vdev.c revision 247265
1168404Spjd/*
2168404Spjd * CDDL HEADER START
3168404Spjd *
4168404Spjd * The contents of this file are subject to the terms of the
5168404Spjd * Common Development and Distribution License (the "License").
6168404Spjd * You may not use this file except in compliance with the License.
7168404Spjd *
8168404Spjd * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9168404Spjd * or http://www.opensolaris.org/os/licensing.
10168404Spjd * See the License for the specific language governing permissions
11168404Spjd * and limitations under the License.
12168404Spjd *
13168404Spjd * When distributing Covered Code, include this CDDL HEADER in each
14168404Spjd * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15168404Spjd * If applicable, add the following below this CDDL HEADER, with the
16168404Spjd * fields enclosed by brackets "[]" replaced with your own identifying
17168404Spjd * information: Portions Copyright [yyyy] [name of copyright owner]
18168404Spjd *
19168404Spjd * CDDL HEADER END
20168404Spjd */
21168404Spjd
22168404Spjd/*
23219089Spjd * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24228103Smm * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25236155Smm * Copyright (c) 2012 by Delphix. All rights reserved.
26168404Spjd */
27168404Spjd
28168404Spjd#include <sys/zfs_context.h>
29168404Spjd#include <sys/fm/fs/zfs.h>
30168404Spjd#include <sys/spa.h>
31168404Spjd#include <sys/spa_impl.h>
32168404Spjd#include <sys/dmu.h>
33168404Spjd#include <sys/dmu_tx.h>
34168404Spjd#include <sys/vdev_impl.h>
35168404Spjd#include <sys/uberblock_impl.h>
36168404Spjd#include <sys/metaslab.h>
37168404Spjd#include <sys/metaslab_impl.h>
38168404Spjd#include <sys/space_map.h>
39168404Spjd#include <sys/zio.h>
40168404Spjd#include <sys/zap.h>
41168404Spjd#include <sys/fs/zfs.h>
42185029Spjd#include <sys/arc.h>
43213197Smm#include <sys/zil.h>
44219089Spjd#include <sys/dsl_scan.h>
45240868Spjd#include <sys/trim_map.h>
46168404Spjd
47168404SpjdSYSCTL_DECL(_vfs_zfs);
48168404SpjdSYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
49168404Spjd
50168404Spjd/*
51168404Spjd * Virtual device management.
52168404Spjd */
53168404Spjd
54168404Spjdstatic vdev_ops_t *vdev_ops_table[] = {
55168404Spjd	&vdev_root_ops,
56168404Spjd	&vdev_raidz_ops,
57168404Spjd	&vdev_mirror_ops,
58168404Spjd	&vdev_replacing_ops,
59168404Spjd	&vdev_spare_ops,
60168404Spjd#ifdef _KERNEL
61168404Spjd	&vdev_geom_ops,
62168404Spjd#else
63168404Spjd	&vdev_disk_ops,
64185029Spjd#endif
65168404Spjd	&vdev_file_ops,
66168404Spjd	&vdev_missing_ops,
67219089Spjd	&vdev_hole_ops,
68168404Spjd	NULL
69168404Spjd};
70168404Spjd
71168404Spjd
72168404Spjd/*
73168404Spjd * Given a vdev type, return the appropriate ops vector.
74168404Spjd */
75168404Spjdstatic vdev_ops_t *
76168404Spjdvdev_getops(const char *type)
77168404Spjd{
78168404Spjd	vdev_ops_t *ops, **opspp;
79168404Spjd
80168404Spjd	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
81168404Spjd		if (strcmp(ops->vdev_op_type, type) == 0)
82168404Spjd			break;
83168404Spjd
84168404Spjd	return (ops);
85168404Spjd}
86168404Spjd
87168404Spjd/*
88168404Spjd * Default asize function: return the MAX of psize with the asize of
89168404Spjd * all children.  This is what's used by anything other than RAID-Z.
90168404Spjd */
91168404Spjduint64_t
92168404Spjdvdev_default_asize(vdev_t *vd, uint64_t psize)
93168404Spjd{
94168404Spjd	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
95168404Spjd	uint64_t csize;
96168404Spjd
97219089Spjd	for (int c = 0; c < vd->vdev_children; c++) {
98168404Spjd		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
99168404Spjd		asize = MAX(asize, csize);
100168404Spjd	}
101168404Spjd
102168404Spjd	return (asize);
103168404Spjd}
104168404Spjd
105168404Spjd/*
106219089Spjd * Get the minimum allocatable size. We define the allocatable size as
107219089Spjd * the vdev's asize rounded to the nearest metaslab. This allows us to
108219089Spjd * replace or attach devices which don't have the same physical size but
109219089Spjd * can still satisfy the same number of allocations.
110168404Spjd */
111168404Spjduint64_t
112219089Spjdvdev_get_min_asize(vdev_t *vd)
113168404Spjd{
114219089Spjd	vdev_t *pvd = vd->vdev_parent;
115168404Spjd
116219089Spjd	/*
117236155Smm	 * If our parent is NULL (inactive spare or cache) or is the root,
118219089Spjd	 * just return our own asize.
119219089Spjd	 */
120219089Spjd	if (pvd == NULL)
121219089Spjd		return (vd->vdev_asize);
122168404Spjd
123168404Spjd	/*
124219089Spjd	 * The top-level vdev just returns the allocatable size rounded
125219089Spjd	 * to the nearest metaslab.
126168404Spjd	 */
127219089Spjd	if (vd == vd->vdev_top)
128219089Spjd		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
129168404Spjd
130219089Spjd	/*
131219089Spjd	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
132219089Spjd	 * so each child must provide at least 1/Nth of its asize.
133219089Spjd	 */
134219089Spjd	if (pvd->vdev_ops == &vdev_raidz_ops)
135219089Spjd		return (pvd->vdev_min_asize / pvd->vdev_children);
136168404Spjd
137219089Spjd	return (pvd->vdev_min_asize);
138219089Spjd}
139168404Spjd
140219089Spjdvoid
141219089Spjdvdev_set_min_asize(vdev_t *vd)
142219089Spjd{
143219089Spjd	vd->vdev_min_asize = vdev_get_min_asize(vd);
144219089Spjd
145219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
146219089Spjd		vdev_set_min_asize(vd->vdev_child[c]);
147168404Spjd}
148168404Spjd
149168404Spjdvdev_t *
150168404Spjdvdev_lookup_top(spa_t *spa, uint64_t vdev)
151168404Spjd{
152168404Spjd	vdev_t *rvd = spa->spa_root_vdev;
153168404Spjd
154185029Spjd	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
155185029Spjd
156185029Spjd	if (vdev < rvd->vdev_children) {
157185029Spjd		ASSERT(rvd->vdev_child[vdev] != NULL);
158168404Spjd		return (rvd->vdev_child[vdev]);
159185029Spjd	}
160168404Spjd
161168404Spjd	return (NULL);
162168404Spjd}
163168404Spjd
164168404Spjdvdev_t *
165168404Spjdvdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
166168404Spjd{
167168404Spjd	vdev_t *mvd;
168168404Spjd
169168404Spjd	if (vd->vdev_guid == guid)
170168404Spjd		return (vd);
171168404Spjd
172219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
173168404Spjd		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
174168404Spjd		    NULL)
175168404Spjd			return (mvd);
176168404Spjd
177168404Spjd	return (NULL);
178168404Spjd}
179168404Spjd
180168404Spjdvoid
181168404Spjdvdev_add_child(vdev_t *pvd, vdev_t *cvd)
182168404Spjd{
183168404Spjd	size_t oldsize, newsize;
184168404Spjd	uint64_t id = cvd->vdev_id;
185168404Spjd	vdev_t **newchild;
186168404Spjd
187185029Spjd	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
188168404Spjd	ASSERT(cvd->vdev_parent == NULL);
189168404Spjd
190168404Spjd	cvd->vdev_parent = pvd;
191168404Spjd
192168404Spjd	if (pvd == NULL)
193168404Spjd		return;
194168404Spjd
195168404Spjd	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
196168404Spjd
197168404Spjd	oldsize = pvd->vdev_children * sizeof (vdev_t *);
198168404Spjd	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
199168404Spjd	newsize = pvd->vdev_children * sizeof (vdev_t *);
200168404Spjd
201168404Spjd	newchild = kmem_zalloc(newsize, KM_SLEEP);
202168404Spjd	if (pvd->vdev_child != NULL) {
203168404Spjd		bcopy(pvd->vdev_child, newchild, oldsize);
204168404Spjd		kmem_free(pvd->vdev_child, oldsize);
205168404Spjd	}
206168404Spjd
207168404Spjd	pvd->vdev_child = newchild;
208168404Spjd	pvd->vdev_child[id] = cvd;
209168404Spjd
210168404Spjd	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
211168404Spjd	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
212168404Spjd
213168404Spjd	/*
214168404Spjd	 * Walk up all ancestors to update guid sum.
215168404Spjd	 */
216168404Spjd	for (; pvd != NULL; pvd = pvd->vdev_parent)
217168404Spjd		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
218168404Spjd}
219168404Spjd
220168404Spjdvoid
221168404Spjdvdev_remove_child(vdev_t *pvd, vdev_t *cvd)
222168404Spjd{
223168404Spjd	int c;
224168404Spjd	uint_t id = cvd->vdev_id;
225168404Spjd
226168404Spjd	ASSERT(cvd->vdev_parent == pvd);
227168404Spjd
228168404Spjd	if (pvd == NULL)
229168404Spjd		return;
230168404Spjd
231168404Spjd	ASSERT(id < pvd->vdev_children);
232168404Spjd	ASSERT(pvd->vdev_child[id] == cvd);
233168404Spjd
234168404Spjd	pvd->vdev_child[id] = NULL;
235168404Spjd	cvd->vdev_parent = NULL;
236168404Spjd
237168404Spjd	for (c = 0; c < pvd->vdev_children; c++)
238168404Spjd		if (pvd->vdev_child[c])
239168404Spjd			break;
240168404Spjd
241168404Spjd	if (c == pvd->vdev_children) {
242168404Spjd		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
243168404Spjd		pvd->vdev_child = NULL;
244168404Spjd		pvd->vdev_children = 0;
245168404Spjd	}
246168404Spjd
247168404Spjd	/*
248168404Spjd	 * Walk up all ancestors to update guid sum.
249168404Spjd	 */
250168404Spjd	for (; pvd != NULL; pvd = pvd->vdev_parent)
251168404Spjd		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
252168404Spjd}
253168404Spjd
254168404Spjd/*
255168404Spjd * Remove any holes in the child array.
256168404Spjd */
257168404Spjdvoid
258168404Spjdvdev_compact_children(vdev_t *pvd)
259168404Spjd{
260168404Spjd	vdev_t **newchild, *cvd;
261168404Spjd	int oldc = pvd->vdev_children;
262219089Spjd	int newc;
263168404Spjd
264185029Spjd	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
265168404Spjd
266219089Spjd	for (int c = newc = 0; c < oldc; c++)
267168404Spjd		if (pvd->vdev_child[c])
268168404Spjd			newc++;
269168404Spjd
270168404Spjd	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
271168404Spjd
272219089Spjd	for (int c = newc = 0; c < oldc; c++) {
273168404Spjd		if ((cvd = pvd->vdev_child[c]) != NULL) {
274168404Spjd			newchild[newc] = cvd;
275168404Spjd			cvd->vdev_id = newc++;
276168404Spjd		}
277168404Spjd	}
278168404Spjd
279168404Spjd	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
280168404Spjd	pvd->vdev_child = newchild;
281168404Spjd	pvd->vdev_children = newc;
282168404Spjd}
283168404Spjd
284168404Spjd/*
285168404Spjd * Allocate and minimally initialize a vdev_t.
286168404Spjd */
287219089Spjdvdev_t *
288168404Spjdvdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
289168404Spjd{
290168404Spjd	vdev_t *vd;
291168404Spjd
292168404Spjd	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
293168404Spjd
294168404Spjd	if (spa->spa_root_vdev == NULL) {
295168404Spjd		ASSERT(ops == &vdev_root_ops);
296168404Spjd		spa->spa_root_vdev = vd;
297228103Smm		spa->spa_load_guid = spa_generate_guid(NULL);
298168404Spjd	}
299168404Spjd
300219089Spjd	if (guid == 0 && ops != &vdev_hole_ops) {
301168404Spjd		if (spa->spa_root_vdev == vd) {
302168404Spjd			/*
303168404Spjd			 * The root vdev's guid will also be the pool guid,
304168404Spjd			 * which must be unique among all pools.
305168404Spjd			 */
306219089Spjd			guid = spa_generate_guid(NULL);
307168404Spjd		} else {
308168404Spjd			/*
309168404Spjd			 * Any other vdev's guid must be unique within the pool.
310168404Spjd			 */
311219089Spjd			guid = spa_generate_guid(spa);
312168404Spjd		}
313168404Spjd		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
314168404Spjd	}
315168404Spjd
316168404Spjd	vd->vdev_spa = spa;
317168404Spjd	vd->vdev_id = id;
318168404Spjd	vd->vdev_guid = guid;
319168404Spjd	vd->vdev_guid_sum = guid;
320168404Spjd	vd->vdev_ops = ops;
321168404Spjd	vd->vdev_state = VDEV_STATE_CLOSED;
322219089Spjd	vd->vdev_ishole = (ops == &vdev_hole_ops);
323168404Spjd
324168404Spjd	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
325168404Spjd	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
326185029Spjd	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
327209962Smm	for (int t = 0; t < DTL_TYPES; t++) {
328209962Smm		space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
329209962Smm		    &vd->vdev_dtl_lock);
330209962Smm	}
331168404Spjd	txg_list_create(&vd->vdev_ms_list,
332168404Spjd	    offsetof(struct metaslab, ms_txg_node));
333168404Spjd	txg_list_create(&vd->vdev_dtl_list,
334168404Spjd	    offsetof(struct vdev, vdev_dtl_node));
335168404Spjd	vd->vdev_stat.vs_timestamp = gethrtime();
336185029Spjd	vdev_queue_init(vd);
337185029Spjd	vdev_cache_init(vd);
338168404Spjd
339168404Spjd	return (vd);
340168404Spjd}
341168404Spjd
342168404Spjd/*
343168404Spjd * Allocate a new vdev.  The 'alloctype' is used to control whether we are
344168404Spjd * creating a new vdev or loading an existing one - the behavior is slightly
345168404Spjd * different for each case.
346168404Spjd */
347168404Spjdint
348168404Spjdvdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
349168404Spjd    int alloctype)
350168404Spjd{
351168404Spjd	vdev_ops_t *ops;
352168404Spjd	char *type;
353185029Spjd	uint64_t guid = 0, islog, nparity;
354168404Spjd	vdev_t *vd;
355168404Spjd
356185029Spjd	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
357168404Spjd
358168404Spjd	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
359168404Spjd		return (EINVAL);
360168404Spjd
361168404Spjd	if ((ops = vdev_getops(type)) == NULL)
362168404Spjd		return (EINVAL);
363168404Spjd
364168404Spjd	/*
365168404Spjd	 * If this is a load, get the vdev guid from the nvlist.
366168404Spjd	 * Otherwise, vdev_alloc_common() will generate one for us.
367168404Spjd	 */
368168404Spjd	if (alloctype == VDEV_ALLOC_LOAD) {
369168404Spjd		uint64_t label_id;
370168404Spjd
371168404Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
372168404Spjd		    label_id != id)
373168404Spjd			return (EINVAL);
374168404Spjd
375168404Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
376168404Spjd			return (EINVAL);
377168404Spjd	} else if (alloctype == VDEV_ALLOC_SPARE) {
378168404Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
379168404Spjd			return (EINVAL);
380185029Spjd	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
381185029Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
382185029Spjd			return (EINVAL);
383219089Spjd	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
384219089Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
385219089Spjd			return (EINVAL);
386168404Spjd	}
387168404Spjd
388168404Spjd	/*
389168404Spjd	 * The first allocated vdev must be of type 'root'.
390168404Spjd	 */
391168404Spjd	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
392168404Spjd		return (EINVAL);
393168404Spjd
394185029Spjd	/*
395185029Spjd	 * Determine whether we're a log vdev.
396185029Spjd	 */
397185029Spjd	islog = 0;
398185029Spjd	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
399185029Spjd	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
400185029Spjd		return (ENOTSUP);
401168404Spjd
402219089Spjd	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
403219089Spjd		return (ENOTSUP);
404219089Spjd
405168404Spjd	/*
406185029Spjd	 * Set the nparity property for RAID-Z vdevs.
407168404Spjd	 */
408185029Spjd	nparity = -1ULL;
409168404Spjd	if (ops == &vdev_raidz_ops) {
410168404Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
411185029Spjd		    &nparity) == 0) {
412219089Spjd			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
413168404Spjd				return (EINVAL);
414168404Spjd			/*
415219089Spjd			 * Previous versions could only support 1 or 2 parity
416219089Spjd			 * device.
417168404Spjd			 */
418219089Spjd			if (nparity > 1 &&
419219089Spjd			    spa_version(spa) < SPA_VERSION_RAIDZ2)
420168404Spjd				return (ENOTSUP);
421219089Spjd			if (nparity > 2 &&
422219089Spjd			    spa_version(spa) < SPA_VERSION_RAIDZ3)
423219089Spjd				return (ENOTSUP);
424168404Spjd		} else {
425168404Spjd			/*
426168404Spjd			 * We require the parity to be specified for SPAs that
427168404Spjd			 * support multiple parity levels.
428168404Spjd			 */
429219089Spjd			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
430168404Spjd				return (EINVAL);
431168404Spjd			/*
432168404Spjd			 * Otherwise, we default to 1 parity device for RAID-Z.
433168404Spjd			 */
434185029Spjd			nparity = 1;
435168404Spjd		}
436168404Spjd	} else {
437185029Spjd		nparity = 0;
438168404Spjd	}
439185029Spjd	ASSERT(nparity != -1ULL);
440168404Spjd
441185029Spjd	vd = vdev_alloc_common(spa, id, guid, ops);
442185029Spjd
443185029Spjd	vd->vdev_islog = islog;
444185029Spjd	vd->vdev_nparity = nparity;
445185029Spjd
446185029Spjd	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
447185029Spjd		vd->vdev_path = spa_strdup(vd->vdev_path);
448185029Spjd	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
449185029Spjd		vd->vdev_devid = spa_strdup(vd->vdev_devid);
450185029Spjd	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
451185029Spjd	    &vd->vdev_physpath) == 0)
452185029Spjd		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
453209962Smm	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
454209962Smm		vd->vdev_fru = spa_strdup(vd->vdev_fru);
455185029Spjd
456168404Spjd	/*
457168404Spjd	 * Set the whole_disk property.  If it's not specified, leave the value
458168404Spjd	 * as -1.
459168404Spjd	 */
460168404Spjd	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
461168404Spjd	    &vd->vdev_wholedisk) != 0)
462168404Spjd		vd->vdev_wholedisk = -1ULL;
463168404Spjd
464168404Spjd	/*
465168404Spjd	 * Look for the 'not present' flag.  This will only be set if the device
466168404Spjd	 * was not present at the time of import.
467168404Spjd	 */
468209962Smm	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
469209962Smm	    &vd->vdev_not_present);
470168404Spjd
471168404Spjd	/*
472168404Spjd	 * Get the alignment requirement.
473168404Spjd	 */
474168404Spjd	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
475168404Spjd
476168404Spjd	/*
477219089Spjd	 * Retrieve the vdev creation time.
478219089Spjd	 */
479219089Spjd	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
480219089Spjd	    &vd->vdev_crtxg);
481219089Spjd
482219089Spjd	/*
483168404Spjd	 * If we're a top-level vdev, try to load the allocation parameters.
484168404Spjd	 */
485219089Spjd	if (parent && !parent->vdev_parent &&
486219089Spjd	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
487168404Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
488168404Spjd		    &vd->vdev_ms_array);
489168404Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
490168404Spjd		    &vd->vdev_ms_shift);
491168404Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
492168404Spjd		    &vd->vdev_asize);
493219089Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
494219089Spjd		    &vd->vdev_removing);
495168404Spjd	}
496168404Spjd
497230514Smm	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
498219089Spjd		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
499219089Spjd		    alloctype == VDEV_ALLOC_ADD ||
500219089Spjd		    alloctype == VDEV_ALLOC_SPLIT ||
501219089Spjd		    alloctype == VDEV_ALLOC_ROOTPOOL);
502219089Spjd		vd->vdev_mg = metaslab_group_create(islog ?
503219089Spjd		    spa_log_class(spa) : spa_normal_class(spa), vd);
504219089Spjd	}
505219089Spjd
506168404Spjd	/*
507185029Spjd	 * If we're a leaf vdev, try to load the DTL object and other state.
508168404Spjd	 */
509185029Spjd	if (vd->vdev_ops->vdev_op_leaf &&
510219089Spjd	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
511219089Spjd	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
512185029Spjd		if (alloctype == VDEV_ALLOC_LOAD) {
513185029Spjd			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
514209962Smm			    &vd->vdev_dtl_smo.smo_object);
515185029Spjd			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
516185029Spjd			    &vd->vdev_unspare);
517185029Spjd		}
518219089Spjd
519219089Spjd		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
520219089Spjd			uint64_t spare = 0;
521219089Spjd
522219089Spjd			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
523219089Spjd			    &spare) == 0 && spare)
524219089Spjd				spa_spare_add(vd);
525219089Spjd		}
526219089Spjd
527168404Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
528168404Spjd		    &vd->vdev_offline);
529185029Spjd
530219089Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
531219089Spjd		    &vd->vdev_resilvering);
532219089Spjd
533185029Spjd		/*
534185029Spjd		 * When importing a pool, we want to ignore the persistent fault
535185029Spjd		 * state, as the diagnosis made on another system may not be
536219089Spjd		 * valid in the current context.  Local vdevs will
537219089Spjd		 * remain in the faulted state.
538185029Spjd		 */
539219089Spjd		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
540185029Spjd			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
541185029Spjd			    &vd->vdev_faulted);
542185029Spjd			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
543185029Spjd			    &vd->vdev_degraded);
544185029Spjd			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
545185029Spjd			    &vd->vdev_removed);
546219089Spjd
547219089Spjd			if (vd->vdev_faulted || vd->vdev_degraded) {
548219089Spjd				char *aux;
549219089Spjd
550219089Spjd				vd->vdev_label_aux =
551219089Spjd				    VDEV_AUX_ERR_EXCEEDED;
552219089Spjd				if (nvlist_lookup_string(nv,
553219089Spjd				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
554219089Spjd				    strcmp(aux, "external") == 0)
555219089Spjd					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
556219089Spjd			}
557185029Spjd		}
558168404Spjd	}
559168404Spjd
560168404Spjd	/*
561168404Spjd	 * Add ourselves to the parent's list of children.
562168404Spjd	 */
563168404Spjd	vdev_add_child(parent, vd);
564168404Spjd
565168404Spjd	*vdp = vd;
566168404Spjd
567168404Spjd	return (0);
568168404Spjd}
569168404Spjd
570168404Spjdvoid
571168404Spjdvdev_free(vdev_t *vd)
572168404Spjd{
573185029Spjd	spa_t *spa = vd->vdev_spa;
574168404Spjd
575168404Spjd	/*
576168404Spjd	 * vdev_free() implies closing the vdev first.  This is simpler than
577168404Spjd	 * trying to ensure complicated semantics for all callers.
578168404Spjd	 */
579168404Spjd	vdev_close(vd);
580168404Spjd
581185029Spjd	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
582219089Spjd	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
583168404Spjd
584168404Spjd	/*
585168404Spjd	 * Free all children.
586168404Spjd	 */
587219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
588168404Spjd		vdev_free(vd->vdev_child[c]);
589168404Spjd
590168404Spjd	ASSERT(vd->vdev_child == NULL);
591168404Spjd	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
592168404Spjd
593168404Spjd	/*
594168404Spjd	 * Discard allocation state.
595168404Spjd	 */
596219089Spjd	if (vd->vdev_mg != NULL) {
597168404Spjd		vdev_metaslab_fini(vd);
598219089Spjd		metaslab_group_destroy(vd->vdev_mg);
599219089Spjd	}
600168404Spjd
601240415Smm	ASSERT0(vd->vdev_stat.vs_space);
602240415Smm	ASSERT0(vd->vdev_stat.vs_dspace);
603240415Smm	ASSERT0(vd->vdev_stat.vs_alloc);
604168404Spjd
605168404Spjd	/*
606168404Spjd	 * Remove this vdev from its parent's child list.
607168404Spjd	 */
608168404Spjd	vdev_remove_child(vd->vdev_parent, vd);
609168404Spjd
610168404Spjd	ASSERT(vd->vdev_parent == NULL);
611168404Spjd
612185029Spjd	/*
613185029Spjd	 * Clean up vdev structure.
614185029Spjd	 */
615185029Spjd	vdev_queue_fini(vd);
616185029Spjd	vdev_cache_fini(vd);
617185029Spjd
618185029Spjd	if (vd->vdev_path)
619185029Spjd		spa_strfree(vd->vdev_path);
620185029Spjd	if (vd->vdev_devid)
621185029Spjd		spa_strfree(vd->vdev_devid);
622185029Spjd	if (vd->vdev_physpath)
623185029Spjd		spa_strfree(vd->vdev_physpath);
624209962Smm	if (vd->vdev_fru)
625209962Smm		spa_strfree(vd->vdev_fru);
626185029Spjd
627185029Spjd	if (vd->vdev_isspare)
628185029Spjd		spa_spare_remove(vd);
629185029Spjd	if (vd->vdev_isl2cache)
630185029Spjd		spa_l2cache_remove(vd);
631185029Spjd
632185029Spjd	txg_list_destroy(&vd->vdev_ms_list);
633185029Spjd	txg_list_destroy(&vd->vdev_dtl_list);
634209962Smm
635185029Spjd	mutex_enter(&vd->vdev_dtl_lock);
636209962Smm	for (int t = 0; t < DTL_TYPES; t++) {
637209962Smm		space_map_unload(&vd->vdev_dtl[t]);
638209962Smm		space_map_destroy(&vd->vdev_dtl[t]);
639209962Smm	}
640185029Spjd	mutex_exit(&vd->vdev_dtl_lock);
641209962Smm
642185029Spjd	mutex_destroy(&vd->vdev_dtl_lock);
643185029Spjd	mutex_destroy(&vd->vdev_stat_lock);
644185029Spjd	mutex_destroy(&vd->vdev_probe_lock);
645185029Spjd
646185029Spjd	if (vd == spa->spa_root_vdev)
647185029Spjd		spa->spa_root_vdev = NULL;
648185029Spjd
649185029Spjd	kmem_free(vd, sizeof (vdev_t));
650168404Spjd}
651168404Spjd
652168404Spjd/*
653168404Spjd * Transfer top-level vdev state from svd to tvd.
654168404Spjd */
655168404Spjdstatic void
656168404Spjdvdev_top_transfer(vdev_t *svd, vdev_t *tvd)
657168404Spjd{
658168404Spjd	spa_t *spa = svd->vdev_spa;
659168404Spjd	metaslab_t *msp;
660168404Spjd	vdev_t *vd;
661168404Spjd	int t;
662168404Spjd
663168404Spjd	ASSERT(tvd == tvd->vdev_top);
664168404Spjd
665168404Spjd	tvd->vdev_ms_array = svd->vdev_ms_array;
666168404Spjd	tvd->vdev_ms_shift = svd->vdev_ms_shift;
667168404Spjd	tvd->vdev_ms_count = svd->vdev_ms_count;
668168404Spjd
669168404Spjd	svd->vdev_ms_array = 0;
670168404Spjd	svd->vdev_ms_shift = 0;
671168404Spjd	svd->vdev_ms_count = 0;
672168404Spjd
673230514Smm	if (tvd->vdev_mg)
674230514Smm		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
675168404Spjd	tvd->vdev_mg = svd->vdev_mg;
676168404Spjd	tvd->vdev_ms = svd->vdev_ms;
677168404Spjd
678168404Spjd	svd->vdev_mg = NULL;
679168404Spjd	svd->vdev_ms = NULL;
680168404Spjd
681168404Spjd	if (tvd->vdev_mg != NULL)
682168404Spjd		tvd->vdev_mg->mg_vd = tvd;
683168404Spjd
684168404Spjd	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
685168404Spjd	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
686168404Spjd	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
687168404Spjd
688168404Spjd	svd->vdev_stat.vs_alloc = 0;
689168404Spjd	svd->vdev_stat.vs_space = 0;
690168404Spjd	svd->vdev_stat.vs_dspace = 0;
691168404Spjd
692168404Spjd	for (t = 0; t < TXG_SIZE; t++) {
693168404Spjd		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
694168404Spjd			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
695168404Spjd		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
696168404Spjd			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
697168404Spjd		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
698168404Spjd			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
699168404Spjd	}
700168404Spjd
701185029Spjd	if (list_link_active(&svd->vdev_config_dirty_node)) {
702168404Spjd		vdev_config_clean(svd);
703168404Spjd		vdev_config_dirty(tvd);
704168404Spjd	}
705168404Spjd
706185029Spjd	if (list_link_active(&svd->vdev_state_dirty_node)) {
707185029Spjd		vdev_state_clean(svd);
708185029Spjd		vdev_state_dirty(tvd);
709185029Spjd	}
710168404Spjd
711168404Spjd	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
712168404Spjd	svd->vdev_deflate_ratio = 0;
713185029Spjd
714185029Spjd	tvd->vdev_islog = svd->vdev_islog;
715185029Spjd	svd->vdev_islog = 0;
716168404Spjd}
717168404Spjd
718168404Spjdstatic void
719168404Spjdvdev_top_update(vdev_t *tvd, vdev_t *vd)
720168404Spjd{
721168404Spjd	if (vd == NULL)
722168404Spjd		return;
723168404Spjd
724168404Spjd	vd->vdev_top = tvd;
725168404Spjd
726219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
727168404Spjd		vdev_top_update(tvd, vd->vdev_child[c]);
728168404Spjd}
729168404Spjd
730168404Spjd/*
731168404Spjd * Add a mirror/replacing vdev above an existing vdev.
732168404Spjd */
733168404Spjdvdev_t *
734168404Spjdvdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
735168404Spjd{
736168404Spjd	spa_t *spa = cvd->vdev_spa;
737168404Spjd	vdev_t *pvd = cvd->vdev_parent;
738168404Spjd	vdev_t *mvd;
739168404Spjd
740185029Spjd	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
741168404Spjd
742168404Spjd	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
743168404Spjd
744168404Spjd	mvd->vdev_asize = cvd->vdev_asize;
745219089Spjd	mvd->vdev_min_asize = cvd->vdev_min_asize;
746236155Smm	mvd->vdev_max_asize = cvd->vdev_max_asize;
747168404Spjd	mvd->vdev_ashift = cvd->vdev_ashift;
748168404Spjd	mvd->vdev_state = cvd->vdev_state;
749219089Spjd	mvd->vdev_crtxg = cvd->vdev_crtxg;
750168404Spjd
751168404Spjd	vdev_remove_child(pvd, cvd);
752168404Spjd	vdev_add_child(pvd, mvd);
753168404Spjd	cvd->vdev_id = mvd->vdev_children;
754168404Spjd	vdev_add_child(mvd, cvd);
755168404Spjd	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
756168404Spjd
757168404Spjd	if (mvd == mvd->vdev_top)
758168404Spjd		vdev_top_transfer(cvd, mvd);
759168404Spjd
760168404Spjd	return (mvd);
761168404Spjd}
762168404Spjd
763168404Spjd/*
764168404Spjd * Remove a 1-way mirror/replacing vdev from the tree.
765168404Spjd */
766168404Spjdvoid
767168404Spjdvdev_remove_parent(vdev_t *cvd)
768168404Spjd{
769168404Spjd	vdev_t *mvd = cvd->vdev_parent;
770168404Spjd	vdev_t *pvd = mvd->vdev_parent;
771168404Spjd
772185029Spjd	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
773168404Spjd
774168404Spjd	ASSERT(mvd->vdev_children == 1);
775168404Spjd	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
776168404Spjd	    mvd->vdev_ops == &vdev_replacing_ops ||
777168404Spjd	    mvd->vdev_ops == &vdev_spare_ops);
778168404Spjd	cvd->vdev_ashift = mvd->vdev_ashift;
779168404Spjd
780168404Spjd	vdev_remove_child(mvd, cvd);
781168404Spjd	vdev_remove_child(pvd, mvd);
782209962Smm
783185029Spjd	/*
784185029Spjd	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
785185029Spjd	 * Otherwise, we could have detached an offline device, and when we
786185029Spjd	 * go to import the pool we'll think we have two top-level vdevs,
787185029Spjd	 * instead of a different version of the same top-level vdev.
788185029Spjd	 */
789209962Smm	if (mvd->vdev_top == mvd) {
790209962Smm		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
791219089Spjd		cvd->vdev_orig_guid = cvd->vdev_guid;
792209962Smm		cvd->vdev_guid += guid_delta;
793209962Smm		cvd->vdev_guid_sum += guid_delta;
794209962Smm	}
795168404Spjd	cvd->vdev_id = mvd->vdev_id;
796168404Spjd	vdev_add_child(pvd, cvd);
797168404Spjd	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
798168404Spjd
799168404Spjd	if (cvd == cvd->vdev_top)
800168404Spjd		vdev_top_transfer(mvd, cvd);
801168404Spjd
802168404Spjd	ASSERT(mvd->vdev_children == 0);
803168404Spjd	vdev_free(mvd);
804168404Spjd}
805168404Spjd
806168404Spjdint
807168404Spjdvdev_metaslab_init(vdev_t *vd, uint64_t txg)
808168404Spjd{
809168404Spjd	spa_t *spa = vd->vdev_spa;
810168404Spjd	objset_t *mos = spa->spa_meta_objset;
811168404Spjd	uint64_t m;
812168404Spjd	uint64_t oldc = vd->vdev_ms_count;
813168404Spjd	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
814168404Spjd	metaslab_t **mspp;
815168404Spjd	int error;
816168404Spjd
817219089Spjd	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
818219089Spjd
819219089Spjd	/*
820219089Spjd	 * This vdev is not being allocated from yet or is a hole.
821219089Spjd	 */
822219089Spjd	if (vd->vdev_ms_shift == 0)
823168404Spjd		return (0);
824168404Spjd
825219089Spjd	ASSERT(!vd->vdev_ishole);
826219089Spjd
827213197Smm	/*
828213197Smm	 * Compute the raidz-deflation ratio.  Note, we hard-code
829213197Smm	 * in 128k (1 << 17) because it is the current "typical" blocksize.
830213197Smm	 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
831213197Smm	 * or we will inconsistently account for existing bp's.
832213197Smm	 */
833213197Smm	vd->vdev_deflate_ratio = (1 << 17) /
834213197Smm	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
835213197Smm
836168404Spjd	ASSERT(oldc <= newc);
837168404Spjd
838168404Spjd	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
839168404Spjd
840168404Spjd	if (oldc != 0) {
841168404Spjd		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
842168404Spjd		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
843168404Spjd	}
844168404Spjd
845168404Spjd	vd->vdev_ms = mspp;
846168404Spjd	vd->vdev_ms_count = newc;
847168404Spjd
848168404Spjd	for (m = oldc; m < newc; m++) {
849168404Spjd		space_map_obj_t smo = { 0, 0, 0 };
850168404Spjd		if (txg == 0) {
851168404Spjd			uint64_t object = 0;
852168404Spjd			error = dmu_read(mos, vd->vdev_ms_array,
853209962Smm			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
854209962Smm			    DMU_READ_PREFETCH);
855168404Spjd			if (error)
856168404Spjd				return (error);
857168404Spjd			if (object != 0) {
858168404Spjd				dmu_buf_t *db;
859168404Spjd				error = dmu_bonus_hold(mos, object, FTAG, &db);
860168404Spjd				if (error)
861168404Spjd					return (error);
862185029Spjd				ASSERT3U(db->db_size, >=, sizeof (smo));
863185029Spjd				bcopy(db->db_data, &smo, sizeof (smo));
864168404Spjd				ASSERT3U(smo.smo_object, ==, object);
865168404Spjd				dmu_buf_rele(db, FTAG);
866168404Spjd			}
867168404Spjd		}
868168404Spjd		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
869168404Spjd		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
870168404Spjd	}
871168404Spjd
872219089Spjd	if (txg == 0)
873219089Spjd		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
874219089Spjd
875219089Spjd	/*
876219089Spjd	 * If the vdev is being removed we don't activate
877219089Spjd	 * the metaslabs since we want to ensure that no new
878219089Spjd	 * allocations are performed on this device.
879219089Spjd	 */
880219089Spjd	if (oldc == 0 && !vd->vdev_removing)
881219089Spjd		metaslab_group_activate(vd->vdev_mg);
882219089Spjd
883219089Spjd	if (txg == 0)
884219089Spjd		spa_config_exit(spa, SCL_ALLOC, FTAG);
885219089Spjd
886168404Spjd	return (0);
887168404Spjd}
888168404Spjd
889168404Spjdvoid
890168404Spjdvdev_metaslab_fini(vdev_t *vd)
891168404Spjd{
892168404Spjd	uint64_t m;
893168404Spjd	uint64_t count = vd->vdev_ms_count;
894168404Spjd
895168404Spjd	if (vd->vdev_ms != NULL) {
896219089Spjd		metaslab_group_passivate(vd->vdev_mg);
897168404Spjd		for (m = 0; m < count; m++)
898168404Spjd			if (vd->vdev_ms[m] != NULL)
899168404Spjd				metaslab_fini(vd->vdev_ms[m]);
900168404Spjd		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
901168404Spjd		vd->vdev_ms = NULL;
902168404Spjd	}
903168404Spjd}
904168404Spjd
905185029Spjdtypedef struct vdev_probe_stats {
906185029Spjd	boolean_t	vps_readable;
907185029Spjd	boolean_t	vps_writeable;
908185029Spjd	int		vps_flags;
909185029Spjd} vdev_probe_stats_t;
910185029Spjd
911185029Spjdstatic void
912185029Spjdvdev_probe_done(zio_t *zio)
913185029Spjd{
914209962Smm	spa_t *spa = zio->io_spa;
915209962Smm	vdev_t *vd = zio->io_vd;
916185029Spjd	vdev_probe_stats_t *vps = zio->io_private;
917185029Spjd
918209962Smm	ASSERT(vd->vdev_probe_zio != NULL);
919209962Smm
920185029Spjd	if (zio->io_type == ZIO_TYPE_READ) {
921185029Spjd		if (zio->io_error == 0)
922185029Spjd			vps->vps_readable = 1;
923209962Smm		if (zio->io_error == 0 && spa_writeable(spa)) {
924209962Smm			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
925185029Spjd			    zio->io_offset, zio->io_size, zio->io_data,
926185029Spjd			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
927185029Spjd			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
928185029Spjd		} else {
929185029Spjd			zio_buf_free(zio->io_data, zio->io_size);
930185029Spjd		}
931185029Spjd	} else if (zio->io_type == ZIO_TYPE_WRITE) {
932185029Spjd		if (zio->io_error == 0)
933185029Spjd			vps->vps_writeable = 1;
934185029Spjd		zio_buf_free(zio->io_data, zio->io_size);
935185029Spjd	} else if (zio->io_type == ZIO_TYPE_NULL) {
936209962Smm		zio_t *pio;
937185029Spjd
938185029Spjd		vd->vdev_cant_read |= !vps->vps_readable;
939185029Spjd		vd->vdev_cant_write |= !vps->vps_writeable;
940185029Spjd
941185029Spjd		if (vdev_readable(vd) &&
942209962Smm		    (vdev_writeable(vd) || !spa_writeable(spa))) {
943185029Spjd			zio->io_error = 0;
944185029Spjd		} else {
945185029Spjd			ASSERT(zio->io_error != 0);
946185029Spjd			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
947209962Smm			    spa, vd, NULL, 0, 0);
948185029Spjd			zio->io_error = ENXIO;
949185029Spjd		}
950209962Smm
951209962Smm		mutex_enter(&vd->vdev_probe_lock);
952209962Smm		ASSERT(vd->vdev_probe_zio == zio);
953209962Smm		vd->vdev_probe_zio = NULL;
954209962Smm		mutex_exit(&vd->vdev_probe_lock);
955209962Smm
956209962Smm		while ((pio = zio_walk_parents(zio)) != NULL)
957209962Smm			if (!vdev_accessible(vd, pio))
958209962Smm				pio->io_error = ENXIO;
959209962Smm
960185029Spjd		kmem_free(vps, sizeof (*vps));
961185029Spjd	}
962185029Spjd}
963185029Spjd
964168404Spjd/*
965185029Spjd * Determine whether this device is accessible by reading and writing
966185029Spjd * to several known locations: the pad regions of each vdev label
967185029Spjd * but the first (which we leave alone in case it contains a VTOC).
968185029Spjd */
969185029Spjdzio_t *
970209962Smmvdev_probe(vdev_t *vd, zio_t *zio)
971185029Spjd{
972185029Spjd	spa_t *spa = vd->vdev_spa;
973209962Smm	vdev_probe_stats_t *vps = NULL;
974209962Smm	zio_t *pio;
975185029Spjd
976209962Smm	ASSERT(vd->vdev_ops->vdev_op_leaf);
977185029Spjd
978209962Smm	/*
979209962Smm	 * Don't probe the probe.
980209962Smm	 */
981209962Smm	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
982209962Smm		return (NULL);
983185029Spjd
984209962Smm	/*
985209962Smm	 * To prevent 'probe storms' when a device fails, we create
986209962Smm	 * just one probe i/o at a time.  All zios that want to probe
987209962Smm	 * this vdev will become parents of the probe io.
988209962Smm	 */
989209962Smm	mutex_enter(&vd->vdev_probe_lock);
990209962Smm
991209962Smm	if ((pio = vd->vdev_probe_zio) == NULL) {
992209962Smm		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
993209962Smm
994209962Smm		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
995209962Smm		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
996213198Smm		    ZIO_FLAG_TRYHARD;
997209962Smm
998209962Smm		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
999209962Smm			/*
1000209962Smm			 * vdev_cant_read and vdev_cant_write can only
1001209962Smm			 * transition from TRUE to FALSE when we have the
1002209962Smm			 * SCL_ZIO lock as writer; otherwise they can only
1003209962Smm			 * transition from FALSE to TRUE.  This ensures that
1004209962Smm			 * any zio looking at these values can assume that
1005209962Smm			 * failures persist for the life of the I/O.  That's
1006209962Smm			 * important because when a device has intermittent
1007209962Smm			 * connectivity problems, we want to ensure that
1008209962Smm			 * they're ascribed to the device (ENXIO) and not
1009209962Smm			 * the zio (EIO).
1010209962Smm			 *
1011209962Smm			 * Since we hold SCL_ZIO as writer here, clear both
1012209962Smm			 * values so the probe can reevaluate from first
1013209962Smm			 * principles.
1014209962Smm			 */
1015209962Smm			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1016209962Smm			vd->vdev_cant_read = B_FALSE;
1017209962Smm			vd->vdev_cant_write = B_FALSE;
1018209962Smm		}
1019209962Smm
1020209962Smm		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1021209962Smm		    vdev_probe_done, vps,
1022209962Smm		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1023209962Smm
1024219089Spjd		/*
1025219089Spjd		 * We can't change the vdev state in this context, so we
1026219089Spjd		 * kick off an async task to do it on our behalf.
1027219089Spjd		 */
1028209962Smm		if (zio != NULL) {
1029209962Smm			vd->vdev_probe_wanted = B_TRUE;
1030209962Smm			spa_async_request(spa, SPA_ASYNC_PROBE);
1031209962Smm		}
1032185029Spjd	}
1033185029Spjd
1034209962Smm	if (zio != NULL)
1035209962Smm		zio_add_child(zio, pio);
1036185029Spjd
1037209962Smm	mutex_exit(&vd->vdev_probe_lock);
1038185029Spjd
1039209962Smm	if (vps == NULL) {
1040209962Smm		ASSERT(zio != NULL);
1041209962Smm		return (NULL);
1042209962Smm	}
1043185029Spjd
1044185029Spjd	for (int l = 1; l < VDEV_LABELS; l++) {
1045209962Smm		zio_nowait(zio_read_phys(pio, vd,
1046185029Spjd		    vdev_label_offset(vd->vdev_psize, l,
1047209962Smm		    offsetof(vdev_label_t, vl_pad2)),
1048209962Smm		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1049185029Spjd		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1050185029Spjd		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1051185029Spjd	}
1052185029Spjd
1053209962Smm	if (zio == NULL)
1054209962Smm		return (pio);
1055209962Smm
1056209962Smm	zio_nowait(pio);
1057209962Smm	return (NULL);
1058185029Spjd}
1059185029Spjd
1060219089Spjdstatic void
1061219089Spjdvdev_open_child(void *arg)
1062219089Spjd{
1063219089Spjd	vdev_t *vd = arg;
1064219089Spjd
1065219089Spjd	vd->vdev_open_thread = curthread;
1066219089Spjd	vd->vdev_open_error = vdev_open(vd);
1067219089Spjd	vd->vdev_open_thread = NULL;
1068219089Spjd}
1069219089Spjd
1070219089Spjdboolean_t
1071219089Spjdvdev_uses_zvols(vdev_t *vd)
1072219089Spjd{
1073219089Spjd	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1074219089Spjd	    strlen(ZVOL_DIR)) == 0)
1075219089Spjd		return (B_TRUE);
1076219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
1077219089Spjd		if (vdev_uses_zvols(vd->vdev_child[c]))
1078219089Spjd			return (B_TRUE);
1079219089Spjd	return (B_FALSE);
1080219089Spjd}
1081219089Spjd
1082219089Spjdvoid
1083219089Spjdvdev_open_children(vdev_t *vd)
1084219089Spjd{
1085219089Spjd	taskq_t *tq;
1086219089Spjd	int children = vd->vdev_children;
1087219089Spjd
1088219089Spjd	/*
1089219089Spjd	 * in order to handle pools on top of zvols, do the opens
1090219089Spjd	 * in a single thread so that the same thread holds the
1091219089Spjd	 * spa_namespace_lock
1092219089Spjd	 */
1093219089Spjd	if (B_TRUE || vdev_uses_zvols(vd)) {
1094219089Spjd		for (int c = 0; c < children; c++)
1095219089Spjd			vd->vdev_child[c]->vdev_open_error =
1096219089Spjd			    vdev_open(vd->vdev_child[c]);
1097219089Spjd		return;
1098219089Spjd	}
1099219089Spjd	tq = taskq_create("vdev_open", children, minclsyspri,
1100219089Spjd	    children, children, TASKQ_PREPOPULATE);
1101219089Spjd
1102219089Spjd	for (int c = 0; c < children; c++)
1103219089Spjd		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1104219089Spjd		    TQ_SLEEP) != 0);
1105219089Spjd
1106219089Spjd	taskq_destroy(tq);
1107219089Spjd}
1108219089Spjd
1109185029Spjd/*
1110168404Spjd * Prepare a virtual device for access.
1111168404Spjd */
1112168404Spjdint
1113168404Spjdvdev_open(vdev_t *vd)
1114168404Spjd{
1115209962Smm	spa_t *spa = vd->vdev_spa;
1116168404Spjd	int error;
1117168404Spjd	uint64_t osize = 0;
1118236155Smm	uint64_t max_osize = 0;
1119236155Smm	uint64_t asize, max_asize, psize;
1120168404Spjd	uint64_t ashift = 0;
1121168404Spjd
1122219089Spjd	ASSERT(vd->vdev_open_thread == curthread ||
1123219089Spjd	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1124168404Spjd	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1125168404Spjd	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1126168404Spjd	    vd->vdev_state == VDEV_STATE_OFFLINE);
1127168404Spjd
1128168404Spjd	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1129213197Smm	vd->vdev_cant_read = B_FALSE;
1130213197Smm	vd->vdev_cant_write = B_FALSE;
1131219089Spjd	vd->vdev_min_asize = vdev_get_min_asize(vd);
1132168404Spjd
1133219089Spjd	/*
1134219089Spjd	 * If this vdev is not removed, check its fault status.  If it's
1135219089Spjd	 * faulted, bail out of the open.
1136219089Spjd	 */
1137185029Spjd	if (!vd->vdev_removed && vd->vdev_faulted) {
1138168404Spjd		ASSERT(vd->vdev_children == 0);
1139219089Spjd		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1140219089Spjd		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1141185029Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1142219089Spjd		    vd->vdev_label_aux);
1143185029Spjd		return (ENXIO);
1144185029Spjd	} else if (vd->vdev_offline) {
1145185029Spjd		ASSERT(vd->vdev_children == 0);
1146168404Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1147168404Spjd		return (ENXIO);
1148168404Spjd	}
1149168404Spjd
1150236155Smm	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1151168404Spjd
1152219089Spjd	/*
1153219089Spjd	 * Reset the vdev_reopening flag so that we actually close
1154219089Spjd	 * the vdev on error.
1155219089Spjd	 */
1156219089Spjd	vd->vdev_reopening = B_FALSE;
1157168404Spjd	if (zio_injection_enabled && error == 0)
1158213198Smm		error = zio_handle_device_injection(vd, NULL, ENXIO);
1159168404Spjd
1160185029Spjd	if (error) {
1161185029Spjd		if (vd->vdev_removed &&
1162185029Spjd		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1163185029Spjd			vd->vdev_removed = B_FALSE;
1164168404Spjd
1165168404Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1166168404Spjd		    vd->vdev_stat.vs_aux);
1167168404Spjd		return (error);
1168168404Spjd	}
1169168404Spjd
1170185029Spjd	vd->vdev_removed = B_FALSE;
1171168404Spjd
1172219089Spjd	/*
1173219089Spjd	 * Recheck the faulted flag now that we have confirmed that
1174219089Spjd	 * the vdev is accessible.  If we're faulted, bail.
1175219089Spjd	 */
1176219089Spjd	if (vd->vdev_faulted) {
1177219089Spjd		ASSERT(vd->vdev_children == 0);
1178219089Spjd		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1179219089Spjd		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1180219089Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1181219089Spjd		    vd->vdev_label_aux);
1182219089Spjd		return (ENXIO);
1183219089Spjd	}
1184219089Spjd
1185185029Spjd	if (vd->vdev_degraded) {
1186185029Spjd		ASSERT(vd->vdev_children == 0);
1187185029Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1188185029Spjd		    VDEV_AUX_ERR_EXCEEDED);
1189185029Spjd	} else {
1190219089Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1191185029Spjd	}
1192185029Spjd
1193219089Spjd	/*
1194219089Spjd	 * For hole or missing vdevs we just return success.
1195219089Spjd	 */
1196219089Spjd	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1197219089Spjd		return (0);
1198219089Spjd
1199240868Spjd	if (vd->vdev_ops->vdev_op_leaf) {
1200240868Spjd		vd->vdev_notrim = B_FALSE;
1201240868Spjd		trim_map_create(vd);
1202240868Spjd	}
1203240868Spjd
1204219089Spjd	for (int c = 0; c < vd->vdev_children; c++) {
1205168404Spjd		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1206168404Spjd			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1207168404Spjd			    VDEV_AUX_NONE);
1208168404Spjd			break;
1209168404Spjd		}
1210219089Spjd	}
1211168404Spjd
1212168404Spjd	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1213236155Smm	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1214168404Spjd
1215168404Spjd	if (vd->vdev_children == 0) {
1216168404Spjd		if (osize < SPA_MINDEVSIZE) {
1217168404Spjd			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1218168404Spjd			    VDEV_AUX_TOO_SMALL);
1219168404Spjd			return (EOVERFLOW);
1220168404Spjd		}
1221168404Spjd		psize = osize;
1222168404Spjd		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1223236155Smm		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1224236155Smm		    VDEV_LABEL_END_SIZE);
1225168404Spjd	} else {
1226168404Spjd		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1227168404Spjd		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1228168404Spjd			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1229168404Spjd			    VDEV_AUX_TOO_SMALL);
1230168404Spjd			return (EOVERFLOW);
1231168404Spjd		}
1232168404Spjd		psize = 0;
1233168404Spjd		asize = osize;
1234236155Smm		max_asize = max_osize;
1235168404Spjd	}
1236168404Spjd
1237168404Spjd	vd->vdev_psize = psize;
1238168404Spjd
1239219089Spjd	/*
1240219089Spjd	 * Make sure the allocatable size hasn't shrunk.
1241219089Spjd	 */
1242219089Spjd	if (asize < vd->vdev_min_asize) {
1243219089Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1244219089Spjd		    VDEV_AUX_BAD_LABEL);
1245219089Spjd		return (EINVAL);
1246219089Spjd	}
1247219089Spjd
1248168404Spjd	if (vd->vdev_asize == 0) {
1249168404Spjd		/*
1250168404Spjd		 * This is the first-ever open, so use the computed values.
1251168404Spjd		 * For testing purposes, a higher ashift can be requested.
1252168404Spjd		 */
1253168404Spjd		vd->vdev_asize = asize;
1254236155Smm		vd->vdev_max_asize = max_asize;
1255168404Spjd		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1256168404Spjd	} else {
1257168404Spjd		/*
1258168404Spjd		 * Make sure the alignment requirement hasn't increased.
1259168404Spjd		 */
1260168404Spjd		if (ashift > vd->vdev_top->vdev_ashift) {
1261168404Spjd			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1262168404Spjd			    VDEV_AUX_BAD_LABEL);
1263168404Spjd			return (EINVAL);
1264168404Spjd		}
1265236155Smm		vd->vdev_max_asize = max_asize;
1266219089Spjd	}
1267168404Spjd
1268219089Spjd	/*
1269219089Spjd	 * If all children are healthy and the asize has increased,
1270219089Spjd	 * then we've experienced dynamic LUN growth.  If automatic
1271219089Spjd	 * expansion is enabled then use the additional space.
1272219089Spjd	 */
1273219089Spjd	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1274219089Spjd	    (vd->vdev_expanding || spa->spa_autoexpand))
1275219089Spjd		vd->vdev_asize = asize;
1276168404Spjd
1277219089Spjd	vdev_set_min_asize(vd);
1278168404Spjd
1279168404Spjd	/*
1280185029Spjd	 * Ensure we can issue some IO before declaring the
1281185029Spjd	 * vdev open for business.
1282185029Spjd	 */
1283185029Spjd	if (vd->vdev_ops->vdev_op_leaf &&
1284185029Spjd	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1285219089Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1286219089Spjd		    VDEV_AUX_ERR_EXCEEDED);
1287185029Spjd		return (error);
1288185029Spjd	}
1289185029Spjd
1290185029Spjd	/*
1291185029Spjd	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1292209962Smm	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1293209962Smm	 * since this would just restart the scrub we are already doing.
1294168404Spjd	 */
1295209962Smm	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1296209962Smm	    vdev_resilver_needed(vd, NULL, NULL))
1297209962Smm		spa_async_request(spa, SPA_ASYNC_RESILVER);
1298168404Spjd
1299168404Spjd	return (0);
1300168404Spjd}
1301168404Spjd
1302168404Spjd/*
1303168404Spjd * Called once the vdevs are all opened, this routine validates the label
1304168404Spjd * contents.  This needs to be done before vdev_load() so that we don't
1305185029Spjd * inadvertently do repair I/Os to the wrong device.
1306168404Spjd *
1307230514Smm * If 'strict' is false ignore the spa guid check. This is necessary because
1308230514Smm * if the machine crashed during a re-guid the new guid might have been written
1309230514Smm * to all of the vdev labels, but not the cached config. The strict check
1310230514Smm * will be performed when the pool is opened again using the mos config.
1311230514Smm *
1312168404Spjd * This function will only return failure if one of the vdevs indicates that it
1313168404Spjd * has since been destroyed or exported.  This is only possible if
1314168404Spjd * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1315168404Spjd * will be updated but the function will return 0.
1316168404Spjd */
1317168404Spjdint
1318230514Smmvdev_validate(vdev_t *vd, boolean_t strict)
1319168404Spjd{
1320168404Spjd	spa_t *spa = vd->vdev_spa;
1321168404Spjd	nvlist_t *label;
1322219089Spjd	uint64_t guid = 0, top_guid;
1323168404Spjd	uint64_t state;
1324168404Spjd
1325219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
1326230514Smm		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1327168926Spjd			return (EBADF);
1328168404Spjd
1329168404Spjd	/*
1330168404Spjd	 * If the device has already failed, or was marked offline, don't do
1331168404Spjd	 * any further validation.  Otherwise, label I/O will fail and we will
1332168404Spjd	 * overwrite the previous state.
1333168404Spjd	 */
1334185029Spjd	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1335219089Spjd		uint64_t aux_guid = 0;
1336219089Spjd		nvlist_t *nvl;
1337246631Smm		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1338246631Smm		    spa_last_synced_txg(spa) : -1ULL;
1339168404Spjd
1340239620Smm		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1341168404Spjd			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1342168404Spjd			    VDEV_AUX_BAD_LABEL);
1343168404Spjd			return (0);
1344168404Spjd		}
1345168404Spjd
1346219089Spjd		/*
1347219089Spjd		 * Determine if this vdev has been split off into another
1348219089Spjd		 * pool.  If so, then refuse to open it.
1349219089Spjd		 */
1350219089Spjd		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1351219089Spjd		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1352219089Spjd			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1353219089Spjd			    VDEV_AUX_SPLIT_POOL);
1354219089Spjd			nvlist_free(label);
1355219089Spjd			return (0);
1356219089Spjd		}
1357219089Spjd
1358230514Smm		if (strict && (nvlist_lookup_uint64(label,
1359230514Smm		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1360230514Smm		    guid != spa_guid(spa))) {
1361168404Spjd			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1362168404Spjd			    VDEV_AUX_CORRUPT_DATA);
1363168404Spjd			nvlist_free(label);
1364168404Spjd			return (0);
1365168404Spjd		}
1366168404Spjd
1367219089Spjd		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1368219089Spjd		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1369219089Spjd		    &aux_guid) != 0)
1370219089Spjd			aux_guid = 0;
1371219089Spjd
1372185029Spjd		/*
1373185029Spjd		 * If this vdev just became a top-level vdev because its
1374185029Spjd		 * sibling was detached, it will have adopted the parent's
1375185029Spjd		 * vdev guid -- but the label may or may not be on disk yet.
1376185029Spjd		 * Fortunately, either version of the label will have the
1377185029Spjd		 * same top guid, so if we're a top-level vdev, we can
1378185029Spjd		 * safely compare to that instead.
1379219089Spjd		 *
1380219089Spjd		 * If we split this vdev off instead, then we also check the
1381219089Spjd		 * original pool's guid.  We don't want to consider the vdev
1382219089Spjd		 * corrupt if it is partway through a split operation.
1383185029Spjd		 */
1384168404Spjd		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1385185029Spjd		    &guid) != 0 ||
1386185029Spjd		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1387185029Spjd		    &top_guid) != 0 ||
1388219089Spjd		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1389185029Spjd		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1390168404Spjd			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1391168404Spjd			    VDEV_AUX_CORRUPT_DATA);
1392168404Spjd			nvlist_free(label);
1393168404Spjd			return (0);
1394168404Spjd		}
1395168404Spjd
1396168404Spjd		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1397168404Spjd		    &state) != 0) {
1398168404Spjd			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1399168404Spjd			    VDEV_AUX_CORRUPT_DATA);
1400168404Spjd			nvlist_free(label);
1401168404Spjd			return (0);
1402168404Spjd		}
1403168404Spjd
1404168404Spjd		nvlist_free(label);
1405168404Spjd
1406209962Smm		/*
1407219089Spjd		 * If this is a verbatim import, no need to check the
1408209962Smm		 * state of the pool.
1409209962Smm		 */
1410219089Spjd		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1411219089Spjd		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1412168404Spjd		    state != POOL_STATE_ACTIVE)
1413168926Spjd			return (EBADF);
1414185029Spjd
1415185029Spjd		/*
1416185029Spjd		 * If we were able to open and validate a vdev that was
1417185029Spjd		 * previously marked permanently unavailable, clear that state
1418185029Spjd		 * now.
1419185029Spjd		 */
1420185029Spjd		if (vd->vdev_not_present)
1421185029Spjd			vd->vdev_not_present = 0;
1422168404Spjd	}
1423168404Spjd
1424168404Spjd	return (0);
1425168404Spjd}
1426168404Spjd
1427168404Spjd/*
1428168404Spjd * Close a virtual device.
1429168404Spjd */
1430168404Spjdvoid
1431168404Spjdvdev_close(vdev_t *vd)
1432168404Spjd{
1433209962Smm	spa_t *spa = vd->vdev_spa;
1434219089Spjd	vdev_t *pvd = vd->vdev_parent;
1435209962Smm
1436209962Smm	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1437209962Smm
1438219089Spjd	/*
1439219089Spjd	 * If our parent is reopening, then we are as well, unless we are
1440219089Spjd	 * going offline.
1441219089Spjd	 */
1442219089Spjd	if (pvd != NULL && pvd->vdev_reopening)
1443219089Spjd		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1444219089Spjd
1445168404Spjd	vd->vdev_ops->vdev_op_close(vd);
1446168404Spjd
1447185029Spjd	vdev_cache_purge(vd);
1448168404Spjd
1449240868Spjd	if (vd->vdev_ops->vdev_op_leaf)
1450240868Spjd		trim_map_destroy(vd);
1451240868Spjd
1452168404Spjd	/*
1453219089Spjd	 * We record the previous state before we close it, so that if we are
1454168404Spjd	 * doing a reopen(), we don't generate FMA ereports if we notice that
1455168404Spjd	 * it's still faulted.
1456168404Spjd	 */
1457168404Spjd	vd->vdev_prevstate = vd->vdev_state;
1458168404Spjd
1459168404Spjd	if (vd->vdev_offline)
1460168404Spjd		vd->vdev_state = VDEV_STATE_OFFLINE;
1461168404Spjd	else
1462168404Spjd		vd->vdev_state = VDEV_STATE_CLOSED;
1463168404Spjd	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1464168404Spjd}
1465168404Spjd
1466168404Spjdvoid
1467219089Spjdvdev_hold(vdev_t *vd)
1468219089Spjd{
1469219089Spjd	spa_t *spa = vd->vdev_spa;
1470219089Spjd
1471219089Spjd	ASSERT(spa_is_root(spa));
1472219089Spjd	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1473219089Spjd		return;
1474219089Spjd
1475219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
1476219089Spjd		vdev_hold(vd->vdev_child[c]);
1477219089Spjd
1478219089Spjd	if (vd->vdev_ops->vdev_op_leaf)
1479219089Spjd		vd->vdev_ops->vdev_op_hold(vd);
1480219089Spjd}
1481219089Spjd
1482219089Spjdvoid
1483219089Spjdvdev_rele(vdev_t *vd)
1484219089Spjd{
1485219089Spjd	spa_t *spa = vd->vdev_spa;
1486219089Spjd
1487219089Spjd	ASSERT(spa_is_root(spa));
1488219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
1489219089Spjd		vdev_rele(vd->vdev_child[c]);
1490219089Spjd
1491219089Spjd	if (vd->vdev_ops->vdev_op_leaf)
1492219089Spjd		vd->vdev_ops->vdev_op_rele(vd);
1493219089Spjd}
1494219089Spjd
1495219089Spjd/*
1496219089Spjd * Reopen all interior vdevs and any unopened leaves.  We don't actually
1497219089Spjd * reopen leaf vdevs which had previously been opened as they might deadlock
1498219089Spjd * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1499219089Spjd * If the leaf has never been opened then open it, as usual.
1500219089Spjd */
1501219089Spjdvoid
1502168404Spjdvdev_reopen(vdev_t *vd)
1503168404Spjd{
1504168404Spjd	spa_t *spa = vd->vdev_spa;
1505168404Spjd
1506185029Spjd	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1507168404Spjd
1508219089Spjd	/* set the reopening flag unless we're taking the vdev offline */
1509219089Spjd	vd->vdev_reopening = !vd->vdev_offline;
1510168404Spjd	vdev_close(vd);
1511168404Spjd	(void) vdev_open(vd);
1512168404Spjd
1513168404Spjd	/*
1514168404Spjd	 * Call vdev_validate() here to make sure we have the same device.
1515168404Spjd	 * Otherwise, a device with an invalid label could be successfully
1516168404Spjd	 * opened in response to vdev_reopen().
1517168404Spjd	 */
1518185029Spjd	if (vd->vdev_aux) {
1519185029Spjd		(void) vdev_validate_aux(vd);
1520185029Spjd		if (vdev_readable(vd) && vdev_writeable(vd) &&
1521209962Smm		    vd->vdev_aux == &spa->spa_l2cache &&
1522219089Spjd		    !l2arc_vdev_present(vd))
1523219089Spjd			l2arc_add_vdev(spa, vd);
1524185029Spjd	} else {
1525246631Smm		(void) vdev_validate(vd, B_TRUE);
1526185029Spjd	}
1527168404Spjd
1528168404Spjd	/*
1529185029Spjd	 * Reassess parent vdev's health.
1530168404Spjd	 */
1531185029Spjd	vdev_propagate_state(vd);
1532168404Spjd}
1533168404Spjd
1534168404Spjdint
1535168404Spjdvdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1536168404Spjd{
1537168404Spjd	int error;
1538168404Spjd
1539168404Spjd	/*
1540168404Spjd	 * Normally, partial opens (e.g. of a mirror) are allowed.
1541168404Spjd	 * For a create, however, we want to fail the request if
1542168404Spjd	 * there are any components we can't open.
1543168404Spjd	 */
1544168404Spjd	error = vdev_open(vd);
1545168404Spjd
1546168404Spjd	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1547168404Spjd		vdev_close(vd);
1548168404Spjd		return (error ? error : ENXIO);
1549168404Spjd	}
1550168404Spjd
1551168404Spjd	/*
1552168404Spjd	 * Recursively initialize all labels.
1553168404Spjd	 */
1554168404Spjd	if ((error = vdev_label_init(vd, txg, isreplacing ?
1555168404Spjd	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1556168404Spjd		vdev_close(vd);
1557168404Spjd		return (error);
1558168404Spjd	}
1559168404Spjd
1560168404Spjd	return (0);
1561168404Spjd}
1562168404Spjd
1563168404Spjdvoid
1564219089Spjdvdev_metaslab_set_size(vdev_t *vd)
1565168404Spjd{
1566168404Spjd	/*
1567168404Spjd	 * Aim for roughly 200 metaslabs per vdev.
1568168404Spjd	 */
1569168404Spjd	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1570168404Spjd	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1571168404Spjd}
1572168404Spjd
1573168404Spjdvoid
1574168404Spjdvdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1575168404Spjd{
1576168404Spjd	ASSERT(vd == vd->vdev_top);
1577219089Spjd	ASSERT(!vd->vdev_ishole);
1578168404Spjd	ASSERT(ISP2(flags));
1579219089Spjd	ASSERT(spa_writeable(vd->vdev_spa));
1580168404Spjd
1581168404Spjd	if (flags & VDD_METASLAB)
1582168404Spjd		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1583168404Spjd
1584168404Spjd	if (flags & VDD_DTL)
1585168404Spjd		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1586168404Spjd
1587168404Spjd	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1588168404Spjd}
1589168404Spjd
1590209962Smm/*
1591209962Smm * DTLs.
1592209962Smm *
1593209962Smm * A vdev's DTL (dirty time log) is the set of transaction groups for which
1594219089Spjd * the vdev has less than perfect replication.  There are four kinds of DTL:
1595209962Smm *
1596209962Smm * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1597209962Smm *
1598209962Smm * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1599209962Smm *
1600209962Smm * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1601209962Smm *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1602209962Smm *	txgs that was scrubbed.
1603209962Smm *
1604209962Smm * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1605209962Smm *	persistent errors or just some device being offline.
1606209962Smm *	Unlike the other three, the DTL_OUTAGE map is not generally
1607209962Smm *	maintained; it's only computed when needed, typically to
1608209962Smm *	determine whether a device can be detached.
1609209962Smm *
1610209962Smm * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1611209962Smm * either has the data or it doesn't.
1612209962Smm *
1613209962Smm * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1614209962Smm * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1615209962Smm * if any child is less than fully replicated, then so is its parent.
1616209962Smm * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1617209962Smm * comprising only those txgs which appear in 'maxfaults' or more children;
1618209962Smm * those are the txgs we don't have enough replication to read.  For example,
1619209962Smm * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1620209962Smm * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1621209962Smm * two child DTL_MISSING maps.
1622209962Smm *
1623209962Smm * It should be clear from the above that to compute the DTLs and outage maps
1624209962Smm * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1625209962Smm * Therefore, that is all we keep on disk.  When loading the pool, or after
1626209962Smm * a configuration change, we generate all other DTLs from first principles.
1627209962Smm */
1628168404Spjdvoid
1629209962Smmvdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1630168404Spjd{
1631209962Smm	space_map_t *sm = &vd->vdev_dtl[t];
1632209962Smm
1633209962Smm	ASSERT(t < DTL_TYPES);
1634209962Smm	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1635219089Spjd	ASSERT(spa_writeable(vd->vdev_spa));
1636209962Smm
1637168404Spjd	mutex_enter(sm->sm_lock);
1638168404Spjd	if (!space_map_contains(sm, txg, size))
1639168404Spjd		space_map_add(sm, txg, size);
1640168404Spjd	mutex_exit(sm->sm_lock);
1641168404Spjd}
1642168404Spjd
1643209962Smmboolean_t
1644209962Smmvdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1645168404Spjd{
1646209962Smm	space_map_t *sm = &vd->vdev_dtl[t];
1647209962Smm	boolean_t dirty = B_FALSE;
1648168404Spjd
1649209962Smm	ASSERT(t < DTL_TYPES);
1650209962Smm	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1651168404Spjd
1652168404Spjd	mutex_enter(sm->sm_lock);
1653209962Smm	if (sm->sm_space != 0)
1654209962Smm		dirty = space_map_contains(sm, txg, size);
1655168404Spjd	mutex_exit(sm->sm_lock);
1656168404Spjd
1657168404Spjd	return (dirty);
1658168404Spjd}
1659168404Spjd
1660209962Smmboolean_t
1661209962Smmvdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1662209962Smm{
1663209962Smm	space_map_t *sm = &vd->vdev_dtl[t];
1664209962Smm	boolean_t empty;
1665209962Smm
1666209962Smm	mutex_enter(sm->sm_lock);
1667209962Smm	empty = (sm->sm_space == 0);
1668209962Smm	mutex_exit(sm->sm_lock);
1669209962Smm
1670209962Smm	return (empty);
1671209962Smm}
1672209962Smm
1673168404Spjd/*
1674168404Spjd * Reassess DTLs after a config change or scrub completion.
1675168404Spjd */
1676168404Spjdvoid
1677168404Spjdvdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1678168404Spjd{
1679168404Spjd	spa_t *spa = vd->vdev_spa;
1680209962Smm	avl_tree_t reftree;
1681209962Smm	int minref;
1682168404Spjd
1683209962Smm	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1684168404Spjd
1685209962Smm	for (int c = 0; c < vd->vdev_children; c++)
1686209962Smm		vdev_dtl_reassess(vd->vdev_child[c], txg,
1687209962Smm		    scrub_txg, scrub_done);
1688209962Smm
1689219089Spjd	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1690209962Smm		return;
1691209962Smm
1692209962Smm	if (vd->vdev_ops->vdev_op_leaf) {
1693219089Spjd		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1694219089Spjd
1695168404Spjd		mutex_enter(&vd->vdev_dtl_lock);
1696185029Spjd		if (scrub_txg != 0 &&
1697219089Spjd		    (spa->spa_scrub_started ||
1698219089Spjd		    (scn && scn->scn_phys.scn_errors == 0))) {
1699185029Spjd			/*
1700185029Spjd			 * We completed a scrub up to scrub_txg.  If we
1701185029Spjd			 * did it without rebooting, then the scrub dtl
1702185029Spjd			 * will be valid, so excise the old region and
1703185029Spjd			 * fold in the scrub dtl.  Otherwise, leave the
1704185029Spjd			 * dtl as-is if there was an error.
1705209962Smm			 *
1706209962Smm			 * There's little trick here: to excise the beginning
1707209962Smm			 * of the DTL_MISSING map, we put it into a reference
1708209962Smm			 * tree and then add a segment with refcnt -1 that
1709209962Smm			 * covers the range [0, scrub_txg).  This means
1710209962Smm			 * that each txg in that range has refcnt -1 or 0.
1711209962Smm			 * We then add DTL_SCRUB with a refcnt of 2, so that
1712209962Smm			 * entries in the range [0, scrub_txg) will have a
1713209962Smm			 * positive refcnt -- either 1 or 2.  We then convert
1714209962Smm			 * the reference tree into the new DTL_MISSING map.
1715185029Spjd			 */
1716209962Smm			space_map_ref_create(&reftree);
1717209962Smm			space_map_ref_add_map(&reftree,
1718209962Smm			    &vd->vdev_dtl[DTL_MISSING], 1);
1719209962Smm			space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1720209962Smm			space_map_ref_add_map(&reftree,
1721209962Smm			    &vd->vdev_dtl[DTL_SCRUB], 2);
1722209962Smm			space_map_ref_generate_map(&reftree,
1723209962Smm			    &vd->vdev_dtl[DTL_MISSING], 1);
1724209962Smm			space_map_ref_destroy(&reftree);
1725168404Spjd		}
1726209962Smm		space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1727209962Smm		space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1728209962Smm		    space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1729168404Spjd		if (scrub_done)
1730209962Smm			space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1731209962Smm		space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1732209962Smm		if (!vdev_readable(vd))
1733209962Smm			space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1734209962Smm		else
1735209962Smm			space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1736209962Smm			    space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1737168404Spjd		mutex_exit(&vd->vdev_dtl_lock);
1738185029Spjd
1739168404Spjd		if (txg != 0)
1740168404Spjd			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1741168404Spjd		return;
1742168404Spjd	}
1743168404Spjd
1744168404Spjd	mutex_enter(&vd->vdev_dtl_lock);
1745209962Smm	for (int t = 0; t < DTL_TYPES; t++) {
1746209962Smm		/* account for child's outage in parent's missing map */
1747209962Smm		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1748209962Smm		if (t == DTL_SCRUB)
1749209962Smm			continue;			/* leaf vdevs only */
1750209962Smm		if (t == DTL_PARTIAL)
1751209962Smm			minref = 1;			/* i.e. non-zero */
1752209962Smm		else if (vd->vdev_nparity != 0)
1753209962Smm			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1754209962Smm		else
1755209962Smm			minref = vd->vdev_children;	/* any kind of mirror */
1756209962Smm		space_map_ref_create(&reftree);
1757209962Smm		for (int c = 0; c < vd->vdev_children; c++) {
1758209962Smm			vdev_t *cvd = vd->vdev_child[c];
1759209962Smm			mutex_enter(&cvd->vdev_dtl_lock);
1760209962Smm			space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1761209962Smm			mutex_exit(&cvd->vdev_dtl_lock);
1762209962Smm		}
1763209962Smm		space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1764209962Smm		space_map_ref_destroy(&reftree);
1765209962Smm	}
1766168404Spjd	mutex_exit(&vd->vdev_dtl_lock);
1767168404Spjd}
1768168404Spjd
1769168404Spjdstatic int
1770168404Spjdvdev_dtl_load(vdev_t *vd)
1771168404Spjd{
1772168404Spjd	spa_t *spa = vd->vdev_spa;
1773209962Smm	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1774168404Spjd	objset_t *mos = spa->spa_meta_objset;
1775168404Spjd	dmu_buf_t *db;
1776168404Spjd	int error;
1777168404Spjd
1778168404Spjd	ASSERT(vd->vdev_children == 0);
1779168404Spjd
1780168404Spjd	if (smo->smo_object == 0)
1781168404Spjd		return (0);
1782168404Spjd
1783219089Spjd	ASSERT(!vd->vdev_ishole);
1784219089Spjd
1785168404Spjd	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1786168404Spjd		return (error);
1787168404Spjd
1788185029Spjd	ASSERT3U(db->db_size, >=, sizeof (*smo));
1789185029Spjd	bcopy(db->db_data, smo, sizeof (*smo));
1790168404Spjd	dmu_buf_rele(db, FTAG);
1791168404Spjd
1792168404Spjd	mutex_enter(&vd->vdev_dtl_lock);
1793209962Smm	error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1794209962Smm	    NULL, SM_ALLOC, smo, mos);
1795168404Spjd	mutex_exit(&vd->vdev_dtl_lock);
1796168404Spjd
1797168404Spjd	return (error);
1798168404Spjd}
1799168404Spjd
1800168404Spjdvoid
1801168404Spjdvdev_dtl_sync(vdev_t *vd, uint64_t txg)
1802168404Spjd{
1803168404Spjd	spa_t *spa = vd->vdev_spa;
1804209962Smm	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1805209962Smm	space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1806168404Spjd	objset_t *mos = spa->spa_meta_objset;
1807168404Spjd	space_map_t smsync;
1808168404Spjd	kmutex_t smlock;
1809168404Spjd	dmu_buf_t *db;
1810168404Spjd	dmu_tx_t *tx;
1811168404Spjd
1812219089Spjd	ASSERT(!vd->vdev_ishole);
1813219089Spjd
1814168404Spjd	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1815168404Spjd
1816168404Spjd	if (vd->vdev_detached) {
1817168404Spjd		if (smo->smo_object != 0) {
1818168404Spjd			int err = dmu_object_free(mos, smo->smo_object, tx);
1819240415Smm			ASSERT0(err);
1820168404Spjd			smo->smo_object = 0;
1821168404Spjd		}
1822168404Spjd		dmu_tx_commit(tx);
1823168404Spjd		return;
1824168404Spjd	}
1825168404Spjd
1826168404Spjd	if (smo->smo_object == 0) {
1827168404Spjd		ASSERT(smo->smo_objsize == 0);
1828168404Spjd		ASSERT(smo->smo_alloc == 0);
1829168404Spjd		smo->smo_object = dmu_object_alloc(mos,
1830168404Spjd		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1831168404Spjd		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1832168404Spjd		ASSERT(smo->smo_object != 0);
1833168404Spjd		vdev_config_dirty(vd->vdev_top);
1834168404Spjd	}
1835168404Spjd
1836168404Spjd	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1837168404Spjd
1838168404Spjd	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1839168404Spjd	    &smlock);
1840168404Spjd
1841168404Spjd	mutex_enter(&smlock);
1842168404Spjd
1843168404Spjd	mutex_enter(&vd->vdev_dtl_lock);
1844168404Spjd	space_map_walk(sm, space_map_add, &smsync);
1845168404Spjd	mutex_exit(&vd->vdev_dtl_lock);
1846168404Spjd
1847168404Spjd	space_map_truncate(smo, mos, tx);
1848168404Spjd	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1849168404Spjd
1850168404Spjd	space_map_destroy(&smsync);
1851168404Spjd
1852168404Spjd	mutex_exit(&smlock);
1853168404Spjd	mutex_destroy(&smlock);
1854168404Spjd
1855168404Spjd	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1856168404Spjd	dmu_buf_will_dirty(db, tx);
1857185029Spjd	ASSERT3U(db->db_size, >=, sizeof (*smo));
1858185029Spjd	bcopy(smo, db->db_data, sizeof (*smo));
1859168404Spjd	dmu_buf_rele(db, FTAG);
1860168404Spjd
1861168404Spjd	dmu_tx_commit(tx);
1862168404Spjd}
1863168404Spjd
1864185029Spjd/*
1865209962Smm * Determine whether the specified vdev can be offlined/detached/removed
1866209962Smm * without losing data.
1867209962Smm */
1868209962Smmboolean_t
1869209962Smmvdev_dtl_required(vdev_t *vd)
1870209962Smm{
1871209962Smm	spa_t *spa = vd->vdev_spa;
1872209962Smm	vdev_t *tvd = vd->vdev_top;
1873209962Smm	uint8_t cant_read = vd->vdev_cant_read;
1874209962Smm	boolean_t required;
1875209962Smm
1876209962Smm	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1877209962Smm
1878209962Smm	if (vd == spa->spa_root_vdev || vd == tvd)
1879209962Smm		return (B_TRUE);
1880209962Smm
1881209962Smm	/*
1882209962Smm	 * Temporarily mark the device as unreadable, and then determine
1883209962Smm	 * whether this results in any DTL outages in the top-level vdev.
1884209962Smm	 * If not, we can safely offline/detach/remove the device.
1885209962Smm	 */
1886209962Smm	vd->vdev_cant_read = B_TRUE;
1887209962Smm	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1888209962Smm	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1889209962Smm	vd->vdev_cant_read = cant_read;
1890209962Smm	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1891209962Smm
1892219089Spjd	if (!required && zio_injection_enabled)
1893219089Spjd		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1894219089Spjd
1895209962Smm	return (required);
1896209962Smm}
1897209962Smm
1898209962Smm/*
1899185029Spjd * Determine if resilver is needed, and if so the txg range.
1900185029Spjd */
1901185029Spjdboolean_t
1902185029Spjdvdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1903185029Spjd{
1904185029Spjd	boolean_t needed = B_FALSE;
1905185029Spjd	uint64_t thismin = UINT64_MAX;
1906185029Spjd	uint64_t thismax = 0;
1907185029Spjd
1908185029Spjd	if (vd->vdev_children == 0) {
1909185029Spjd		mutex_enter(&vd->vdev_dtl_lock);
1910209962Smm		if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1911209962Smm		    vdev_writeable(vd)) {
1912185029Spjd			space_seg_t *ss;
1913185029Spjd
1914209962Smm			ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1915185029Spjd			thismin = ss->ss_start - 1;
1916209962Smm			ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1917185029Spjd			thismax = ss->ss_end;
1918185029Spjd			needed = B_TRUE;
1919185029Spjd		}
1920185029Spjd		mutex_exit(&vd->vdev_dtl_lock);
1921185029Spjd	} else {
1922209962Smm		for (int c = 0; c < vd->vdev_children; c++) {
1923185029Spjd			vdev_t *cvd = vd->vdev_child[c];
1924185029Spjd			uint64_t cmin, cmax;
1925185029Spjd
1926185029Spjd			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1927185029Spjd				thismin = MIN(thismin, cmin);
1928185029Spjd				thismax = MAX(thismax, cmax);
1929185029Spjd				needed = B_TRUE;
1930185029Spjd			}
1931185029Spjd		}
1932185029Spjd	}
1933185029Spjd
1934185029Spjd	if (needed && minp) {
1935185029Spjd		*minp = thismin;
1936185029Spjd		*maxp = thismax;
1937185029Spjd	}
1938185029Spjd	return (needed);
1939185029Spjd}
1940185029Spjd
1941168404Spjdvoid
1942168404Spjdvdev_load(vdev_t *vd)
1943168404Spjd{
1944168404Spjd	/*
1945168404Spjd	 * Recursively load all children.
1946168404Spjd	 */
1947209962Smm	for (int c = 0; c < vd->vdev_children; c++)
1948168404Spjd		vdev_load(vd->vdev_child[c]);
1949168404Spjd
1950168404Spjd	/*
1951168404Spjd	 * If this is a top-level vdev, initialize its metaslabs.
1952168404Spjd	 */
1953219089Spjd	if (vd == vd->vdev_top && !vd->vdev_ishole &&
1954168404Spjd	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1955168404Spjd	    vdev_metaslab_init(vd, 0) != 0))
1956168404Spjd		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1957168404Spjd		    VDEV_AUX_CORRUPT_DATA);
1958168404Spjd
1959168404Spjd	/*
1960168404Spjd	 * If this is a leaf vdev, load its DTL.
1961168404Spjd	 */
1962168404Spjd	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1963168404Spjd		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1964168404Spjd		    VDEV_AUX_CORRUPT_DATA);
1965168404Spjd}
1966168404Spjd
1967168404Spjd/*
1968185029Spjd * The special vdev case is used for hot spares and l2cache devices.  Its
1969185029Spjd * sole purpose it to set the vdev state for the associated vdev.  To do this,
1970185029Spjd * we make sure that we can open the underlying device, then try to read the
1971185029Spjd * label, and make sure that the label is sane and that it hasn't been
1972185029Spjd * repurposed to another pool.
1973168404Spjd */
1974168404Spjdint
1975185029Spjdvdev_validate_aux(vdev_t *vd)
1976168404Spjd{
1977168404Spjd	nvlist_t *label;
1978168404Spjd	uint64_t guid, version;
1979168404Spjd	uint64_t state;
1980168404Spjd
1981185029Spjd	if (!vdev_readable(vd))
1982185029Spjd		return (0);
1983185029Spjd
1984239620Smm	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
1985168404Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1986168404Spjd		    VDEV_AUX_CORRUPT_DATA);
1987168404Spjd		return (-1);
1988168404Spjd	}
1989168404Spjd
1990168404Spjd	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1991236884Smm	    !SPA_VERSION_IS_SUPPORTED(version) ||
1992168404Spjd	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1993168404Spjd	    guid != vd->vdev_guid ||
1994168404Spjd	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1995168404Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1996168404Spjd		    VDEV_AUX_CORRUPT_DATA);
1997168404Spjd		nvlist_free(label);
1998168404Spjd		return (-1);
1999168404Spjd	}
2000168404Spjd
2001168404Spjd	/*
2002168404Spjd	 * We don't actually check the pool state here.  If it's in fact in
2003168404Spjd	 * use by another pool, we update this fact on the fly when requested.
2004168404Spjd	 */
2005168404Spjd	nvlist_free(label);
2006168404Spjd	return (0);
2007168404Spjd}
2008168404Spjd
2009168404Spjdvoid
2010219089Spjdvdev_remove(vdev_t *vd, uint64_t txg)
2011219089Spjd{
2012219089Spjd	spa_t *spa = vd->vdev_spa;
2013219089Spjd	objset_t *mos = spa->spa_meta_objset;
2014219089Spjd	dmu_tx_t *tx;
2015219089Spjd
2016219089Spjd	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2017219089Spjd
2018219089Spjd	if (vd->vdev_dtl_smo.smo_object) {
2019240415Smm		ASSERT0(vd->vdev_dtl_smo.smo_alloc);
2020219089Spjd		(void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2021219089Spjd		vd->vdev_dtl_smo.smo_object = 0;
2022219089Spjd	}
2023219089Spjd
2024219089Spjd	if (vd->vdev_ms != NULL) {
2025219089Spjd		for (int m = 0; m < vd->vdev_ms_count; m++) {
2026219089Spjd			metaslab_t *msp = vd->vdev_ms[m];
2027219089Spjd
2028219089Spjd			if (msp == NULL || msp->ms_smo.smo_object == 0)
2029219089Spjd				continue;
2030219089Spjd
2031240415Smm			ASSERT0(msp->ms_smo.smo_alloc);
2032219089Spjd			(void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2033219089Spjd			msp->ms_smo.smo_object = 0;
2034219089Spjd		}
2035219089Spjd	}
2036219089Spjd
2037219089Spjd	if (vd->vdev_ms_array) {
2038219089Spjd		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2039219089Spjd		vd->vdev_ms_array = 0;
2040219089Spjd		vd->vdev_ms_shift = 0;
2041219089Spjd	}
2042219089Spjd	dmu_tx_commit(tx);
2043219089Spjd}
2044219089Spjd
2045219089Spjdvoid
2046168404Spjdvdev_sync_done(vdev_t *vd, uint64_t txg)
2047168404Spjd{
2048168404Spjd	metaslab_t *msp;
2049211931Smm	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2050168404Spjd
2051219089Spjd	ASSERT(!vd->vdev_ishole);
2052219089Spjd
2053168404Spjd	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2054168404Spjd		metaslab_sync_done(msp, txg);
2055211931Smm
2056211931Smm	if (reassess)
2057211931Smm		metaslab_sync_reassess(vd->vdev_mg);
2058168404Spjd}
2059168404Spjd
2060168404Spjdvoid
2061168404Spjdvdev_sync(vdev_t *vd, uint64_t txg)
2062168404Spjd{
2063168404Spjd	spa_t *spa = vd->vdev_spa;
2064168404Spjd	vdev_t *lvd;
2065168404Spjd	metaslab_t *msp;
2066168404Spjd	dmu_tx_t *tx;
2067168404Spjd
2068219089Spjd	ASSERT(!vd->vdev_ishole);
2069219089Spjd
2070168404Spjd	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2071168404Spjd		ASSERT(vd == vd->vdev_top);
2072168404Spjd		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2073168404Spjd		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2074168404Spjd		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2075168404Spjd		ASSERT(vd->vdev_ms_array != 0);
2076168404Spjd		vdev_config_dirty(vd);
2077168404Spjd		dmu_tx_commit(tx);
2078168404Spjd	}
2079168404Spjd
2080219089Spjd	/*
2081219089Spjd	 * Remove the metadata associated with this vdev once it's empty.
2082219089Spjd	 */
2083219089Spjd	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2084219089Spjd		vdev_remove(vd, txg);
2085219089Spjd
2086168404Spjd	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2087168404Spjd		metaslab_sync(msp, txg);
2088168404Spjd		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2089168404Spjd	}
2090168404Spjd
2091168404Spjd	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2092168404Spjd		vdev_dtl_sync(lvd, txg);
2093168404Spjd
2094168404Spjd	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2095168404Spjd}
2096168404Spjd
2097168404Spjduint64_t
2098168404Spjdvdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2099168404Spjd{
2100168404Spjd	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2101168404Spjd}
2102168404Spjd
2103185029Spjd/*
2104185029Spjd * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2105185029Spjd * not be opened, and no I/O is attempted.
2106185029Spjd */
2107185029Spjdint
2108219089Spjdvdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2109168404Spjd{
2110219089Spjd	vdev_t *vd, *tvd;
2111168404Spjd
2112219089Spjd	spa_vdev_state_enter(spa, SCL_NONE);
2113185029Spjd
2114185029Spjd	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2115185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2116185029Spjd
2117185029Spjd	if (!vd->vdev_ops->vdev_op_leaf)
2118185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2119185029Spjd
2120219089Spjd	tvd = vd->vdev_top;
2121219089Spjd
2122185029Spjd	/*
2123219089Spjd	 * We don't directly use the aux state here, but if we do a
2124219089Spjd	 * vdev_reopen(), we need this value to be present to remember why we
2125219089Spjd	 * were faulted.
2126219089Spjd	 */
2127219089Spjd	vd->vdev_label_aux = aux;
2128219089Spjd
2129219089Spjd	/*
2130185029Spjd	 * Faulted state takes precedence over degraded.
2131185029Spjd	 */
2132219089Spjd	vd->vdev_delayed_close = B_FALSE;
2133185029Spjd	vd->vdev_faulted = 1ULL;
2134185029Spjd	vd->vdev_degraded = 0ULL;
2135219089Spjd	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2136185029Spjd
2137185029Spjd	/*
2138219089Spjd	 * If this device has the only valid copy of the data, then
2139219089Spjd	 * back off and simply mark the vdev as degraded instead.
2140185029Spjd	 */
2141219089Spjd	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2142185029Spjd		vd->vdev_degraded = 1ULL;
2143185029Spjd		vd->vdev_faulted = 0ULL;
2144185029Spjd
2145185029Spjd		/*
2146185029Spjd		 * If we reopen the device and it's not dead, only then do we
2147185029Spjd		 * mark it degraded.
2148185029Spjd		 */
2149219089Spjd		vdev_reopen(tvd);
2150185029Spjd
2151219089Spjd		if (vdev_readable(vd))
2152219089Spjd			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2153185029Spjd	}
2154185029Spjd
2155185029Spjd	return (spa_vdev_state_exit(spa, vd, 0));
2156168404Spjd}
2157168404Spjd
2158185029Spjd/*
2159185029Spjd * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2160185029Spjd * user that something is wrong.  The vdev continues to operate as normal as far
2161185029Spjd * as I/O is concerned.
2162185029Spjd */
2163185029Spjdint
2164219089Spjdvdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2165168404Spjd{
2166185029Spjd	vdev_t *vd;
2167168404Spjd
2168219089Spjd	spa_vdev_state_enter(spa, SCL_NONE);
2169168404Spjd
2170185029Spjd	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2171185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2172168404Spjd
2173185029Spjd	if (!vd->vdev_ops->vdev_op_leaf)
2174185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2175185029Spjd
2176185029Spjd	/*
2177185029Spjd	 * If the vdev is already faulted, then don't do anything.
2178185029Spjd	 */
2179185029Spjd	if (vd->vdev_faulted || vd->vdev_degraded)
2180185029Spjd		return (spa_vdev_state_exit(spa, NULL, 0));
2181185029Spjd
2182185029Spjd	vd->vdev_degraded = 1ULL;
2183185029Spjd	if (!vdev_is_dead(vd))
2184185029Spjd		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2185219089Spjd		    aux);
2186185029Spjd
2187185029Spjd	return (spa_vdev_state_exit(spa, vd, 0));
2188168404Spjd}
2189168404Spjd
2190185029Spjd/*
2191185029Spjd * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2192185029Spjd * any attached spare device should be detached when the device finishes
2193185029Spjd * resilvering.  Second, the online should be treated like a 'test' online case,
2194185029Spjd * so no FMA events are generated if the device fails to open.
2195185029Spjd */
2196168404Spjdint
2197185029Spjdvdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2198168404Spjd{
2199219089Spjd	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2200168404Spjd
2201219089Spjd	spa_vdev_state_enter(spa, SCL_NONE);
2202168404Spjd
2203185029Spjd	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2204185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2205168404Spjd
2206168404Spjd	if (!vd->vdev_ops->vdev_op_leaf)
2207185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2208168404Spjd
2209219089Spjd	tvd = vd->vdev_top;
2210168404Spjd	vd->vdev_offline = B_FALSE;
2211168404Spjd	vd->vdev_tmpoffline = B_FALSE;
2212185029Spjd	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2213185029Spjd	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2214219089Spjd
2215219089Spjd	/* XXX - L2ARC 1.0 does not support expansion */
2216219089Spjd	if (!vd->vdev_aux) {
2217219089Spjd		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2218219089Spjd			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2219219089Spjd	}
2220219089Spjd
2221219089Spjd	vdev_reopen(tvd);
2222185029Spjd	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2223168404Spjd
2224219089Spjd	if (!vd->vdev_aux) {
2225219089Spjd		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2226219089Spjd			pvd->vdev_expanding = B_FALSE;
2227219089Spjd	}
2228219089Spjd
2229185029Spjd	if (newstate)
2230185029Spjd		*newstate = vd->vdev_state;
2231185029Spjd	if ((flags & ZFS_ONLINE_UNSPARE) &&
2232185029Spjd	    !vdev_is_dead(vd) && vd->vdev_parent &&
2233185029Spjd	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2234185029Spjd	    vd->vdev_parent->vdev_child[0] == vd)
2235185029Spjd		vd->vdev_unspare = B_TRUE;
2236168404Spjd
2237219089Spjd	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2238219089Spjd
2239219089Spjd		/* XXX - L2ARC 1.0 does not support expansion */
2240219089Spjd		if (vd->vdev_aux)
2241219089Spjd			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2242219089Spjd		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2243219089Spjd	}
2244209962Smm	return (spa_vdev_state_exit(spa, vd, 0));
2245168404Spjd}
2246168404Spjd
2247219089Spjdstatic int
2248219089Spjdvdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2249168404Spjd{
2250213197Smm	vdev_t *vd, *tvd;
2251219089Spjd	int error = 0;
2252219089Spjd	uint64_t generation;
2253219089Spjd	metaslab_group_t *mg;
2254168404Spjd
2255219089Spjdtop:
2256219089Spjd	spa_vdev_state_enter(spa, SCL_ALLOC);
2257168404Spjd
2258185029Spjd	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2259185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2260168404Spjd
2261168404Spjd	if (!vd->vdev_ops->vdev_op_leaf)
2262185029Spjd		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2263168404Spjd
2264213197Smm	tvd = vd->vdev_top;
2265219089Spjd	mg = tvd->vdev_mg;
2266219089Spjd	generation = spa->spa_config_generation + 1;
2267213197Smm
2268168404Spjd	/*
2269168404Spjd	 * If the device isn't already offline, try to offline it.
2270168404Spjd	 */
2271168404Spjd	if (!vd->vdev_offline) {
2272168404Spjd		/*
2273209962Smm		 * If this device has the only valid copy of some data,
2274213197Smm		 * don't allow it to be offlined. Log devices are always
2275213197Smm		 * expendable.
2276168404Spjd		 */
2277213197Smm		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2278213197Smm		    vdev_dtl_required(vd))
2279185029Spjd			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2280168404Spjd
2281168404Spjd		/*
2282219089Spjd		 * If the top-level is a slog and it has had allocations
2283219089Spjd		 * then proceed.  We check that the vdev's metaslab group
2284219089Spjd		 * is not NULL since it's possible that we may have just
2285219089Spjd		 * added this vdev but not yet initialized its metaslabs.
2286219089Spjd		 */
2287219089Spjd		if (tvd->vdev_islog && mg != NULL) {
2288219089Spjd			/*
2289219089Spjd			 * Prevent any future allocations.
2290219089Spjd			 */
2291219089Spjd			metaslab_group_passivate(mg);
2292219089Spjd			(void) spa_vdev_state_exit(spa, vd, 0);
2293219089Spjd
2294219089Spjd			error = spa_offline_log(spa);
2295219089Spjd
2296219089Spjd			spa_vdev_state_enter(spa, SCL_ALLOC);
2297219089Spjd
2298219089Spjd			/*
2299219089Spjd			 * Check to see if the config has changed.
2300219089Spjd			 */
2301219089Spjd			if (error || generation != spa->spa_config_generation) {
2302219089Spjd				metaslab_group_activate(mg);
2303219089Spjd				if (error)
2304219089Spjd					return (spa_vdev_state_exit(spa,
2305219089Spjd					    vd, error));
2306219089Spjd				(void) spa_vdev_state_exit(spa, vd, 0);
2307219089Spjd				goto top;
2308219089Spjd			}
2309240415Smm			ASSERT0(tvd->vdev_stat.vs_alloc);
2310219089Spjd		}
2311219089Spjd
2312219089Spjd		/*
2313168404Spjd		 * Offline this device and reopen its top-level vdev.
2314213197Smm		 * If the top-level vdev is a log device then just offline
2315213197Smm		 * it. Otherwise, if this action results in the top-level
2316213197Smm		 * vdev becoming unusable, undo it and fail the request.
2317168404Spjd		 */
2318168404Spjd		vd->vdev_offline = B_TRUE;
2319213197Smm		vdev_reopen(tvd);
2320213197Smm
2321213197Smm		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2322213197Smm		    vdev_is_dead(tvd)) {
2323168404Spjd			vd->vdev_offline = B_FALSE;
2324213197Smm			vdev_reopen(tvd);
2325185029Spjd			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2326168404Spjd		}
2327219089Spjd
2328219089Spjd		/*
2329219089Spjd		 * Add the device back into the metaslab rotor so that
2330219089Spjd		 * once we online the device it's open for business.
2331219089Spjd		 */
2332219089Spjd		if (tvd->vdev_islog && mg != NULL)
2333219089Spjd			metaslab_group_activate(mg);
2334168404Spjd	}
2335168404Spjd
2336185029Spjd	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2337168404Spjd
2338219089Spjd	return (spa_vdev_state_exit(spa, vd, 0));
2339219089Spjd}
2340213197Smm
2341219089Spjdint
2342219089Spjdvdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2343219089Spjd{
2344219089Spjd	int error;
2345213197Smm
2346219089Spjd	mutex_enter(&spa->spa_vdev_top_lock);
2347219089Spjd	error = vdev_offline_locked(spa, guid, flags);
2348219089Spjd	mutex_exit(&spa->spa_vdev_top_lock);
2349219089Spjd
2350219089Spjd	return (error);
2351168404Spjd}
2352168404Spjd
2353168404Spjd/*
2354168404Spjd * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2355168404Spjd * vdev_offline(), we assume the spa config is locked.  We also clear all
2356168404Spjd * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2357168404Spjd */
2358168404Spjdvoid
2359168404Spjdvdev_clear(spa_t *spa, vdev_t *vd)
2360168404Spjd{
2361185029Spjd	vdev_t *rvd = spa->spa_root_vdev;
2362168404Spjd
2363185029Spjd	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2364185029Spjd
2365168404Spjd	if (vd == NULL)
2366185029Spjd		vd = rvd;
2367168404Spjd
2368168404Spjd	vd->vdev_stat.vs_read_errors = 0;
2369168404Spjd	vd->vdev_stat.vs_write_errors = 0;
2370168404Spjd	vd->vdev_stat.vs_checksum_errors = 0;
2371168404Spjd
2372185029Spjd	for (int c = 0; c < vd->vdev_children; c++)
2373168404Spjd		vdev_clear(spa, vd->vdev_child[c]);
2374185029Spjd
2375185029Spjd	/*
2376185029Spjd	 * If we're in the FAULTED state or have experienced failed I/O, then
2377185029Spjd	 * clear the persistent state and attempt to reopen the device.  We
2378185029Spjd	 * also mark the vdev config dirty, so that the new faulted state is
2379185029Spjd	 * written out to disk.
2380185029Spjd	 */
2381185029Spjd	if (vd->vdev_faulted || vd->vdev_degraded ||
2382185029Spjd	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2383185029Spjd
2384219089Spjd		/*
2385219089Spjd		 * When reopening in reponse to a clear event, it may be due to
2386219089Spjd		 * a fmadm repair request.  In this case, if the device is
2387219089Spjd		 * still broken, we want to still post the ereport again.
2388219089Spjd		 */
2389219089Spjd		vd->vdev_forcefault = B_TRUE;
2390219089Spjd
2391219089Spjd		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2392185029Spjd		vd->vdev_cant_read = B_FALSE;
2393185029Spjd		vd->vdev_cant_write = B_FALSE;
2394185029Spjd
2395219089Spjd		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2396185029Spjd
2397219089Spjd		vd->vdev_forcefault = B_FALSE;
2398219089Spjd
2399219089Spjd		if (vd != rvd && vdev_writeable(vd->vdev_top))
2400185029Spjd			vdev_state_dirty(vd->vdev_top);
2401185029Spjd
2402185029Spjd		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2403185029Spjd			spa_async_request(spa, SPA_ASYNC_RESILVER);
2404185029Spjd
2405185029Spjd		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2406185029Spjd	}
2407219089Spjd
2408219089Spjd	/*
2409219089Spjd	 * When clearing a FMA-diagnosed fault, we always want to
2410219089Spjd	 * unspare the device, as we assume that the original spare was
2411219089Spjd	 * done in response to the FMA fault.
2412219089Spjd	 */
2413219089Spjd	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2414219089Spjd	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2415219089Spjd	    vd->vdev_parent->vdev_child[0] == vd)
2416219089Spjd		vd->vdev_unspare = B_TRUE;
2417168404Spjd}
2418168404Spjd
2419185029Spjdboolean_t
2420168404Spjdvdev_is_dead(vdev_t *vd)
2421168404Spjd{
2422219089Spjd	/*
2423219089Spjd	 * Holes and missing devices are always considered "dead".
2424219089Spjd	 * This simplifies the code since we don't have to check for
2425219089Spjd	 * these types of devices in the various code paths.
2426219089Spjd	 * Instead we rely on the fact that we skip over dead devices
2427219089Spjd	 * before issuing I/O to them.
2428219089Spjd	 */
2429219089Spjd	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2430219089Spjd	    vd->vdev_ops == &vdev_missing_ops);
2431168404Spjd}
2432168404Spjd
2433185029Spjdboolean_t
2434185029Spjdvdev_readable(vdev_t *vd)
2435168404Spjd{
2436185029Spjd	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2437185029Spjd}
2438168404Spjd
2439185029Spjdboolean_t
2440185029Spjdvdev_writeable(vdev_t *vd)
2441185029Spjd{
2442185029Spjd	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2443185029Spjd}
2444168404Spjd
2445185029Spjdboolean_t
2446208370Smmvdev_allocatable(vdev_t *vd)
2447208370Smm{
2448209962Smm	uint64_t state = vd->vdev_state;
2449209962Smm
2450208370Smm	/*
2451209962Smm	 * We currently allow allocations from vdevs which may be in the
2452208370Smm	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2453208370Smm	 * fails to reopen then we'll catch it later when we're holding
2454209962Smm	 * the proper locks.  Note that we have to get the vdev state
2455209962Smm	 * in a local variable because although it changes atomically,
2456209962Smm	 * we're asking two separate questions about it.
2457208370Smm	 */
2458209962Smm	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2459219089Spjd	    !vd->vdev_cant_write && !vd->vdev_ishole);
2460208370Smm}
2461208370Smm
2462208370Smmboolean_t
2463185029Spjdvdev_accessible(vdev_t *vd, zio_t *zio)
2464185029Spjd{
2465185029Spjd	ASSERT(zio->io_vd == vd);
2466168404Spjd
2467185029Spjd	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2468185029Spjd		return (B_FALSE);
2469168404Spjd
2470185029Spjd	if (zio->io_type == ZIO_TYPE_READ)
2471185029Spjd		return (!vd->vdev_cant_read);
2472168404Spjd
2473185029Spjd	if (zio->io_type == ZIO_TYPE_WRITE)
2474185029Spjd		return (!vd->vdev_cant_write);
2475168404Spjd
2476185029Spjd	return (B_TRUE);
2477168404Spjd}
2478168404Spjd
2479168404Spjd/*
2480168404Spjd * Get statistics for the given vdev.
2481168404Spjd */
2482168404Spjdvoid
2483168404Spjdvdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2484168404Spjd{
2485168404Spjd	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2486168404Spjd
2487168404Spjd	mutex_enter(&vd->vdev_stat_lock);
2488168404Spjd	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2489168404Spjd	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2490168404Spjd	vs->vs_state = vd->vdev_state;
2491219089Spjd	vs->vs_rsize = vdev_get_min_asize(vd);
2492219089Spjd	if (vd->vdev_ops->vdev_op_leaf)
2493219089Spjd		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2494236155Smm	vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2495168404Spjd	mutex_exit(&vd->vdev_stat_lock);
2496168404Spjd
2497168404Spjd	/*
2498168404Spjd	 * If we're getting stats on the root vdev, aggregate the I/O counts
2499168404Spjd	 * over all top-level vdevs (i.e. the direct children of the root).
2500168404Spjd	 */
2501168404Spjd	if (vd == rvd) {
2502185029Spjd		for (int c = 0; c < rvd->vdev_children; c++) {
2503168404Spjd			vdev_t *cvd = rvd->vdev_child[c];
2504168404Spjd			vdev_stat_t *cvs = &cvd->vdev_stat;
2505168404Spjd
2506168404Spjd			mutex_enter(&vd->vdev_stat_lock);
2507185029Spjd			for (int t = 0; t < ZIO_TYPES; t++) {
2508168404Spjd				vs->vs_ops[t] += cvs->vs_ops[t];
2509168404Spjd				vs->vs_bytes[t] += cvs->vs_bytes[t];
2510168404Spjd			}
2511219089Spjd			cvs->vs_scan_removing = cvd->vdev_removing;
2512168404Spjd			mutex_exit(&vd->vdev_stat_lock);
2513168404Spjd		}
2514168404Spjd	}
2515168404Spjd}
2516168404Spjd
2517168404Spjdvoid
2518185029Spjdvdev_clear_stats(vdev_t *vd)
2519168404Spjd{
2520185029Spjd	mutex_enter(&vd->vdev_stat_lock);
2521185029Spjd	vd->vdev_stat.vs_space = 0;
2522185029Spjd	vd->vdev_stat.vs_dspace = 0;
2523185029Spjd	vd->vdev_stat.vs_alloc = 0;
2524185029Spjd	mutex_exit(&vd->vdev_stat_lock);
2525185029Spjd}
2526185029Spjd
2527185029Spjdvoid
2528219089Spjdvdev_scan_stat_init(vdev_t *vd)
2529219089Spjd{
2530219089Spjd	vdev_stat_t *vs = &vd->vdev_stat;
2531219089Spjd
2532219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
2533219089Spjd		vdev_scan_stat_init(vd->vdev_child[c]);
2534219089Spjd
2535219089Spjd	mutex_enter(&vd->vdev_stat_lock);
2536219089Spjd	vs->vs_scan_processed = 0;
2537219089Spjd	mutex_exit(&vd->vdev_stat_lock);
2538219089Spjd}
2539219089Spjd
2540219089Spjdvoid
2541185029Spjdvdev_stat_update(zio_t *zio, uint64_t psize)
2542185029Spjd{
2543209962Smm	spa_t *spa = zio->io_spa;
2544209962Smm	vdev_t *rvd = spa->spa_root_vdev;
2545185029Spjd	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2546168404Spjd	vdev_t *pvd;
2547168404Spjd	uint64_t txg = zio->io_txg;
2548168404Spjd	vdev_stat_t *vs = &vd->vdev_stat;
2549168404Spjd	zio_type_t type = zio->io_type;
2550168404Spjd	int flags = zio->io_flags;
2551168404Spjd
2552185029Spjd	/*
2553185029Spjd	 * If this i/o is a gang leader, it didn't do any actual work.
2554185029Spjd	 */
2555185029Spjd	if (zio->io_gang_tree)
2556185029Spjd		return;
2557185029Spjd
2558168404Spjd	if (zio->io_error == 0) {
2559185029Spjd		/*
2560185029Spjd		 * If this is a root i/o, don't count it -- we've already
2561185029Spjd		 * counted the top-level vdevs, and vdev_get_stats() will
2562185029Spjd		 * aggregate them when asked.  This reduces contention on
2563185029Spjd		 * the root vdev_stat_lock and implicitly handles blocks
2564185029Spjd		 * that compress away to holes, for which there is no i/o.
2565185029Spjd		 * (Holes never create vdev children, so all the counters
2566185029Spjd		 * remain zero, which is what we want.)
2567185029Spjd		 *
2568185029Spjd		 * Note: this only applies to successful i/o (io_error == 0)
2569185029Spjd		 * because unlike i/o counts, errors are not additive.
2570185029Spjd		 * When reading a ditto block, for example, failure of
2571185029Spjd		 * one top-level vdev does not imply a root-level error.
2572185029Spjd		 */
2573185029Spjd		if (vd == rvd)
2574185029Spjd			return;
2575185029Spjd
2576185029Spjd		ASSERT(vd == zio->io_vd);
2577209962Smm
2578209962Smm		if (flags & ZIO_FLAG_IO_BYPASS)
2579209962Smm			return;
2580209962Smm
2581209962Smm		mutex_enter(&vd->vdev_stat_lock);
2582209962Smm
2583185029Spjd		if (flags & ZIO_FLAG_IO_REPAIR) {
2584219089Spjd			if (flags & ZIO_FLAG_SCAN_THREAD) {
2585219089Spjd				dsl_scan_phys_t *scn_phys =
2586219089Spjd				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2587219089Spjd				uint64_t *processed = &scn_phys->scn_processed;
2588219089Spjd
2589219089Spjd				/* XXX cleanup? */
2590219089Spjd				if (vd->vdev_ops->vdev_op_leaf)
2591219089Spjd					atomic_add_64(processed, psize);
2592219089Spjd				vs->vs_scan_processed += psize;
2593219089Spjd			}
2594219089Spjd
2595209962Smm			if (flags & ZIO_FLAG_SELF_HEAL)
2596185029Spjd				vs->vs_self_healed += psize;
2597168404Spjd		}
2598209962Smm
2599209962Smm		vs->vs_ops[type]++;
2600209962Smm		vs->vs_bytes[type] += psize;
2601209962Smm
2602209962Smm		mutex_exit(&vd->vdev_stat_lock);
2603168404Spjd		return;
2604168404Spjd	}
2605168404Spjd
2606168404Spjd	if (flags & ZIO_FLAG_SPECULATIVE)
2607168404Spjd		return;
2608168404Spjd
2609213198Smm	/*
2610213198Smm	 * If this is an I/O error that is going to be retried, then ignore the
2611213198Smm	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2612213198Smm	 * hard errors, when in reality they can happen for any number of
2613213198Smm	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2614213198Smm	 */
2615213198Smm	if (zio->io_error == EIO &&
2616213198Smm	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2617213198Smm		return;
2618213198Smm
2619219089Spjd	/*
2620219089Spjd	 * Intent logs writes won't propagate their error to the root
2621219089Spjd	 * I/O so don't mark these types of failures as pool-level
2622219089Spjd	 * errors.
2623219089Spjd	 */
2624219089Spjd	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2625219089Spjd		return;
2626219089Spjd
2627185029Spjd	mutex_enter(&vd->vdev_stat_lock);
2628209962Smm	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2629185029Spjd		if (zio->io_error == ECKSUM)
2630185029Spjd			vs->vs_checksum_errors++;
2631185029Spjd		else
2632185029Spjd			vs->vs_read_errors++;
2633168404Spjd	}
2634209962Smm	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2635185029Spjd		vs->vs_write_errors++;
2636185029Spjd	mutex_exit(&vd->vdev_stat_lock);
2637168404Spjd
2638209962Smm	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2639209962Smm	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2640219089Spjd	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2641219089Spjd	    spa->spa_claiming)) {
2642209962Smm		/*
2643219089Spjd		 * This is either a normal write (not a repair), or it's
2644219089Spjd		 * a repair induced by the scrub thread, or it's a repair
2645219089Spjd		 * made by zil_claim() during spa_load() in the first txg.
2646219089Spjd		 * In the normal case, we commit the DTL change in the same
2647219089Spjd		 * txg as the block was born.  In the scrub-induced repair
2648219089Spjd		 * case, we know that scrubs run in first-pass syncing context,
2649219089Spjd		 * so we commit the DTL change in spa_syncing_txg(spa).
2650219089Spjd		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2651209962Smm		 *
2652209962Smm		 * We currently do not make DTL entries for failed spontaneous
2653209962Smm		 * self-healing writes triggered by normal (non-scrubbing)
2654209962Smm		 * reads, because we have no transactional context in which to
2655209962Smm		 * do so -- and it's not clear that it'd be desirable anyway.
2656209962Smm		 */
2657209962Smm		if (vd->vdev_ops->vdev_op_leaf) {
2658209962Smm			uint64_t commit_txg = txg;
2659219089Spjd			if (flags & ZIO_FLAG_SCAN_THREAD) {
2660209962Smm				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2661209962Smm				ASSERT(spa_sync_pass(spa) == 1);
2662209962Smm				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2663219089Spjd				commit_txg = spa_syncing_txg(spa);
2664219089Spjd			} else if (spa->spa_claiming) {
2665219089Spjd				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2666219089Spjd				commit_txg = spa_first_txg(spa);
2667209962Smm			}
2668219089Spjd			ASSERT(commit_txg >= spa_syncing_txg(spa));
2669209962Smm			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2670168404Spjd				return;
2671209962Smm			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2672209962Smm				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2673209962Smm			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2674168404Spjd		}
2675209962Smm		if (vd != rvd)
2676209962Smm			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2677168404Spjd	}
2678168404Spjd}
2679168404Spjd
2680168404Spjd/*
2681219089Spjd * Update the in-core space usage stats for this vdev, its metaslab class,
2682219089Spjd * and the root vdev.
2683168404Spjd */
2684168404Spjdvoid
2685219089Spjdvdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2686219089Spjd    int64_t space_delta)
2687168404Spjd{
2688168404Spjd	int64_t dspace_delta = space_delta;
2689185029Spjd	spa_t *spa = vd->vdev_spa;
2690185029Spjd	vdev_t *rvd = spa->spa_root_vdev;
2691219089Spjd	metaslab_group_t *mg = vd->vdev_mg;
2692219089Spjd	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2693168404Spjd
2694185029Spjd	ASSERT(vd == vd->vdev_top);
2695168404Spjd
2696185029Spjd	/*
2697185029Spjd	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2698185029Spjd	 * factor.  We must calculate this here and not at the root vdev
2699185029Spjd	 * because the root vdev's psize-to-asize is simply the max of its
2700185029Spjd	 * childrens', thus not accurate enough for us.
2701185029Spjd	 */
2702185029Spjd	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2703213197Smm	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2704185029Spjd	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2705185029Spjd	    vd->vdev_deflate_ratio;
2706185029Spjd
2707185029Spjd	mutex_enter(&vd->vdev_stat_lock);
2708219089Spjd	vd->vdev_stat.vs_alloc += alloc_delta;
2709185029Spjd	vd->vdev_stat.vs_space += space_delta;
2710185029Spjd	vd->vdev_stat.vs_dspace += dspace_delta;
2711185029Spjd	mutex_exit(&vd->vdev_stat_lock);
2712185029Spjd
2713219089Spjd	if (mc == spa_normal_class(spa)) {
2714185029Spjd		mutex_enter(&rvd->vdev_stat_lock);
2715219089Spjd		rvd->vdev_stat.vs_alloc += alloc_delta;
2716185029Spjd		rvd->vdev_stat.vs_space += space_delta;
2717185029Spjd		rvd->vdev_stat.vs_dspace += dspace_delta;
2718185029Spjd		mutex_exit(&rvd->vdev_stat_lock);
2719185029Spjd	}
2720219089Spjd
2721219089Spjd	if (mc != NULL) {
2722219089Spjd		ASSERT(rvd == vd->vdev_parent);
2723219089Spjd		ASSERT(vd->vdev_ms_count != 0);
2724219089Spjd
2725219089Spjd		metaslab_class_space_update(mc,
2726219089Spjd		    alloc_delta, defer_delta, space_delta, dspace_delta);
2727219089Spjd	}
2728168404Spjd}
2729168404Spjd
2730168404Spjd/*
2731168404Spjd * Mark a top-level vdev's config as dirty, placing it on the dirty list
2732168404Spjd * so that it will be written out next time the vdev configuration is synced.
2733168404Spjd * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2734168404Spjd */
2735168404Spjdvoid
2736168404Spjdvdev_config_dirty(vdev_t *vd)
2737168404Spjd{
2738168404Spjd	spa_t *spa = vd->vdev_spa;
2739168404Spjd	vdev_t *rvd = spa->spa_root_vdev;
2740168404Spjd	int c;
2741168404Spjd
2742219089Spjd	ASSERT(spa_writeable(spa));
2743219089Spjd
2744168404Spjd	/*
2745209962Smm	 * If this is an aux vdev (as with l2cache and spare devices), then we
2746209962Smm	 * update the vdev config manually and set the sync flag.
2747185029Spjd	 */
2748185029Spjd	if (vd->vdev_aux != NULL) {
2749185029Spjd		spa_aux_vdev_t *sav = vd->vdev_aux;
2750185029Spjd		nvlist_t **aux;
2751185029Spjd		uint_t naux;
2752185029Spjd
2753185029Spjd		for (c = 0; c < sav->sav_count; c++) {
2754185029Spjd			if (sav->sav_vdevs[c] == vd)
2755185029Spjd				break;
2756185029Spjd		}
2757185029Spjd
2758185029Spjd		if (c == sav->sav_count) {
2759185029Spjd			/*
2760185029Spjd			 * We're being removed.  There's nothing more to do.
2761185029Spjd			 */
2762185029Spjd			ASSERT(sav->sav_sync == B_TRUE);
2763185029Spjd			return;
2764185029Spjd		}
2765185029Spjd
2766185029Spjd		sav->sav_sync = B_TRUE;
2767185029Spjd
2768209962Smm		if (nvlist_lookup_nvlist_array(sav->sav_config,
2769209962Smm		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2770209962Smm			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2771209962Smm			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2772209962Smm		}
2773185029Spjd
2774185029Spjd		ASSERT(c < naux);
2775185029Spjd
2776185029Spjd		/*
2777185029Spjd		 * Setting the nvlist in the middle if the array is a little
2778185029Spjd		 * sketchy, but it will work.
2779185029Spjd		 */
2780185029Spjd		nvlist_free(aux[c]);
2781219089Spjd		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2782185029Spjd
2783185029Spjd		return;
2784185029Spjd	}
2785185029Spjd
2786185029Spjd	/*
2787185029Spjd	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2788185029Spjd	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2789185029Spjd	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2790168404Spjd	 * so this is sufficient to ensure mutual exclusion.
2791168404Spjd	 */
2792185029Spjd	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2793185029Spjd	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2794185029Spjd	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2795168404Spjd
2796168404Spjd	if (vd == rvd) {
2797168404Spjd		for (c = 0; c < rvd->vdev_children; c++)
2798168404Spjd			vdev_config_dirty(rvd->vdev_child[c]);
2799168404Spjd	} else {
2800168404Spjd		ASSERT(vd == vd->vdev_top);
2801168404Spjd
2802219089Spjd		if (!list_link_active(&vd->vdev_config_dirty_node) &&
2803219089Spjd		    !vd->vdev_ishole)
2804185029Spjd			list_insert_head(&spa->spa_config_dirty_list, vd);
2805168404Spjd	}
2806168404Spjd}
2807168404Spjd
2808168404Spjdvoid
2809168404Spjdvdev_config_clean(vdev_t *vd)
2810168404Spjd{
2811168404Spjd	spa_t *spa = vd->vdev_spa;
2812168404Spjd
2813185029Spjd	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2814185029Spjd	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2815185029Spjd	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2816168404Spjd
2817185029Spjd	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2818185029Spjd	list_remove(&spa->spa_config_dirty_list, vd);
2819168404Spjd}
2820168404Spjd
2821185029Spjd/*
2822185029Spjd * Mark a top-level vdev's state as dirty, so that the next pass of
2823185029Spjd * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2824185029Spjd * the state changes from larger config changes because they require
2825185029Spjd * much less locking, and are often needed for administrative actions.
2826185029Spjd */
2827168404Spjdvoid
2828185029Spjdvdev_state_dirty(vdev_t *vd)
2829185029Spjd{
2830185029Spjd	spa_t *spa = vd->vdev_spa;
2831185029Spjd
2832219089Spjd	ASSERT(spa_writeable(spa));
2833185029Spjd	ASSERT(vd == vd->vdev_top);
2834185029Spjd
2835185029Spjd	/*
2836185029Spjd	 * The state list is protected by the SCL_STATE lock.  The caller
2837185029Spjd	 * must either hold SCL_STATE as writer, or must be the sync thread
2838185029Spjd	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2839185029Spjd	 * so this is sufficient to ensure mutual exclusion.
2840185029Spjd	 */
2841185029Spjd	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2842185029Spjd	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2843185029Spjd	    spa_config_held(spa, SCL_STATE, RW_READER)));
2844185029Spjd
2845219089Spjd	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2846185029Spjd		list_insert_head(&spa->spa_state_dirty_list, vd);
2847185029Spjd}
2848185029Spjd
2849185029Spjdvoid
2850185029Spjdvdev_state_clean(vdev_t *vd)
2851185029Spjd{
2852185029Spjd	spa_t *spa = vd->vdev_spa;
2853185029Spjd
2854185029Spjd	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2855185029Spjd	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2856185029Spjd	    spa_config_held(spa, SCL_STATE, RW_READER)));
2857185029Spjd
2858185029Spjd	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2859185029Spjd	list_remove(&spa->spa_state_dirty_list, vd);
2860185029Spjd}
2861185029Spjd
2862185029Spjd/*
2863185029Spjd * Propagate vdev state up from children to parent.
2864185029Spjd */
2865185029Spjdvoid
2866168404Spjdvdev_propagate_state(vdev_t *vd)
2867168404Spjd{
2868209962Smm	spa_t *spa = vd->vdev_spa;
2869209962Smm	vdev_t *rvd = spa->spa_root_vdev;
2870168404Spjd	int degraded = 0, faulted = 0;
2871168404Spjd	int corrupted = 0;
2872168404Spjd	vdev_t *child;
2873168404Spjd
2874185029Spjd	if (vd->vdev_children > 0) {
2875219089Spjd		for (int c = 0; c < vd->vdev_children; c++) {
2876185029Spjd			child = vd->vdev_child[c];
2877168404Spjd
2878219089Spjd			/*
2879219089Spjd			 * Don't factor holes into the decision.
2880219089Spjd			 */
2881219089Spjd			if (child->vdev_ishole)
2882219089Spjd				continue;
2883219089Spjd
2884185029Spjd			if (!vdev_readable(child) ||
2885209962Smm			    (!vdev_writeable(child) && spa_writeable(spa))) {
2886185029Spjd				/*
2887185029Spjd				 * Root special: if there is a top-level log
2888185029Spjd				 * device, treat the root vdev as if it were
2889185029Spjd				 * degraded.
2890185029Spjd				 */
2891185029Spjd				if (child->vdev_islog && vd == rvd)
2892185029Spjd					degraded++;
2893185029Spjd				else
2894185029Spjd					faulted++;
2895185029Spjd			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2896185029Spjd				degraded++;
2897185029Spjd			}
2898185029Spjd
2899185029Spjd			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2900185029Spjd				corrupted++;
2901185029Spjd		}
2902185029Spjd
2903185029Spjd		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2904185029Spjd
2905185029Spjd		/*
2906185029Spjd		 * Root special: if there is a top-level vdev that cannot be
2907185029Spjd		 * opened due to corrupted metadata, then propagate the root
2908185029Spjd		 * vdev's aux state as 'corrupt' rather than 'insufficient
2909185029Spjd		 * replicas'.
2910185029Spjd		 */
2911185029Spjd		if (corrupted && vd == rvd &&
2912185029Spjd		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2913185029Spjd			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2914185029Spjd			    VDEV_AUX_CORRUPT_DATA);
2915168404Spjd	}
2916168404Spjd
2917185029Spjd	if (vd->vdev_parent)
2918185029Spjd		vdev_propagate_state(vd->vdev_parent);
2919168404Spjd}
2920168404Spjd
2921168404Spjd/*
2922168404Spjd * Set a vdev's state.  If this is during an open, we don't update the parent
2923168404Spjd * state, because we're in the process of opening children depth-first.
2924168404Spjd * Otherwise, we propagate the change to the parent.
2925168404Spjd *
2926168404Spjd * If this routine places a device in a faulted state, an appropriate ereport is
2927168404Spjd * generated.
2928168404Spjd */
2929168404Spjdvoid
2930168404Spjdvdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2931168404Spjd{
2932168404Spjd	uint64_t save_state;
2933185029Spjd	spa_t *spa = vd->vdev_spa;
2934168404Spjd
2935168404Spjd	if (state == vd->vdev_state) {
2936168404Spjd		vd->vdev_stat.vs_aux = aux;
2937168404Spjd		return;
2938168404Spjd	}
2939168404Spjd
2940168404Spjd	save_state = vd->vdev_state;
2941168404Spjd
2942168404Spjd	vd->vdev_state = state;
2943168404Spjd	vd->vdev_stat.vs_aux = aux;
2944168404Spjd
2945173373Spjd	/*
2946173373Spjd	 * If we are setting the vdev state to anything but an open state, then
2947219089Spjd	 * always close the underlying device unless the device has requested
2948219089Spjd	 * a delayed close (i.e. we're about to remove or fault the device).
2949219089Spjd	 * Otherwise, we keep accessible but invalid devices open forever.
2950219089Spjd	 * We don't call vdev_close() itself, because that implies some extra
2951219089Spjd	 * checks (offline, etc) that we don't want here.  This is limited to
2952219089Spjd	 * leaf devices, because otherwise closing the device will affect other
2953219089Spjd	 * children.
2954173373Spjd	 */
2955219089Spjd	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2956219089Spjd	    vd->vdev_ops->vdev_op_leaf)
2957173373Spjd		vd->vdev_ops->vdev_op_close(vd);
2958173373Spjd
2959219089Spjd	/*
2960219089Spjd	 * If we have brought this vdev back into service, we need
2961219089Spjd	 * to notify fmd so that it can gracefully repair any outstanding
2962219089Spjd	 * cases due to a missing device.  We do this in all cases, even those
2963219089Spjd	 * that probably don't correlate to a repaired fault.  This is sure to
2964219089Spjd	 * catch all cases, and we let the zfs-retire agent sort it out.  If
2965219089Spjd	 * this is a transient state it's OK, as the retire agent will
2966219089Spjd	 * double-check the state of the vdev before repairing it.
2967219089Spjd	 */
2968219089Spjd	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2969219089Spjd	    vd->vdev_prevstate != state)
2970219089Spjd		zfs_post_state_change(spa, vd);
2971219089Spjd
2972185029Spjd	if (vd->vdev_removed &&
2973185029Spjd	    state == VDEV_STATE_CANT_OPEN &&
2974185029Spjd	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2975168404Spjd		/*
2976185029Spjd		 * If the previous state is set to VDEV_STATE_REMOVED, then this
2977185029Spjd		 * device was previously marked removed and someone attempted to
2978185029Spjd		 * reopen it.  If this failed due to a nonexistent device, then
2979185029Spjd		 * keep the device in the REMOVED state.  We also let this be if
2980185029Spjd		 * it is one of our special test online cases, which is only
2981185029Spjd		 * attempting to online the device and shouldn't generate an FMA
2982185029Spjd		 * fault.
2983185029Spjd		 */
2984185029Spjd		vd->vdev_state = VDEV_STATE_REMOVED;
2985185029Spjd		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2986185029Spjd	} else if (state == VDEV_STATE_REMOVED) {
2987185029Spjd		vd->vdev_removed = B_TRUE;
2988185029Spjd	} else if (state == VDEV_STATE_CANT_OPEN) {
2989185029Spjd		/*
2990219089Spjd		 * If we fail to open a vdev during an import or recovery, we
2991219089Spjd		 * mark it as "not available", which signifies that it was
2992219089Spjd		 * never there to begin with.  Failure to open such a device
2993219089Spjd		 * is not considered an error.
2994168404Spjd		 */
2995219089Spjd		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2996219089Spjd		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
2997168404Spjd		    vd->vdev_ops->vdev_op_leaf)
2998168404Spjd			vd->vdev_not_present = 1;
2999168404Spjd
3000168404Spjd		/*
3001168404Spjd		 * Post the appropriate ereport.  If the 'prevstate' field is
3002168404Spjd		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3003168404Spjd		 * that this is part of a vdev_reopen().  In this case, we don't
3004168404Spjd		 * want to post the ereport if the device was already in the
3005168404Spjd		 * CANT_OPEN state beforehand.
3006185029Spjd		 *
3007185029Spjd		 * If the 'checkremove' flag is set, then this is an attempt to
3008185029Spjd		 * online the device in response to an insertion event.  If we
3009185029Spjd		 * hit this case, then we have detected an insertion event for a
3010185029Spjd		 * faulted or offline device that wasn't in the removed state.
3011185029Spjd		 * In this scenario, we don't post an ereport because we are
3012185029Spjd		 * about to replace the device, or attempt an online with
3013185029Spjd		 * vdev_forcefault, which will generate the fault for us.
3014168404Spjd		 */
3015185029Spjd		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3016185029Spjd		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3017185029Spjd		    vd != spa->spa_root_vdev) {
3018168404Spjd			const char *class;
3019168404Spjd
3020168404Spjd			switch (aux) {
3021168404Spjd			case VDEV_AUX_OPEN_FAILED:
3022168404Spjd				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3023168404Spjd				break;
3024168404Spjd			case VDEV_AUX_CORRUPT_DATA:
3025168404Spjd				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3026168404Spjd				break;
3027168404Spjd			case VDEV_AUX_NO_REPLICAS:
3028168404Spjd				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3029168404Spjd				break;
3030168404Spjd			case VDEV_AUX_BAD_GUID_SUM:
3031168404Spjd				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3032168404Spjd				break;
3033168404Spjd			case VDEV_AUX_TOO_SMALL:
3034168404Spjd				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3035168404Spjd				break;
3036168404Spjd			case VDEV_AUX_BAD_LABEL:
3037168404Spjd				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3038168404Spjd				break;
3039168404Spjd			default:
3040168404Spjd				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3041168404Spjd			}
3042168404Spjd
3043185029Spjd			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3044168404Spjd		}
3045185029Spjd
3046185029Spjd		/* Erase any notion of persistent removed state */
3047185029Spjd		vd->vdev_removed = B_FALSE;
3048185029Spjd	} else {
3049185029Spjd		vd->vdev_removed = B_FALSE;
3050168404Spjd	}
3051168404Spjd
3052209962Smm	if (!isopen && vd->vdev_parent)
3053209962Smm		vdev_propagate_state(vd->vdev_parent);
3054185029Spjd}
3055168404Spjd
3056185029Spjd/*
3057185029Spjd * Check the vdev configuration to ensure that it's capable of supporting
3058193163Sdfr * a root pool.
3059193163Sdfr *
3060193163Sdfr * On Solaris, we do not support RAID-Z or partial configuration.  In
3061193163Sdfr * addition, only a single top-level vdev is allowed and none of the
3062193163Sdfr * leaves can be wholedisks.
3063193163Sdfr *
3064193163Sdfr * For FreeBSD, we can boot from any configuration. There is a
3065193163Sdfr * limitation that the boot filesystem must be either uncompressed or
3066193163Sdfr * compresses with lzjb compression but I'm not sure how to enforce
3067193163Sdfr * that here.
3068185029Spjd */
3069185029Spjdboolean_t
3070185029Spjdvdev_is_bootable(vdev_t *vd)
3071185029Spjd{
3072213197Smm#ifdef sun
3073185029Spjd	if (!vd->vdev_ops->vdev_op_leaf) {
3074185029Spjd		char *vdev_type = vd->vdev_ops->vdev_op_type;
3075185029Spjd
3076185029Spjd		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3077185029Spjd		    vd->vdev_children > 1) {
3078185029Spjd			return (B_FALSE);
3079185029Spjd		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3080185029Spjd		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3081185029Spjd			return (B_FALSE);
3082185029Spjd		}
3083185029Spjd	} else if (vd->vdev_wholedisk == 1) {
3084185029Spjd		return (B_FALSE);
3085185029Spjd	}
3086185029Spjd
3087219089Spjd	for (int c = 0; c < vd->vdev_children; c++) {
3088185029Spjd		if (!vdev_is_bootable(vd->vdev_child[c]))
3089185029Spjd			return (B_FALSE);
3090185029Spjd	}
3091213197Smm#endif	/* sun */
3092185029Spjd	return (B_TRUE);
3093168404Spjd}
3094213197Smm
3095219089Spjd/*
3096219089Spjd * Load the state from the original vdev tree (ovd) which
3097219089Spjd * we've retrieved from the MOS config object. If the original
3098219089Spjd * vdev was offline or faulted then we transfer that state to the
3099219089Spjd * device in the current vdev tree (nvd).
3100219089Spjd */
3101213197Smmvoid
3102219089Spjdvdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3103213197Smm{
3104219089Spjd	spa_t *spa = nvd->vdev_spa;
3105213197Smm
3106219089Spjd	ASSERT(nvd->vdev_top->vdev_islog);
3107219089Spjd	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3108219089Spjd	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3109213197Smm
3110219089Spjd	for (int c = 0; c < nvd->vdev_children; c++)
3111219089Spjd		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3112213197Smm
3113219089Spjd	if (nvd->vdev_ops->vdev_op_leaf) {
3114213197Smm		/*
3115219089Spjd		 * Restore the persistent vdev state
3116213197Smm		 */
3117219089Spjd		nvd->vdev_offline = ovd->vdev_offline;
3118219089Spjd		nvd->vdev_faulted = ovd->vdev_faulted;
3119219089Spjd		nvd->vdev_degraded = ovd->vdev_degraded;
3120219089Spjd		nvd->vdev_removed = ovd->vdev_removed;
3121213197Smm	}
3122213197Smm}
3123219089Spjd
3124219089Spjd/*
3125219089Spjd * Determine if a log device has valid content.  If the vdev was
3126219089Spjd * removed or faulted in the MOS config then we know that
3127219089Spjd * the content on the log device has already been written to the pool.
3128219089Spjd */
3129219089Spjdboolean_t
3130219089Spjdvdev_log_state_valid(vdev_t *vd)
3131219089Spjd{
3132219089Spjd	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3133219089Spjd	    !vd->vdev_removed)
3134219089Spjd		return (B_TRUE);
3135219089Spjd
3136219089Spjd	for (int c = 0; c < vd->vdev_children; c++)
3137219089Spjd		if (vdev_log_state_valid(vd->vdev_child[c]))
3138219089Spjd			return (B_TRUE);
3139219089Spjd
3140219089Spjd	return (B_FALSE);
3141219089Spjd}
3142219089Spjd
3143219089Spjd/*
3144219089Spjd * Expand a vdev if possible.
3145219089Spjd */
3146219089Spjdvoid
3147219089Spjdvdev_expand(vdev_t *vd, uint64_t txg)
3148219089Spjd{
3149219089Spjd	ASSERT(vd->vdev_top == vd);
3150219089Spjd	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3151219089Spjd
3152219089Spjd	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3153219089Spjd		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3154219089Spjd		vdev_config_dirty(vd);
3155219089Spjd	}
3156219089Spjd}
3157219089Spjd
3158219089Spjd/*
3159219089Spjd * Split a vdev.
3160219089Spjd */
3161219089Spjdvoid
3162219089Spjdvdev_split(vdev_t *vd)
3163219089Spjd{
3164219089Spjd	vdev_t *cvd, *pvd = vd->vdev_parent;
3165219089Spjd
3166219089Spjd	vdev_remove_child(pvd, vd);
3167219089Spjd	vdev_compact_children(pvd);
3168219089Spjd
3169219089Spjd	cvd = pvd->vdev_child[0];
3170219089Spjd	if (pvd->vdev_children == 1) {
3171219089Spjd		vdev_remove_parent(cvd);
3172219089Spjd		cvd->vdev_splitting = B_TRUE;
3173219089Spjd	}
3174219089Spjd	vdev_propagate_state(cvd);
3175219089Spjd}
3176247265Smm
3177247265Smmvoid
3178247265Smmvdev_deadman(vdev_t *vd)
3179247265Smm{
3180247265Smm	for (int c = 0; c < vd->vdev_children; c++) {
3181247265Smm		vdev_t *cvd = vd->vdev_child[c];
3182247265Smm
3183247265Smm		vdev_deadman(cvd);
3184247265Smm	}
3185247265Smm
3186247265Smm	if (vd->vdev_ops->vdev_op_leaf) {
3187247265Smm		vdev_queue_t *vq = &vd->vdev_queue;
3188247265Smm
3189247265Smm		mutex_enter(&vq->vq_lock);
3190247265Smm		if (avl_numnodes(&vq->vq_pending_tree) > 0) {
3191247265Smm			spa_t *spa = vd->vdev_spa;
3192247265Smm			zio_t *fio;
3193247265Smm			uint64_t delta;
3194247265Smm
3195247265Smm			/*
3196247265Smm			 * Look at the head of all the pending queues,
3197247265Smm			 * if any I/O has been outstanding for longer than
3198247265Smm			 * the spa_deadman_synctime we panic the system.
3199247265Smm			 */
3200247265Smm			fio = avl_first(&vq->vq_pending_tree);
3201247265Smm			delta = ddi_get_lbolt64() - fio->io_timestamp;
3202247265Smm			if (delta > NSEC_TO_TICK(spa_deadman_synctime(spa))) {
3203247265Smm				zfs_dbgmsg("SLOW IO: zio timestamp %llu, "
3204247265Smm				    "delta %llu, last io %llu",
3205247265Smm				    fio->io_timestamp, delta,
3206247265Smm				    vq->vq_io_complete_ts);
3207247265Smm				fm_panic("I/O to pool '%s' appears to be "
3208247265Smm				    "hung.", spa_name(spa));
3209247265Smm			}
3210247265Smm		}
3211247265Smm		mutex_exit(&vq->vq_lock);
3212247265Smm	}
3213247265Smm}
3214