vdev.c revision 240415
199730Sbenno/*
299730Sbenno * CDDL HEADER START
399730Sbenno *
499730Sbenno * The contents of this file are subject to the terms of the
599730Sbenno * Common Development and Distribution License (the "License").
699730Sbenno * You may not use this file except in compliance with the License.
799730Sbenno *
8104435Sgrehan * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9132069Sgrehan * or http://www.opensolaris.org/os/licensing.
10132069Sgrehan * See the License for the specific language governing permissions
11132069Sgrehan * and limitations under the License.
12132069Sgrehan *
13132069Sgrehan * When distributing Covered Code, include this CDDL HEADER in each
14132069Sgrehan * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
1599730Sbenno * If applicable, add the following below this CDDL HEADER, with the
16170473Smarcel * fields enclosed by brackets "[]" replaced with your own identifying
17132069Sgrehan * information: Portions Copyright [yyyy] [name of copyright owner]
1899730Sbenno *
19132069Sgrehan * CDDL HEADER END
20132069Sgrehan */
21132069Sgrehan
2299730Sbenno/*
2399730Sbenno * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
2499730Sbenno * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
2599730Sbenno * Copyright (c) 2012 by Delphix. All rights reserved.
2699730Sbenno */
2799730Sbenno
2899730Sbenno#include <sys/zfs_context.h>
2999730Sbenno#include <sys/fm/fs/zfs.h>
3099730Sbenno#include <sys/spa.h>
31132069Sgrehan#include <sys/spa_impl.h>
3299730Sbenno#include <sys/dmu.h>
33132069Sgrehan#include <sys/dmu_tx.h>
34132069Sgrehan#include <sys/vdev_impl.h>
35132069Sgrehan#include <sys/uberblock_impl.h>
36132069Sgrehan#include <sys/metaslab.h>
3799730Sbenno#include <sys/metaslab_impl.h>
38132069Sgrehan#include <sys/space_map.h>
39132069Sgrehan#include <sys/zio.h>
40132069Sgrehan#include <sys/zap.h>
41132069Sgrehan#include <sys/fs/zfs.h>
4299730Sbenno#include <sys/arc.h>
43132069Sgrehan#include <sys/zil.h>
44132069Sgrehan#include <sys/dsl_scan.h>
45132069Sgrehan
46132069SgrehanSYSCTL_DECL(_vfs_zfs);
47132069SgrehanSYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
48132069Sgrehan
49132069Sgrehan/*
5099730Sbenno * Virtual device management.
51132069Sgrehan */
52132069Sgrehan
5399730Sbennostatic vdev_ops_t *vdev_ops_table[] = {
5499730Sbenno	&vdev_root_ops,
55132069Sgrehan	&vdev_raidz_ops,
56132069Sgrehan	&vdev_mirror_ops,
5799730Sbenno	&vdev_replacing_ops,
58132069Sgrehan	&vdev_spare_ops,
59132069Sgrehan#ifdef _KERNEL
60132069Sgrehan	&vdev_geom_ops,
61170473Smarcel#else
62132069Sgrehan	&vdev_disk_ops,
6399730Sbenno#endif
64132069Sgrehan	&vdev_file_ops,
65132069Sgrehan	&vdev_missing_ops,
66132069Sgrehan	&vdev_hole_ops,
67132069Sgrehan	NULL
68170473Smarcel};
6999730Sbenno
70170473Smarcel
71170473Smarcel/*
72170473Smarcel * Given a vdev type, return the appropriate ops vector.
7399730Sbenno */
74132069Sgrehanstatic vdev_ops_t *
75132069Sgrehanvdev_getops(const char *type)
7699730Sbenno{
7799730Sbenno	vdev_ops_t *ops, **opspp;
78132069Sgrehan
79132069Sgrehan	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
8099730Sbenno		if (strcmp(ops->vdev_op_type, type) == 0)
8199730Sbenno			break;
82
83	return (ops);
84}
85
86/*
87 * Default asize function: return the MAX of psize with the asize of
88 * all children.  This is what's used by anything other than RAID-Z.
89 */
90uint64_t
91vdev_default_asize(vdev_t *vd, uint64_t psize)
92{
93	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
94	uint64_t csize;
95
96	for (int c = 0; c < vd->vdev_children; c++) {
97		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
98		asize = MAX(asize, csize);
99	}
100
101	return (asize);
102}
103
104/*
105 * Get the minimum allocatable size. We define the allocatable size as
106 * the vdev's asize rounded to the nearest metaslab. This allows us to
107 * replace or attach devices which don't have the same physical size but
108 * can still satisfy the same number of allocations.
109 */
110uint64_t
111vdev_get_min_asize(vdev_t *vd)
112{
113	vdev_t *pvd = vd->vdev_parent;
114
115	/*
116	 * If our parent is NULL (inactive spare or cache) or is the root,
117	 * just return our own asize.
118	 */
119	if (pvd == NULL)
120		return (vd->vdev_asize);
121
122	/*
123	 * The top-level vdev just returns the allocatable size rounded
124	 * to the nearest metaslab.
125	 */
126	if (vd == vd->vdev_top)
127		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
128
129	/*
130	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
131	 * so each child must provide at least 1/Nth of its asize.
132	 */
133	if (pvd->vdev_ops == &vdev_raidz_ops)
134		return (pvd->vdev_min_asize / pvd->vdev_children);
135
136	return (pvd->vdev_min_asize);
137}
138
139void
140vdev_set_min_asize(vdev_t *vd)
141{
142	vd->vdev_min_asize = vdev_get_min_asize(vd);
143
144	for (int c = 0; c < vd->vdev_children; c++)
145		vdev_set_min_asize(vd->vdev_child[c]);
146}
147
148vdev_t *
149vdev_lookup_top(spa_t *spa, uint64_t vdev)
150{
151	vdev_t *rvd = spa->spa_root_vdev;
152
153	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
154
155	if (vdev < rvd->vdev_children) {
156		ASSERT(rvd->vdev_child[vdev] != NULL);
157		return (rvd->vdev_child[vdev]);
158	}
159
160	return (NULL);
161}
162
163vdev_t *
164vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
165{
166	vdev_t *mvd;
167
168	if (vd->vdev_guid == guid)
169		return (vd);
170
171	for (int c = 0; c < vd->vdev_children; c++)
172		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
173		    NULL)
174			return (mvd);
175
176	return (NULL);
177}
178
179void
180vdev_add_child(vdev_t *pvd, vdev_t *cvd)
181{
182	size_t oldsize, newsize;
183	uint64_t id = cvd->vdev_id;
184	vdev_t **newchild;
185
186	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
187	ASSERT(cvd->vdev_parent == NULL);
188
189	cvd->vdev_parent = pvd;
190
191	if (pvd == NULL)
192		return;
193
194	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
195
196	oldsize = pvd->vdev_children * sizeof (vdev_t *);
197	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
198	newsize = pvd->vdev_children * sizeof (vdev_t *);
199
200	newchild = kmem_zalloc(newsize, KM_SLEEP);
201	if (pvd->vdev_child != NULL) {
202		bcopy(pvd->vdev_child, newchild, oldsize);
203		kmem_free(pvd->vdev_child, oldsize);
204	}
205
206	pvd->vdev_child = newchild;
207	pvd->vdev_child[id] = cvd;
208
209	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
210	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
211
212	/*
213	 * Walk up all ancestors to update guid sum.
214	 */
215	for (; pvd != NULL; pvd = pvd->vdev_parent)
216		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
217}
218
219void
220vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
221{
222	int c;
223	uint_t id = cvd->vdev_id;
224
225	ASSERT(cvd->vdev_parent == pvd);
226
227	if (pvd == NULL)
228		return;
229
230	ASSERT(id < pvd->vdev_children);
231	ASSERT(pvd->vdev_child[id] == cvd);
232
233	pvd->vdev_child[id] = NULL;
234	cvd->vdev_parent = NULL;
235
236	for (c = 0; c < pvd->vdev_children; c++)
237		if (pvd->vdev_child[c])
238			break;
239
240	if (c == pvd->vdev_children) {
241		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
242		pvd->vdev_child = NULL;
243		pvd->vdev_children = 0;
244	}
245
246	/*
247	 * Walk up all ancestors to update guid sum.
248	 */
249	for (; pvd != NULL; pvd = pvd->vdev_parent)
250		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
251}
252
253/*
254 * Remove any holes in the child array.
255 */
256void
257vdev_compact_children(vdev_t *pvd)
258{
259	vdev_t **newchild, *cvd;
260	int oldc = pvd->vdev_children;
261	int newc;
262
263	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
264
265	for (int c = newc = 0; c < oldc; c++)
266		if (pvd->vdev_child[c])
267			newc++;
268
269	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
270
271	for (int c = newc = 0; c < oldc; c++) {
272		if ((cvd = pvd->vdev_child[c]) != NULL) {
273			newchild[newc] = cvd;
274			cvd->vdev_id = newc++;
275		}
276	}
277
278	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
279	pvd->vdev_child = newchild;
280	pvd->vdev_children = newc;
281}
282
283/*
284 * Allocate and minimally initialize a vdev_t.
285 */
286vdev_t *
287vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
288{
289	vdev_t *vd;
290
291	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
292
293	if (spa->spa_root_vdev == NULL) {
294		ASSERT(ops == &vdev_root_ops);
295		spa->spa_root_vdev = vd;
296		spa->spa_load_guid = spa_generate_guid(NULL);
297	}
298
299	if (guid == 0 && ops != &vdev_hole_ops) {
300		if (spa->spa_root_vdev == vd) {
301			/*
302			 * The root vdev's guid will also be the pool guid,
303			 * which must be unique among all pools.
304			 */
305			guid = spa_generate_guid(NULL);
306		} else {
307			/*
308			 * Any other vdev's guid must be unique within the pool.
309			 */
310			guid = spa_generate_guid(spa);
311		}
312		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
313	}
314
315	vd->vdev_spa = spa;
316	vd->vdev_id = id;
317	vd->vdev_guid = guid;
318	vd->vdev_guid_sum = guid;
319	vd->vdev_ops = ops;
320	vd->vdev_state = VDEV_STATE_CLOSED;
321	vd->vdev_ishole = (ops == &vdev_hole_ops);
322
323	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
324	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
325	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
326	for (int t = 0; t < DTL_TYPES; t++) {
327		space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
328		    &vd->vdev_dtl_lock);
329	}
330	txg_list_create(&vd->vdev_ms_list,
331	    offsetof(struct metaslab, ms_txg_node));
332	txg_list_create(&vd->vdev_dtl_list,
333	    offsetof(struct vdev, vdev_dtl_node));
334	vd->vdev_stat.vs_timestamp = gethrtime();
335	vdev_queue_init(vd);
336	vdev_cache_init(vd);
337
338	return (vd);
339}
340
341/*
342 * Allocate a new vdev.  The 'alloctype' is used to control whether we are
343 * creating a new vdev or loading an existing one - the behavior is slightly
344 * different for each case.
345 */
346int
347vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
348    int alloctype)
349{
350	vdev_ops_t *ops;
351	char *type;
352	uint64_t guid = 0, islog, nparity;
353	vdev_t *vd;
354
355	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
356
357	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
358		return (EINVAL);
359
360	if ((ops = vdev_getops(type)) == NULL)
361		return (EINVAL);
362
363	/*
364	 * If this is a load, get the vdev guid from the nvlist.
365	 * Otherwise, vdev_alloc_common() will generate one for us.
366	 */
367	if (alloctype == VDEV_ALLOC_LOAD) {
368		uint64_t label_id;
369
370		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
371		    label_id != id)
372			return (EINVAL);
373
374		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
375			return (EINVAL);
376	} else if (alloctype == VDEV_ALLOC_SPARE) {
377		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
378			return (EINVAL);
379	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
380		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
381			return (EINVAL);
382	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
383		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
384			return (EINVAL);
385	}
386
387	/*
388	 * The first allocated vdev must be of type 'root'.
389	 */
390	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
391		return (EINVAL);
392
393	/*
394	 * Determine whether we're a log vdev.
395	 */
396	islog = 0;
397	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
398	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
399		return (ENOTSUP);
400
401	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
402		return (ENOTSUP);
403
404	/*
405	 * Set the nparity property for RAID-Z vdevs.
406	 */
407	nparity = -1ULL;
408	if (ops == &vdev_raidz_ops) {
409		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
410		    &nparity) == 0) {
411			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
412				return (EINVAL);
413			/*
414			 * Previous versions could only support 1 or 2 parity
415			 * device.
416			 */
417			if (nparity > 1 &&
418			    spa_version(spa) < SPA_VERSION_RAIDZ2)
419				return (ENOTSUP);
420			if (nparity > 2 &&
421			    spa_version(spa) < SPA_VERSION_RAIDZ3)
422				return (ENOTSUP);
423		} else {
424			/*
425			 * We require the parity to be specified for SPAs that
426			 * support multiple parity levels.
427			 */
428			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
429				return (EINVAL);
430			/*
431			 * Otherwise, we default to 1 parity device for RAID-Z.
432			 */
433			nparity = 1;
434		}
435	} else {
436		nparity = 0;
437	}
438	ASSERT(nparity != -1ULL);
439
440	vd = vdev_alloc_common(spa, id, guid, ops);
441
442	vd->vdev_islog = islog;
443	vd->vdev_nparity = nparity;
444
445	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
446		vd->vdev_path = spa_strdup(vd->vdev_path);
447	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
448		vd->vdev_devid = spa_strdup(vd->vdev_devid);
449	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
450	    &vd->vdev_physpath) == 0)
451		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
452	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
453		vd->vdev_fru = spa_strdup(vd->vdev_fru);
454
455	/*
456	 * Set the whole_disk property.  If it's not specified, leave the value
457	 * as -1.
458	 */
459	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
460	    &vd->vdev_wholedisk) != 0)
461		vd->vdev_wholedisk = -1ULL;
462
463	/*
464	 * Look for the 'not present' flag.  This will only be set if the device
465	 * was not present at the time of import.
466	 */
467	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
468	    &vd->vdev_not_present);
469
470	/*
471	 * Get the alignment requirement.
472	 */
473	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
474
475	/*
476	 * Retrieve the vdev creation time.
477	 */
478	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
479	    &vd->vdev_crtxg);
480
481	/*
482	 * If we're a top-level vdev, try to load the allocation parameters.
483	 */
484	if (parent && !parent->vdev_parent &&
485	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
486		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
487		    &vd->vdev_ms_array);
488		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
489		    &vd->vdev_ms_shift);
490		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
491		    &vd->vdev_asize);
492		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
493		    &vd->vdev_removing);
494	}
495
496	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
497		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
498		    alloctype == VDEV_ALLOC_ADD ||
499		    alloctype == VDEV_ALLOC_SPLIT ||
500		    alloctype == VDEV_ALLOC_ROOTPOOL);
501		vd->vdev_mg = metaslab_group_create(islog ?
502		    spa_log_class(spa) : spa_normal_class(spa), vd);
503	}
504
505	/*
506	 * If we're a leaf vdev, try to load the DTL object and other state.
507	 */
508	if (vd->vdev_ops->vdev_op_leaf &&
509	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
510	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
511		if (alloctype == VDEV_ALLOC_LOAD) {
512			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
513			    &vd->vdev_dtl_smo.smo_object);
514			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
515			    &vd->vdev_unspare);
516		}
517
518		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
519			uint64_t spare = 0;
520
521			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
522			    &spare) == 0 && spare)
523				spa_spare_add(vd);
524		}
525
526		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
527		    &vd->vdev_offline);
528
529		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
530		    &vd->vdev_resilvering);
531
532		/*
533		 * When importing a pool, we want to ignore the persistent fault
534		 * state, as the diagnosis made on another system may not be
535		 * valid in the current context.  Local vdevs will
536		 * remain in the faulted state.
537		 */
538		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
539			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
540			    &vd->vdev_faulted);
541			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
542			    &vd->vdev_degraded);
543			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
544			    &vd->vdev_removed);
545
546			if (vd->vdev_faulted || vd->vdev_degraded) {
547				char *aux;
548
549				vd->vdev_label_aux =
550				    VDEV_AUX_ERR_EXCEEDED;
551				if (nvlist_lookup_string(nv,
552				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
553				    strcmp(aux, "external") == 0)
554					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
555			}
556		}
557	}
558
559	/*
560	 * Add ourselves to the parent's list of children.
561	 */
562	vdev_add_child(parent, vd);
563
564	*vdp = vd;
565
566	return (0);
567}
568
569void
570vdev_free(vdev_t *vd)
571{
572	spa_t *spa = vd->vdev_spa;
573
574	/*
575	 * vdev_free() implies closing the vdev first.  This is simpler than
576	 * trying to ensure complicated semantics for all callers.
577	 */
578	vdev_close(vd);
579
580	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
581	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
582
583	/*
584	 * Free all children.
585	 */
586	for (int c = 0; c < vd->vdev_children; c++)
587		vdev_free(vd->vdev_child[c]);
588
589	ASSERT(vd->vdev_child == NULL);
590	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
591
592	/*
593	 * Discard allocation state.
594	 */
595	if (vd->vdev_mg != NULL) {
596		vdev_metaslab_fini(vd);
597		metaslab_group_destroy(vd->vdev_mg);
598	}
599
600	ASSERT0(vd->vdev_stat.vs_space);
601	ASSERT0(vd->vdev_stat.vs_dspace);
602	ASSERT0(vd->vdev_stat.vs_alloc);
603
604	/*
605	 * Remove this vdev from its parent's child list.
606	 */
607	vdev_remove_child(vd->vdev_parent, vd);
608
609	ASSERT(vd->vdev_parent == NULL);
610
611	/*
612	 * Clean up vdev structure.
613	 */
614	vdev_queue_fini(vd);
615	vdev_cache_fini(vd);
616
617	if (vd->vdev_path)
618		spa_strfree(vd->vdev_path);
619	if (vd->vdev_devid)
620		spa_strfree(vd->vdev_devid);
621	if (vd->vdev_physpath)
622		spa_strfree(vd->vdev_physpath);
623	if (vd->vdev_fru)
624		spa_strfree(vd->vdev_fru);
625
626	if (vd->vdev_isspare)
627		spa_spare_remove(vd);
628	if (vd->vdev_isl2cache)
629		spa_l2cache_remove(vd);
630
631	txg_list_destroy(&vd->vdev_ms_list);
632	txg_list_destroy(&vd->vdev_dtl_list);
633
634	mutex_enter(&vd->vdev_dtl_lock);
635	for (int t = 0; t < DTL_TYPES; t++) {
636		space_map_unload(&vd->vdev_dtl[t]);
637		space_map_destroy(&vd->vdev_dtl[t]);
638	}
639	mutex_exit(&vd->vdev_dtl_lock);
640
641	mutex_destroy(&vd->vdev_dtl_lock);
642	mutex_destroy(&vd->vdev_stat_lock);
643	mutex_destroy(&vd->vdev_probe_lock);
644
645	if (vd == spa->spa_root_vdev)
646		spa->spa_root_vdev = NULL;
647
648	kmem_free(vd, sizeof (vdev_t));
649}
650
651/*
652 * Transfer top-level vdev state from svd to tvd.
653 */
654static void
655vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
656{
657	spa_t *spa = svd->vdev_spa;
658	metaslab_t *msp;
659	vdev_t *vd;
660	int t;
661
662	ASSERT(tvd == tvd->vdev_top);
663
664	tvd->vdev_ms_array = svd->vdev_ms_array;
665	tvd->vdev_ms_shift = svd->vdev_ms_shift;
666	tvd->vdev_ms_count = svd->vdev_ms_count;
667
668	svd->vdev_ms_array = 0;
669	svd->vdev_ms_shift = 0;
670	svd->vdev_ms_count = 0;
671
672	if (tvd->vdev_mg)
673		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
674	tvd->vdev_mg = svd->vdev_mg;
675	tvd->vdev_ms = svd->vdev_ms;
676
677	svd->vdev_mg = NULL;
678	svd->vdev_ms = NULL;
679
680	if (tvd->vdev_mg != NULL)
681		tvd->vdev_mg->mg_vd = tvd;
682
683	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
684	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
685	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
686
687	svd->vdev_stat.vs_alloc = 0;
688	svd->vdev_stat.vs_space = 0;
689	svd->vdev_stat.vs_dspace = 0;
690
691	for (t = 0; t < TXG_SIZE; t++) {
692		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
693			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
694		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
695			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
696		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
697			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
698	}
699
700	if (list_link_active(&svd->vdev_config_dirty_node)) {
701		vdev_config_clean(svd);
702		vdev_config_dirty(tvd);
703	}
704
705	if (list_link_active(&svd->vdev_state_dirty_node)) {
706		vdev_state_clean(svd);
707		vdev_state_dirty(tvd);
708	}
709
710	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
711	svd->vdev_deflate_ratio = 0;
712
713	tvd->vdev_islog = svd->vdev_islog;
714	svd->vdev_islog = 0;
715}
716
717static void
718vdev_top_update(vdev_t *tvd, vdev_t *vd)
719{
720	if (vd == NULL)
721		return;
722
723	vd->vdev_top = tvd;
724
725	for (int c = 0; c < vd->vdev_children; c++)
726		vdev_top_update(tvd, vd->vdev_child[c]);
727}
728
729/*
730 * Add a mirror/replacing vdev above an existing vdev.
731 */
732vdev_t *
733vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
734{
735	spa_t *spa = cvd->vdev_spa;
736	vdev_t *pvd = cvd->vdev_parent;
737	vdev_t *mvd;
738
739	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
740
741	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
742
743	mvd->vdev_asize = cvd->vdev_asize;
744	mvd->vdev_min_asize = cvd->vdev_min_asize;
745	mvd->vdev_max_asize = cvd->vdev_max_asize;
746	mvd->vdev_ashift = cvd->vdev_ashift;
747	mvd->vdev_state = cvd->vdev_state;
748	mvd->vdev_crtxg = cvd->vdev_crtxg;
749
750	vdev_remove_child(pvd, cvd);
751	vdev_add_child(pvd, mvd);
752	cvd->vdev_id = mvd->vdev_children;
753	vdev_add_child(mvd, cvd);
754	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
755
756	if (mvd == mvd->vdev_top)
757		vdev_top_transfer(cvd, mvd);
758
759	return (mvd);
760}
761
762/*
763 * Remove a 1-way mirror/replacing vdev from the tree.
764 */
765void
766vdev_remove_parent(vdev_t *cvd)
767{
768	vdev_t *mvd = cvd->vdev_parent;
769	vdev_t *pvd = mvd->vdev_parent;
770
771	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
772
773	ASSERT(mvd->vdev_children == 1);
774	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
775	    mvd->vdev_ops == &vdev_replacing_ops ||
776	    mvd->vdev_ops == &vdev_spare_ops);
777	cvd->vdev_ashift = mvd->vdev_ashift;
778
779	vdev_remove_child(mvd, cvd);
780	vdev_remove_child(pvd, mvd);
781
782	/*
783	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
784	 * Otherwise, we could have detached an offline device, and when we
785	 * go to import the pool we'll think we have two top-level vdevs,
786	 * instead of a different version of the same top-level vdev.
787	 */
788	if (mvd->vdev_top == mvd) {
789		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
790		cvd->vdev_orig_guid = cvd->vdev_guid;
791		cvd->vdev_guid += guid_delta;
792		cvd->vdev_guid_sum += guid_delta;
793	}
794	cvd->vdev_id = mvd->vdev_id;
795	vdev_add_child(pvd, cvd);
796	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
797
798	if (cvd == cvd->vdev_top)
799		vdev_top_transfer(mvd, cvd);
800
801	ASSERT(mvd->vdev_children == 0);
802	vdev_free(mvd);
803}
804
805int
806vdev_metaslab_init(vdev_t *vd, uint64_t txg)
807{
808	spa_t *spa = vd->vdev_spa;
809	objset_t *mos = spa->spa_meta_objset;
810	uint64_t m;
811	uint64_t oldc = vd->vdev_ms_count;
812	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
813	metaslab_t **mspp;
814	int error;
815
816	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
817
818	/*
819	 * This vdev is not being allocated from yet or is a hole.
820	 */
821	if (vd->vdev_ms_shift == 0)
822		return (0);
823
824	ASSERT(!vd->vdev_ishole);
825
826	/*
827	 * Compute the raidz-deflation ratio.  Note, we hard-code
828	 * in 128k (1 << 17) because it is the current "typical" blocksize.
829	 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
830	 * or we will inconsistently account for existing bp's.
831	 */
832	vd->vdev_deflate_ratio = (1 << 17) /
833	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
834
835	ASSERT(oldc <= newc);
836
837	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
838
839	if (oldc != 0) {
840		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
841		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
842	}
843
844	vd->vdev_ms = mspp;
845	vd->vdev_ms_count = newc;
846
847	for (m = oldc; m < newc; m++) {
848		space_map_obj_t smo = { 0, 0, 0 };
849		if (txg == 0) {
850			uint64_t object = 0;
851			error = dmu_read(mos, vd->vdev_ms_array,
852			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
853			    DMU_READ_PREFETCH);
854			if (error)
855				return (error);
856			if (object != 0) {
857				dmu_buf_t *db;
858				error = dmu_bonus_hold(mos, object, FTAG, &db);
859				if (error)
860					return (error);
861				ASSERT3U(db->db_size, >=, sizeof (smo));
862				bcopy(db->db_data, &smo, sizeof (smo));
863				ASSERT3U(smo.smo_object, ==, object);
864				dmu_buf_rele(db, FTAG);
865			}
866		}
867		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
868		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
869	}
870
871	if (txg == 0)
872		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
873
874	/*
875	 * If the vdev is being removed we don't activate
876	 * the metaslabs since we want to ensure that no new
877	 * allocations are performed on this device.
878	 */
879	if (oldc == 0 && !vd->vdev_removing)
880		metaslab_group_activate(vd->vdev_mg);
881
882	if (txg == 0)
883		spa_config_exit(spa, SCL_ALLOC, FTAG);
884
885	return (0);
886}
887
888void
889vdev_metaslab_fini(vdev_t *vd)
890{
891	uint64_t m;
892	uint64_t count = vd->vdev_ms_count;
893
894	if (vd->vdev_ms != NULL) {
895		metaslab_group_passivate(vd->vdev_mg);
896		for (m = 0; m < count; m++)
897			if (vd->vdev_ms[m] != NULL)
898				metaslab_fini(vd->vdev_ms[m]);
899		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
900		vd->vdev_ms = NULL;
901	}
902}
903
904typedef struct vdev_probe_stats {
905	boolean_t	vps_readable;
906	boolean_t	vps_writeable;
907	int		vps_flags;
908} vdev_probe_stats_t;
909
910static void
911vdev_probe_done(zio_t *zio)
912{
913	spa_t *spa = zio->io_spa;
914	vdev_t *vd = zio->io_vd;
915	vdev_probe_stats_t *vps = zio->io_private;
916
917	ASSERT(vd->vdev_probe_zio != NULL);
918
919	if (zio->io_type == ZIO_TYPE_READ) {
920		if (zio->io_error == 0)
921			vps->vps_readable = 1;
922		if (zio->io_error == 0 && spa_writeable(spa)) {
923			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
924			    zio->io_offset, zio->io_size, zio->io_data,
925			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
926			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
927		} else {
928			zio_buf_free(zio->io_data, zio->io_size);
929		}
930	} else if (zio->io_type == ZIO_TYPE_WRITE) {
931		if (zio->io_error == 0)
932			vps->vps_writeable = 1;
933		zio_buf_free(zio->io_data, zio->io_size);
934	} else if (zio->io_type == ZIO_TYPE_NULL) {
935		zio_t *pio;
936
937		vd->vdev_cant_read |= !vps->vps_readable;
938		vd->vdev_cant_write |= !vps->vps_writeable;
939
940		if (vdev_readable(vd) &&
941		    (vdev_writeable(vd) || !spa_writeable(spa))) {
942			zio->io_error = 0;
943		} else {
944			ASSERT(zio->io_error != 0);
945			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
946			    spa, vd, NULL, 0, 0);
947			zio->io_error = ENXIO;
948		}
949
950		mutex_enter(&vd->vdev_probe_lock);
951		ASSERT(vd->vdev_probe_zio == zio);
952		vd->vdev_probe_zio = NULL;
953		mutex_exit(&vd->vdev_probe_lock);
954
955		while ((pio = zio_walk_parents(zio)) != NULL)
956			if (!vdev_accessible(vd, pio))
957				pio->io_error = ENXIO;
958
959		kmem_free(vps, sizeof (*vps));
960	}
961}
962
963/*
964 * Determine whether this device is accessible by reading and writing
965 * to several known locations: the pad regions of each vdev label
966 * but the first (which we leave alone in case it contains a VTOC).
967 */
968zio_t *
969vdev_probe(vdev_t *vd, zio_t *zio)
970{
971	spa_t *spa = vd->vdev_spa;
972	vdev_probe_stats_t *vps = NULL;
973	zio_t *pio;
974
975	ASSERT(vd->vdev_ops->vdev_op_leaf);
976
977	/*
978	 * Don't probe the probe.
979	 */
980	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
981		return (NULL);
982
983	/*
984	 * To prevent 'probe storms' when a device fails, we create
985	 * just one probe i/o at a time.  All zios that want to probe
986	 * this vdev will become parents of the probe io.
987	 */
988	mutex_enter(&vd->vdev_probe_lock);
989
990	if ((pio = vd->vdev_probe_zio) == NULL) {
991		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
992
993		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
994		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
995		    ZIO_FLAG_TRYHARD;
996
997		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
998			/*
999			 * vdev_cant_read and vdev_cant_write can only
1000			 * transition from TRUE to FALSE when we have the
1001			 * SCL_ZIO lock as writer; otherwise they can only
1002			 * transition from FALSE to TRUE.  This ensures that
1003			 * any zio looking at these values can assume that
1004			 * failures persist for the life of the I/O.  That's
1005			 * important because when a device has intermittent
1006			 * connectivity problems, we want to ensure that
1007			 * they're ascribed to the device (ENXIO) and not
1008			 * the zio (EIO).
1009			 *
1010			 * Since we hold SCL_ZIO as writer here, clear both
1011			 * values so the probe can reevaluate from first
1012			 * principles.
1013			 */
1014			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1015			vd->vdev_cant_read = B_FALSE;
1016			vd->vdev_cant_write = B_FALSE;
1017		}
1018
1019		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1020		    vdev_probe_done, vps,
1021		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1022
1023		/*
1024		 * We can't change the vdev state in this context, so we
1025		 * kick off an async task to do it on our behalf.
1026		 */
1027		if (zio != NULL) {
1028			vd->vdev_probe_wanted = B_TRUE;
1029			spa_async_request(spa, SPA_ASYNC_PROBE);
1030		}
1031	}
1032
1033	if (zio != NULL)
1034		zio_add_child(zio, pio);
1035
1036	mutex_exit(&vd->vdev_probe_lock);
1037
1038	if (vps == NULL) {
1039		ASSERT(zio != NULL);
1040		return (NULL);
1041	}
1042
1043	for (int l = 1; l < VDEV_LABELS; l++) {
1044		zio_nowait(zio_read_phys(pio, vd,
1045		    vdev_label_offset(vd->vdev_psize, l,
1046		    offsetof(vdev_label_t, vl_pad2)),
1047		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1048		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1049		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1050	}
1051
1052	if (zio == NULL)
1053		return (pio);
1054
1055	zio_nowait(pio);
1056	return (NULL);
1057}
1058
1059static void
1060vdev_open_child(void *arg)
1061{
1062	vdev_t *vd = arg;
1063
1064	vd->vdev_open_thread = curthread;
1065	vd->vdev_open_error = vdev_open(vd);
1066	vd->vdev_open_thread = NULL;
1067}
1068
1069boolean_t
1070vdev_uses_zvols(vdev_t *vd)
1071{
1072	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1073	    strlen(ZVOL_DIR)) == 0)
1074		return (B_TRUE);
1075	for (int c = 0; c < vd->vdev_children; c++)
1076		if (vdev_uses_zvols(vd->vdev_child[c]))
1077			return (B_TRUE);
1078	return (B_FALSE);
1079}
1080
1081void
1082vdev_open_children(vdev_t *vd)
1083{
1084	taskq_t *tq;
1085	int children = vd->vdev_children;
1086
1087	/*
1088	 * in order to handle pools on top of zvols, do the opens
1089	 * in a single thread so that the same thread holds the
1090	 * spa_namespace_lock
1091	 */
1092	if (B_TRUE || vdev_uses_zvols(vd)) {
1093		for (int c = 0; c < children; c++)
1094			vd->vdev_child[c]->vdev_open_error =
1095			    vdev_open(vd->vdev_child[c]);
1096		return;
1097	}
1098	tq = taskq_create("vdev_open", children, minclsyspri,
1099	    children, children, TASKQ_PREPOPULATE);
1100
1101	for (int c = 0; c < children; c++)
1102		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1103		    TQ_SLEEP) != 0);
1104
1105	taskq_destroy(tq);
1106}
1107
1108/*
1109 * Prepare a virtual device for access.
1110 */
1111int
1112vdev_open(vdev_t *vd)
1113{
1114	spa_t *spa = vd->vdev_spa;
1115	int error;
1116	uint64_t osize = 0;
1117	uint64_t max_osize = 0;
1118	uint64_t asize, max_asize, psize;
1119	uint64_t ashift = 0;
1120
1121	ASSERT(vd->vdev_open_thread == curthread ||
1122	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1123	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1124	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1125	    vd->vdev_state == VDEV_STATE_OFFLINE);
1126
1127	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1128	vd->vdev_cant_read = B_FALSE;
1129	vd->vdev_cant_write = B_FALSE;
1130	vd->vdev_min_asize = vdev_get_min_asize(vd);
1131
1132	/*
1133	 * If this vdev is not removed, check its fault status.  If it's
1134	 * faulted, bail out of the open.
1135	 */
1136	if (!vd->vdev_removed && vd->vdev_faulted) {
1137		ASSERT(vd->vdev_children == 0);
1138		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1139		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1140		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1141		    vd->vdev_label_aux);
1142		return (ENXIO);
1143	} else if (vd->vdev_offline) {
1144		ASSERT(vd->vdev_children == 0);
1145		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1146		return (ENXIO);
1147	}
1148
1149	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1150
1151	/*
1152	 * Reset the vdev_reopening flag so that we actually close
1153	 * the vdev on error.
1154	 */
1155	vd->vdev_reopening = B_FALSE;
1156	if (zio_injection_enabled && error == 0)
1157		error = zio_handle_device_injection(vd, NULL, ENXIO);
1158
1159	if (error) {
1160		if (vd->vdev_removed &&
1161		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1162			vd->vdev_removed = B_FALSE;
1163
1164		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1165		    vd->vdev_stat.vs_aux);
1166		return (error);
1167	}
1168
1169	vd->vdev_removed = B_FALSE;
1170
1171	/*
1172	 * Recheck the faulted flag now that we have confirmed that
1173	 * the vdev is accessible.  If we're faulted, bail.
1174	 */
1175	if (vd->vdev_faulted) {
1176		ASSERT(vd->vdev_children == 0);
1177		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1178		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1179		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1180		    vd->vdev_label_aux);
1181		return (ENXIO);
1182	}
1183
1184	if (vd->vdev_degraded) {
1185		ASSERT(vd->vdev_children == 0);
1186		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1187		    VDEV_AUX_ERR_EXCEEDED);
1188	} else {
1189		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1190	}
1191
1192	/*
1193	 * For hole or missing vdevs we just return success.
1194	 */
1195	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1196		return (0);
1197
1198	for (int c = 0; c < vd->vdev_children; c++) {
1199		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1200			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1201			    VDEV_AUX_NONE);
1202			break;
1203		}
1204	}
1205
1206	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1207	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1208
1209	if (vd->vdev_children == 0) {
1210		if (osize < SPA_MINDEVSIZE) {
1211			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1212			    VDEV_AUX_TOO_SMALL);
1213			return (EOVERFLOW);
1214		}
1215		psize = osize;
1216		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1217		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1218		    VDEV_LABEL_END_SIZE);
1219	} else {
1220		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1221		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1222			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1223			    VDEV_AUX_TOO_SMALL);
1224			return (EOVERFLOW);
1225		}
1226		psize = 0;
1227		asize = osize;
1228		max_asize = max_osize;
1229	}
1230
1231	vd->vdev_psize = psize;
1232
1233	/*
1234	 * Make sure the allocatable size hasn't shrunk.
1235	 */
1236	if (asize < vd->vdev_min_asize) {
1237		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1238		    VDEV_AUX_BAD_LABEL);
1239		return (EINVAL);
1240	}
1241
1242	if (vd->vdev_asize == 0) {
1243		/*
1244		 * This is the first-ever open, so use the computed values.
1245		 * For testing purposes, a higher ashift can be requested.
1246		 */
1247		vd->vdev_asize = asize;
1248		vd->vdev_max_asize = max_asize;
1249		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1250	} else {
1251		/*
1252		 * Make sure the alignment requirement hasn't increased.
1253		 */
1254		if (ashift > vd->vdev_top->vdev_ashift) {
1255			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1256			    VDEV_AUX_BAD_LABEL);
1257			return (EINVAL);
1258		}
1259		vd->vdev_max_asize = max_asize;
1260	}
1261
1262	/*
1263	 * If all children are healthy and the asize has increased,
1264	 * then we've experienced dynamic LUN growth.  If automatic
1265	 * expansion is enabled then use the additional space.
1266	 */
1267	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1268	    (vd->vdev_expanding || spa->spa_autoexpand))
1269		vd->vdev_asize = asize;
1270
1271	vdev_set_min_asize(vd);
1272
1273	/*
1274	 * Ensure we can issue some IO before declaring the
1275	 * vdev open for business.
1276	 */
1277	if (vd->vdev_ops->vdev_op_leaf &&
1278	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1279		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1280		    VDEV_AUX_ERR_EXCEEDED);
1281		return (error);
1282	}
1283
1284	/*
1285	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1286	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1287	 * since this would just restart the scrub we are already doing.
1288	 */
1289	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1290	    vdev_resilver_needed(vd, NULL, NULL))
1291		spa_async_request(spa, SPA_ASYNC_RESILVER);
1292
1293	return (0);
1294}
1295
1296/*
1297 * Called once the vdevs are all opened, this routine validates the label
1298 * contents.  This needs to be done before vdev_load() so that we don't
1299 * inadvertently do repair I/Os to the wrong device.
1300 *
1301 * If 'strict' is false ignore the spa guid check. This is necessary because
1302 * if the machine crashed during a re-guid the new guid might have been written
1303 * to all of the vdev labels, but not the cached config. The strict check
1304 * will be performed when the pool is opened again using the mos config.
1305 *
1306 * This function will only return failure if one of the vdevs indicates that it
1307 * has since been destroyed or exported.  This is only possible if
1308 * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1309 * will be updated but the function will return 0.
1310 */
1311int
1312vdev_validate(vdev_t *vd, boolean_t strict)
1313{
1314	spa_t *spa = vd->vdev_spa;
1315	nvlist_t *label;
1316	uint64_t guid = 0, top_guid;
1317	uint64_t state;
1318
1319	for (int c = 0; c < vd->vdev_children; c++)
1320		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1321			return (EBADF);
1322
1323	/*
1324	 * If the device has already failed, or was marked offline, don't do
1325	 * any further validation.  Otherwise, label I/O will fail and we will
1326	 * overwrite the previous state.
1327	 */
1328	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1329		uint64_t aux_guid = 0;
1330		nvlist_t *nvl;
1331		uint64_t txg = strict ? spa->spa_config_txg : -1ULL;
1332
1333		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1334			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1335			    VDEV_AUX_BAD_LABEL);
1336			return (0);
1337		}
1338
1339		/*
1340		 * Determine if this vdev has been split off into another
1341		 * pool.  If so, then refuse to open it.
1342		 */
1343		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1344		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1345			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1346			    VDEV_AUX_SPLIT_POOL);
1347			nvlist_free(label);
1348			return (0);
1349		}
1350
1351		if (strict && (nvlist_lookup_uint64(label,
1352		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1353		    guid != spa_guid(spa))) {
1354			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1355			    VDEV_AUX_CORRUPT_DATA);
1356			nvlist_free(label);
1357			return (0);
1358		}
1359
1360		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1361		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1362		    &aux_guid) != 0)
1363			aux_guid = 0;
1364
1365		/*
1366		 * If this vdev just became a top-level vdev because its
1367		 * sibling was detached, it will have adopted the parent's
1368		 * vdev guid -- but the label may or may not be on disk yet.
1369		 * Fortunately, either version of the label will have the
1370		 * same top guid, so if we're a top-level vdev, we can
1371		 * safely compare to that instead.
1372		 *
1373		 * If we split this vdev off instead, then we also check the
1374		 * original pool's guid.  We don't want to consider the vdev
1375		 * corrupt if it is partway through a split operation.
1376		 */
1377		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1378		    &guid) != 0 ||
1379		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1380		    &top_guid) != 0 ||
1381		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1382		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1383			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1384			    VDEV_AUX_CORRUPT_DATA);
1385			nvlist_free(label);
1386			return (0);
1387		}
1388
1389		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1390		    &state) != 0) {
1391			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1392			    VDEV_AUX_CORRUPT_DATA);
1393			nvlist_free(label);
1394			return (0);
1395		}
1396
1397		nvlist_free(label);
1398
1399		/*
1400		 * If this is a verbatim import, no need to check the
1401		 * state of the pool.
1402		 */
1403		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1404		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1405		    state != POOL_STATE_ACTIVE)
1406			return (EBADF);
1407
1408		/*
1409		 * If we were able to open and validate a vdev that was
1410		 * previously marked permanently unavailable, clear that state
1411		 * now.
1412		 */
1413		if (vd->vdev_not_present)
1414			vd->vdev_not_present = 0;
1415	}
1416
1417	return (0);
1418}
1419
1420/*
1421 * Close a virtual device.
1422 */
1423void
1424vdev_close(vdev_t *vd)
1425{
1426	spa_t *spa = vd->vdev_spa;
1427	vdev_t *pvd = vd->vdev_parent;
1428
1429	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1430
1431	/*
1432	 * If our parent is reopening, then we are as well, unless we are
1433	 * going offline.
1434	 */
1435	if (pvd != NULL && pvd->vdev_reopening)
1436		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1437
1438	vd->vdev_ops->vdev_op_close(vd);
1439
1440	vdev_cache_purge(vd);
1441
1442	/*
1443	 * We record the previous state before we close it, so that if we are
1444	 * doing a reopen(), we don't generate FMA ereports if we notice that
1445	 * it's still faulted.
1446	 */
1447	vd->vdev_prevstate = vd->vdev_state;
1448
1449	if (vd->vdev_offline)
1450		vd->vdev_state = VDEV_STATE_OFFLINE;
1451	else
1452		vd->vdev_state = VDEV_STATE_CLOSED;
1453	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1454}
1455
1456void
1457vdev_hold(vdev_t *vd)
1458{
1459	spa_t *spa = vd->vdev_spa;
1460
1461	ASSERT(spa_is_root(spa));
1462	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1463		return;
1464
1465	for (int c = 0; c < vd->vdev_children; c++)
1466		vdev_hold(vd->vdev_child[c]);
1467
1468	if (vd->vdev_ops->vdev_op_leaf)
1469		vd->vdev_ops->vdev_op_hold(vd);
1470}
1471
1472void
1473vdev_rele(vdev_t *vd)
1474{
1475	spa_t *spa = vd->vdev_spa;
1476
1477	ASSERT(spa_is_root(spa));
1478	for (int c = 0; c < vd->vdev_children; c++)
1479		vdev_rele(vd->vdev_child[c]);
1480
1481	if (vd->vdev_ops->vdev_op_leaf)
1482		vd->vdev_ops->vdev_op_rele(vd);
1483}
1484
1485/*
1486 * Reopen all interior vdevs and any unopened leaves.  We don't actually
1487 * reopen leaf vdevs which had previously been opened as they might deadlock
1488 * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1489 * If the leaf has never been opened then open it, as usual.
1490 */
1491void
1492vdev_reopen(vdev_t *vd)
1493{
1494	spa_t *spa = vd->vdev_spa;
1495
1496	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1497
1498	/* set the reopening flag unless we're taking the vdev offline */
1499	vd->vdev_reopening = !vd->vdev_offline;
1500	vdev_close(vd);
1501	(void) vdev_open(vd);
1502
1503	/*
1504	 * Call vdev_validate() here to make sure we have the same device.
1505	 * Otherwise, a device with an invalid label could be successfully
1506	 * opened in response to vdev_reopen().
1507	 */
1508	if (vd->vdev_aux) {
1509		(void) vdev_validate_aux(vd);
1510		if (vdev_readable(vd) && vdev_writeable(vd) &&
1511		    vd->vdev_aux == &spa->spa_l2cache &&
1512		    !l2arc_vdev_present(vd))
1513			l2arc_add_vdev(spa, vd);
1514	} else {
1515		(void) vdev_validate(vd, spa_last_synced_txg(spa));
1516	}
1517
1518	/*
1519	 * Reassess parent vdev's health.
1520	 */
1521	vdev_propagate_state(vd);
1522}
1523
1524int
1525vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1526{
1527	int error;
1528
1529	/*
1530	 * Normally, partial opens (e.g. of a mirror) are allowed.
1531	 * For a create, however, we want to fail the request if
1532	 * there are any components we can't open.
1533	 */
1534	error = vdev_open(vd);
1535
1536	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1537		vdev_close(vd);
1538		return (error ? error : ENXIO);
1539	}
1540
1541	/*
1542	 * Recursively initialize all labels.
1543	 */
1544	if ((error = vdev_label_init(vd, txg, isreplacing ?
1545	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1546		vdev_close(vd);
1547		return (error);
1548	}
1549
1550	return (0);
1551}
1552
1553void
1554vdev_metaslab_set_size(vdev_t *vd)
1555{
1556	/*
1557	 * Aim for roughly 200 metaslabs per vdev.
1558	 */
1559	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1560	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1561}
1562
1563void
1564vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1565{
1566	ASSERT(vd == vd->vdev_top);
1567	ASSERT(!vd->vdev_ishole);
1568	ASSERT(ISP2(flags));
1569	ASSERT(spa_writeable(vd->vdev_spa));
1570
1571	if (flags & VDD_METASLAB)
1572		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1573
1574	if (flags & VDD_DTL)
1575		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1576
1577	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1578}
1579
1580/*
1581 * DTLs.
1582 *
1583 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1584 * the vdev has less than perfect replication.  There are four kinds of DTL:
1585 *
1586 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1587 *
1588 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1589 *
1590 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1591 *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1592 *	txgs that was scrubbed.
1593 *
1594 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1595 *	persistent errors or just some device being offline.
1596 *	Unlike the other three, the DTL_OUTAGE map is not generally
1597 *	maintained; it's only computed when needed, typically to
1598 *	determine whether a device can be detached.
1599 *
1600 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1601 * either has the data or it doesn't.
1602 *
1603 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1604 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1605 * if any child is less than fully replicated, then so is its parent.
1606 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1607 * comprising only those txgs which appear in 'maxfaults' or more children;
1608 * those are the txgs we don't have enough replication to read.  For example,
1609 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1610 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1611 * two child DTL_MISSING maps.
1612 *
1613 * It should be clear from the above that to compute the DTLs and outage maps
1614 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1615 * Therefore, that is all we keep on disk.  When loading the pool, or after
1616 * a configuration change, we generate all other DTLs from first principles.
1617 */
1618void
1619vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1620{
1621	space_map_t *sm = &vd->vdev_dtl[t];
1622
1623	ASSERT(t < DTL_TYPES);
1624	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1625	ASSERT(spa_writeable(vd->vdev_spa));
1626
1627	mutex_enter(sm->sm_lock);
1628	if (!space_map_contains(sm, txg, size))
1629		space_map_add(sm, txg, size);
1630	mutex_exit(sm->sm_lock);
1631}
1632
1633boolean_t
1634vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1635{
1636	space_map_t *sm = &vd->vdev_dtl[t];
1637	boolean_t dirty = B_FALSE;
1638
1639	ASSERT(t < DTL_TYPES);
1640	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1641
1642	mutex_enter(sm->sm_lock);
1643	if (sm->sm_space != 0)
1644		dirty = space_map_contains(sm, txg, size);
1645	mutex_exit(sm->sm_lock);
1646
1647	return (dirty);
1648}
1649
1650boolean_t
1651vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1652{
1653	space_map_t *sm = &vd->vdev_dtl[t];
1654	boolean_t empty;
1655
1656	mutex_enter(sm->sm_lock);
1657	empty = (sm->sm_space == 0);
1658	mutex_exit(sm->sm_lock);
1659
1660	return (empty);
1661}
1662
1663/*
1664 * Reassess DTLs after a config change or scrub completion.
1665 */
1666void
1667vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1668{
1669	spa_t *spa = vd->vdev_spa;
1670	avl_tree_t reftree;
1671	int minref;
1672
1673	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1674
1675	for (int c = 0; c < vd->vdev_children; c++)
1676		vdev_dtl_reassess(vd->vdev_child[c], txg,
1677		    scrub_txg, scrub_done);
1678
1679	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1680		return;
1681
1682	if (vd->vdev_ops->vdev_op_leaf) {
1683		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1684
1685		mutex_enter(&vd->vdev_dtl_lock);
1686		if (scrub_txg != 0 &&
1687		    (spa->spa_scrub_started ||
1688		    (scn && scn->scn_phys.scn_errors == 0))) {
1689			/*
1690			 * We completed a scrub up to scrub_txg.  If we
1691			 * did it without rebooting, then the scrub dtl
1692			 * will be valid, so excise the old region and
1693			 * fold in the scrub dtl.  Otherwise, leave the
1694			 * dtl as-is if there was an error.
1695			 *
1696			 * There's little trick here: to excise the beginning
1697			 * of the DTL_MISSING map, we put it into a reference
1698			 * tree and then add a segment with refcnt -1 that
1699			 * covers the range [0, scrub_txg).  This means
1700			 * that each txg in that range has refcnt -1 or 0.
1701			 * We then add DTL_SCRUB with a refcnt of 2, so that
1702			 * entries in the range [0, scrub_txg) will have a
1703			 * positive refcnt -- either 1 or 2.  We then convert
1704			 * the reference tree into the new DTL_MISSING map.
1705			 */
1706			space_map_ref_create(&reftree);
1707			space_map_ref_add_map(&reftree,
1708			    &vd->vdev_dtl[DTL_MISSING], 1);
1709			space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1710			space_map_ref_add_map(&reftree,
1711			    &vd->vdev_dtl[DTL_SCRUB], 2);
1712			space_map_ref_generate_map(&reftree,
1713			    &vd->vdev_dtl[DTL_MISSING], 1);
1714			space_map_ref_destroy(&reftree);
1715		}
1716		space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1717		space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1718		    space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1719		if (scrub_done)
1720			space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1721		space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1722		if (!vdev_readable(vd))
1723			space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1724		else
1725			space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1726			    space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1727		mutex_exit(&vd->vdev_dtl_lock);
1728
1729		if (txg != 0)
1730			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1731		return;
1732	}
1733
1734	mutex_enter(&vd->vdev_dtl_lock);
1735	for (int t = 0; t < DTL_TYPES; t++) {
1736		/* account for child's outage in parent's missing map */
1737		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1738		if (t == DTL_SCRUB)
1739			continue;			/* leaf vdevs only */
1740		if (t == DTL_PARTIAL)
1741			minref = 1;			/* i.e. non-zero */
1742		else if (vd->vdev_nparity != 0)
1743			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1744		else
1745			minref = vd->vdev_children;	/* any kind of mirror */
1746		space_map_ref_create(&reftree);
1747		for (int c = 0; c < vd->vdev_children; c++) {
1748			vdev_t *cvd = vd->vdev_child[c];
1749			mutex_enter(&cvd->vdev_dtl_lock);
1750			space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1751			mutex_exit(&cvd->vdev_dtl_lock);
1752		}
1753		space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1754		space_map_ref_destroy(&reftree);
1755	}
1756	mutex_exit(&vd->vdev_dtl_lock);
1757}
1758
1759static int
1760vdev_dtl_load(vdev_t *vd)
1761{
1762	spa_t *spa = vd->vdev_spa;
1763	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1764	objset_t *mos = spa->spa_meta_objset;
1765	dmu_buf_t *db;
1766	int error;
1767
1768	ASSERT(vd->vdev_children == 0);
1769
1770	if (smo->smo_object == 0)
1771		return (0);
1772
1773	ASSERT(!vd->vdev_ishole);
1774
1775	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1776		return (error);
1777
1778	ASSERT3U(db->db_size, >=, sizeof (*smo));
1779	bcopy(db->db_data, smo, sizeof (*smo));
1780	dmu_buf_rele(db, FTAG);
1781
1782	mutex_enter(&vd->vdev_dtl_lock);
1783	error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1784	    NULL, SM_ALLOC, smo, mos);
1785	mutex_exit(&vd->vdev_dtl_lock);
1786
1787	return (error);
1788}
1789
1790void
1791vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1792{
1793	spa_t *spa = vd->vdev_spa;
1794	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1795	space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1796	objset_t *mos = spa->spa_meta_objset;
1797	space_map_t smsync;
1798	kmutex_t smlock;
1799	dmu_buf_t *db;
1800	dmu_tx_t *tx;
1801
1802	ASSERT(!vd->vdev_ishole);
1803
1804	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1805
1806	if (vd->vdev_detached) {
1807		if (smo->smo_object != 0) {
1808			int err = dmu_object_free(mos, smo->smo_object, tx);
1809			ASSERT0(err);
1810			smo->smo_object = 0;
1811		}
1812		dmu_tx_commit(tx);
1813		return;
1814	}
1815
1816	if (smo->smo_object == 0) {
1817		ASSERT(smo->smo_objsize == 0);
1818		ASSERT(smo->smo_alloc == 0);
1819		smo->smo_object = dmu_object_alloc(mos,
1820		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1821		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1822		ASSERT(smo->smo_object != 0);
1823		vdev_config_dirty(vd->vdev_top);
1824	}
1825
1826	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1827
1828	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1829	    &smlock);
1830
1831	mutex_enter(&smlock);
1832
1833	mutex_enter(&vd->vdev_dtl_lock);
1834	space_map_walk(sm, space_map_add, &smsync);
1835	mutex_exit(&vd->vdev_dtl_lock);
1836
1837	space_map_truncate(smo, mos, tx);
1838	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1839
1840	space_map_destroy(&smsync);
1841
1842	mutex_exit(&smlock);
1843	mutex_destroy(&smlock);
1844
1845	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1846	dmu_buf_will_dirty(db, tx);
1847	ASSERT3U(db->db_size, >=, sizeof (*smo));
1848	bcopy(smo, db->db_data, sizeof (*smo));
1849	dmu_buf_rele(db, FTAG);
1850
1851	dmu_tx_commit(tx);
1852}
1853
1854/*
1855 * Determine whether the specified vdev can be offlined/detached/removed
1856 * without losing data.
1857 */
1858boolean_t
1859vdev_dtl_required(vdev_t *vd)
1860{
1861	spa_t *spa = vd->vdev_spa;
1862	vdev_t *tvd = vd->vdev_top;
1863	uint8_t cant_read = vd->vdev_cant_read;
1864	boolean_t required;
1865
1866	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1867
1868	if (vd == spa->spa_root_vdev || vd == tvd)
1869		return (B_TRUE);
1870
1871	/*
1872	 * Temporarily mark the device as unreadable, and then determine
1873	 * whether this results in any DTL outages in the top-level vdev.
1874	 * If not, we can safely offline/detach/remove the device.
1875	 */
1876	vd->vdev_cant_read = B_TRUE;
1877	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1878	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1879	vd->vdev_cant_read = cant_read;
1880	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1881
1882	if (!required && zio_injection_enabled)
1883		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1884
1885	return (required);
1886}
1887
1888/*
1889 * Determine if resilver is needed, and if so the txg range.
1890 */
1891boolean_t
1892vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1893{
1894	boolean_t needed = B_FALSE;
1895	uint64_t thismin = UINT64_MAX;
1896	uint64_t thismax = 0;
1897
1898	if (vd->vdev_children == 0) {
1899		mutex_enter(&vd->vdev_dtl_lock);
1900		if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1901		    vdev_writeable(vd)) {
1902			space_seg_t *ss;
1903
1904			ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1905			thismin = ss->ss_start - 1;
1906			ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1907			thismax = ss->ss_end;
1908			needed = B_TRUE;
1909		}
1910		mutex_exit(&vd->vdev_dtl_lock);
1911	} else {
1912		for (int c = 0; c < vd->vdev_children; c++) {
1913			vdev_t *cvd = vd->vdev_child[c];
1914			uint64_t cmin, cmax;
1915
1916			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1917				thismin = MIN(thismin, cmin);
1918				thismax = MAX(thismax, cmax);
1919				needed = B_TRUE;
1920			}
1921		}
1922	}
1923
1924	if (needed && minp) {
1925		*minp = thismin;
1926		*maxp = thismax;
1927	}
1928	return (needed);
1929}
1930
1931void
1932vdev_load(vdev_t *vd)
1933{
1934	/*
1935	 * Recursively load all children.
1936	 */
1937	for (int c = 0; c < vd->vdev_children; c++)
1938		vdev_load(vd->vdev_child[c]);
1939
1940	/*
1941	 * If this is a top-level vdev, initialize its metaslabs.
1942	 */
1943	if (vd == vd->vdev_top && !vd->vdev_ishole &&
1944	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1945	    vdev_metaslab_init(vd, 0) != 0))
1946		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1947		    VDEV_AUX_CORRUPT_DATA);
1948
1949	/*
1950	 * If this is a leaf vdev, load its DTL.
1951	 */
1952	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1953		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1954		    VDEV_AUX_CORRUPT_DATA);
1955}
1956
1957/*
1958 * The special vdev case is used for hot spares and l2cache devices.  Its
1959 * sole purpose it to set the vdev state for the associated vdev.  To do this,
1960 * we make sure that we can open the underlying device, then try to read the
1961 * label, and make sure that the label is sane and that it hasn't been
1962 * repurposed to another pool.
1963 */
1964int
1965vdev_validate_aux(vdev_t *vd)
1966{
1967	nvlist_t *label;
1968	uint64_t guid, version;
1969	uint64_t state;
1970
1971	if (!vdev_readable(vd))
1972		return (0);
1973
1974	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
1975		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1976		    VDEV_AUX_CORRUPT_DATA);
1977		return (-1);
1978	}
1979
1980	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1981	    !SPA_VERSION_IS_SUPPORTED(version) ||
1982	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1983	    guid != vd->vdev_guid ||
1984	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1985		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1986		    VDEV_AUX_CORRUPT_DATA);
1987		nvlist_free(label);
1988		return (-1);
1989	}
1990
1991	/*
1992	 * We don't actually check the pool state here.  If it's in fact in
1993	 * use by another pool, we update this fact on the fly when requested.
1994	 */
1995	nvlist_free(label);
1996	return (0);
1997}
1998
1999void
2000vdev_remove(vdev_t *vd, uint64_t txg)
2001{
2002	spa_t *spa = vd->vdev_spa;
2003	objset_t *mos = spa->spa_meta_objset;
2004	dmu_tx_t *tx;
2005
2006	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2007
2008	if (vd->vdev_dtl_smo.smo_object) {
2009		ASSERT0(vd->vdev_dtl_smo.smo_alloc);
2010		(void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2011		vd->vdev_dtl_smo.smo_object = 0;
2012	}
2013
2014	if (vd->vdev_ms != NULL) {
2015		for (int m = 0; m < vd->vdev_ms_count; m++) {
2016			metaslab_t *msp = vd->vdev_ms[m];
2017
2018			if (msp == NULL || msp->ms_smo.smo_object == 0)
2019				continue;
2020
2021			ASSERT0(msp->ms_smo.smo_alloc);
2022			(void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2023			msp->ms_smo.smo_object = 0;
2024		}
2025	}
2026
2027	if (vd->vdev_ms_array) {
2028		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2029		vd->vdev_ms_array = 0;
2030		vd->vdev_ms_shift = 0;
2031	}
2032	dmu_tx_commit(tx);
2033}
2034
2035void
2036vdev_sync_done(vdev_t *vd, uint64_t txg)
2037{
2038	metaslab_t *msp;
2039	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2040
2041	ASSERT(!vd->vdev_ishole);
2042
2043	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2044		metaslab_sync_done(msp, txg);
2045
2046	if (reassess)
2047		metaslab_sync_reassess(vd->vdev_mg);
2048}
2049
2050void
2051vdev_sync(vdev_t *vd, uint64_t txg)
2052{
2053	spa_t *spa = vd->vdev_spa;
2054	vdev_t *lvd;
2055	metaslab_t *msp;
2056	dmu_tx_t *tx;
2057
2058	ASSERT(!vd->vdev_ishole);
2059
2060	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2061		ASSERT(vd == vd->vdev_top);
2062		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2063		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2064		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2065		ASSERT(vd->vdev_ms_array != 0);
2066		vdev_config_dirty(vd);
2067		dmu_tx_commit(tx);
2068	}
2069
2070	/*
2071	 * Remove the metadata associated with this vdev once it's empty.
2072	 */
2073	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2074		vdev_remove(vd, txg);
2075
2076	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2077		metaslab_sync(msp, txg);
2078		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2079	}
2080
2081	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2082		vdev_dtl_sync(lvd, txg);
2083
2084	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2085}
2086
2087uint64_t
2088vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2089{
2090	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2091}
2092
2093/*
2094 * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2095 * not be opened, and no I/O is attempted.
2096 */
2097int
2098vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2099{
2100	vdev_t *vd, *tvd;
2101
2102	spa_vdev_state_enter(spa, SCL_NONE);
2103
2104	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2105		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2106
2107	if (!vd->vdev_ops->vdev_op_leaf)
2108		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2109
2110	tvd = vd->vdev_top;
2111
2112	/*
2113	 * We don't directly use the aux state here, but if we do a
2114	 * vdev_reopen(), we need this value to be present to remember why we
2115	 * were faulted.
2116	 */
2117	vd->vdev_label_aux = aux;
2118
2119	/*
2120	 * Faulted state takes precedence over degraded.
2121	 */
2122	vd->vdev_delayed_close = B_FALSE;
2123	vd->vdev_faulted = 1ULL;
2124	vd->vdev_degraded = 0ULL;
2125	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2126
2127	/*
2128	 * If this device has the only valid copy of the data, then
2129	 * back off and simply mark the vdev as degraded instead.
2130	 */
2131	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2132		vd->vdev_degraded = 1ULL;
2133		vd->vdev_faulted = 0ULL;
2134
2135		/*
2136		 * If we reopen the device and it's not dead, only then do we
2137		 * mark it degraded.
2138		 */
2139		vdev_reopen(tvd);
2140
2141		if (vdev_readable(vd))
2142			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2143	}
2144
2145	return (spa_vdev_state_exit(spa, vd, 0));
2146}
2147
2148/*
2149 * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2150 * user that something is wrong.  The vdev continues to operate as normal as far
2151 * as I/O is concerned.
2152 */
2153int
2154vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2155{
2156	vdev_t *vd;
2157
2158	spa_vdev_state_enter(spa, SCL_NONE);
2159
2160	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2161		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2162
2163	if (!vd->vdev_ops->vdev_op_leaf)
2164		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2165
2166	/*
2167	 * If the vdev is already faulted, then don't do anything.
2168	 */
2169	if (vd->vdev_faulted || vd->vdev_degraded)
2170		return (spa_vdev_state_exit(spa, NULL, 0));
2171
2172	vd->vdev_degraded = 1ULL;
2173	if (!vdev_is_dead(vd))
2174		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2175		    aux);
2176
2177	return (spa_vdev_state_exit(spa, vd, 0));
2178}
2179
2180/*
2181 * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2182 * any attached spare device should be detached when the device finishes
2183 * resilvering.  Second, the online should be treated like a 'test' online case,
2184 * so no FMA events are generated if the device fails to open.
2185 */
2186int
2187vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2188{
2189	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2190
2191	spa_vdev_state_enter(spa, SCL_NONE);
2192
2193	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2194		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2195
2196	if (!vd->vdev_ops->vdev_op_leaf)
2197		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2198
2199	tvd = vd->vdev_top;
2200	vd->vdev_offline = B_FALSE;
2201	vd->vdev_tmpoffline = B_FALSE;
2202	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2203	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2204
2205	/* XXX - L2ARC 1.0 does not support expansion */
2206	if (!vd->vdev_aux) {
2207		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2208			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2209	}
2210
2211	vdev_reopen(tvd);
2212	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2213
2214	if (!vd->vdev_aux) {
2215		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2216			pvd->vdev_expanding = B_FALSE;
2217	}
2218
2219	if (newstate)
2220		*newstate = vd->vdev_state;
2221	if ((flags & ZFS_ONLINE_UNSPARE) &&
2222	    !vdev_is_dead(vd) && vd->vdev_parent &&
2223	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2224	    vd->vdev_parent->vdev_child[0] == vd)
2225		vd->vdev_unspare = B_TRUE;
2226
2227	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2228
2229		/* XXX - L2ARC 1.0 does not support expansion */
2230		if (vd->vdev_aux)
2231			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2232		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2233	}
2234	return (spa_vdev_state_exit(spa, vd, 0));
2235}
2236
2237static int
2238vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2239{
2240	vdev_t *vd, *tvd;
2241	int error = 0;
2242	uint64_t generation;
2243	metaslab_group_t *mg;
2244
2245top:
2246	spa_vdev_state_enter(spa, SCL_ALLOC);
2247
2248	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2249		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2250
2251	if (!vd->vdev_ops->vdev_op_leaf)
2252		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2253
2254	tvd = vd->vdev_top;
2255	mg = tvd->vdev_mg;
2256	generation = spa->spa_config_generation + 1;
2257
2258	/*
2259	 * If the device isn't already offline, try to offline it.
2260	 */
2261	if (!vd->vdev_offline) {
2262		/*
2263		 * If this device has the only valid copy of some data,
2264		 * don't allow it to be offlined. Log devices are always
2265		 * expendable.
2266		 */
2267		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2268		    vdev_dtl_required(vd))
2269			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2270
2271		/*
2272		 * If the top-level is a slog and it has had allocations
2273		 * then proceed.  We check that the vdev's metaslab group
2274		 * is not NULL since it's possible that we may have just
2275		 * added this vdev but not yet initialized its metaslabs.
2276		 */
2277		if (tvd->vdev_islog && mg != NULL) {
2278			/*
2279			 * Prevent any future allocations.
2280			 */
2281			metaslab_group_passivate(mg);
2282			(void) spa_vdev_state_exit(spa, vd, 0);
2283
2284			error = spa_offline_log(spa);
2285
2286			spa_vdev_state_enter(spa, SCL_ALLOC);
2287
2288			/*
2289			 * Check to see if the config has changed.
2290			 */
2291			if (error || generation != spa->spa_config_generation) {
2292				metaslab_group_activate(mg);
2293				if (error)
2294					return (spa_vdev_state_exit(spa,
2295					    vd, error));
2296				(void) spa_vdev_state_exit(spa, vd, 0);
2297				goto top;
2298			}
2299			ASSERT0(tvd->vdev_stat.vs_alloc);
2300		}
2301
2302		/*
2303		 * Offline this device and reopen its top-level vdev.
2304		 * If the top-level vdev is a log device then just offline
2305		 * it. Otherwise, if this action results in the top-level
2306		 * vdev becoming unusable, undo it and fail the request.
2307		 */
2308		vd->vdev_offline = B_TRUE;
2309		vdev_reopen(tvd);
2310
2311		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2312		    vdev_is_dead(tvd)) {
2313			vd->vdev_offline = B_FALSE;
2314			vdev_reopen(tvd);
2315			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2316		}
2317
2318		/*
2319		 * Add the device back into the metaslab rotor so that
2320		 * once we online the device it's open for business.
2321		 */
2322		if (tvd->vdev_islog && mg != NULL)
2323			metaslab_group_activate(mg);
2324	}
2325
2326	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2327
2328	return (spa_vdev_state_exit(spa, vd, 0));
2329}
2330
2331int
2332vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2333{
2334	int error;
2335
2336	mutex_enter(&spa->spa_vdev_top_lock);
2337	error = vdev_offline_locked(spa, guid, flags);
2338	mutex_exit(&spa->spa_vdev_top_lock);
2339
2340	return (error);
2341}
2342
2343/*
2344 * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2345 * vdev_offline(), we assume the spa config is locked.  We also clear all
2346 * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2347 */
2348void
2349vdev_clear(spa_t *spa, vdev_t *vd)
2350{
2351	vdev_t *rvd = spa->spa_root_vdev;
2352
2353	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2354
2355	if (vd == NULL)
2356		vd = rvd;
2357
2358	vd->vdev_stat.vs_read_errors = 0;
2359	vd->vdev_stat.vs_write_errors = 0;
2360	vd->vdev_stat.vs_checksum_errors = 0;
2361
2362	for (int c = 0; c < vd->vdev_children; c++)
2363		vdev_clear(spa, vd->vdev_child[c]);
2364
2365	/*
2366	 * If we're in the FAULTED state or have experienced failed I/O, then
2367	 * clear the persistent state and attempt to reopen the device.  We
2368	 * also mark the vdev config dirty, so that the new faulted state is
2369	 * written out to disk.
2370	 */
2371	if (vd->vdev_faulted || vd->vdev_degraded ||
2372	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2373
2374		/*
2375		 * When reopening in reponse to a clear event, it may be due to
2376		 * a fmadm repair request.  In this case, if the device is
2377		 * still broken, we want to still post the ereport again.
2378		 */
2379		vd->vdev_forcefault = B_TRUE;
2380
2381		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2382		vd->vdev_cant_read = B_FALSE;
2383		vd->vdev_cant_write = B_FALSE;
2384
2385		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2386
2387		vd->vdev_forcefault = B_FALSE;
2388
2389		if (vd != rvd && vdev_writeable(vd->vdev_top))
2390			vdev_state_dirty(vd->vdev_top);
2391
2392		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2393			spa_async_request(spa, SPA_ASYNC_RESILVER);
2394
2395		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2396	}
2397
2398	/*
2399	 * When clearing a FMA-diagnosed fault, we always want to
2400	 * unspare the device, as we assume that the original spare was
2401	 * done in response to the FMA fault.
2402	 */
2403	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2404	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2405	    vd->vdev_parent->vdev_child[0] == vd)
2406		vd->vdev_unspare = B_TRUE;
2407}
2408
2409boolean_t
2410vdev_is_dead(vdev_t *vd)
2411{
2412	/*
2413	 * Holes and missing devices are always considered "dead".
2414	 * This simplifies the code since we don't have to check for
2415	 * these types of devices in the various code paths.
2416	 * Instead we rely on the fact that we skip over dead devices
2417	 * before issuing I/O to them.
2418	 */
2419	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2420	    vd->vdev_ops == &vdev_missing_ops);
2421}
2422
2423boolean_t
2424vdev_readable(vdev_t *vd)
2425{
2426	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2427}
2428
2429boolean_t
2430vdev_writeable(vdev_t *vd)
2431{
2432	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2433}
2434
2435boolean_t
2436vdev_allocatable(vdev_t *vd)
2437{
2438	uint64_t state = vd->vdev_state;
2439
2440	/*
2441	 * We currently allow allocations from vdevs which may be in the
2442	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2443	 * fails to reopen then we'll catch it later when we're holding
2444	 * the proper locks.  Note that we have to get the vdev state
2445	 * in a local variable because although it changes atomically,
2446	 * we're asking two separate questions about it.
2447	 */
2448	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2449	    !vd->vdev_cant_write && !vd->vdev_ishole);
2450}
2451
2452boolean_t
2453vdev_accessible(vdev_t *vd, zio_t *zio)
2454{
2455	ASSERT(zio->io_vd == vd);
2456
2457	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2458		return (B_FALSE);
2459
2460	if (zio->io_type == ZIO_TYPE_READ)
2461		return (!vd->vdev_cant_read);
2462
2463	if (zio->io_type == ZIO_TYPE_WRITE)
2464		return (!vd->vdev_cant_write);
2465
2466	return (B_TRUE);
2467}
2468
2469/*
2470 * Get statistics for the given vdev.
2471 */
2472void
2473vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2474{
2475	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2476
2477	mutex_enter(&vd->vdev_stat_lock);
2478	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2479	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2480	vs->vs_state = vd->vdev_state;
2481	vs->vs_rsize = vdev_get_min_asize(vd);
2482	if (vd->vdev_ops->vdev_op_leaf)
2483		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2484	vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2485	mutex_exit(&vd->vdev_stat_lock);
2486
2487	/*
2488	 * If we're getting stats on the root vdev, aggregate the I/O counts
2489	 * over all top-level vdevs (i.e. the direct children of the root).
2490	 */
2491	if (vd == rvd) {
2492		for (int c = 0; c < rvd->vdev_children; c++) {
2493			vdev_t *cvd = rvd->vdev_child[c];
2494			vdev_stat_t *cvs = &cvd->vdev_stat;
2495
2496			mutex_enter(&vd->vdev_stat_lock);
2497			for (int t = 0; t < ZIO_TYPES; t++) {
2498				vs->vs_ops[t] += cvs->vs_ops[t];
2499				vs->vs_bytes[t] += cvs->vs_bytes[t];
2500			}
2501			cvs->vs_scan_removing = cvd->vdev_removing;
2502			mutex_exit(&vd->vdev_stat_lock);
2503		}
2504	}
2505}
2506
2507void
2508vdev_clear_stats(vdev_t *vd)
2509{
2510	mutex_enter(&vd->vdev_stat_lock);
2511	vd->vdev_stat.vs_space = 0;
2512	vd->vdev_stat.vs_dspace = 0;
2513	vd->vdev_stat.vs_alloc = 0;
2514	mutex_exit(&vd->vdev_stat_lock);
2515}
2516
2517void
2518vdev_scan_stat_init(vdev_t *vd)
2519{
2520	vdev_stat_t *vs = &vd->vdev_stat;
2521
2522	for (int c = 0; c < vd->vdev_children; c++)
2523		vdev_scan_stat_init(vd->vdev_child[c]);
2524
2525	mutex_enter(&vd->vdev_stat_lock);
2526	vs->vs_scan_processed = 0;
2527	mutex_exit(&vd->vdev_stat_lock);
2528}
2529
2530void
2531vdev_stat_update(zio_t *zio, uint64_t psize)
2532{
2533	spa_t *spa = zio->io_spa;
2534	vdev_t *rvd = spa->spa_root_vdev;
2535	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2536	vdev_t *pvd;
2537	uint64_t txg = zio->io_txg;
2538	vdev_stat_t *vs = &vd->vdev_stat;
2539	zio_type_t type = zio->io_type;
2540	int flags = zio->io_flags;
2541
2542	/*
2543	 * If this i/o is a gang leader, it didn't do any actual work.
2544	 */
2545	if (zio->io_gang_tree)
2546		return;
2547
2548	if (zio->io_error == 0) {
2549		/*
2550		 * If this is a root i/o, don't count it -- we've already
2551		 * counted the top-level vdevs, and vdev_get_stats() will
2552		 * aggregate them when asked.  This reduces contention on
2553		 * the root vdev_stat_lock and implicitly handles blocks
2554		 * that compress away to holes, for which there is no i/o.
2555		 * (Holes never create vdev children, so all the counters
2556		 * remain zero, which is what we want.)
2557		 *
2558		 * Note: this only applies to successful i/o (io_error == 0)
2559		 * because unlike i/o counts, errors are not additive.
2560		 * When reading a ditto block, for example, failure of
2561		 * one top-level vdev does not imply a root-level error.
2562		 */
2563		if (vd == rvd)
2564			return;
2565
2566		ASSERT(vd == zio->io_vd);
2567
2568		if (flags & ZIO_FLAG_IO_BYPASS)
2569			return;
2570
2571		mutex_enter(&vd->vdev_stat_lock);
2572
2573		if (flags & ZIO_FLAG_IO_REPAIR) {
2574			if (flags & ZIO_FLAG_SCAN_THREAD) {
2575				dsl_scan_phys_t *scn_phys =
2576				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2577				uint64_t *processed = &scn_phys->scn_processed;
2578
2579				/* XXX cleanup? */
2580				if (vd->vdev_ops->vdev_op_leaf)
2581					atomic_add_64(processed, psize);
2582				vs->vs_scan_processed += psize;
2583			}
2584
2585			if (flags & ZIO_FLAG_SELF_HEAL)
2586				vs->vs_self_healed += psize;
2587		}
2588
2589		vs->vs_ops[type]++;
2590		vs->vs_bytes[type] += psize;
2591
2592		mutex_exit(&vd->vdev_stat_lock);
2593		return;
2594	}
2595
2596	if (flags & ZIO_FLAG_SPECULATIVE)
2597		return;
2598
2599	/*
2600	 * If this is an I/O error that is going to be retried, then ignore the
2601	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2602	 * hard errors, when in reality they can happen for any number of
2603	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2604	 */
2605	if (zio->io_error == EIO &&
2606	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2607		return;
2608
2609	/*
2610	 * Intent logs writes won't propagate their error to the root
2611	 * I/O so don't mark these types of failures as pool-level
2612	 * errors.
2613	 */
2614	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2615		return;
2616
2617	mutex_enter(&vd->vdev_stat_lock);
2618	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2619		if (zio->io_error == ECKSUM)
2620			vs->vs_checksum_errors++;
2621		else
2622			vs->vs_read_errors++;
2623	}
2624	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2625		vs->vs_write_errors++;
2626	mutex_exit(&vd->vdev_stat_lock);
2627
2628	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2629	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2630	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2631	    spa->spa_claiming)) {
2632		/*
2633		 * This is either a normal write (not a repair), or it's
2634		 * a repair induced by the scrub thread, or it's a repair
2635		 * made by zil_claim() during spa_load() in the first txg.
2636		 * In the normal case, we commit the DTL change in the same
2637		 * txg as the block was born.  In the scrub-induced repair
2638		 * case, we know that scrubs run in first-pass syncing context,
2639		 * so we commit the DTL change in spa_syncing_txg(spa).
2640		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2641		 *
2642		 * We currently do not make DTL entries for failed spontaneous
2643		 * self-healing writes triggered by normal (non-scrubbing)
2644		 * reads, because we have no transactional context in which to
2645		 * do so -- and it's not clear that it'd be desirable anyway.
2646		 */
2647		if (vd->vdev_ops->vdev_op_leaf) {
2648			uint64_t commit_txg = txg;
2649			if (flags & ZIO_FLAG_SCAN_THREAD) {
2650				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2651				ASSERT(spa_sync_pass(spa) == 1);
2652				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2653				commit_txg = spa_syncing_txg(spa);
2654			} else if (spa->spa_claiming) {
2655				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2656				commit_txg = spa_first_txg(spa);
2657			}
2658			ASSERT(commit_txg >= spa_syncing_txg(spa));
2659			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2660				return;
2661			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2662				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2663			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2664		}
2665		if (vd != rvd)
2666			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2667	}
2668}
2669
2670/*
2671 * Update the in-core space usage stats for this vdev, its metaslab class,
2672 * and the root vdev.
2673 */
2674void
2675vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2676    int64_t space_delta)
2677{
2678	int64_t dspace_delta = space_delta;
2679	spa_t *spa = vd->vdev_spa;
2680	vdev_t *rvd = spa->spa_root_vdev;
2681	metaslab_group_t *mg = vd->vdev_mg;
2682	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2683
2684	ASSERT(vd == vd->vdev_top);
2685
2686	/*
2687	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2688	 * factor.  We must calculate this here and not at the root vdev
2689	 * because the root vdev's psize-to-asize is simply the max of its
2690	 * childrens', thus not accurate enough for us.
2691	 */
2692	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2693	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2694	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2695	    vd->vdev_deflate_ratio;
2696
2697	mutex_enter(&vd->vdev_stat_lock);
2698	vd->vdev_stat.vs_alloc += alloc_delta;
2699	vd->vdev_stat.vs_space += space_delta;
2700	vd->vdev_stat.vs_dspace += dspace_delta;
2701	mutex_exit(&vd->vdev_stat_lock);
2702
2703	if (mc == spa_normal_class(spa)) {
2704		mutex_enter(&rvd->vdev_stat_lock);
2705		rvd->vdev_stat.vs_alloc += alloc_delta;
2706		rvd->vdev_stat.vs_space += space_delta;
2707		rvd->vdev_stat.vs_dspace += dspace_delta;
2708		mutex_exit(&rvd->vdev_stat_lock);
2709	}
2710
2711	if (mc != NULL) {
2712		ASSERT(rvd == vd->vdev_parent);
2713		ASSERT(vd->vdev_ms_count != 0);
2714
2715		metaslab_class_space_update(mc,
2716		    alloc_delta, defer_delta, space_delta, dspace_delta);
2717	}
2718}
2719
2720/*
2721 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2722 * so that it will be written out next time the vdev configuration is synced.
2723 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2724 */
2725void
2726vdev_config_dirty(vdev_t *vd)
2727{
2728	spa_t *spa = vd->vdev_spa;
2729	vdev_t *rvd = spa->spa_root_vdev;
2730	int c;
2731
2732	ASSERT(spa_writeable(spa));
2733
2734	/*
2735	 * If this is an aux vdev (as with l2cache and spare devices), then we
2736	 * update the vdev config manually and set the sync flag.
2737	 */
2738	if (vd->vdev_aux != NULL) {
2739		spa_aux_vdev_t *sav = vd->vdev_aux;
2740		nvlist_t **aux;
2741		uint_t naux;
2742
2743		for (c = 0; c < sav->sav_count; c++) {
2744			if (sav->sav_vdevs[c] == vd)
2745				break;
2746		}
2747
2748		if (c == sav->sav_count) {
2749			/*
2750			 * We're being removed.  There's nothing more to do.
2751			 */
2752			ASSERT(sav->sav_sync == B_TRUE);
2753			return;
2754		}
2755
2756		sav->sav_sync = B_TRUE;
2757
2758		if (nvlist_lookup_nvlist_array(sav->sav_config,
2759		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2760			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2761			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2762		}
2763
2764		ASSERT(c < naux);
2765
2766		/*
2767		 * Setting the nvlist in the middle if the array is a little
2768		 * sketchy, but it will work.
2769		 */
2770		nvlist_free(aux[c]);
2771		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2772
2773		return;
2774	}
2775
2776	/*
2777	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2778	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2779	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2780	 * so this is sufficient to ensure mutual exclusion.
2781	 */
2782	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2783	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2784	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2785
2786	if (vd == rvd) {
2787		for (c = 0; c < rvd->vdev_children; c++)
2788			vdev_config_dirty(rvd->vdev_child[c]);
2789	} else {
2790		ASSERT(vd == vd->vdev_top);
2791
2792		if (!list_link_active(&vd->vdev_config_dirty_node) &&
2793		    !vd->vdev_ishole)
2794			list_insert_head(&spa->spa_config_dirty_list, vd);
2795	}
2796}
2797
2798void
2799vdev_config_clean(vdev_t *vd)
2800{
2801	spa_t *spa = vd->vdev_spa;
2802
2803	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2804	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2805	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2806
2807	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2808	list_remove(&spa->spa_config_dirty_list, vd);
2809}
2810
2811/*
2812 * Mark a top-level vdev's state as dirty, so that the next pass of
2813 * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2814 * the state changes from larger config changes because they require
2815 * much less locking, and are often needed for administrative actions.
2816 */
2817void
2818vdev_state_dirty(vdev_t *vd)
2819{
2820	spa_t *spa = vd->vdev_spa;
2821
2822	ASSERT(spa_writeable(spa));
2823	ASSERT(vd == vd->vdev_top);
2824
2825	/*
2826	 * The state list is protected by the SCL_STATE lock.  The caller
2827	 * must either hold SCL_STATE as writer, or must be the sync thread
2828	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2829	 * so this is sufficient to ensure mutual exclusion.
2830	 */
2831	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2832	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2833	    spa_config_held(spa, SCL_STATE, RW_READER)));
2834
2835	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2836		list_insert_head(&spa->spa_state_dirty_list, vd);
2837}
2838
2839void
2840vdev_state_clean(vdev_t *vd)
2841{
2842	spa_t *spa = vd->vdev_spa;
2843
2844	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2845	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2846	    spa_config_held(spa, SCL_STATE, RW_READER)));
2847
2848	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2849	list_remove(&spa->spa_state_dirty_list, vd);
2850}
2851
2852/*
2853 * Propagate vdev state up from children to parent.
2854 */
2855void
2856vdev_propagate_state(vdev_t *vd)
2857{
2858	spa_t *spa = vd->vdev_spa;
2859	vdev_t *rvd = spa->spa_root_vdev;
2860	int degraded = 0, faulted = 0;
2861	int corrupted = 0;
2862	vdev_t *child;
2863
2864	if (vd->vdev_children > 0) {
2865		for (int c = 0; c < vd->vdev_children; c++) {
2866			child = vd->vdev_child[c];
2867
2868			/*
2869			 * Don't factor holes into the decision.
2870			 */
2871			if (child->vdev_ishole)
2872				continue;
2873
2874			if (!vdev_readable(child) ||
2875			    (!vdev_writeable(child) && spa_writeable(spa))) {
2876				/*
2877				 * Root special: if there is a top-level log
2878				 * device, treat the root vdev as if it were
2879				 * degraded.
2880				 */
2881				if (child->vdev_islog && vd == rvd)
2882					degraded++;
2883				else
2884					faulted++;
2885			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2886				degraded++;
2887			}
2888
2889			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2890				corrupted++;
2891		}
2892
2893		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2894
2895		/*
2896		 * Root special: if there is a top-level vdev that cannot be
2897		 * opened due to corrupted metadata, then propagate the root
2898		 * vdev's aux state as 'corrupt' rather than 'insufficient
2899		 * replicas'.
2900		 */
2901		if (corrupted && vd == rvd &&
2902		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2903			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2904			    VDEV_AUX_CORRUPT_DATA);
2905	}
2906
2907	if (vd->vdev_parent)
2908		vdev_propagate_state(vd->vdev_parent);
2909}
2910
2911/*
2912 * Set a vdev's state.  If this is during an open, we don't update the parent
2913 * state, because we're in the process of opening children depth-first.
2914 * Otherwise, we propagate the change to the parent.
2915 *
2916 * If this routine places a device in a faulted state, an appropriate ereport is
2917 * generated.
2918 */
2919void
2920vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2921{
2922	uint64_t save_state;
2923	spa_t *spa = vd->vdev_spa;
2924
2925	if (state == vd->vdev_state) {
2926		vd->vdev_stat.vs_aux = aux;
2927		return;
2928	}
2929
2930	save_state = vd->vdev_state;
2931
2932	vd->vdev_state = state;
2933	vd->vdev_stat.vs_aux = aux;
2934
2935	/*
2936	 * If we are setting the vdev state to anything but an open state, then
2937	 * always close the underlying device unless the device has requested
2938	 * a delayed close (i.e. we're about to remove or fault the device).
2939	 * Otherwise, we keep accessible but invalid devices open forever.
2940	 * We don't call vdev_close() itself, because that implies some extra
2941	 * checks (offline, etc) that we don't want here.  This is limited to
2942	 * leaf devices, because otherwise closing the device will affect other
2943	 * children.
2944	 */
2945	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2946	    vd->vdev_ops->vdev_op_leaf)
2947		vd->vdev_ops->vdev_op_close(vd);
2948
2949	/*
2950	 * If we have brought this vdev back into service, we need
2951	 * to notify fmd so that it can gracefully repair any outstanding
2952	 * cases due to a missing device.  We do this in all cases, even those
2953	 * that probably don't correlate to a repaired fault.  This is sure to
2954	 * catch all cases, and we let the zfs-retire agent sort it out.  If
2955	 * this is a transient state it's OK, as the retire agent will
2956	 * double-check the state of the vdev before repairing it.
2957	 */
2958	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2959	    vd->vdev_prevstate != state)
2960		zfs_post_state_change(spa, vd);
2961
2962	if (vd->vdev_removed &&
2963	    state == VDEV_STATE_CANT_OPEN &&
2964	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2965		/*
2966		 * If the previous state is set to VDEV_STATE_REMOVED, then this
2967		 * device was previously marked removed and someone attempted to
2968		 * reopen it.  If this failed due to a nonexistent device, then
2969		 * keep the device in the REMOVED state.  We also let this be if
2970		 * it is one of our special test online cases, which is only
2971		 * attempting to online the device and shouldn't generate an FMA
2972		 * fault.
2973		 */
2974		vd->vdev_state = VDEV_STATE_REMOVED;
2975		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2976	} else if (state == VDEV_STATE_REMOVED) {
2977		vd->vdev_removed = B_TRUE;
2978	} else if (state == VDEV_STATE_CANT_OPEN) {
2979		/*
2980		 * If we fail to open a vdev during an import or recovery, we
2981		 * mark it as "not available", which signifies that it was
2982		 * never there to begin with.  Failure to open such a device
2983		 * is not considered an error.
2984		 */
2985		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2986		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
2987		    vd->vdev_ops->vdev_op_leaf)
2988			vd->vdev_not_present = 1;
2989
2990		/*
2991		 * Post the appropriate ereport.  If the 'prevstate' field is
2992		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2993		 * that this is part of a vdev_reopen().  In this case, we don't
2994		 * want to post the ereport if the device was already in the
2995		 * CANT_OPEN state beforehand.
2996		 *
2997		 * If the 'checkremove' flag is set, then this is an attempt to
2998		 * online the device in response to an insertion event.  If we
2999		 * hit this case, then we have detected an insertion event for a
3000		 * faulted or offline device that wasn't in the removed state.
3001		 * In this scenario, we don't post an ereport because we are
3002		 * about to replace the device, or attempt an online with
3003		 * vdev_forcefault, which will generate the fault for us.
3004		 */
3005		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3006		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3007		    vd != spa->spa_root_vdev) {
3008			const char *class;
3009
3010			switch (aux) {
3011			case VDEV_AUX_OPEN_FAILED:
3012				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3013				break;
3014			case VDEV_AUX_CORRUPT_DATA:
3015				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3016				break;
3017			case VDEV_AUX_NO_REPLICAS:
3018				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3019				break;
3020			case VDEV_AUX_BAD_GUID_SUM:
3021				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3022				break;
3023			case VDEV_AUX_TOO_SMALL:
3024				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3025				break;
3026			case VDEV_AUX_BAD_LABEL:
3027				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3028				break;
3029			default:
3030				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3031			}
3032
3033			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3034		}
3035
3036		/* Erase any notion of persistent removed state */
3037		vd->vdev_removed = B_FALSE;
3038	} else {
3039		vd->vdev_removed = B_FALSE;
3040	}
3041
3042	if (!isopen && vd->vdev_parent)
3043		vdev_propagate_state(vd->vdev_parent);
3044}
3045
3046/*
3047 * Check the vdev configuration to ensure that it's capable of supporting
3048 * a root pool.
3049 *
3050 * On Solaris, we do not support RAID-Z or partial configuration.  In
3051 * addition, only a single top-level vdev is allowed and none of the
3052 * leaves can be wholedisks.
3053 *
3054 * For FreeBSD, we can boot from any configuration. There is a
3055 * limitation that the boot filesystem must be either uncompressed or
3056 * compresses with lzjb compression but I'm not sure how to enforce
3057 * that here.
3058 */
3059boolean_t
3060vdev_is_bootable(vdev_t *vd)
3061{
3062#ifdef sun
3063	if (!vd->vdev_ops->vdev_op_leaf) {
3064		char *vdev_type = vd->vdev_ops->vdev_op_type;
3065
3066		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3067		    vd->vdev_children > 1) {
3068			return (B_FALSE);
3069		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3070		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3071			return (B_FALSE);
3072		}
3073	} else if (vd->vdev_wholedisk == 1) {
3074		return (B_FALSE);
3075	}
3076
3077	for (int c = 0; c < vd->vdev_children; c++) {
3078		if (!vdev_is_bootable(vd->vdev_child[c]))
3079			return (B_FALSE);
3080	}
3081#endif	/* sun */
3082	return (B_TRUE);
3083}
3084
3085/*
3086 * Load the state from the original vdev tree (ovd) which
3087 * we've retrieved from the MOS config object. If the original
3088 * vdev was offline or faulted then we transfer that state to the
3089 * device in the current vdev tree (nvd).
3090 */
3091void
3092vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3093{
3094	spa_t *spa = nvd->vdev_spa;
3095
3096	ASSERT(nvd->vdev_top->vdev_islog);
3097	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3098	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3099
3100	for (int c = 0; c < nvd->vdev_children; c++)
3101		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3102
3103	if (nvd->vdev_ops->vdev_op_leaf) {
3104		/*
3105		 * Restore the persistent vdev state
3106		 */
3107		nvd->vdev_offline = ovd->vdev_offline;
3108		nvd->vdev_faulted = ovd->vdev_faulted;
3109		nvd->vdev_degraded = ovd->vdev_degraded;
3110		nvd->vdev_removed = ovd->vdev_removed;
3111	}
3112}
3113
3114/*
3115 * Determine if a log device has valid content.  If the vdev was
3116 * removed or faulted in the MOS config then we know that
3117 * the content on the log device has already been written to the pool.
3118 */
3119boolean_t
3120vdev_log_state_valid(vdev_t *vd)
3121{
3122	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3123	    !vd->vdev_removed)
3124		return (B_TRUE);
3125
3126	for (int c = 0; c < vd->vdev_children; c++)
3127		if (vdev_log_state_valid(vd->vdev_child[c]))
3128			return (B_TRUE);
3129
3130	return (B_FALSE);
3131}
3132
3133/*
3134 * Expand a vdev if possible.
3135 */
3136void
3137vdev_expand(vdev_t *vd, uint64_t txg)
3138{
3139	ASSERT(vd->vdev_top == vd);
3140	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3141
3142	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3143		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3144		vdev_config_dirty(vd);
3145	}
3146}
3147
3148/*
3149 * Split a vdev.
3150 */
3151void
3152vdev_split(vdev_t *vd)
3153{
3154	vdev_t *cvd, *pvd = vd->vdev_parent;
3155
3156	vdev_remove_child(pvd, vd);
3157	vdev_compact_children(pvd);
3158
3159	cvd = pvd->vdev_child[0];
3160	if (pvd->vdev_children == 1) {
3161		vdev_remove_parent(cvd);
3162		cvd->vdev_splitting = B_TRUE;
3163	}
3164	vdev_propagate_state(cvd);
3165}
3166