vdev.c revision 168404
1168404Spjd/*
2168404Spjd * CDDL HEADER START
3168404Spjd *
4168404Spjd * The contents of this file are subject to the terms of the
5168404Spjd * Common Development and Distribution License (the "License").
6168404Spjd * You may not use this file except in compliance with the License.
7168404Spjd *
8168404Spjd * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9168404Spjd * or http://www.opensolaris.org/os/licensing.
10168404Spjd * See the License for the specific language governing permissions
11168404Spjd * and limitations under the License.
12168404Spjd *
13168404Spjd * When distributing Covered Code, include this CDDL HEADER in each
14168404Spjd * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15168404Spjd * If applicable, add the following below this CDDL HEADER, with the
16168404Spjd * fields enclosed by brackets "[]" replaced with your own identifying
17168404Spjd * information: Portions Copyright [yyyy] [name of copyright owner]
18168404Spjd *
19168404Spjd * CDDL HEADER END
20168404Spjd */
21168404Spjd
22168404Spjd/*
23168404Spjd * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24168404Spjd * Use is subject to license terms.
25168404Spjd */
26168404Spjd
27168404Spjd#pragma ident	"%Z%%M%	%I%	%E% SMI"
28168404Spjd
29168404Spjd#include <sys/zfs_context.h>
30168404Spjd#include <sys/fm/fs/zfs.h>
31168404Spjd#include <sys/spa.h>
32168404Spjd#include <sys/spa_impl.h>
33168404Spjd#include <sys/dmu.h>
34168404Spjd#include <sys/dmu_tx.h>
35168404Spjd#include <sys/vdev_impl.h>
36168404Spjd#include <sys/uberblock_impl.h>
37168404Spjd#include <sys/metaslab.h>
38168404Spjd#include <sys/metaslab_impl.h>
39168404Spjd#include <sys/space_map.h>
40168404Spjd#include <sys/zio.h>
41168404Spjd#include <sys/zap.h>
42168404Spjd#include <sys/fs/zfs.h>
43168404Spjd
44168404SpjdSYSCTL_DECL(_vfs_zfs);
45168404SpjdSYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
46168404Spjd
47168404Spjd/*
48168404Spjd * Virtual device management.
49168404Spjd */
50168404Spjd
51168404Spjdstatic vdev_ops_t *vdev_ops_table[] = {
52168404Spjd	&vdev_root_ops,
53168404Spjd	&vdev_raidz_ops,
54168404Spjd	&vdev_mirror_ops,
55168404Spjd	&vdev_replacing_ops,
56168404Spjd	&vdev_spare_ops,
57168404Spjd#ifdef _KERNEL
58168404Spjd	&vdev_geom_ops,
59168404Spjd#else
60168404Spjd	&vdev_disk_ops,
61168404Spjd	&vdev_file_ops,
62168404Spjd#endif
63168404Spjd	&vdev_missing_ops,
64168404Spjd	NULL
65168404Spjd};
66168404Spjd
67168404Spjd/* maximum scrub/resilver I/O queue */
68168404Spjdint zfs_scrub_limit = 70;
69168404Spjd
70168404Spjd/*
71168404Spjd * Given a vdev type, return the appropriate ops vector.
72168404Spjd */
73168404Spjdstatic vdev_ops_t *
74168404Spjdvdev_getops(const char *type)
75168404Spjd{
76168404Spjd	vdev_ops_t *ops, **opspp;
77168404Spjd
78168404Spjd	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
79168404Spjd		if (strcmp(ops->vdev_op_type, type) == 0)
80168404Spjd			break;
81168404Spjd
82168404Spjd	return (ops);
83168404Spjd}
84168404Spjd
85168404Spjd/*
86168404Spjd * Default asize function: return the MAX of psize with the asize of
87168404Spjd * all children.  This is what's used by anything other than RAID-Z.
88168404Spjd */
89168404Spjduint64_t
90168404Spjdvdev_default_asize(vdev_t *vd, uint64_t psize)
91168404Spjd{
92168404Spjd	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
93168404Spjd	uint64_t csize;
94168404Spjd	uint64_t c;
95168404Spjd
96168404Spjd	for (c = 0; c < vd->vdev_children; c++) {
97168404Spjd		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
98168404Spjd		asize = MAX(asize, csize);
99168404Spjd	}
100168404Spjd
101168404Spjd	return (asize);
102168404Spjd}
103168404Spjd
104168404Spjd/*
105168404Spjd * Get the replaceable or attachable device size.
106168404Spjd * If the parent is a mirror or raidz, the replaceable size is the minimum
107168404Spjd * psize of all its children. For the rest, just return our own psize.
108168404Spjd *
109168404Spjd * e.g.
110168404Spjd *			psize	rsize
111168404Spjd * root			-	-
112168404Spjd *	mirror/raidz	-	-
113168404Spjd *	    disk1	20g	20g
114168404Spjd *	    disk2 	40g	20g
115168404Spjd *	disk3 		80g	80g
116168404Spjd */
117168404Spjduint64_t
118168404Spjdvdev_get_rsize(vdev_t *vd)
119168404Spjd{
120168404Spjd	vdev_t *pvd, *cvd;
121168404Spjd	uint64_t c, rsize;
122168404Spjd
123168404Spjd	pvd = vd->vdev_parent;
124168404Spjd
125168404Spjd	/*
126168404Spjd	 * If our parent is NULL or the root, just return our own psize.
127168404Spjd	 */
128168404Spjd	if (pvd == NULL || pvd->vdev_parent == NULL)
129168404Spjd		return (vd->vdev_psize);
130168404Spjd
131168404Spjd	rsize = 0;
132168404Spjd
133168404Spjd	for (c = 0; c < pvd->vdev_children; c++) {
134168404Spjd		cvd = pvd->vdev_child[c];
135168404Spjd		rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1;
136168404Spjd	}
137168404Spjd
138168404Spjd	return (rsize);
139168404Spjd}
140168404Spjd
141168404Spjdvdev_t *
142168404Spjdvdev_lookup_top(spa_t *spa, uint64_t vdev)
143168404Spjd{
144168404Spjd	vdev_t *rvd = spa->spa_root_vdev;
145168404Spjd
146168404Spjd	if (vdev < rvd->vdev_children)
147168404Spjd		return (rvd->vdev_child[vdev]);
148168404Spjd
149168404Spjd	return (NULL);
150168404Spjd}
151168404Spjd
152168404Spjdvdev_t *
153168404Spjdvdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
154168404Spjd{
155168404Spjd	int c;
156168404Spjd	vdev_t *mvd;
157168404Spjd
158168404Spjd	if (vd->vdev_guid == guid)
159168404Spjd		return (vd);
160168404Spjd
161168404Spjd	for (c = 0; c < vd->vdev_children; c++)
162168404Spjd		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
163168404Spjd		    NULL)
164168404Spjd			return (mvd);
165168404Spjd
166168404Spjd	return (NULL);
167168404Spjd}
168168404Spjd
169168404Spjdvoid
170168404Spjdvdev_add_child(vdev_t *pvd, vdev_t *cvd)
171168404Spjd{
172168404Spjd	size_t oldsize, newsize;
173168404Spjd	uint64_t id = cvd->vdev_id;
174168404Spjd	vdev_t **newchild;
175168404Spjd
176168404Spjd	ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER));
177168404Spjd	ASSERT(cvd->vdev_parent == NULL);
178168404Spjd
179168404Spjd	cvd->vdev_parent = pvd;
180168404Spjd
181168404Spjd	if (pvd == NULL)
182168404Spjd		return;
183168404Spjd
184168404Spjd	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
185168404Spjd
186168404Spjd	oldsize = pvd->vdev_children * sizeof (vdev_t *);
187168404Spjd	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
188168404Spjd	newsize = pvd->vdev_children * sizeof (vdev_t *);
189168404Spjd
190168404Spjd	newchild = kmem_zalloc(newsize, KM_SLEEP);
191168404Spjd	if (pvd->vdev_child != NULL) {
192168404Spjd		bcopy(pvd->vdev_child, newchild, oldsize);
193168404Spjd		kmem_free(pvd->vdev_child, oldsize);
194168404Spjd	}
195168404Spjd
196168404Spjd	pvd->vdev_child = newchild;
197168404Spjd	pvd->vdev_child[id] = cvd;
198168404Spjd
199168404Spjd	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
200168404Spjd	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
201168404Spjd
202168404Spjd	/*
203168404Spjd	 * Walk up all ancestors to update guid sum.
204168404Spjd	 */
205168404Spjd	for (; pvd != NULL; pvd = pvd->vdev_parent)
206168404Spjd		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
207168404Spjd
208168404Spjd	if (cvd->vdev_ops->vdev_op_leaf)
209168404Spjd		cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
210168404Spjd}
211168404Spjd
212168404Spjdvoid
213168404Spjdvdev_remove_child(vdev_t *pvd, vdev_t *cvd)
214168404Spjd{
215168404Spjd	int c;
216168404Spjd	uint_t id = cvd->vdev_id;
217168404Spjd
218168404Spjd	ASSERT(cvd->vdev_parent == pvd);
219168404Spjd
220168404Spjd	if (pvd == NULL)
221168404Spjd		return;
222168404Spjd
223168404Spjd	ASSERT(id < pvd->vdev_children);
224168404Spjd	ASSERT(pvd->vdev_child[id] == cvd);
225168404Spjd
226168404Spjd	pvd->vdev_child[id] = NULL;
227168404Spjd	cvd->vdev_parent = NULL;
228168404Spjd
229168404Spjd	for (c = 0; c < pvd->vdev_children; c++)
230168404Spjd		if (pvd->vdev_child[c])
231168404Spjd			break;
232168404Spjd
233168404Spjd	if (c == pvd->vdev_children) {
234168404Spjd		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
235168404Spjd		pvd->vdev_child = NULL;
236168404Spjd		pvd->vdev_children = 0;
237168404Spjd	}
238168404Spjd
239168404Spjd	/*
240168404Spjd	 * Walk up all ancestors to update guid sum.
241168404Spjd	 */
242168404Spjd	for (; pvd != NULL; pvd = pvd->vdev_parent)
243168404Spjd		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
244168404Spjd
245168404Spjd	if (cvd->vdev_ops->vdev_op_leaf)
246168404Spjd		cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
247168404Spjd}
248168404Spjd
249168404Spjd/*
250168404Spjd * Remove any holes in the child array.
251168404Spjd */
252168404Spjdvoid
253168404Spjdvdev_compact_children(vdev_t *pvd)
254168404Spjd{
255168404Spjd	vdev_t **newchild, *cvd;
256168404Spjd	int oldc = pvd->vdev_children;
257168404Spjd	int newc, c;
258168404Spjd
259168404Spjd	ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER));
260168404Spjd
261168404Spjd	for (c = newc = 0; c < oldc; c++)
262168404Spjd		if (pvd->vdev_child[c])
263168404Spjd			newc++;
264168404Spjd
265168404Spjd	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
266168404Spjd
267168404Spjd	for (c = newc = 0; c < oldc; c++) {
268168404Spjd		if ((cvd = pvd->vdev_child[c]) != NULL) {
269168404Spjd			newchild[newc] = cvd;
270168404Spjd			cvd->vdev_id = newc++;
271168404Spjd		}
272168404Spjd	}
273168404Spjd
274168404Spjd	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
275168404Spjd	pvd->vdev_child = newchild;
276168404Spjd	pvd->vdev_children = newc;
277168404Spjd}
278168404Spjd
279168404Spjd/*
280168404Spjd * Allocate and minimally initialize a vdev_t.
281168404Spjd */
282168404Spjdstatic vdev_t *
283168404Spjdvdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
284168404Spjd{
285168404Spjd	vdev_t *vd;
286168404Spjd
287168404Spjd	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
288168404Spjd
289168404Spjd	if (spa->spa_root_vdev == NULL) {
290168404Spjd		ASSERT(ops == &vdev_root_ops);
291168404Spjd		spa->spa_root_vdev = vd;
292168404Spjd	}
293168404Spjd
294168404Spjd	if (guid == 0) {
295168404Spjd		if (spa->spa_root_vdev == vd) {
296168404Spjd			/*
297168404Spjd			 * The root vdev's guid will also be the pool guid,
298168404Spjd			 * which must be unique among all pools.
299168404Spjd			 */
300168404Spjd			while (guid == 0 || spa_guid_exists(guid, 0))
301168404Spjd				guid = spa_get_random(-1ULL);
302168404Spjd		} else {
303168404Spjd			/*
304168404Spjd			 * Any other vdev's guid must be unique within the pool.
305168404Spjd			 */
306168404Spjd			while (guid == 0 ||
307168404Spjd			    spa_guid_exists(spa_guid(spa), guid))
308168404Spjd				guid = spa_get_random(-1ULL);
309168404Spjd		}
310168404Spjd		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
311168404Spjd	}
312168404Spjd
313168404Spjd	vd->vdev_spa = spa;
314168404Spjd	vd->vdev_id = id;
315168404Spjd	vd->vdev_guid = guid;
316168404Spjd	vd->vdev_guid_sum = guid;
317168404Spjd	vd->vdev_ops = ops;
318168404Spjd	vd->vdev_state = VDEV_STATE_CLOSED;
319168404Spjd
320168404Spjd	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
321168404Spjd	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
322168404Spjd	space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock);
323168404Spjd	space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock);
324168404Spjd	txg_list_create(&vd->vdev_ms_list,
325168404Spjd	    offsetof(struct metaslab, ms_txg_node));
326168404Spjd	txg_list_create(&vd->vdev_dtl_list,
327168404Spjd	    offsetof(struct vdev, vdev_dtl_node));
328168404Spjd	vd->vdev_stat.vs_timestamp = gethrtime();
329168404Spjd
330168404Spjd	return (vd);
331168404Spjd}
332168404Spjd
333168404Spjd/*
334168404Spjd * Free a vdev_t that has been removed from service.
335168404Spjd */
336168404Spjdstatic void
337168404Spjdvdev_free_common(vdev_t *vd)
338168404Spjd{
339168404Spjd	spa_t *spa = vd->vdev_spa;
340168404Spjd
341168404Spjd	if (vd->vdev_path)
342168404Spjd		spa_strfree(vd->vdev_path);
343168404Spjd	if (vd->vdev_devid)
344168404Spjd		spa_strfree(vd->vdev_devid);
345168404Spjd
346168404Spjd	if (vd->vdev_isspare)
347168404Spjd		spa_spare_remove(vd);
348168404Spjd
349168404Spjd	txg_list_destroy(&vd->vdev_ms_list);
350168404Spjd	txg_list_destroy(&vd->vdev_dtl_list);
351168404Spjd	mutex_enter(&vd->vdev_dtl_lock);
352168404Spjd	space_map_unload(&vd->vdev_dtl_map);
353168404Spjd	space_map_destroy(&vd->vdev_dtl_map);
354168404Spjd	space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
355168404Spjd	space_map_destroy(&vd->vdev_dtl_scrub);
356168404Spjd	mutex_exit(&vd->vdev_dtl_lock);
357168404Spjd	mutex_destroy(&vd->vdev_dtl_lock);
358168404Spjd	mutex_destroy(&vd->vdev_stat_lock);
359168404Spjd
360168404Spjd	if (vd == spa->spa_root_vdev)
361168404Spjd		spa->spa_root_vdev = NULL;
362168404Spjd
363168404Spjd	kmem_free(vd, sizeof (vdev_t));
364168404Spjd}
365168404Spjd
366168404Spjd/*
367168404Spjd * Allocate a new vdev.  The 'alloctype' is used to control whether we are
368168404Spjd * creating a new vdev or loading an existing one - the behavior is slightly
369168404Spjd * different for each case.
370168404Spjd */
371168404Spjdint
372168404Spjdvdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
373168404Spjd    int alloctype)
374168404Spjd{
375168404Spjd	vdev_ops_t *ops;
376168404Spjd	char *type;
377168404Spjd	uint64_t guid = 0;
378168404Spjd	vdev_t *vd;
379168404Spjd
380168404Spjd	ASSERT(spa_config_held(spa, RW_WRITER));
381168404Spjd
382168404Spjd	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
383168404Spjd		return (EINVAL);
384168404Spjd
385168404Spjd	if ((ops = vdev_getops(type)) == NULL)
386168404Spjd		return (EINVAL);
387168404Spjd
388168404Spjd	/*
389168404Spjd	 * If this is a load, get the vdev guid from the nvlist.
390168404Spjd	 * Otherwise, vdev_alloc_common() will generate one for us.
391168404Spjd	 */
392168404Spjd	if (alloctype == VDEV_ALLOC_LOAD) {
393168404Spjd		uint64_t label_id;
394168404Spjd
395168404Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
396168404Spjd		    label_id != id)
397168404Spjd			return (EINVAL);
398168404Spjd
399168404Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
400168404Spjd			return (EINVAL);
401168404Spjd	} else if (alloctype == VDEV_ALLOC_SPARE) {
402168404Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
403168404Spjd			return (EINVAL);
404168404Spjd	}
405168404Spjd
406168404Spjd	/*
407168404Spjd	 * The first allocated vdev must be of type 'root'.
408168404Spjd	 */
409168404Spjd	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
410168404Spjd		return (EINVAL);
411168404Spjd
412168404Spjd	vd = vdev_alloc_common(spa, id, guid, ops);
413168404Spjd
414168404Spjd	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
415168404Spjd		vd->vdev_path = spa_strdup(vd->vdev_path);
416168404Spjd	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
417168404Spjd		vd->vdev_devid = spa_strdup(vd->vdev_devid);
418168404Spjd
419168404Spjd	/*
420168404Spjd	 * Set the nparity propery for RAID-Z vdevs.
421168404Spjd	 */
422168404Spjd	if (ops == &vdev_raidz_ops) {
423168404Spjd		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
424168404Spjd		    &vd->vdev_nparity) == 0) {
425168404Spjd			/*
426168404Spjd			 * Currently, we can only support 2 parity devices.
427168404Spjd			 */
428168404Spjd			if (vd->vdev_nparity > 2)
429168404Spjd				return (EINVAL);
430168404Spjd			/*
431168404Spjd			 * Older versions can only support 1 parity device.
432168404Spjd			 */
433168404Spjd			if (vd->vdev_nparity == 2 &&
434168404Spjd			    spa_version(spa) < ZFS_VERSION_RAID6)
435168404Spjd				return (ENOTSUP);
436168404Spjd
437168404Spjd		} else {
438168404Spjd			/*
439168404Spjd			 * We require the parity to be specified for SPAs that
440168404Spjd			 * support multiple parity levels.
441168404Spjd			 */
442168404Spjd			if (spa_version(spa) >= ZFS_VERSION_RAID6)
443168404Spjd				return (EINVAL);
444168404Spjd
445168404Spjd			/*
446168404Spjd			 * Otherwise, we default to 1 parity device for RAID-Z.
447168404Spjd			 */
448168404Spjd			vd->vdev_nparity = 1;
449168404Spjd		}
450168404Spjd	} else {
451168404Spjd		vd->vdev_nparity = 0;
452168404Spjd	}
453168404Spjd
454168404Spjd	/*
455168404Spjd	 * Set the whole_disk property.  If it's not specified, leave the value
456168404Spjd	 * as -1.
457168404Spjd	 */
458168404Spjd	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
459168404Spjd	    &vd->vdev_wholedisk) != 0)
460168404Spjd		vd->vdev_wholedisk = -1ULL;
461168404Spjd
462168404Spjd	/*
463168404Spjd	 * Look for the 'not present' flag.  This will only be set if the device
464168404Spjd	 * was not present at the time of import.
465168404Spjd	 */
466168404Spjd	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
467168404Spjd	    &vd->vdev_not_present);
468168404Spjd
469168404Spjd	/*
470168404Spjd	 * Get the alignment requirement.
471168404Spjd	 */
472168404Spjd	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
473168404Spjd
474168404Spjd	/*
475168404Spjd	 * If we're a top-level vdev, try to load the allocation parameters.
476168404Spjd	 */
477168404Spjd	if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
478168404Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
479168404Spjd		    &vd->vdev_ms_array);
480168404Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
481168404Spjd		    &vd->vdev_ms_shift);
482168404Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
483168404Spjd		    &vd->vdev_asize);
484168404Spjd	}
485168404Spjd
486168404Spjd	/*
487168404Spjd	 * If we're a leaf vdev, try to load the DTL object and offline state.
488168404Spjd	 */
489168404Spjd	if (vd->vdev_ops->vdev_op_leaf && alloctype == VDEV_ALLOC_LOAD) {
490168404Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
491168404Spjd		    &vd->vdev_dtl.smo_object);
492168404Spjd		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
493168404Spjd		    &vd->vdev_offline);
494168404Spjd	}
495168404Spjd
496168404Spjd	/*
497168404Spjd	 * Add ourselves to the parent's list of children.
498168404Spjd	 */
499168404Spjd	vdev_add_child(parent, vd);
500168404Spjd
501168404Spjd	*vdp = vd;
502168404Spjd
503168404Spjd	return (0);
504168404Spjd}
505168404Spjd
506168404Spjdvoid
507168404Spjdvdev_free(vdev_t *vd)
508168404Spjd{
509168404Spjd	int c;
510168404Spjd
511168404Spjd	/*
512168404Spjd	 * vdev_free() implies closing the vdev first.  This is simpler than
513168404Spjd	 * trying to ensure complicated semantics for all callers.
514168404Spjd	 */
515168404Spjd	vdev_close(vd);
516168404Spjd
517168404Spjd	ASSERT(!list_link_active(&vd->vdev_dirty_node));
518168404Spjd
519168404Spjd	/*
520168404Spjd	 * Free all children.
521168404Spjd	 */
522168404Spjd	for (c = 0; c < vd->vdev_children; c++)
523168404Spjd		vdev_free(vd->vdev_child[c]);
524168404Spjd
525168404Spjd	ASSERT(vd->vdev_child == NULL);
526168404Spjd	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
527168404Spjd
528168404Spjd	/*
529168404Spjd	 * Discard allocation state.
530168404Spjd	 */
531168404Spjd	if (vd == vd->vdev_top)
532168404Spjd		vdev_metaslab_fini(vd);
533168404Spjd
534168404Spjd	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
535168404Spjd	ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
536168404Spjd	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
537168404Spjd
538168404Spjd	/*
539168404Spjd	 * Remove this vdev from its parent's child list.
540168404Spjd	 */
541168404Spjd	vdev_remove_child(vd->vdev_parent, vd);
542168404Spjd
543168404Spjd	ASSERT(vd->vdev_parent == NULL);
544168404Spjd
545168404Spjd	vdev_free_common(vd);
546168404Spjd}
547168404Spjd
548168404Spjd/*
549168404Spjd * Transfer top-level vdev state from svd to tvd.
550168404Spjd */
551168404Spjdstatic void
552168404Spjdvdev_top_transfer(vdev_t *svd, vdev_t *tvd)
553168404Spjd{
554168404Spjd	spa_t *spa = svd->vdev_spa;
555168404Spjd	metaslab_t *msp;
556168404Spjd	vdev_t *vd;
557168404Spjd	int t;
558168404Spjd
559168404Spjd	ASSERT(tvd == tvd->vdev_top);
560168404Spjd
561168404Spjd	tvd->vdev_ms_array = svd->vdev_ms_array;
562168404Spjd	tvd->vdev_ms_shift = svd->vdev_ms_shift;
563168404Spjd	tvd->vdev_ms_count = svd->vdev_ms_count;
564168404Spjd
565168404Spjd	svd->vdev_ms_array = 0;
566168404Spjd	svd->vdev_ms_shift = 0;
567168404Spjd	svd->vdev_ms_count = 0;
568168404Spjd
569168404Spjd	tvd->vdev_mg = svd->vdev_mg;
570168404Spjd	tvd->vdev_ms = svd->vdev_ms;
571168404Spjd
572168404Spjd	svd->vdev_mg = NULL;
573168404Spjd	svd->vdev_ms = NULL;
574168404Spjd
575168404Spjd	if (tvd->vdev_mg != NULL)
576168404Spjd		tvd->vdev_mg->mg_vd = tvd;
577168404Spjd
578168404Spjd	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
579168404Spjd	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
580168404Spjd	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
581168404Spjd
582168404Spjd	svd->vdev_stat.vs_alloc = 0;
583168404Spjd	svd->vdev_stat.vs_space = 0;
584168404Spjd	svd->vdev_stat.vs_dspace = 0;
585168404Spjd
586168404Spjd	for (t = 0; t < TXG_SIZE; t++) {
587168404Spjd		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
588168404Spjd			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
589168404Spjd		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
590168404Spjd			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
591168404Spjd		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
592168404Spjd			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
593168404Spjd	}
594168404Spjd
595168404Spjd	if (list_link_active(&svd->vdev_dirty_node)) {
596168404Spjd		vdev_config_clean(svd);
597168404Spjd		vdev_config_dirty(tvd);
598168404Spjd	}
599168404Spjd
600168404Spjd	tvd->vdev_reopen_wanted = svd->vdev_reopen_wanted;
601168404Spjd	svd->vdev_reopen_wanted = 0;
602168404Spjd
603168404Spjd	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
604168404Spjd	svd->vdev_deflate_ratio = 0;
605168404Spjd}
606168404Spjd
607168404Spjdstatic void
608168404Spjdvdev_top_update(vdev_t *tvd, vdev_t *vd)
609168404Spjd{
610168404Spjd	int c;
611168404Spjd
612168404Spjd	if (vd == NULL)
613168404Spjd		return;
614168404Spjd
615168404Spjd	vd->vdev_top = tvd;
616168404Spjd
617168404Spjd	for (c = 0; c < vd->vdev_children; c++)
618168404Spjd		vdev_top_update(tvd, vd->vdev_child[c]);
619168404Spjd}
620168404Spjd
621168404Spjd/*
622168404Spjd * Add a mirror/replacing vdev above an existing vdev.
623168404Spjd */
624168404Spjdvdev_t *
625168404Spjdvdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
626168404Spjd{
627168404Spjd	spa_t *spa = cvd->vdev_spa;
628168404Spjd	vdev_t *pvd = cvd->vdev_parent;
629168404Spjd	vdev_t *mvd;
630168404Spjd
631168404Spjd	ASSERT(spa_config_held(spa, RW_WRITER));
632168404Spjd
633168404Spjd	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
634168404Spjd
635168404Spjd	mvd->vdev_asize = cvd->vdev_asize;
636168404Spjd	mvd->vdev_ashift = cvd->vdev_ashift;
637168404Spjd	mvd->vdev_state = cvd->vdev_state;
638168404Spjd
639168404Spjd	vdev_remove_child(pvd, cvd);
640168404Spjd	vdev_add_child(pvd, mvd);
641168404Spjd	cvd->vdev_id = mvd->vdev_children;
642168404Spjd	vdev_add_child(mvd, cvd);
643168404Spjd	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
644168404Spjd
645168404Spjd	if (mvd == mvd->vdev_top)
646168404Spjd		vdev_top_transfer(cvd, mvd);
647168404Spjd
648168404Spjd	return (mvd);
649168404Spjd}
650168404Spjd
651168404Spjd/*
652168404Spjd * Remove a 1-way mirror/replacing vdev from the tree.
653168404Spjd */
654168404Spjdvoid
655168404Spjdvdev_remove_parent(vdev_t *cvd)
656168404Spjd{
657168404Spjd	vdev_t *mvd = cvd->vdev_parent;
658168404Spjd	vdev_t *pvd = mvd->vdev_parent;
659168404Spjd
660168404Spjd	ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER));
661168404Spjd
662168404Spjd	ASSERT(mvd->vdev_children == 1);
663168404Spjd	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
664168404Spjd	    mvd->vdev_ops == &vdev_replacing_ops ||
665168404Spjd	    mvd->vdev_ops == &vdev_spare_ops);
666168404Spjd	cvd->vdev_ashift = mvd->vdev_ashift;
667168404Spjd
668168404Spjd	vdev_remove_child(mvd, cvd);
669168404Spjd	vdev_remove_child(pvd, mvd);
670168404Spjd	cvd->vdev_id = mvd->vdev_id;
671168404Spjd	vdev_add_child(pvd, cvd);
672168404Spjd	/*
673168404Spjd	 * If we created a new toplevel vdev, then we need to change the child's
674168404Spjd	 * vdev GUID to match the old toplevel vdev.  Otherwise, we could have
675168404Spjd	 * detached an offline device, and when we go to import the pool we'll
676168404Spjd	 * think we have two toplevel vdevs, instead of a different version of
677168404Spjd	 * the same toplevel vdev.
678168404Spjd	 */
679168404Spjd	if (cvd->vdev_top == cvd) {
680168404Spjd		pvd->vdev_guid_sum -= cvd->vdev_guid;
681168404Spjd		cvd->vdev_guid_sum -= cvd->vdev_guid;
682168404Spjd		cvd->vdev_guid = mvd->vdev_guid;
683168404Spjd		cvd->vdev_guid_sum += mvd->vdev_guid;
684168404Spjd		pvd->vdev_guid_sum += cvd->vdev_guid;
685168404Spjd	}
686168404Spjd	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
687168404Spjd
688168404Spjd	if (cvd == cvd->vdev_top)
689168404Spjd		vdev_top_transfer(mvd, cvd);
690168404Spjd
691168404Spjd	ASSERT(mvd->vdev_children == 0);
692168404Spjd	vdev_free(mvd);
693168404Spjd}
694168404Spjd
695168404Spjdint
696168404Spjdvdev_metaslab_init(vdev_t *vd, uint64_t txg)
697168404Spjd{
698168404Spjd	spa_t *spa = vd->vdev_spa;
699168404Spjd	objset_t *mos = spa->spa_meta_objset;
700168404Spjd	metaslab_class_t *mc = spa_metaslab_class_select(spa);
701168404Spjd	uint64_t m;
702168404Spjd	uint64_t oldc = vd->vdev_ms_count;
703168404Spjd	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
704168404Spjd	metaslab_t **mspp;
705168404Spjd	int error;
706168404Spjd
707168404Spjd	if (vd->vdev_ms_shift == 0)	/* not being allocated from yet */
708168404Spjd		return (0);
709168404Spjd
710168404Spjd	dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc);
711168404Spjd
712168404Spjd	ASSERT(oldc <= newc);
713168404Spjd
714168404Spjd	if (vd->vdev_mg == NULL)
715168404Spjd		vd->vdev_mg = metaslab_group_create(mc, vd);
716168404Spjd
717168404Spjd	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
718168404Spjd
719168404Spjd	if (oldc != 0) {
720168404Spjd		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
721168404Spjd		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
722168404Spjd	}
723168404Spjd
724168404Spjd	vd->vdev_ms = mspp;
725168404Spjd	vd->vdev_ms_count = newc;
726168404Spjd
727168404Spjd	for (m = oldc; m < newc; m++) {
728168404Spjd		space_map_obj_t smo = { 0, 0, 0 };
729168404Spjd		if (txg == 0) {
730168404Spjd			uint64_t object = 0;
731168404Spjd			error = dmu_read(mos, vd->vdev_ms_array,
732168404Spjd			    m * sizeof (uint64_t), sizeof (uint64_t), &object);
733168404Spjd			if (error)
734168404Spjd				return (error);
735168404Spjd			if (object != 0) {
736168404Spjd				dmu_buf_t *db;
737168404Spjd				error = dmu_bonus_hold(mos, object, FTAG, &db);
738168404Spjd				if (error)
739168404Spjd					return (error);
740168404Spjd				ASSERT3U(db->db_size, ==, sizeof (smo));
741168404Spjd				bcopy(db->db_data, &smo, db->db_size);
742168404Spjd				ASSERT3U(smo.smo_object, ==, object);
743168404Spjd				dmu_buf_rele(db, FTAG);
744168404Spjd			}
745168404Spjd		}
746168404Spjd		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
747168404Spjd		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
748168404Spjd	}
749168404Spjd
750168404Spjd	return (0);
751168404Spjd}
752168404Spjd
753168404Spjdvoid
754168404Spjdvdev_metaslab_fini(vdev_t *vd)
755168404Spjd{
756168404Spjd	uint64_t m;
757168404Spjd	uint64_t count = vd->vdev_ms_count;
758168404Spjd
759168404Spjd	if (vd->vdev_ms != NULL) {
760168404Spjd		for (m = 0; m < count; m++)
761168404Spjd			if (vd->vdev_ms[m] != NULL)
762168404Spjd				metaslab_fini(vd->vdev_ms[m]);
763168404Spjd		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
764168404Spjd		vd->vdev_ms = NULL;
765168404Spjd	}
766168404Spjd}
767168404Spjd
768168404Spjd/*
769168404Spjd * Prepare a virtual device for access.
770168404Spjd */
771168404Spjdint
772168404Spjdvdev_open(vdev_t *vd)
773168404Spjd{
774168404Spjd	int error;
775168404Spjd	int c;
776168404Spjd	uint64_t osize = 0;
777168404Spjd	uint64_t asize, psize;
778168404Spjd	uint64_t ashift = 0;
779168404Spjd
780168404Spjd	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
781168404Spjd	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
782168404Spjd	    vd->vdev_state == VDEV_STATE_OFFLINE);
783168404Spjd
784168404Spjd	if (vd->vdev_fault_mode == VDEV_FAULT_COUNT)
785168404Spjd		vd->vdev_fault_arg >>= 1;
786168404Spjd	else
787168404Spjd		vd->vdev_fault_mode = VDEV_FAULT_NONE;
788168404Spjd
789168404Spjd	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
790168404Spjd
791168404Spjd	if (vd->vdev_ops->vdev_op_leaf) {
792168404Spjd		vdev_cache_init(vd);
793168404Spjd		vdev_queue_init(vd);
794168404Spjd		vd->vdev_cache_active = B_TRUE;
795168404Spjd	}
796168404Spjd
797168404Spjd	if (vd->vdev_offline) {
798168404Spjd		ASSERT(vd->vdev_children == 0);
799168404Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
800168404Spjd		return (ENXIO);
801168404Spjd	}
802168404Spjd
803168404Spjd	error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
804168404Spjd
805168404Spjd	if (zio_injection_enabled && error == 0)
806168404Spjd		error = zio_handle_device_injection(vd, ENXIO);
807168404Spjd
808168404Spjd	dprintf("%s = %d, osize %llu, state = %d\n",
809168404Spjd	    vdev_description(vd), error, osize, vd->vdev_state);
810168404Spjd
811168404Spjd	if (error) {
812168404Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
813168404Spjd		    vd->vdev_stat.vs_aux);
814168404Spjd		return (error);
815168404Spjd	}
816168404Spjd
817168404Spjd	vd->vdev_state = VDEV_STATE_HEALTHY;
818168404Spjd
819168404Spjd	for (c = 0; c < vd->vdev_children; c++)
820168404Spjd		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
821168404Spjd			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
822168404Spjd			    VDEV_AUX_NONE);
823168404Spjd			break;
824168404Spjd		}
825168404Spjd
826168404Spjd	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
827168404Spjd
828168404Spjd	if (vd->vdev_children == 0) {
829168404Spjd		if (osize < SPA_MINDEVSIZE) {
830168404Spjd			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
831168404Spjd			    VDEV_AUX_TOO_SMALL);
832168404Spjd			return (EOVERFLOW);
833168404Spjd		}
834168404Spjd		psize = osize;
835168404Spjd		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
836168404Spjd	} else {
837168404Spjd		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
838168404Spjd		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
839168404Spjd			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
840168404Spjd			    VDEV_AUX_TOO_SMALL);
841168404Spjd			return (EOVERFLOW);
842168404Spjd		}
843168404Spjd		psize = 0;
844168404Spjd		asize = osize;
845168404Spjd	}
846168404Spjd
847168404Spjd	vd->vdev_psize = psize;
848168404Spjd
849168404Spjd	if (vd->vdev_asize == 0) {
850168404Spjd		/*
851168404Spjd		 * This is the first-ever open, so use the computed values.
852168404Spjd		 * For testing purposes, a higher ashift can be requested.
853168404Spjd		 */
854168404Spjd		vd->vdev_asize = asize;
855168404Spjd		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
856168404Spjd	} else {
857168404Spjd		/*
858168404Spjd		 * Make sure the alignment requirement hasn't increased.
859168404Spjd		 */
860168404Spjd		if (ashift > vd->vdev_top->vdev_ashift) {
861168404Spjd			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
862168404Spjd			    VDEV_AUX_BAD_LABEL);
863168404Spjd			return (EINVAL);
864168404Spjd		}
865168404Spjd
866168404Spjd		/*
867168404Spjd		 * Make sure the device hasn't shrunk.
868168404Spjd		 */
869168404Spjd		if (asize < vd->vdev_asize) {
870168404Spjd			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
871168404Spjd			    VDEV_AUX_BAD_LABEL);
872168404Spjd			return (EINVAL);
873168404Spjd		}
874168404Spjd
875168404Spjd		/*
876168404Spjd		 * If all children are healthy and the asize has increased,
877168404Spjd		 * then we've experienced dynamic LUN growth.
878168404Spjd		 */
879168404Spjd		if (vd->vdev_state == VDEV_STATE_HEALTHY &&
880168404Spjd		    asize > vd->vdev_asize) {
881168404Spjd			vd->vdev_asize = asize;
882168404Spjd		}
883168404Spjd	}
884168404Spjd
885168404Spjd	/*
886168404Spjd	 * If this is a top-level vdev, compute the raidz-deflation
887168404Spjd	 * ratio.  Note, we hard-code in 128k (1<<17) because it is the
888168404Spjd	 * current "typical" blocksize.  Even if SPA_MAXBLOCKSIZE
889168404Spjd	 * changes, this algorithm must never change, or we will
890168404Spjd	 * inconsistently account for existing bp's.
891168404Spjd	 */
892168404Spjd	if (vd->vdev_top == vd) {
893168404Spjd		vd->vdev_deflate_ratio = (1<<17) /
894168404Spjd		    (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT);
895168404Spjd	}
896168404Spjd
897168404Spjd	/*
898168404Spjd	 * This allows the ZFS DE to close cases appropriately.  If a device
899168404Spjd	 * goes away and later returns, we want to close the associated case.
900168404Spjd	 * But it's not enough to simply post this only when a device goes from
901168404Spjd	 * CANT_OPEN -> HEALTHY.  If we reboot the system and the device is
902168404Spjd	 * back, we also need to close the case (otherwise we will try to replay
903168404Spjd	 * it).  So we have to post this notifier every time.  Since this only
904168404Spjd	 * occurs during pool open or error recovery, this should not be an
905168404Spjd	 * issue.
906168404Spjd	 */
907168404Spjd	zfs_post_ok(vd->vdev_spa, vd);
908168404Spjd
909168404Spjd	return (0);
910168404Spjd}
911168404Spjd
912168404Spjd/*
913168404Spjd * Called once the vdevs are all opened, this routine validates the label
914168404Spjd * contents.  This needs to be done before vdev_load() so that we don't
915168404Spjd * inadvertently do repair I/Os to the wrong device, and so that vdev_reopen()
916168404Spjd * won't succeed if the device has been changed underneath.
917168404Spjd *
918168404Spjd * This function will only return failure if one of the vdevs indicates that it
919168404Spjd * has since been destroyed or exported.  This is only possible if
920168404Spjd * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
921168404Spjd * will be updated but the function will return 0.
922168404Spjd */
923168404Spjdint
924168404Spjdvdev_validate(vdev_t *vd)
925168404Spjd{
926168404Spjd	spa_t *spa = vd->vdev_spa;
927168404Spjd	int c;
928168404Spjd	nvlist_t *label;
929168404Spjd	uint64_t guid;
930168404Spjd	uint64_t state;
931168404Spjd
932168404Spjd	for (c = 0; c < vd->vdev_children; c++)
933168404Spjd		if (vdev_validate(vd->vdev_child[c]) != 0)
934168404Spjd			return (-1);
935168404Spjd
936168404Spjd	/*
937168404Spjd	 * If the device has already failed, or was marked offline, don't do
938168404Spjd	 * any further validation.  Otherwise, label I/O will fail and we will
939168404Spjd	 * overwrite the previous state.
940168404Spjd	 */
941168404Spjd	if (vd->vdev_ops->vdev_op_leaf && !vdev_is_dead(vd)) {
942168404Spjd
943168404Spjd		if ((label = vdev_label_read_config(vd)) == NULL) {
944168404Spjd			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
945168404Spjd			    VDEV_AUX_BAD_LABEL);
946168404Spjd			return (0);
947168404Spjd		}
948168404Spjd
949168404Spjd		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
950168404Spjd		    &guid) != 0 || guid != spa_guid(spa)) {
951168404Spjd			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
952168404Spjd			    VDEV_AUX_CORRUPT_DATA);
953168404Spjd			nvlist_free(label);
954168404Spjd			return (0);
955168404Spjd		}
956168404Spjd
957168404Spjd		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
958168404Spjd		    &guid) != 0 || guid != vd->vdev_guid) {
959168404Spjd			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
960168404Spjd			    VDEV_AUX_CORRUPT_DATA);
961168404Spjd			nvlist_free(label);
962168404Spjd			return (0);
963168404Spjd		}
964168404Spjd
965168404Spjd		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
966168404Spjd		    &state) != 0) {
967168404Spjd			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
968168404Spjd			    VDEV_AUX_CORRUPT_DATA);
969168404Spjd			nvlist_free(label);
970168404Spjd			return (0);
971168404Spjd		}
972168404Spjd
973168404Spjd		nvlist_free(label);
974168404Spjd
975168404Spjd		if (spa->spa_load_state == SPA_LOAD_OPEN &&
976168404Spjd		    state != POOL_STATE_ACTIVE)
977168404Spjd			return (-1);
978168404Spjd	}
979168404Spjd
980168404Spjd	/*
981168404Spjd	 * If we were able to open and validate a vdev that was previously
982168404Spjd	 * marked permanently unavailable, clear that state now.
983168404Spjd	 */
984168404Spjd	if (vd->vdev_not_present)
985168404Spjd		vd->vdev_not_present = 0;
986168404Spjd
987168404Spjd	return (0);
988168404Spjd}
989168404Spjd
990168404Spjd/*
991168404Spjd * Close a virtual device.
992168404Spjd */
993168404Spjdvoid
994168404Spjdvdev_close(vdev_t *vd)
995168404Spjd{
996168404Spjd	vd->vdev_ops->vdev_op_close(vd);
997168404Spjd
998168404Spjd	if (vd->vdev_cache_active) {
999168404Spjd		vdev_cache_fini(vd);
1000168404Spjd		vdev_queue_fini(vd);
1001168404Spjd		vd->vdev_cache_active = B_FALSE;
1002168404Spjd	}
1003168404Spjd
1004168404Spjd	/*
1005168404Spjd	 * We record the previous state before we close it, so  that if we are
1006168404Spjd	 * doing a reopen(), we don't generate FMA ereports if we notice that
1007168404Spjd	 * it's still faulted.
1008168404Spjd	 */
1009168404Spjd	vd->vdev_prevstate = vd->vdev_state;
1010168404Spjd
1011168404Spjd	if (vd->vdev_offline)
1012168404Spjd		vd->vdev_state = VDEV_STATE_OFFLINE;
1013168404Spjd	else
1014168404Spjd		vd->vdev_state = VDEV_STATE_CLOSED;
1015168404Spjd	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1016168404Spjd}
1017168404Spjd
1018168404Spjdvoid
1019168404Spjdvdev_reopen(vdev_t *vd)
1020168404Spjd{
1021168404Spjd	spa_t *spa = vd->vdev_spa;
1022168404Spjd
1023168404Spjd	ASSERT(spa_config_held(spa, RW_WRITER));
1024168404Spjd
1025168404Spjd	vdev_close(vd);
1026168404Spjd	(void) vdev_open(vd);
1027168404Spjd
1028168404Spjd	/*
1029168404Spjd	 * Call vdev_validate() here to make sure we have the same device.
1030168404Spjd	 * Otherwise, a device with an invalid label could be successfully
1031168404Spjd	 * opened in response to vdev_reopen().
1032168404Spjd	 *
1033168404Spjd	 * The downside to this is that if the user is simply experimenting by
1034168404Spjd	 * overwriting an entire disk, we'll fault the device rather than
1035168404Spjd	 * demonstrate self-healing capabilities.  On the other hand, with
1036168404Spjd	 * proper FMA integration, the series of errors we'd see from the device
1037168404Spjd	 * would result in a faulted device anyway.  Given that this doesn't
1038168404Spjd	 * model any real-world corruption, it's better to catch this here and
1039168404Spjd	 * correctly identify that the device has either changed beneath us, or
1040168404Spjd	 * is corrupted beyond recognition.
1041168404Spjd	 */
1042168404Spjd	(void) vdev_validate(vd);
1043168404Spjd
1044168404Spjd	/*
1045168404Spjd	 * Reassess root vdev's health.
1046168404Spjd	 */
1047168404Spjd	vdev_propagate_state(spa->spa_root_vdev);
1048168404Spjd}
1049168404Spjd
1050168404Spjdint
1051168404Spjdvdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1052168404Spjd{
1053168404Spjd	int error;
1054168404Spjd
1055168404Spjd	/*
1056168404Spjd	 * Normally, partial opens (e.g. of a mirror) are allowed.
1057168404Spjd	 * For a create, however, we want to fail the request if
1058168404Spjd	 * there are any components we can't open.
1059168404Spjd	 */
1060168404Spjd	error = vdev_open(vd);
1061168404Spjd
1062168404Spjd	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1063168404Spjd		vdev_close(vd);
1064168404Spjd		return (error ? error : ENXIO);
1065168404Spjd	}
1066168404Spjd
1067168404Spjd	/*
1068168404Spjd	 * Recursively initialize all labels.
1069168404Spjd	 */
1070168404Spjd	if ((error = vdev_label_init(vd, txg, isreplacing ?
1071168404Spjd	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1072168404Spjd		vdev_close(vd);
1073168404Spjd		return (error);
1074168404Spjd	}
1075168404Spjd
1076168404Spjd	return (0);
1077168404Spjd}
1078168404Spjd
1079168404Spjd/*
1080168404Spjd * The is the latter half of vdev_create().  It is distinct because it
1081168404Spjd * involves initiating transactions in order to do metaslab creation.
1082168404Spjd * For creation, we want to try to create all vdevs at once and then undo it
1083168404Spjd * if anything fails; this is much harder if we have pending transactions.
1084168404Spjd */
1085168404Spjdvoid
1086168404Spjdvdev_init(vdev_t *vd, uint64_t txg)
1087168404Spjd{
1088168404Spjd	/*
1089168404Spjd	 * Aim for roughly 200 metaslabs per vdev.
1090168404Spjd	 */
1091168404Spjd	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1092168404Spjd	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1093168404Spjd
1094168404Spjd	/*
1095168404Spjd	 * Initialize the vdev's metaslabs.  This can't fail because
1096168404Spjd	 * there's nothing to read when creating all new metaslabs.
1097168404Spjd	 */
1098168404Spjd	VERIFY(vdev_metaslab_init(vd, txg) == 0);
1099168404Spjd}
1100168404Spjd
1101168404Spjdvoid
1102168404Spjdvdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1103168404Spjd{
1104168404Spjd	ASSERT(vd == vd->vdev_top);
1105168404Spjd	ASSERT(ISP2(flags));
1106168404Spjd
1107168404Spjd	if (flags & VDD_METASLAB)
1108168404Spjd		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1109168404Spjd
1110168404Spjd	if (flags & VDD_DTL)
1111168404Spjd		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1112168404Spjd
1113168404Spjd	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1114168404Spjd}
1115168404Spjd
1116168404Spjdvoid
1117168404Spjdvdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size)
1118168404Spjd{
1119168404Spjd	mutex_enter(sm->sm_lock);
1120168404Spjd	if (!space_map_contains(sm, txg, size))
1121168404Spjd		space_map_add(sm, txg, size);
1122168404Spjd	mutex_exit(sm->sm_lock);
1123168404Spjd}
1124168404Spjd
1125168404Spjdint
1126168404Spjdvdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size)
1127168404Spjd{
1128168404Spjd	int dirty;
1129168404Spjd
1130168404Spjd	/*
1131168404Spjd	 * Quick test without the lock -- covers the common case that
1132168404Spjd	 * there are no dirty time segments.
1133168404Spjd	 */
1134168404Spjd	if (sm->sm_space == 0)
1135168404Spjd		return (0);
1136168404Spjd
1137168404Spjd	mutex_enter(sm->sm_lock);
1138168404Spjd	dirty = space_map_contains(sm, txg, size);
1139168404Spjd	mutex_exit(sm->sm_lock);
1140168404Spjd
1141168404Spjd	return (dirty);
1142168404Spjd}
1143168404Spjd
1144168404Spjd/*
1145168404Spjd * Reassess DTLs after a config change or scrub completion.
1146168404Spjd */
1147168404Spjdvoid
1148168404Spjdvdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1149168404Spjd{
1150168404Spjd	spa_t *spa = vd->vdev_spa;
1151168404Spjd	int c;
1152168404Spjd
1153168404Spjd	ASSERT(spa_config_held(spa, RW_WRITER));
1154168404Spjd
1155168404Spjd	if (vd->vdev_children == 0) {
1156168404Spjd		mutex_enter(&vd->vdev_dtl_lock);
1157168404Spjd		/*
1158168404Spjd		 * We're successfully scrubbed everything up to scrub_txg.
1159168404Spjd		 * Therefore, excise all old DTLs up to that point, then
1160168404Spjd		 * fold in the DTLs for everything we couldn't scrub.
1161168404Spjd		 */
1162168404Spjd		if (scrub_txg != 0) {
1163168404Spjd			space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg);
1164168404Spjd			space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub);
1165168404Spjd		}
1166168404Spjd		if (scrub_done)
1167168404Spjd			space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
1168168404Spjd		mutex_exit(&vd->vdev_dtl_lock);
1169168404Spjd		if (txg != 0)
1170168404Spjd			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1171168404Spjd		return;
1172168404Spjd	}
1173168404Spjd
1174168404Spjd	/*
1175168404Spjd	 * Make sure the DTLs are always correct under the scrub lock.
1176168404Spjd	 */
1177168404Spjd	if (vd == spa->spa_root_vdev)
1178168404Spjd		mutex_enter(&spa->spa_scrub_lock);
1179168404Spjd
1180168404Spjd	mutex_enter(&vd->vdev_dtl_lock);
1181168404Spjd	space_map_vacate(&vd->vdev_dtl_map, NULL, NULL);
1182168404Spjd	space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
1183168404Spjd	mutex_exit(&vd->vdev_dtl_lock);
1184168404Spjd
1185168404Spjd	for (c = 0; c < vd->vdev_children; c++) {
1186168404Spjd		vdev_t *cvd = vd->vdev_child[c];
1187168404Spjd		vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done);
1188168404Spjd		mutex_enter(&vd->vdev_dtl_lock);
1189168404Spjd		space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map);
1190168404Spjd		space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub);
1191168404Spjd		mutex_exit(&vd->vdev_dtl_lock);
1192168404Spjd	}
1193168404Spjd
1194168404Spjd	if (vd == spa->spa_root_vdev)
1195168404Spjd		mutex_exit(&spa->spa_scrub_lock);
1196168404Spjd}
1197168404Spjd
1198168404Spjdstatic int
1199168404Spjdvdev_dtl_load(vdev_t *vd)
1200168404Spjd{
1201168404Spjd	spa_t *spa = vd->vdev_spa;
1202168404Spjd	space_map_obj_t *smo = &vd->vdev_dtl;
1203168404Spjd	objset_t *mos = spa->spa_meta_objset;
1204168404Spjd	dmu_buf_t *db;
1205168404Spjd	int error;
1206168404Spjd
1207168404Spjd	ASSERT(vd->vdev_children == 0);
1208168404Spjd
1209168404Spjd	if (smo->smo_object == 0)
1210168404Spjd		return (0);
1211168404Spjd
1212168404Spjd	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1213168404Spjd		return (error);
1214168404Spjd
1215168404Spjd	ASSERT3U(db->db_size, ==, sizeof (*smo));
1216168404Spjd	bcopy(db->db_data, smo, db->db_size);
1217168404Spjd	dmu_buf_rele(db, FTAG);
1218168404Spjd
1219168404Spjd	mutex_enter(&vd->vdev_dtl_lock);
1220168404Spjd	error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos);
1221168404Spjd	mutex_exit(&vd->vdev_dtl_lock);
1222168404Spjd
1223168404Spjd	return (error);
1224168404Spjd}
1225168404Spjd
1226168404Spjdvoid
1227168404Spjdvdev_dtl_sync(vdev_t *vd, uint64_t txg)
1228168404Spjd{
1229168404Spjd	spa_t *spa = vd->vdev_spa;
1230168404Spjd	space_map_obj_t *smo = &vd->vdev_dtl;
1231168404Spjd	space_map_t *sm = &vd->vdev_dtl_map;
1232168404Spjd	objset_t *mos = spa->spa_meta_objset;
1233168404Spjd	space_map_t smsync;
1234168404Spjd	kmutex_t smlock;
1235168404Spjd	dmu_buf_t *db;
1236168404Spjd	dmu_tx_t *tx;
1237168404Spjd
1238168404Spjd	dprintf("%s in txg %llu pass %d\n",
1239168404Spjd	    vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa));
1240168404Spjd
1241168404Spjd	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1242168404Spjd
1243168404Spjd	if (vd->vdev_detached) {
1244168404Spjd		if (smo->smo_object != 0) {
1245168404Spjd			int err = dmu_object_free(mos, smo->smo_object, tx);
1246168404Spjd			ASSERT3U(err, ==, 0);
1247168404Spjd			smo->smo_object = 0;
1248168404Spjd		}
1249168404Spjd		dmu_tx_commit(tx);
1250168404Spjd		dprintf("detach %s committed in txg %llu\n",
1251168404Spjd		    vdev_description(vd), txg);
1252168404Spjd		return;
1253168404Spjd	}
1254168404Spjd
1255168404Spjd	if (smo->smo_object == 0) {
1256168404Spjd		ASSERT(smo->smo_objsize == 0);
1257168404Spjd		ASSERT(smo->smo_alloc == 0);
1258168404Spjd		smo->smo_object = dmu_object_alloc(mos,
1259168404Spjd		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1260168404Spjd		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1261168404Spjd		ASSERT(smo->smo_object != 0);
1262168404Spjd		vdev_config_dirty(vd->vdev_top);
1263168404Spjd	}
1264168404Spjd
1265168404Spjd	bzero(&smlock, sizeof(smlock));
1266168404Spjd	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1267168404Spjd
1268168404Spjd	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1269168404Spjd	    &smlock);
1270168404Spjd
1271168404Spjd	mutex_enter(&smlock);
1272168404Spjd
1273168404Spjd	mutex_enter(&vd->vdev_dtl_lock);
1274168404Spjd	space_map_walk(sm, space_map_add, &smsync);
1275168404Spjd	mutex_exit(&vd->vdev_dtl_lock);
1276168404Spjd
1277168404Spjd	space_map_truncate(smo, mos, tx);
1278168404Spjd	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1279168404Spjd
1280168404Spjd	space_map_destroy(&smsync);
1281168404Spjd
1282168404Spjd	mutex_exit(&smlock);
1283168404Spjd	mutex_destroy(&smlock);
1284168404Spjd
1285168404Spjd	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1286168404Spjd	dmu_buf_will_dirty(db, tx);
1287168404Spjd	ASSERT3U(db->db_size, ==, sizeof (*smo));
1288168404Spjd	bcopy(smo, db->db_data, db->db_size);
1289168404Spjd	dmu_buf_rele(db, FTAG);
1290168404Spjd
1291168404Spjd	dmu_tx_commit(tx);
1292168404Spjd}
1293168404Spjd
1294168404Spjdvoid
1295168404Spjdvdev_load(vdev_t *vd)
1296168404Spjd{
1297168404Spjd	int c;
1298168404Spjd
1299168404Spjd	/*
1300168404Spjd	 * Recursively load all children.
1301168404Spjd	 */
1302168404Spjd	for (c = 0; c < vd->vdev_children; c++)
1303168404Spjd		vdev_load(vd->vdev_child[c]);
1304168404Spjd
1305168404Spjd	/*
1306168404Spjd	 * If this is a top-level vdev, initialize its metaslabs.
1307168404Spjd	 */
1308168404Spjd	if (vd == vd->vdev_top &&
1309168404Spjd	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1310168404Spjd	    vdev_metaslab_init(vd, 0) != 0))
1311168404Spjd		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1312168404Spjd		    VDEV_AUX_CORRUPT_DATA);
1313168404Spjd
1314168404Spjd	/*
1315168404Spjd	 * If this is a leaf vdev, load its DTL.
1316168404Spjd	 */
1317168404Spjd	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1318168404Spjd		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1319168404Spjd		    VDEV_AUX_CORRUPT_DATA);
1320168404Spjd}
1321168404Spjd
1322168404Spjd/*
1323168404Spjd * This special case of vdev_spare() is used for hot spares.  It's sole purpose
1324168404Spjd * it to set the vdev state for the associated vdev.  To do this, we make sure
1325168404Spjd * that we can open the underlying device, then try to read the label, and make
1326168404Spjd * sure that the label is sane and that it hasn't been repurposed to another
1327168404Spjd * pool.
1328168404Spjd */
1329168404Spjdint
1330168404Spjdvdev_validate_spare(vdev_t *vd)
1331168404Spjd{
1332168404Spjd	nvlist_t *label;
1333168404Spjd	uint64_t guid, version;
1334168404Spjd	uint64_t state;
1335168404Spjd
1336168404Spjd	if ((label = vdev_label_read_config(vd)) == NULL) {
1337168404Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1338168404Spjd		    VDEV_AUX_CORRUPT_DATA);
1339168404Spjd		return (-1);
1340168404Spjd	}
1341168404Spjd
1342168404Spjd	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1343168404Spjd	    version > ZFS_VERSION ||
1344168404Spjd	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1345168404Spjd	    guid != vd->vdev_guid ||
1346168404Spjd	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1347168404Spjd		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1348168404Spjd		    VDEV_AUX_CORRUPT_DATA);
1349168404Spjd		nvlist_free(label);
1350168404Spjd		return (-1);
1351168404Spjd	}
1352168404Spjd
1353168404Spjd	spa_spare_add(vd);
1354168404Spjd
1355168404Spjd	/*
1356168404Spjd	 * We don't actually check the pool state here.  If it's in fact in
1357168404Spjd	 * use by another pool, we update this fact on the fly when requested.
1358168404Spjd	 */
1359168404Spjd	nvlist_free(label);
1360168404Spjd	return (0);
1361168404Spjd}
1362168404Spjd
1363168404Spjdvoid
1364168404Spjdvdev_sync_done(vdev_t *vd, uint64_t txg)
1365168404Spjd{
1366168404Spjd	metaslab_t *msp;
1367168404Spjd
1368168404Spjd	dprintf("%s txg %llu\n", vdev_description(vd), txg);
1369168404Spjd
1370168404Spjd	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1371168404Spjd		metaslab_sync_done(msp, txg);
1372168404Spjd}
1373168404Spjd
1374168404Spjdvoid
1375168404Spjdvdev_sync(vdev_t *vd, uint64_t txg)
1376168404Spjd{
1377168404Spjd	spa_t *spa = vd->vdev_spa;
1378168404Spjd	vdev_t *lvd;
1379168404Spjd	metaslab_t *msp;
1380168404Spjd	dmu_tx_t *tx;
1381168404Spjd
1382168404Spjd	dprintf("%s txg %llu pass %d\n",
1383168404Spjd	    vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa));
1384168404Spjd
1385168404Spjd	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1386168404Spjd		ASSERT(vd == vd->vdev_top);
1387168404Spjd		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1388168404Spjd		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1389168404Spjd		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1390168404Spjd		ASSERT(vd->vdev_ms_array != 0);
1391168404Spjd		vdev_config_dirty(vd);
1392168404Spjd		dmu_tx_commit(tx);
1393168404Spjd	}
1394168404Spjd
1395168404Spjd	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
1396168404Spjd		metaslab_sync(msp, txg);
1397168404Spjd		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
1398168404Spjd	}
1399168404Spjd
1400168404Spjd	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1401168404Spjd		vdev_dtl_sync(lvd, txg);
1402168404Spjd
1403168404Spjd	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1404168404Spjd}
1405168404Spjd
1406168404Spjduint64_t
1407168404Spjdvdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1408168404Spjd{
1409168404Spjd	return (vd->vdev_ops->vdev_op_asize(vd, psize));
1410168404Spjd}
1411168404Spjd
1412168404Spjdvoid
1413168404Spjdvdev_io_start(zio_t *zio)
1414168404Spjd{
1415168404Spjd	zio->io_vd->vdev_ops->vdev_op_io_start(zio);
1416168404Spjd}
1417168404Spjd
1418168404Spjdvoid
1419168404Spjdvdev_io_done(zio_t *zio)
1420168404Spjd{
1421168404Spjd	zio->io_vd->vdev_ops->vdev_op_io_done(zio);
1422168404Spjd}
1423168404Spjd
1424168404Spjdconst char *
1425168404Spjdvdev_description(vdev_t *vd)
1426168404Spjd{
1427168404Spjd	if (vd == NULL || vd->vdev_ops == NULL)
1428168404Spjd		return ("<unknown>");
1429168404Spjd
1430168404Spjd	if (vd->vdev_path != NULL)
1431168404Spjd		return (vd->vdev_path);
1432168404Spjd
1433168404Spjd	if (vd->vdev_parent == NULL)
1434168404Spjd		return (spa_name(vd->vdev_spa));
1435168404Spjd
1436168404Spjd	return (vd->vdev_ops->vdev_op_type);
1437168404Spjd}
1438168404Spjd
1439168404Spjdint
1440168404Spjdvdev_online(spa_t *spa, uint64_t guid)
1441168404Spjd{
1442168404Spjd	vdev_t *rvd, *vd;
1443168404Spjd	uint64_t txg;
1444168404Spjd
1445168404Spjd	txg = spa_vdev_enter(spa);
1446168404Spjd
1447168404Spjd	rvd = spa->spa_root_vdev;
1448168404Spjd
1449168404Spjd	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
1450168404Spjd		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1451168404Spjd
1452168404Spjd	if (!vd->vdev_ops->vdev_op_leaf)
1453168404Spjd		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1454168404Spjd
1455168404Spjd	dprintf("ONLINE: %s\n", vdev_description(vd));
1456168404Spjd
1457168404Spjd	vd->vdev_offline = B_FALSE;
1458168404Spjd	vd->vdev_tmpoffline = B_FALSE;
1459168404Spjd	vdev_reopen(vd->vdev_top);
1460168404Spjd
1461168404Spjd	vdev_config_dirty(vd->vdev_top);
1462168404Spjd
1463168404Spjd	(void) spa_vdev_exit(spa, NULL, txg, 0);
1464168404Spjd
1465168404Spjd	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1466168404Spjd
1467168404Spjd	return (0);
1468168404Spjd}
1469168404Spjd
1470168404Spjdint
1471168404Spjdvdev_offline(spa_t *spa, uint64_t guid, int istmp)
1472168404Spjd{
1473168404Spjd	vdev_t *rvd, *vd;
1474168404Spjd	uint64_t txg;
1475168404Spjd
1476168404Spjd	txg = spa_vdev_enter(spa);
1477168404Spjd
1478168404Spjd	rvd = spa->spa_root_vdev;
1479168404Spjd
1480168404Spjd	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
1481168404Spjd		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1482168404Spjd
1483168404Spjd	if (!vd->vdev_ops->vdev_op_leaf)
1484168404Spjd		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1485168404Spjd
1486168404Spjd	dprintf("OFFLINE: %s\n", vdev_description(vd));
1487168404Spjd
1488168404Spjd	/*
1489168404Spjd	 * If the device isn't already offline, try to offline it.
1490168404Spjd	 */
1491168404Spjd	if (!vd->vdev_offline) {
1492168404Spjd		/*
1493168404Spjd		 * If this device's top-level vdev has a non-empty DTL,
1494168404Spjd		 * don't allow the device to be offlined.
1495168404Spjd		 *
1496168404Spjd		 * XXX -- make this more precise by allowing the offline
1497168404Spjd		 * as long as the remaining devices don't have any DTL holes.
1498168404Spjd		 */
1499168404Spjd		if (vd->vdev_top->vdev_dtl_map.sm_space != 0)
1500168404Spjd			return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1501168404Spjd
1502168404Spjd		/*
1503168404Spjd		 * Offline this device and reopen its top-level vdev.
1504168404Spjd		 * If this action results in the top-level vdev becoming
1505168404Spjd		 * unusable, undo it and fail the request.
1506168404Spjd		 */
1507168404Spjd		vd->vdev_offline = B_TRUE;
1508168404Spjd		vdev_reopen(vd->vdev_top);
1509168404Spjd		if (vdev_is_dead(vd->vdev_top)) {
1510168404Spjd			vd->vdev_offline = B_FALSE;
1511168404Spjd			vdev_reopen(vd->vdev_top);
1512168404Spjd			return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1513168404Spjd		}
1514168404Spjd	}
1515168404Spjd
1516168404Spjd	vd->vdev_tmpoffline = istmp;
1517168404Spjd
1518168404Spjd	vdev_config_dirty(vd->vdev_top);
1519168404Spjd
1520168404Spjd	return (spa_vdev_exit(spa, NULL, txg, 0));
1521168404Spjd}
1522168404Spjd
1523168404Spjd/*
1524168404Spjd * Clear the error counts associated with this vdev.  Unlike vdev_online() and
1525168404Spjd * vdev_offline(), we assume the spa config is locked.  We also clear all
1526168404Spjd * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
1527168404Spjd */
1528168404Spjdvoid
1529168404Spjdvdev_clear(spa_t *spa, vdev_t *vd)
1530168404Spjd{
1531168404Spjd	int c;
1532168404Spjd
1533168404Spjd	if (vd == NULL)
1534168404Spjd		vd = spa->spa_root_vdev;
1535168404Spjd
1536168404Spjd	vd->vdev_stat.vs_read_errors = 0;
1537168404Spjd	vd->vdev_stat.vs_write_errors = 0;
1538168404Spjd	vd->vdev_stat.vs_checksum_errors = 0;
1539168404Spjd
1540168404Spjd	for (c = 0; c < vd->vdev_children; c++)
1541168404Spjd		vdev_clear(spa, vd->vdev_child[c]);
1542168404Spjd}
1543168404Spjd
1544168404Spjdint
1545168404Spjdvdev_is_dead(vdev_t *vd)
1546168404Spjd{
1547168404Spjd	return (vd->vdev_state <= VDEV_STATE_CANT_OPEN);
1548168404Spjd}
1549168404Spjd
1550168404Spjdint
1551168404Spjdvdev_error_inject(vdev_t *vd, zio_t *zio)
1552168404Spjd{
1553168404Spjd	int error = 0;
1554168404Spjd
1555168404Spjd	if (vd->vdev_fault_mode == VDEV_FAULT_NONE)
1556168404Spjd		return (0);
1557168404Spjd
1558168404Spjd	if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0)
1559168404Spjd		return (0);
1560168404Spjd
1561168404Spjd	switch (vd->vdev_fault_mode) {
1562168404Spjd	case VDEV_FAULT_RANDOM:
1563168404Spjd		if (spa_get_random(vd->vdev_fault_arg) == 0)
1564168404Spjd			error = EIO;
1565168404Spjd		break;
1566168404Spjd
1567168404Spjd	case VDEV_FAULT_COUNT:
1568168404Spjd		if ((int64_t)--vd->vdev_fault_arg <= 0)
1569168404Spjd			vd->vdev_fault_mode = VDEV_FAULT_NONE;
1570168404Spjd		error = EIO;
1571168404Spjd		break;
1572168404Spjd	}
1573168404Spjd
1574168404Spjd	if (error != 0) {
1575168404Spjd		dprintf("returning %d for type %d on %s state %d offset %llx\n",
1576168404Spjd		    error, zio->io_type, vdev_description(vd),
1577168404Spjd		    vd->vdev_state, zio->io_offset);
1578168404Spjd	}
1579168404Spjd
1580168404Spjd	return (error);
1581168404Spjd}
1582168404Spjd
1583168404Spjd/*
1584168404Spjd * Get statistics for the given vdev.
1585168404Spjd */
1586168404Spjdvoid
1587168404Spjdvdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
1588168404Spjd{
1589168404Spjd	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
1590168404Spjd	int c, t;
1591168404Spjd
1592168404Spjd	mutex_enter(&vd->vdev_stat_lock);
1593168404Spjd	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
1594168404Spjd	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
1595168404Spjd	vs->vs_state = vd->vdev_state;
1596168404Spjd	vs->vs_rsize = vdev_get_rsize(vd);
1597168404Spjd	mutex_exit(&vd->vdev_stat_lock);
1598168404Spjd
1599168404Spjd	/*
1600168404Spjd	 * If we're getting stats on the root vdev, aggregate the I/O counts
1601168404Spjd	 * over all top-level vdevs (i.e. the direct children of the root).
1602168404Spjd	 */
1603168404Spjd	if (vd == rvd) {
1604168404Spjd		for (c = 0; c < rvd->vdev_children; c++) {
1605168404Spjd			vdev_t *cvd = rvd->vdev_child[c];
1606168404Spjd			vdev_stat_t *cvs = &cvd->vdev_stat;
1607168404Spjd
1608168404Spjd			mutex_enter(&vd->vdev_stat_lock);
1609168404Spjd			for (t = 0; t < ZIO_TYPES; t++) {
1610168404Spjd				vs->vs_ops[t] += cvs->vs_ops[t];
1611168404Spjd				vs->vs_bytes[t] += cvs->vs_bytes[t];
1612168404Spjd			}
1613168404Spjd			vs->vs_read_errors += cvs->vs_read_errors;
1614168404Spjd			vs->vs_write_errors += cvs->vs_write_errors;
1615168404Spjd			vs->vs_checksum_errors += cvs->vs_checksum_errors;
1616168404Spjd			vs->vs_scrub_examined += cvs->vs_scrub_examined;
1617168404Spjd			vs->vs_scrub_errors += cvs->vs_scrub_errors;
1618168404Spjd			mutex_exit(&vd->vdev_stat_lock);
1619168404Spjd		}
1620168404Spjd	}
1621168404Spjd}
1622168404Spjd
1623168404Spjdvoid
1624168404Spjdvdev_stat_update(zio_t *zio)
1625168404Spjd{
1626168404Spjd	vdev_t *vd = zio->io_vd;
1627168404Spjd	vdev_t *pvd;
1628168404Spjd	uint64_t txg = zio->io_txg;
1629168404Spjd	vdev_stat_t *vs = &vd->vdev_stat;
1630168404Spjd	zio_type_t type = zio->io_type;
1631168404Spjd	int flags = zio->io_flags;
1632168404Spjd
1633168404Spjd	if (zio->io_error == 0) {
1634168404Spjd		if (!(flags & ZIO_FLAG_IO_BYPASS)) {
1635168404Spjd			mutex_enter(&vd->vdev_stat_lock);
1636168404Spjd			vs->vs_ops[type]++;
1637168404Spjd			vs->vs_bytes[type] += zio->io_size;
1638168404Spjd			mutex_exit(&vd->vdev_stat_lock);
1639168404Spjd		}
1640168404Spjd		if ((flags & ZIO_FLAG_IO_REPAIR) &&
1641168404Spjd		    zio->io_delegate_list == NULL) {
1642168404Spjd			mutex_enter(&vd->vdev_stat_lock);
1643168404Spjd			if (flags & ZIO_FLAG_SCRUB_THREAD)
1644168404Spjd				vs->vs_scrub_repaired += zio->io_size;
1645168404Spjd			else
1646168404Spjd				vs->vs_self_healed += zio->io_size;
1647168404Spjd			mutex_exit(&vd->vdev_stat_lock);
1648168404Spjd		}
1649168404Spjd		return;
1650168404Spjd	}
1651168404Spjd
1652168404Spjd	if (flags & ZIO_FLAG_SPECULATIVE)
1653168404Spjd		return;
1654168404Spjd
1655168404Spjd	if (!vdev_is_dead(vd)) {
1656168404Spjd		mutex_enter(&vd->vdev_stat_lock);
1657168404Spjd		if (type == ZIO_TYPE_READ) {
1658168404Spjd			if (zio->io_error == ECKSUM)
1659168404Spjd				vs->vs_checksum_errors++;
1660168404Spjd			else
1661168404Spjd				vs->vs_read_errors++;
1662168404Spjd		}
1663168404Spjd		if (type == ZIO_TYPE_WRITE)
1664168404Spjd			vs->vs_write_errors++;
1665168404Spjd		mutex_exit(&vd->vdev_stat_lock);
1666168404Spjd	}
1667168404Spjd
1668168404Spjd	if (type == ZIO_TYPE_WRITE) {
1669168404Spjd		if (txg == 0 || vd->vdev_children != 0)
1670168404Spjd			return;
1671168404Spjd		if (flags & ZIO_FLAG_SCRUB_THREAD) {
1672168404Spjd			ASSERT(flags & ZIO_FLAG_IO_REPAIR);
1673168404Spjd			for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1674168404Spjd				vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1);
1675168404Spjd		}
1676168404Spjd		if (!(flags & ZIO_FLAG_IO_REPAIR)) {
1677168404Spjd			if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1))
1678168404Spjd				return;
1679168404Spjd			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1680168404Spjd			for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1681168404Spjd				vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1);
1682168404Spjd		}
1683168404Spjd	}
1684168404Spjd}
1685168404Spjd
1686168404Spjdvoid
1687168404Spjdvdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
1688168404Spjd{
1689168404Spjd	int c;
1690168404Spjd	vdev_stat_t *vs = &vd->vdev_stat;
1691168404Spjd
1692168404Spjd	for (c = 0; c < vd->vdev_children; c++)
1693168404Spjd		vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
1694168404Spjd
1695168404Spjd	mutex_enter(&vd->vdev_stat_lock);
1696168404Spjd
1697168404Spjd	if (type == POOL_SCRUB_NONE) {
1698168404Spjd		/*
1699168404Spjd		 * Update completion and end time.  Leave everything else alone
1700168404Spjd		 * so we can report what happened during the previous scrub.
1701168404Spjd		 */
1702168404Spjd		vs->vs_scrub_complete = complete;
1703168404Spjd		vs->vs_scrub_end = gethrestime_sec();
1704168404Spjd	} else {
1705168404Spjd		vs->vs_scrub_type = type;
1706168404Spjd		vs->vs_scrub_complete = 0;
1707168404Spjd		vs->vs_scrub_examined = 0;
1708168404Spjd		vs->vs_scrub_repaired = 0;
1709168404Spjd		vs->vs_scrub_errors = 0;
1710168404Spjd		vs->vs_scrub_start = gethrestime_sec();
1711168404Spjd		vs->vs_scrub_end = 0;
1712168404Spjd	}
1713168404Spjd
1714168404Spjd	mutex_exit(&vd->vdev_stat_lock);
1715168404Spjd}
1716168404Spjd
1717168404Spjd/*
1718168404Spjd * Update the in-core space usage stats for this vdev and the root vdev.
1719168404Spjd */
1720168404Spjdvoid
1721168404Spjdvdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta)
1722168404Spjd{
1723168404Spjd	ASSERT(vd == vd->vdev_top);
1724168404Spjd	int64_t dspace_delta = space_delta;
1725168404Spjd
1726168404Spjd	do {
1727168404Spjd		if (vd->vdev_ms_count) {
1728168404Spjd			/*
1729168404Spjd			 * If this is a top-level vdev, apply the
1730168404Spjd			 * inverse of its psize-to-asize (ie. RAID-Z)
1731168404Spjd			 * space-expansion factor.  We must calculate
1732168404Spjd			 * this here and not at the root vdev because
1733168404Spjd			 * the root vdev's psize-to-asize is simply the
1734168404Spjd			 * max of its childrens', thus not accurate
1735168404Spjd			 * enough for us.
1736168404Spjd			 */
1737168404Spjd			ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
1738168404Spjd			dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
1739168404Spjd			    vd->vdev_deflate_ratio;
1740168404Spjd		}
1741168404Spjd
1742168404Spjd		mutex_enter(&vd->vdev_stat_lock);
1743168404Spjd		vd->vdev_stat.vs_space += space_delta;
1744168404Spjd		vd->vdev_stat.vs_alloc += alloc_delta;
1745168404Spjd		vd->vdev_stat.vs_dspace += dspace_delta;
1746168404Spjd		mutex_exit(&vd->vdev_stat_lock);
1747168404Spjd	} while ((vd = vd->vdev_parent) != NULL);
1748168404Spjd}
1749168404Spjd
1750168404Spjd/*
1751168404Spjd * Mark a top-level vdev's config as dirty, placing it on the dirty list
1752168404Spjd * so that it will be written out next time the vdev configuration is synced.
1753168404Spjd * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
1754168404Spjd */
1755168404Spjdvoid
1756168404Spjdvdev_config_dirty(vdev_t *vd)
1757168404Spjd{
1758168404Spjd	spa_t *spa = vd->vdev_spa;
1759168404Spjd	vdev_t *rvd = spa->spa_root_vdev;
1760168404Spjd	int c;
1761168404Spjd
1762168404Spjd	/*
1763168404Spjd	 * The dirty list is protected by the config lock.  The caller must
1764168404Spjd	 * either hold the config lock as writer, or must be the sync thread
1765168404Spjd	 * (which holds the lock as reader).  There's only one sync thread,
1766168404Spjd	 * so this is sufficient to ensure mutual exclusion.
1767168404Spjd	 */
1768168404Spjd	ASSERT(spa_config_held(spa, RW_WRITER) ||
1769168404Spjd	    dsl_pool_sync_context(spa_get_dsl(spa)));
1770168404Spjd
1771168404Spjd	if (vd == rvd) {
1772168404Spjd		for (c = 0; c < rvd->vdev_children; c++)
1773168404Spjd			vdev_config_dirty(rvd->vdev_child[c]);
1774168404Spjd	} else {
1775168404Spjd		ASSERT(vd == vd->vdev_top);
1776168404Spjd
1777168404Spjd		if (!list_link_active(&vd->vdev_dirty_node))
1778168404Spjd			list_insert_head(&spa->spa_dirty_list, vd);
1779168404Spjd	}
1780168404Spjd}
1781168404Spjd
1782168404Spjdvoid
1783168404Spjdvdev_config_clean(vdev_t *vd)
1784168404Spjd{
1785168404Spjd	spa_t *spa = vd->vdev_spa;
1786168404Spjd
1787168404Spjd	ASSERT(spa_config_held(spa, RW_WRITER) ||
1788168404Spjd	    dsl_pool_sync_context(spa_get_dsl(spa)));
1789168404Spjd
1790168404Spjd	ASSERT(list_link_active(&vd->vdev_dirty_node));
1791168404Spjd	list_remove(&spa->spa_dirty_list, vd);
1792168404Spjd}
1793168404Spjd
1794168404Spjdvoid
1795168404Spjdvdev_propagate_state(vdev_t *vd)
1796168404Spjd{
1797168404Spjd	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
1798168404Spjd	int degraded = 0, faulted = 0;
1799168404Spjd	int corrupted = 0;
1800168404Spjd	int c;
1801168404Spjd	vdev_t *child;
1802168404Spjd
1803168404Spjd	for (c = 0; c < vd->vdev_children; c++) {
1804168404Spjd		child = vd->vdev_child[c];
1805168404Spjd		if (child->vdev_state <= VDEV_STATE_CANT_OPEN)
1806168404Spjd			faulted++;
1807168404Spjd		else if (child->vdev_state == VDEV_STATE_DEGRADED)
1808168404Spjd			degraded++;
1809168404Spjd
1810168404Spjd		if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
1811168404Spjd			corrupted++;
1812168404Spjd	}
1813168404Spjd
1814168404Spjd	vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
1815168404Spjd
1816168404Spjd	/*
1817168404Spjd	 * Root special: if there is a toplevel vdev that cannot be
1818168404Spjd	 * opened due to corrupted metadata, then propagate the root
1819168404Spjd	 * vdev's aux state as 'corrupt' rather than 'insufficient
1820168404Spjd	 * replicas'.
1821168404Spjd	 */
1822168404Spjd	if (corrupted && vd == rvd && rvd->vdev_state == VDEV_STATE_CANT_OPEN)
1823168404Spjd		vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
1824168404Spjd		    VDEV_AUX_CORRUPT_DATA);
1825168404Spjd}
1826168404Spjd
1827168404Spjd/*
1828168404Spjd * Set a vdev's state.  If this is during an open, we don't update the parent
1829168404Spjd * state, because we're in the process of opening children depth-first.
1830168404Spjd * Otherwise, we propagate the change to the parent.
1831168404Spjd *
1832168404Spjd * If this routine places a device in a faulted state, an appropriate ereport is
1833168404Spjd * generated.
1834168404Spjd */
1835168404Spjdvoid
1836168404Spjdvdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
1837168404Spjd{
1838168404Spjd	uint64_t save_state;
1839168404Spjd
1840168404Spjd	if (state == vd->vdev_state) {
1841168404Spjd		vd->vdev_stat.vs_aux = aux;
1842168404Spjd		return;
1843168404Spjd	}
1844168404Spjd
1845168404Spjd	save_state = vd->vdev_state;
1846168404Spjd
1847168404Spjd	vd->vdev_state = state;
1848168404Spjd	vd->vdev_stat.vs_aux = aux;
1849168404Spjd
1850168404Spjd	if (state == VDEV_STATE_CANT_OPEN) {
1851168404Spjd		/*
1852168404Spjd		 * If we fail to open a vdev during an import, we mark it as
1853168404Spjd		 * "not available", which signifies that it was never there to
1854168404Spjd		 * begin with.  Failure to open such a device is not considered
1855168404Spjd		 * an error.
1856168404Spjd		 */
1857168404Spjd		if (vd->vdev_spa->spa_load_state == SPA_LOAD_IMPORT &&
1858168404Spjd		    vd->vdev_ops->vdev_op_leaf)
1859168404Spjd			vd->vdev_not_present = 1;
1860168404Spjd
1861168404Spjd		/*
1862168404Spjd		 * Post the appropriate ereport.  If the 'prevstate' field is
1863168404Spjd		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
1864168404Spjd		 * that this is part of a vdev_reopen().  In this case, we don't
1865168404Spjd		 * want to post the ereport if the device was already in the
1866168404Spjd		 * CANT_OPEN state beforehand.
1867168404Spjd		 */
1868168404Spjd		if (vd->vdev_prevstate != state && !vd->vdev_not_present &&
1869168404Spjd		    vd != vd->vdev_spa->spa_root_vdev) {
1870168404Spjd			const char *class;
1871168404Spjd
1872168404Spjd			switch (aux) {
1873168404Spjd			case VDEV_AUX_OPEN_FAILED:
1874168404Spjd				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
1875168404Spjd				break;
1876168404Spjd			case VDEV_AUX_CORRUPT_DATA:
1877168404Spjd				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
1878168404Spjd				break;
1879168404Spjd			case VDEV_AUX_NO_REPLICAS:
1880168404Spjd				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
1881168404Spjd				break;
1882168404Spjd			case VDEV_AUX_BAD_GUID_SUM:
1883168404Spjd				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
1884168404Spjd				break;
1885168404Spjd			case VDEV_AUX_TOO_SMALL:
1886168404Spjd				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
1887168404Spjd				break;
1888168404Spjd			case VDEV_AUX_BAD_LABEL:
1889168404Spjd				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
1890168404Spjd				break;
1891168404Spjd			default:
1892168404Spjd				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
1893168404Spjd			}
1894168404Spjd
1895168404Spjd			zfs_ereport_post(class, vd->vdev_spa,
1896168404Spjd			    vd, NULL, save_state, 0);
1897168404Spjd		}
1898168404Spjd	}
1899168404Spjd
1900168404Spjd	if (isopen)
1901168404Spjd		return;
1902168404Spjd
1903168404Spjd	if (vd->vdev_parent != NULL)
1904168404Spjd		vdev_propagate_state(vd->vdev_parent);
1905168404Spjd}
1906