dsl_pool.c revision 260763
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 */
26
27#include <sys/dsl_pool.h>
28#include <sys/dsl_dataset.h>
29#include <sys/dsl_prop.h>
30#include <sys/dsl_dir.h>
31#include <sys/dsl_synctask.h>
32#include <sys/dsl_scan.h>
33#include <sys/dnode.h>
34#include <sys/dmu_tx.h>
35#include <sys/dmu_objset.h>
36#include <sys/arc.h>
37#include <sys/zap.h>
38#include <sys/zio.h>
39#include <sys/zfs_context.h>
40#include <sys/fs/zfs.h>
41#include <sys/zfs_znode.h>
42#include <sys/spa_impl.h>
43#include <sys/dsl_deadlist.h>
44#include <sys/bptree.h>
45#include <sys/zfeature.h>
46#include <sys/zil_impl.h>
47#include <sys/dsl_userhold.h>
48
49/*
50 * ZFS Write Throttle
51 * ------------------
52 *
53 * ZFS must limit the rate of incoming writes to the rate at which it is able
54 * to sync data modifications to the backend storage. Throttling by too much
55 * creates an artificial limit; throttling by too little can only be sustained
56 * for short periods and would lead to highly lumpy performance. On a per-pool
57 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
58 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
59 * of dirty data decreases. When the amount of dirty data exceeds a
60 * predetermined threshold further modifications are blocked until the amount
61 * of dirty data decreases (as data is synced out).
62 *
63 * The limit on dirty data is tunable, and should be adjusted according to
64 * both the IO capacity and available memory of the system. The larger the
65 * window, the more ZFS is able to aggregate and amortize metadata (and data)
66 * changes. However, memory is a limited resource, and allowing for more dirty
67 * data comes at the cost of keeping other useful data in memory (for example
68 * ZFS data cached by the ARC).
69 *
70 * Implementation
71 *
72 * As buffers are modified dsl_pool_willuse_space() increments both the per-
73 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
74 * dirty space used; dsl_pool_dirty_space() decrements those values as data
75 * is synced out from dsl_pool_sync(). While only the poolwide value is
76 * relevant, the per-txg value is useful for debugging. The tunable
77 * zfs_dirty_data_max determines the dirty space limit. Once that value is
78 * exceeded, new writes are halted until space frees up.
79 *
80 * The zfs_dirty_data_sync tunable dictates the threshold at which we
81 * ensure that there is a txg syncing (see the comment in txg.c for a full
82 * description of transaction group stages).
83 *
84 * The IO scheduler uses both the dirty space limit and current amount of
85 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
86 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
87 *
88 * The delay is also calculated based on the amount of dirty data.  See the
89 * comment above dmu_tx_delay() for details.
90 */
91
92/*
93 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
94 * capped at zfs_dirty_data_max_max.  It can also be overridden in /etc/system.
95 */
96uint64_t zfs_dirty_data_max;
97uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
98int zfs_dirty_data_max_percent = 10;
99
100/*
101 * If there is at least this much dirty data, push out a txg.
102 */
103uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024;
104
105/*
106 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
107 * and delay each transaction.
108 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
109 */
110int zfs_delay_min_dirty_percent = 60;
111
112/*
113 * This controls how quickly the delay approaches infinity.
114 * Larger values cause it to delay less for a given amount of dirty data.
115 * Therefore larger values will cause there to be more dirty data for a
116 * given throughput.
117 *
118 * For the smoothest delay, this value should be about 1 billion divided
119 * by the maximum number of operations per second.  This will smoothly
120 * handle between 10x and 1/10th this number.
121 *
122 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
123 * multiply in dmu_tx_delay().
124 */
125uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
126
127
128/*
129 * XXX someday maybe turn these into #defines, and you have to tune it on a
130 * per-pool basis using zfs.conf.
131 */
132
133
134SYSCTL_DECL(_vfs_zfs);
135#if 0
136TUNABLE_INT("vfs.zfs.no_write_throttle", &zfs_no_write_throttle);
137SYSCTL_INT(_vfs_zfs, OID_AUTO, no_write_throttle, CTLFLAG_RDTUN,
138    &zfs_no_write_throttle, 0, "");
139TUNABLE_INT("vfs.zfs.write_limit_shift", &zfs_write_limit_shift);
140SYSCTL_INT(_vfs_zfs, OID_AUTO, write_limit_shift, CTLFLAG_RDTUN,
141    &zfs_write_limit_shift, 0, "2^N of physical memory");
142SYSCTL_DECL(_vfs_zfs_txg);
143TUNABLE_INT("vfs.zfs.txg.synctime_ms", &zfs_txg_synctime_ms);
144SYSCTL_INT(_vfs_zfs_txg, OID_AUTO, synctime_ms, CTLFLAG_RDTUN,
145    &zfs_txg_synctime_ms, 0, "Target milliseconds to sync a txg");
146
147TUNABLE_QUAD("vfs.zfs.write_limit_min", &zfs_write_limit_min);
148SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, write_limit_min, CTLFLAG_RDTUN,
149    &zfs_write_limit_min, 0, "Minimum write limit");
150TUNABLE_QUAD("vfs.zfs.write_limit_max", &zfs_write_limit_max);
151SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, write_limit_max, CTLFLAG_RDTUN,
152    &zfs_write_limit_max, 0, "Maximum data payload per txg");
153TUNABLE_QUAD("vfs.zfs.write_limit_inflated", &zfs_write_limit_inflated);
154SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, write_limit_inflated, CTLFLAG_RDTUN,
155    &zfs_write_limit_inflated, 0, "Maximum size of the dynamic write limit");
156TUNABLE_QUAD("vfs.zfs.write_limit_override", &zfs_write_limit_override);
157SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, write_limit_override, CTLFLAG_RDTUN,
158    &zfs_write_limit_override, 0,
159    "Force a txg if dirty buffers exceed this value (bytes)");
160#endif
161
162hrtime_t zfs_throttle_delay = MSEC2NSEC(10);
163hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);
164
165int
166dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
167{
168	uint64_t obj;
169	int err;
170
171	err = zap_lookup(dp->dp_meta_objset,
172	    dp->dp_root_dir->dd_phys->dd_child_dir_zapobj,
173	    name, sizeof (obj), 1, &obj);
174	if (err)
175		return (err);
176
177	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
178}
179
180static dsl_pool_t *
181dsl_pool_open_impl(spa_t *spa, uint64_t txg)
182{
183	dsl_pool_t *dp;
184	blkptr_t *bp = spa_get_rootblkptr(spa);
185
186	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
187	dp->dp_spa = spa;
188	dp->dp_meta_rootbp = *bp;
189	rrw_init(&dp->dp_config_rwlock, B_TRUE);
190	txg_init(dp, txg);
191
192	txg_list_create(&dp->dp_dirty_datasets,
193	    offsetof(dsl_dataset_t, ds_dirty_link));
194	txg_list_create(&dp->dp_dirty_zilogs,
195	    offsetof(zilog_t, zl_dirty_link));
196	txg_list_create(&dp->dp_dirty_dirs,
197	    offsetof(dsl_dir_t, dd_dirty_link));
198	txg_list_create(&dp->dp_sync_tasks,
199	    offsetof(dsl_sync_task_t, dst_node));
200
201	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
202	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
203
204	dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
205	    1, 4, 0);
206
207	return (dp);
208}
209
210int
211dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
212{
213	int err;
214	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
215
216	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
217	    &dp->dp_meta_objset);
218	if (err != 0)
219		dsl_pool_close(dp);
220	else
221		*dpp = dp;
222
223	return (err);
224}
225
226int
227dsl_pool_open(dsl_pool_t *dp)
228{
229	int err;
230	dsl_dir_t *dd;
231	dsl_dataset_t *ds;
232	uint64_t obj;
233
234	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
235	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
236	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
237	    &dp->dp_root_dir_obj);
238	if (err)
239		goto out;
240
241	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
242	    NULL, dp, &dp->dp_root_dir);
243	if (err)
244		goto out;
245
246	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
247	if (err)
248		goto out;
249
250	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
251		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
252		if (err)
253			goto out;
254		err = dsl_dataset_hold_obj(dp, dd->dd_phys->dd_head_dataset_obj,
255		    FTAG, &ds);
256		if (err == 0) {
257			err = dsl_dataset_hold_obj(dp,
258			    ds->ds_phys->ds_prev_snap_obj, dp,
259			    &dp->dp_origin_snap);
260			dsl_dataset_rele(ds, FTAG);
261		}
262		dsl_dir_rele(dd, dp);
263		if (err)
264			goto out;
265	}
266
267	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
268		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
269		    &dp->dp_free_dir);
270		if (err)
271			goto out;
272
273		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
274		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
275		if (err)
276			goto out;
277		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
278		    dp->dp_meta_objset, obj));
279	}
280
281	if (spa_feature_is_active(dp->dp_spa,
282	    &spa_feature_table[SPA_FEATURE_ASYNC_DESTROY])) {
283		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
284		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
285		    &dp->dp_bptree_obj);
286		if (err != 0)
287			goto out;
288	}
289
290	if (spa_feature_is_active(dp->dp_spa,
291	    &spa_feature_table[SPA_FEATURE_EMPTY_BPOBJ])) {
292		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
293		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
294		    &dp->dp_empty_bpobj);
295		if (err != 0)
296			goto out;
297	}
298
299	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
300	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
301	    &dp->dp_tmp_userrefs_obj);
302	if (err == ENOENT)
303		err = 0;
304	if (err)
305		goto out;
306
307	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
308
309out:
310	rrw_exit(&dp->dp_config_rwlock, FTAG);
311	return (err);
312}
313
314void
315dsl_pool_close(dsl_pool_t *dp)
316{
317	/*
318	 * Drop our references from dsl_pool_open().
319	 *
320	 * Since we held the origin_snap from "syncing" context (which
321	 * includes pool-opening context), it actually only got a "ref"
322	 * and not a hold, so just drop that here.
323	 */
324	if (dp->dp_origin_snap)
325		dsl_dataset_rele(dp->dp_origin_snap, dp);
326	if (dp->dp_mos_dir)
327		dsl_dir_rele(dp->dp_mos_dir, dp);
328	if (dp->dp_free_dir)
329		dsl_dir_rele(dp->dp_free_dir, dp);
330	if (dp->dp_root_dir)
331		dsl_dir_rele(dp->dp_root_dir, dp);
332
333	bpobj_close(&dp->dp_free_bpobj);
334
335	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
336	if (dp->dp_meta_objset)
337		dmu_objset_evict(dp->dp_meta_objset);
338
339	txg_list_destroy(&dp->dp_dirty_datasets);
340	txg_list_destroy(&dp->dp_dirty_zilogs);
341	txg_list_destroy(&dp->dp_sync_tasks);
342	txg_list_destroy(&dp->dp_dirty_dirs);
343
344	arc_flush(dp->dp_spa);
345	txg_fini(dp);
346	dsl_scan_fini(dp);
347	rrw_destroy(&dp->dp_config_rwlock);
348	mutex_destroy(&dp->dp_lock);
349	taskq_destroy(dp->dp_vnrele_taskq);
350	if (dp->dp_blkstats)
351		kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
352	kmem_free(dp, sizeof (dsl_pool_t));
353}
354
355dsl_pool_t *
356dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
357{
358	int err;
359	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
360	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
361	objset_t *os;
362	dsl_dataset_t *ds;
363	uint64_t obj;
364
365	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
366
367	/* create and open the MOS (meta-objset) */
368	dp->dp_meta_objset = dmu_objset_create_impl(spa,
369	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
370
371	/* create the pool directory */
372	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
373	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
374	ASSERT0(err);
375
376	/* Initialize scan structures */
377	VERIFY0(dsl_scan_init(dp, txg));
378
379	/* create and open the root dir */
380	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
381	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
382	    NULL, dp, &dp->dp_root_dir));
383
384	/* create and open the meta-objset dir */
385	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
386	VERIFY0(dsl_pool_open_special_dir(dp,
387	    MOS_DIR_NAME, &dp->dp_mos_dir));
388
389	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
390		/* create and open the free dir */
391		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
392		    FREE_DIR_NAME, tx);
393		VERIFY0(dsl_pool_open_special_dir(dp,
394		    FREE_DIR_NAME, &dp->dp_free_dir));
395
396		/* create and open the free_bplist */
397		obj = bpobj_alloc(dp->dp_meta_objset, SPA_MAXBLOCKSIZE, tx);
398		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
399		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
400		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
401		    dp->dp_meta_objset, obj));
402	}
403
404	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
405		dsl_pool_create_origin(dp, tx);
406
407	/* create the root dataset */
408	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
409
410	/* create the root objset */
411	VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
412	os = dmu_objset_create_impl(dp->dp_spa, ds,
413	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
414#ifdef _KERNEL
415	zfs_create_fs(os, kcred, zplprops, tx);
416#endif
417	dsl_dataset_rele(ds, FTAG);
418
419	dmu_tx_commit(tx);
420
421	rrw_exit(&dp->dp_config_rwlock, FTAG);
422
423	return (dp);
424}
425
426/*
427 * Account for the meta-objset space in its placeholder dsl_dir.
428 */
429void
430dsl_pool_mos_diduse_space(dsl_pool_t *dp,
431    int64_t used, int64_t comp, int64_t uncomp)
432{
433	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
434	mutex_enter(&dp->dp_lock);
435	dp->dp_mos_used_delta += used;
436	dp->dp_mos_compressed_delta += comp;
437	dp->dp_mos_uncompressed_delta += uncomp;
438	mutex_exit(&dp->dp_lock);
439}
440
441static int
442deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
443{
444	dsl_deadlist_t *dl = arg;
445	dsl_deadlist_insert(dl, bp, tx);
446	return (0);
447}
448
449static void
450dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
451{
452	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
453	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
454	VERIFY0(zio_wait(zio));
455	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
456	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
457}
458
459static void
460dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
461{
462	ASSERT(MUTEX_HELD(&dp->dp_lock));
463
464	if (delta < 0)
465		ASSERT3U(-delta, <=, dp->dp_dirty_total);
466
467	dp->dp_dirty_total += delta;
468
469	/*
470	 * Note: we signal even when increasing dp_dirty_total.
471	 * This ensures forward progress -- each thread wakes the next waiter.
472	 */
473	if (dp->dp_dirty_total <= zfs_dirty_data_max)
474		cv_signal(&dp->dp_spaceavail_cv);
475}
476
477void
478dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
479{
480	zio_t *zio;
481	dmu_tx_t *tx;
482	dsl_dir_t *dd;
483	dsl_dataset_t *ds;
484	objset_t *mos = dp->dp_meta_objset;
485	list_t synced_datasets;
486
487	list_create(&synced_datasets, sizeof (dsl_dataset_t),
488	    offsetof(dsl_dataset_t, ds_synced_link));
489
490	tx = dmu_tx_create_assigned(dp, txg);
491
492	/*
493	 * Write out all dirty blocks of dirty datasets.
494	 */
495	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
496	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
497		/*
498		 * We must not sync any non-MOS datasets twice, because
499		 * we may have taken a snapshot of them.  However, we
500		 * may sync newly-created datasets on pass 2.
501		 */
502		ASSERT(!list_link_active(&ds->ds_synced_link));
503		list_insert_tail(&synced_datasets, ds);
504		dsl_dataset_sync(ds, zio, tx);
505	}
506	VERIFY0(zio_wait(zio));
507
508	/*
509	 * We have written all of the accounted dirty data, so our
510	 * dp_space_towrite should now be zero.  However, some seldom-used
511	 * code paths do not adhere to this (e.g. dbuf_undirty(), also
512	 * rounding error in dbuf_write_physdone).
513	 * Shore up the accounting of any dirtied space now.
514	 */
515	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
516
517	/*
518	 * After the data blocks have been written (ensured by the zio_wait()
519	 * above), update the user/group space accounting.
520	 */
521	for (ds = list_head(&synced_datasets); ds != NULL;
522	    ds = list_next(&synced_datasets, ds)) {
523		dmu_objset_do_userquota_updates(ds->ds_objset, tx);
524	}
525
526	/*
527	 * Sync the datasets again to push out the changes due to
528	 * userspace updates.  This must be done before we process the
529	 * sync tasks, so that any snapshots will have the correct
530	 * user accounting information (and we won't get confused
531	 * about which blocks are part of the snapshot).
532	 */
533	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
534	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
535		ASSERT(list_link_active(&ds->ds_synced_link));
536		dmu_buf_rele(ds->ds_dbuf, ds);
537		dsl_dataset_sync(ds, zio, tx);
538	}
539	VERIFY0(zio_wait(zio));
540
541	/*
542	 * Now that the datasets have been completely synced, we can
543	 * clean up our in-memory structures accumulated while syncing:
544	 *
545	 *  - move dead blocks from the pending deadlist to the on-disk deadlist
546	 *  - release hold from dsl_dataset_dirty()
547	 */
548	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
549		objset_t *os = ds->ds_objset;
550		bplist_iterate(&ds->ds_pending_deadlist,
551		    deadlist_enqueue_cb, &ds->ds_deadlist, tx);
552		ASSERT(!dmu_objset_is_dirty(os, txg));
553		dmu_buf_rele(ds->ds_dbuf, ds);
554	}
555	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
556		dsl_dir_sync(dd, tx);
557	}
558
559	/*
560	 * The MOS's space is accounted for in the pool/$MOS
561	 * (dp_mos_dir).  We can't modify the mos while we're syncing
562	 * it, so we remember the deltas and apply them here.
563	 */
564	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
565	    dp->dp_mos_uncompressed_delta != 0) {
566		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
567		    dp->dp_mos_used_delta,
568		    dp->dp_mos_compressed_delta,
569		    dp->dp_mos_uncompressed_delta, tx);
570		dp->dp_mos_used_delta = 0;
571		dp->dp_mos_compressed_delta = 0;
572		dp->dp_mos_uncompressed_delta = 0;
573	}
574
575	if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
576	    list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
577		dsl_pool_sync_mos(dp, tx);
578	}
579
580	/*
581	 * If we modify a dataset in the same txg that we want to destroy it,
582	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
583	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
584	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
585	 * and clearing the hold on it) before we process the sync_tasks.
586	 * The MOS data dirtied by the sync_tasks will be synced on the next
587	 * pass.
588	 */
589	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
590		dsl_sync_task_t *dst;
591		/*
592		 * No more sync tasks should have been added while we
593		 * were syncing.
594		 */
595		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
596		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
597			dsl_sync_task_sync(dst, tx);
598	}
599
600	dmu_tx_commit(tx);
601
602	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
603}
604
605void
606dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
607{
608	zilog_t *zilog;
609
610	while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) {
611		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
612		zil_clean(zilog, txg);
613		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
614		dmu_buf_rele(ds->ds_dbuf, zilog);
615	}
616	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
617}
618
619/*
620 * TRUE if the current thread is the tx_sync_thread or if we
621 * are being called from SPA context during pool initialization.
622 */
623int
624dsl_pool_sync_context(dsl_pool_t *dp)
625{
626	return (curthread == dp->dp_tx.tx_sync_thread ||
627	    spa_is_initializing(dp->dp_spa));
628}
629
630uint64_t
631dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
632{
633	uint64_t space, resv;
634
635	/*
636	 * Reserve about 1.6% (1/64), or at least 32MB, for allocation
637	 * efficiency.
638	 * XXX The intent log is not accounted for, so it must fit
639	 * within this slop.
640	 *
641	 * If we're trying to assess whether it's OK to do a free,
642	 * cut the reservation in half to allow forward progress
643	 * (e.g. make it possible to rm(1) files from a full pool).
644	 */
645	space = spa_get_dspace(dp->dp_spa);
646	resv = MAX(space >> 6, SPA_MINDEVSIZE >> 1);
647	if (netfree)
648		resv >>= 1;
649
650	return (space - resv);
651}
652
653boolean_t
654dsl_pool_need_dirty_delay(dsl_pool_t *dp)
655{
656	uint64_t delay_min_bytes =
657	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
658	boolean_t rv;
659
660	mutex_enter(&dp->dp_lock);
661	if (dp->dp_dirty_total > zfs_dirty_data_sync)
662		txg_kick(dp);
663	rv = (dp->dp_dirty_total > delay_min_bytes);
664	mutex_exit(&dp->dp_lock);
665	return (rv);
666}
667
668void
669dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
670{
671	if (space > 0) {
672		mutex_enter(&dp->dp_lock);
673		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
674		dsl_pool_dirty_delta(dp, space);
675		mutex_exit(&dp->dp_lock);
676	}
677}
678
679void
680dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
681{
682	ASSERT3S(space, >=, 0);
683	if (space == 0)
684		return;
685	mutex_enter(&dp->dp_lock);
686	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
687		/* XXX writing something we didn't dirty? */
688		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
689	}
690	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
691	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
692	ASSERT3U(dp->dp_dirty_total, >=, space);
693	dsl_pool_dirty_delta(dp, -space);
694	mutex_exit(&dp->dp_lock);
695}
696
697/* ARGSUSED */
698static int
699upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
700{
701	dmu_tx_t *tx = arg;
702	dsl_dataset_t *ds, *prev = NULL;
703	int err;
704
705	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
706	if (err)
707		return (err);
708
709	while (ds->ds_phys->ds_prev_snap_obj != 0) {
710		err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
711		    FTAG, &prev);
712		if (err) {
713			dsl_dataset_rele(ds, FTAG);
714			return (err);
715		}
716
717		if (prev->ds_phys->ds_next_snap_obj != ds->ds_object)
718			break;
719		dsl_dataset_rele(ds, FTAG);
720		ds = prev;
721		prev = NULL;
722	}
723
724	if (prev == NULL) {
725		prev = dp->dp_origin_snap;
726
727		/*
728		 * The $ORIGIN can't have any data, or the accounting
729		 * will be wrong.
730		 */
731		ASSERT0(prev->ds_phys->ds_bp.blk_birth);
732
733		/* The origin doesn't get attached to itself */
734		if (ds->ds_object == prev->ds_object) {
735			dsl_dataset_rele(ds, FTAG);
736			return (0);
737		}
738
739		dmu_buf_will_dirty(ds->ds_dbuf, tx);
740		ds->ds_phys->ds_prev_snap_obj = prev->ds_object;
741		ds->ds_phys->ds_prev_snap_txg = prev->ds_phys->ds_creation_txg;
742
743		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
744		ds->ds_dir->dd_phys->dd_origin_obj = prev->ds_object;
745
746		dmu_buf_will_dirty(prev->ds_dbuf, tx);
747		prev->ds_phys->ds_num_children++;
748
749		if (ds->ds_phys->ds_next_snap_obj == 0) {
750			ASSERT(ds->ds_prev == NULL);
751			VERIFY0(dsl_dataset_hold_obj(dp,
752			    ds->ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev));
753		}
754	}
755
756	ASSERT3U(ds->ds_dir->dd_phys->dd_origin_obj, ==, prev->ds_object);
757	ASSERT3U(ds->ds_phys->ds_prev_snap_obj, ==, prev->ds_object);
758
759	if (prev->ds_phys->ds_next_clones_obj == 0) {
760		dmu_buf_will_dirty(prev->ds_dbuf, tx);
761		prev->ds_phys->ds_next_clones_obj =
762		    zap_create(dp->dp_meta_objset,
763		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
764	}
765	VERIFY0(zap_add_int(dp->dp_meta_objset,
766	    prev->ds_phys->ds_next_clones_obj, ds->ds_object, tx));
767
768	dsl_dataset_rele(ds, FTAG);
769	if (prev != dp->dp_origin_snap)
770		dsl_dataset_rele(prev, FTAG);
771	return (0);
772}
773
774void
775dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
776{
777	ASSERT(dmu_tx_is_syncing(tx));
778	ASSERT(dp->dp_origin_snap != NULL);
779
780	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
781	    tx, DS_FIND_CHILDREN));
782}
783
784/* ARGSUSED */
785static int
786upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
787{
788	dmu_tx_t *tx = arg;
789	objset_t *mos = dp->dp_meta_objset;
790
791	if (ds->ds_dir->dd_phys->dd_origin_obj != 0) {
792		dsl_dataset_t *origin;
793
794		VERIFY0(dsl_dataset_hold_obj(dp,
795		    ds->ds_dir->dd_phys->dd_origin_obj, FTAG, &origin));
796
797		if (origin->ds_dir->dd_phys->dd_clones == 0) {
798			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
799			origin->ds_dir->dd_phys->dd_clones = zap_create(mos,
800			    DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx);
801		}
802
803		VERIFY0(zap_add_int(dp->dp_meta_objset,
804		    origin->ds_dir->dd_phys->dd_clones, ds->ds_object, tx));
805
806		dsl_dataset_rele(origin, FTAG);
807	}
808	return (0);
809}
810
811void
812dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
813{
814	ASSERT(dmu_tx_is_syncing(tx));
815	uint64_t obj;
816
817	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
818	VERIFY0(dsl_pool_open_special_dir(dp,
819	    FREE_DIR_NAME, &dp->dp_free_dir));
820
821	/*
822	 * We can't use bpobj_alloc(), because spa_version() still
823	 * returns the old version, and we need a new-version bpobj with
824	 * subobj support.  So call dmu_object_alloc() directly.
825	 */
826	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
827	    SPA_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
828	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
829	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
830	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
831
832	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
833	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN));
834}
835
836void
837dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
838{
839	uint64_t dsobj;
840	dsl_dataset_t *ds;
841
842	ASSERT(dmu_tx_is_syncing(tx));
843	ASSERT(dp->dp_origin_snap == NULL);
844	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
845
846	/* create the origin dir, ds, & snap-ds */
847	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
848	    NULL, 0, kcred, tx);
849	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
850	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
851	VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
852	    dp, &dp->dp_origin_snap));
853	dsl_dataset_rele(ds, FTAG);
854}
855
856taskq_t *
857dsl_pool_vnrele_taskq(dsl_pool_t *dp)
858{
859	return (dp->dp_vnrele_taskq);
860}
861
862/*
863 * Walk through the pool-wide zap object of temporary snapshot user holds
864 * and release them.
865 */
866void
867dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
868{
869	zap_attribute_t za;
870	zap_cursor_t zc;
871	objset_t *mos = dp->dp_meta_objset;
872	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
873	nvlist_t *holds;
874
875	if (zapobj == 0)
876		return;
877	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
878
879	holds = fnvlist_alloc();
880
881	for (zap_cursor_init(&zc, mos, zapobj);
882	    zap_cursor_retrieve(&zc, &za) == 0;
883	    zap_cursor_advance(&zc)) {
884		char *htag;
885		nvlist_t *tags;
886
887		htag = strchr(za.za_name, '-');
888		*htag = '\0';
889		++htag;
890		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
891			tags = fnvlist_alloc();
892			fnvlist_add_boolean(tags, htag);
893			fnvlist_add_nvlist(holds, za.za_name, tags);
894			fnvlist_free(tags);
895		} else {
896			fnvlist_add_boolean(tags, htag);
897		}
898	}
899	dsl_dataset_user_release_tmp(dp, holds);
900	fnvlist_free(holds);
901	zap_cursor_fini(&zc);
902}
903
904/*
905 * Create the pool-wide zap object for storing temporary snapshot holds.
906 */
907void
908dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
909{
910	objset_t *mos = dp->dp_meta_objset;
911
912	ASSERT(dp->dp_tmp_userrefs_obj == 0);
913	ASSERT(dmu_tx_is_syncing(tx));
914
915	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
916	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
917}
918
919static int
920dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
921    const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
922{
923	objset_t *mos = dp->dp_meta_objset;
924	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
925	char *name;
926	int error;
927
928	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
929	ASSERT(dmu_tx_is_syncing(tx));
930
931	/*
932	 * If the pool was created prior to SPA_VERSION_USERREFS, the
933	 * zap object for temporary holds might not exist yet.
934	 */
935	if (zapobj == 0) {
936		if (holding) {
937			dsl_pool_user_hold_create_obj(dp, tx);
938			zapobj = dp->dp_tmp_userrefs_obj;
939		} else {
940			return (SET_ERROR(ENOENT));
941		}
942	}
943
944	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
945	if (holding)
946		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
947	else
948		error = zap_remove(mos, zapobj, name, tx);
949	strfree(name);
950
951	return (error);
952}
953
954/*
955 * Add a temporary hold for the given dataset object and tag.
956 */
957int
958dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
959    uint64_t now, dmu_tx_t *tx)
960{
961	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
962}
963
964/*
965 * Release a temporary hold for the given dataset object and tag.
966 */
967int
968dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
969    dmu_tx_t *tx)
970{
971	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
972	    tx, B_FALSE));
973}
974
975/*
976 * DSL Pool Configuration Lock
977 *
978 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
979 * creation / destruction / rename / property setting).  It must be held for
980 * read to hold a dataset or dsl_dir.  I.e. you must call
981 * dsl_pool_config_enter() or dsl_pool_hold() before calling
982 * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
983 * must be held continuously until all datasets and dsl_dirs are released.
984 *
985 * The only exception to this rule is that if a "long hold" is placed on
986 * a dataset, then the dp_config_rwlock may be dropped while the dataset
987 * is still held.  The long hold will prevent the dataset from being
988 * destroyed -- the destroy will fail with EBUSY.  A long hold can be
989 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
990 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
991 *
992 * Legitimate long-holders (including owners) should be long-running, cancelable
993 * tasks that should cause "zfs destroy" to fail.  This includes DMU
994 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
995 * "zfs send", and "zfs diff".  There are several other long-holders whose
996 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
997 *
998 * The usual formula for long-holding would be:
999 * dsl_pool_hold()
1000 * dsl_dataset_hold()
1001 * ... perform checks ...
1002 * dsl_dataset_long_hold()
1003 * dsl_pool_rele()
1004 * ... perform long-running task ...
1005 * dsl_dataset_long_rele()
1006 * dsl_dataset_rele()
1007 *
1008 * Note that when the long hold is released, the dataset is still held but
1009 * the pool is not held.  The dataset may change arbitrarily during this time
1010 * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
1011 * dataset except release it.
1012 *
1013 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
1014 * or modifying operations.
1015 *
1016 * Modifying operations should generally use dsl_sync_task().  The synctask
1017 * infrastructure enforces proper locking strategy with respect to the
1018 * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
1019 *
1020 * Read-only operations will manually hold the pool, then the dataset, obtain
1021 * information from the dataset, then release the pool and dataset.
1022 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1023 * hold/rele.
1024 */
1025
1026int
1027dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1028{
1029	spa_t *spa;
1030	int error;
1031
1032	error = spa_open(name, &spa, tag);
1033	if (error == 0) {
1034		*dp = spa_get_dsl(spa);
1035		dsl_pool_config_enter(*dp, tag);
1036	}
1037	return (error);
1038}
1039
1040void
1041dsl_pool_rele(dsl_pool_t *dp, void *tag)
1042{
1043	dsl_pool_config_exit(dp, tag);
1044	spa_close(dp->dp_spa, tag);
1045}
1046
1047void
1048dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1049{
1050	/*
1051	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1052	 *
1053	 * The rrwlock can (with the track_all flag) track all reading threads,
1054	 * which is very useful for debugging which code path failed to release
1055	 * the lock, and for verifying that the *current* thread does hold
1056	 * the lock.
1057	 *
1058	 * (Unlike a rwlock, which knows that N threads hold it for
1059	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1060	 * if any thread holds it for read, even if this thread doesn't).
1061	 */
1062	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1063	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1064}
1065
1066void
1067dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1068{
1069	rrw_exit(&dp->dp_config_rwlock, tag);
1070}
1071
1072boolean_t
1073dsl_pool_config_held(dsl_pool_t *dp)
1074{
1075	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1076}
1077