dmu_send.c revision 297111
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 * Copyright (c) 2012, Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 * Copyright 2014 HybridCluster. All rights reserved.
28 * Copyright 2016 RackTop Systems.
29 */
30
31#include <sys/dmu.h>
32#include <sys/dmu_impl.h>
33#include <sys/dmu_tx.h>
34#include <sys/dbuf.h>
35#include <sys/dnode.h>
36#include <sys/zfs_context.h>
37#include <sys/dmu_objset.h>
38#include <sys/dmu_traverse.h>
39#include <sys/dsl_dataset.h>
40#include <sys/dsl_dir.h>
41#include <sys/dsl_prop.h>
42#include <sys/dsl_pool.h>
43#include <sys/dsl_synctask.h>
44#include <sys/zfs_ioctl.h>
45#include <sys/zap.h>
46#include <sys/zio_checksum.h>
47#include <sys/zfs_znode.h>
48#include <zfs_fletcher.h>
49#include <sys/avl.h>
50#include <sys/ddt.h>
51#include <sys/zfs_onexit.h>
52#include <sys/dmu_send.h>
53#include <sys/dsl_destroy.h>
54#include <sys/blkptr.h>
55#include <sys/dsl_bookmark.h>
56#include <sys/zfeature.h>
57#include <sys/bqueue.h>
58
59#ifdef __FreeBSD__
60#undef dump_write
61#define dump_write dmu_dump_write
62#endif
63
64/* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
65int zfs_send_corrupt_data = B_FALSE;
66int zfs_send_queue_length = 16 * 1024 * 1024;
67int zfs_recv_queue_length = 16 * 1024 * 1024;
68/* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */
69int zfs_send_set_freerecords_bit = B_TRUE;
70
71#ifdef _KERNEL
72TUNABLE_INT("vfs.zfs.send_set_freerecords_bit", &zfs_send_set_freerecords_bit);
73#endif
74
75static char *dmu_recv_tag = "dmu_recv_tag";
76const char *recv_clone_name = "%recv";
77
78#define	BP_SPAN(datablkszsec, indblkshift, level) \
79	(((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \
80	(level) * (indblkshift - SPA_BLKPTRSHIFT)))
81
82static void byteswap_record(dmu_replay_record_t *drr);
83
84struct send_thread_arg {
85	bqueue_t	q;
86	dsl_dataset_t	*ds;		/* Dataset to traverse */
87	uint64_t	fromtxg;	/* Traverse from this txg */
88	int		flags;		/* flags to pass to traverse_dataset */
89	int		error_code;
90	boolean_t	cancel;
91	zbookmark_phys_t resume;
92};
93
94struct send_block_record {
95	boolean_t		eos_marker; /* Marks the end of the stream */
96	blkptr_t		bp;
97	zbookmark_phys_t	zb;
98	uint8_t			indblkshift;
99	uint16_t		datablkszsec;
100	bqueue_node_t		ln;
101};
102
103static int
104dump_bytes(dmu_sendarg_t *dsp, void *buf, int len)
105{
106	dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os);
107	struct uio auio;
108	struct iovec aiov;
109	ASSERT0(len % 8);
110
111	aiov.iov_base = buf;
112	aiov.iov_len = len;
113	auio.uio_iov = &aiov;
114	auio.uio_iovcnt = 1;
115	auio.uio_resid = len;
116	auio.uio_segflg = UIO_SYSSPACE;
117	auio.uio_rw = UIO_WRITE;
118	auio.uio_offset = (off_t)-1;
119	auio.uio_td = dsp->dsa_td;
120#ifdef _KERNEL
121	if (dsp->dsa_fp->f_type == DTYPE_VNODE)
122		bwillwrite();
123	dsp->dsa_err = fo_write(dsp->dsa_fp, &auio, dsp->dsa_td->td_ucred, 0,
124	    dsp->dsa_td);
125#else
126	fprintf(stderr, "%s: returning EOPNOTSUPP\n", __func__);
127	dsp->dsa_err = EOPNOTSUPP;
128#endif
129	mutex_enter(&ds->ds_sendstream_lock);
130	*dsp->dsa_off += len;
131	mutex_exit(&ds->ds_sendstream_lock);
132
133	return (dsp->dsa_err);
134}
135
136/*
137 * For all record types except BEGIN, fill in the checksum (overlaid in
138 * drr_u.drr_checksum.drr_checksum).  The checksum verifies everything
139 * up to the start of the checksum itself.
140 */
141static int
142dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len)
143{
144	ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
145	    ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
146	fletcher_4_incremental_native(dsp->dsa_drr,
147	    offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
148	    &dsp->dsa_zc);
149	if (dsp->dsa_drr->drr_type != DRR_BEGIN) {
150		ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u.
151		    drr_checksum.drr_checksum));
152		dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc;
153	}
154	fletcher_4_incremental_native(&dsp->dsa_drr->
155	    drr_u.drr_checksum.drr_checksum,
156	    sizeof (zio_cksum_t), &dsp->dsa_zc);
157	if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0)
158		return (SET_ERROR(EINTR));
159	if (payload_len != 0) {
160		fletcher_4_incremental_native(payload, payload_len,
161		    &dsp->dsa_zc);
162		if (dump_bytes(dsp, payload, payload_len) != 0)
163			return (SET_ERROR(EINTR));
164	}
165	return (0);
166}
167
168/*
169 * Fill in the drr_free struct, or perform aggregation if the previous record is
170 * also a free record, and the two are adjacent.
171 *
172 * Note that we send free records even for a full send, because we want to be
173 * able to receive a full send as a clone, which requires a list of all the free
174 * and freeobject records that were generated on the source.
175 */
176static int
177dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
178    uint64_t length)
179{
180	struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free);
181
182	/*
183	 * When we receive a free record, dbuf_free_range() assumes
184	 * that the receiving system doesn't have any dbufs in the range
185	 * being freed.  This is always true because there is a one-record
186	 * constraint: we only send one WRITE record for any given
187	 * object,offset.  We know that the one-record constraint is
188	 * true because we always send data in increasing order by
189	 * object,offset.
190	 *
191	 * If the increasing-order constraint ever changes, we should find
192	 * another way to assert that the one-record constraint is still
193	 * satisfied.
194	 */
195	ASSERT(object > dsp->dsa_last_data_object ||
196	    (object == dsp->dsa_last_data_object &&
197	    offset > dsp->dsa_last_data_offset));
198
199	if (length != -1ULL && offset + length < offset)
200		length = -1ULL;
201
202	/*
203	 * If there is a pending op, but it's not PENDING_FREE, push it out,
204	 * since free block aggregation can only be done for blocks of the
205	 * same type (i.e., DRR_FREE records can only be aggregated with
206	 * other DRR_FREE records.  DRR_FREEOBJECTS records can only be
207	 * aggregated with other DRR_FREEOBJECTS records.
208	 */
209	if (dsp->dsa_pending_op != PENDING_NONE &&
210	    dsp->dsa_pending_op != PENDING_FREE) {
211		if (dump_record(dsp, NULL, 0) != 0)
212			return (SET_ERROR(EINTR));
213		dsp->dsa_pending_op = PENDING_NONE;
214	}
215
216	if (dsp->dsa_pending_op == PENDING_FREE) {
217		/*
218		 * There should never be a PENDING_FREE if length is -1
219		 * (because dump_dnode is the only place where this
220		 * function is called with a -1, and only after flushing
221		 * any pending record).
222		 */
223		ASSERT(length != -1ULL);
224		/*
225		 * Check to see whether this free block can be aggregated
226		 * with pending one.
227		 */
228		if (drrf->drr_object == object && drrf->drr_offset +
229		    drrf->drr_length == offset) {
230			drrf->drr_length += length;
231			return (0);
232		} else {
233			/* not a continuation.  Push out pending record */
234			if (dump_record(dsp, NULL, 0) != 0)
235				return (SET_ERROR(EINTR));
236			dsp->dsa_pending_op = PENDING_NONE;
237		}
238	}
239	/* create a FREE record and make it pending */
240	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
241	dsp->dsa_drr->drr_type = DRR_FREE;
242	drrf->drr_object = object;
243	drrf->drr_offset = offset;
244	drrf->drr_length = length;
245	drrf->drr_toguid = dsp->dsa_toguid;
246	if (length == -1ULL) {
247		if (dump_record(dsp, NULL, 0) != 0)
248			return (SET_ERROR(EINTR));
249	} else {
250		dsp->dsa_pending_op = PENDING_FREE;
251	}
252
253	return (0);
254}
255
256static int
257dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type,
258    uint64_t object, uint64_t offset, int blksz, const blkptr_t *bp, void *data)
259{
260	struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write);
261
262	/*
263	 * We send data in increasing object, offset order.
264	 * See comment in dump_free() for details.
265	 */
266	ASSERT(object > dsp->dsa_last_data_object ||
267	    (object == dsp->dsa_last_data_object &&
268	    offset > dsp->dsa_last_data_offset));
269	dsp->dsa_last_data_object = object;
270	dsp->dsa_last_data_offset = offset + blksz - 1;
271
272	/*
273	 * If there is any kind of pending aggregation (currently either
274	 * a grouping of free objects or free blocks), push it out to
275	 * the stream, since aggregation can't be done across operations
276	 * of different types.
277	 */
278	if (dsp->dsa_pending_op != PENDING_NONE) {
279		if (dump_record(dsp, NULL, 0) != 0)
280			return (SET_ERROR(EINTR));
281		dsp->dsa_pending_op = PENDING_NONE;
282	}
283	/* write a WRITE record */
284	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
285	dsp->dsa_drr->drr_type = DRR_WRITE;
286	drrw->drr_object = object;
287	drrw->drr_type = type;
288	drrw->drr_offset = offset;
289	drrw->drr_length = blksz;
290	drrw->drr_toguid = dsp->dsa_toguid;
291	if (bp == NULL || BP_IS_EMBEDDED(bp)) {
292		/*
293		 * There's no pre-computed checksum for partial-block
294		 * writes or embedded BP's, so (like
295		 * fletcher4-checkummed blocks) userland will have to
296		 * compute a dedup-capable checksum itself.
297		 */
298		drrw->drr_checksumtype = ZIO_CHECKSUM_OFF;
299	} else {
300		drrw->drr_checksumtype = BP_GET_CHECKSUM(bp);
301		if (zio_checksum_table[drrw->drr_checksumtype].ci_flags &
302		    ZCHECKSUM_FLAG_DEDUP)
303			drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP;
304		DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp));
305		DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp));
306		DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp));
307		drrw->drr_key.ddk_cksum = bp->blk_cksum;
308	}
309
310	if (dump_record(dsp, data, blksz) != 0)
311		return (SET_ERROR(EINTR));
312	return (0);
313}
314
315static int
316dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
317    int blksz, const blkptr_t *bp)
318{
319	char buf[BPE_PAYLOAD_SIZE];
320	struct drr_write_embedded *drrw =
321	    &(dsp->dsa_drr->drr_u.drr_write_embedded);
322
323	if (dsp->dsa_pending_op != PENDING_NONE) {
324		if (dump_record(dsp, NULL, 0) != 0)
325			return (EINTR);
326		dsp->dsa_pending_op = PENDING_NONE;
327	}
328
329	ASSERT(BP_IS_EMBEDDED(bp));
330
331	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
332	dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED;
333	drrw->drr_object = object;
334	drrw->drr_offset = offset;
335	drrw->drr_length = blksz;
336	drrw->drr_toguid = dsp->dsa_toguid;
337	drrw->drr_compression = BP_GET_COMPRESS(bp);
338	drrw->drr_etype = BPE_GET_ETYPE(bp);
339	drrw->drr_lsize = BPE_GET_LSIZE(bp);
340	drrw->drr_psize = BPE_GET_PSIZE(bp);
341
342	decode_embedded_bp_compressed(bp, buf);
343
344	if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0)
345		return (EINTR);
346	return (0);
347}
348
349static int
350dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data)
351{
352	struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill);
353
354	if (dsp->dsa_pending_op != PENDING_NONE) {
355		if (dump_record(dsp, NULL, 0) != 0)
356			return (SET_ERROR(EINTR));
357		dsp->dsa_pending_op = PENDING_NONE;
358	}
359
360	/* write a SPILL record */
361	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
362	dsp->dsa_drr->drr_type = DRR_SPILL;
363	drrs->drr_object = object;
364	drrs->drr_length = blksz;
365	drrs->drr_toguid = dsp->dsa_toguid;
366
367	if (dump_record(dsp, data, blksz) != 0)
368		return (SET_ERROR(EINTR));
369	return (0);
370}
371
372static int
373dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs)
374{
375	struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects);
376
377	/*
378	 * If there is a pending op, but it's not PENDING_FREEOBJECTS,
379	 * push it out, since free block aggregation can only be done for
380	 * blocks of the same type (i.e., DRR_FREE records can only be
381	 * aggregated with other DRR_FREE records.  DRR_FREEOBJECTS records
382	 * can only be aggregated with other DRR_FREEOBJECTS records.
383	 */
384	if (dsp->dsa_pending_op != PENDING_NONE &&
385	    dsp->dsa_pending_op != PENDING_FREEOBJECTS) {
386		if (dump_record(dsp, NULL, 0) != 0)
387			return (SET_ERROR(EINTR));
388		dsp->dsa_pending_op = PENDING_NONE;
389	}
390	if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) {
391		/*
392		 * See whether this free object array can be aggregated
393		 * with pending one
394		 */
395		if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) {
396			drrfo->drr_numobjs += numobjs;
397			return (0);
398		} else {
399			/* can't be aggregated.  Push out pending record */
400			if (dump_record(dsp, NULL, 0) != 0)
401				return (SET_ERROR(EINTR));
402			dsp->dsa_pending_op = PENDING_NONE;
403		}
404	}
405
406	/* write a FREEOBJECTS record */
407	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
408	dsp->dsa_drr->drr_type = DRR_FREEOBJECTS;
409	drrfo->drr_firstobj = firstobj;
410	drrfo->drr_numobjs = numobjs;
411	drrfo->drr_toguid = dsp->dsa_toguid;
412
413	dsp->dsa_pending_op = PENDING_FREEOBJECTS;
414
415	return (0);
416}
417
418static int
419dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp)
420{
421	struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object);
422
423	if (object < dsp->dsa_resume_object) {
424		/*
425		 * Note: when resuming, we will visit all the dnodes in
426		 * the block of dnodes that we are resuming from.  In
427		 * this case it's unnecessary to send the dnodes prior to
428		 * the one we are resuming from.  We should be at most one
429		 * block's worth of dnodes behind the resume point.
430		 */
431		ASSERT3U(dsp->dsa_resume_object - object, <,
432		    1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT));
433		return (0);
434	}
435
436	if (dnp == NULL || dnp->dn_type == DMU_OT_NONE)
437		return (dump_freeobjects(dsp, object, 1));
438
439	if (dsp->dsa_pending_op != PENDING_NONE) {
440		if (dump_record(dsp, NULL, 0) != 0)
441			return (SET_ERROR(EINTR));
442		dsp->dsa_pending_op = PENDING_NONE;
443	}
444
445	/* write an OBJECT record */
446	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
447	dsp->dsa_drr->drr_type = DRR_OBJECT;
448	drro->drr_object = object;
449	drro->drr_type = dnp->dn_type;
450	drro->drr_bonustype = dnp->dn_bonustype;
451	drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
452	drro->drr_bonuslen = dnp->dn_bonuslen;
453	drro->drr_checksumtype = dnp->dn_checksum;
454	drro->drr_compress = dnp->dn_compress;
455	drro->drr_toguid = dsp->dsa_toguid;
456
457	if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
458	    drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE)
459		drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE;
460
461	if (dump_record(dsp, DN_BONUS(dnp),
462	    P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) {
463		return (SET_ERROR(EINTR));
464	}
465
466	/* Free anything past the end of the file. */
467	if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) *
468	    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0)
469		return (SET_ERROR(EINTR));
470	if (dsp->dsa_err != 0)
471		return (SET_ERROR(EINTR));
472	return (0);
473}
474
475static boolean_t
476backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp)
477{
478	if (!BP_IS_EMBEDDED(bp))
479		return (B_FALSE);
480
481	/*
482	 * Compression function must be legacy, or explicitly enabled.
483	 */
484	if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS &&
485	    !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4)))
486		return (B_FALSE);
487
488	/*
489	 * Embed type must be explicitly enabled.
490	 */
491	switch (BPE_GET_ETYPE(bp)) {
492	case BP_EMBEDDED_TYPE_DATA:
493		if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
494			return (B_TRUE);
495		break;
496	default:
497		return (B_FALSE);
498	}
499	return (B_FALSE);
500}
501
502/*
503 * This is the callback function to traverse_dataset that acts as the worker
504 * thread for dmu_send_impl.
505 */
506/*ARGSUSED*/
507static int
508send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
509    const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
510{
511	struct send_thread_arg *sta = arg;
512	struct send_block_record *record;
513	uint64_t record_size;
514	int err = 0;
515
516	ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
517	    zb->zb_object >= sta->resume.zb_object);
518
519	if (sta->cancel)
520		return (SET_ERROR(EINTR));
521
522	if (bp == NULL) {
523		ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL);
524		return (0);
525	} else if (zb->zb_level < 0) {
526		return (0);
527	}
528
529	record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP);
530	record->eos_marker = B_FALSE;
531	record->bp = *bp;
532	record->zb = *zb;
533	record->indblkshift = dnp->dn_indblkshift;
534	record->datablkszsec = dnp->dn_datablkszsec;
535	record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
536	bqueue_enqueue(&sta->q, record, record_size);
537
538	return (err);
539}
540
541/*
542 * This function kicks off the traverse_dataset.  It also handles setting the
543 * error code of the thread in case something goes wrong, and pushes the End of
544 * Stream record when the traverse_dataset call has finished.  If there is no
545 * dataset to traverse, the thread immediately pushes End of Stream marker.
546 */
547static void
548send_traverse_thread(void *arg)
549{
550	struct send_thread_arg *st_arg = arg;
551	int err;
552	struct send_block_record *data;
553
554	if (st_arg->ds != NULL) {
555		err = traverse_dataset_resume(st_arg->ds,
556		    st_arg->fromtxg, &st_arg->resume,
557		    st_arg->flags, send_cb, st_arg);
558
559		if (err != EINTR)
560			st_arg->error_code = err;
561	}
562	data = kmem_zalloc(sizeof (*data), KM_SLEEP);
563	data->eos_marker = B_TRUE;
564	bqueue_enqueue(&st_arg->q, data, 1);
565	thread_exit();
566}
567
568/*
569 * This function actually handles figuring out what kind of record needs to be
570 * dumped, reading the data (which has hopefully been prefetched), and calling
571 * the appropriate helper function.
572 */
573static int
574do_dump(dmu_sendarg_t *dsa, struct send_block_record *data)
575{
576	dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os);
577	const blkptr_t *bp = &data->bp;
578	const zbookmark_phys_t *zb = &data->zb;
579	uint8_t indblkshift = data->indblkshift;
580	uint16_t dblkszsec = data->datablkszsec;
581	spa_t *spa = ds->ds_dir->dd_pool->dp_spa;
582	dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE;
583	int err = 0;
584
585	ASSERT3U(zb->zb_level, >=, 0);
586
587	ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
588	    zb->zb_object >= dsa->dsa_resume_object);
589
590	if (zb->zb_object != DMU_META_DNODE_OBJECT &&
591	    DMU_OBJECT_IS_SPECIAL(zb->zb_object)) {
592		return (0);
593	} else if (BP_IS_HOLE(bp) &&
594	    zb->zb_object == DMU_META_DNODE_OBJECT) {
595		uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
596		uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT;
597		err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT);
598	} else if (BP_IS_HOLE(bp)) {
599		uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
600		uint64_t offset = zb->zb_blkid * span;
601		err = dump_free(dsa, zb->zb_object, offset, span);
602	} else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) {
603		return (0);
604	} else if (type == DMU_OT_DNODE) {
605		int blksz = BP_GET_LSIZE(bp);
606		arc_flags_t aflags = ARC_FLAG_WAIT;
607		arc_buf_t *abuf;
608
609		ASSERT0(zb->zb_level);
610
611		if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
612		    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
613		    &aflags, zb) != 0)
614			return (SET_ERROR(EIO));
615
616		dnode_phys_t *blk = abuf->b_data;
617		uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT);
618		for (int i = 0; i < blksz >> DNODE_SHIFT; i++) {
619			err = dump_dnode(dsa, dnobj + i, blk + i);
620			if (err != 0)
621				break;
622		}
623		(void) arc_buf_remove_ref(abuf, &abuf);
624	} else if (type == DMU_OT_SA) {
625		arc_flags_t aflags = ARC_FLAG_WAIT;
626		arc_buf_t *abuf;
627		int blksz = BP_GET_LSIZE(bp);
628
629		if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
630		    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
631		    &aflags, zb) != 0)
632			return (SET_ERROR(EIO));
633
634		err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data);
635		(void) arc_buf_remove_ref(abuf, &abuf);
636	} else if (backup_do_embed(dsa, bp)) {
637		/* it's an embedded level-0 block of a regular object */
638		int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
639		ASSERT0(zb->zb_level);
640		err = dump_write_embedded(dsa, zb->zb_object,
641		    zb->zb_blkid * blksz, blksz, bp);
642	} else {
643		/* it's a level-0 block of a regular object */
644		arc_flags_t aflags = ARC_FLAG_WAIT;
645		arc_buf_t *abuf;
646		int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
647		uint64_t offset;
648
649		ASSERT0(zb->zb_level);
650		ASSERT(zb->zb_object > dsa->dsa_resume_object ||
651		    (zb->zb_object == dsa->dsa_resume_object &&
652		    zb->zb_blkid * blksz >= dsa->dsa_resume_offset));
653
654		if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
655		    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
656		    &aflags, zb) != 0) {
657			if (zfs_send_corrupt_data) {
658				/* Send a block filled with 0x"zfs badd bloc" */
659				abuf = arc_buf_alloc(spa, blksz, &abuf,
660				    ARC_BUFC_DATA);
661				uint64_t *ptr;
662				for (ptr = abuf->b_data;
663				    (char *)ptr < (char *)abuf->b_data + blksz;
664				    ptr++)
665					*ptr = 0x2f5baddb10cULL;
666			} else {
667				return (SET_ERROR(EIO));
668			}
669		}
670
671		offset = zb->zb_blkid * blksz;
672
673		if (!(dsa->dsa_featureflags &
674		    DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
675		    blksz > SPA_OLD_MAXBLOCKSIZE) {
676			char *buf = abuf->b_data;
677			while (blksz > 0 && err == 0) {
678				int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE);
679				err = dump_write(dsa, type, zb->zb_object,
680				    offset, n, NULL, buf);
681				offset += n;
682				buf += n;
683				blksz -= n;
684			}
685		} else {
686			err = dump_write(dsa, type, zb->zb_object,
687			    offset, blksz, bp, abuf->b_data);
688		}
689		(void) arc_buf_remove_ref(abuf, &abuf);
690	}
691
692	ASSERT(err == 0 || err == EINTR);
693	return (err);
694}
695
696/*
697 * Pop the new data off the queue, and free the old data.
698 */
699static struct send_block_record *
700get_next_record(bqueue_t *bq, struct send_block_record *data)
701{
702	struct send_block_record *tmp = bqueue_dequeue(bq);
703	kmem_free(data, sizeof (*data));
704	return (tmp);
705}
706
707/*
708 * Actually do the bulk of the work in a zfs send.
709 *
710 * Note: Releases dp using the specified tag.
711 */
712static int
713dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds,
714    zfs_bookmark_phys_t *ancestor_zb,
715    boolean_t is_clone, boolean_t embedok, boolean_t large_block_ok, int outfd,
716    uint64_t resumeobj, uint64_t resumeoff,
717#ifdef illumos
718    vnode_t *vp, offset_t *off)
719#else
720    struct file *fp, offset_t *off)
721#endif
722{
723	objset_t *os;
724	dmu_replay_record_t *drr;
725	dmu_sendarg_t *dsp;
726	int err;
727	uint64_t fromtxg = 0;
728	uint64_t featureflags = 0;
729	struct send_thread_arg to_arg = { 0 };
730
731	err = dmu_objset_from_ds(to_ds, &os);
732	if (err != 0) {
733		dsl_pool_rele(dp, tag);
734		return (err);
735	}
736
737	drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP);
738	drr->drr_type = DRR_BEGIN;
739	drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC;
740	DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo,
741	    DMU_SUBSTREAM);
742
743#ifdef _KERNEL
744	if (dmu_objset_type(os) == DMU_OST_ZFS) {
745		uint64_t version;
746		if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) {
747			kmem_free(drr, sizeof (dmu_replay_record_t));
748			dsl_pool_rele(dp, tag);
749			return (SET_ERROR(EINVAL));
750		}
751		if (version >= ZPL_VERSION_SA) {
752			featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
753		}
754	}
755#endif
756
757	if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS])
758		featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS;
759	if (embedok &&
760	    spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) {
761		featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA;
762		if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
763			featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA_LZ4;
764	}
765
766	if (resumeobj != 0 || resumeoff != 0) {
767		featureflags |= DMU_BACKUP_FEATURE_RESUMING;
768	}
769
770	DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo,
771	    featureflags);
772
773	drr->drr_u.drr_begin.drr_creation_time =
774	    dsl_dataset_phys(to_ds)->ds_creation_time;
775	drr->drr_u.drr_begin.drr_type = dmu_objset_type(os);
776	if (is_clone)
777		drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE;
778	drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid;
779	if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET)
780		drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA;
781	if (zfs_send_set_freerecords_bit)
782		drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_FREERECORDS;
783
784	if (ancestor_zb != NULL) {
785		drr->drr_u.drr_begin.drr_fromguid =
786		    ancestor_zb->zbm_guid;
787		fromtxg = ancestor_zb->zbm_creation_txg;
788	}
789	dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname);
790	if (!to_ds->ds_is_snapshot) {
791		(void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--",
792		    sizeof (drr->drr_u.drr_begin.drr_toname));
793	}
794
795	dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP);
796
797	dsp->dsa_drr = drr;
798	dsp->dsa_outfd = outfd;
799	dsp->dsa_proc = curproc;
800	dsp->dsa_td = curthread;
801	dsp->dsa_fp = fp;
802	dsp->dsa_os = os;
803	dsp->dsa_off = off;
804	dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid;
805	dsp->dsa_pending_op = PENDING_NONE;
806	dsp->dsa_featureflags = featureflags;
807	dsp->dsa_resume_object = resumeobj;
808	dsp->dsa_resume_offset = resumeoff;
809
810	mutex_enter(&to_ds->ds_sendstream_lock);
811	list_insert_head(&to_ds->ds_sendstreams, dsp);
812	mutex_exit(&to_ds->ds_sendstream_lock);
813
814	dsl_dataset_long_hold(to_ds, FTAG);
815	dsl_pool_rele(dp, tag);
816
817	void *payload = NULL;
818	size_t payload_len = 0;
819	if (resumeobj != 0 || resumeoff != 0) {
820		dmu_object_info_t to_doi;
821		err = dmu_object_info(os, resumeobj, &to_doi);
822		if (err != 0)
823			goto out;
824		SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0,
825		    resumeoff / to_doi.doi_data_block_size);
826
827		nvlist_t *nvl = fnvlist_alloc();
828		fnvlist_add_uint64(nvl, "resume_object", resumeobj);
829		fnvlist_add_uint64(nvl, "resume_offset", resumeoff);
830		payload = fnvlist_pack(nvl, &payload_len);
831		drr->drr_payloadlen = payload_len;
832		fnvlist_free(nvl);
833	}
834
835	err = dump_record(dsp, payload, payload_len);
836	fnvlist_pack_free(payload, payload_len);
837	if (err != 0) {
838		err = dsp->dsa_err;
839		goto out;
840	}
841
842	err = bqueue_init(&to_arg.q, zfs_send_queue_length,
843	    offsetof(struct send_block_record, ln));
844	to_arg.error_code = 0;
845	to_arg.cancel = B_FALSE;
846	to_arg.ds = to_ds;
847	to_arg.fromtxg = fromtxg;
848	to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH;
849	(void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, &p0,
850	    TS_RUN, minclsyspri);
851
852	struct send_block_record *to_data;
853	to_data = bqueue_dequeue(&to_arg.q);
854
855	while (!to_data->eos_marker && err == 0) {
856		err = do_dump(dsp, to_data);
857		to_data = get_next_record(&to_arg.q, to_data);
858		if (issig(JUSTLOOKING) && issig(FORREAL))
859			err = EINTR;
860	}
861
862	if (err != 0) {
863		to_arg.cancel = B_TRUE;
864		while (!to_data->eos_marker) {
865			to_data = get_next_record(&to_arg.q, to_data);
866		}
867	}
868	kmem_free(to_data, sizeof (*to_data));
869
870	bqueue_destroy(&to_arg.q);
871
872	if (err == 0 && to_arg.error_code != 0)
873		err = to_arg.error_code;
874
875	if (err != 0)
876		goto out;
877
878	if (dsp->dsa_pending_op != PENDING_NONE)
879		if (dump_record(dsp, NULL, 0) != 0)
880			err = SET_ERROR(EINTR);
881
882	if (err != 0) {
883		if (err == EINTR && dsp->dsa_err != 0)
884			err = dsp->dsa_err;
885		goto out;
886	}
887
888	bzero(drr, sizeof (dmu_replay_record_t));
889	drr->drr_type = DRR_END;
890	drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc;
891	drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid;
892
893	if (dump_record(dsp, NULL, 0) != 0)
894		err = dsp->dsa_err;
895
896out:
897	mutex_enter(&to_ds->ds_sendstream_lock);
898	list_remove(&to_ds->ds_sendstreams, dsp);
899	mutex_exit(&to_ds->ds_sendstream_lock);
900
901	kmem_free(drr, sizeof (dmu_replay_record_t));
902	kmem_free(dsp, sizeof (dmu_sendarg_t));
903
904	dsl_dataset_long_rele(to_ds, FTAG);
905
906	return (err);
907}
908
909int
910dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap,
911    boolean_t embedok, boolean_t large_block_ok,
912#ifdef illumos
913    int outfd, vnode_t *vp, offset_t *off)
914#else
915    int outfd, struct file *fp, offset_t *off)
916#endif
917{
918	dsl_pool_t *dp;
919	dsl_dataset_t *ds;
920	dsl_dataset_t *fromds = NULL;
921	int err;
922
923	err = dsl_pool_hold(pool, FTAG, &dp);
924	if (err != 0)
925		return (err);
926
927	err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds);
928	if (err != 0) {
929		dsl_pool_rele(dp, FTAG);
930		return (err);
931	}
932
933	if (fromsnap != 0) {
934		zfs_bookmark_phys_t zb;
935		boolean_t is_clone;
936
937		err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds);
938		if (err != 0) {
939			dsl_dataset_rele(ds, FTAG);
940			dsl_pool_rele(dp, FTAG);
941			return (err);
942		}
943		if (!dsl_dataset_is_before(ds, fromds, 0))
944			err = SET_ERROR(EXDEV);
945		zb.zbm_creation_time =
946		    dsl_dataset_phys(fromds)->ds_creation_time;
947		zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg;
948		zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
949		is_clone = (fromds->ds_dir != ds->ds_dir);
950		dsl_dataset_rele(fromds, FTAG);
951		err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
952		    embedok, large_block_ok, outfd, 0, 0, fp, off);
953	} else {
954		err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
955		    embedok, large_block_ok, outfd, 0, 0, fp, off);
956	}
957	dsl_dataset_rele(ds, FTAG);
958	return (err);
959}
960
961int
962dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok,
963    boolean_t large_block_ok, int outfd, uint64_t resumeobj, uint64_t resumeoff,
964#ifdef illumos
965    vnode_t *vp, offset_t *off)
966#else
967    struct file *fp, offset_t *off)
968#endif
969{
970	dsl_pool_t *dp;
971	dsl_dataset_t *ds;
972	int err;
973	boolean_t owned = B_FALSE;
974
975	if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL)
976		return (SET_ERROR(EINVAL));
977
978	err = dsl_pool_hold(tosnap, FTAG, &dp);
979	if (err != 0)
980		return (err);
981
982	if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) {
983		/*
984		 * We are sending a filesystem or volume.  Ensure
985		 * that it doesn't change by owning the dataset.
986		 */
987		err = dsl_dataset_own(dp, tosnap, FTAG, &ds);
988		owned = B_TRUE;
989	} else {
990		err = dsl_dataset_hold(dp, tosnap, FTAG, &ds);
991	}
992	if (err != 0) {
993		dsl_pool_rele(dp, FTAG);
994		return (err);
995	}
996
997	if (fromsnap != NULL) {
998		zfs_bookmark_phys_t zb;
999		boolean_t is_clone = B_FALSE;
1000		int fsnamelen = strchr(tosnap, '@') - tosnap;
1001
1002		/*
1003		 * If the fromsnap is in a different filesystem, then
1004		 * mark the send stream as a clone.
1005		 */
1006		if (strncmp(tosnap, fromsnap, fsnamelen) != 0 ||
1007		    (fromsnap[fsnamelen] != '@' &&
1008		    fromsnap[fsnamelen] != '#')) {
1009			is_clone = B_TRUE;
1010		}
1011
1012		if (strchr(fromsnap, '@')) {
1013			dsl_dataset_t *fromds;
1014			err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds);
1015			if (err == 0) {
1016				if (!dsl_dataset_is_before(ds, fromds, 0))
1017					err = SET_ERROR(EXDEV);
1018				zb.zbm_creation_time =
1019				    dsl_dataset_phys(fromds)->ds_creation_time;
1020				zb.zbm_creation_txg =
1021				    dsl_dataset_phys(fromds)->ds_creation_txg;
1022				zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
1023				is_clone = (ds->ds_dir != fromds->ds_dir);
1024				dsl_dataset_rele(fromds, FTAG);
1025			}
1026		} else {
1027			err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb);
1028		}
1029		if (err != 0) {
1030			dsl_dataset_rele(ds, FTAG);
1031			dsl_pool_rele(dp, FTAG);
1032			return (err);
1033		}
1034		err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
1035		    embedok, large_block_ok,
1036		    outfd, resumeobj, resumeoff, fp, off);
1037	} else {
1038		err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
1039		    embedok, large_block_ok,
1040		    outfd, resumeobj, resumeoff, fp, off);
1041	}
1042	if (owned)
1043		dsl_dataset_disown(ds, FTAG);
1044	else
1045		dsl_dataset_rele(ds, FTAG);
1046	return (err);
1047}
1048
1049static int
1050dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t size,
1051    uint64_t *sizep)
1052{
1053	int err;
1054	/*
1055	 * Assume that space (both on-disk and in-stream) is dominated by
1056	 * data.  We will adjust for indirect blocks and the copies property,
1057	 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records).
1058	 */
1059
1060	/*
1061	 * Subtract out approximate space used by indirect blocks.
1062	 * Assume most space is used by data blocks (non-indirect, non-dnode).
1063	 * Assume all blocks are recordsize.  Assume ditto blocks and
1064	 * internal fragmentation counter out compression.
1065	 *
1066	 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per
1067	 * block, which we observe in practice.
1068	 */
1069	uint64_t recordsize;
1070	err = dsl_prop_get_int_ds(ds, "recordsize", &recordsize);
1071	if (err != 0)
1072		return (err);
1073	size -= size / recordsize * sizeof (blkptr_t);
1074
1075	/* Add in the space for the record associated with each block. */
1076	size += size / recordsize * sizeof (dmu_replay_record_t);
1077
1078	*sizep = size;
1079
1080	return (0);
1081}
1082
1083int
1084dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds, uint64_t *sizep)
1085{
1086	dsl_pool_t *dp = ds->ds_dir->dd_pool;
1087	int err;
1088	uint64_t size;
1089
1090	ASSERT(dsl_pool_config_held(dp));
1091
1092	/* tosnap must be a snapshot */
1093	if (!ds->ds_is_snapshot)
1094		return (SET_ERROR(EINVAL));
1095
1096	/* fromsnap, if provided, must be a snapshot */
1097	if (fromds != NULL && !fromds->ds_is_snapshot)
1098		return (SET_ERROR(EINVAL));
1099
1100	/*
1101	 * fromsnap must be an earlier snapshot from the same fs as tosnap,
1102	 * or the origin's fs.
1103	 */
1104	if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0))
1105		return (SET_ERROR(EXDEV));
1106
1107	/* Get uncompressed size estimate of changed data. */
1108	if (fromds == NULL) {
1109		size = dsl_dataset_phys(ds)->ds_uncompressed_bytes;
1110	} else {
1111		uint64_t used, comp;
1112		err = dsl_dataset_space_written(fromds, ds,
1113		    &used, &comp, &size);
1114		if (err != 0)
1115			return (err);
1116	}
1117
1118	err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep);
1119	return (err);
1120}
1121
1122/*
1123 * Simple callback used to traverse the blocks of a snapshot and sum their
1124 * uncompressed size
1125 */
1126/* ARGSUSED */
1127static int
1128dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1129    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1130{
1131	uint64_t *spaceptr = arg;
1132	if (bp != NULL && !BP_IS_HOLE(bp)) {
1133		*spaceptr += BP_GET_UCSIZE(bp);
1134	}
1135	return (0);
1136}
1137
1138/*
1139 * Given a desination snapshot and a TXG, calculate the approximate size of a
1140 * send stream sent from that TXG. from_txg may be zero, indicating that the
1141 * whole snapshot will be sent.
1142 */
1143int
1144dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg,
1145    uint64_t *sizep)
1146{
1147	dsl_pool_t *dp = ds->ds_dir->dd_pool;
1148	int err;
1149	uint64_t size = 0;
1150
1151	ASSERT(dsl_pool_config_held(dp));
1152
1153	/* tosnap must be a snapshot */
1154	if (!dsl_dataset_is_snapshot(ds))
1155		return (SET_ERROR(EINVAL));
1156
1157	/* verify that from_txg is before the provided snapshot was taken */
1158	if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) {
1159		return (SET_ERROR(EXDEV));
1160	}
1161
1162	/*
1163	 * traverse the blocks of the snapshot with birth times after
1164	 * from_txg, summing their uncompressed size
1165	 */
1166	err = traverse_dataset(ds, from_txg, TRAVERSE_POST,
1167	    dmu_calculate_send_traversal, &size);
1168	if (err)
1169		return (err);
1170
1171	err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep);
1172	return (err);
1173}
1174
1175typedef struct dmu_recv_begin_arg {
1176	const char *drba_origin;
1177	dmu_recv_cookie_t *drba_cookie;
1178	cred_t *drba_cred;
1179	uint64_t drba_snapobj;
1180} dmu_recv_begin_arg_t;
1181
1182static int
1183recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
1184    uint64_t fromguid)
1185{
1186	uint64_t val;
1187	int error;
1188	dsl_pool_t *dp = ds->ds_dir->dd_pool;
1189
1190	/* temporary clone name must not exist */
1191	error = zap_lookup(dp->dp_meta_objset,
1192	    dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
1193	    8, 1, &val);
1194	if (error != ENOENT)
1195		return (error == 0 ? EBUSY : error);
1196
1197	/* new snapshot name must not exist */
1198	error = zap_lookup(dp->dp_meta_objset,
1199	    dsl_dataset_phys(ds)->ds_snapnames_zapobj,
1200	    drba->drba_cookie->drc_tosnap, 8, 1, &val);
1201	if (error != ENOENT)
1202		return (error == 0 ? EEXIST : error);
1203
1204	/*
1205	 * Check snapshot limit before receiving. We'll recheck again at the
1206	 * end, but might as well abort before receiving if we're already over
1207	 * the limit.
1208	 *
1209	 * Note that we do not check the file system limit with
1210	 * dsl_dir_fscount_check because the temporary %clones don't count
1211	 * against that limit.
1212	 */
1213	error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
1214	    NULL, drba->drba_cred);
1215	if (error != 0)
1216		return (error);
1217
1218	if (fromguid != 0) {
1219		dsl_dataset_t *snap;
1220		uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
1221
1222		/* Find snapshot in this dir that matches fromguid. */
1223		while (obj != 0) {
1224			error = dsl_dataset_hold_obj(dp, obj, FTAG,
1225			    &snap);
1226			if (error != 0)
1227				return (SET_ERROR(ENODEV));
1228			if (snap->ds_dir != ds->ds_dir) {
1229				dsl_dataset_rele(snap, FTAG);
1230				return (SET_ERROR(ENODEV));
1231			}
1232			if (dsl_dataset_phys(snap)->ds_guid == fromguid)
1233				break;
1234			obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
1235			dsl_dataset_rele(snap, FTAG);
1236		}
1237		if (obj == 0)
1238			return (SET_ERROR(ENODEV));
1239
1240		if (drba->drba_cookie->drc_force) {
1241			drba->drba_snapobj = obj;
1242		} else {
1243			/*
1244			 * If we are not forcing, there must be no
1245			 * changes since fromsnap.
1246			 */
1247			if (dsl_dataset_modified_since_snap(ds, snap)) {
1248				dsl_dataset_rele(snap, FTAG);
1249				return (SET_ERROR(ETXTBSY));
1250			}
1251			drba->drba_snapobj = ds->ds_prev->ds_object;
1252		}
1253
1254		dsl_dataset_rele(snap, FTAG);
1255	} else {
1256		/* if full, then must be forced */
1257		if (!drba->drba_cookie->drc_force)
1258			return (SET_ERROR(EEXIST));
1259		/* start from $ORIGIN@$ORIGIN, if supported */
1260		drba->drba_snapobj = dp->dp_origin_snap != NULL ?
1261		    dp->dp_origin_snap->ds_object : 0;
1262	}
1263
1264	return (0);
1265
1266}
1267
1268static int
1269dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
1270{
1271	dmu_recv_begin_arg_t *drba = arg;
1272	dsl_pool_t *dp = dmu_tx_pool(tx);
1273	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1274	uint64_t fromguid = drrb->drr_fromguid;
1275	int flags = drrb->drr_flags;
1276	int error;
1277	uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
1278	dsl_dataset_t *ds;
1279	const char *tofs = drba->drba_cookie->drc_tofs;
1280
1281	/* already checked */
1282	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1283	ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
1284
1285	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1286	    DMU_COMPOUNDSTREAM ||
1287	    drrb->drr_type >= DMU_OST_NUMTYPES ||
1288	    ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
1289		return (SET_ERROR(EINVAL));
1290
1291	/* Verify pool version supports SA if SA_SPILL feature set */
1292	if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
1293	    spa_version(dp->dp_spa) < SPA_VERSION_SA)
1294		return (SET_ERROR(ENOTSUP));
1295
1296	if (drba->drba_cookie->drc_resumable &&
1297	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
1298		return (SET_ERROR(ENOTSUP));
1299
1300	/*
1301	 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1302	 * record to a plan WRITE record, so the pool must have the
1303	 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1304	 * records.  Same with WRITE_EMBEDDED records that use LZ4 compression.
1305	 */
1306	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
1307	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
1308		return (SET_ERROR(ENOTSUP));
1309	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) &&
1310	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
1311		return (SET_ERROR(ENOTSUP));
1312
1313	/*
1314	 * The receiving code doesn't know how to translate large blocks
1315	 * to smaller ones, so the pool must have the LARGE_BLOCKS
1316	 * feature enabled if the stream has LARGE_BLOCKS.
1317	 */
1318	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
1319	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
1320		return (SET_ERROR(ENOTSUP));
1321
1322	error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1323	if (error == 0) {
1324		/* target fs already exists; recv into temp clone */
1325
1326		/* Can't recv a clone into an existing fs */
1327		if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
1328			dsl_dataset_rele(ds, FTAG);
1329			return (SET_ERROR(EINVAL));
1330		}
1331
1332		error = recv_begin_check_existing_impl(drba, ds, fromguid);
1333		dsl_dataset_rele(ds, FTAG);
1334	} else if (error == ENOENT) {
1335		/* target fs does not exist; must be a full backup or clone */
1336		char buf[MAXNAMELEN];
1337
1338		/*
1339		 * If it's a non-clone incremental, we are missing the
1340		 * target fs, so fail the recv.
1341		 */
1342		if (fromguid != 0 && !(flags & DRR_FLAG_CLONE ||
1343		    drba->drba_origin))
1344			return (SET_ERROR(ENOENT));
1345
1346		/*
1347		 * If we're receiving a full send as a clone, and it doesn't
1348		 * contain all the necessary free records and freeobject
1349		 * records, reject it.
1350		 */
1351		if (fromguid == 0 && drba->drba_origin &&
1352		    !(flags & DRR_FLAG_FREERECORDS))
1353			return (SET_ERROR(EINVAL));
1354
1355		/* Open the parent of tofs */
1356		ASSERT3U(strlen(tofs), <, MAXNAMELEN);
1357		(void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
1358		error = dsl_dataset_hold(dp, buf, FTAG, &ds);
1359		if (error != 0)
1360			return (error);
1361
1362		/*
1363		 * Check filesystem and snapshot limits before receiving. We'll
1364		 * recheck snapshot limits again at the end (we create the
1365		 * filesystems and increment those counts during begin_sync).
1366		 */
1367		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
1368		    ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred);
1369		if (error != 0) {
1370			dsl_dataset_rele(ds, FTAG);
1371			return (error);
1372		}
1373
1374		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
1375		    ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred);
1376		if (error != 0) {
1377			dsl_dataset_rele(ds, FTAG);
1378			return (error);
1379		}
1380
1381		if (drba->drba_origin != NULL) {
1382			dsl_dataset_t *origin;
1383			error = dsl_dataset_hold(dp, drba->drba_origin,
1384			    FTAG, &origin);
1385			if (error != 0) {
1386				dsl_dataset_rele(ds, FTAG);
1387				return (error);
1388			}
1389			if (!origin->ds_is_snapshot) {
1390				dsl_dataset_rele(origin, FTAG);
1391				dsl_dataset_rele(ds, FTAG);
1392				return (SET_ERROR(EINVAL));
1393			}
1394			if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
1395			    fromguid != 0) {
1396				dsl_dataset_rele(origin, FTAG);
1397				dsl_dataset_rele(ds, FTAG);
1398				return (SET_ERROR(ENODEV));
1399			}
1400			dsl_dataset_rele(origin, FTAG);
1401		}
1402		dsl_dataset_rele(ds, FTAG);
1403		error = 0;
1404	}
1405	return (error);
1406}
1407
1408static void
1409dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
1410{
1411	dmu_recv_begin_arg_t *drba = arg;
1412	dsl_pool_t *dp = dmu_tx_pool(tx);
1413	objset_t *mos = dp->dp_meta_objset;
1414	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1415	const char *tofs = drba->drba_cookie->drc_tofs;
1416	dsl_dataset_t *ds, *newds;
1417	uint64_t dsobj;
1418	int error;
1419	uint64_t crflags = 0;
1420
1421	if (drrb->drr_flags & DRR_FLAG_CI_DATA)
1422		crflags |= DS_FLAG_CI_DATASET;
1423
1424	error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1425	if (error == 0) {
1426		/* create temporary clone */
1427		dsl_dataset_t *snap = NULL;
1428		if (drba->drba_snapobj != 0) {
1429			VERIFY0(dsl_dataset_hold_obj(dp,
1430			    drba->drba_snapobj, FTAG, &snap));
1431		}
1432		dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
1433		    snap, crflags, drba->drba_cred, tx);
1434		if (drba->drba_snapobj != 0)
1435			dsl_dataset_rele(snap, FTAG);
1436		dsl_dataset_rele(ds, FTAG);
1437	} else {
1438		dsl_dir_t *dd;
1439		const char *tail;
1440		dsl_dataset_t *origin = NULL;
1441
1442		VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
1443
1444		if (drba->drba_origin != NULL) {
1445			VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
1446			    FTAG, &origin));
1447		}
1448
1449		/* Create new dataset. */
1450		dsobj = dsl_dataset_create_sync(dd,
1451		    strrchr(tofs, '/') + 1,
1452		    origin, crflags, drba->drba_cred, tx);
1453		if (origin != NULL)
1454			dsl_dataset_rele(origin, FTAG);
1455		dsl_dir_rele(dd, FTAG);
1456		drba->drba_cookie->drc_newfs = B_TRUE;
1457	}
1458	VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds));
1459
1460	if (drba->drba_cookie->drc_resumable) {
1461		dsl_dataset_zapify(newds, tx);
1462		if (drrb->drr_fromguid != 0) {
1463			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
1464			    8, 1, &drrb->drr_fromguid, tx));
1465		}
1466		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
1467		    8, 1, &drrb->drr_toguid, tx));
1468		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
1469		    1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
1470		uint64_t one = 1;
1471		uint64_t zero = 0;
1472		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
1473		    8, 1, &one, tx));
1474		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
1475		    8, 1, &zero, tx));
1476		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
1477		    8, 1, &zero, tx));
1478		if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) &
1479		    DMU_BACKUP_FEATURE_EMBED_DATA) {
1480			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
1481			    8, 1, &one, tx));
1482		}
1483	}
1484
1485	dmu_buf_will_dirty(newds->ds_dbuf, tx);
1486	dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
1487
1488	/*
1489	 * If we actually created a non-clone, we need to create the
1490	 * objset in our new dataset.
1491	 */
1492	if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) {
1493		(void) dmu_objset_create_impl(dp->dp_spa,
1494		    newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
1495	}
1496
1497	drba->drba_cookie->drc_ds = newds;
1498
1499	spa_history_log_internal_ds(newds, "receive", tx, "");
1500}
1501
1502static int
1503dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
1504{
1505	dmu_recv_begin_arg_t *drba = arg;
1506	dsl_pool_t *dp = dmu_tx_pool(tx);
1507	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1508	int error;
1509	uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
1510	dsl_dataset_t *ds;
1511	const char *tofs = drba->drba_cookie->drc_tofs;
1512
1513	/* already checked */
1514	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1515	ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING);
1516
1517	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1518	    DMU_COMPOUNDSTREAM ||
1519	    drrb->drr_type >= DMU_OST_NUMTYPES)
1520		return (SET_ERROR(EINVAL));
1521
1522	/* Verify pool version supports SA if SA_SPILL feature set */
1523	if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
1524	    spa_version(dp->dp_spa) < SPA_VERSION_SA)
1525		return (SET_ERROR(ENOTSUP));
1526
1527	/*
1528	 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1529	 * record to a plain WRITE record, so the pool must have the
1530	 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1531	 * records.  Same with WRITE_EMBEDDED records that use LZ4 compression.
1532	 */
1533	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
1534	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
1535		return (SET_ERROR(ENOTSUP));
1536	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) &&
1537	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
1538		return (SET_ERROR(ENOTSUP));
1539
1540	char recvname[ZFS_MAXNAMELEN];
1541
1542	(void) snprintf(recvname, sizeof (recvname), "%s/%s",
1543	    tofs, recv_clone_name);
1544
1545	if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
1546		/* %recv does not exist; continue in tofs */
1547		error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1548		if (error != 0)
1549			return (error);
1550	}
1551
1552	/* check that ds is marked inconsistent */
1553	if (!DS_IS_INCONSISTENT(ds)) {
1554		dsl_dataset_rele(ds, FTAG);
1555		return (SET_ERROR(EINVAL));
1556	}
1557
1558	/* check that there is resuming data, and that the toguid matches */
1559	if (!dsl_dataset_is_zapified(ds)) {
1560		dsl_dataset_rele(ds, FTAG);
1561		return (SET_ERROR(EINVAL));
1562	}
1563	uint64_t val;
1564	error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1565	    DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1566	if (error != 0 || drrb->drr_toguid != val) {
1567		dsl_dataset_rele(ds, FTAG);
1568		return (SET_ERROR(EINVAL));
1569	}
1570
1571	/*
1572	 * Check if the receive is still running.  If so, it will be owned.
1573	 * Note that nothing else can own the dataset (e.g. after the receive
1574	 * fails) because it will be marked inconsistent.
1575	 */
1576	if (dsl_dataset_has_owner(ds)) {
1577		dsl_dataset_rele(ds, FTAG);
1578		return (SET_ERROR(EBUSY));
1579	}
1580
1581	/* There should not be any snapshots of this fs yet. */
1582	if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1583		dsl_dataset_rele(ds, FTAG);
1584		return (SET_ERROR(EINVAL));
1585	}
1586
1587	/*
1588	 * Note: resume point will be checked when we process the first WRITE
1589	 * record.
1590	 */
1591
1592	/* check that the origin matches */
1593	val = 0;
1594	(void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1595	    DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1596	if (drrb->drr_fromguid != val) {
1597		dsl_dataset_rele(ds, FTAG);
1598		return (SET_ERROR(EINVAL));
1599	}
1600
1601	dsl_dataset_rele(ds, FTAG);
1602	return (0);
1603}
1604
1605static void
1606dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1607{
1608	dmu_recv_begin_arg_t *drba = arg;
1609	dsl_pool_t *dp = dmu_tx_pool(tx);
1610	const char *tofs = drba->drba_cookie->drc_tofs;
1611	dsl_dataset_t *ds;
1612	uint64_t dsobj;
1613	char recvname[ZFS_MAXNAMELEN];
1614
1615	(void) snprintf(recvname, sizeof (recvname), "%s/%s",
1616	    tofs, recv_clone_name);
1617
1618	if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
1619		/* %recv does not exist; continue in tofs */
1620		VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds));
1621		drba->drba_cookie->drc_newfs = B_TRUE;
1622	}
1623
1624	/* clear the inconsistent flag so that we can own it */
1625	ASSERT(DS_IS_INCONSISTENT(ds));
1626	dmu_buf_will_dirty(ds->ds_dbuf, tx);
1627	dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
1628	dsobj = ds->ds_object;
1629	dsl_dataset_rele(ds, FTAG);
1630
1631	VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds));
1632
1633	dmu_buf_will_dirty(ds->ds_dbuf, tx);
1634	dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT;
1635
1636	ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)));
1637
1638	drba->drba_cookie->drc_ds = ds;
1639
1640	spa_history_log_internal_ds(ds, "resume receive", tx, "");
1641}
1642
1643/*
1644 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1645 * succeeds; otherwise we will leak the holds on the datasets.
1646 */
1647int
1648dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
1649    boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc)
1650{
1651	dmu_recv_begin_arg_t drba = { 0 };
1652
1653	bzero(drc, sizeof (dmu_recv_cookie_t));
1654	drc->drc_drr_begin = drr_begin;
1655	drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1656	drc->drc_tosnap = tosnap;
1657	drc->drc_tofs = tofs;
1658	drc->drc_force = force;
1659	drc->drc_resumable = resumable;
1660	drc->drc_cred = CRED();
1661
1662	if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1663		drc->drc_byteswap = B_TRUE;
1664		fletcher_4_incremental_byteswap(drr_begin,
1665		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1666		byteswap_record(drr_begin);
1667	} else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1668		fletcher_4_incremental_native(drr_begin,
1669		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1670	} else {
1671		return (SET_ERROR(EINVAL));
1672	}
1673
1674	drba.drba_origin = origin;
1675	drba.drba_cookie = drc;
1676	drba.drba_cred = CRED();
1677
1678	if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1679	    DMU_BACKUP_FEATURE_RESUMING) {
1680		return (dsl_sync_task(tofs,
1681		    dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1682		    &drba, 5, ZFS_SPACE_CHECK_NORMAL));
1683	} else  {
1684		return (dsl_sync_task(tofs,
1685		    dmu_recv_begin_check, dmu_recv_begin_sync,
1686		    &drba, 5, ZFS_SPACE_CHECK_NORMAL));
1687	}
1688}
1689
1690struct receive_record_arg {
1691	dmu_replay_record_t header;
1692	void *payload; /* Pointer to a buffer containing the payload */
1693	/*
1694	 * If the record is a write, pointer to the arc_buf_t containing the
1695	 * payload.
1696	 */
1697	arc_buf_t *write_buf;
1698	int payload_size;
1699	uint64_t bytes_read; /* bytes read from stream when record created */
1700	boolean_t eos_marker; /* Marks the end of the stream */
1701	bqueue_node_t node;
1702};
1703
1704struct receive_writer_arg {
1705	objset_t *os;
1706	boolean_t byteswap;
1707	bqueue_t q;
1708
1709	/*
1710	 * These three args are used to signal to the main thread that we're
1711	 * done.
1712	 */
1713	kmutex_t mutex;
1714	kcondvar_t cv;
1715	boolean_t done;
1716
1717	int err;
1718	/* A map from guid to dataset to help handle dedup'd streams. */
1719	avl_tree_t *guid_to_ds_map;
1720	boolean_t resumable;
1721	uint64_t last_object, last_offset;
1722	uint64_t bytes_read; /* bytes read when current record created */
1723};
1724
1725struct objlist {
1726	list_t list; /* List of struct receive_objnode. */
1727	/*
1728	 * Last object looked up. Used to assert that objects are being looked
1729	 * up in ascending order.
1730	 */
1731	uint64_t last_lookup;
1732};
1733
1734struct receive_objnode {
1735	list_node_t node;
1736	uint64_t object;
1737};
1738
1739struct receive_arg  {
1740	objset_t *os;
1741	kthread_t *td;
1742	struct file *fp;
1743	uint64_t voff; /* The current offset in the stream */
1744	uint64_t bytes_read;
1745	/*
1746	 * A record that has had its payload read in, but hasn't yet been handed
1747	 * off to the worker thread.
1748	 */
1749	struct receive_record_arg *rrd;
1750	/* A record that has had its header read in, but not its payload. */
1751	struct receive_record_arg *next_rrd;
1752	zio_cksum_t cksum;
1753	zio_cksum_t prev_cksum;
1754	int err;
1755	boolean_t byteswap;
1756	/* Sorted list of objects not to issue prefetches for. */
1757	struct objlist ignore_objlist;
1758};
1759
1760typedef struct guid_map_entry {
1761	uint64_t	guid;
1762	dsl_dataset_t	*gme_ds;
1763	avl_node_t	avlnode;
1764} guid_map_entry_t;
1765
1766static int
1767guid_compare(const void *arg1, const void *arg2)
1768{
1769	const guid_map_entry_t *gmep1 = arg1;
1770	const guid_map_entry_t *gmep2 = arg2;
1771
1772	if (gmep1->guid < gmep2->guid)
1773		return (-1);
1774	else if (gmep1->guid > gmep2->guid)
1775		return (1);
1776	return (0);
1777}
1778
1779static void
1780free_guid_map_onexit(void *arg)
1781{
1782	avl_tree_t *ca = arg;
1783	void *cookie = NULL;
1784	guid_map_entry_t *gmep;
1785
1786	while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) {
1787		dsl_dataset_long_rele(gmep->gme_ds, gmep);
1788		dsl_dataset_rele(gmep->gme_ds, gmep);
1789		kmem_free(gmep, sizeof (guid_map_entry_t));
1790	}
1791	avl_destroy(ca);
1792	kmem_free(ca, sizeof (avl_tree_t));
1793}
1794
1795static int
1796restore_bytes(struct receive_arg *ra, void *buf, int len, off_t off, ssize_t *resid)
1797{
1798	struct uio auio;
1799	struct iovec aiov;
1800	int error;
1801
1802	aiov.iov_base = buf;
1803	aiov.iov_len = len;
1804	auio.uio_iov = &aiov;
1805	auio.uio_iovcnt = 1;
1806	auio.uio_resid = len;
1807	auio.uio_segflg = UIO_SYSSPACE;
1808	auio.uio_rw = UIO_READ;
1809	auio.uio_offset = off;
1810	auio.uio_td = ra->td;
1811#ifdef _KERNEL
1812	error = fo_read(ra->fp, &auio, ra->td->td_ucred, FOF_OFFSET, ra->td);
1813#else
1814	fprintf(stderr, "%s: returning EOPNOTSUPP\n", __func__);
1815	error = EOPNOTSUPP;
1816#endif
1817	*resid = auio.uio_resid;
1818	return (error);
1819}
1820
1821static int
1822receive_read(struct receive_arg *ra, int len, void *buf)
1823{
1824	int done = 0;
1825
1826	/* some things will require 8-byte alignment, so everything must */
1827	ASSERT0(len % 8);
1828
1829	while (done < len) {
1830		ssize_t resid;
1831
1832		ra->err = restore_bytes(ra, buf + done,
1833		    len - done, ra->voff, &resid);
1834
1835		if (resid == len - done) {
1836			/*
1837			 * Note: ECKSUM indicates that the receive
1838			 * was interrupted and can potentially be resumed.
1839			 */
1840			ra->err = SET_ERROR(ECKSUM);
1841		}
1842		ra->voff += len - done - resid;
1843		done = len - resid;
1844		if (ra->err != 0)
1845			return (ra->err);
1846	}
1847
1848	ra->bytes_read += len;
1849
1850	ASSERT3U(done, ==, len);
1851	return (0);
1852}
1853
1854static void
1855byteswap_record(dmu_replay_record_t *drr)
1856{
1857#define	DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
1858#define	DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
1859	drr->drr_type = BSWAP_32(drr->drr_type);
1860	drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
1861
1862	switch (drr->drr_type) {
1863	case DRR_BEGIN:
1864		DO64(drr_begin.drr_magic);
1865		DO64(drr_begin.drr_versioninfo);
1866		DO64(drr_begin.drr_creation_time);
1867		DO32(drr_begin.drr_type);
1868		DO32(drr_begin.drr_flags);
1869		DO64(drr_begin.drr_toguid);
1870		DO64(drr_begin.drr_fromguid);
1871		break;
1872	case DRR_OBJECT:
1873		DO64(drr_object.drr_object);
1874		DO32(drr_object.drr_type);
1875		DO32(drr_object.drr_bonustype);
1876		DO32(drr_object.drr_blksz);
1877		DO32(drr_object.drr_bonuslen);
1878		DO64(drr_object.drr_toguid);
1879		break;
1880	case DRR_FREEOBJECTS:
1881		DO64(drr_freeobjects.drr_firstobj);
1882		DO64(drr_freeobjects.drr_numobjs);
1883		DO64(drr_freeobjects.drr_toguid);
1884		break;
1885	case DRR_WRITE:
1886		DO64(drr_write.drr_object);
1887		DO32(drr_write.drr_type);
1888		DO64(drr_write.drr_offset);
1889		DO64(drr_write.drr_length);
1890		DO64(drr_write.drr_toguid);
1891		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
1892		DO64(drr_write.drr_key.ddk_prop);
1893		break;
1894	case DRR_WRITE_BYREF:
1895		DO64(drr_write_byref.drr_object);
1896		DO64(drr_write_byref.drr_offset);
1897		DO64(drr_write_byref.drr_length);
1898		DO64(drr_write_byref.drr_toguid);
1899		DO64(drr_write_byref.drr_refguid);
1900		DO64(drr_write_byref.drr_refobject);
1901		DO64(drr_write_byref.drr_refoffset);
1902		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref.
1903		    drr_key.ddk_cksum);
1904		DO64(drr_write_byref.drr_key.ddk_prop);
1905		break;
1906	case DRR_WRITE_EMBEDDED:
1907		DO64(drr_write_embedded.drr_object);
1908		DO64(drr_write_embedded.drr_offset);
1909		DO64(drr_write_embedded.drr_length);
1910		DO64(drr_write_embedded.drr_toguid);
1911		DO32(drr_write_embedded.drr_lsize);
1912		DO32(drr_write_embedded.drr_psize);
1913		break;
1914	case DRR_FREE:
1915		DO64(drr_free.drr_object);
1916		DO64(drr_free.drr_offset);
1917		DO64(drr_free.drr_length);
1918		DO64(drr_free.drr_toguid);
1919		break;
1920	case DRR_SPILL:
1921		DO64(drr_spill.drr_object);
1922		DO64(drr_spill.drr_length);
1923		DO64(drr_spill.drr_toguid);
1924		break;
1925	case DRR_END:
1926		DO64(drr_end.drr_toguid);
1927		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
1928		break;
1929	}
1930
1931	if (drr->drr_type != DRR_BEGIN) {
1932		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
1933	}
1934
1935#undef DO64
1936#undef DO32
1937}
1938
1939static inline uint8_t
1940deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1941{
1942	if (bonus_type == DMU_OT_SA) {
1943		return (1);
1944	} else {
1945		return (1 +
1946		    ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT));
1947	}
1948}
1949
1950static void
1951save_resume_state(struct receive_writer_arg *rwa,
1952    uint64_t object, uint64_t offset, dmu_tx_t *tx)
1953{
1954	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1955
1956	if (!rwa->resumable)
1957		return;
1958
1959	/*
1960	 * We use ds_resume_bytes[] != 0 to indicate that we need to
1961	 * update this on disk, so it must not be 0.
1962	 */
1963	ASSERT(rwa->bytes_read != 0);
1964
1965	/*
1966	 * We only resume from write records, which have a valid
1967	 * (non-meta-dnode) object number.
1968	 */
1969	ASSERT(object != 0);
1970
1971	/*
1972	 * For resuming to work correctly, we must receive records in order,
1973	 * sorted by object,offset.  This is checked by the callers, but
1974	 * assert it here for good measure.
1975	 */
1976	ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1977	ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1978	    offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1979	ASSERT3U(rwa->bytes_read, >=,
1980	    rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1981
1982	rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1983	rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1984	rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1985}
1986
1987static int
1988receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1989    void *data)
1990{
1991	dmu_object_info_t doi;
1992	dmu_tx_t *tx;
1993	uint64_t object;
1994	int err;
1995
1996	if (drro->drr_type == DMU_OT_NONE ||
1997	    !DMU_OT_IS_VALID(drro->drr_type) ||
1998	    !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1999	    drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
2000	    drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
2001	    P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
2002	    drro->drr_blksz < SPA_MINBLOCKSIZE ||
2003	    drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
2004	    drro->drr_bonuslen > DN_MAX_BONUSLEN) {
2005		return (SET_ERROR(EINVAL));
2006	}
2007
2008	err = dmu_object_info(rwa->os, drro->drr_object, &doi);
2009
2010	if (err != 0 && err != ENOENT)
2011		return (SET_ERROR(EINVAL));
2012	object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT;
2013
2014	/*
2015	 * If we are losing blkptrs or changing the block size this must
2016	 * be a new file instance.  We must clear out the previous file
2017	 * contents before we can change this type of metadata in the dnode.
2018	 */
2019	if (err == 0) {
2020		int nblkptr;
2021
2022		nblkptr = deduce_nblkptr(drro->drr_bonustype,
2023		    drro->drr_bonuslen);
2024
2025		if (drro->drr_blksz != doi.doi_data_block_size ||
2026		    nblkptr < doi.doi_nblkptr) {
2027			err = dmu_free_long_range(rwa->os, drro->drr_object,
2028			    0, DMU_OBJECT_END);
2029			if (err != 0)
2030				return (SET_ERROR(EINVAL));
2031		}
2032	}
2033
2034	tx = dmu_tx_create(rwa->os);
2035	dmu_tx_hold_bonus(tx, object);
2036	err = dmu_tx_assign(tx, TXG_WAIT);
2037	if (err != 0) {
2038		dmu_tx_abort(tx);
2039		return (err);
2040	}
2041
2042	if (object == DMU_NEW_OBJECT) {
2043		/* currently free, want to be allocated */
2044		err = dmu_object_claim(rwa->os, drro->drr_object,
2045		    drro->drr_type, drro->drr_blksz,
2046		    drro->drr_bonustype, drro->drr_bonuslen, tx);
2047	} else if (drro->drr_type != doi.doi_type ||
2048	    drro->drr_blksz != doi.doi_data_block_size ||
2049	    drro->drr_bonustype != doi.doi_bonus_type ||
2050	    drro->drr_bonuslen != doi.doi_bonus_size) {
2051		/* currently allocated, but with different properties */
2052		err = dmu_object_reclaim(rwa->os, drro->drr_object,
2053		    drro->drr_type, drro->drr_blksz,
2054		    drro->drr_bonustype, drro->drr_bonuslen, tx);
2055	}
2056	if (err != 0) {
2057		dmu_tx_commit(tx);
2058		return (SET_ERROR(EINVAL));
2059	}
2060
2061	dmu_object_set_checksum(rwa->os, drro->drr_object,
2062	    drro->drr_checksumtype, tx);
2063	dmu_object_set_compress(rwa->os, drro->drr_object,
2064	    drro->drr_compress, tx);
2065
2066	if (data != NULL) {
2067		dmu_buf_t *db;
2068
2069		VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db));
2070		dmu_buf_will_dirty(db, tx);
2071
2072		ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
2073		bcopy(data, db->db_data, drro->drr_bonuslen);
2074		if (rwa->byteswap) {
2075			dmu_object_byteswap_t byteswap =
2076			    DMU_OT_BYTESWAP(drro->drr_bonustype);
2077			dmu_ot_byteswap[byteswap].ob_func(db->db_data,
2078			    drro->drr_bonuslen);
2079		}
2080		dmu_buf_rele(db, FTAG);
2081	}
2082	dmu_tx_commit(tx);
2083
2084	return (0);
2085}
2086
2087/* ARGSUSED */
2088static int
2089receive_freeobjects(struct receive_writer_arg *rwa,
2090    struct drr_freeobjects *drrfo)
2091{
2092	uint64_t obj;
2093	int next_err = 0;
2094
2095	if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
2096		return (SET_ERROR(EINVAL));
2097
2098	for (obj = drrfo->drr_firstobj;
2099	    obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0;
2100	    next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
2101		int err;
2102
2103		if (dmu_object_info(rwa->os, obj, NULL) != 0)
2104			continue;
2105
2106		err = dmu_free_long_object(rwa->os, obj);
2107		if (err != 0)
2108			return (err);
2109	}
2110	if (next_err != ESRCH)
2111		return (next_err);
2112	return (0);
2113}
2114
2115static int
2116receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw,
2117    arc_buf_t *abuf)
2118{
2119	dmu_tx_t *tx;
2120	int err;
2121
2122	if (drrw->drr_offset + drrw->drr_length < drrw->drr_offset ||
2123	    !DMU_OT_IS_VALID(drrw->drr_type))
2124		return (SET_ERROR(EINVAL));
2125
2126	/*
2127	 * For resuming to work, records must be in increasing order
2128	 * by (object, offset).
2129	 */
2130	if (drrw->drr_object < rwa->last_object ||
2131	    (drrw->drr_object == rwa->last_object &&
2132	    drrw->drr_offset < rwa->last_offset)) {
2133		return (SET_ERROR(EINVAL));
2134	}
2135	rwa->last_object = drrw->drr_object;
2136	rwa->last_offset = drrw->drr_offset;
2137
2138	if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0)
2139		return (SET_ERROR(EINVAL));
2140
2141	tx = dmu_tx_create(rwa->os);
2142
2143	dmu_tx_hold_write(tx, drrw->drr_object,
2144	    drrw->drr_offset, drrw->drr_length);
2145	err = dmu_tx_assign(tx, TXG_WAIT);
2146	if (err != 0) {
2147		dmu_tx_abort(tx);
2148		return (err);
2149	}
2150	if (rwa->byteswap) {
2151		dmu_object_byteswap_t byteswap =
2152		    DMU_OT_BYTESWAP(drrw->drr_type);
2153		dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
2154		    drrw->drr_length);
2155	}
2156
2157	dmu_buf_t *bonus;
2158	if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0)
2159		return (SET_ERROR(EINVAL));
2160	dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx);
2161
2162	/*
2163	 * Note: If the receive fails, we want the resume stream to start
2164	 * with the same record that we last successfully received (as opposed
2165	 * to the next record), so that we can verify that we are
2166	 * resuming from the correct location.
2167	 */
2168	save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2169	dmu_tx_commit(tx);
2170	dmu_buf_rele(bonus, FTAG);
2171
2172	return (0);
2173}
2174
2175/*
2176 * Handle a DRR_WRITE_BYREF record.  This record is used in dedup'ed
2177 * streams to refer to a copy of the data that is already on the
2178 * system because it came in earlier in the stream.  This function
2179 * finds the earlier copy of the data, and uses that copy instead of
2180 * data from the stream to fulfill this write.
2181 */
2182static int
2183receive_write_byref(struct receive_writer_arg *rwa,
2184    struct drr_write_byref *drrwbr)
2185{
2186	dmu_tx_t *tx;
2187	int err;
2188	guid_map_entry_t gmesrch;
2189	guid_map_entry_t *gmep;
2190	avl_index_t where;
2191	objset_t *ref_os = NULL;
2192	dmu_buf_t *dbp;
2193
2194	if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset)
2195		return (SET_ERROR(EINVAL));
2196
2197	/*
2198	 * If the GUID of the referenced dataset is different from the
2199	 * GUID of the target dataset, find the referenced dataset.
2200	 */
2201	if (drrwbr->drr_toguid != drrwbr->drr_refguid) {
2202		gmesrch.guid = drrwbr->drr_refguid;
2203		if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch,
2204		    &where)) == NULL) {
2205			return (SET_ERROR(EINVAL));
2206		}
2207		if (dmu_objset_from_ds(gmep->gme_ds, &ref_os))
2208			return (SET_ERROR(EINVAL));
2209	} else {
2210		ref_os = rwa->os;
2211	}
2212
2213	err = dmu_buf_hold(ref_os, drrwbr->drr_refobject,
2214	    drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH);
2215	if (err != 0)
2216		return (err);
2217
2218	tx = dmu_tx_create(rwa->os);
2219
2220	dmu_tx_hold_write(tx, drrwbr->drr_object,
2221	    drrwbr->drr_offset, drrwbr->drr_length);
2222	err = dmu_tx_assign(tx, TXG_WAIT);
2223	if (err != 0) {
2224		dmu_tx_abort(tx);
2225		return (err);
2226	}
2227	dmu_write(rwa->os, drrwbr->drr_object,
2228	    drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx);
2229	dmu_buf_rele(dbp, FTAG);
2230
2231	/* See comment in restore_write. */
2232	save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx);
2233	dmu_tx_commit(tx);
2234	return (0);
2235}
2236
2237static int
2238receive_write_embedded(struct receive_writer_arg *rwa,
2239    struct drr_write_embedded *drrwe, void *data)
2240{
2241	dmu_tx_t *tx;
2242	int err;
2243
2244	if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2245		return (EINVAL);
2246
2247	if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2248		return (EINVAL);
2249
2250	if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2251		return (EINVAL);
2252	if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2253		return (EINVAL);
2254
2255	tx = dmu_tx_create(rwa->os);
2256
2257	dmu_tx_hold_write(tx, drrwe->drr_object,
2258	    drrwe->drr_offset, drrwe->drr_length);
2259	err = dmu_tx_assign(tx, TXG_WAIT);
2260	if (err != 0) {
2261		dmu_tx_abort(tx);
2262		return (err);
2263	}
2264
2265	dmu_write_embedded(rwa->os, drrwe->drr_object,
2266	    drrwe->drr_offset, data, drrwe->drr_etype,
2267	    drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2268	    rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2269
2270	/* See comment in restore_write. */
2271	save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2272	dmu_tx_commit(tx);
2273	return (0);
2274}
2275
2276static int
2277receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2278    void *data)
2279{
2280	dmu_tx_t *tx;
2281	dmu_buf_t *db, *db_spill;
2282	int err;
2283
2284	if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2285	    drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2286		return (SET_ERROR(EINVAL));
2287
2288	if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2289		return (SET_ERROR(EINVAL));
2290
2291	VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2292	if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) {
2293		dmu_buf_rele(db, FTAG);
2294		return (err);
2295	}
2296
2297	tx = dmu_tx_create(rwa->os);
2298
2299	dmu_tx_hold_spill(tx, db->db_object);
2300
2301	err = dmu_tx_assign(tx, TXG_WAIT);
2302	if (err != 0) {
2303		dmu_buf_rele(db, FTAG);
2304		dmu_buf_rele(db_spill, FTAG);
2305		dmu_tx_abort(tx);
2306		return (err);
2307	}
2308	dmu_buf_will_dirty(db_spill, tx);
2309
2310	if (db_spill->db_size < drrs->drr_length)
2311		VERIFY(0 == dbuf_spill_set_blksz(db_spill,
2312		    drrs->drr_length, tx));
2313	bcopy(data, db_spill->db_data, drrs->drr_length);
2314
2315	dmu_buf_rele(db, FTAG);
2316	dmu_buf_rele(db_spill, FTAG);
2317
2318	dmu_tx_commit(tx);
2319	return (0);
2320}
2321
2322/* ARGSUSED */
2323static int
2324receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2325{
2326	int err;
2327
2328	if (drrf->drr_length != -1ULL &&
2329	    drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2330		return (SET_ERROR(EINVAL));
2331
2332	if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2333		return (SET_ERROR(EINVAL));
2334
2335	err = dmu_free_long_range(rwa->os, drrf->drr_object,
2336	    drrf->drr_offset, drrf->drr_length);
2337
2338	return (err);
2339}
2340
2341/* used to destroy the drc_ds on error */
2342static void
2343dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2344{
2345	if (drc->drc_resumable) {
2346		/* wait for our resume state to be written to disk */
2347		txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0);
2348		dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
2349	} else {
2350		char name[MAXNAMELEN];
2351		dsl_dataset_name(drc->drc_ds, name);
2352		dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
2353		(void) dsl_destroy_head(name);
2354	}
2355}
2356
2357static void
2358receive_cksum(struct receive_arg *ra, int len, void *buf)
2359{
2360	if (ra->byteswap) {
2361		fletcher_4_incremental_byteswap(buf, len, &ra->cksum);
2362	} else {
2363		fletcher_4_incremental_native(buf, len, &ra->cksum);
2364	}
2365}
2366
2367/*
2368 * Read the payload into a buffer of size len, and update the current record's
2369 * payload field.
2370 * Allocate ra->next_rrd and read the next record's header into
2371 * ra->next_rrd->header.
2372 * Verify checksum of payload and next record.
2373 */
2374static int
2375receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf)
2376{
2377	int err;
2378
2379	if (len != 0) {
2380		ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2381		err = receive_read(ra, len, buf);
2382		if (err != 0)
2383			return (err);
2384		receive_cksum(ra, len, buf);
2385
2386		/* note: rrd is NULL when reading the begin record's payload */
2387		if (ra->rrd != NULL) {
2388			ra->rrd->payload = buf;
2389			ra->rrd->payload_size = len;
2390			ra->rrd->bytes_read = ra->bytes_read;
2391		}
2392	}
2393
2394	ra->prev_cksum = ra->cksum;
2395
2396	ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
2397	err = receive_read(ra, sizeof (ra->next_rrd->header),
2398	    &ra->next_rrd->header);
2399	ra->next_rrd->bytes_read = ra->bytes_read;
2400	if (err != 0) {
2401		kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2402		ra->next_rrd = NULL;
2403		return (err);
2404	}
2405	if (ra->next_rrd->header.drr_type == DRR_BEGIN) {
2406		kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2407		ra->next_rrd = NULL;
2408		return (SET_ERROR(EINVAL));
2409	}
2410
2411	/*
2412	 * Note: checksum is of everything up to but not including the
2413	 * checksum itself.
2414	 */
2415	ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2416	    ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2417	receive_cksum(ra,
2418	    offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2419	    &ra->next_rrd->header);
2420
2421	zio_cksum_t cksum_orig =
2422	    ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
2423	zio_cksum_t *cksump =
2424	    &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
2425
2426	if (ra->byteswap)
2427		byteswap_record(&ra->next_rrd->header);
2428
2429	if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2430	    !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) {
2431		kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2432		ra->next_rrd = NULL;
2433		return (SET_ERROR(ECKSUM));
2434	}
2435
2436	receive_cksum(ra, sizeof (cksum_orig), &cksum_orig);
2437
2438	return (0);
2439}
2440
2441static void
2442objlist_create(struct objlist *list)
2443{
2444	list_create(&list->list, sizeof (struct receive_objnode),
2445	    offsetof(struct receive_objnode, node));
2446	list->last_lookup = 0;
2447}
2448
2449static void
2450objlist_destroy(struct objlist *list)
2451{
2452	for (struct receive_objnode *n = list_remove_head(&list->list);
2453	    n != NULL; n = list_remove_head(&list->list)) {
2454		kmem_free(n, sizeof (*n));
2455	}
2456	list_destroy(&list->list);
2457}
2458
2459/*
2460 * This function looks through the objlist to see if the specified object number
2461 * is contained in the objlist.  In the process, it will remove all object
2462 * numbers in the list that are smaller than the specified object number.  Thus,
2463 * any lookup of an object number smaller than a previously looked up object
2464 * number will always return false; therefore, all lookups should be done in
2465 * ascending order.
2466 */
2467static boolean_t
2468objlist_exists(struct objlist *list, uint64_t object)
2469{
2470	struct receive_objnode *node = list_head(&list->list);
2471	ASSERT3U(object, >=, list->last_lookup);
2472	list->last_lookup = object;
2473	while (node != NULL && node->object < object) {
2474		VERIFY3P(node, ==, list_remove_head(&list->list));
2475		kmem_free(node, sizeof (*node));
2476		node = list_head(&list->list);
2477	}
2478	return (node != NULL && node->object == object);
2479}
2480
2481/*
2482 * The objlist is a list of object numbers stored in ascending order.  However,
2483 * the insertion of new object numbers does not seek out the correct location to
2484 * store a new object number; instead, it appends it to the list for simplicity.
2485 * Thus, any users must take care to only insert new object numbers in ascending
2486 * order.
2487 */
2488static void
2489objlist_insert(struct objlist *list, uint64_t object)
2490{
2491	struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP);
2492	node->object = object;
2493#ifdef ZFS_DEBUG
2494	struct receive_objnode *last_object = list_tail(&list->list);
2495	uint64_t last_objnum = (last_object != NULL ? last_object->object : 0);
2496	ASSERT3U(node->object, >, last_objnum);
2497#endif
2498	list_insert_tail(&list->list, node);
2499}
2500
2501/*
2502 * Issue the prefetch reads for any necessary indirect blocks.
2503 *
2504 * We use the object ignore list to tell us whether or not to issue prefetches
2505 * for a given object.  We do this for both correctness (in case the blocksize
2506 * of an object has changed) and performance (if the object doesn't exist, don't
2507 * needlessly try to issue prefetches).  We also trim the list as we go through
2508 * the stream to prevent it from growing to an unbounded size.
2509 *
2510 * The object numbers within will always be in sorted order, and any write
2511 * records we see will also be in sorted order, but they're not sorted with
2512 * respect to each other (i.e. we can get several object records before
2513 * receiving each object's write records).  As a result, once we've reached a
2514 * given object number, we can safely remove any reference to lower object
2515 * numbers in the ignore list. In practice, we receive up to 32 object records
2516 * before receiving write records, so the list can have up to 32 nodes in it.
2517 */
2518/* ARGSUSED */
2519static void
2520receive_read_prefetch(struct receive_arg *ra,
2521    uint64_t object, uint64_t offset, uint64_t length)
2522{
2523	if (!objlist_exists(&ra->ignore_objlist, object)) {
2524		dmu_prefetch(ra->os, object, 1, offset, length,
2525		    ZIO_PRIORITY_SYNC_READ);
2526	}
2527}
2528
2529/*
2530 * Read records off the stream, issuing any necessary prefetches.
2531 */
2532static int
2533receive_read_record(struct receive_arg *ra)
2534{
2535	int err;
2536
2537	switch (ra->rrd->header.drr_type) {
2538	case DRR_OBJECT:
2539	{
2540		struct drr_object *drro = &ra->rrd->header.drr_u.drr_object;
2541		uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8);
2542		void *buf = kmem_zalloc(size, KM_SLEEP);
2543		dmu_object_info_t doi;
2544		err = receive_read_payload_and_next_header(ra, size, buf);
2545		if (err != 0) {
2546			kmem_free(buf, size);
2547			return (err);
2548		}
2549		err = dmu_object_info(ra->os, drro->drr_object, &doi);
2550		/*
2551		 * See receive_read_prefetch for an explanation why we're
2552		 * storing this object in the ignore_obj_list.
2553		 */
2554		if (err == ENOENT ||
2555		    (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2556			objlist_insert(&ra->ignore_objlist, drro->drr_object);
2557			err = 0;
2558		}
2559		return (err);
2560	}
2561	case DRR_FREEOBJECTS:
2562	{
2563		err = receive_read_payload_and_next_header(ra, 0, NULL);
2564		return (err);
2565	}
2566	case DRR_WRITE:
2567	{
2568		struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write;
2569		arc_buf_t *abuf = arc_loan_buf(dmu_objset_spa(ra->os),
2570		    drrw->drr_length);
2571
2572		err = receive_read_payload_and_next_header(ra,
2573		    drrw->drr_length, abuf->b_data);
2574		if (err != 0) {
2575			dmu_return_arcbuf(abuf);
2576			return (err);
2577		}
2578		ra->rrd->write_buf = abuf;
2579		receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset,
2580		    drrw->drr_length);
2581		return (err);
2582	}
2583	case DRR_WRITE_BYREF:
2584	{
2585		struct drr_write_byref *drrwb =
2586		    &ra->rrd->header.drr_u.drr_write_byref;
2587		err = receive_read_payload_and_next_header(ra, 0, NULL);
2588		receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset,
2589		    drrwb->drr_length);
2590		return (err);
2591	}
2592	case DRR_WRITE_EMBEDDED:
2593	{
2594		struct drr_write_embedded *drrwe =
2595		    &ra->rrd->header.drr_u.drr_write_embedded;
2596		uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2597		void *buf = kmem_zalloc(size, KM_SLEEP);
2598
2599		err = receive_read_payload_and_next_header(ra, size, buf);
2600		if (err != 0) {
2601			kmem_free(buf, size);
2602			return (err);
2603		}
2604
2605		receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset,
2606		    drrwe->drr_length);
2607		return (err);
2608	}
2609	case DRR_FREE:
2610	{
2611		/*
2612		 * It might be beneficial to prefetch indirect blocks here, but
2613		 * we don't really have the data to decide for sure.
2614		 */
2615		err = receive_read_payload_and_next_header(ra, 0, NULL);
2616		return (err);
2617	}
2618	case DRR_END:
2619	{
2620		struct drr_end *drre = &ra->rrd->header.drr_u.drr_end;
2621		if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum))
2622			return (SET_ERROR(ECKSUM));
2623		return (0);
2624	}
2625	case DRR_SPILL:
2626	{
2627		struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill;
2628		void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP);
2629		err = receive_read_payload_and_next_header(ra, drrs->drr_length,
2630		    buf);
2631		if (err != 0)
2632			kmem_free(buf, drrs->drr_length);
2633		return (err);
2634	}
2635	default:
2636		return (SET_ERROR(EINVAL));
2637	}
2638}
2639
2640/*
2641 * Commit the records to the pool.
2642 */
2643static int
2644receive_process_record(struct receive_writer_arg *rwa,
2645    struct receive_record_arg *rrd)
2646{
2647	int err;
2648
2649	/* Processing in order, therefore bytes_read should be increasing. */
2650	ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
2651	rwa->bytes_read = rrd->bytes_read;
2652
2653	switch (rrd->header.drr_type) {
2654	case DRR_OBJECT:
2655	{
2656		struct drr_object *drro = &rrd->header.drr_u.drr_object;
2657		err = receive_object(rwa, drro, rrd->payload);
2658		kmem_free(rrd->payload, rrd->payload_size);
2659		rrd->payload = NULL;
2660		return (err);
2661	}
2662	case DRR_FREEOBJECTS:
2663	{
2664		struct drr_freeobjects *drrfo =
2665		    &rrd->header.drr_u.drr_freeobjects;
2666		return (receive_freeobjects(rwa, drrfo));
2667	}
2668	case DRR_WRITE:
2669	{
2670		struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2671		err = receive_write(rwa, drrw, rrd->write_buf);
2672		/* if receive_write() is successful, it consumes the arc_buf */
2673		if (err != 0)
2674			dmu_return_arcbuf(rrd->write_buf);
2675		rrd->write_buf = NULL;
2676		rrd->payload = NULL;
2677		return (err);
2678	}
2679	case DRR_WRITE_BYREF:
2680	{
2681		struct drr_write_byref *drrwbr =
2682		    &rrd->header.drr_u.drr_write_byref;
2683		return (receive_write_byref(rwa, drrwbr));
2684	}
2685	case DRR_WRITE_EMBEDDED:
2686	{
2687		struct drr_write_embedded *drrwe =
2688		    &rrd->header.drr_u.drr_write_embedded;
2689		err = receive_write_embedded(rwa, drrwe, rrd->payload);
2690		kmem_free(rrd->payload, rrd->payload_size);
2691		rrd->payload = NULL;
2692		return (err);
2693	}
2694	case DRR_FREE:
2695	{
2696		struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2697		return (receive_free(rwa, drrf));
2698	}
2699	case DRR_SPILL:
2700	{
2701		struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2702		err = receive_spill(rwa, drrs, rrd->payload);
2703		kmem_free(rrd->payload, rrd->payload_size);
2704		rrd->payload = NULL;
2705		return (err);
2706	}
2707	default:
2708		return (SET_ERROR(EINVAL));
2709	}
2710}
2711
2712/*
2713 * dmu_recv_stream's worker thread; pull records off the queue, and then call
2714 * receive_process_record  When we're done, signal the main thread and exit.
2715 */
2716static void
2717receive_writer_thread(void *arg)
2718{
2719	struct receive_writer_arg *rwa = arg;
2720	struct receive_record_arg *rrd;
2721	for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
2722	    rrd = bqueue_dequeue(&rwa->q)) {
2723		/*
2724		 * If there's an error, the main thread will stop putting things
2725		 * on the queue, but we need to clear everything in it before we
2726		 * can exit.
2727		 */
2728		if (rwa->err == 0) {
2729			rwa->err = receive_process_record(rwa, rrd);
2730		} else if (rrd->write_buf != NULL) {
2731			dmu_return_arcbuf(rrd->write_buf);
2732			rrd->write_buf = NULL;
2733			rrd->payload = NULL;
2734		} else if (rrd->payload != NULL) {
2735			kmem_free(rrd->payload, rrd->payload_size);
2736			rrd->payload = NULL;
2737		}
2738		kmem_free(rrd, sizeof (*rrd));
2739	}
2740	kmem_free(rrd, sizeof (*rrd));
2741	mutex_enter(&rwa->mutex);
2742	rwa->done = B_TRUE;
2743	cv_signal(&rwa->cv);
2744	mutex_exit(&rwa->mutex);
2745	thread_exit();
2746}
2747
2748static int
2749resume_check(struct receive_arg *ra, nvlist_t *begin_nvl)
2750{
2751	uint64_t val;
2752	objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset;
2753	uint64_t dsobj = dmu_objset_id(ra->os);
2754	uint64_t resume_obj, resume_off;
2755
2756	if (nvlist_lookup_uint64(begin_nvl,
2757	    "resume_object", &resume_obj) != 0 ||
2758	    nvlist_lookup_uint64(begin_nvl,
2759	    "resume_offset", &resume_off) != 0) {
2760		return (SET_ERROR(EINVAL));
2761	}
2762	VERIFY0(zap_lookup(mos, dsobj,
2763	    DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
2764	if (resume_obj != val)
2765		return (SET_ERROR(EINVAL));
2766	VERIFY0(zap_lookup(mos, dsobj,
2767	    DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
2768	if (resume_off != val)
2769		return (SET_ERROR(EINVAL));
2770
2771	return (0);
2772}
2773
2774/*
2775 * Read in the stream's records, one by one, and apply them to the pool.  There
2776 * are two threads involved; the thread that calls this function will spin up a
2777 * worker thread, read the records off the stream one by one, and issue
2778 * prefetches for any necessary indirect blocks.  It will then push the records
2779 * onto an internal blocking queue.  The worker thread will pull the records off
2780 * the queue, and actually write the data into the DMU.  This way, the worker
2781 * thread doesn't have to wait for reads to complete, since everything it needs
2782 * (the indirect blocks) will be prefetched.
2783 *
2784 * NB: callers *must* call dmu_recv_end() if this succeeds.
2785 */
2786int
2787dmu_recv_stream(dmu_recv_cookie_t *drc, struct file *fp, offset_t *voffp,
2788    int cleanup_fd, uint64_t *action_handlep)
2789{
2790	int err = 0;
2791	struct receive_arg ra = { 0 };
2792	struct receive_writer_arg rwa = { 0 };
2793	int featureflags;
2794	nvlist_t *begin_nvl = NULL;
2795
2796	ra.byteswap = drc->drc_byteswap;
2797	ra.cksum = drc->drc_cksum;
2798	ra.td = curthread;
2799	ra.fp = fp;
2800	ra.voff = *voffp;
2801
2802	if (dsl_dataset_is_zapified(drc->drc_ds)) {
2803		(void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
2804		    drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
2805		    sizeof (ra.bytes_read), 1, &ra.bytes_read);
2806	}
2807
2808	objlist_create(&ra.ignore_objlist);
2809
2810	/* these were verified in dmu_recv_begin */
2811	ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
2812	    DMU_SUBSTREAM);
2813	ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
2814
2815	/*
2816	 * Open the objset we are modifying.
2817	 */
2818	VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os));
2819
2820	ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
2821
2822	featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
2823
2824	/* if this stream is dedup'ed, set up the avl tree for guid mapping */
2825	if (featureflags & DMU_BACKUP_FEATURE_DEDUP) {
2826		minor_t minor;
2827
2828		if (cleanup_fd == -1) {
2829			ra.err = SET_ERROR(EBADF);
2830			goto out;
2831		}
2832		ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor);
2833		if (ra.err != 0) {
2834			cleanup_fd = -1;
2835			goto out;
2836		}
2837
2838		if (*action_handlep == 0) {
2839			rwa.guid_to_ds_map =
2840			    kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
2841			avl_create(rwa.guid_to_ds_map, guid_compare,
2842			    sizeof (guid_map_entry_t),
2843			    offsetof(guid_map_entry_t, avlnode));
2844			err = zfs_onexit_add_cb(minor,
2845			    free_guid_map_onexit, rwa.guid_to_ds_map,
2846			    action_handlep);
2847			if (ra.err != 0)
2848				goto out;
2849		} else {
2850			err = zfs_onexit_cb_data(minor, *action_handlep,
2851			    (void **)&rwa.guid_to_ds_map);
2852			if (ra.err != 0)
2853				goto out;
2854		}
2855
2856		drc->drc_guid_to_ds_map = rwa.guid_to_ds_map;
2857	}
2858
2859	uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
2860	void *payload = NULL;
2861	if (payloadlen != 0)
2862		payload = kmem_alloc(payloadlen, KM_SLEEP);
2863
2864	err = receive_read_payload_and_next_header(&ra, payloadlen, payload);
2865	if (err != 0) {
2866		if (payloadlen != 0)
2867			kmem_free(payload, payloadlen);
2868		goto out;
2869	}
2870	if (payloadlen != 0) {
2871		err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP);
2872		kmem_free(payload, payloadlen);
2873		if (err != 0)
2874			goto out;
2875	}
2876
2877	if (featureflags & DMU_BACKUP_FEATURE_RESUMING) {
2878		err = resume_check(&ra, begin_nvl);
2879		if (err != 0)
2880			goto out;
2881	}
2882
2883	(void) bqueue_init(&rwa.q, zfs_recv_queue_length,
2884	    offsetof(struct receive_record_arg, node));
2885	cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL);
2886	mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL);
2887	rwa.os = ra.os;
2888	rwa.byteswap = drc->drc_byteswap;
2889	rwa.resumable = drc->drc_resumable;
2890
2891	(void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, &p0,
2892	    TS_RUN, minclsyspri);
2893	/*
2894	 * We're reading rwa.err without locks, which is safe since we are the
2895	 * only reader, and the worker thread is the only writer.  It's ok if we
2896	 * miss a write for an iteration or two of the loop, since the writer
2897	 * thread will keep freeing records we send it until we send it an eos
2898	 * marker.
2899	 *
2900	 * We can leave this loop in 3 ways:  First, if rwa.err is
2901	 * non-zero.  In that case, the writer thread will free the rrd we just
2902	 * pushed.  Second, if  we're interrupted; in that case, either it's the
2903	 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd
2904	 * has been handed off to the writer thread who will free it.  Finally,
2905	 * if receive_read_record fails or we're at the end of the stream, then
2906	 * we free ra.rrd and exit.
2907	 */
2908	while (rwa.err == 0) {
2909		if (issig(JUSTLOOKING) && issig(FORREAL)) {
2910			err = SET_ERROR(EINTR);
2911			break;
2912		}
2913
2914		ASSERT3P(ra.rrd, ==, NULL);
2915		ra.rrd = ra.next_rrd;
2916		ra.next_rrd = NULL;
2917		/* Allocates and loads header into ra.next_rrd */
2918		err = receive_read_record(&ra);
2919
2920		if (ra.rrd->header.drr_type == DRR_END || err != 0) {
2921			kmem_free(ra.rrd, sizeof (*ra.rrd));
2922			ra.rrd = NULL;
2923			break;
2924		}
2925
2926		bqueue_enqueue(&rwa.q, ra.rrd,
2927		    sizeof (struct receive_record_arg) + ra.rrd->payload_size);
2928		ra.rrd = NULL;
2929	}
2930	if (ra.next_rrd == NULL)
2931		ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP);
2932	ra.next_rrd->eos_marker = B_TRUE;
2933	bqueue_enqueue(&rwa.q, ra.next_rrd, 1);
2934
2935	mutex_enter(&rwa.mutex);
2936	while (!rwa.done) {
2937		cv_wait(&rwa.cv, &rwa.mutex);
2938	}
2939	mutex_exit(&rwa.mutex);
2940
2941	cv_destroy(&rwa.cv);
2942	mutex_destroy(&rwa.mutex);
2943	bqueue_destroy(&rwa.q);
2944	if (err == 0)
2945		err = rwa.err;
2946
2947out:
2948	nvlist_free(begin_nvl);
2949	if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1))
2950		zfs_onexit_fd_rele(cleanup_fd);
2951
2952	if (err != 0) {
2953		/*
2954		 * Clean up references. If receive is not resumable,
2955		 * destroy what we created, so we don't leave it in
2956		 * the inconsistent state.
2957		 */
2958		dmu_recv_cleanup_ds(drc);
2959	}
2960
2961	*voffp = ra.voff;
2962	objlist_destroy(&ra.ignore_objlist);
2963	return (err);
2964}
2965
2966static int
2967dmu_recv_end_check(void *arg, dmu_tx_t *tx)
2968{
2969	dmu_recv_cookie_t *drc = arg;
2970	dsl_pool_t *dp = dmu_tx_pool(tx);
2971	int error;
2972
2973	ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
2974
2975	if (!drc->drc_newfs) {
2976		dsl_dataset_t *origin_head;
2977
2978		error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
2979		if (error != 0)
2980			return (error);
2981		if (drc->drc_force) {
2982			/*
2983			 * We will destroy any snapshots in tofs (i.e. before
2984			 * origin_head) that are after the origin (which is
2985			 * the snap before drc_ds, because drc_ds can not
2986			 * have any snaps of its own).
2987			 */
2988			uint64_t obj;
2989
2990			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
2991			while (obj !=
2992			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
2993				dsl_dataset_t *snap;
2994				error = dsl_dataset_hold_obj(dp, obj, FTAG,
2995				    &snap);
2996				if (error != 0)
2997					break;
2998				if (snap->ds_dir != origin_head->ds_dir)
2999					error = SET_ERROR(EINVAL);
3000				if (error == 0)  {
3001					error = dsl_destroy_snapshot_check_impl(
3002					    snap, B_FALSE);
3003				}
3004				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3005				dsl_dataset_rele(snap, FTAG);
3006				if (error != 0)
3007					break;
3008			}
3009			if (error != 0) {
3010				dsl_dataset_rele(origin_head, FTAG);
3011				return (error);
3012			}
3013		}
3014		error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3015		    origin_head, drc->drc_force, drc->drc_owner, tx);
3016		if (error != 0) {
3017			dsl_dataset_rele(origin_head, FTAG);
3018			return (error);
3019		}
3020		error = dsl_dataset_snapshot_check_impl(origin_head,
3021		    drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
3022		dsl_dataset_rele(origin_head, FTAG);
3023		if (error != 0)
3024			return (error);
3025
3026		error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3027	} else {
3028		error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
3029		    drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
3030	}
3031	return (error);
3032}
3033
3034static void
3035dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3036{
3037	dmu_recv_cookie_t *drc = arg;
3038	dsl_pool_t *dp = dmu_tx_pool(tx);
3039
3040	spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3041	    tx, "snap=%s", drc->drc_tosnap);
3042
3043	if (!drc->drc_newfs) {
3044		dsl_dataset_t *origin_head;
3045
3046		VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3047		    &origin_head));
3048
3049		if (drc->drc_force) {
3050			/*
3051			 * Destroy any snapshots of drc_tofs (origin_head)
3052			 * after the origin (the snap before drc_ds).
3053			 */
3054			uint64_t obj;
3055
3056			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3057			while (obj !=
3058			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3059				dsl_dataset_t *snap;
3060				VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3061				    &snap));
3062				ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3063				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3064				dsl_destroy_snapshot_sync_impl(snap,
3065				    B_FALSE, tx);
3066				dsl_dataset_rele(snap, FTAG);
3067			}
3068		}
3069		VERIFY3P(drc->drc_ds->ds_prev, ==,
3070		    origin_head->ds_prev);
3071
3072		dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3073		    origin_head, tx);
3074		dsl_dataset_snapshot_sync_impl(origin_head,
3075		    drc->drc_tosnap, tx);
3076
3077		/* set snapshot's creation time and guid */
3078		dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3079		dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3080		    drc->drc_drrb->drr_creation_time;
3081		dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3082		    drc->drc_drrb->drr_toguid;
3083		dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3084		    ~DS_FLAG_INCONSISTENT;
3085
3086		dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3087		dsl_dataset_phys(origin_head)->ds_flags &=
3088		    ~DS_FLAG_INCONSISTENT;
3089
3090		dsl_dataset_rele(origin_head, FTAG);
3091		dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3092
3093		if (drc->drc_owner != NULL)
3094			VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3095	} else {
3096		dsl_dataset_t *ds = drc->drc_ds;
3097
3098		dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3099
3100		/* set snapshot's creation time and guid */
3101		dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3102		dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3103		    drc->drc_drrb->drr_creation_time;
3104		dsl_dataset_phys(ds->ds_prev)->ds_guid =
3105		    drc->drc_drrb->drr_toguid;
3106		dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3107		    ~DS_FLAG_INCONSISTENT;
3108
3109		dmu_buf_will_dirty(ds->ds_dbuf, tx);
3110		dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3111		if (dsl_dataset_has_resume_receive_state(ds)) {
3112			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3113			    DS_FIELD_RESUME_FROMGUID, tx);
3114			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3115			    DS_FIELD_RESUME_OBJECT, tx);
3116			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3117			    DS_FIELD_RESUME_OFFSET, tx);
3118			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3119			    DS_FIELD_RESUME_BYTES, tx);
3120			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3121			    DS_FIELD_RESUME_TOGUID, tx);
3122			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3123			    DS_FIELD_RESUME_TONAME, tx);
3124		}
3125	}
3126	drc->drc_newsnapobj = dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3127	/*
3128	 * Release the hold from dmu_recv_begin.  This must be done before
3129	 * we return to open context, so that when we free the dataset's dnode,
3130	 * we can evict its bonus buffer.
3131	 */
3132	dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
3133	drc->drc_ds = NULL;
3134}
3135
3136static int
3137add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj)
3138{
3139	dsl_pool_t *dp;
3140	dsl_dataset_t *snapds;
3141	guid_map_entry_t *gmep;
3142	int err;
3143
3144	ASSERT(guid_map != NULL);
3145
3146	err = dsl_pool_hold(name, FTAG, &dp);
3147	if (err != 0)
3148		return (err);
3149	gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP);
3150	err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds);
3151	if (err == 0) {
3152		gmep->guid = dsl_dataset_phys(snapds)->ds_guid;
3153		gmep->gme_ds = snapds;
3154		avl_add(guid_map, gmep);
3155		dsl_dataset_long_hold(snapds, gmep);
3156	} else
3157		kmem_free(gmep, sizeof (*gmep));
3158
3159	dsl_pool_rele(dp, FTAG);
3160	return (err);
3161}
3162
3163static int dmu_recv_end_modified_blocks = 3;
3164
3165static int
3166dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3167{
3168	int error;
3169	char name[MAXNAMELEN];
3170
3171#ifdef _KERNEL
3172	/*
3173	 * We will be destroying the ds; make sure its origin is unmounted if
3174	 * necessary.
3175	 */
3176	dsl_dataset_name(drc->drc_ds, name);
3177	zfs_destroy_unmount_origin(name);
3178#endif
3179
3180	error = dsl_sync_task(drc->drc_tofs,
3181	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3182	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL);
3183
3184	if (error != 0)
3185		dmu_recv_cleanup_ds(drc);
3186	return (error);
3187}
3188
3189static int
3190dmu_recv_new_end(dmu_recv_cookie_t *drc)
3191{
3192	int error;
3193
3194	error = dsl_sync_task(drc->drc_tofs,
3195	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3196	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL);
3197
3198	if (error != 0) {
3199		dmu_recv_cleanup_ds(drc);
3200	} else if (drc->drc_guid_to_ds_map != NULL) {
3201		(void) add_ds_to_guidmap(drc->drc_tofs,
3202		    drc->drc_guid_to_ds_map,
3203		    drc->drc_newsnapobj);
3204	}
3205	return (error);
3206}
3207
3208int
3209dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3210{
3211	drc->drc_owner = owner;
3212
3213	if (drc->drc_newfs)
3214		return (dmu_recv_new_end(drc));
3215	else
3216		return (dmu_recv_existing_end(drc));
3217}
3218
3219/*
3220 * Return TRUE if this objset is currently being received into.
3221 */
3222boolean_t
3223dmu_objset_is_receiving(objset_t *os)
3224{
3225	return (os->os_dsl_dataset != NULL &&
3226	    os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3227}
3228