dmu.c revision 288571
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 */
25/* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */
26/* Copyright (c) 2013, Joyent, Inc. All rights reserved. */
27/* Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved. */
28
29#include <sys/dmu.h>
30#include <sys/dmu_impl.h>
31#include <sys/dmu_tx.h>
32#include <sys/dbuf.h>
33#include <sys/dnode.h>
34#include <sys/zfs_context.h>
35#include <sys/dmu_objset.h>
36#include <sys/dmu_traverse.h>
37#include <sys/dsl_dataset.h>
38#include <sys/dsl_dir.h>
39#include <sys/dsl_pool.h>
40#include <sys/dsl_synctask.h>
41#include <sys/dsl_prop.h>
42#include <sys/dmu_zfetch.h>
43#include <sys/zfs_ioctl.h>
44#include <sys/zap.h>
45#include <sys/zio_checksum.h>
46#include <sys/zio_compress.h>
47#include <sys/sa.h>
48#include <sys/zfeature.h>
49#ifdef _KERNEL
50#include <sys/vm.h>
51#include <sys/zfs_znode.h>
52#endif
53
54/*
55 * Enable/disable nopwrite feature.
56 */
57int zfs_nopwrite_enabled = 1;
58SYSCTL_DECL(_vfs_zfs);
59TUNABLE_INT("vfs.zfs.nopwrite_enabled", &zfs_nopwrite_enabled);
60SYSCTL_INT(_vfs_zfs, OID_AUTO, nopwrite_enabled, CTLFLAG_RDTUN,
61    &zfs_nopwrite_enabled, 0, "Enable nopwrite feature");
62
63const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
64	{	DMU_BSWAP_UINT8,	TRUE,	"unallocated"		},
65	{	DMU_BSWAP_ZAP,		TRUE,	"object directory"	},
66	{	DMU_BSWAP_UINT64,	TRUE,	"object array"		},
67	{	DMU_BSWAP_UINT8,	TRUE,	"packed nvlist"		},
68	{	DMU_BSWAP_UINT64,	TRUE,	"packed nvlist size"	},
69	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj"			},
70	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj header"		},
71	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map header"	},
72	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map"		},
73	{	DMU_BSWAP_UINT64,	TRUE,	"ZIL intent log"	},
74	{	DMU_BSWAP_DNODE,	TRUE,	"DMU dnode"		},
75	{	DMU_BSWAP_OBJSET,	TRUE,	"DMU objset"		},
76	{	DMU_BSWAP_UINT64,	TRUE,	"DSL directory"		},
77	{	DMU_BSWAP_ZAP,		TRUE,	"DSL directory child map"},
78	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset snap map"	},
79	{	DMU_BSWAP_ZAP,		TRUE,	"DSL props"		},
80	{	DMU_BSWAP_UINT64,	TRUE,	"DSL dataset"		},
81	{	DMU_BSWAP_ZNODE,	TRUE,	"ZFS znode"		},
82	{	DMU_BSWAP_OLDACL,	TRUE,	"ZFS V0 ACL"		},
83	{	DMU_BSWAP_UINT8,	FALSE,	"ZFS plain file"	},
84	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS directory"		},
85	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS master node"	},
86	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS delete queue"	},
87	{	DMU_BSWAP_UINT8,	FALSE,	"zvol object"		},
88	{	DMU_BSWAP_ZAP,		TRUE,	"zvol prop"		},
89	{	DMU_BSWAP_UINT8,	FALSE,	"other uint8[]"		},
90	{	DMU_BSWAP_UINT64,	FALSE,	"other uint64[]"	},
91	{	DMU_BSWAP_ZAP,		TRUE,	"other ZAP"		},
92	{	DMU_BSWAP_ZAP,		TRUE,	"persistent error log"	},
93	{	DMU_BSWAP_UINT8,	TRUE,	"SPA history"		},
94	{	DMU_BSWAP_UINT64,	TRUE,	"SPA history offsets"	},
95	{	DMU_BSWAP_ZAP,		TRUE,	"Pool properties"	},
96	{	DMU_BSWAP_ZAP,		TRUE,	"DSL permissions"	},
97	{	DMU_BSWAP_ACL,		TRUE,	"ZFS ACL"		},
98	{	DMU_BSWAP_UINT8,	TRUE,	"ZFS SYSACL"		},
99	{	DMU_BSWAP_UINT8,	TRUE,	"FUID table"		},
100	{	DMU_BSWAP_UINT64,	TRUE,	"FUID table size"	},
101	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset next clones"},
102	{	DMU_BSWAP_ZAP,		TRUE,	"scan work queue"	},
103	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group used"	},
104	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group quota"	},
105	{	DMU_BSWAP_ZAP,		TRUE,	"snapshot refcount tags"},
106	{	DMU_BSWAP_ZAP,		TRUE,	"DDT ZAP algorithm"	},
107	{	DMU_BSWAP_ZAP,		TRUE,	"DDT statistics"	},
108	{	DMU_BSWAP_UINT8,	TRUE,	"System attributes"	},
109	{	DMU_BSWAP_ZAP,		TRUE,	"SA master node"	},
110	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr registration"	},
111	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr layouts"	},
112	{	DMU_BSWAP_ZAP,		TRUE,	"scan translations"	},
113	{	DMU_BSWAP_UINT8,	FALSE,	"deduplicated block"	},
114	{	DMU_BSWAP_ZAP,		TRUE,	"DSL deadlist map"	},
115	{	DMU_BSWAP_UINT64,	TRUE,	"DSL deadlist map hdr"	},
116	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dir clones"	},
117	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj subobj"		}
118};
119
120const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
121	{	byteswap_uint8_array,	"uint8"		},
122	{	byteswap_uint16_array,	"uint16"	},
123	{	byteswap_uint32_array,	"uint32"	},
124	{	byteswap_uint64_array,	"uint64"	},
125	{	zap_byteswap,		"zap"		},
126	{	dnode_buf_byteswap,	"dnode"		},
127	{	dmu_objset_byteswap,	"objset"	},
128	{	zfs_znode_byteswap,	"znode"		},
129	{	zfs_oldacl_byteswap,	"oldacl"	},
130	{	zfs_acl_byteswap,	"acl"		}
131};
132
133int
134dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
135    void *tag, dmu_buf_t **dbp)
136{
137	dnode_t *dn;
138	uint64_t blkid;
139	dmu_buf_impl_t *db;
140	int err;
141
142	err = dnode_hold(os, object, FTAG, &dn);
143	if (err)
144		return (err);
145	blkid = dbuf_whichblock(dn, 0, offset);
146	rw_enter(&dn->dn_struct_rwlock, RW_READER);
147	db = dbuf_hold(dn, blkid, tag);
148	rw_exit(&dn->dn_struct_rwlock);
149	dnode_rele(dn, FTAG);
150
151	if (db == NULL) {
152		*dbp = NULL;
153		return (SET_ERROR(EIO));
154	}
155
156	*dbp = &db->db;
157	return (err);
158}
159
160int
161dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
162    void *tag, dmu_buf_t **dbp, int flags)
163{
164	int err;
165	int db_flags = DB_RF_CANFAIL;
166
167	if (flags & DMU_READ_NO_PREFETCH)
168		db_flags |= DB_RF_NOPREFETCH;
169
170	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
171	if (err == 0) {
172		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
173		err = dbuf_read(db, NULL, db_flags);
174		if (err != 0) {
175			dbuf_rele(db, tag);
176			*dbp = NULL;
177		}
178	}
179
180	return (err);
181}
182
183int
184dmu_bonus_max(void)
185{
186	return (DN_MAX_BONUSLEN);
187}
188
189int
190dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
191{
192	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
193	dnode_t *dn;
194	int error;
195
196	DB_DNODE_ENTER(db);
197	dn = DB_DNODE(db);
198
199	if (dn->dn_bonus != db) {
200		error = SET_ERROR(EINVAL);
201	} else if (newsize < 0 || newsize > db_fake->db_size) {
202		error = SET_ERROR(EINVAL);
203	} else {
204		dnode_setbonuslen(dn, newsize, tx);
205		error = 0;
206	}
207
208	DB_DNODE_EXIT(db);
209	return (error);
210}
211
212int
213dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
214{
215	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
216	dnode_t *dn;
217	int error;
218
219	DB_DNODE_ENTER(db);
220	dn = DB_DNODE(db);
221
222	if (!DMU_OT_IS_VALID(type)) {
223		error = SET_ERROR(EINVAL);
224	} else if (dn->dn_bonus != db) {
225		error = SET_ERROR(EINVAL);
226	} else {
227		dnode_setbonus_type(dn, type, tx);
228		error = 0;
229	}
230
231	DB_DNODE_EXIT(db);
232	return (error);
233}
234
235dmu_object_type_t
236dmu_get_bonustype(dmu_buf_t *db_fake)
237{
238	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
239	dnode_t *dn;
240	dmu_object_type_t type;
241
242	DB_DNODE_ENTER(db);
243	dn = DB_DNODE(db);
244	type = dn->dn_bonustype;
245	DB_DNODE_EXIT(db);
246
247	return (type);
248}
249
250int
251dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
252{
253	dnode_t *dn;
254	int error;
255
256	error = dnode_hold(os, object, FTAG, &dn);
257	dbuf_rm_spill(dn, tx);
258	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
259	dnode_rm_spill(dn, tx);
260	rw_exit(&dn->dn_struct_rwlock);
261	dnode_rele(dn, FTAG);
262	return (error);
263}
264
265/*
266 * returns ENOENT, EIO, or 0.
267 */
268int
269dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
270{
271	dnode_t *dn;
272	dmu_buf_impl_t *db;
273	int error;
274
275	error = dnode_hold(os, object, FTAG, &dn);
276	if (error)
277		return (error);
278
279	rw_enter(&dn->dn_struct_rwlock, RW_READER);
280	if (dn->dn_bonus == NULL) {
281		rw_exit(&dn->dn_struct_rwlock);
282		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
283		if (dn->dn_bonus == NULL)
284			dbuf_create_bonus(dn);
285	}
286	db = dn->dn_bonus;
287
288	/* as long as the bonus buf is held, the dnode will be held */
289	if (refcount_add(&db->db_holds, tag) == 1) {
290		VERIFY(dnode_add_ref(dn, db));
291		atomic_inc_32(&dn->dn_dbufs_count);
292	}
293
294	/*
295	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
296	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
297	 * a dnode hold for every dbuf.
298	 */
299	rw_exit(&dn->dn_struct_rwlock);
300
301	dnode_rele(dn, FTAG);
302
303	VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
304
305	*dbp = &db->db;
306	return (0);
307}
308
309/*
310 * returns ENOENT, EIO, or 0.
311 *
312 * This interface will allocate a blank spill dbuf when a spill blk
313 * doesn't already exist on the dnode.
314 *
315 * if you only want to find an already existing spill db, then
316 * dmu_spill_hold_existing() should be used.
317 */
318int
319dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
320{
321	dmu_buf_impl_t *db = NULL;
322	int err;
323
324	if ((flags & DB_RF_HAVESTRUCT) == 0)
325		rw_enter(&dn->dn_struct_rwlock, RW_READER);
326
327	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
328
329	if ((flags & DB_RF_HAVESTRUCT) == 0)
330		rw_exit(&dn->dn_struct_rwlock);
331
332	ASSERT(db != NULL);
333	err = dbuf_read(db, NULL, flags);
334	if (err == 0)
335		*dbp = &db->db;
336	else
337		dbuf_rele(db, tag);
338	return (err);
339}
340
341int
342dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
343{
344	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
345	dnode_t *dn;
346	int err;
347
348	DB_DNODE_ENTER(db);
349	dn = DB_DNODE(db);
350
351	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
352		err = SET_ERROR(EINVAL);
353	} else {
354		rw_enter(&dn->dn_struct_rwlock, RW_READER);
355
356		if (!dn->dn_have_spill) {
357			err = SET_ERROR(ENOENT);
358		} else {
359			err = dmu_spill_hold_by_dnode(dn,
360			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
361		}
362
363		rw_exit(&dn->dn_struct_rwlock);
364	}
365
366	DB_DNODE_EXIT(db);
367	return (err);
368}
369
370int
371dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
372{
373	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
374	dnode_t *dn;
375	int err;
376
377	DB_DNODE_ENTER(db);
378	dn = DB_DNODE(db);
379	err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
380	DB_DNODE_EXIT(db);
381
382	return (err);
383}
384
385/*
386 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
387 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
388 * and can induce severe lock contention when writing to several files
389 * whose dnodes are in the same block.
390 */
391static int
392dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
393    int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
394{
395	dmu_buf_t **dbp;
396	uint64_t blkid, nblks, i;
397	uint32_t dbuf_flags;
398	int err;
399	zio_t *zio;
400
401	ASSERT(length <= DMU_MAX_ACCESS);
402
403	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
404	if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
405		dbuf_flags |= DB_RF_NOPREFETCH;
406
407	rw_enter(&dn->dn_struct_rwlock, RW_READER);
408	if (dn->dn_datablkshift) {
409		int blkshift = dn->dn_datablkshift;
410		nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
411		    P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
412	} else {
413		if (offset + length > dn->dn_datablksz) {
414			zfs_panic_recover("zfs: accessing past end of object "
415			    "%llx/%llx (size=%u access=%llu+%llu)",
416			    (longlong_t)dn->dn_objset->
417			    os_dsl_dataset->ds_object,
418			    (longlong_t)dn->dn_object, dn->dn_datablksz,
419			    (longlong_t)offset, (longlong_t)length);
420			rw_exit(&dn->dn_struct_rwlock);
421			return (SET_ERROR(EIO));
422		}
423		nblks = 1;
424	}
425	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
426
427	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
428	blkid = dbuf_whichblock(dn, 0, offset);
429	for (i = 0; i < nblks; i++) {
430		dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
431		if (db == NULL) {
432			rw_exit(&dn->dn_struct_rwlock);
433			dmu_buf_rele_array(dbp, nblks, tag);
434			zio_nowait(zio);
435			return (SET_ERROR(EIO));
436		}
437		/* initiate async i/o */
438		if (read)
439			(void) dbuf_read(db, zio, dbuf_flags);
440#ifdef _KERNEL
441		else
442			curthread->td_ru.ru_oublock++;
443#endif
444		dbp[i] = &db->db;
445	}
446	rw_exit(&dn->dn_struct_rwlock);
447
448	/* wait for async i/o */
449	err = zio_wait(zio);
450	if (err) {
451		dmu_buf_rele_array(dbp, nblks, tag);
452		return (err);
453	}
454
455	/* wait for other io to complete */
456	if (read) {
457		for (i = 0; i < nblks; i++) {
458			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
459			mutex_enter(&db->db_mtx);
460			while (db->db_state == DB_READ ||
461			    db->db_state == DB_FILL)
462				cv_wait(&db->db_changed, &db->db_mtx);
463			if (db->db_state == DB_UNCACHED)
464				err = SET_ERROR(EIO);
465			mutex_exit(&db->db_mtx);
466			if (err) {
467				dmu_buf_rele_array(dbp, nblks, tag);
468				return (err);
469			}
470		}
471	}
472
473	*numbufsp = nblks;
474	*dbpp = dbp;
475	return (0);
476}
477
478static int
479dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
480    uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
481{
482	dnode_t *dn;
483	int err;
484
485	err = dnode_hold(os, object, FTAG, &dn);
486	if (err)
487		return (err);
488
489	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
490	    numbufsp, dbpp, DMU_READ_PREFETCH);
491
492	dnode_rele(dn, FTAG);
493
494	return (err);
495}
496
497int
498dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
499    uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
500{
501	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
502	dnode_t *dn;
503	int err;
504
505	DB_DNODE_ENTER(db);
506	dn = DB_DNODE(db);
507	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
508	    numbufsp, dbpp, DMU_READ_PREFETCH);
509	DB_DNODE_EXIT(db);
510
511	return (err);
512}
513
514void
515dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
516{
517	int i;
518	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
519
520	if (numbufs == 0)
521		return;
522
523	for (i = 0; i < numbufs; i++) {
524		if (dbp[i])
525			dbuf_rele(dbp[i], tag);
526	}
527
528	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
529}
530
531/*
532 * Issue prefetch i/os for the given blocks.  If level is greater than 0, the
533 * indirect blocks prefeteched will be those that point to the blocks containing
534 * the data starting at offset, and continuing to offset + len.
535 *
536 * Note that if the indirect blocks above the blocks being prefetched are not in
537 * cache, they will be asychronously read in.
538 */
539void
540dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
541    uint64_t len, zio_priority_t pri)
542{
543	dnode_t *dn;
544	uint64_t blkid;
545	int nblks, err;
546
547	if (zfs_prefetch_disable)
548		return;
549
550	if (len == 0) {  /* they're interested in the bonus buffer */
551		dn = DMU_META_DNODE(os);
552
553		if (object == 0 || object >= DN_MAX_OBJECT)
554			return;
555
556		rw_enter(&dn->dn_struct_rwlock, RW_READER);
557		blkid = dbuf_whichblock(dn, level,
558		    object * sizeof (dnode_phys_t));
559		dbuf_prefetch(dn, level, blkid, pri, 0);
560		rw_exit(&dn->dn_struct_rwlock);
561		return;
562	}
563
564	/*
565	 * XXX - Note, if the dnode for the requested object is not
566	 * already cached, we will do a *synchronous* read in the
567	 * dnode_hold() call.  The same is true for any indirects.
568	 */
569	err = dnode_hold(os, object, FTAG, &dn);
570	if (err != 0)
571		return;
572
573	rw_enter(&dn->dn_struct_rwlock, RW_READER);
574	/*
575	 * offset + len - 1 is the last byte we want to prefetch for, and offset
576	 * is the first.  Then dbuf_whichblk(dn, level, off + len - 1) is the
577	 * last block we want to prefetch, and dbuf_whichblock(dn, level,
578	 * offset)  is the first.  Then the number we need to prefetch is the
579	 * last - first + 1.
580	 */
581	if (level > 0 || dn->dn_datablkshift != 0) {
582		nblks = dbuf_whichblock(dn, level, offset + len - 1) -
583		    dbuf_whichblock(dn, level, offset) + 1;
584	} else {
585		nblks = (offset < dn->dn_datablksz);
586	}
587
588	if (nblks != 0) {
589		blkid = dbuf_whichblock(dn, level, offset);
590		for (int i = 0; i < nblks; i++)
591			dbuf_prefetch(dn, level, blkid + i, pri, 0);
592	}
593
594	rw_exit(&dn->dn_struct_rwlock);
595
596	dnode_rele(dn, FTAG);
597}
598
599/*
600 * Get the next "chunk" of file data to free.  We traverse the file from
601 * the end so that the file gets shorter over time (if we crashes in the
602 * middle, this will leave us in a better state).  We find allocated file
603 * data by simply searching the allocated level 1 indirects.
604 *
605 * On input, *start should be the first offset that does not need to be
606 * freed (e.g. "offset + length").  On return, *start will be the first
607 * offset that should be freed.
608 */
609static int
610get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
611{
612	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
613	/* bytes of data covered by a level-1 indirect block */
614	uint64_t iblkrange =
615	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
616
617	ASSERT3U(minimum, <=, *start);
618
619	if (*start - minimum <= iblkrange * maxblks) {
620		*start = minimum;
621		return (0);
622	}
623	ASSERT(ISP2(iblkrange));
624
625	for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
626		int err;
627
628		/*
629		 * dnode_next_offset(BACKWARDS) will find an allocated L1
630		 * indirect block at or before the input offset.  We must
631		 * decrement *start so that it is at the end of the region
632		 * to search.
633		 */
634		(*start)--;
635		err = dnode_next_offset(dn,
636		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
637
638		/* if there are no indirect blocks before start, we are done */
639		if (err == ESRCH) {
640			*start = minimum;
641			break;
642		} else if (err != 0) {
643			return (err);
644		}
645
646		/* set start to the beginning of this L1 indirect */
647		*start = P2ALIGN(*start, iblkrange);
648	}
649	if (*start < minimum)
650		*start = minimum;
651	return (0);
652}
653
654static int
655dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
656    uint64_t length)
657{
658	uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
659	int err;
660
661	if (offset >= object_size)
662		return (0);
663
664	if (length == DMU_OBJECT_END || offset + length > object_size)
665		length = object_size - offset;
666
667	while (length != 0) {
668		uint64_t chunk_end, chunk_begin;
669
670		chunk_end = chunk_begin = offset + length;
671
672		/* move chunk_begin backwards to the beginning of this chunk */
673		err = get_next_chunk(dn, &chunk_begin, offset);
674		if (err)
675			return (err);
676		ASSERT3U(chunk_begin, >=, offset);
677		ASSERT3U(chunk_begin, <=, chunk_end);
678
679		dmu_tx_t *tx = dmu_tx_create(os);
680		dmu_tx_hold_free(tx, dn->dn_object,
681		    chunk_begin, chunk_end - chunk_begin);
682
683		/*
684		 * Mark this transaction as typically resulting in a net
685		 * reduction in space used.
686		 */
687		dmu_tx_mark_netfree(tx);
688		err = dmu_tx_assign(tx, TXG_WAIT);
689		if (err) {
690			dmu_tx_abort(tx);
691			return (err);
692		}
693		dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx);
694		dmu_tx_commit(tx);
695
696		length -= chunk_end - chunk_begin;
697	}
698	return (0);
699}
700
701int
702dmu_free_long_range(objset_t *os, uint64_t object,
703    uint64_t offset, uint64_t length)
704{
705	dnode_t *dn;
706	int err;
707
708	err = dnode_hold(os, object, FTAG, &dn);
709	if (err != 0)
710		return (err);
711	err = dmu_free_long_range_impl(os, dn, offset, length);
712
713	/*
714	 * It is important to zero out the maxblkid when freeing the entire
715	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
716	 * will take the fast path, and (b) dnode_reallocate() can verify
717	 * that the entire file has been freed.
718	 */
719	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
720		dn->dn_maxblkid = 0;
721
722	dnode_rele(dn, FTAG);
723	return (err);
724}
725
726int
727dmu_free_long_object(objset_t *os, uint64_t object)
728{
729	dmu_tx_t *tx;
730	int err;
731
732	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
733	if (err != 0)
734		return (err);
735
736	tx = dmu_tx_create(os);
737	dmu_tx_hold_bonus(tx, object);
738	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
739	dmu_tx_mark_netfree(tx);
740	err = dmu_tx_assign(tx, TXG_WAIT);
741	if (err == 0) {
742		err = dmu_object_free(os, object, tx);
743		dmu_tx_commit(tx);
744	} else {
745		dmu_tx_abort(tx);
746	}
747
748	return (err);
749}
750
751int
752dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
753    uint64_t size, dmu_tx_t *tx)
754{
755	dnode_t *dn;
756	int err = dnode_hold(os, object, FTAG, &dn);
757	if (err)
758		return (err);
759	ASSERT(offset < UINT64_MAX);
760	ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
761	dnode_free_range(dn, offset, size, tx);
762	dnode_rele(dn, FTAG);
763	return (0);
764}
765
766int
767dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
768    void *buf, uint32_t flags)
769{
770	dnode_t *dn;
771	dmu_buf_t **dbp;
772	int numbufs, err;
773
774	err = dnode_hold(os, object, FTAG, &dn);
775	if (err)
776		return (err);
777
778	/*
779	 * Deal with odd block sizes, where there can't be data past the first
780	 * block.  If we ever do the tail block optimization, we will need to
781	 * handle that here as well.
782	 */
783	if (dn->dn_maxblkid == 0) {
784		int newsz = offset > dn->dn_datablksz ? 0 :
785		    MIN(size, dn->dn_datablksz - offset);
786		bzero((char *)buf + newsz, size - newsz);
787		size = newsz;
788	}
789
790	while (size > 0) {
791		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
792		int i;
793
794		/*
795		 * NB: we could do this block-at-a-time, but it's nice
796		 * to be reading in parallel.
797		 */
798		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
799		    TRUE, FTAG, &numbufs, &dbp, flags);
800		if (err)
801			break;
802
803		for (i = 0; i < numbufs; i++) {
804			int tocpy;
805			int bufoff;
806			dmu_buf_t *db = dbp[i];
807
808			ASSERT(size > 0);
809
810			bufoff = offset - db->db_offset;
811			tocpy = (int)MIN(db->db_size - bufoff, size);
812
813			bcopy((char *)db->db_data + bufoff, buf, tocpy);
814
815			offset += tocpy;
816			size -= tocpy;
817			buf = (char *)buf + tocpy;
818		}
819		dmu_buf_rele_array(dbp, numbufs, FTAG);
820	}
821	dnode_rele(dn, FTAG);
822	return (err);
823}
824
825void
826dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
827    const void *buf, dmu_tx_t *tx)
828{
829	dmu_buf_t **dbp;
830	int numbufs, i;
831
832	if (size == 0)
833		return;
834
835	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
836	    FALSE, FTAG, &numbufs, &dbp));
837
838	for (i = 0; i < numbufs; i++) {
839		int tocpy;
840		int bufoff;
841		dmu_buf_t *db = dbp[i];
842
843		ASSERT(size > 0);
844
845		bufoff = offset - db->db_offset;
846		tocpy = (int)MIN(db->db_size - bufoff, size);
847
848		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
849
850		if (tocpy == db->db_size)
851			dmu_buf_will_fill(db, tx);
852		else
853			dmu_buf_will_dirty(db, tx);
854
855		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
856
857		if (tocpy == db->db_size)
858			dmu_buf_fill_done(db, tx);
859
860		offset += tocpy;
861		size -= tocpy;
862		buf = (char *)buf + tocpy;
863	}
864	dmu_buf_rele_array(dbp, numbufs, FTAG);
865}
866
867void
868dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
869    dmu_tx_t *tx)
870{
871	dmu_buf_t **dbp;
872	int numbufs, i;
873
874	if (size == 0)
875		return;
876
877	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
878	    FALSE, FTAG, &numbufs, &dbp));
879
880	for (i = 0; i < numbufs; i++) {
881		dmu_buf_t *db = dbp[i];
882
883		dmu_buf_will_not_fill(db, tx);
884	}
885	dmu_buf_rele_array(dbp, numbufs, FTAG);
886}
887
888void
889dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
890    void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
891    int compressed_size, int byteorder, dmu_tx_t *tx)
892{
893	dmu_buf_t *db;
894
895	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
896	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
897	VERIFY0(dmu_buf_hold_noread(os, object, offset,
898	    FTAG, &db));
899
900	dmu_buf_write_embedded(db,
901	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
902	    uncompressed_size, compressed_size, byteorder, tx);
903
904	dmu_buf_rele(db, FTAG);
905}
906
907/*
908 * DMU support for xuio
909 */
910kstat_t *xuio_ksp = NULL;
911
912int
913dmu_xuio_init(xuio_t *xuio, int nblk)
914{
915	dmu_xuio_t *priv;
916	uio_t *uio = &xuio->xu_uio;
917
918	uio->uio_iovcnt = nblk;
919	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
920
921	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
922	priv->cnt = nblk;
923	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
924	priv->iovp = uio->uio_iov;
925	XUIO_XUZC_PRIV(xuio) = priv;
926
927	if (XUIO_XUZC_RW(xuio) == UIO_READ)
928		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
929	else
930		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
931
932	return (0);
933}
934
935void
936dmu_xuio_fini(xuio_t *xuio)
937{
938	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
939	int nblk = priv->cnt;
940
941	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
942	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
943	kmem_free(priv, sizeof (dmu_xuio_t));
944
945	if (XUIO_XUZC_RW(xuio) == UIO_READ)
946		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
947	else
948		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
949}
950
951/*
952 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
953 * and increase priv->next by 1.
954 */
955int
956dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
957{
958	struct iovec *iov;
959	uio_t *uio = &xuio->xu_uio;
960	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
961	int i = priv->next++;
962
963	ASSERT(i < priv->cnt);
964	ASSERT(off + n <= arc_buf_size(abuf));
965	iov = uio->uio_iov + i;
966	iov->iov_base = (char *)abuf->b_data + off;
967	iov->iov_len = n;
968	priv->bufs[i] = abuf;
969	return (0);
970}
971
972int
973dmu_xuio_cnt(xuio_t *xuio)
974{
975	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
976	return (priv->cnt);
977}
978
979arc_buf_t *
980dmu_xuio_arcbuf(xuio_t *xuio, int i)
981{
982	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
983
984	ASSERT(i < priv->cnt);
985	return (priv->bufs[i]);
986}
987
988void
989dmu_xuio_clear(xuio_t *xuio, int i)
990{
991	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
992
993	ASSERT(i < priv->cnt);
994	priv->bufs[i] = NULL;
995}
996
997static void
998xuio_stat_init(void)
999{
1000	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
1001	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
1002	    KSTAT_FLAG_VIRTUAL);
1003	if (xuio_ksp != NULL) {
1004		xuio_ksp->ks_data = &xuio_stats;
1005		kstat_install(xuio_ksp);
1006	}
1007}
1008
1009static void
1010xuio_stat_fini(void)
1011{
1012	if (xuio_ksp != NULL) {
1013		kstat_delete(xuio_ksp);
1014		xuio_ksp = NULL;
1015	}
1016}
1017
1018void
1019xuio_stat_wbuf_copied()
1020{
1021	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1022}
1023
1024void
1025xuio_stat_wbuf_nocopy()
1026{
1027	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1028}
1029
1030#ifdef _KERNEL
1031static int
1032dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
1033{
1034	dmu_buf_t **dbp;
1035	int numbufs, i, err;
1036	xuio_t *xuio = NULL;
1037
1038	/*
1039	 * NB: we could do this block-at-a-time, but it's nice
1040	 * to be reading in parallel.
1041	 */
1042	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1043	    TRUE, FTAG, &numbufs, &dbp, 0);
1044	if (err)
1045		return (err);
1046
1047#ifdef UIO_XUIO
1048	if (uio->uio_extflg == UIO_XUIO)
1049		xuio = (xuio_t *)uio;
1050#endif
1051
1052	for (i = 0; i < numbufs; i++) {
1053		int tocpy;
1054		int bufoff;
1055		dmu_buf_t *db = dbp[i];
1056
1057		ASSERT(size > 0);
1058
1059		bufoff = uio->uio_loffset - db->db_offset;
1060		tocpy = (int)MIN(db->db_size - bufoff, size);
1061
1062		if (xuio) {
1063			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1064			arc_buf_t *dbuf_abuf = dbi->db_buf;
1065			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1066			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1067			if (!err) {
1068				uio->uio_resid -= tocpy;
1069				uio->uio_loffset += tocpy;
1070			}
1071
1072			if (abuf == dbuf_abuf)
1073				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1074			else
1075				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1076		} else {
1077			err = uiomove((char *)db->db_data + bufoff, tocpy,
1078			    UIO_READ, uio);
1079		}
1080		if (err)
1081			break;
1082
1083		size -= tocpy;
1084	}
1085	dmu_buf_rele_array(dbp, numbufs, FTAG);
1086
1087	return (err);
1088}
1089
1090/*
1091 * Read 'size' bytes into the uio buffer.
1092 * From object zdb->db_object.
1093 * Starting at offset uio->uio_loffset.
1094 *
1095 * If the caller already has a dbuf in the target object
1096 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1097 * because we don't have to find the dnode_t for the object.
1098 */
1099int
1100dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1101{
1102	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1103	dnode_t *dn;
1104	int err;
1105
1106	if (size == 0)
1107		return (0);
1108
1109	DB_DNODE_ENTER(db);
1110	dn = DB_DNODE(db);
1111	err = dmu_read_uio_dnode(dn, uio, size);
1112	DB_DNODE_EXIT(db);
1113
1114	return (err);
1115}
1116
1117/*
1118 * Read 'size' bytes into the uio buffer.
1119 * From the specified object
1120 * Starting at offset uio->uio_loffset.
1121 */
1122int
1123dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1124{
1125	dnode_t *dn;
1126	int err;
1127
1128	if (size == 0)
1129		return (0);
1130
1131	err = dnode_hold(os, object, FTAG, &dn);
1132	if (err)
1133		return (err);
1134
1135	err = dmu_read_uio_dnode(dn, uio, size);
1136
1137	dnode_rele(dn, FTAG);
1138
1139	return (err);
1140}
1141
1142static int
1143dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1144{
1145	dmu_buf_t **dbp;
1146	int numbufs;
1147	int err = 0;
1148	int i;
1149
1150	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1151	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1152	if (err)
1153		return (err);
1154
1155	for (i = 0; i < numbufs; i++) {
1156		int tocpy;
1157		int bufoff;
1158		dmu_buf_t *db = dbp[i];
1159
1160		ASSERT(size > 0);
1161
1162		bufoff = uio->uio_loffset - db->db_offset;
1163		tocpy = (int)MIN(db->db_size - bufoff, size);
1164
1165		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1166
1167		if (tocpy == db->db_size)
1168			dmu_buf_will_fill(db, tx);
1169		else
1170			dmu_buf_will_dirty(db, tx);
1171
1172		/*
1173		 * XXX uiomove could block forever (eg. nfs-backed
1174		 * pages).  There needs to be a uiolockdown() function
1175		 * to lock the pages in memory, so that uiomove won't
1176		 * block.
1177		 */
1178		err = uiomove((char *)db->db_data + bufoff, tocpy,
1179		    UIO_WRITE, uio);
1180
1181		if (tocpy == db->db_size)
1182			dmu_buf_fill_done(db, tx);
1183
1184		if (err)
1185			break;
1186
1187		size -= tocpy;
1188	}
1189
1190	dmu_buf_rele_array(dbp, numbufs, FTAG);
1191	return (err);
1192}
1193
1194/*
1195 * Write 'size' bytes from the uio buffer.
1196 * To object zdb->db_object.
1197 * Starting at offset uio->uio_loffset.
1198 *
1199 * If the caller already has a dbuf in the target object
1200 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1201 * because we don't have to find the dnode_t for the object.
1202 */
1203int
1204dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1205    dmu_tx_t *tx)
1206{
1207	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1208	dnode_t *dn;
1209	int err;
1210
1211	if (size == 0)
1212		return (0);
1213
1214	DB_DNODE_ENTER(db);
1215	dn = DB_DNODE(db);
1216	err = dmu_write_uio_dnode(dn, uio, size, tx);
1217	DB_DNODE_EXIT(db);
1218
1219	return (err);
1220}
1221
1222/*
1223 * Write 'size' bytes from the uio buffer.
1224 * To the specified object.
1225 * Starting at offset uio->uio_loffset.
1226 */
1227int
1228dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1229    dmu_tx_t *tx)
1230{
1231	dnode_t *dn;
1232	int err;
1233
1234	if (size == 0)
1235		return (0);
1236
1237	err = dnode_hold(os, object, FTAG, &dn);
1238	if (err)
1239		return (err);
1240
1241	err = dmu_write_uio_dnode(dn, uio, size, tx);
1242
1243	dnode_rele(dn, FTAG);
1244
1245	return (err);
1246}
1247
1248#ifdef sun
1249int
1250dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1251    page_t *pp, dmu_tx_t *tx)
1252{
1253	dmu_buf_t **dbp;
1254	int numbufs, i;
1255	int err;
1256
1257	if (size == 0)
1258		return (0);
1259
1260	err = dmu_buf_hold_array(os, object, offset, size,
1261	    FALSE, FTAG, &numbufs, &dbp);
1262	if (err)
1263		return (err);
1264
1265	for (i = 0; i < numbufs; i++) {
1266		int tocpy, copied, thiscpy;
1267		int bufoff;
1268		dmu_buf_t *db = dbp[i];
1269		caddr_t va;
1270
1271		ASSERT(size > 0);
1272		ASSERT3U(db->db_size, >=, PAGESIZE);
1273
1274		bufoff = offset - db->db_offset;
1275		tocpy = (int)MIN(db->db_size - bufoff, size);
1276
1277		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1278
1279		if (tocpy == db->db_size)
1280			dmu_buf_will_fill(db, tx);
1281		else
1282			dmu_buf_will_dirty(db, tx);
1283
1284		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1285			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1286			thiscpy = MIN(PAGESIZE, tocpy - copied);
1287			va = zfs_map_page(pp, S_READ);
1288			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1289			zfs_unmap_page(pp, va);
1290			pp = pp->p_next;
1291			bufoff += PAGESIZE;
1292		}
1293
1294		if (tocpy == db->db_size)
1295			dmu_buf_fill_done(db, tx);
1296
1297		offset += tocpy;
1298		size -= tocpy;
1299	}
1300	dmu_buf_rele_array(dbp, numbufs, FTAG);
1301	return (err);
1302}
1303
1304#else
1305
1306int
1307dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1308    vm_page_t *ma, dmu_tx_t *tx)
1309{
1310	dmu_buf_t **dbp;
1311	struct sf_buf *sf;
1312	int numbufs, i;
1313	int err;
1314
1315	if (size == 0)
1316		return (0);
1317
1318	err = dmu_buf_hold_array(os, object, offset, size,
1319	    FALSE, FTAG, &numbufs, &dbp);
1320	if (err)
1321		return (err);
1322
1323	for (i = 0; i < numbufs; i++) {
1324		int tocpy, copied, thiscpy;
1325		int bufoff;
1326		dmu_buf_t *db = dbp[i];
1327		caddr_t va;
1328
1329		ASSERT(size > 0);
1330		ASSERT3U(db->db_size, >=, PAGESIZE);
1331
1332		bufoff = offset - db->db_offset;
1333		tocpy = (int)MIN(db->db_size - bufoff, size);
1334
1335		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1336
1337		if (tocpy == db->db_size)
1338			dmu_buf_will_fill(db, tx);
1339		else
1340			dmu_buf_will_dirty(db, tx);
1341
1342		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1343			ASSERT3U(ptoa((*ma)->pindex), ==, db->db_offset + bufoff);
1344			thiscpy = MIN(PAGESIZE, tocpy - copied);
1345			va = zfs_map_page(*ma, &sf);
1346			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1347			zfs_unmap_page(sf);
1348			ma += 1;
1349			bufoff += PAGESIZE;
1350		}
1351
1352		if (tocpy == db->db_size)
1353			dmu_buf_fill_done(db, tx);
1354
1355		offset += tocpy;
1356		size -= tocpy;
1357	}
1358	dmu_buf_rele_array(dbp, numbufs, FTAG);
1359	return (err);
1360}
1361#endif	/* sun */
1362#endif
1363
1364/*
1365 * Allocate a loaned anonymous arc buffer.
1366 */
1367arc_buf_t *
1368dmu_request_arcbuf(dmu_buf_t *handle, int size)
1369{
1370	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1371
1372	return (arc_loan_buf(db->db_objset->os_spa, size));
1373}
1374
1375/*
1376 * Free a loaned arc buffer.
1377 */
1378void
1379dmu_return_arcbuf(arc_buf_t *buf)
1380{
1381	arc_return_buf(buf, FTAG);
1382	VERIFY(arc_buf_remove_ref(buf, FTAG));
1383}
1384
1385/*
1386 * When possible directly assign passed loaned arc buffer to a dbuf.
1387 * If this is not possible copy the contents of passed arc buf via
1388 * dmu_write().
1389 */
1390void
1391dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1392    dmu_tx_t *tx)
1393{
1394	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1395	dnode_t *dn;
1396	dmu_buf_impl_t *db;
1397	uint32_t blksz = (uint32_t)arc_buf_size(buf);
1398	uint64_t blkid;
1399
1400	DB_DNODE_ENTER(dbuf);
1401	dn = DB_DNODE(dbuf);
1402	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1403	blkid = dbuf_whichblock(dn, 0, offset);
1404	VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1405	rw_exit(&dn->dn_struct_rwlock);
1406	DB_DNODE_EXIT(dbuf);
1407
1408	/*
1409	 * We can only assign if the offset is aligned, the arc buf is the
1410	 * same size as the dbuf, and the dbuf is not metadata.  It
1411	 * can't be metadata because the loaned arc buf comes from the
1412	 * user-data kmem arena.
1413	 */
1414	if (offset == db->db.db_offset && blksz == db->db.db_size &&
1415	    DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA) {
1416		dbuf_assign_arcbuf(db, buf, tx);
1417		dbuf_rele(db, FTAG);
1418	} else {
1419		objset_t *os;
1420		uint64_t object;
1421
1422		DB_DNODE_ENTER(dbuf);
1423		dn = DB_DNODE(dbuf);
1424		os = dn->dn_objset;
1425		object = dn->dn_object;
1426		DB_DNODE_EXIT(dbuf);
1427
1428		dbuf_rele(db, FTAG);
1429		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1430		dmu_return_arcbuf(buf);
1431		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1432	}
1433}
1434
1435typedef struct {
1436	dbuf_dirty_record_t	*dsa_dr;
1437	dmu_sync_cb_t		*dsa_done;
1438	zgd_t			*dsa_zgd;
1439	dmu_tx_t		*dsa_tx;
1440} dmu_sync_arg_t;
1441
1442/* ARGSUSED */
1443static void
1444dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1445{
1446	dmu_sync_arg_t *dsa = varg;
1447	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1448	blkptr_t *bp = zio->io_bp;
1449
1450	if (zio->io_error == 0) {
1451		if (BP_IS_HOLE(bp)) {
1452			/*
1453			 * A block of zeros may compress to a hole, but the
1454			 * block size still needs to be known for replay.
1455			 */
1456			BP_SET_LSIZE(bp, db->db_size);
1457		} else if (!BP_IS_EMBEDDED(bp)) {
1458			ASSERT(BP_GET_LEVEL(bp) == 0);
1459			bp->blk_fill = 1;
1460		}
1461	}
1462}
1463
1464static void
1465dmu_sync_late_arrival_ready(zio_t *zio)
1466{
1467	dmu_sync_ready(zio, NULL, zio->io_private);
1468}
1469
1470/* ARGSUSED */
1471static void
1472dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1473{
1474	dmu_sync_arg_t *dsa = varg;
1475	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1476	dmu_buf_impl_t *db = dr->dr_dbuf;
1477
1478	mutex_enter(&db->db_mtx);
1479	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1480	if (zio->io_error == 0) {
1481		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1482		if (dr->dt.dl.dr_nopwrite) {
1483			blkptr_t *bp = zio->io_bp;
1484			blkptr_t *bp_orig = &zio->io_bp_orig;
1485			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1486
1487			ASSERT(BP_EQUAL(bp, bp_orig));
1488			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1489			ASSERT(zio_checksum_table[chksum].ci_dedup);
1490		}
1491		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1492		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1493		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1494
1495		/*
1496		 * Old style holes are filled with all zeros, whereas
1497		 * new-style holes maintain their lsize, type, level,
1498		 * and birth time (see zio_write_compress). While we
1499		 * need to reset the BP_SET_LSIZE() call that happened
1500		 * in dmu_sync_ready for old style holes, we do *not*
1501		 * want to wipe out the information contained in new
1502		 * style holes. Thus, only zero out the block pointer if
1503		 * it's an old style hole.
1504		 */
1505		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1506		    dr->dt.dl.dr_overridden_by.blk_birth == 0)
1507			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1508	} else {
1509		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1510	}
1511	cv_broadcast(&db->db_changed);
1512	mutex_exit(&db->db_mtx);
1513
1514	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1515
1516	kmem_free(dsa, sizeof (*dsa));
1517}
1518
1519static void
1520dmu_sync_late_arrival_done(zio_t *zio)
1521{
1522	blkptr_t *bp = zio->io_bp;
1523	dmu_sync_arg_t *dsa = zio->io_private;
1524	blkptr_t *bp_orig = &zio->io_bp_orig;
1525
1526	if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1527		/*
1528		 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
1529		 * then there is nothing to do here. Otherwise, free the
1530		 * newly allocated block in this txg.
1531		 */
1532		if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
1533			ASSERT(BP_EQUAL(bp, bp_orig));
1534		} else {
1535			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1536			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1537			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1538			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1539		}
1540	}
1541
1542	dmu_tx_commit(dsa->dsa_tx);
1543
1544	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1545
1546	kmem_free(dsa, sizeof (*dsa));
1547}
1548
1549static int
1550dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1551    zio_prop_t *zp, zbookmark_phys_t *zb)
1552{
1553	dmu_sync_arg_t *dsa;
1554	dmu_tx_t *tx;
1555
1556	tx = dmu_tx_create(os);
1557	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1558	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1559		dmu_tx_abort(tx);
1560		/* Make zl_get_data do txg_waited_synced() */
1561		return (SET_ERROR(EIO));
1562	}
1563
1564	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1565	dsa->dsa_dr = NULL;
1566	dsa->dsa_done = done;
1567	dsa->dsa_zgd = zgd;
1568	dsa->dsa_tx = tx;
1569
1570	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1571	    zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1572	    dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa,
1573	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1574
1575	return (0);
1576}
1577
1578/*
1579 * Intent log support: sync the block associated with db to disk.
1580 * N.B. and XXX: the caller is responsible for making sure that the
1581 * data isn't changing while dmu_sync() is writing it.
1582 *
1583 * Return values:
1584 *
1585 *	EEXIST: this txg has already been synced, so there's nothing to do.
1586 *		The caller should not log the write.
1587 *
1588 *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1589 *		The caller should not log the write.
1590 *
1591 *	EALREADY: this block is already in the process of being synced.
1592 *		The caller should track its progress (somehow).
1593 *
1594 *	EIO: could not do the I/O.
1595 *		The caller should do a txg_wait_synced().
1596 *
1597 *	0: the I/O has been initiated.
1598 *		The caller should log this blkptr in the done callback.
1599 *		It is possible that the I/O will fail, in which case
1600 *		the error will be reported to the done callback and
1601 *		propagated to pio from zio_done().
1602 */
1603int
1604dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1605{
1606	blkptr_t *bp = zgd->zgd_bp;
1607	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1608	objset_t *os = db->db_objset;
1609	dsl_dataset_t *ds = os->os_dsl_dataset;
1610	dbuf_dirty_record_t *dr;
1611	dmu_sync_arg_t *dsa;
1612	zbookmark_phys_t zb;
1613	zio_prop_t zp;
1614	dnode_t *dn;
1615
1616	ASSERT(pio != NULL);
1617	ASSERT(txg != 0);
1618
1619	SET_BOOKMARK(&zb, ds->ds_object,
1620	    db->db.db_object, db->db_level, db->db_blkid);
1621
1622	DB_DNODE_ENTER(db);
1623	dn = DB_DNODE(db);
1624	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1625	DB_DNODE_EXIT(db);
1626
1627	/*
1628	 * If we're frozen (running ziltest), we always need to generate a bp.
1629	 */
1630	if (txg > spa_freeze_txg(os->os_spa))
1631		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1632
1633	/*
1634	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1635	 * and us.  If we determine that this txg is not yet syncing,
1636	 * but it begins to sync a moment later, that's OK because the
1637	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1638	 */
1639	mutex_enter(&db->db_mtx);
1640
1641	if (txg <= spa_last_synced_txg(os->os_spa)) {
1642		/*
1643		 * This txg has already synced.  There's nothing to do.
1644		 */
1645		mutex_exit(&db->db_mtx);
1646		return (SET_ERROR(EEXIST));
1647	}
1648
1649	if (txg <= spa_syncing_txg(os->os_spa)) {
1650		/*
1651		 * This txg is currently syncing, so we can't mess with
1652		 * the dirty record anymore; just write a new log block.
1653		 */
1654		mutex_exit(&db->db_mtx);
1655		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1656	}
1657
1658	dr = db->db_last_dirty;
1659	while (dr && dr->dr_txg != txg)
1660		dr = dr->dr_next;
1661
1662	if (dr == NULL) {
1663		/*
1664		 * There's no dr for this dbuf, so it must have been freed.
1665		 * There's no need to log writes to freed blocks, so we're done.
1666		 */
1667		mutex_exit(&db->db_mtx);
1668		return (SET_ERROR(ENOENT));
1669	}
1670
1671	ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1672
1673	/*
1674	 * Assume the on-disk data is X, the current syncing data (in
1675	 * txg - 1) is Y, and the current in-memory data is Z (currently
1676	 * in dmu_sync).
1677	 *
1678	 * We usually want to perform a nopwrite if X and Z are the
1679	 * same.  However, if Y is different (i.e. the BP is going to
1680	 * change before this write takes effect), then a nopwrite will
1681	 * be incorrect - we would override with X, which could have
1682	 * been freed when Y was written.
1683	 *
1684	 * (Note that this is not a concern when we are nop-writing from
1685	 * syncing context, because X and Y must be identical, because
1686	 * all previous txgs have been synced.)
1687	 *
1688	 * Therefore, we disable nopwrite if the current BP could change
1689	 * before this TXG.  There are two ways it could change: by
1690	 * being dirty (dr_next is non-NULL), or by being freed
1691	 * (dnode_block_freed()).  This behavior is verified by
1692	 * zio_done(), which VERIFYs that the override BP is identical
1693	 * to the on-disk BP.
1694	 */
1695	DB_DNODE_ENTER(db);
1696	dn = DB_DNODE(db);
1697	if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1698		zp.zp_nopwrite = B_FALSE;
1699	DB_DNODE_EXIT(db);
1700
1701	ASSERT(dr->dr_txg == txg);
1702	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1703	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1704		/*
1705		 * We have already issued a sync write for this buffer,
1706		 * or this buffer has already been synced.  It could not
1707		 * have been dirtied since, or we would have cleared the state.
1708		 */
1709		mutex_exit(&db->db_mtx);
1710		return (SET_ERROR(EALREADY));
1711	}
1712
1713	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1714	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1715	mutex_exit(&db->db_mtx);
1716
1717	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1718	dsa->dsa_dr = dr;
1719	dsa->dsa_done = done;
1720	dsa->dsa_zgd = zgd;
1721	dsa->dsa_tx = NULL;
1722
1723	zio_nowait(arc_write(pio, os->os_spa, txg,
1724	    bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1725	    DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready,
1726	    NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE,
1727	    ZIO_FLAG_CANFAIL, &zb));
1728
1729	return (0);
1730}
1731
1732int
1733dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1734	dmu_tx_t *tx)
1735{
1736	dnode_t *dn;
1737	int err;
1738
1739	err = dnode_hold(os, object, FTAG, &dn);
1740	if (err)
1741		return (err);
1742	err = dnode_set_blksz(dn, size, ibs, tx);
1743	dnode_rele(dn, FTAG);
1744	return (err);
1745}
1746
1747void
1748dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1749	dmu_tx_t *tx)
1750{
1751	dnode_t *dn;
1752
1753	/*
1754	 * Send streams include each object's checksum function.  This
1755	 * check ensures that the receiving system can understand the
1756	 * checksum function transmitted.
1757	 */
1758	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1759
1760	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1761	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1762	dn->dn_checksum = checksum;
1763	dnode_setdirty(dn, tx);
1764	dnode_rele(dn, FTAG);
1765}
1766
1767void
1768dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1769	dmu_tx_t *tx)
1770{
1771	dnode_t *dn;
1772
1773	/*
1774	 * Send streams include each object's compression function.  This
1775	 * check ensures that the receiving system can understand the
1776	 * compression function transmitted.
1777	 */
1778	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1779
1780	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1781	dn->dn_compress = compress;
1782	dnode_setdirty(dn, tx);
1783	dnode_rele(dn, FTAG);
1784}
1785
1786int zfs_mdcomp_disable = 0;
1787TUNABLE_INT("vfs.zfs.mdcomp_disable", &zfs_mdcomp_disable);
1788SYSCTL_INT(_vfs_zfs, OID_AUTO, mdcomp_disable, CTLFLAG_RW,
1789    &zfs_mdcomp_disable, 0, "Disable metadata compression");
1790
1791/*
1792 * When the "redundant_metadata" property is set to "most", only indirect
1793 * blocks of this level and higher will have an additional ditto block.
1794 */
1795int zfs_redundant_metadata_most_ditto_level = 2;
1796
1797void
1798dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1799{
1800	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1801	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1802	    (wp & WP_SPILL));
1803	enum zio_checksum checksum = os->os_checksum;
1804	enum zio_compress compress = os->os_compress;
1805	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1806	boolean_t dedup = B_FALSE;
1807	boolean_t nopwrite = B_FALSE;
1808	boolean_t dedup_verify = os->os_dedup_verify;
1809	int copies = os->os_copies;
1810
1811	/*
1812	 * We maintain different write policies for each of the following
1813	 * types of data:
1814	 *	 1. metadata
1815	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1816	 *	 3. all other level 0 blocks
1817	 */
1818	if (ismd) {
1819		if (zfs_mdcomp_disable) {
1820			compress = ZIO_COMPRESS_EMPTY;
1821		} else {
1822			/*
1823			 * XXX -- we should design a compression algorithm
1824			 * that specializes in arrays of bps.
1825			 */
1826			compress = zio_compress_select(os->os_spa,
1827			    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
1828		}
1829
1830		/*
1831		 * Metadata always gets checksummed.  If the data
1832		 * checksum is multi-bit correctable, and it's not a
1833		 * ZBT-style checksum, then it's suitable for metadata
1834		 * as well.  Otherwise, the metadata checksum defaults
1835		 * to fletcher4.
1836		 */
1837		if (zio_checksum_table[checksum].ci_correctable < 1 ||
1838		    zio_checksum_table[checksum].ci_eck)
1839			checksum = ZIO_CHECKSUM_FLETCHER_4;
1840
1841		if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1842		    (os->os_redundant_metadata ==
1843		    ZFS_REDUNDANT_METADATA_MOST &&
1844		    (level >= zfs_redundant_metadata_most_ditto_level ||
1845		    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
1846			copies++;
1847	} else if (wp & WP_NOFILL) {
1848		ASSERT(level == 0);
1849
1850		/*
1851		 * If we're writing preallocated blocks, we aren't actually
1852		 * writing them so don't set any policy properties.  These
1853		 * blocks are currently only used by an external subsystem
1854		 * outside of zfs (i.e. dump) and not written by the zio
1855		 * pipeline.
1856		 */
1857		compress = ZIO_COMPRESS_OFF;
1858		checksum = ZIO_CHECKSUM_NOPARITY;
1859	} else {
1860		compress = zio_compress_select(os->os_spa, dn->dn_compress,
1861		    compress);
1862
1863		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1864		    zio_checksum_select(dn->dn_checksum, checksum) :
1865		    dedup_checksum;
1866
1867		/*
1868		 * Determine dedup setting.  If we are in dmu_sync(),
1869		 * we won't actually dedup now because that's all
1870		 * done in syncing context; but we do want to use the
1871		 * dedup checkum.  If the checksum is not strong
1872		 * enough to ensure unique signatures, force
1873		 * dedup_verify.
1874		 */
1875		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
1876			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
1877			if (!zio_checksum_table[checksum].ci_dedup)
1878				dedup_verify = B_TRUE;
1879		}
1880
1881		/*
1882		 * Enable nopwrite if we have a cryptographically secure
1883		 * checksum that has no known collisions (i.e. SHA-256)
1884		 * and compression is enabled.  We don't enable nopwrite if
1885		 * dedup is enabled as the two features are mutually exclusive.
1886		 */
1887		nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup &&
1888		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
1889	}
1890
1891	zp->zp_checksum = checksum;
1892	zp->zp_compress = compress;
1893	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1894	zp->zp_level = level;
1895	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
1896	zp->zp_dedup = dedup;
1897	zp->zp_dedup_verify = dedup && dedup_verify;
1898	zp->zp_nopwrite = nopwrite;
1899}
1900
1901int
1902dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1903{
1904	dnode_t *dn;
1905	int i, err;
1906
1907	err = dnode_hold(os, object, FTAG, &dn);
1908	if (err)
1909		return (err);
1910	/*
1911	 * Sync any current changes before
1912	 * we go trundling through the block pointers.
1913	 */
1914	for (i = 0; i < TXG_SIZE; i++) {
1915		if (list_link_active(&dn->dn_dirty_link[i]))
1916			break;
1917	}
1918	if (i != TXG_SIZE) {
1919		dnode_rele(dn, FTAG);
1920		txg_wait_synced(dmu_objset_pool(os), 0);
1921		err = dnode_hold(os, object, FTAG, &dn);
1922		if (err)
1923			return (err);
1924	}
1925
1926	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1927	dnode_rele(dn, FTAG);
1928
1929	return (err);
1930}
1931
1932void
1933dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1934{
1935	dnode_phys_t *dnp;
1936
1937	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1938	mutex_enter(&dn->dn_mtx);
1939
1940	dnp = dn->dn_phys;
1941
1942	doi->doi_data_block_size = dn->dn_datablksz;
1943	doi->doi_metadata_block_size = dn->dn_indblkshift ?
1944	    1ULL << dn->dn_indblkshift : 0;
1945	doi->doi_type = dn->dn_type;
1946	doi->doi_bonus_type = dn->dn_bonustype;
1947	doi->doi_bonus_size = dn->dn_bonuslen;
1948	doi->doi_indirection = dn->dn_nlevels;
1949	doi->doi_checksum = dn->dn_checksum;
1950	doi->doi_compress = dn->dn_compress;
1951	doi->doi_nblkptr = dn->dn_nblkptr;
1952	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1953	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
1954	doi->doi_fill_count = 0;
1955	for (int i = 0; i < dnp->dn_nblkptr; i++)
1956		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
1957
1958	mutex_exit(&dn->dn_mtx);
1959	rw_exit(&dn->dn_struct_rwlock);
1960}
1961
1962/*
1963 * Get information on a DMU object.
1964 * If doi is NULL, just indicates whether the object exists.
1965 */
1966int
1967dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1968{
1969	dnode_t *dn;
1970	int err = dnode_hold(os, object, FTAG, &dn);
1971
1972	if (err)
1973		return (err);
1974
1975	if (doi != NULL)
1976		dmu_object_info_from_dnode(dn, doi);
1977
1978	dnode_rele(dn, FTAG);
1979	return (0);
1980}
1981
1982/*
1983 * As above, but faster; can be used when you have a held dbuf in hand.
1984 */
1985void
1986dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
1987{
1988	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1989
1990	DB_DNODE_ENTER(db);
1991	dmu_object_info_from_dnode(DB_DNODE(db), doi);
1992	DB_DNODE_EXIT(db);
1993}
1994
1995/*
1996 * Faster still when you only care about the size.
1997 * This is specifically optimized for zfs_getattr().
1998 */
1999void
2000dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2001    u_longlong_t *nblk512)
2002{
2003	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2004	dnode_t *dn;
2005
2006	DB_DNODE_ENTER(db);
2007	dn = DB_DNODE(db);
2008
2009	*blksize = dn->dn_datablksz;
2010	/* add 1 for dnode space */
2011	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2012	    SPA_MINBLOCKSHIFT) + 1;
2013	DB_DNODE_EXIT(db);
2014}
2015
2016void
2017byteswap_uint64_array(void *vbuf, size_t size)
2018{
2019	uint64_t *buf = vbuf;
2020	size_t count = size >> 3;
2021	int i;
2022
2023	ASSERT((size & 7) == 0);
2024
2025	for (i = 0; i < count; i++)
2026		buf[i] = BSWAP_64(buf[i]);
2027}
2028
2029void
2030byteswap_uint32_array(void *vbuf, size_t size)
2031{
2032	uint32_t *buf = vbuf;
2033	size_t count = size >> 2;
2034	int i;
2035
2036	ASSERT((size & 3) == 0);
2037
2038	for (i = 0; i < count; i++)
2039		buf[i] = BSWAP_32(buf[i]);
2040}
2041
2042void
2043byteswap_uint16_array(void *vbuf, size_t size)
2044{
2045	uint16_t *buf = vbuf;
2046	size_t count = size >> 1;
2047	int i;
2048
2049	ASSERT((size & 1) == 0);
2050
2051	for (i = 0; i < count; i++)
2052		buf[i] = BSWAP_16(buf[i]);
2053}
2054
2055/* ARGSUSED */
2056void
2057byteswap_uint8_array(void *vbuf, size_t size)
2058{
2059}
2060
2061void
2062dmu_init(void)
2063{
2064	zfs_dbgmsg_init();
2065	sa_cache_init();
2066	xuio_stat_init();
2067	dmu_objset_init();
2068	dnode_init();
2069	dbuf_init();
2070	zfetch_init();
2071	zio_compress_init();
2072	l2arc_init();
2073	arc_init();
2074}
2075
2076void
2077dmu_fini(void)
2078{
2079	arc_fini(); /* arc depends on l2arc, so arc must go first */
2080	l2arc_fini();
2081	zfetch_fini();
2082	zio_compress_fini();
2083	dbuf_fini();
2084	dnode_fini();
2085	dmu_objset_fini();
2086	xuio_stat_fini();
2087	sa_cache_fini();
2088	zfs_dbgmsg_fini();
2089}
2090