dmu.c revision 307266
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24 */
25/* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */
26/* Copyright (c) 2013, Joyent, Inc. All rights reserved. */
27/* Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved. */
28
29#include <sys/dmu.h>
30#include <sys/dmu_impl.h>
31#include <sys/dmu_tx.h>
32#include <sys/dbuf.h>
33#include <sys/dnode.h>
34#include <sys/zfs_context.h>
35#include <sys/dmu_objset.h>
36#include <sys/dmu_traverse.h>
37#include <sys/dsl_dataset.h>
38#include <sys/dsl_dir.h>
39#include <sys/dsl_pool.h>
40#include <sys/dsl_synctask.h>
41#include <sys/dsl_prop.h>
42#include <sys/dmu_zfetch.h>
43#include <sys/zfs_ioctl.h>
44#include <sys/zap.h>
45#include <sys/zio_checksum.h>
46#include <sys/zio_compress.h>
47#include <sys/sa.h>
48#include <sys/zfeature.h>
49#ifdef _KERNEL
50#include <sys/vm.h>
51#include <sys/zfs_znode.h>
52#endif
53
54/*
55 * Enable/disable nopwrite feature.
56 */
57int zfs_nopwrite_enabled = 1;
58SYSCTL_DECL(_vfs_zfs);
59TUNABLE_INT("vfs.zfs.nopwrite_enabled", &zfs_nopwrite_enabled);
60SYSCTL_INT(_vfs_zfs, OID_AUTO, nopwrite_enabled, CTLFLAG_RDTUN,
61    &zfs_nopwrite_enabled, 0, "Enable nopwrite feature");
62
63const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
64	{	DMU_BSWAP_UINT8,	TRUE,	"unallocated"		},
65	{	DMU_BSWAP_ZAP,		TRUE,	"object directory"	},
66	{	DMU_BSWAP_UINT64,	TRUE,	"object array"		},
67	{	DMU_BSWAP_UINT8,	TRUE,	"packed nvlist"		},
68	{	DMU_BSWAP_UINT64,	TRUE,	"packed nvlist size"	},
69	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj"			},
70	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj header"		},
71	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map header"	},
72	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map"		},
73	{	DMU_BSWAP_UINT64,	TRUE,	"ZIL intent log"	},
74	{	DMU_BSWAP_DNODE,	TRUE,	"DMU dnode"		},
75	{	DMU_BSWAP_OBJSET,	TRUE,	"DMU objset"		},
76	{	DMU_BSWAP_UINT64,	TRUE,	"DSL directory"		},
77	{	DMU_BSWAP_ZAP,		TRUE,	"DSL directory child map"},
78	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset snap map"	},
79	{	DMU_BSWAP_ZAP,		TRUE,	"DSL props"		},
80	{	DMU_BSWAP_UINT64,	TRUE,	"DSL dataset"		},
81	{	DMU_BSWAP_ZNODE,	TRUE,	"ZFS znode"		},
82	{	DMU_BSWAP_OLDACL,	TRUE,	"ZFS V0 ACL"		},
83	{	DMU_BSWAP_UINT8,	FALSE,	"ZFS plain file"	},
84	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS directory"		},
85	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS master node"	},
86	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS delete queue"	},
87	{	DMU_BSWAP_UINT8,	FALSE,	"zvol object"		},
88	{	DMU_BSWAP_ZAP,		TRUE,	"zvol prop"		},
89	{	DMU_BSWAP_UINT8,	FALSE,	"other uint8[]"		},
90	{	DMU_BSWAP_UINT64,	FALSE,	"other uint64[]"	},
91	{	DMU_BSWAP_ZAP,		TRUE,	"other ZAP"		},
92	{	DMU_BSWAP_ZAP,		TRUE,	"persistent error log"	},
93	{	DMU_BSWAP_UINT8,	TRUE,	"SPA history"		},
94	{	DMU_BSWAP_UINT64,	TRUE,	"SPA history offsets"	},
95	{	DMU_BSWAP_ZAP,		TRUE,	"Pool properties"	},
96	{	DMU_BSWAP_ZAP,		TRUE,	"DSL permissions"	},
97	{	DMU_BSWAP_ACL,		TRUE,	"ZFS ACL"		},
98	{	DMU_BSWAP_UINT8,	TRUE,	"ZFS SYSACL"		},
99	{	DMU_BSWAP_UINT8,	TRUE,	"FUID table"		},
100	{	DMU_BSWAP_UINT64,	TRUE,	"FUID table size"	},
101	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset next clones"},
102	{	DMU_BSWAP_ZAP,		TRUE,	"scan work queue"	},
103	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group used"	},
104	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group quota"	},
105	{	DMU_BSWAP_ZAP,		TRUE,	"snapshot refcount tags"},
106	{	DMU_BSWAP_ZAP,		TRUE,	"DDT ZAP algorithm"	},
107	{	DMU_BSWAP_ZAP,		TRUE,	"DDT statistics"	},
108	{	DMU_BSWAP_UINT8,	TRUE,	"System attributes"	},
109	{	DMU_BSWAP_ZAP,		TRUE,	"SA master node"	},
110	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr registration"	},
111	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr layouts"	},
112	{	DMU_BSWAP_ZAP,		TRUE,	"scan translations"	},
113	{	DMU_BSWAP_UINT8,	FALSE,	"deduplicated block"	},
114	{	DMU_BSWAP_ZAP,		TRUE,	"DSL deadlist map"	},
115	{	DMU_BSWAP_UINT64,	TRUE,	"DSL deadlist map hdr"	},
116	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dir clones"	},
117	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj subobj"		}
118};
119
120const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
121	{	byteswap_uint8_array,	"uint8"		},
122	{	byteswap_uint16_array,	"uint16"	},
123	{	byteswap_uint32_array,	"uint32"	},
124	{	byteswap_uint64_array,	"uint64"	},
125	{	zap_byteswap,		"zap"		},
126	{	dnode_buf_byteswap,	"dnode"		},
127	{	dmu_objset_byteswap,	"objset"	},
128	{	zfs_znode_byteswap,	"znode"		},
129	{	zfs_oldacl_byteswap,	"oldacl"	},
130	{	zfs_acl_byteswap,	"acl"		}
131};
132
133int
134dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
135    void *tag, dmu_buf_t **dbp)
136{
137	dnode_t *dn;
138	uint64_t blkid;
139	dmu_buf_impl_t *db;
140	int err;
141
142	err = dnode_hold(os, object, FTAG, &dn);
143	if (err)
144		return (err);
145	blkid = dbuf_whichblock(dn, 0, offset);
146	rw_enter(&dn->dn_struct_rwlock, RW_READER);
147	db = dbuf_hold(dn, blkid, tag);
148	rw_exit(&dn->dn_struct_rwlock);
149	dnode_rele(dn, FTAG);
150
151	if (db == NULL) {
152		*dbp = NULL;
153		return (SET_ERROR(EIO));
154	}
155
156	*dbp = &db->db;
157	return (err);
158}
159
160int
161dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
162    void *tag, dmu_buf_t **dbp, int flags)
163{
164	int err;
165	int db_flags = DB_RF_CANFAIL;
166
167	if (flags & DMU_READ_NO_PREFETCH)
168		db_flags |= DB_RF_NOPREFETCH;
169
170	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
171	if (err == 0) {
172		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
173		err = dbuf_read(db, NULL, db_flags);
174		if (err != 0) {
175			dbuf_rele(db, tag);
176			*dbp = NULL;
177		}
178	}
179
180	return (err);
181}
182
183int
184dmu_bonus_max(void)
185{
186	return (DN_MAX_BONUSLEN);
187}
188
189int
190dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
191{
192	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
193	dnode_t *dn;
194	int error;
195
196	DB_DNODE_ENTER(db);
197	dn = DB_DNODE(db);
198
199	if (dn->dn_bonus != db) {
200		error = SET_ERROR(EINVAL);
201	} else if (newsize < 0 || newsize > db_fake->db_size) {
202		error = SET_ERROR(EINVAL);
203	} else {
204		dnode_setbonuslen(dn, newsize, tx);
205		error = 0;
206	}
207
208	DB_DNODE_EXIT(db);
209	return (error);
210}
211
212int
213dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
214{
215	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
216	dnode_t *dn;
217	int error;
218
219	DB_DNODE_ENTER(db);
220	dn = DB_DNODE(db);
221
222	if (!DMU_OT_IS_VALID(type)) {
223		error = SET_ERROR(EINVAL);
224	} else if (dn->dn_bonus != db) {
225		error = SET_ERROR(EINVAL);
226	} else {
227		dnode_setbonus_type(dn, type, tx);
228		error = 0;
229	}
230
231	DB_DNODE_EXIT(db);
232	return (error);
233}
234
235dmu_object_type_t
236dmu_get_bonustype(dmu_buf_t *db_fake)
237{
238	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
239	dnode_t *dn;
240	dmu_object_type_t type;
241
242	DB_DNODE_ENTER(db);
243	dn = DB_DNODE(db);
244	type = dn->dn_bonustype;
245	DB_DNODE_EXIT(db);
246
247	return (type);
248}
249
250int
251dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
252{
253	dnode_t *dn;
254	int error;
255
256	error = dnode_hold(os, object, FTAG, &dn);
257	dbuf_rm_spill(dn, tx);
258	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
259	dnode_rm_spill(dn, tx);
260	rw_exit(&dn->dn_struct_rwlock);
261	dnode_rele(dn, FTAG);
262	return (error);
263}
264
265/*
266 * returns ENOENT, EIO, or 0.
267 */
268int
269dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
270{
271	dnode_t *dn;
272	dmu_buf_impl_t *db;
273	int error;
274
275	error = dnode_hold(os, object, FTAG, &dn);
276	if (error)
277		return (error);
278
279	rw_enter(&dn->dn_struct_rwlock, RW_READER);
280	if (dn->dn_bonus == NULL) {
281		rw_exit(&dn->dn_struct_rwlock);
282		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
283		if (dn->dn_bonus == NULL)
284			dbuf_create_bonus(dn);
285	}
286	db = dn->dn_bonus;
287
288	/* as long as the bonus buf is held, the dnode will be held */
289	if (refcount_add(&db->db_holds, tag) == 1) {
290		VERIFY(dnode_add_ref(dn, db));
291		atomic_inc_32(&dn->dn_dbufs_count);
292	}
293
294	/*
295	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
296	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
297	 * a dnode hold for every dbuf.
298	 */
299	rw_exit(&dn->dn_struct_rwlock);
300
301	dnode_rele(dn, FTAG);
302
303	VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
304
305	*dbp = &db->db;
306	return (0);
307}
308
309/*
310 * returns ENOENT, EIO, or 0.
311 *
312 * This interface will allocate a blank spill dbuf when a spill blk
313 * doesn't already exist on the dnode.
314 *
315 * if you only want to find an already existing spill db, then
316 * dmu_spill_hold_existing() should be used.
317 */
318int
319dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
320{
321	dmu_buf_impl_t *db = NULL;
322	int err;
323
324	if ((flags & DB_RF_HAVESTRUCT) == 0)
325		rw_enter(&dn->dn_struct_rwlock, RW_READER);
326
327	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
328
329	if ((flags & DB_RF_HAVESTRUCT) == 0)
330		rw_exit(&dn->dn_struct_rwlock);
331
332	ASSERT(db != NULL);
333	err = dbuf_read(db, NULL, flags);
334	if (err == 0)
335		*dbp = &db->db;
336	else
337		dbuf_rele(db, tag);
338	return (err);
339}
340
341int
342dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
343{
344	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
345	dnode_t *dn;
346	int err;
347
348	DB_DNODE_ENTER(db);
349	dn = DB_DNODE(db);
350
351	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
352		err = SET_ERROR(EINVAL);
353	} else {
354		rw_enter(&dn->dn_struct_rwlock, RW_READER);
355
356		if (!dn->dn_have_spill) {
357			err = SET_ERROR(ENOENT);
358		} else {
359			err = dmu_spill_hold_by_dnode(dn,
360			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
361		}
362
363		rw_exit(&dn->dn_struct_rwlock);
364	}
365
366	DB_DNODE_EXIT(db);
367	return (err);
368}
369
370int
371dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
372{
373	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
374	dnode_t *dn;
375	int err;
376
377	DB_DNODE_ENTER(db);
378	dn = DB_DNODE(db);
379	err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
380	DB_DNODE_EXIT(db);
381
382	return (err);
383}
384
385/*
386 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
387 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
388 * and can induce severe lock contention when writing to several files
389 * whose dnodes are in the same block.
390 */
391static int
392dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
393    boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
394{
395	dmu_buf_t **dbp;
396	uint64_t blkid, nblks, i;
397	uint32_t dbuf_flags;
398	int err;
399	zio_t *zio;
400
401	ASSERT(length <= DMU_MAX_ACCESS);
402
403	/*
404	 * Note: We directly notify the prefetch code of this read, so that
405	 * we can tell it about the multi-block read.  dbuf_read() only knows
406	 * about the one block it is accessing.
407	 */
408	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
409	    DB_RF_NOPREFETCH;
410
411	rw_enter(&dn->dn_struct_rwlock, RW_READER);
412	if (dn->dn_datablkshift) {
413		int blkshift = dn->dn_datablkshift;
414		nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
415		    P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
416	} else {
417		if (offset + length > dn->dn_datablksz) {
418			zfs_panic_recover("zfs: accessing past end of object "
419			    "%llx/%llx (size=%u access=%llu+%llu)",
420			    (longlong_t)dn->dn_objset->
421			    os_dsl_dataset->ds_object,
422			    (longlong_t)dn->dn_object, dn->dn_datablksz,
423			    (longlong_t)offset, (longlong_t)length);
424			rw_exit(&dn->dn_struct_rwlock);
425			return (SET_ERROR(EIO));
426		}
427		nblks = 1;
428	}
429	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
430
431	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
432	blkid = dbuf_whichblock(dn, 0, offset);
433	for (i = 0; i < nblks; i++) {
434		dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
435		if (db == NULL) {
436			rw_exit(&dn->dn_struct_rwlock);
437			dmu_buf_rele_array(dbp, nblks, tag);
438			zio_nowait(zio);
439			return (SET_ERROR(EIO));
440		}
441
442		/* initiate async i/o */
443		if (read)
444			(void) dbuf_read(db, zio, dbuf_flags);
445#ifdef _KERNEL
446		else
447			curthread->td_ru.ru_oublock++;
448#endif
449		dbp[i] = &db->db;
450	}
451
452	if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
453	    DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
454		dmu_zfetch(&dn->dn_zfetch, blkid, nblks,
455		    read && DNODE_IS_CACHEABLE(dn));
456	}
457	rw_exit(&dn->dn_struct_rwlock);
458
459	/* wait for async i/o */
460	err = zio_wait(zio);
461	if (err) {
462		dmu_buf_rele_array(dbp, nblks, tag);
463		return (err);
464	}
465
466	/* wait for other io to complete */
467	if (read) {
468		for (i = 0; i < nblks; i++) {
469			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
470			mutex_enter(&db->db_mtx);
471			while (db->db_state == DB_READ ||
472			    db->db_state == DB_FILL)
473				cv_wait(&db->db_changed, &db->db_mtx);
474			if (db->db_state == DB_UNCACHED)
475				err = SET_ERROR(EIO);
476			mutex_exit(&db->db_mtx);
477			if (err) {
478				dmu_buf_rele_array(dbp, nblks, tag);
479				return (err);
480			}
481		}
482	}
483
484	*numbufsp = nblks;
485	*dbpp = dbp;
486	return (0);
487}
488
489static int
490dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
491    uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
492{
493	dnode_t *dn;
494	int err;
495
496	err = dnode_hold(os, object, FTAG, &dn);
497	if (err)
498		return (err);
499
500	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
501	    numbufsp, dbpp, DMU_READ_PREFETCH);
502
503	dnode_rele(dn, FTAG);
504
505	return (err);
506}
507
508int
509dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
510    uint64_t length, boolean_t read, void *tag, int *numbufsp,
511    dmu_buf_t ***dbpp)
512{
513	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
514	dnode_t *dn;
515	int err;
516
517	DB_DNODE_ENTER(db);
518	dn = DB_DNODE(db);
519	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
520	    numbufsp, dbpp, DMU_READ_PREFETCH);
521	DB_DNODE_EXIT(db);
522
523	return (err);
524}
525
526void
527dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
528{
529	int i;
530	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
531
532	if (numbufs == 0)
533		return;
534
535	for (i = 0; i < numbufs; i++) {
536		if (dbp[i])
537			dbuf_rele(dbp[i], tag);
538	}
539
540	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
541}
542
543/*
544 * Issue prefetch i/os for the given blocks.  If level is greater than 0, the
545 * indirect blocks prefeteched will be those that point to the blocks containing
546 * the data starting at offset, and continuing to offset + len.
547 *
548 * Note that if the indirect blocks above the blocks being prefetched are not in
549 * cache, they will be asychronously read in.
550 */
551void
552dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
553    uint64_t len, zio_priority_t pri)
554{
555	dnode_t *dn;
556	uint64_t blkid;
557	int nblks, err;
558
559	if (len == 0) {  /* they're interested in the bonus buffer */
560		dn = DMU_META_DNODE(os);
561
562		if (object == 0 || object >= DN_MAX_OBJECT)
563			return;
564
565		rw_enter(&dn->dn_struct_rwlock, RW_READER);
566		blkid = dbuf_whichblock(dn, level,
567		    object * sizeof (dnode_phys_t));
568		dbuf_prefetch(dn, level, blkid, pri, 0);
569		rw_exit(&dn->dn_struct_rwlock);
570		return;
571	}
572
573	/*
574	 * XXX - Note, if the dnode for the requested object is not
575	 * already cached, we will do a *synchronous* read in the
576	 * dnode_hold() call.  The same is true for any indirects.
577	 */
578	err = dnode_hold(os, object, FTAG, &dn);
579	if (err != 0)
580		return;
581
582	rw_enter(&dn->dn_struct_rwlock, RW_READER);
583	/*
584	 * offset + len - 1 is the last byte we want to prefetch for, and offset
585	 * is the first.  Then dbuf_whichblk(dn, level, off + len - 1) is the
586	 * last block we want to prefetch, and dbuf_whichblock(dn, level,
587	 * offset)  is the first.  Then the number we need to prefetch is the
588	 * last - first + 1.
589	 */
590	if (level > 0 || dn->dn_datablkshift != 0) {
591		nblks = dbuf_whichblock(dn, level, offset + len - 1) -
592		    dbuf_whichblock(dn, level, offset) + 1;
593	} else {
594		nblks = (offset < dn->dn_datablksz);
595	}
596
597	if (nblks != 0) {
598		blkid = dbuf_whichblock(dn, level, offset);
599		for (int i = 0; i < nblks; i++)
600			dbuf_prefetch(dn, level, blkid + i, pri, 0);
601	}
602
603	rw_exit(&dn->dn_struct_rwlock);
604
605	dnode_rele(dn, FTAG);
606}
607
608/*
609 * Get the next "chunk" of file data to free.  We traverse the file from
610 * the end so that the file gets shorter over time (if we crashes in the
611 * middle, this will leave us in a better state).  We find allocated file
612 * data by simply searching the allocated level 1 indirects.
613 *
614 * On input, *start should be the first offset that does not need to be
615 * freed (e.g. "offset + length").  On return, *start will be the first
616 * offset that should be freed.
617 */
618static int
619get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
620{
621	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
622	/* bytes of data covered by a level-1 indirect block */
623	uint64_t iblkrange =
624	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
625
626	ASSERT3U(minimum, <=, *start);
627
628	if (*start - minimum <= iblkrange * maxblks) {
629		*start = minimum;
630		return (0);
631	}
632	ASSERT(ISP2(iblkrange));
633
634	for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
635		int err;
636
637		/*
638		 * dnode_next_offset(BACKWARDS) will find an allocated L1
639		 * indirect block at or before the input offset.  We must
640		 * decrement *start so that it is at the end of the region
641		 * to search.
642		 */
643		(*start)--;
644		err = dnode_next_offset(dn,
645		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
646
647		/* if there are no indirect blocks before start, we are done */
648		if (err == ESRCH) {
649			*start = minimum;
650			break;
651		} else if (err != 0) {
652			return (err);
653		}
654
655		/* set start to the beginning of this L1 indirect */
656		*start = P2ALIGN(*start, iblkrange);
657	}
658	if (*start < minimum)
659		*start = minimum;
660	return (0);
661}
662
663static int
664dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
665    uint64_t length)
666{
667	uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
668	int err;
669
670	if (offset >= object_size)
671		return (0);
672
673	if (length == DMU_OBJECT_END || offset + length > object_size)
674		length = object_size - offset;
675
676	while (length != 0) {
677		uint64_t chunk_end, chunk_begin;
678
679		chunk_end = chunk_begin = offset + length;
680
681		/* move chunk_begin backwards to the beginning of this chunk */
682		err = get_next_chunk(dn, &chunk_begin, offset);
683		if (err)
684			return (err);
685		ASSERT3U(chunk_begin, >=, offset);
686		ASSERT3U(chunk_begin, <=, chunk_end);
687
688		dmu_tx_t *tx = dmu_tx_create(os);
689		dmu_tx_hold_free(tx, dn->dn_object,
690		    chunk_begin, chunk_end - chunk_begin);
691
692		/*
693		 * Mark this transaction as typically resulting in a net
694		 * reduction in space used.
695		 */
696		dmu_tx_mark_netfree(tx);
697		err = dmu_tx_assign(tx, TXG_WAIT);
698		if (err) {
699			dmu_tx_abort(tx);
700			return (err);
701		}
702		dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx);
703		dmu_tx_commit(tx);
704
705		length -= chunk_end - chunk_begin;
706	}
707	return (0);
708}
709
710int
711dmu_free_long_range(objset_t *os, uint64_t object,
712    uint64_t offset, uint64_t length)
713{
714	dnode_t *dn;
715	int err;
716
717	err = dnode_hold(os, object, FTAG, &dn);
718	if (err != 0)
719		return (err);
720	err = dmu_free_long_range_impl(os, dn, offset, length);
721
722	/*
723	 * It is important to zero out the maxblkid when freeing the entire
724	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
725	 * will take the fast path, and (b) dnode_reallocate() can verify
726	 * that the entire file has been freed.
727	 */
728	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
729		dn->dn_maxblkid = 0;
730
731	dnode_rele(dn, FTAG);
732	return (err);
733}
734
735int
736dmu_free_long_object(objset_t *os, uint64_t object)
737{
738	dmu_tx_t *tx;
739	int err;
740
741	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
742	if (err != 0)
743		return (err);
744
745	tx = dmu_tx_create(os);
746	dmu_tx_hold_bonus(tx, object);
747	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
748	dmu_tx_mark_netfree(tx);
749	err = dmu_tx_assign(tx, TXG_WAIT);
750	if (err == 0) {
751		err = dmu_object_free(os, object, tx);
752		dmu_tx_commit(tx);
753	} else {
754		dmu_tx_abort(tx);
755	}
756
757	return (err);
758}
759
760int
761dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
762    uint64_t size, dmu_tx_t *tx)
763{
764	dnode_t *dn;
765	int err = dnode_hold(os, object, FTAG, &dn);
766	if (err)
767		return (err);
768	ASSERT(offset < UINT64_MAX);
769	ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
770	dnode_free_range(dn, offset, size, tx);
771	dnode_rele(dn, FTAG);
772	return (0);
773}
774
775int
776dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
777    void *buf, uint32_t flags)
778{
779	dnode_t *dn;
780	dmu_buf_t **dbp;
781	int numbufs, err;
782
783	err = dnode_hold(os, object, FTAG, &dn);
784	if (err)
785		return (err);
786
787	/*
788	 * Deal with odd block sizes, where there can't be data past the first
789	 * block.  If we ever do the tail block optimization, we will need to
790	 * handle that here as well.
791	 */
792	if (dn->dn_maxblkid == 0) {
793		int newsz = offset > dn->dn_datablksz ? 0 :
794		    MIN(size, dn->dn_datablksz - offset);
795		bzero((char *)buf + newsz, size - newsz);
796		size = newsz;
797	}
798
799	while (size > 0) {
800		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
801		int i;
802
803		/*
804		 * NB: we could do this block-at-a-time, but it's nice
805		 * to be reading in parallel.
806		 */
807		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
808		    TRUE, FTAG, &numbufs, &dbp, flags);
809		if (err)
810			break;
811
812		for (i = 0; i < numbufs; i++) {
813			int tocpy;
814			int bufoff;
815			dmu_buf_t *db = dbp[i];
816
817			ASSERT(size > 0);
818
819			bufoff = offset - db->db_offset;
820			tocpy = (int)MIN(db->db_size - bufoff, size);
821
822			bcopy((char *)db->db_data + bufoff, buf, tocpy);
823
824			offset += tocpy;
825			size -= tocpy;
826			buf = (char *)buf + tocpy;
827		}
828		dmu_buf_rele_array(dbp, numbufs, FTAG);
829	}
830	dnode_rele(dn, FTAG);
831	return (err);
832}
833
834void
835dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
836    const void *buf, dmu_tx_t *tx)
837{
838	dmu_buf_t **dbp;
839	int numbufs, i;
840
841	if (size == 0)
842		return;
843
844	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
845	    FALSE, FTAG, &numbufs, &dbp));
846
847	for (i = 0; i < numbufs; i++) {
848		int tocpy;
849		int bufoff;
850		dmu_buf_t *db = dbp[i];
851
852		ASSERT(size > 0);
853
854		bufoff = offset - db->db_offset;
855		tocpy = (int)MIN(db->db_size - bufoff, size);
856
857		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
858
859		if (tocpy == db->db_size)
860			dmu_buf_will_fill(db, tx);
861		else
862			dmu_buf_will_dirty(db, tx);
863
864		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
865
866		if (tocpy == db->db_size)
867			dmu_buf_fill_done(db, tx);
868
869		offset += tocpy;
870		size -= tocpy;
871		buf = (char *)buf + tocpy;
872	}
873	dmu_buf_rele_array(dbp, numbufs, FTAG);
874}
875
876void
877dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
878    dmu_tx_t *tx)
879{
880	dmu_buf_t **dbp;
881	int numbufs, i;
882
883	if (size == 0)
884		return;
885
886	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
887	    FALSE, FTAG, &numbufs, &dbp));
888
889	for (i = 0; i < numbufs; i++) {
890		dmu_buf_t *db = dbp[i];
891
892		dmu_buf_will_not_fill(db, tx);
893	}
894	dmu_buf_rele_array(dbp, numbufs, FTAG);
895}
896
897void
898dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
899    void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
900    int compressed_size, int byteorder, dmu_tx_t *tx)
901{
902	dmu_buf_t *db;
903
904	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
905	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
906	VERIFY0(dmu_buf_hold_noread(os, object, offset,
907	    FTAG, &db));
908
909	dmu_buf_write_embedded(db,
910	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
911	    uncompressed_size, compressed_size, byteorder, tx);
912
913	dmu_buf_rele(db, FTAG);
914}
915
916/*
917 * DMU support for xuio
918 */
919kstat_t *xuio_ksp = NULL;
920
921int
922dmu_xuio_init(xuio_t *xuio, int nblk)
923{
924	dmu_xuio_t *priv;
925	uio_t *uio = &xuio->xu_uio;
926
927	uio->uio_iovcnt = nblk;
928	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
929
930	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
931	priv->cnt = nblk;
932	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
933	priv->iovp = uio->uio_iov;
934	XUIO_XUZC_PRIV(xuio) = priv;
935
936	if (XUIO_XUZC_RW(xuio) == UIO_READ)
937		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
938	else
939		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
940
941	return (0);
942}
943
944void
945dmu_xuio_fini(xuio_t *xuio)
946{
947	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
948	int nblk = priv->cnt;
949
950	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
951	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
952	kmem_free(priv, sizeof (dmu_xuio_t));
953
954	if (XUIO_XUZC_RW(xuio) == UIO_READ)
955		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
956	else
957		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
958}
959
960/*
961 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
962 * and increase priv->next by 1.
963 */
964int
965dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
966{
967	struct iovec *iov;
968	uio_t *uio = &xuio->xu_uio;
969	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
970	int i = priv->next++;
971
972	ASSERT(i < priv->cnt);
973	ASSERT(off + n <= arc_buf_size(abuf));
974	iov = uio->uio_iov + i;
975	iov->iov_base = (char *)abuf->b_data + off;
976	iov->iov_len = n;
977	priv->bufs[i] = abuf;
978	return (0);
979}
980
981int
982dmu_xuio_cnt(xuio_t *xuio)
983{
984	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
985	return (priv->cnt);
986}
987
988arc_buf_t *
989dmu_xuio_arcbuf(xuio_t *xuio, int i)
990{
991	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
992
993	ASSERT(i < priv->cnt);
994	return (priv->bufs[i]);
995}
996
997void
998dmu_xuio_clear(xuio_t *xuio, int i)
999{
1000	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1001
1002	ASSERT(i < priv->cnt);
1003	priv->bufs[i] = NULL;
1004}
1005
1006static void
1007xuio_stat_init(void)
1008{
1009	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
1010	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
1011	    KSTAT_FLAG_VIRTUAL);
1012	if (xuio_ksp != NULL) {
1013		xuio_ksp->ks_data = &xuio_stats;
1014		kstat_install(xuio_ksp);
1015	}
1016}
1017
1018static void
1019xuio_stat_fini(void)
1020{
1021	if (xuio_ksp != NULL) {
1022		kstat_delete(xuio_ksp);
1023		xuio_ksp = NULL;
1024	}
1025}
1026
1027void
1028xuio_stat_wbuf_copied()
1029{
1030	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1031}
1032
1033void
1034xuio_stat_wbuf_nocopy()
1035{
1036	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1037}
1038
1039#ifdef _KERNEL
1040static int
1041dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
1042{
1043	dmu_buf_t **dbp;
1044	int numbufs, i, err;
1045	xuio_t *xuio = NULL;
1046
1047	/*
1048	 * NB: we could do this block-at-a-time, but it's nice
1049	 * to be reading in parallel.
1050	 */
1051	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1052	    TRUE, FTAG, &numbufs, &dbp, 0);
1053	if (err)
1054		return (err);
1055
1056#ifdef UIO_XUIO
1057	if (uio->uio_extflg == UIO_XUIO)
1058		xuio = (xuio_t *)uio;
1059#endif
1060
1061	for (i = 0; i < numbufs; i++) {
1062		int tocpy;
1063		int bufoff;
1064		dmu_buf_t *db = dbp[i];
1065
1066		ASSERT(size > 0);
1067
1068		bufoff = uio->uio_loffset - db->db_offset;
1069		tocpy = (int)MIN(db->db_size - bufoff, size);
1070
1071		if (xuio) {
1072			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1073			arc_buf_t *dbuf_abuf = dbi->db_buf;
1074			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1075			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1076			if (!err) {
1077				uio->uio_resid -= tocpy;
1078				uio->uio_loffset += tocpy;
1079			}
1080
1081			if (abuf == dbuf_abuf)
1082				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1083			else
1084				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1085		} else {
1086#ifdef illumos
1087			err = uiomove((char *)db->db_data + bufoff, tocpy,
1088			    UIO_READ, uio);
1089#else
1090			err = vn_io_fault_uiomove((char *)db->db_data + bufoff,
1091			    tocpy, uio);
1092#endif
1093		}
1094		if (err)
1095			break;
1096
1097		size -= tocpy;
1098	}
1099	dmu_buf_rele_array(dbp, numbufs, FTAG);
1100
1101	return (err);
1102}
1103
1104/*
1105 * Read 'size' bytes into the uio buffer.
1106 * From object zdb->db_object.
1107 * Starting at offset uio->uio_loffset.
1108 *
1109 * If the caller already has a dbuf in the target object
1110 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1111 * because we don't have to find the dnode_t for the object.
1112 */
1113int
1114dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1115{
1116	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1117	dnode_t *dn;
1118	int err;
1119
1120	if (size == 0)
1121		return (0);
1122
1123	DB_DNODE_ENTER(db);
1124	dn = DB_DNODE(db);
1125	err = dmu_read_uio_dnode(dn, uio, size);
1126	DB_DNODE_EXIT(db);
1127
1128	return (err);
1129}
1130
1131/*
1132 * Read 'size' bytes into the uio buffer.
1133 * From the specified object
1134 * Starting at offset uio->uio_loffset.
1135 */
1136int
1137dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1138{
1139	dnode_t *dn;
1140	int err;
1141
1142	if (size == 0)
1143		return (0);
1144
1145	err = dnode_hold(os, object, FTAG, &dn);
1146	if (err)
1147		return (err);
1148
1149	err = dmu_read_uio_dnode(dn, uio, size);
1150
1151	dnode_rele(dn, FTAG);
1152
1153	return (err);
1154}
1155
1156static int
1157dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1158{
1159	dmu_buf_t **dbp;
1160	int numbufs;
1161	int err = 0;
1162	int i;
1163
1164	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1165	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1166	if (err)
1167		return (err);
1168
1169	for (i = 0; i < numbufs; i++) {
1170		int tocpy;
1171		int bufoff;
1172		dmu_buf_t *db = dbp[i];
1173
1174		ASSERT(size > 0);
1175
1176		bufoff = uio->uio_loffset - db->db_offset;
1177		tocpy = (int)MIN(db->db_size - bufoff, size);
1178
1179		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1180
1181		if (tocpy == db->db_size)
1182			dmu_buf_will_fill(db, tx);
1183		else
1184			dmu_buf_will_dirty(db, tx);
1185
1186#ifdef illumos
1187		/*
1188		 * XXX uiomove could block forever (eg. nfs-backed
1189		 * pages).  There needs to be a uiolockdown() function
1190		 * to lock the pages in memory, so that uiomove won't
1191		 * block.
1192		 */
1193		err = uiomove((char *)db->db_data + bufoff, tocpy,
1194		    UIO_WRITE, uio);
1195#else
1196		err = vn_io_fault_uiomove((char *)db->db_data + bufoff, tocpy,
1197		    uio);
1198#endif
1199
1200		if (tocpy == db->db_size)
1201			dmu_buf_fill_done(db, tx);
1202
1203		if (err)
1204			break;
1205
1206		size -= tocpy;
1207	}
1208
1209	dmu_buf_rele_array(dbp, numbufs, FTAG);
1210	return (err);
1211}
1212
1213/*
1214 * Write 'size' bytes from the uio buffer.
1215 * To object zdb->db_object.
1216 * Starting at offset uio->uio_loffset.
1217 *
1218 * If the caller already has a dbuf in the target object
1219 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1220 * because we don't have to find the dnode_t for the object.
1221 */
1222int
1223dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1224    dmu_tx_t *tx)
1225{
1226	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1227	dnode_t *dn;
1228	int err;
1229
1230	if (size == 0)
1231		return (0);
1232
1233	DB_DNODE_ENTER(db);
1234	dn = DB_DNODE(db);
1235	err = dmu_write_uio_dnode(dn, uio, size, tx);
1236	DB_DNODE_EXIT(db);
1237
1238	return (err);
1239}
1240
1241/*
1242 * Write 'size' bytes from the uio buffer.
1243 * To the specified object.
1244 * Starting at offset uio->uio_loffset.
1245 */
1246int
1247dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1248    dmu_tx_t *tx)
1249{
1250	dnode_t *dn;
1251	int err;
1252
1253	if (size == 0)
1254		return (0);
1255
1256	err = dnode_hold(os, object, FTAG, &dn);
1257	if (err)
1258		return (err);
1259
1260	err = dmu_write_uio_dnode(dn, uio, size, tx);
1261
1262	dnode_rele(dn, FTAG);
1263
1264	return (err);
1265}
1266
1267#ifdef illumos
1268int
1269dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1270    page_t *pp, dmu_tx_t *tx)
1271{
1272	dmu_buf_t **dbp;
1273	int numbufs, i;
1274	int err;
1275
1276	if (size == 0)
1277		return (0);
1278
1279	err = dmu_buf_hold_array(os, object, offset, size,
1280	    FALSE, FTAG, &numbufs, &dbp);
1281	if (err)
1282		return (err);
1283
1284	for (i = 0; i < numbufs; i++) {
1285		int tocpy, copied, thiscpy;
1286		int bufoff;
1287		dmu_buf_t *db = dbp[i];
1288		caddr_t va;
1289
1290		ASSERT(size > 0);
1291		ASSERT3U(db->db_size, >=, PAGESIZE);
1292
1293		bufoff = offset - db->db_offset;
1294		tocpy = (int)MIN(db->db_size - bufoff, size);
1295
1296		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1297
1298		if (tocpy == db->db_size)
1299			dmu_buf_will_fill(db, tx);
1300		else
1301			dmu_buf_will_dirty(db, tx);
1302
1303		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1304			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1305			thiscpy = MIN(PAGESIZE, tocpy - copied);
1306			va = zfs_map_page(pp, S_READ);
1307			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1308			zfs_unmap_page(pp, va);
1309			pp = pp->p_next;
1310			bufoff += PAGESIZE;
1311		}
1312
1313		if (tocpy == db->db_size)
1314			dmu_buf_fill_done(db, tx);
1315
1316		offset += tocpy;
1317		size -= tocpy;
1318	}
1319	dmu_buf_rele_array(dbp, numbufs, FTAG);
1320	return (err);
1321}
1322
1323#else	/* !illumos */
1324
1325int
1326dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1327    vm_page_t *ma, dmu_tx_t *tx)
1328{
1329	dmu_buf_t **dbp;
1330	struct sf_buf *sf;
1331	int numbufs, i;
1332	int err;
1333
1334	if (size == 0)
1335		return (0);
1336
1337	err = dmu_buf_hold_array(os, object, offset, size,
1338	    FALSE, FTAG, &numbufs, &dbp);
1339	if (err)
1340		return (err);
1341
1342	for (i = 0; i < numbufs; i++) {
1343		int tocpy, copied, thiscpy;
1344		int bufoff;
1345		dmu_buf_t *db = dbp[i];
1346		caddr_t va;
1347
1348		ASSERT(size > 0);
1349		ASSERT3U(db->db_size, >=, PAGESIZE);
1350
1351		bufoff = offset - db->db_offset;
1352		tocpy = (int)MIN(db->db_size - bufoff, size);
1353
1354		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1355
1356		if (tocpy == db->db_size)
1357			dmu_buf_will_fill(db, tx);
1358		else
1359			dmu_buf_will_dirty(db, tx);
1360
1361		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1362			ASSERT3U(ptoa((*ma)->pindex), ==, db->db_offset + bufoff);
1363			thiscpy = MIN(PAGESIZE, tocpy - copied);
1364			va = zfs_map_page(*ma, &sf);
1365			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1366			zfs_unmap_page(sf);
1367			ma += 1;
1368			bufoff += PAGESIZE;
1369		}
1370
1371		if (tocpy == db->db_size)
1372			dmu_buf_fill_done(db, tx);
1373
1374		offset += tocpy;
1375		size -= tocpy;
1376	}
1377	dmu_buf_rele_array(dbp, numbufs, FTAG);
1378	return (err);
1379}
1380#endif	/* illumos */
1381#endif	/* _KERNEL */
1382
1383/*
1384 * Allocate a loaned anonymous arc buffer.
1385 */
1386arc_buf_t *
1387dmu_request_arcbuf(dmu_buf_t *handle, int size)
1388{
1389	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1390
1391	return (arc_loan_buf(db->db_objset->os_spa, size));
1392}
1393
1394/*
1395 * Free a loaned arc buffer.
1396 */
1397void
1398dmu_return_arcbuf(arc_buf_t *buf)
1399{
1400	arc_return_buf(buf, FTAG);
1401	arc_buf_destroy(buf, FTAG);
1402}
1403
1404/*
1405 * When possible directly assign passed loaned arc buffer to a dbuf.
1406 * If this is not possible copy the contents of passed arc buf via
1407 * dmu_write().
1408 */
1409void
1410dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1411    dmu_tx_t *tx)
1412{
1413	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1414	dnode_t *dn;
1415	dmu_buf_impl_t *db;
1416	uint32_t blksz = (uint32_t)arc_buf_size(buf);
1417	uint64_t blkid;
1418
1419	DB_DNODE_ENTER(dbuf);
1420	dn = DB_DNODE(dbuf);
1421	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1422	blkid = dbuf_whichblock(dn, 0, offset);
1423	VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1424	rw_exit(&dn->dn_struct_rwlock);
1425	DB_DNODE_EXIT(dbuf);
1426
1427	/*
1428	 * We can only assign if the offset is aligned, the arc buf is the
1429	 * same size as the dbuf, and the dbuf is not metadata.  It
1430	 * can't be metadata because the loaned arc buf comes from the
1431	 * user-data kmem arena.
1432	 */
1433	if (offset == db->db.db_offset && blksz == db->db.db_size &&
1434	    DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA) {
1435#ifdef _KERNEL
1436		curthread->td_ru.ru_oublock++;
1437#endif
1438		dbuf_assign_arcbuf(db, buf, tx);
1439		dbuf_rele(db, FTAG);
1440	} else {
1441		objset_t *os;
1442		uint64_t object;
1443
1444		DB_DNODE_ENTER(dbuf);
1445		dn = DB_DNODE(dbuf);
1446		os = dn->dn_objset;
1447		object = dn->dn_object;
1448		DB_DNODE_EXIT(dbuf);
1449
1450		dbuf_rele(db, FTAG);
1451		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1452		dmu_return_arcbuf(buf);
1453		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1454	}
1455}
1456
1457typedef struct {
1458	dbuf_dirty_record_t	*dsa_dr;
1459	dmu_sync_cb_t		*dsa_done;
1460	zgd_t			*dsa_zgd;
1461	dmu_tx_t		*dsa_tx;
1462} dmu_sync_arg_t;
1463
1464/* ARGSUSED */
1465static void
1466dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1467{
1468	dmu_sync_arg_t *dsa = varg;
1469	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1470	blkptr_t *bp = zio->io_bp;
1471
1472	if (zio->io_error == 0) {
1473		if (BP_IS_HOLE(bp)) {
1474			/*
1475			 * A block of zeros may compress to a hole, but the
1476			 * block size still needs to be known for replay.
1477			 */
1478			BP_SET_LSIZE(bp, db->db_size);
1479		} else if (!BP_IS_EMBEDDED(bp)) {
1480			ASSERT(BP_GET_LEVEL(bp) == 0);
1481			bp->blk_fill = 1;
1482		}
1483	}
1484}
1485
1486static void
1487dmu_sync_late_arrival_ready(zio_t *zio)
1488{
1489	dmu_sync_ready(zio, NULL, zio->io_private);
1490}
1491
1492/* ARGSUSED */
1493static void
1494dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1495{
1496	dmu_sync_arg_t *dsa = varg;
1497	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1498	dmu_buf_impl_t *db = dr->dr_dbuf;
1499
1500	mutex_enter(&db->db_mtx);
1501	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1502	if (zio->io_error == 0) {
1503		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1504		if (dr->dt.dl.dr_nopwrite) {
1505			blkptr_t *bp = zio->io_bp;
1506			blkptr_t *bp_orig = &zio->io_bp_orig;
1507			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1508
1509			ASSERT(BP_EQUAL(bp, bp_orig));
1510			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1511			ASSERT(zio_checksum_table[chksum].ci_flags &
1512			    ZCHECKSUM_FLAG_NOPWRITE);
1513		}
1514		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1515		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1516		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1517
1518		/*
1519		 * Old style holes are filled with all zeros, whereas
1520		 * new-style holes maintain their lsize, type, level,
1521		 * and birth time (see zio_write_compress). While we
1522		 * need to reset the BP_SET_LSIZE() call that happened
1523		 * in dmu_sync_ready for old style holes, we do *not*
1524		 * want to wipe out the information contained in new
1525		 * style holes. Thus, only zero out the block pointer if
1526		 * it's an old style hole.
1527		 */
1528		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1529		    dr->dt.dl.dr_overridden_by.blk_birth == 0)
1530			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1531	} else {
1532		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1533	}
1534	cv_broadcast(&db->db_changed);
1535	mutex_exit(&db->db_mtx);
1536
1537	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1538
1539	kmem_free(dsa, sizeof (*dsa));
1540}
1541
1542static void
1543dmu_sync_late_arrival_done(zio_t *zio)
1544{
1545	blkptr_t *bp = zio->io_bp;
1546	dmu_sync_arg_t *dsa = zio->io_private;
1547	blkptr_t *bp_orig = &zio->io_bp_orig;
1548
1549	if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1550		/*
1551		 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
1552		 * then there is nothing to do here. Otherwise, free the
1553		 * newly allocated block in this txg.
1554		 */
1555		if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
1556			ASSERT(BP_EQUAL(bp, bp_orig));
1557		} else {
1558			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1559			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1560			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1561			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1562		}
1563	}
1564
1565	dmu_tx_commit(dsa->dsa_tx);
1566
1567	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1568
1569	kmem_free(dsa, sizeof (*dsa));
1570}
1571
1572static int
1573dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1574    zio_prop_t *zp, zbookmark_phys_t *zb)
1575{
1576	dmu_sync_arg_t *dsa;
1577	dmu_tx_t *tx;
1578
1579	tx = dmu_tx_create(os);
1580	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1581	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1582		dmu_tx_abort(tx);
1583		/* Make zl_get_data do txg_waited_synced() */
1584		return (SET_ERROR(EIO));
1585	}
1586
1587	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1588	dsa->dsa_dr = NULL;
1589	dsa->dsa_done = done;
1590	dsa->dsa_zgd = zgd;
1591	dsa->dsa_tx = tx;
1592
1593	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx),
1594	    zgd->zgd_bp, zgd->zgd_db->db_data, zgd->zgd_db->db_size,
1595	    zp, dmu_sync_late_arrival_ready, NULL,
1596	    NULL, dmu_sync_late_arrival_done, dsa, ZIO_PRIORITY_SYNC_WRITE,
1597	    ZIO_FLAG_CANFAIL, zb));
1598
1599	return (0);
1600}
1601
1602/*
1603 * Intent log support: sync the block associated with db to disk.
1604 * N.B. and XXX: the caller is responsible for making sure that the
1605 * data isn't changing while dmu_sync() is writing it.
1606 *
1607 * Return values:
1608 *
1609 *	EEXIST: this txg has already been synced, so there's nothing to do.
1610 *		The caller should not log the write.
1611 *
1612 *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1613 *		The caller should not log the write.
1614 *
1615 *	EALREADY: this block is already in the process of being synced.
1616 *		The caller should track its progress (somehow).
1617 *
1618 *	EIO: could not do the I/O.
1619 *		The caller should do a txg_wait_synced().
1620 *
1621 *	0: the I/O has been initiated.
1622 *		The caller should log this blkptr in the done callback.
1623 *		It is possible that the I/O will fail, in which case
1624 *		the error will be reported to the done callback and
1625 *		propagated to pio from zio_done().
1626 */
1627int
1628dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1629{
1630	blkptr_t *bp = zgd->zgd_bp;
1631	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1632	objset_t *os = db->db_objset;
1633	dsl_dataset_t *ds = os->os_dsl_dataset;
1634	dbuf_dirty_record_t *dr;
1635	dmu_sync_arg_t *dsa;
1636	zbookmark_phys_t zb;
1637	zio_prop_t zp;
1638	dnode_t *dn;
1639
1640	ASSERT(pio != NULL);
1641	ASSERT(txg != 0);
1642
1643	SET_BOOKMARK(&zb, ds->ds_object,
1644	    db->db.db_object, db->db_level, db->db_blkid);
1645
1646	DB_DNODE_ENTER(db);
1647	dn = DB_DNODE(db);
1648	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1649	DB_DNODE_EXIT(db);
1650
1651	/*
1652	 * If we're frozen (running ziltest), we always need to generate a bp.
1653	 */
1654	if (txg > spa_freeze_txg(os->os_spa))
1655		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1656
1657	/*
1658	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1659	 * and us.  If we determine that this txg is not yet syncing,
1660	 * but it begins to sync a moment later, that's OK because the
1661	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1662	 */
1663	mutex_enter(&db->db_mtx);
1664
1665	if (txg <= spa_last_synced_txg(os->os_spa)) {
1666		/*
1667		 * This txg has already synced.  There's nothing to do.
1668		 */
1669		mutex_exit(&db->db_mtx);
1670		return (SET_ERROR(EEXIST));
1671	}
1672
1673	if (txg <= spa_syncing_txg(os->os_spa)) {
1674		/*
1675		 * This txg is currently syncing, so we can't mess with
1676		 * the dirty record anymore; just write a new log block.
1677		 */
1678		mutex_exit(&db->db_mtx);
1679		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1680	}
1681
1682	dr = db->db_last_dirty;
1683	while (dr && dr->dr_txg != txg)
1684		dr = dr->dr_next;
1685
1686	if (dr == NULL) {
1687		/*
1688		 * There's no dr for this dbuf, so it must have been freed.
1689		 * There's no need to log writes to freed blocks, so we're done.
1690		 */
1691		mutex_exit(&db->db_mtx);
1692		return (SET_ERROR(ENOENT));
1693	}
1694
1695	ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1696
1697	/*
1698	 * Assume the on-disk data is X, the current syncing data (in
1699	 * txg - 1) is Y, and the current in-memory data is Z (currently
1700	 * in dmu_sync).
1701	 *
1702	 * We usually want to perform a nopwrite if X and Z are the
1703	 * same.  However, if Y is different (i.e. the BP is going to
1704	 * change before this write takes effect), then a nopwrite will
1705	 * be incorrect - we would override with X, which could have
1706	 * been freed when Y was written.
1707	 *
1708	 * (Note that this is not a concern when we are nop-writing from
1709	 * syncing context, because X and Y must be identical, because
1710	 * all previous txgs have been synced.)
1711	 *
1712	 * Therefore, we disable nopwrite if the current BP could change
1713	 * before this TXG.  There are two ways it could change: by
1714	 * being dirty (dr_next is non-NULL), or by being freed
1715	 * (dnode_block_freed()).  This behavior is verified by
1716	 * zio_done(), which VERIFYs that the override BP is identical
1717	 * to the on-disk BP.
1718	 */
1719	DB_DNODE_ENTER(db);
1720	dn = DB_DNODE(db);
1721	if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1722		zp.zp_nopwrite = B_FALSE;
1723	DB_DNODE_EXIT(db);
1724
1725	ASSERT(dr->dr_txg == txg);
1726	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1727	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1728		/*
1729		 * We have already issued a sync write for this buffer,
1730		 * or this buffer has already been synced.  It could not
1731		 * have been dirtied since, or we would have cleared the state.
1732		 */
1733		mutex_exit(&db->db_mtx);
1734		return (SET_ERROR(EALREADY));
1735	}
1736
1737	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1738	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1739	mutex_exit(&db->db_mtx);
1740
1741	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1742	dsa->dsa_dr = dr;
1743	dsa->dsa_done = done;
1744	dsa->dsa_zgd = zgd;
1745	dsa->dsa_tx = NULL;
1746
1747	zio_nowait(arc_write(pio, os->os_spa, txg,
1748	    bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1749	    &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
1750	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1751
1752	return (0);
1753}
1754
1755int
1756dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1757    dmu_tx_t *tx)
1758{
1759	dnode_t *dn;
1760	int err;
1761
1762	err = dnode_hold(os, object, FTAG, &dn);
1763	if (err)
1764		return (err);
1765	err = dnode_set_blksz(dn, size, ibs, tx);
1766	dnode_rele(dn, FTAG);
1767	return (err);
1768}
1769
1770void
1771dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1772    dmu_tx_t *tx)
1773{
1774	dnode_t *dn;
1775
1776	/*
1777	 * Send streams include each object's checksum function.  This
1778	 * check ensures that the receiving system can understand the
1779	 * checksum function transmitted.
1780	 */
1781	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1782
1783	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1784	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1785	dn->dn_checksum = checksum;
1786	dnode_setdirty(dn, tx);
1787	dnode_rele(dn, FTAG);
1788}
1789
1790void
1791dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1792    dmu_tx_t *tx)
1793{
1794	dnode_t *dn;
1795
1796	/*
1797	 * Send streams include each object's compression function.  This
1798	 * check ensures that the receiving system can understand the
1799	 * compression function transmitted.
1800	 */
1801	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1802
1803	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1804	dn->dn_compress = compress;
1805	dnode_setdirty(dn, tx);
1806	dnode_rele(dn, FTAG);
1807}
1808
1809int zfs_mdcomp_disable = 0;
1810TUNABLE_INT("vfs.zfs.mdcomp_disable", &zfs_mdcomp_disable);
1811SYSCTL_INT(_vfs_zfs, OID_AUTO, mdcomp_disable, CTLFLAG_RW,
1812    &zfs_mdcomp_disable, 0, "Disable metadata compression");
1813
1814/*
1815 * When the "redundant_metadata" property is set to "most", only indirect
1816 * blocks of this level and higher will have an additional ditto block.
1817 */
1818int zfs_redundant_metadata_most_ditto_level = 2;
1819
1820void
1821dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1822{
1823	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1824	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1825	    (wp & WP_SPILL));
1826	enum zio_checksum checksum = os->os_checksum;
1827	enum zio_compress compress = os->os_compress;
1828	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1829	boolean_t dedup = B_FALSE;
1830	boolean_t nopwrite = B_FALSE;
1831	boolean_t dedup_verify = os->os_dedup_verify;
1832	int copies = os->os_copies;
1833
1834	/*
1835	 * We maintain different write policies for each of the following
1836	 * types of data:
1837	 *	 1. metadata
1838	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1839	 *	 3. all other level 0 blocks
1840	 */
1841	if (ismd) {
1842		if (zfs_mdcomp_disable) {
1843			compress = ZIO_COMPRESS_EMPTY;
1844		} else {
1845			/*
1846			 * XXX -- we should design a compression algorithm
1847			 * that specializes in arrays of bps.
1848			 */
1849			compress = zio_compress_select(os->os_spa,
1850			    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
1851		}
1852
1853		/*
1854		 * Metadata always gets checksummed.  If the data
1855		 * checksum is multi-bit correctable, and it's not a
1856		 * ZBT-style checksum, then it's suitable for metadata
1857		 * as well.  Otherwise, the metadata checksum defaults
1858		 * to fletcher4.
1859		 */
1860		if (!(zio_checksum_table[checksum].ci_flags &
1861		    ZCHECKSUM_FLAG_METADATA) ||
1862		    (zio_checksum_table[checksum].ci_flags &
1863		    ZCHECKSUM_FLAG_EMBEDDED))
1864			checksum = ZIO_CHECKSUM_FLETCHER_4;
1865
1866		if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1867		    (os->os_redundant_metadata ==
1868		    ZFS_REDUNDANT_METADATA_MOST &&
1869		    (level >= zfs_redundant_metadata_most_ditto_level ||
1870		    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
1871			copies++;
1872	} else if (wp & WP_NOFILL) {
1873		ASSERT(level == 0);
1874
1875		/*
1876		 * If we're writing preallocated blocks, we aren't actually
1877		 * writing them so don't set any policy properties.  These
1878		 * blocks are currently only used by an external subsystem
1879		 * outside of zfs (i.e. dump) and not written by the zio
1880		 * pipeline.
1881		 */
1882		compress = ZIO_COMPRESS_OFF;
1883		checksum = ZIO_CHECKSUM_NOPARITY;
1884	} else {
1885		compress = zio_compress_select(os->os_spa, dn->dn_compress,
1886		    compress);
1887
1888		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1889		    zio_checksum_select(dn->dn_checksum, checksum) :
1890		    dedup_checksum;
1891
1892		/*
1893		 * Determine dedup setting.  If we are in dmu_sync(),
1894		 * we won't actually dedup now because that's all
1895		 * done in syncing context; but we do want to use the
1896		 * dedup checkum.  If the checksum is not strong
1897		 * enough to ensure unique signatures, force
1898		 * dedup_verify.
1899		 */
1900		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
1901			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
1902			if (!(zio_checksum_table[checksum].ci_flags &
1903			    ZCHECKSUM_FLAG_DEDUP))
1904				dedup_verify = B_TRUE;
1905		}
1906
1907		/*
1908		 * Enable nopwrite if we have secure enough checksum
1909		 * algorithm (see comment in zio_nop_write) and
1910		 * compression is enabled.  We don't enable nopwrite if
1911		 * dedup is enabled as the two features are mutually
1912		 * exclusive.
1913		 */
1914		nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
1915		    ZCHECKSUM_FLAG_NOPWRITE) &&
1916		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
1917	}
1918
1919	zp->zp_checksum = checksum;
1920	zp->zp_compress = compress;
1921	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1922	zp->zp_level = level;
1923	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
1924	zp->zp_dedup = dedup;
1925	zp->zp_dedup_verify = dedup && dedup_verify;
1926	zp->zp_nopwrite = nopwrite;
1927}
1928
1929int
1930dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1931{
1932	dnode_t *dn;
1933	int err;
1934
1935	/*
1936	 * Sync any current changes before
1937	 * we go trundling through the block pointers.
1938	 */
1939	err = dmu_object_wait_synced(os, object);
1940	if (err) {
1941		return (err);
1942	}
1943
1944	err = dnode_hold(os, object, FTAG, &dn);
1945	if (err) {
1946		return (err);
1947	}
1948
1949	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1950	dnode_rele(dn, FTAG);
1951
1952	return (err);
1953}
1954
1955/*
1956 * Given the ZFS object, if it contains any dirty nodes
1957 * this function flushes all dirty blocks to disk. This
1958 * ensures the DMU object info is updated. A more efficient
1959 * future version might just find the TXG with the maximum
1960 * ID and wait for that to be synced.
1961 */
1962int
1963dmu_object_wait_synced(objset_t *os, uint64_t object)
1964{
1965	dnode_t *dn;
1966	int error, i;
1967
1968	error = dnode_hold(os, object, FTAG, &dn);
1969	if (error) {
1970		return (error);
1971	}
1972
1973	for (i = 0; i < TXG_SIZE; i++) {
1974		if (list_link_active(&dn->dn_dirty_link[i])) {
1975			break;
1976		}
1977	}
1978	dnode_rele(dn, FTAG);
1979	if (i != TXG_SIZE) {
1980		txg_wait_synced(dmu_objset_pool(os), 0);
1981	}
1982
1983	return (0);
1984}
1985
1986void
1987dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1988{
1989	dnode_phys_t *dnp;
1990
1991	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1992	mutex_enter(&dn->dn_mtx);
1993
1994	dnp = dn->dn_phys;
1995
1996	doi->doi_data_block_size = dn->dn_datablksz;
1997	doi->doi_metadata_block_size = dn->dn_indblkshift ?
1998	    1ULL << dn->dn_indblkshift : 0;
1999	doi->doi_type = dn->dn_type;
2000	doi->doi_bonus_type = dn->dn_bonustype;
2001	doi->doi_bonus_size = dn->dn_bonuslen;
2002	doi->doi_indirection = dn->dn_nlevels;
2003	doi->doi_checksum = dn->dn_checksum;
2004	doi->doi_compress = dn->dn_compress;
2005	doi->doi_nblkptr = dn->dn_nblkptr;
2006	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2007	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2008	doi->doi_fill_count = 0;
2009	for (int i = 0; i < dnp->dn_nblkptr; i++)
2010		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2011
2012	mutex_exit(&dn->dn_mtx);
2013	rw_exit(&dn->dn_struct_rwlock);
2014}
2015
2016/*
2017 * Get information on a DMU object.
2018 * If doi is NULL, just indicates whether the object exists.
2019 */
2020int
2021dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2022{
2023	dnode_t *dn;
2024	int err = dnode_hold(os, object, FTAG, &dn);
2025
2026	if (err)
2027		return (err);
2028
2029	if (doi != NULL)
2030		dmu_object_info_from_dnode(dn, doi);
2031
2032	dnode_rele(dn, FTAG);
2033	return (0);
2034}
2035
2036/*
2037 * As above, but faster; can be used when you have a held dbuf in hand.
2038 */
2039void
2040dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2041{
2042	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2043
2044	DB_DNODE_ENTER(db);
2045	dmu_object_info_from_dnode(DB_DNODE(db), doi);
2046	DB_DNODE_EXIT(db);
2047}
2048
2049/*
2050 * Faster still when you only care about the size.
2051 * This is specifically optimized for zfs_getattr().
2052 */
2053void
2054dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2055    u_longlong_t *nblk512)
2056{
2057	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2058	dnode_t *dn;
2059
2060	DB_DNODE_ENTER(db);
2061	dn = DB_DNODE(db);
2062
2063	*blksize = dn->dn_datablksz;
2064	/* add 1 for dnode space */
2065	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2066	    SPA_MINBLOCKSHIFT) + 1;
2067	DB_DNODE_EXIT(db);
2068}
2069
2070void
2071byteswap_uint64_array(void *vbuf, size_t size)
2072{
2073	uint64_t *buf = vbuf;
2074	size_t count = size >> 3;
2075	int i;
2076
2077	ASSERT((size & 7) == 0);
2078
2079	for (i = 0; i < count; i++)
2080		buf[i] = BSWAP_64(buf[i]);
2081}
2082
2083void
2084byteswap_uint32_array(void *vbuf, size_t size)
2085{
2086	uint32_t *buf = vbuf;
2087	size_t count = size >> 2;
2088	int i;
2089
2090	ASSERT((size & 3) == 0);
2091
2092	for (i = 0; i < count; i++)
2093		buf[i] = BSWAP_32(buf[i]);
2094}
2095
2096void
2097byteswap_uint16_array(void *vbuf, size_t size)
2098{
2099	uint16_t *buf = vbuf;
2100	size_t count = size >> 1;
2101	int i;
2102
2103	ASSERT((size & 1) == 0);
2104
2105	for (i = 0; i < count; i++)
2106		buf[i] = BSWAP_16(buf[i]);
2107}
2108
2109/* ARGSUSED */
2110void
2111byteswap_uint8_array(void *vbuf, size_t size)
2112{
2113}
2114
2115void
2116dmu_init(void)
2117{
2118	zfs_dbgmsg_init();
2119	sa_cache_init();
2120	xuio_stat_init();
2121	dmu_objset_init();
2122	dnode_init();
2123	zfetch_init();
2124	zio_compress_init();
2125	l2arc_init();
2126	arc_init();
2127	dbuf_init();
2128}
2129
2130void
2131dmu_fini(void)
2132{
2133	arc_fini(); /* arc depends on l2arc, so arc must go first */
2134	l2arc_fini();
2135	zfetch_fini();
2136	zio_compress_fini();
2137	dbuf_fini();
2138	dnode_fini();
2139	dmu_objset_fini();
2140	xuio_stat_fini();
2141	sa_cache_fini();
2142	zfs_dbgmsg_fini();
2143}
2144