spa.h revision 288553
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 */
27
28#ifndef _SYS_SPA_H
29#define	_SYS_SPA_H
30
31#include <sys/avl.h>
32#include <sys/zfs_context.h>
33#include <sys/nvpair.h>
34#include <sys/sysmacros.h>
35#include <sys/types.h>
36#include <sys/fs/zfs.h>
37
38#ifdef	__cplusplus
39extern "C" {
40#endif
41
42/*
43 * Forward references that lots of things need.
44 */
45typedef struct spa spa_t;
46typedef struct vdev vdev_t;
47typedef struct metaslab metaslab_t;
48typedef struct metaslab_group metaslab_group_t;
49typedef struct metaslab_class metaslab_class_t;
50typedef struct zio zio_t;
51typedef struct zilog zilog_t;
52typedef struct spa_aux_vdev spa_aux_vdev_t;
53typedef struct ddt ddt_t;
54typedef struct ddt_entry ddt_entry_t;
55struct dsl_pool;
56struct dsl_dataset;
57
58/*
59 * General-purpose 32-bit and 64-bit bitfield encodings.
60 */
61#define	BF32_DECODE(x, low, len)	P2PHASE((x) >> (low), 1U << (len))
62#define	BF64_DECODE(x, low, len)	P2PHASE((x) >> (low), 1ULL << (len))
63#define	BF32_ENCODE(x, low, len)	(P2PHASE((x), 1U << (len)) << (low))
64#define	BF64_ENCODE(x, low, len)	(P2PHASE((x), 1ULL << (len)) << (low))
65
66#define	BF32_GET(x, low, len)		BF32_DECODE(x, low, len)
67#define	BF64_GET(x, low, len)		BF64_DECODE(x, low, len)
68
69#define	BF32_SET(x, low, len, val) do { \
70	ASSERT3U(val, <, 1U << (len)); \
71	ASSERT3U(low + len, <=, 32); \
72	(x) ^= BF32_ENCODE((x >> low) ^ (val), low, len); \
73_NOTE(CONSTCOND) } while (0)
74
75#define	BF64_SET(x, low, len, val) do { \
76	ASSERT3U(val, <, 1ULL << (len)); \
77	ASSERT3U(low + len, <=, 64); \
78	((x) ^= BF64_ENCODE((x >> low) ^ (val), low, len)); \
79_NOTE(CONSTCOND) } while (0)
80
81#define	BF32_GET_SB(x, low, len, shift, bias)	\
82	((BF32_GET(x, low, len) + (bias)) << (shift))
83#define	BF64_GET_SB(x, low, len, shift, bias)	\
84	((BF64_GET(x, low, len) + (bias)) << (shift))
85
86#define	BF32_SET_SB(x, low, len, shift, bias, val) do { \
87	ASSERT(IS_P2ALIGNED(val, 1U << shift)); \
88	ASSERT3S((val) >> (shift), >=, bias); \
89	BF32_SET(x, low, len, ((val) >> (shift)) - (bias)); \
90_NOTE(CONSTCOND) } while (0)
91#define	BF64_SET_SB(x, low, len, shift, bias, val) do { \
92	ASSERT(IS_P2ALIGNED(val, 1ULL << shift)); \
93	ASSERT3S((val) >> (shift), >=, bias); \
94	BF64_SET(x, low, len, ((val) >> (shift)) - (bias)); \
95_NOTE(CONSTCOND) } while (0)
96
97/*
98 * We currently support block sizes from 512 bytes to 16MB.
99 * The benefits of larger blocks, and thus larger IO, need to be weighed
100 * against the cost of COWing a giant block to modify one byte, and the
101 * large latency of reading or writing a large block.
102 *
103 * Note that although blocks up to 16MB are supported, the recordsize
104 * property can not be set larger than zfs_max_recordsize (default 1MB).
105 * See the comment near zfs_max_recordsize in dsl_dataset.c for details.
106 *
107 * Note that although the LSIZE field of the blkptr_t can store sizes up
108 * to 32MB, the dnode's dn_datablkszsec can only store sizes up to
109 * 32MB - 512 bytes.  Therefore, we limit SPA_MAXBLOCKSIZE to 16MB.
110 */
111#define	SPA_MINBLOCKSHIFT	9
112#define	SPA_OLD_MAXBLOCKSHIFT	17
113#define	SPA_MAXBLOCKSHIFT	24
114#define	SPA_MINBLOCKSIZE	(1ULL << SPA_MINBLOCKSHIFT)
115#define	SPA_OLD_MAXBLOCKSIZE	(1ULL << SPA_OLD_MAXBLOCKSHIFT)
116#define	SPA_MAXBLOCKSIZE	(1ULL << SPA_MAXBLOCKSHIFT)
117
118/*
119 * Default maximum supported logical ashift.
120 *
121 * The current 8k allocation block size limit is due to the 8k
122 * aligned/sized operations performed by vdev_probe() on
123 * vdev_label->vl_pad2.  Using another "safe region" for these tests
124 * would allow the limit to be raised to 16k, at the expense of
125 * only having 8 available uberblocks in the label area.
126 */
127#define	SPA_MAXASHIFT		13
128
129/*
130 * Default minimum supported logical ashift.
131 */
132#define SPA_MINASHIFT		SPA_MINBLOCKSHIFT
133
134/*
135 * Size of block to hold the configuration data (a packed nvlist)
136 */
137#define	SPA_CONFIG_BLOCKSIZE	(1ULL << 14)
138
139/*
140 * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB.
141 * The ASIZE encoding should be at least 64 times larger (6 more bits)
142 * to support up to 4-way RAID-Z mirror mode with worst-case gang block
143 * overhead, three DVAs per bp, plus one more bit in case we do anything
144 * else that expands the ASIZE.
145 */
146#define	SPA_LSIZEBITS		16	/* LSIZE up to 32M (2^16 * 512)	*/
147#define	SPA_PSIZEBITS		16	/* PSIZE up to 32M (2^16 * 512)	*/
148#define	SPA_ASIZEBITS		24	/* ASIZE up to 64 times larger	*/
149
150/*
151 * All SPA data is represented by 128-bit data virtual addresses (DVAs).
152 * The members of the dva_t should be considered opaque outside the SPA.
153 */
154typedef struct dva {
155	uint64_t	dva_word[2];
156} dva_t;
157
158/*
159 * Each block has a 256-bit checksum -- strong enough for cryptographic hashes.
160 */
161typedef struct zio_cksum {
162	uint64_t	zc_word[4];
163} zio_cksum_t;
164
165/*
166 * Each block is described by its DVAs, time of birth, checksum, etc.
167 * The word-by-word, bit-by-bit layout of the blkptr is as follows:
168 *
169 *	64	56	48	40	32	24	16	8	0
170 *	+-------+-------+-------+-------+-------+-------+-------+-------+
171 * 0	|		vdev1		| GRID  |	  ASIZE		|
172 *	+-------+-------+-------+-------+-------+-------+-------+-------+
173 * 1	|G|			 offset1				|
174 *	+-------+-------+-------+-------+-------+-------+-------+-------+
175 * 2	|		vdev2		| GRID  |	  ASIZE		|
176 *	+-------+-------+-------+-------+-------+-------+-------+-------+
177 * 3	|G|			 offset2				|
178 *	+-------+-------+-------+-------+-------+-------+-------+-------+
179 * 4	|		vdev3		| GRID  |	  ASIZE		|
180 *	+-------+-------+-------+-------+-------+-------+-------+-------+
181 * 5	|G|			 offset3				|
182 *	+-------+-------+-------+-------+-------+-------+-------+-------+
183 * 6	|BDX|lvl| type	| cksum |E| comp|    PSIZE	|     LSIZE	|
184 *	+-------+-------+-------+-------+-------+-------+-------+-------+
185 * 7	|			padding					|
186 *	+-------+-------+-------+-------+-------+-------+-------+-------+
187 * 8	|			padding					|
188 *	+-------+-------+-------+-------+-------+-------+-------+-------+
189 * 9	|			physical birth txg			|
190 *	+-------+-------+-------+-------+-------+-------+-------+-------+
191 * a	|			logical birth txg			|
192 *	+-------+-------+-------+-------+-------+-------+-------+-------+
193 * b	|			fill count				|
194 *	+-------+-------+-------+-------+-------+-------+-------+-------+
195 * c	|			checksum[0]				|
196 *	+-------+-------+-------+-------+-------+-------+-------+-------+
197 * d	|			checksum[1]				|
198 *	+-------+-------+-------+-------+-------+-------+-------+-------+
199 * e	|			checksum[2]				|
200 *	+-------+-------+-------+-------+-------+-------+-------+-------+
201 * f	|			checksum[3]				|
202 *	+-------+-------+-------+-------+-------+-------+-------+-------+
203 *
204 * Legend:
205 *
206 * vdev		virtual device ID
207 * offset	offset into virtual device
208 * LSIZE	logical size
209 * PSIZE	physical size (after compression)
210 * ASIZE	allocated size (including RAID-Z parity and gang block headers)
211 * GRID		RAID-Z layout information (reserved for future use)
212 * cksum	checksum function
213 * comp		compression function
214 * G		gang block indicator
215 * B		byteorder (endianness)
216 * D		dedup
217 * X		encryption (on version 30, which is not supported)
218 * E		blkptr_t contains embedded data (see below)
219 * lvl		level of indirection
220 * type		DMU object type
221 * phys birth	txg of block allocation; zero if same as logical birth txg
222 * log. birth	transaction group in which the block was logically born
223 * fill count	number of non-zero blocks under this bp
224 * checksum[4]	256-bit checksum of the data this bp describes
225 */
226
227/*
228 * "Embedded" blkptr_t's don't actually point to a block, instead they
229 * have a data payload embedded in the blkptr_t itself.  See the comment
230 * in blkptr.c for more details.
231 *
232 * The blkptr_t is laid out as follows:
233 *
234 *	64	56	48	40	32	24	16	8	0
235 *	+-------+-------+-------+-------+-------+-------+-------+-------+
236 * 0	|      payload                                                  |
237 * 1	|      payload                                                  |
238 * 2	|      payload                                                  |
239 * 3	|      payload                                                  |
240 * 4	|      payload                                                  |
241 * 5	|      payload                                                  |
242 *	+-------+-------+-------+-------+-------+-------+-------+-------+
243 * 6	|BDX|lvl| type	| etype |E| comp| PSIZE|              LSIZE	|
244 *	+-------+-------+-------+-------+-------+-------+-------+-------+
245 * 7	|      payload                                                  |
246 * 8	|      payload                                                  |
247 * 9	|      payload                                                  |
248 *	+-------+-------+-------+-------+-------+-------+-------+-------+
249 * a	|			logical birth txg			|
250 *	+-------+-------+-------+-------+-------+-------+-------+-------+
251 * b	|      payload                                                  |
252 * c	|      payload                                                  |
253 * d	|      payload                                                  |
254 * e	|      payload                                                  |
255 * f	|      payload                                                  |
256 *	+-------+-------+-------+-------+-------+-------+-------+-------+
257 *
258 * Legend:
259 *
260 * payload		contains the embedded data
261 * B (byteorder)	byteorder (endianness)
262 * D (dedup)		padding (set to zero)
263 * X			encryption (set to zero; see above)
264 * E (embedded)		set to one
265 * lvl			indirection level
266 * type			DMU object type
267 * etype		how to interpret embedded data (BP_EMBEDDED_TYPE_*)
268 * comp			compression function of payload
269 * PSIZE		size of payload after compression, in bytes
270 * LSIZE		logical size of payload, in bytes
271 *			note that 25 bits is enough to store the largest
272 *			"normal" BP's LSIZE (2^16 * 2^9) in bytes
273 * log. birth		transaction group in which the block was logically born
274 *
275 * Note that LSIZE and PSIZE are stored in bytes, whereas for non-embedded
276 * bp's they are stored in units of SPA_MINBLOCKSHIFT.
277 * Generally, the generic BP_GET_*() macros can be used on embedded BP's.
278 * The B, D, X, lvl, type, and comp fields are stored the same as with normal
279 * BP's so the BP_SET_* macros can be used with them.  etype, PSIZE, LSIZE must
280 * be set with the BPE_SET_* macros.  BP_SET_EMBEDDED() should be called before
281 * other macros, as they assert that they are only used on BP's of the correct
282 * "embedded-ness".
283 */
284
285#define	BPE_GET_ETYPE(bp)	\
286	(ASSERT(BP_IS_EMBEDDED(bp)), \
287	BF64_GET((bp)->blk_prop, 40, 8))
288#define	BPE_SET_ETYPE(bp, t)	do { \
289	ASSERT(BP_IS_EMBEDDED(bp)); \
290	BF64_SET((bp)->blk_prop, 40, 8, t); \
291_NOTE(CONSTCOND) } while (0)
292
293#define	BPE_GET_LSIZE(bp)	\
294	(ASSERT(BP_IS_EMBEDDED(bp)), \
295	BF64_GET_SB((bp)->blk_prop, 0, 25, 0, 1))
296#define	BPE_SET_LSIZE(bp, x)	do { \
297	ASSERT(BP_IS_EMBEDDED(bp)); \
298	BF64_SET_SB((bp)->blk_prop, 0, 25, 0, 1, x); \
299_NOTE(CONSTCOND) } while (0)
300
301#define	BPE_GET_PSIZE(bp)	\
302	(ASSERT(BP_IS_EMBEDDED(bp)), \
303	BF64_GET_SB((bp)->blk_prop, 25, 7, 0, 1))
304#define	BPE_SET_PSIZE(bp, x)	do { \
305	ASSERT(BP_IS_EMBEDDED(bp)); \
306	BF64_SET_SB((bp)->blk_prop, 25, 7, 0, 1, x); \
307_NOTE(CONSTCOND) } while (0)
308
309typedef enum bp_embedded_type {
310	BP_EMBEDDED_TYPE_DATA,
311	BP_EMBEDDED_TYPE_RESERVED, /* Reserved for an unintegrated feature. */
312	NUM_BP_EMBEDDED_TYPES = BP_EMBEDDED_TYPE_RESERVED
313} bp_embedded_type_t;
314
315#define	BPE_NUM_WORDS 14
316#define	BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t))
317#define	BPE_IS_PAYLOADWORD(bp, wp) \
318	((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth)
319
320#define	SPA_BLKPTRSHIFT	7		/* blkptr_t is 128 bytes	*/
321#define	SPA_DVAS_PER_BP	3		/* Number of DVAs in a bp	*/
322
323/*
324 * A block is a hole when it has either 1) never been written to, or
325 * 2) is zero-filled. In both cases, ZFS can return all zeroes for all reads
326 * without physically allocating disk space. Holes are represented in the
327 * blkptr_t structure by zeroed blk_dva. Correct checking for holes is
328 * done through the BP_IS_HOLE macro. For holes, the logical size, level,
329 * DMU object type, and birth times are all also stored for holes that
330 * were written to at some point (i.e. were punched after having been filled).
331 */
332typedef struct blkptr {
333	dva_t		blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */
334	uint64_t	blk_prop;	/* size, compression, type, etc	    */
335	uint64_t	blk_pad[2];	/* Extra space for the future	    */
336	uint64_t	blk_phys_birth;	/* txg when block was allocated	    */
337	uint64_t	blk_birth;	/* transaction group at birth	    */
338	uint64_t	blk_fill;	/* fill count			    */
339	zio_cksum_t	blk_cksum;	/* 256-bit checksum		    */
340} blkptr_t;
341
342/*
343 * Macros to get and set fields in a bp or DVA.
344 */
345#define	DVA_GET_ASIZE(dva)	\
346	BF64_GET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, SPA_MINBLOCKSHIFT, 0)
347#define	DVA_SET_ASIZE(dva, x)	\
348	BF64_SET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, \
349	SPA_MINBLOCKSHIFT, 0, x)
350
351#define	DVA_GET_GRID(dva)	BF64_GET((dva)->dva_word[0], 24, 8)
352#define	DVA_SET_GRID(dva, x)	BF64_SET((dva)->dva_word[0], 24, 8, x)
353
354#define	DVA_GET_VDEV(dva)	BF64_GET((dva)->dva_word[0], 32, 32)
355#define	DVA_SET_VDEV(dva, x)	BF64_SET((dva)->dva_word[0], 32, 32, x)
356
357#define	DVA_GET_OFFSET(dva)	\
358	BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0)
359#define	DVA_SET_OFFSET(dva, x)	\
360	BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x)
361
362#define	DVA_GET_GANG(dva)	BF64_GET((dva)->dva_word[1], 63, 1)
363#define	DVA_SET_GANG(dva, x)	BF64_SET((dva)->dva_word[1], 63, 1, x)
364
365#define	BP_GET_LSIZE(bp)	\
366	(BP_IS_EMBEDDED(bp) ?	\
367	(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA ? BPE_GET_LSIZE(bp) : 0): \
368	BF64_GET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1))
369#define	BP_SET_LSIZE(bp, x)	do { \
370	ASSERT(!BP_IS_EMBEDDED(bp)); \
371	BF64_SET_SB((bp)->blk_prop, \
372	    0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
373_NOTE(CONSTCOND) } while (0)
374
375#define	BP_GET_PSIZE(bp)	\
376	(BP_IS_EMBEDDED(bp) ? 0 : \
377	BF64_GET_SB((bp)->blk_prop, 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1))
378#define	BP_SET_PSIZE(bp, x)	do { \
379	ASSERT(!BP_IS_EMBEDDED(bp)); \
380	BF64_SET_SB((bp)->blk_prop, \
381	    16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
382_NOTE(CONSTCOND) } while (0)
383
384#define	BP_GET_COMPRESS(bp)		BF64_GET((bp)->blk_prop, 32, 7)
385#define	BP_SET_COMPRESS(bp, x)		BF64_SET((bp)->blk_prop, 32, 7, x)
386
387#define	BP_IS_EMBEDDED(bp)		BF64_GET((bp)->blk_prop, 39, 1)
388#define	BP_SET_EMBEDDED(bp, x)		BF64_SET((bp)->blk_prop, 39, 1, x)
389
390#define	BP_GET_CHECKSUM(bp)		\
391	(BP_IS_EMBEDDED(bp) ? ZIO_CHECKSUM_OFF : \
392	BF64_GET((bp)->blk_prop, 40, 8))
393#define	BP_SET_CHECKSUM(bp, x)		do { \
394	ASSERT(!BP_IS_EMBEDDED(bp)); \
395	BF64_SET((bp)->blk_prop, 40, 8, x); \
396_NOTE(CONSTCOND) } while (0)
397
398#define	BP_GET_TYPE(bp)			BF64_GET((bp)->blk_prop, 48, 8)
399#define	BP_SET_TYPE(bp, x)		BF64_SET((bp)->blk_prop, 48, 8, x)
400
401#define	BP_GET_LEVEL(bp)		BF64_GET((bp)->blk_prop, 56, 5)
402#define	BP_SET_LEVEL(bp, x)		BF64_SET((bp)->blk_prop, 56, 5, x)
403
404#define	BP_GET_DEDUP(bp)		BF64_GET((bp)->blk_prop, 62, 1)
405#define	BP_SET_DEDUP(bp, x)		BF64_SET((bp)->blk_prop, 62, 1, x)
406
407#define	BP_GET_BYTEORDER(bp)		BF64_GET((bp)->blk_prop, 63, 1)
408#define	BP_SET_BYTEORDER(bp, x)		BF64_SET((bp)->blk_prop, 63, 1, x)
409
410#define	BP_PHYSICAL_BIRTH(bp)		\
411	(BP_IS_EMBEDDED(bp) ? 0 : \
412	(bp)->blk_phys_birth ? (bp)->blk_phys_birth : (bp)->blk_birth)
413
414#define	BP_SET_BIRTH(bp, logical, physical)	\
415{						\
416	ASSERT(!BP_IS_EMBEDDED(bp));		\
417	(bp)->blk_birth = (logical);		\
418	(bp)->blk_phys_birth = ((logical) == (physical) ? 0 : (physical)); \
419}
420
421#define	BP_GET_FILL(bp) (BP_IS_EMBEDDED(bp) ? 1 : (bp)->blk_fill)
422
423#define	BP_GET_ASIZE(bp)	\
424	(BP_IS_EMBEDDED(bp) ? 0 : \
425	DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
426	DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
427	DVA_GET_ASIZE(&(bp)->blk_dva[2]))
428
429#define	BP_GET_UCSIZE(bp) \
430	((BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) ? \
431	BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp))
432
433#define	BP_GET_NDVAS(bp)	\
434	(BP_IS_EMBEDDED(bp) ? 0 : \
435	!!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
436	!!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
437	!!DVA_GET_ASIZE(&(bp)->blk_dva[2]))
438
439#define	BP_COUNT_GANG(bp)	\
440	(BP_IS_EMBEDDED(bp) ? 0 : \
441	(DVA_GET_GANG(&(bp)->blk_dva[0]) + \
442	DVA_GET_GANG(&(bp)->blk_dva[1]) + \
443	DVA_GET_GANG(&(bp)->blk_dva[2])))
444
445#define	DVA_EQUAL(dva1, dva2)	\
446	((dva1)->dva_word[1] == (dva2)->dva_word[1] && \
447	(dva1)->dva_word[0] == (dva2)->dva_word[0])
448
449#define	BP_EQUAL(bp1, bp2)	\
450	(BP_PHYSICAL_BIRTH(bp1) == BP_PHYSICAL_BIRTH(bp2) &&	\
451	(bp1)->blk_birth == (bp2)->blk_birth &&			\
452	DVA_EQUAL(&(bp1)->blk_dva[0], &(bp2)->blk_dva[0]) &&	\
453	DVA_EQUAL(&(bp1)->blk_dva[1], &(bp2)->blk_dva[1]) &&	\
454	DVA_EQUAL(&(bp1)->blk_dva[2], &(bp2)->blk_dva[2]))
455
456#define	ZIO_CHECKSUM_EQUAL(zc1, zc2) \
457	(0 == (((zc1).zc_word[0] - (zc2).zc_word[0]) | \
458	((zc1).zc_word[1] - (zc2).zc_word[1]) | \
459	((zc1).zc_word[2] - (zc2).zc_word[2]) | \
460	((zc1).zc_word[3] - (zc2).zc_word[3])))
461
462#define	ZIO_CHECKSUM_IS_ZERO(zc) \
463	(0 == ((zc)->zc_word[0] | (zc)->zc_word[1] | \
464	(zc)->zc_word[2] | (zc)->zc_word[3]))
465
466#define	ZIO_CHECKSUM_BSWAP(zcp)					\
467{								\
468	(zcp)->zc_word[0] = BSWAP_64((zcp)->zc_word[0]);	\
469	(zcp)->zc_word[1] = BSWAP_64((zcp)->zc_word[1]);	\
470	(zcp)->zc_word[2] = BSWAP_64((zcp)->zc_word[2]);	\
471	(zcp)->zc_word[3] = BSWAP_64((zcp)->zc_word[3]);	\
472}
473
474
475#define	DVA_IS_VALID(dva)	(DVA_GET_ASIZE(dva) != 0)
476
477#define	ZIO_SET_CHECKSUM(zcp, w0, w1, w2, w3)	\
478{						\
479	(zcp)->zc_word[0] = w0;			\
480	(zcp)->zc_word[1] = w1;			\
481	(zcp)->zc_word[2] = w2;			\
482	(zcp)->zc_word[3] = w3;			\
483}
484
485#define	BP_IDENTITY(bp)		(ASSERT(!BP_IS_EMBEDDED(bp)), &(bp)->blk_dva[0])
486#define	BP_IS_GANG(bp)		\
487	(BP_IS_EMBEDDED(bp) ? B_FALSE : DVA_GET_GANG(BP_IDENTITY(bp)))
488#define	DVA_IS_EMPTY(dva)	((dva)->dva_word[0] == 0ULL &&	\
489				(dva)->dva_word[1] == 0ULL)
490#define	BP_IS_HOLE(bp) \
491	(!BP_IS_EMBEDDED(bp) && DVA_IS_EMPTY(BP_IDENTITY(bp)))
492
493/* BP_IS_RAIDZ(bp) assumes no block compression */
494#define	BP_IS_RAIDZ(bp)		(DVA_GET_ASIZE(&(bp)->blk_dva[0]) > \
495				BP_GET_PSIZE(bp))
496
497#define	BP_ZERO(bp)				\
498{						\
499	(bp)->blk_dva[0].dva_word[0] = 0;	\
500	(bp)->blk_dva[0].dva_word[1] = 0;	\
501	(bp)->blk_dva[1].dva_word[0] = 0;	\
502	(bp)->blk_dva[1].dva_word[1] = 0;	\
503	(bp)->blk_dva[2].dva_word[0] = 0;	\
504	(bp)->blk_dva[2].dva_word[1] = 0;	\
505	(bp)->blk_prop = 0;			\
506	(bp)->blk_pad[0] = 0;			\
507	(bp)->blk_pad[1] = 0;			\
508	(bp)->blk_phys_birth = 0;		\
509	(bp)->blk_birth = 0;			\
510	(bp)->blk_fill = 0;			\
511	ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0);	\
512}
513
514#if BYTE_ORDER == _BIG_ENDIAN
515#define	ZFS_HOST_BYTEORDER	(0ULL)
516#else
517#define	ZFS_HOST_BYTEORDER	(1ULL)
518#endif
519
520#define	BP_SHOULD_BYTESWAP(bp)	(BP_GET_BYTEORDER(bp) != ZFS_HOST_BYTEORDER)
521
522#define	BP_SPRINTF_LEN	320
523
524/*
525 * This macro allows code sharing between zfs, libzpool, and mdb.
526 * 'func' is either snprintf() or mdb_snprintf().
527 * 'ws' (whitespace) can be ' ' for single-line format, '\n' for multi-line.
528 */
529#define	SNPRINTF_BLKPTR(func, ws, buf, size, bp, type, checksum, compress) \
530{									\
531	static const char *copyname[] =					\
532	    { "zero", "single", "double", "triple" };			\
533	int len = 0;							\
534	int copies = 0;							\
535									\
536	if (bp == NULL) {						\
537		len += func(buf + len, size - len, "<NULL>");		\
538	} else if (BP_IS_HOLE(bp)) {					\
539		len += func(buf + len, size - len, "<hole>");		\
540		if (bp->blk_birth > 0) {				\
541			len += func(buf + len, size - len,		\
542			    " birth=%lluL",				\
543			    (u_longlong_t)bp->blk_birth);		\
544		}							\
545	} else if (BP_IS_EMBEDDED(bp)) {				\
546		len = func(buf + len, size - len,			\
547		    "EMBEDDED [L%llu %s] et=%u %s "			\
548		    "size=%llxL/%llxP birth=%lluL",			\
549		    (u_longlong_t)BP_GET_LEVEL(bp),			\
550		    type,						\
551		    (int)BPE_GET_ETYPE(bp),				\
552		    compress,						\
553		    (u_longlong_t)BPE_GET_LSIZE(bp),			\
554		    (u_longlong_t)BPE_GET_PSIZE(bp),			\
555		    (u_longlong_t)bp->blk_birth);			\
556	} else {							\
557		for (int d = 0; d < BP_GET_NDVAS(bp); d++) {		\
558			const dva_t *dva = &bp->blk_dva[d];		\
559			if (DVA_IS_VALID(dva))				\
560				copies++;				\
561			len += func(buf + len, size - len,		\
562			    "DVA[%d]=<%llu:%llx:%llx>%c", d,		\
563			    (u_longlong_t)DVA_GET_VDEV(dva),		\
564			    (u_longlong_t)DVA_GET_OFFSET(dva),		\
565			    (u_longlong_t)DVA_GET_ASIZE(dva),		\
566			    ws);					\
567		}							\
568		if (BP_IS_GANG(bp) &&					\
569		    DVA_GET_ASIZE(&bp->blk_dva[2]) <=			\
570		    DVA_GET_ASIZE(&bp->blk_dva[1]) / 2)			\
571			copies--;					\
572		len += func(buf + len, size - len,			\
573		    "[L%llu %s] %s %s %s %s %s %s%c"			\
574		    "size=%llxL/%llxP birth=%lluL/%lluP fill=%llu%c"	\
575		    "cksum=%llx:%llx:%llx:%llx",			\
576		    (u_longlong_t)BP_GET_LEVEL(bp),			\
577		    type,						\
578		    checksum,						\
579		    compress,						\
580		    BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE",		\
581		    BP_IS_GANG(bp) ? "gang" : "contiguous",		\
582		    BP_GET_DEDUP(bp) ? "dedup" : "unique",		\
583		    copyname[copies],					\
584		    ws,							\
585		    (u_longlong_t)BP_GET_LSIZE(bp),			\
586		    (u_longlong_t)BP_GET_PSIZE(bp),			\
587		    (u_longlong_t)bp->blk_birth,			\
588		    (u_longlong_t)BP_PHYSICAL_BIRTH(bp),		\
589		    (u_longlong_t)BP_GET_FILL(bp),			\
590		    ws,							\
591		    (u_longlong_t)bp->blk_cksum.zc_word[0],		\
592		    (u_longlong_t)bp->blk_cksum.zc_word[1],		\
593		    (u_longlong_t)bp->blk_cksum.zc_word[2],		\
594		    (u_longlong_t)bp->blk_cksum.zc_word[3]);		\
595	}								\
596	ASSERT(len < size);						\
597}
598
599#include <sys/dmu.h>
600
601#define	BP_GET_BUFC_TYPE(bp)						\
602	(((BP_GET_LEVEL(bp) > 0) || (DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))) ? \
603	ARC_BUFC_METADATA : ARC_BUFC_DATA)
604
605typedef enum spa_import_type {
606	SPA_IMPORT_EXISTING,
607	SPA_IMPORT_ASSEMBLE
608} spa_import_type_t;
609
610/* state manipulation functions */
611extern int spa_open(const char *pool, spa_t **, void *tag);
612extern int spa_open_rewind(const char *pool, spa_t **, void *tag,
613    nvlist_t *policy, nvlist_t **config);
614extern int spa_get_stats(const char *pool, nvlist_t **config, char *altroot,
615    size_t buflen);
616extern int spa_create(const char *pool, nvlist_t *config, nvlist_t *props,
617    nvlist_t *zplprops);
618#if defined(sun)
619extern int spa_import_rootpool(char *devpath, char *devid);
620#else
621extern int spa_import_rootpool(const char *name);
622#endif
623extern int spa_import(const char *pool, nvlist_t *config, nvlist_t *props,
624    uint64_t flags);
625extern nvlist_t *spa_tryimport(nvlist_t *tryconfig);
626extern int spa_destroy(char *pool);
627extern int spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
628    boolean_t hardforce);
629extern int spa_reset(char *pool);
630extern void spa_async_request(spa_t *spa, int flag);
631extern void spa_async_unrequest(spa_t *spa, int flag);
632extern void spa_async_suspend(spa_t *spa);
633extern void spa_async_resume(spa_t *spa);
634extern spa_t *spa_inject_addref(char *pool);
635extern void spa_inject_delref(spa_t *spa);
636extern void spa_scan_stat_init(spa_t *spa);
637extern int spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps);
638
639#define	SPA_ASYNC_CONFIG_UPDATE	0x01
640#define	SPA_ASYNC_REMOVE	0x02
641#define	SPA_ASYNC_PROBE		0x04
642#define	SPA_ASYNC_RESILVER_DONE	0x08
643#define	SPA_ASYNC_RESILVER	0x10
644#define	SPA_ASYNC_AUTOEXPAND	0x20
645#define	SPA_ASYNC_REMOVE_DONE	0x40
646#define	SPA_ASYNC_REMOVE_STOP	0x80
647
648/*
649 * Controls the behavior of spa_vdev_remove().
650 */
651#define	SPA_REMOVE_UNSPARE	0x01
652#define	SPA_REMOVE_DONE		0x02
653
654/* device manipulation */
655extern int spa_vdev_add(spa_t *spa, nvlist_t *nvroot);
656extern int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot,
657    int replacing);
658extern int spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid,
659    int replace_done);
660extern int spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare);
661extern boolean_t spa_vdev_remove_active(spa_t *spa);
662extern int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath);
663extern int spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru);
664extern int spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
665    nvlist_t *props, boolean_t exp);
666
667/* spare state (which is global across all pools) */
668extern void spa_spare_add(vdev_t *vd);
669extern void spa_spare_remove(vdev_t *vd);
670extern boolean_t spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt);
671extern void spa_spare_activate(vdev_t *vd);
672
673/* L2ARC state (which is global across all pools) */
674extern void spa_l2cache_add(vdev_t *vd);
675extern void spa_l2cache_remove(vdev_t *vd);
676extern boolean_t spa_l2cache_exists(uint64_t guid, uint64_t *pool);
677extern void spa_l2cache_activate(vdev_t *vd);
678extern void spa_l2cache_drop(spa_t *spa);
679
680/* scanning */
681extern int spa_scan(spa_t *spa, pool_scan_func_t func);
682extern int spa_scan_stop(spa_t *spa);
683
684/* spa syncing */
685extern void spa_sync(spa_t *spa, uint64_t txg); /* only for DMU use */
686extern void spa_sync_allpools(void);
687
688/* spa namespace global mutex */
689extern kmutex_t spa_namespace_lock;
690
691/*
692 * SPA configuration functions in spa_config.c
693 */
694
695#define	SPA_CONFIG_UPDATE_POOL	0
696#define	SPA_CONFIG_UPDATE_VDEVS	1
697
698extern void spa_config_sync(spa_t *, boolean_t, boolean_t);
699extern void spa_config_load(void);
700extern nvlist_t *spa_all_configs(uint64_t *);
701extern void spa_config_set(spa_t *spa, nvlist_t *config);
702extern nvlist_t *spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg,
703    int getstats);
704extern void spa_config_update(spa_t *spa, int what);
705
706/*
707 * Miscellaneous SPA routines in spa_misc.c
708 */
709
710/* Namespace manipulation */
711extern spa_t *spa_lookup(const char *name);
712extern spa_t *spa_add(const char *name, nvlist_t *config, const char *altroot);
713extern void spa_remove(spa_t *spa);
714extern spa_t *spa_next(spa_t *prev);
715
716/* Refcount functions */
717extern void spa_open_ref(spa_t *spa, void *tag);
718extern void spa_close(spa_t *spa, void *tag);
719extern void spa_async_close(spa_t *spa, void *tag);
720extern boolean_t spa_refcount_zero(spa_t *spa);
721
722#define	SCL_NONE	0x00
723#define	SCL_CONFIG	0x01
724#define	SCL_STATE	0x02
725#define	SCL_L2ARC	0x04		/* hack until L2ARC 2.0 */
726#define	SCL_ALLOC	0x08
727#define	SCL_ZIO		0x10
728#define	SCL_FREE	0x20
729#define	SCL_VDEV	0x40
730#define	SCL_LOCKS	7
731#define	SCL_ALL		((1 << SCL_LOCKS) - 1)
732#define	SCL_STATE_ALL	(SCL_STATE | SCL_L2ARC | SCL_ZIO)
733
734/* Pool configuration locks */
735extern int spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw);
736extern void spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw);
737extern void spa_config_exit(spa_t *spa, int locks, void *tag);
738extern int spa_config_held(spa_t *spa, int locks, krw_t rw);
739
740/* Pool vdev add/remove lock */
741extern uint64_t spa_vdev_enter(spa_t *spa);
742extern uint64_t spa_vdev_config_enter(spa_t *spa);
743extern void spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg,
744    int error, char *tag);
745extern int spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error);
746
747/* Pool vdev state change lock */
748extern void spa_vdev_state_enter(spa_t *spa, int oplock);
749extern int spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error);
750
751/* Log state */
752typedef enum spa_log_state {
753	SPA_LOG_UNKNOWN = 0,	/* unknown log state */
754	SPA_LOG_MISSING,	/* missing log(s) */
755	SPA_LOG_CLEAR,		/* clear the log(s) */
756	SPA_LOG_GOOD,		/* log(s) are good */
757} spa_log_state_t;
758
759extern spa_log_state_t spa_get_log_state(spa_t *spa);
760extern void spa_set_log_state(spa_t *spa, spa_log_state_t state);
761extern int spa_offline_log(spa_t *spa);
762
763/* Log claim callback */
764extern void spa_claim_notify(zio_t *zio);
765
766/* Accessor functions */
767extern boolean_t spa_shutting_down(spa_t *spa);
768extern struct dsl_pool *spa_get_dsl(spa_t *spa);
769extern boolean_t spa_is_initializing(spa_t *spa);
770extern blkptr_t *spa_get_rootblkptr(spa_t *spa);
771extern void spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp);
772extern void spa_altroot(spa_t *, char *, size_t);
773extern int spa_sync_pass(spa_t *spa);
774extern char *spa_name(spa_t *spa);
775extern uint64_t spa_guid(spa_t *spa);
776extern uint64_t spa_load_guid(spa_t *spa);
777extern uint64_t spa_last_synced_txg(spa_t *spa);
778extern uint64_t spa_first_txg(spa_t *spa);
779extern uint64_t spa_syncing_txg(spa_t *spa);
780extern uint64_t spa_version(spa_t *spa);
781extern pool_state_t spa_state(spa_t *spa);
782extern spa_load_state_t spa_load_state(spa_t *spa);
783extern uint64_t spa_freeze_txg(spa_t *spa);
784extern uint64_t spa_get_asize(spa_t *spa, uint64_t lsize);
785extern uint64_t spa_get_dspace(spa_t *spa);
786extern uint64_t spa_get_slop_space(spa_t *spa);
787extern void spa_update_dspace(spa_t *spa);
788extern uint64_t spa_version(spa_t *spa);
789extern boolean_t spa_deflate(spa_t *spa);
790extern metaslab_class_t *spa_normal_class(spa_t *spa);
791extern metaslab_class_t *spa_log_class(spa_t *spa);
792extern void spa_evicting_os_register(spa_t *, objset_t *os);
793extern void spa_evicting_os_deregister(spa_t *, objset_t *os);
794extern void spa_evicting_os_wait(spa_t *spa);
795extern int spa_max_replication(spa_t *spa);
796extern int spa_prev_software_version(spa_t *spa);
797extern int spa_busy(void);
798extern uint8_t spa_get_failmode(spa_t *spa);
799extern boolean_t spa_suspended(spa_t *spa);
800extern uint64_t spa_bootfs(spa_t *spa);
801extern uint64_t spa_delegation(spa_t *spa);
802extern objset_t *spa_meta_objset(spa_t *spa);
803extern uint64_t spa_deadman_synctime(spa_t *spa);
804
805/* Miscellaneous support routines */
806extern void spa_activate_mos_feature(spa_t *spa, const char *feature,
807    dmu_tx_t *tx);
808extern void spa_deactivate_mos_feature(spa_t *spa, const char *feature);
809extern int spa_rename(const char *oldname, const char *newname);
810extern spa_t *spa_by_guid(uint64_t pool_guid, uint64_t device_guid);
811extern boolean_t spa_guid_exists(uint64_t pool_guid, uint64_t device_guid);
812extern char *spa_strdup(const char *);
813extern void spa_strfree(char *);
814extern uint64_t spa_get_random(uint64_t range);
815extern uint64_t spa_generate_guid(spa_t *spa);
816extern void snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp);
817extern void spa_freeze(spa_t *spa);
818extern int spa_change_guid(spa_t *spa);
819extern void spa_upgrade(spa_t *spa, uint64_t version);
820extern void spa_evict_all(void);
821extern vdev_t *spa_lookup_by_guid(spa_t *spa, uint64_t guid,
822    boolean_t l2cache);
823extern boolean_t spa_has_spare(spa_t *, uint64_t guid);
824extern uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva);
825extern uint64_t bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp);
826extern uint64_t bp_get_dsize(spa_t *spa, const blkptr_t *bp);
827extern boolean_t spa_has_slogs(spa_t *spa);
828extern boolean_t spa_is_root(spa_t *spa);
829extern boolean_t spa_writeable(spa_t *spa);
830extern boolean_t spa_has_pending_synctask(spa_t *spa);
831extern int spa_maxblocksize(spa_t *spa);
832extern void zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp);
833
834extern int spa_mode(spa_t *spa);
835extern uint64_t zfs_strtonum(const char *str, char **nptr);
836#define	strtonum(str, nptr)	zfs_strtonum((str), (nptr))
837
838extern char *spa_his_ievent_table[];
839
840extern void spa_history_create_obj(spa_t *spa, dmu_tx_t *tx);
841extern int spa_history_get(spa_t *spa, uint64_t *offset, uint64_t *len_read,
842    char *his_buf);
843extern int spa_history_log(spa_t *spa, const char *his_buf);
844extern int spa_history_log_nvl(spa_t *spa, nvlist_t *nvl);
845extern void spa_history_log_version(spa_t *spa, const char *operation);
846extern void spa_history_log_internal(spa_t *spa, const char *operation,
847    dmu_tx_t *tx, const char *fmt, ...);
848extern void spa_history_log_internal_ds(struct dsl_dataset *ds, const char *op,
849    dmu_tx_t *tx, const char *fmt, ...);
850extern void spa_history_log_internal_dd(dsl_dir_t *dd, const char *operation,
851    dmu_tx_t *tx, const char *fmt, ...);
852
853/* error handling */
854struct zbookmark_phys;
855extern void spa_log_error(spa_t *spa, zio_t *zio);
856extern void zfs_ereport_post(const char *cls, spa_t *spa, vdev_t *vd,
857    zio_t *zio, uint64_t stateoroffset, uint64_t length);
858extern void zfs_post_remove(spa_t *spa, vdev_t *vd);
859extern void zfs_post_state_change(spa_t *spa, vdev_t *vd);
860extern void zfs_post_autoreplace(spa_t *spa, vdev_t *vd);
861extern uint64_t spa_get_errlog_size(spa_t *spa);
862extern int spa_get_errlog(spa_t *spa, void *uaddr, size_t *count);
863extern void spa_errlog_rotate(spa_t *spa);
864extern void spa_errlog_drain(spa_t *spa);
865extern void spa_errlog_sync(spa_t *spa, uint64_t txg);
866extern void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub);
867
868/* vdev cache */
869extern void vdev_cache_stat_init(void);
870extern void vdev_cache_stat_fini(void);
871
872/* Initialization and termination */
873extern void spa_init(int flags);
874extern void spa_fini(void);
875extern void spa_boot_init();
876
877/* properties */
878extern int spa_prop_set(spa_t *spa, nvlist_t *nvp);
879extern int spa_prop_get(spa_t *spa, nvlist_t **nvp);
880extern void spa_prop_clear_bootfs(spa_t *spa, uint64_t obj, dmu_tx_t *tx);
881extern void spa_configfile_set(spa_t *, nvlist_t *, boolean_t);
882
883/* asynchronous event notification */
884extern void spa_event_notify(spa_t *spa, vdev_t *vdev, const char *name);
885
886#ifdef ZFS_DEBUG
887#define	dprintf_bp(bp, fmt, ...) do {				\
888	if (zfs_flags & ZFS_DEBUG_DPRINTF) {			\
889	char *__blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_SLEEP);	\
890	snprintf_blkptr(__blkbuf, BP_SPRINTF_LEN, (bp));	\
891	dprintf(fmt " %s\n", __VA_ARGS__, __blkbuf);		\
892	kmem_free(__blkbuf, BP_SPRINTF_LEN);			\
893	} \
894_NOTE(CONSTCOND) } while (0)
895#else
896#define	dprintf_bp(bp, fmt, ...)
897#endif
898
899extern boolean_t spa_debug_enabled(spa_t *spa);
900#define	spa_dbgmsg(spa, ...)			\
901{						\
902	if (spa_debug_enabled(spa))		\
903		zfs_dbgmsg(__VA_ARGS__);	\
904}
905
906extern int spa_mode_global;			/* mode, e.g. FREAD | FWRITE */
907
908#ifdef	__cplusplus
909}
910#endif
911
912#endif	/* _SYS_SPA_H */
913