);
3109	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3110	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3111
3112	for (int c = 0; c < nvd->vdev_children; c++)
3113		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3114
3115	if (nvd->vdev_ops->vdev_op_leaf) {
3116		/*
3117		 * Restore the persistent vdev state
3118		 */
3119		nvd->vdev_offline = ovd->vdev_offline;
3120		nvd->vdev_faulted = ovd->vdev_faulted;
3121		nvd->vdev_degraded = ovd->vdev_degraded;
3122		nvd->vdev_removed = ovd->vdev_removed;
3123	}
3124}
3125
3126/*
3127 * Determine if a log device has valid content.  If the vdev was
3128 * removed or faulted in the MOS config then we know that
3129 * the content on the log device has already been written to the pool.
3130 */
3131boolean_t
3132vdev_log_state_valid(vdev_t *vd)
3133{
3134	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3135	    !vd->vdev_removed)
3136		return (B_TRUE);
3137
3138	for (int c = 0; c < vd->vdev_children; c++)
3139		if (vdev_log_state_valid(vd->vdev_child[c]))
3140			return (B_TRUE);
3141
3142	return (B_FALSE);
3143}
3144
3145/*
3146 * Expand a vdev if possible.
3147 */
3148void
3149vdev_expand(vdev_t *vd, uint64_t txg)
3150{
3151	ASSERT(vd->vdev_top == vd);
3152	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3153
3154	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3155		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3156		vdev_config_dirty(vd);
3157	}
3158}
3159
3160/*
3161 * Split a vdev.
3162 */
3163void
3164vdev_split(vdev_t *vd)
3165{
3166	vdev_t *cvd, *pvd = vd->vdev_parent;
3167
3168	vdev_remove_child(pvd, vd);
3169	vdev_compact_children(pvd);
3170
3171	cvd = pvd->vdev_child[0];
3172	if (pvd->vdev_children == 1) {
3173		vdev_remove_parent(cvd);
3174		cvd->vdev_splitting = B_TRUE;
3175	}
3176	vdev_propagate_state(cvd);
3177}
3178
3179void
3180vdev_deadman(vdev_t *vd)
3181{
3182	for (int c = 0; c < vd->vdev_children; c++) {
3183		vdev_t *cvd = vd->vdev_child[c];
3184
3185		vdev_deadman(cvd);
3186	}
3187
3188	if (vd->vdev_ops->vdev_op_leaf) {
3189		vdev_queue_t *vq = &vd->vdev_queue;
3190
3191		mutex_enter(&vq->vq_lock);
3192		if (avl_numnodes(&vq->vq_pending_tree) > 0) {
3193			spa_t *spa = vd->vdev_spa;
3194			zio_t *fio;
3195			uint64_t delta;
3196
3197			/*
3198			 * Look at the head of all the pending queues,
3199			 * if any I/O has been outstanding for longer than
3200			 * the spa_deadman_synctime we panic the system.
3201			 */
3202			fio = avl_first(&vq->vq_pending_tree);
3203			delta = ddi_get_lbolt64() - fio->io_timestamp;
3204			if (delta > NSEC_TO_TICK(spa_deadman_synctime(spa))) {
3205				zfs_dbgmsg("SLOW IO: zio timestamp %llu, "
3206				    "delta %llu, last io %llu",
3207				    fio->io_timestamp, delta,
3208				    vq->vq_io_complete_ts);
3209				fm_panic("I/O to pool '%s' appears to be "
3210				    "hung on vdev guid %llu at '%s'.",
3211				    spa_name(spa),
3212				    (long long unsigned int) vd->vdev_guid,
3213				    vd->vdev_path);
3214			}
3215		}
3216		mutex_exit(&vq->vq_lock);
3217	}
3218}
3219