arc.c revision 302714
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
27 */
28
29/*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory.  This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about.  Our cache is not so simple.  At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them.  Blocks are only evictable
44 * when there are no external references active.  This makes
45 * eviction far more problematic:  we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space.  In these circumstances we are unable to adjust the cache
50 * size.  To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss.  Our model has a variable sized cache.  It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size.  So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict.  In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes).  We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74/*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists.  The arc_read() interface
80 * uses method 1, while the internal arc algorithms for
81 * adjusting the cache use method 2.  We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * arc list locks.
84 *
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table.  It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each arc state also has a mutex which is used to protect the
97 * buffer list associated with the state.  When attempting to
98 * obtain a hash table lock while holding an arc list lock you
99 * must use: mutex_tryenter() to avoid deadlock.  Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * Arc buffers may have an associated eviction callback function.
103 * This function will be invoked prior to removing the buffer (e.g.
104 * in arc_do_user_evicts()).  Note however that the data associated
105 * with the buffer may be evicted prior to the callback.  The callback
106 * must be made with *no locks held* (to prevent deadlock).  Additionally,
107 * the users of callbacks must ensure that their private data is
108 * protected from simultaneous callbacks from arc_clear_callback()
109 * and arc_do_user_evicts().
110 *
111 * Note that the majority of the performance stats are manipulated
112 * with atomic operations.
113 *
114 * The L2ARC uses the l2ad_mtx on each vdev for the following:
115 *
116 *	- L2ARC buflist creation
117 *	- L2ARC buflist eviction
118 *	- L2ARC write completion, which walks L2ARC buflists
119 *	- ARC header destruction, as it removes from L2ARC buflists
120 *	- ARC header release, as it removes from L2ARC buflists
121 */
122
123#include <sys/spa.h>
124#include <sys/zio.h>
125#include <sys/zio_compress.h>
126#include <sys/zfs_context.h>
127#include <sys/arc.h>
128#include <sys/refcount.h>
129#include <sys/vdev.h>
130#include <sys/vdev_impl.h>
131#include <sys/dsl_pool.h>
132#include <sys/multilist.h>
133#ifdef _KERNEL
134#include <sys/dnlc.h>
135#endif
136#include <sys/callb.h>
137#include <sys/kstat.h>
138#include <sys/trim_map.h>
139#include <zfs_fletcher.h>
140#include <sys/sdt.h>
141
142#include <machine/vmparam.h>
143
144#ifdef illumos
145#ifndef _KERNEL
146/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
147boolean_t arc_watch = B_FALSE;
148int arc_procfd;
149#endif
150#endif /* illumos */
151
152static kmutex_t		arc_reclaim_lock;
153static kcondvar_t	arc_reclaim_thread_cv;
154static boolean_t	arc_reclaim_thread_exit;
155static kcondvar_t	arc_reclaim_waiters_cv;
156
157static kmutex_t		arc_user_evicts_lock;
158static kcondvar_t	arc_user_evicts_cv;
159static boolean_t	arc_user_evicts_thread_exit;
160
161uint_t arc_reduce_dnlc_percent = 3;
162
163/*
164 * The number of headers to evict in arc_evict_state_impl() before
165 * dropping the sublist lock and evicting from another sublist. A lower
166 * value means we're more likely to evict the "correct" header (i.e. the
167 * oldest header in the arc state), but comes with higher overhead
168 * (i.e. more invocations of arc_evict_state_impl()).
169 */
170int zfs_arc_evict_batch_limit = 10;
171
172/*
173 * The number of sublists used for each of the arc state lists. If this
174 * is not set to a suitable value by the user, it will be configured to
175 * the number of CPUs on the system in arc_init().
176 */
177int zfs_arc_num_sublists_per_state = 0;
178
179/* number of seconds before growing cache again */
180static int		arc_grow_retry = 60;
181
182/* shift of arc_c for calculating overflow limit in arc_get_data_buf */
183int		zfs_arc_overflow_shift = 8;
184
185/* shift of arc_c for calculating both min and max arc_p */
186static int		arc_p_min_shift = 4;
187
188/* log2(fraction of arc to reclaim) */
189static int		arc_shrink_shift = 7;
190
191/*
192 * log2(fraction of ARC which must be free to allow growing).
193 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
194 * when reading a new block into the ARC, we will evict an equal-sized block
195 * from the ARC.
196 *
197 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
198 * we will still not allow it to grow.
199 */
200int			arc_no_grow_shift = 5;
201
202
203/*
204 * minimum lifespan of a prefetch block in clock ticks
205 * (initialized in arc_init())
206 */
207static int		arc_min_prefetch_lifespan;
208
209/*
210 * If this percent of memory is free, don't throttle.
211 */
212int arc_lotsfree_percent = 10;
213
214static int arc_dead;
215extern boolean_t zfs_prefetch_disable;
216
217/*
218 * The arc has filled available memory and has now warmed up.
219 */
220static boolean_t arc_warm;
221
222/*
223 * These tunables are for performance analysis.
224 */
225uint64_t zfs_arc_max;
226uint64_t zfs_arc_min;
227uint64_t zfs_arc_meta_limit = 0;
228uint64_t zfs_arc_meta_min = 0;
229int zfs_arc_grow_retry = 0;
230int zfs_arc_shrink_shift = 0;
231int zfs_arc_p_min_shift = 0;
232int zfs_disable_dup_eviction = 0;
233uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
234u_int zfs_arc_free_target = 0;
235
236/* Absolute min for arc min / max is 16MB. */
237static uint64_t arc_abs_min = 16 << 20;
238
239static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS);
240static int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS);
241static int sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS);
242static int sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS);
243
244#if defined(__FreeBSD__) && defined(_KERNEL)
245static void
246arc_free_target_init(void *unused __unused)
247{
248
249	zfs_arc_free_target = vm_pageout_wakeup_thresh;
250}
251SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY,
252    arc_free_target_init, NULL);
253
254TUNABLE_QUAD("vfs.zfs.arc_max", &zfs_arc_max);
255TUNABLE_QUAD("vfs.zfs.arc_min", &zfs_arc_min);
256TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
257TUNABLE_QUAD("vfs.zfs.arc_meta_min", &zfs_arc_meta_min);
258TUNABLE_QUAD("vfs.zfs.arc_average_blocksize", &zfs_arc_average_blocksize);
259TUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift);
260SYSCTL_DECL(_vfs_zfs);
261SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_max, CTLTYPE_U64 | CTLFLAG_RWTUN,
262    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_max, "QU", "Maximum ARC size");
263SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_min, CTLTYPE_U64 | CTLFLAG_RWTUN,
264    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_min, "QU", "Minimum ARC size");
265SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN,
266    &zfs_arc_average_blocksize, 0,
267    "ARC average blocksize");
268SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW,
269    &arc_shrink_shift, 0,
270    "log2(fraction of arc to reclaim)");
271
272/*
273 * We don't have a tunable for arc_free_target due to the dependency on
274 * pagedaemon initialisation.
275 */
276SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target,
277    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int),
278    sysctl_vfs_zfs_arc_free_target, "IU",
279    "Desired number of free pages below which ARC triggers reclaim");
280
281static int
282sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)
283{
284	u_int val;
285	int err;
286
287	val = zfs_arc_free_target;
288	err = sysctl_handle_int(oidp, &val, 0, req);
289	if (err != 0 || req->newptr == NULL)
290		return (err);
291
292	if (val < minfree)
293		return (EINVAL);
294	if (val > cnt.v_page_count)
295		return (EINVAL);
296
297	zfs_arc_free_target = val;
298
299	return (0);
300}
301
302/*
303 * Must be declared here, before the definition of corresponding kstat
304 * macro which uses the same names will confuse the compiler.
305 */
306SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit,
307    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
308    sysctl_vfs_zfs_arc_meta_limit, "QU",
309    "ARC metadata limit");
310#endif
311
312/*
313 * Note that buffers can be in one of 6 states:
314 *	ARC_anon	- anonymous (discussed below)
315 *	ARC_mru		- recently used, currently cached
316 *	ARC_mru_ghost	- recentely used, no longer in cache
317 *	ARC_mfu		- frequently used, currently cached
318 *	ARC_mfu_ghost	- frequently used, no longer in cache
319 *	ARC_l2c_only	- exists in L2ARC but not other states
320 * When there are no active references to the buffer, they are
321 * are linked onto a list in one of these arc states.  These are
322 * the only buffers that can be evicted or deleted.  Within each
323 * state there are multiple lists, one for meta-data and one for
324 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
325 * etc.) is tracked separately so that it can be managed more
326 * explicitly: favored over data, limited explicitly.
327 *
328 * Anonymous buffers are buffers that are not associated with
329 * a DVA.  These are buffers that hold dirty block copies
330 * before they are written to stable storage.  By definition,
331 * they are "ref'd" and are considered part of arc_mru
332 * that cannot be freed.  Generally, they will aquire a DVA
333 * as they are written and migrate onto the arc_mru list.
334 *
335 * The ARC_l2c_only state is for buffers that are in the second
336 * level ARC but no longer in any of the ARC_m* lists.  The second
337 * level ARC itself may also contain buffers that are in any of
338 * the ARC_m* states - meaning that a buffer can exist in two
339 * places.  The reason for the ARC_l2c_only state is to keep the
340 * buffer header in the hash table, so that reads that hit the
341 * second level ARC benefit from these fast lookups.
342 */
343
344typedef struct arc_state {
345	/*
346	 * list of evictable buffers
347	 */
348	multilist_t arcs_list[ARC_BUFC_NUMTYPES];
349	/*
350	 * total amount of evictable data in this state
351	 */
352	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];
353	/*
354	 * total amount of data in this state; this includes: evictable,
355	 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
356	 */
357	refcount_t arcs_size;
358} arc_state_t;
359
360/* The 6 states: */
361static arc_state_t ARC_anon;
362static arc_state_t ARC_mru;
363static arc_state_t ARC_mru_ghost;
364static arc_state_t ARC_mfu;
365static arc_state_t ARC_mfu_ghost;
366static arc_state_t ARC_l2c_only;
367
368typedef struct arc_stats {
369	kstat_named_t arcstat_hits;
370	kstat_named_t arcstat_misses;
371	kstat_named_t arcstat_demand_data_hits;
372	kstat_named_t arcstat_demand_data_misses;
373	kstat_named_t arcstat_demand_metadata_hits;
374	kstat_named_t arcstat_demand_metadata_misses;
375	kstat_named_t arcstat_prefetch_data_hits;
376	kstat_named_t arcstat_prefetch_data_misses;
377	kstat_named_t arcstat_prefetch_metadata_hits;
378	kstat_named_t arcstat_prefetch_metadata_misses;
379	kstat_named_t arcstat_mru_hits;
380	kstat_named_t arcstat_mru_ghost_hits;
381	kstat_named_t arcstat_mfu_hits;
382	kstat_named_t arcstat_mfu_ghost_hits;
383	kstat_named_t arcstat_allocated;
384	kstat_named_t arcstat_deleted;
385	/*
386	 * Number of buffers that could not be evicted because the hash lock
387	 * was held by another thread.  The lock may not necessarily be held
388	 * by something using the same buffer, since hash locks are shared
389	 * by multiple buffers.
390	 */
391	kstat_named_t arcstat_mutex_miss;
392	/*
393	 * Number of buffers skipped because they have I/O in progress, are
394	 * indrect prefetch buffers that have not lived long enough, or are
395	 * not from the spa we're trying to evict from.
396	 */
397	kstat_named_t arcstat_evict_skip;
398	/*
399	 * Number of times arc_evict_state() was unable to evict enough
400	 * buffers to reach it's target amount.
401	 */
402	kstat_named_t arcstat_evict_not_enough;
403	kstat_named_t arcstat_evict_l2_cached;
404	kstat_named_t arcstat_evict_l2_eligible;
405	kstat_named_t arcstat_evict_l2_ineligible;
406	kstat_named_t arcstat_evict_l2_skip;
407	kstat_named_t arcstat_hash_elements;
408	kstat_named_t arcstat_hash_elements_max;
409	kstat_named_t arcstat_hash_collisions;
410	kstat_named_t arcstat_hash_chains;
411	kstat_named_t arcstat_hash_chain_max;
412	kstat_named_t arcstat_p;
413	kstat_named_t arcstat_c;
414	kstat_named_t arcstat_c_min;
415	kstat_named_t arcstat_c_max;
416	kstat_named_t arcstat_size;
417	/*
418	 * Number of bytes consumed by internal ARC structures necessary
419	 * for tracking purposes; these structures are not actually
420	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
421	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
422	 * caches), and arc_buf_t structures (allocated via arc_buf_t
423	 * cache).
424	 */
425	kstat_named_t arcstat_hdr_size;
426	/*
427	 * Number of bytes consumed by ARC buffers of type equal to
428	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
429	 * on disk user data (e.g. plain file contents).
430	 */
431	kstat_named_t arcstat_data_size;
432	/*
433	 * Number of bytes consumed by ARC buffers of type equal to
434	 * ARC_BUFC_METADATA. This is generally consumed by buffers
435	 * backing on disk data that is used for internal ZFS
436	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
437	 */
438	kstat_named_t arcstat_metadata_size;
439	/*
440	 * Number of bytes consumed by various buffers and structures
441	 * not actually backed with ARC buffers. This includes bonus
442	 * buffers (allocated directly via zio_buf_* functions),
443	 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
444	 * cache), and dnode_t structures (allocated via dnode_t cache).
445	 */
446	kstat_named_t arcstat_other_size;
447	/*
448	 * Total number of bytes consumed by ARC buffers residing in the
449	 * arc_anon state. This includes *all* buffers in the arc_anon
450	 * state; e.g. data, metadata, evictable, and unevictable buffers
451	 * are all included in this value.
452	 */
453	kstat_named_t arcstat_anon_size;
454	/*
455	 * Number of bytes consumed by ARC buffers that meet the
456	 * following criteria: backing buffers of type ARC_BUFC_DATA,
457	 * residing in the arc_anon state, and are eligible for eviction
458	 * (e.g. have no outstanding holds on the buffer).
459	 */
460	kstat_named_t arcstat_anon_evictable_data;
461	/*
462	 * Number of bytes consumed by ARC buffers that meet the
463	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
464	 * residing in the arc_anon state, and are eligible for eviction
465	 * (e.g. have no outstanding holds on the buffer).
466	 */
467	kstat_named_t arcstat_anon_evictable_metadata;
468	/*
469	 * Total number of bytes consumed by ARC buffers residing in the
470	 * arc_mru state. This includes *all* buffers in the arc_mru
471	 * state; e.g. data, metadata, evictable, and unevictable buffers
472	 * are all included in this value.
473	 */
474	kstat_named_t arcstat_mru_size;
475	/*
476	 * Number of bytes consumed by ARC buffers that meet the
477	 * following criteria: backing buffers of type ARC_BUFC_DATA,
478	 * residing in the arc_mru state, and are eligible for eviction
479	 * (e.g. have no outstanding holds on the buffer).
480	 */
481	kstat_named_t arcstat_mru_evictable_data;
482	/*
483	 * Number of bytes consumed by ARC buffers that meet the
484	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
485	 * residing in the arc_mru state, and are eligible for eviction
486	 * (e.g. have no outstanding holds on the buffer).
487	 */
488	kstat_named_t arcstat_mru_evictable_metadata;
489	/*
490	 * Total number of bytes that *would have been* consumed by ARC
491	 * buffers in the arc_mru_ghost state. The key thing to note
492	 * here, is the fact that this size doesn't actually indicate
493	 * RAM consumption. The ghost lists only consist of headers and
494	 * don't actually have ARC buffers linked off of these headers.
495	 * Thus, *if* the headers had associated ARC buffers, these
496	 * buffers *would have* consumed this number of bytes.
497	 */
498	kstat_named_t arcstat_mru_ghost_size;
499	/*
500	 * Number of bytes that *would have been* consumed by ARC
501	 * buffers that are eligible for eviction, of type
502	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
503	 */
504	kstat_named_t arcstat_mru_ghost_evictable_data;
505	/*
506	 * Number of bytes that *would have been* consumed by ARC
507	 * buffers that are eligible for eviction, of type
508	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
509	 */
510	kstat_named_t arcstat_mru_ghost_evictable_metadata;
511	/*
512	 * Total number of bytes consumed by ARC buffers residing in the
513	 * arc_mfu state. This includes *all* buffers in the arc_mfu
514	 * state; e.g. data, metadata, evictable, and unevictable buffers
515	 * are all included in this value.
516	 */
517	kstat_named_t arcstat_mfu_size;
518	/*
519	 * Number of bytes consumed by ARC buffers that are eligible for
520	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
521	 * state.
522	 */
523	kstat_named_t arcstat_mfu_evictable_data;
524	/*
525	 * Number of bytes consumed by ARC buffers that are eligible for
526	 * eviction, of type ARC_BUFC_METADATA, and reside in the
527	 * arc_mfu state.
528	 */
529	kstat_named_t arcstat_mfu_evictable_metadata;
530	/*
531	 * Total number of bytes that *would have been* consumed by ARC
532	 * buffers in the arc_mfu_ghost state. See the comment above
533	 * arcstat_mru_ghost_size for more details.
534	 */
535	kstat_named_t arcstat_mfu_ghost_size;
536	/*
537	 * Number of bytes that *would have been* consumed by ARC
538	 * buffers that are eligible for eviction, of type
539	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
540	 */
541	kstat_named_t arcstat_mfu_ghost_evictable_data;
542	/*
543	 * Number of bytes that *would have been* consumed by ARC
544	 * buffers that are eligible for eviction, of type
545	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
546	 */
547	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
548	kstat_named_t arcstat_l2_hits;
549	kstat_named_t arcstat_l2_misses;
550	kstat_named_t arcstat_l2_feeds;
551	kstat_named_t arcstat_l2_rw_clash;
552	kstat_named_t arcstat_l2_read_bytes;
553	kstat_named_t arcstat_l2_write_bytes;
554	kstat_named_t arcstat_l2_writes_sent;
555	kstat_named_t arcstat_l2_writes_done;
556	kstat_named_t arcstat_l2_writes_error;
557	kstat_named_t arcstat_l2_writes_lock_retry;
558	kstat_named_t arcstat_l2_evict_lock_retry;
559	kstat_named_t arcstat_l2_evict_reading;
560	kstat_named_t arcstat_l2_evict_l1cached;
561	kstat_named_t arcstat_l2_free_on_write;
562	kstat_named_t arcstat_l2_cdata_free_on_write;
563	kstat_named_t arcstat_l2_abort_lowmem;
564	kstat_named_t arcstat_l2_cksum_bad;
565	kstat_named_t arcstat_l2_io_error;
566	kstat_named_t arcstat_l2_size;
567	kstat_named_t arcstat_l2_asize;
568	kstat_named_t arcstat_l2_hdr_size;
569	kstat_named_t arcstat_l2_compress_successes;
570	kstat_named_t arcstat_l2_compress_zeros;
571	kstat_named_t arcstat_l2_compress_failures;
572	kstat_named_t arcstat_l2_padding_needed;
573	kstat_named_t arcstat_l2_write_trylock_fail;
574	kstat_named_t arcstat_l2_write_passed_headroom;
575	kstat_named_t arcstat_l2_write_spa_mismatch;
576	kstat_named_t arcstat_l2_write_in_l2;
577	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
578	kstat_named_t arcstat_l2_write_not_cacheable;
579	kstat_named_t arcstat_l2_write_full;
580	kstat_named_t arcstat_l2_write_buffer_iter;
581	kstat_named_t arcstat_l2_write_pios;
582	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
583	kstat_named_t arcstat_l2_write_buffer_list_iter;
584	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
585	kstat_named_t arcstat_memory_throttle_count;
586	kstat_named_t arcstat_duplicate_buffers;
587	kstat_named_t arcstat_duplicate_buffers_size;
588	kstat_named_t arcstat_duplicate_reads;
589	kstat_named_t arcstat_meta_used;
590	kstat_named_t arcstat_meta_limit;
591	kstat_named_t arcstat_meta_max;
592	kstat_named_t arcstat_meta_min;
593	kstat_named_t arcstat_sync_wait_for_async;
594	kstat_named_t arcstat_demand_hit_predictive_prefetch;
595} arc_stats_t;
596
597static arc_stats_t arc_stats = {
598	{ "hits",			KSTAT_DATA_UINT64 },
599	{ "misses",			KSTAT_DATA_UINT64 },
600	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
601	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
602	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
603	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
604	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
605	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
606	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
607	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
608	{ "mru_hits",			KSTAT_DATA_UINT64 },
609	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
610	{ "mfu_hits",			KSTAT_DATA_UINT64 },
611	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
612	{ "allocated",			KSTAT_DATA_UINT64 },
613	{ "deleted",			KSTAT_DATA_UINT64 },
614	{ "mutex_miss",			KSTAT_DATA_UINT64 },
615	{ "evict_skip",			KSTAT_DATA_UINT64 },
616	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
617	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
618	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
619	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
620	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
621	{ "hash_elements",		KSTAT_DATA_UINT64 },
622	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
623	{ "hash_collisions",		KSTAT_DATA_UINT64 },
624	{ "hash_chains",		KSTAT_DATA_UINT64 },
625	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
626	{ "p",				KSTAT_DATA_UINT64 },
627	{ "c",				KSTAT_DATA_UINT64 },
628	{ "c_min",			KSTAT_DATA_UINT64 },
629	{ "c_max",			KSTAT_DATA_UINT64 },
630	{ "size",			KSTAT_DATA_UINT64 },
631	{ "hdr_size",			KSTAT_DATA_UINT64 },
632	{ "data_size",			KSTAT_DATA_UINT64 },
633	{ "metadata_size",		KSTAT_DATA_UINT64 },
634	{ "other_size",			KSTAT_DATA_UINT64 },
635	{ "anon_size",			KSTAT_DATA_UINT64 },
636	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
637	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
638	{ "mru_size",			KSTAT_DATA_UINT64 },
639	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
640	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
641	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
642	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
643	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
644	{ "mfu_size",			KSTAT_DATA_UINT64 },
645	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
646	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
647	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
648	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
649	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
650	{ "l2_hits",			KSTAT_DATA_UINT64 },
651	{ "l2_misses",			KSTAT_DATA_UINT64 },
652	{ "l2_feeds",			KSTAT_DATA_UINT64 },
653	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
654	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
655	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
656	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
657	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
658	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
659	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
660	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
661	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
662	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
663	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
664	{ "l2_cdata_free_on_write",	KSTAT_DATA_UINT64 },
665	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
666	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
667	{ "l2_io_error",		KSTAT_DATA_UINT64 },
668	{ "l2_size",			KSTAT_DATA_UINT64 },
669	{ "l2_asize",			KSTAT_DATA_UINT64 },
670	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
671	{ "l2_compress_successes",	KSTAT_DATA_UINT64 },
672	{ "l2_compress_zeros",		KSTAT_DATA_UINT64 },
673	{ "l2_compress_failures",	KSTAT_DATA_UINT64 },
674	{ "l2_padding_needed",		KSTAT_DATA_UINT64 },
675	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
676	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
677	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
678	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
679	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
680	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
681	{ "l2_write_full",		KSTAT_DATA_UINT64 },
682	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
683	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
684	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
685	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
686	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
687	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
688	{ "duplicate_buffers",		KSTAT_DATA_UINT64 },
689	{ "duplicate_buffers_size",	KSTAT_DATA_UINT64 },
690	{ "duplicate_reads",		KSTAT_DATA_UINT64 },
691	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
692	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
693	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
694	{ "arc_meta_min",		KSTAT_DATA_UINT64 },
695	{ "sync_wait_for_async",	KSTAT_DATA_UINT64 },
696	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
697};
698
699#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
700
701#define	ARCSTAT_INCR(stat, val) \
702	atomic_add_64(&arc_stats.stat.value.ui64, (val))
703
704#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
705#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
706
707#define	ARCSTAT_MAX(stat, val) {					\
708	uint64_t m;							\
709	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
710	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
711		continue;						\
712}
713
714#define	ARCSTAT_MAXSTAT(stat) \
715	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
716
717/*
718 * We define a macro to allow ARC hits/misses to be easily broken down by
719 * two separate conditions, giving a total of four different subtypes for
720 * each of hits and misses (so eight statistics total).
721 */
722#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
723	if (cond1) {							\
724		if (cond2) {						\
725			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
726		} else {						\
727			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
728		}							\
729	} else {							\
730		if (cond2) {						\
731			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
732		} else {						\
733			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
734		}							\
735	}
736
737kstat_t			*arc_ksp;
738static arc_state_t	*arc_anon;
739static arc_state_t	*arc_mru;
740static arc_state_t	*arc_mru_ghost;
741static arc_state_t	*arc_mfu;
742static arc_state_t	*arc_mfu_ghost;
743static arc_state_t	*arc_l2c_only;
744
745/*
746 * There are several ARC variables that are critical to export as kstats --
747 * but we don't want to have to grovel around in the kstat whenever we wish to
748 * manipulate them.  For these variables, we therefore define them to be in
749 * terms of the statistic variable.  This assures that we are not introducing
750 * the possibility of inconsistency by having shadow copies of the variables,
751 * while still allowing the code to be readable.
752 */
753#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
754#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
755#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
756#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
757#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
758#define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
759#define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
760#define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
761#define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
762
763#define	L2ARC_IS_VALID_COMPRESS(_c_) \
764	((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
765
766static int		arc_no_grow;	/* Don't try to grow cache size */
767static uint64_t		arc_tempreserve;
768static uint64_t		arc_loaned_bytes;
769
770typedef struct arc_callback arc_callback_t;
771
772struct arc_callback {
773	void			*acb_private;
774	arc_done_func_t		*acb_done;
775	arc_buf_t		*acb_buf;
776	zio_t			*acb_zio_dummy;
777	arc_callback_t		*acb_next;
778};
779
780typedef struct arc_write_callback arc_write_callback_t;
781
782struct arc_write_callback {
783	void		*awcb_private;
784	arc_done_func_t	*awcb_ready;
785	arc_done_func_t	*awcb_physdone;
786	arc_done_func_t	*awcb_done;
787	arc_buf_t	*awcb_buf;
788};
789
790/*
791 * ARC buffers are separated into multiple structs as a memory saving measure:
792 *   - Common fields struct, always defined, and embedded within it:
793 *       - L2-only fields, always allocated but undefined when not in L2ARC
794 *       - L1-only fields, only allocated when in L1ARC
795 *
796 *           Buffer in L1                     Buffer only in L2
797 *    +------------------------+          +------------------------+
798 *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
799 *    |                        |          |                        |
800 *    |                        |          |                        |
801 *    |                        |          |                        |
802 *    +------------------------+          +------------------------+
803 *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
804 *    | (undefined if L1-only) |          |                        |
805 *    +------------------------+          +------------------------+
806 *    | l1arc_buf_hdr_t        |
807 *    |                        |
808 *    |                        |
809 *    |                        |
810 *    |                        |
811 *    +------------------------+
812 *
813 * Because it's possible for the L2ARC to become extremely large, we can wind
814 * up eating a lot of memory in L2ARC buffer headers, so the size of a header
815 * is minimized by only allocating the fields necessary for an L1-cached buffer
816 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
817 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
818 * words in pointers. arc_hdr_realloc() is used to switch a header between
819 * these two allocation states.
820 */
821typedef struct l1arc_buf_hdr {
822	kmutex_t		b_freeze_lock;
823#ifdef ZFS_DEBUG
824	/*
825	 * used for debugging wtih kmem_flags - by allocating and freeing
826	 * b_thawed when the buffer is thawed, we get a record of the stack
827	 * trace that thawed it.
828	 */
829	void			*b_thawed;
830#endif
831
832	arc_buf_t		*b_buf;
833	uint32_t		b_datacnt;
834	/* for waiting on writes to complete */
835	kcondvar_t		b_cv;
836
837	/* protected by arc state mutex */
838	arc_state_t		*b_state;
839	multilist_node_t	b_arc_node;
840
841	/* updated atomically */
842	clock_t			b_arc_access;
843
844	/* self protecting */
845	refcount_t		b_refcnt;
846
847	arc_callback_t		*b_acb;
848	/* temporary buffer holder for in-flight compressed or padded data */
849	void			*b_tmp_cdata;
850} l1arc_buf_hdr_t;
851
852typedef struct l2arc_dev l2arc_dev_t;
853
854typedef struct l2arc_buf_hdr {
855	/* protected by arc_buf_hdr mutex */
856	l2arc_dev_t		*b_dev;		/* L2ARC device */
857	uint64_t		b_daddr;	/* disk address, offset byte */
858	/* real alloc'd buffer size depending on b_compress applied */
859	int32_t			b_asize;
860	uint8_t			b_compress;
861
862	list_node_t		b_l2node;
863} l2arc_buf_hdr_t;
864
865struct arc_buf_hdr {
866	/* protected by hash lock */
867	dva_t			b_dva;
868	uint64_t		b_birth;
869	/*
870	 * Even though this checksum is only set/verified when a buffer is in
871	 * the L1 cache, it needs to be in the set of common fields because it
872	 * must be preserved from the time before a buffer is written out to
873	 * L2ARC until after it is read back in.
874	 */
875	zio_cksum_t		*b_freeze_cksum;
876
877	arc_buf_hdr_t		*b_hash_next;
878	arc_flags_t		b_flags;
879
880	/* immutable */
881	int32_t			b_size;
882	uint64_t		b_spa;
883
884	/* L2ARC fields. Undefined when not in L2ARC. */
885	l2arc_buf_hdr_t		b_l2hdr;
886	/* L1ARC fields. Undefined when in l2arc_only state */
887	l1arc_buf_hdr_t		b_l1hdr;
888};
889
890#if defined(__FreeBSD__) && defined(_KERNEL)
891static int
892sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS)
893{
894	uint64_t val;
895	int err;
896
897	val = arc_meta_limit;
898	err = sysctl_handle_64(oidp, &val, 0, req);
899	if (err != 0 || req->newptr == NULL)
900		return (err);
901
902        if (val <= 0 || val > arc_c_max)
903		return (EINVAL);
904
905	arc_meta_limit = val;
906	return (0);
907}
908
909static int
910sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS)
911{
912	uint64_t val;
913	int err;
914
915	val = zfs_arc_max;
916	err = sysctl_handle_64(oidp, &val, 0, req);
917	if (err != 0 || req->newptr == NULL)
918		return (err);
919
920	if (zfs_arc_max == 0) {
921		/* Loader tunable so blindly set */
922		zfs_arc_max = val;
923		return (0);
924	}
925
926	if (val < arc_abs_min || val > kmem_size())
927		return (EINVAL);
928	if (val < arc_c_min)
929		return (EINVAL);
930	if (zfs_arc_meta_limit > 0 && val < zfs_arc_meta_limit)
931		return (EINVAL);
932
933	arc_c_max = val;
934
935	arc_c = arc_c_max;
936        arc_p = (arc_c >> 1);
937
938	if (zfs_arc_meta_limit == 0) {
939		/* limit meta-data to 1/4 of the arc capacity */
940		arc_meta_limit = arc_c_max / 4;
941	}
942
943	/* if kmem_flags are set, lets try to use less memory */
944	if (kmem_debugging())
945		arc_c = arc_c / 2;
946
947	zfs_arc_max = arc_c;
948
949	return (0);
950}
951
952static int
953sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS)
954{
955	uint64_t val;
956	int err;
957
958	val = zfs_arc_min;
959	err = sysctl_handle_64(oidp, &val, 0, req);
960	if (err != 0 || req->newptr == NULL)
961		return (err);
962
963	if (zfs_arc_min == 0) {
964		/* Loader tunable so blindly set */
965		zfs_arc_min = val;
966		return (0);
967	}
968
969	if (val < arc_abs_min || val > arc_c_max)
970		return (EINVAL);
971
972	arc_c_min = val;
973
974	if (zfs_arc_meta_min == 0)
975                arc_meta_min = arc_c_min / 2;
976
977	if (arc_c < arc_c_min)
978                arc_c = arc_c_min;
979
980	zfs_arc_min = arc_c_min;
981
982	return (0);
983}
984#endif
985
986static arc_buf_t *arc_eviction_list;
987static arc_buf_hdr_t arc_eviction_hdr;
988
989#define	GHOST_STATE(state)	\
990	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
991	(state) == arc_l2c_only)
992
993#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
994#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
995#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
996#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
997#define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
998#define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
999
1000#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
1001#define	HDR_L2COMPRESS(hdr)	((hdr)->b_flags & ARC_FLAG_L2COMPRESS)
1002#define	HDR_L2_READING(hdr)	\
1003	    (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
1004	    ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
1005#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
1006#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
1007#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
1008
1009#define	HDR_ISTYPE_METADATA(hdr)	\
1010	    ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
1011#define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
1012
1013#define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
1014#define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
1015
1016/*
1017 * Other sizes
1018 */
1019
1020#define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
1021#define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
1022
1023/*
1024 * Hash table routines
1025 */
1026
1027#define	HT_LOCK_PAD	CACHE_LINE_SIZE
1028
1029struct ht_lock {
1030	kmutex_t	ht_lock;
1031#ifdef _KERNEL
1032	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
1033#endif
1034};
1035
1036#define	BUF_LOCKS 256
1037typedef struct buf_hash_table {
1038	uint64_t ht_mask;
1039	arc_buf_hdr_t **ht_table;
1040	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
1041} buf_hash_table_t;
1042
1043static buf_hash_table_t buf_hash_table;
1044
1045#define	BUF_HASH_INDEX(spa, dva, birth) \
1046	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
1047#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
1048#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
1049#define	HDR_LOCK(hdr) \
1050	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
1051
1052uint64_t zfs_crc64_table[256];
1053
1054/*
1055 * Level 2 ARC
1056 */
1057
1058#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
1059#define	L2ARC_HEADROOM		2			/* num of writes */
1060/*
1061 * If we discover during ARC scan any buffers to be compressed, we boost
1062 * our headroom for the next scanning cycle by this percentage multiple.
1063 */
1064#define	L2ARC_HEADROOM_BOOST	200
1065#define	L2ARC_FEED_SECS		1		/* caching interval secs */
1066#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
1067
1068/*
1069 * Used to distinguish headers that are being process by
1070 * l2arc_write_buffers(), but have yet to be assigned to a l2arc disk
1071 * address. This can happen when the header is added to the l2arc's list
1072 * of buffers to write in the first stage of l2arc_write_buffers(), but
1073 * has not yet been written out which happens in the second stage of
1074 * l2arc_write_buffers().
1075 */
1076#define	L2ARC_ADDR_UNSET	((uint64_t)(-1))
1077
1078#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
1079#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
1080
1081/* L2ARC Performance Tunables */
1082uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
1083uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
1084uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
1085uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1086uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
1087uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
1088boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
1089boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
1090boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
1091
1092SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
1093    &l2arc_write_max, 0, "max write size");
1094SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
1095    &l2arc_write_boost, 0, "extra write during warmup");
1096SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
1097    &l2arc_headroom, 0, "number of dev writes");
1098SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
1099    &l2arc_feed_secs, 0, "interval seconds");
1100SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
1101    &l2arc_feed_min_ms, 0, "min interval milliseconds");
1102
1103SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
1104    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
1105SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
1106    &l2arc_feed_again, 0, "turbo warmup");
1107SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
1108    &l2arc_norw, 0, "no reads during writes");
1109
1110SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
1111    &ARC_anon.arcs_size.rc_count, 0, "size of anonymous state");
1112SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_lsize, CTLFLAG_RD,
1113    &ARC_anon.arcs_lsize[ARC_BUFC_METADATA], 0, "size of anonymous state");
1114SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_lsize, CTLFLAG_RD,
1115    &ARC_anon.arcs_lsize[ARC_BUFC_DATA], 0, "size of anonymous state");
1116
1117SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
1118    &ARC_mru.arcs_size.rc_count, 0, "size of mru state");
1119SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_lsize, CTLFLAG_RD,
1120    &ARC_mru.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mru state");
1121SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_lsize, CTLFLAG_RD,
1122    &ARC_mru.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mru state");
1123
1124SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
1125    &ARC_mru_ghost.arcs_size.rc_count, 0, "size of mru ghost state");
1126SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_lsize, CTLFLAG_RD,
1127    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
1128    "size of metadata in mru ghost state");
1129SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_lsize, CTLFLAG_RD,
1130    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
1131    "size of data in mru ghost state");
1132
1133SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
1134    &ARC_mfu.arcs_size.rc_count, 0, "size of mfu state");
1135SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_lsize, CTLFLAG_RD,
1136    &ARC_mfu.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mfu state");
1137SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_lsize, CTLFLAG_RD,
1138    &ARC_mfu.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mfu state");
1139
1140SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
1141    &ARC_mfu_ghost.arcs_size.rc_count, 0, "size of mfu ghost state");
1142SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_lsize, CTLFLAG_RD,
1143    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
1144    "size of metadata in mfu ghost state");
1145SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_lsize, CTLFLAG_RD,
1146    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
1147    "size of data in mfu ghost state");
1148
1149SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
1150    &ARC_l2c_only.arcs_size.rc_count, 0, "size of mru state");
1151
1152/*
1153 * L2ARC Internals
1154 */
1155struct l2arc_dev {
1156	vdev_t			*l2ad_vdev;	/* vdev */
1157	spa_t			*l2ad_spa;	/* spa */
1158	uint64_t		l2ad_hand;	/* next write location */
1159	uint64_t		l2ad_start;	/* first addr on device */
1160	uint64_t		l2ad_end;	/* last addr on device */
1161	boolean_t		l2ad_first;	/* first sweep through */
1162	boolean_t		l2ad_writing;	/* currently writing */
1163	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1164	list_t			l2ad_buflist;	/* buffer list */
1165	list_node_t		l2ad_node;	/* device list node */
1166	refcount_t		l2ad_alloc;	/* allocated bytes */
1167};
1168
1169static list_t L2ARC_dev_list;			/* device list */
1170static list_t *l2arc_dev_list;			/* device list pointer */
1171static kmutex_t l2arc_dev_mtx;			/* device list mutex */
1172static l2arc_dev_t *l2arc_dev_last;		/* last device used */
1173static list_t L2ARC_free_on_write;		/* free after write buf list */
1174static list_t *l2arc_free_on_write;		/* free after write list ptr */
1175static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1176static uint64_t l2arc_ndev;			/* number of devices */
1177
1178typedef struct l2arc_read_callback {
1179	arc_buf_t		*l2rcb_buf;		/* read buffer */
1180	spa_t			*l2rcb_spa;		/* spa */
1181	blkptr_t		l2rcb_bp;		/* original blkptr */
1182	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1183	int			l2rcb_flags;		/* original flags */
1184	enum zio_compress	l2rcb_compress;		/* applied compress */
1185	void			*l2rcb_data;		/* temporary buffer */
1186} l2arc_read_callback_t;
1187
1188typedef struct l2arc_write_callback {
1189	l2arc_dev_t	*l2wcb_dev;		/* device info */
1190	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1191} l2arc_write_callback_t;
1192
1193typedef struct l2arc_data_free {
1194	/* protected by l2arc_free_on_write_mtx */
1195	void		*l2df_data;
1196	size_t		l2df_size;
1197	void		(*l2df_func)(void *, size_t);
1198	list_node_t	l2df_list_node;
1199} l2arc_data_free_t;
1200
1201static kmutex_t l2arc_feed_thr_lock;
1202static kcondvar_t l2arc_feed_thr_cv;
1203static uint8_t l2arc_thread_exit;
1204
1205static void arc_get_data_buf(arc_buf_t *);
1206static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1207static boolean_t arc_is_overflowing();
1208static void arc_buf_watch(arc_buf_t *);
1209
1210static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1211static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1212
1213static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1214static void l2arc_read_done(zio_t *);
1215
1216static boolean_t l2arc_transform_buf(arc_buf_hdr_t *, boolean_t);
1217static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
1218static void l2arc_release_cdata_buf(arc_buf_hdr_t *);
1219
1220static void
1221l2arc_trim(const arc_buf_hdr_t *hdr)
1222{
1223	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1224
1225	ASSERT(HDR_HAS_L2HDR(hdr));
1226	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
1227
1228	if (hdr->b_l2hdr.b_daddr == L2ARC_ADDR_UNSET)
1229		return;
1230	if (hdr->b_l2hdr.b_asize != 0) {
1231		trim_map_free(dev->l2ad_vdev, hdr->b_l2hdr.b_daddr,
1232		    hdr->b_l2hdr.b_asize, 0);
1233	} else {
1234		ASSERT3U(hdr->b_l2hdr.b_compress, ==, ZIO_COMPRESS_EMPTY);
1235	}
1236}
1237
1238static uint64_t
1239buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1240{
1241	uint8_t *vdva = (uint8_t *)dva;
1242	uint64_t crc = -1ULL;
1243	int i;
1244
1245	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1246
1247	for (i = 0; i < sizeof (dva_t); i++)
1248		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1249
1250	crc ^= (spa>>8) ^ birth;
1251
1252	return (crc);
1253}
1254
1255#define	BUF_EMPTY(buf)						\
1256	((buf)->b_dva.dva_word[0] == 0 &&			\
1257	(buf)->b_dva.dva_word[1] == 0)
1258
1259#define	BUF_EQUAL(spa, dva, birth, buf)				\
1260	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1261	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1262	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
1263
1264static void
1265buf_discard_identity(arc_buf_hdr_t *hdr)
1266{
1267	hdr->b_dva.dva_word[0] = 0;
1268	hdr->b_dva.dva_word[1] = 0;
1269	hdr->b_birth = 0;
1270}
1271
1272static arc_buf_hdr_t *
1273buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1274{
1275	const dva_t *dva = BP_IDENTITY(bp);
1276	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1277	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1278	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1279	arc_buf_hdr_t *hdr;
1280
1281	mutex_enter(hash_lock);
1282	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1283	    hdr = hdr->b_hash_next) {
1284		if (BUF_EQUAL(spa, dva, birth, hdr)) {
1285			*lockp = hash_lock;
1286			return (hdr);
1287		}
1288	}
1289	mutex_exit(hash_lock);
1290	*lockp = NULL;
1291	return (NULL);
1292}
1293
1294/*
1295 * Insert an entry into the hash table.  If there is already an element
1296 * equal to elem in the hash table, then the already existing element
1297 * will be returned and the new element will not be inserted.
1298 * Otherwise returns NULL.
1299 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1300 */
1301static arc_buf_hdr_t *
1302buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1303{
1304	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1305	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1306	arc_buf_hdr_t *fhdr;
1307	uint32_t i;
1308
1309	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1310	ASSERT(hdr->b_birth != 0);
1311	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1312
1313	if (lockp != NULL) {
1314		*lockp = hash_lock;
1315		mutex_enter(hash_lock);
1316	} else {
1317		ASSERT(MUTEX_HELD(hash_lock));
1318	}
1319
1320	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1321	    fhdr = fhdr->b_hash_next, i++) {
1322		if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1323			return (fhdr);
1324	}
1325
1326	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1327	buf_hash_table.ht_table[idx] = hdr;
1328	hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
1329
1330	/* collect some hash table performance data */
1331	if (i > 0) {
1332		ARCSTAT_BUMP(arcstat_hash_collisions);
1333		if (i == 1)
1334			ARCSTAT_BUMP(arcstat_hash_chains);
1335
1336		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1337	}
1338
1339	ARCSTAT_BUMP(arcstat_hash_elements);
1340	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1341
1342	return (NULL);
1343}
1344
1345static void
1346buf_hash_remove(arc_buf_hdr_t *hdr)
1347{
1348	arc_buf_hdr_t *fhdr, **hdrp;
1349	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1350
1351	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1352	ASSERT(HDR_IN_HASH_TABLE(hdr));
1353
1354	hdrp = &buf_hash_table.ht_table[idx];
1355	while ((fhdr = *hdrp) != hdr) {
1356		ASSERT(fhdr != NULL);
1357		hdrp = &fhdr->b_hash_next;
1358	}
1359	*hdrp = hdr->b_hash_next;
1360	hdr->b_hash_next = NULL;
1361	hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
1362
1363	/* collect some hash table performance data */
1364	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1365
1366	if (buf_hash_table.ht_table[idx] &&
1367	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1368		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1369}
1370
1371/*
1372 * Global data structures and functions for the buf kmem cache.
1373 */
1374static kmem_cache_t *hdr_full_cache;
1375static kmem_cache_t *hdr_l2only_cache;
1376static kmem_cache_t *buf_cache;
1377
1378static void
1379buf_fini(void)
1380{
1381	int i;
1382
1383	kmem_free(buf_hash_table.ht_table,
1384	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1385	for (i = 0; i < BUF_LOCKS; i++)
1386		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1387	kmem_cache_destroy(hdr_full_cache);
1388	kmem_cache_destroy(hdr_l2only_cache);
1389	kmem_cache_destroy(buf_cache);
1390}
1391
1392/*
1393 * Constructor callback - called when the cache is empty
1394 * and a new buf is requested.
1395 */
1396/* ARGSUSED */
1397static int
1398hdr_full_cons(void *vbuf, void *unused, int kmflag)
1399{
1400	arc_buf_hdr_t *hdr = vbuf;
1401
1402	bzero(hdr, HDR_FULL_SIZE);
1403	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1404	refcount_create(&hdr->b_l1hdr.b_refcnt);
1405	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1406	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1407	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1408
1409	return (0);
1410}
1411
1412/* ARGSUSED */
1413static int
1414hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1415{
1416	arc_buf_hdr_t *hdr = vbuf;
1417
1418	bzero(hdr, HDR_L2ONLY_SIZE);
1419	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1420
1421	return (0);
1422}
1423
1424/* ARGSUSED */
1425static int
1426buf_cons(void *vbuf, void *unused, int kmflag)
1427{
1428	arc_buf_t *buf = vbuf;
1429
1430	bzero(buf, sizeof (arc_buf_t));
1431	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1432	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1433
1434	return (0);
1435}
1436
1437/*
1438 * Destructor callback - called when a cached buf is
1439 * no longer required.
1440 */
1441/* ARGSUSED */
1442static void
1443hdr_full_dest(void *vbuf, void *unused)
1444{
1445	arc_buf_hdr_t *hdr = vbuf;
1446
1447	ASSERT(BUF_EMPTY(hdr));
1448	cv_destroy(&hdr->b_l1hdr.b_cv);
1449	refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1450	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1451	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1452	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1453}
1454
1455/* ARGSUSED */
1456static void
1457hdr_l2only_dest(void *vbuf, void *unused)
1458{
1459	arc_buf_hdr_t *hdr = vbuf;
1460
1461	ASSERT(BUF_EMPTY(hdr));
1462	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1463}
1464
1465/* ARGSUSED */
1466static void
1467buf_dest(void *vbuf, void *unused)
1468{
1469	arc_buf_t *buf = vbuf;
1470
1471	mutex_destroy(&buf->b_evict_lock);
1472	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1473}
1474
1475/*
1476 * Reclaim callback -- invoked when memory is low.
1477 */
1478/* ARGSUSED */
1479static void
1480hdr_recl(void *unused)
1481{
1482	dprintf("hdr_recl called\n");
1483	/*
1484	 * umem calls the reclaim func when we destroy the buf cache,
1485	 * which is after we do arc_fini().
1486	 */
1487	if (!arc_dead)
1488		cv_signal(&arc_reclaim_thread_cv);
1489}
1490
1491static void
1492buf_init(void)
1493{
1494	uint64_t *ct;
1495	uint64_t hsize = 1ULL << 12;
1496	int i, j;
1497
1498	/*
1499	 * The hash table is big enough to fill all of physical memory
1500	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1501	 * By default, the table will take up
1502	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1503	 */
1504	while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE)
1505		hsize <<= 1;
1506retry:
1507	buf_hash_table.ht_mask = hsize - 1;
1508	buf_hash_table.ht_table =
1509	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1510	if (buf_hash_table.ht_table == NULL) {
1511		ASSERT(hsize > (1ULL << 8));
1512		hsize >>= 1;
1513		goto retry;
1514	}
1515
1516	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1517	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1518	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1519	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1520	    NULL, NULL, 0);
1521	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1522	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1523
1524	for (i = 0; i < 256; i++)
1525		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1526			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1527
1528	for (i = 0; i < BUF_LOCKS; i++) {
1529		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1530		    NULL, MUTEX_DEFAULT, NULL);
1531	}
1532}
1533
1534/*
1535 * Transition between the two allocation states for the arc_buf_hdr struct.
1536 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
1537 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
1538 * version is used when a cache buffer is only in the L2ARC in order to reduce
1539 * memory usage.
1540 */
1541static arc_buf_hdr_t *
1542arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
1543{
1544	ASSERT(HDR_HAS_L2HDR(hdr));
1545
1546	arc_buf_hdr_t *nhdr;
1547	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1548
1549	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
1550	    (old == hdr_l2only_cache && new == hdr_full_cache));
1551
1552	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
1553
1554	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
1555	buf_hash_remove(hdr);
1556
1557	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
1558
1559	if (new == hdr_full_cache) {
1560		nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1561		/*
1562		 * arc_access and arc_change_state need to be aware that a
1563		 * header has just come out of L2ARC, so we set its state to
1564		 * l2c_only even though it's about to change.
1565		 */
1566		nhdr->b_l1hdr.b_state = arc_l2c_only;
1567
1568		/* Verify previous threads set to NULL before freeing */
1569		ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1570	} else {
1571		ASSERT(hdr->b_l1hdr.b_buf == NULL);
1572		ASSERT0(hdr->b_l1hdr.b_datacnt);
1573
1574		/*
1575		 * If we've reached here, We must have been called from
1576		 * arc_evict_hdr(), as such we should have already been
1577		 * removed from any ghost list we were previously on
1578		 * (which protects us from racing with arc_evict_state),
1579		 * thus no locking is needed during this check.
1580		 */
1581		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1582
1583		/*
1584		 * A buffer must not be moved into the arc_l2c_only
1585		 * state if it's not finished being written out to the
1586		 * l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field
1587		 * might try to be accessed, even though it was removed.
1588		 */
1589		VERIFY(!HDR_L2_WRITING(hdr));
1590		VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1591
1592#ifdef ZFS_DEBUG
1593		if (hdr->b_l1hdr.b_thawed != NULL) {
1594			kmem_free(hdr->b_l1hdr.b_thawed, 1);
1595			hdr->b_l1hdr.b_thawed = NULL;
1596		}
1597#endif
1598
1599		nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR;
1600	}
1601	/*
1602	 * The header has been reallocated so we need to re-insert it into any
1603	 * lists it was on.
1604	 */
1605	(void) buf_hash_insert(nhdr, NULL);
1606
1607	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
1608
1609	mutex_enter(&dev->l2ad_mtx);
1610
1611	/*
1612	 * We must place the realloc'ed header back into the list at
1613	 * the same spot. Otherwise, if it's placed earlier in the list,
1614	 * l2arc_write_buffers() could find it during the function's
1615	 * write phase, and try to write it out to the l2arc.
1616	 */
1617	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
1618	list_remove(&dev->l2ad_buflist, hdr);
1619
1620	mutex_exit(&dev->l2ad_mtx);
1621
1622	/*
1623	 * Since we're using the pointer address as the tag when
1624	 * incrementing and decrementing the l2ad_alloc refcount, we
1625	 * must remove the old pointer (that we're about to destroy) and
1626	 * add the new pointer to the refcount. Otherwise we'd remove
1627	 * the wrong pointer address when calling arc_hdr_destroy() later.
1628	 */
1629
1630	(void) refcount_remove_many(&dev->l2ad_alloc,
1631	    hdr->b_l2hdr.b_asize, hdr);
1632
1633	(void) refcount_add_many(&dev->l2ad_alloc,
1634	    nhdr->b_l2hdr.b_asize, nhdr);
1635
1636	buf_discard_identity(hdr);
1637	hdr->b_freeze_cksum = NULL;
1638	kmem_cache_free(old, hdr);
1639
1640	return (nhdr);
1641}
1642
1643
1644#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1645
1646static void
1647arc_cksum_verify(arc_buf_t *buf)
1648{
1649	zio_cksum_t zc;
1650
1651	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1652		return;
1653
1654	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1655	if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) {
1656		mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1657		return;
1658	}
1659	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, NULL, &zc);
1660	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1661		panic("buffer modified while frozen!");
1662	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1663}
1664
1665static int
1666arc_cksum_equal(arc_buf_t *buf)
1667{
1668	zio_cksum_t zc;
1669	int equal;
1670
1671	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1672	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, NULL, &zc);
1673	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1674	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1675
1676	return (equal);
1677}
1678
1679static void
1680arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1681{
1682	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1683		return;
1684
1685	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1686	if (buf->b_hdr->b_freeze_cksum != NULL) {
1687		mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1688		return;
1689	}
1690	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1691	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1692	    NULL, buf->b_hdr->b_freeze_cksum);
1693	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1694#ifdef illumos
1695	arc_buf_watch(buf);
1696#endif
1697}
1698
1699#ifdef illumos
1700#ifndef _KERNEL
1701typedef struct procctl {
1702	long cmd;
1703	prwatch_t prwatch;
1704} procctl_t;
1705#endif
1706
1707/* ARGSUSED */
1708static void
1709arc_buf_unwatch(arc_buf_t *buf)
1710{
1711#ifndef _KERNEL
1712	if (arc_watch) {
1713		int result;
1714		procctl_t ctl;
1715		ctl.cmd = PCWATCH;
1716		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1717		ctl.prwatch.pr_size = 0;
1718		ctl.prwatch.pr_wflags = 0;
1719		result = write(arc_procfd, &ctl, sizeof (ctl));
1720		ASSERT3U(result, ==, sizeof (ctl));
1721	}
1722#endif
1723}
1724
1725/* ARGSUSED */
1726static void
1727arc_buf_watch(arc_buf_t *buf)
1728{
1729#ifndef _KERNEL
1730	if (arc_watch) {
1731		int result;
1732		procctl_t ctl;
1733		ctl.cmd = PCWATCH;
1734		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1735		ctl.prwatch.pr_size = buf->b_hdr->b_size;
1736		ctl.prwatch.pr_wflags = WA_WRITE;
1737		result = write(arc_procfd, &ctl, sizeof (ctl));
1738		ASSERT3U(result, ==, sizeof (ctl));
1739	}
1740#endif
1741}
1742#endif /* illumos */
1743
1744static arc_buf_contents_t
1745arc_buf_type(arc_buf_hdr_t *hdr)
1746{
1747	if (HDR_ISTYPE_METADATA(hdr)) {
1748		return (ARC_BUFC_METADATA);
1749	} else {
1750		return (ARC_BUFC_DATA);
1751	}
1752}
1753
1754static uint32_t
1755arc_bufc_to_flags(arc_buf_contents_t type)
1756{
1757	switch (type) {
1758	case ARC_BUFC_DATA:
1759		/* metadata field is 0 if buffer contains normal data */
1760		return (0);
1761	case ARC_BUFC_METADATA:
1762		return (ARC_FLAG_BUFC_METADATA);
1763	default:
1764		break;
1765	}
1766	panic("undefined ARC buffer type!");
1767	return ((uint32_t)-1);
1768}
1769
1770void
1771arc_buf_thaw(arc_buf_t *buf)
1772{
1773	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1774		if (buf->b_hdr->b_l1hdr.b_state != arc_anon)
1775			panic("modifying non-anon buffer!");
1776		if (HDR_IO_IN_PROGRESS(buf->b_hdr))
1777			panic("modifying buffer while i/o in progress!");
1778		arc_cksum_verify(buf);
1779	}
1780
1781	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1782	if (buf->b_hdr->b_freeze_cksum != NULL) {
1783		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1784		buf->b_hdr->b_freeze_cksum = NULL;
1785	}
1786
1787#ifdef ZFS_DEBUG
1788	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1789		if (buf->b_hdr->b_l1hdr.b_thawed != NULL)
1790			kmem_free(buf->b_hdr->b_l1hdr.b_thawed, 1);
1791		buf->b_hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1792	}
1793#endif
1794
1795	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1796
1797#ifdef illumos
1798	arc_buf_unwatch(buf);
1799#endif
1800}
1801
1802void
1803arc_buf_freeze(arc_buf_t *buf)
1804{
1805	kmutex_t *hash_lock;
1806
1807	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1808		return;
1809
1810	hash_lock = HDR_LOCK(buf->b_hdr);
1811	mutex_enter(hash_lock);
1812
1813	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1814	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
1815	arc_cksum_compute(buf, B_FALSE);
1816	mutex_exit(hash_lock);
1817
1818}
1819
1820static void
1821add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1822{
1823	ASSERT(HDR_HAS_L1HDR(hdr));
1824	ASSERT(MUTEX_HELD(hash_lock));
1825	arc_state_t *state = hdr->b_l1hdr.b_state;
1826
1827	if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1828	    (state != arc_anon)) {
1829		/* We don't use the L2-only state list. */
1830		if (state != arc_l2c_only) {
1831			arc_buf_contents_t type = arc_buf_type(hdr);
1832			uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt;
1833			multilist_t *list = &state->arcs_list[type];
1834			uint64_t *size = &state->arcs_lsize[type];
1835
1836			multilist_remove(list, hdr);
1837
1838			if (GHOST_STATE(state)) {
1839				ASSERT0(hdr->b_l1hdr.b_datacnt);
1840				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1841				delta = hdr->b_size;
1842			}
1843			ASSERT(delta > 0);
1844			ASSERT3U(*size, >=, delta);
1845			atomic_add_64(size, -delta);
1846		}
1847		/* remove the prefetch flag if we get a reference */
1848		hdr->b_flags &= ~ARC_FLAG_PREFETCH;
1849	}
1850}
1851
1852static int
1853remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1854{
1855	int cnt;
1856	arc_state_t *state = hdr->b_l1hdr.b_state;
1857
1858	ASSERT(HDR_HAS_L1HDR(hdr));
1859	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1860	ASSERT(!GHOST_STATE(state));
1861
1862	/*
1863	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1864	 * check to prevent usage of the arc_l2c_only list.
1865	 */
1866	if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
1867	    (state != arc_anon)) {
1868		arc_buf_contents_t type = arc_buf_type(hdr);
1869		multilist_t *list = &state->arcs_list[type];
1870		uint64_t *size = &state->arcs_lsize[type];
1871
1872		multilist_insert(list, hdr);
1873
1874		ASSERT(hdr->b_l1hdr.b_datacnt > 0);
1875		atomic_add_64(size, hdr->b_size *
1876		    hdr->b_l1hdr.b_datacnt);
1877	}
1878	return (cnt);
1879}
1880
1881/*
1882 * Move the supplied buffer to the indicated state. The hash lock
1883 * for the buffer must be held by the caller.
1884 */
1885static void
1886arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
1887    kmutex_t *hash_lock)
1888{
1889	arc_state_t *old_state;
1890	int64_t refcnt;
1891	uint32_t datacnt;
1892	uint64_t from_delta, to_delta;
1893	arc_buf_contents_t buftype = arc_buf_type(hdr);
1894
1895	/*
1896	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
1897	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
1898	 * L1 hdr doesn't always exist when we change state to arc_anon before
1899	 * destroying a header, in which case reallocating to add the L1 hdr is
1900	 * pointless.
1901	 */
1902	if (HDR_HAS_L1HDR(hdr)) {
1903		old_state = hdr->b_l1hdr.b_state;
1904		refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
1905		datacnt = hdr->b_l1hdr.b_datacnt;
1906	} else {
1907		old_state = arc_l2c_only;
1908		refcnt = 0;
1909		datacnt = 0;
1910	}
1911
1912	ASSERT(MUTEX_HELD(hash_lock));
1913	ASSERT3P(new_state, !=, old_state);
1914	ASSERT(refcnt == 0 || datacnt > 0);
1915	ASSERT(!GHOST_STATE(new_state) || datacnt == 0);
1916	ASSERT(old_state != arc_anon || datacnt <= 1);
1917
1918	from_delta = to_delta = datacnt * hdr->b_size;
1919
1920	/*
1921	 * If this buffer is evictable, transfer it from the
1922	 * old state list to the new state list.
1923	 */
1924	if (refcnt == 0) {
1925		if (old_state != arc_anon && old_state != arc_l2c_only) {
1926			uint64_t *size = &old_state->arcs_lsize[buftype];
1927
1928			ASSERT(HDR_HAS_L1HDR(hdr));
1929			multilist_remove(&old_state->arcs_list[buftype], hdr);
1930
1931			/*
1932			 * If prefetching out of the ghost cache,
1933			 * we will have a non-zero datacnt.
1934			 */
1935			if (GHOST_STATE(old_state) && datacnt == 0) {
1936				/* ghost elements have a ghost size */
1937				ASSERT(hdr->b_l1hdr.b_buf == NULL);
1938				from_delta = hdr->b_size;
1939			}
1940			ASSERT3U(*size, >=, from_delta);
1941			atomic_add_64(size, -from_delta);
1942		}
1943		if (new_state != arc_anon && new_state != arc_l2c_only) {
1944			uint64_t *size = &new_state->arcs_lsize[buftype];
1945
1946			/*
1947			 * An L1 header always exists here, since if we're
1948			 * moving to some L1-cached state (i.e. not l2c_only or
1949			 * anonymous), we realloc the header to add an L1hdr
1950			 * beforehand.
1951			 */
1952			ASSERT(HDR_HAS_L1HDR(hdr));
1953			multilist_insert(&new_state->arcs_list[buftype], hdr);
1954
1955			/* ghost elements have a ghost size */
1956			if (GHOST_STATE(new_state)) {
1957				ASSERT0(datacnt);
1958				ASSERT(hdr->b_l1hdr.b_buf == NULL);
1959				to_delta = hdr->b_size;
1960			}
1961			atomic_add_64(size, to_delta);
1962		}
1963	}
1964
1965	ASSERT(!BUF_EMPTY(hdr));
1966	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
1967		buf_hash_remove(hdr);
1968
1969	/* adjust state sizes (ignore arc_l2c_only) */
1970
1971	if (to_delta && new_state != arc_l2c_only) {
1972		ASSERT(HDR_HAS_L1HDR(hdr));
1973		if (GHOST_STATE(new_state)) {
1974			ASSERT0(datacnt);
1975
1976			/*
1977			 * We moving a header to a ghost state, we first
1978			 * remove all arc buffers. Thus, we'll have a
1979			 * datacnt of zero, and no arc buffer to use for
1980			 * the reference. As a result, we use the arc
1981			 * header pointer for the reference.
1982			 */
1983			(void) refcount_add_many(&new_state->arcs_size,
1984			    hdr->b_size, hdr);
1985		} else {
1986			ASSERT3U(datacnt, !=, 0);
1987
1988			/*
1989			 * Each individual buffer holds a unique reference,
1990			 * thus we must remove each of these references one
1991			 * at a time.
1992			 */
1993			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
1994			    buf = buf->b_next) {
1995				(void) refcount_add_many(&new_state->arcs_size,
1996				    hdr->b_size, buf);
1997			}
1998		}
1999	}
2000
2001	if (from_delta && old_state != arc_l2c_only) {
2002		ASSERT(HDR_HAS_L1HDR(hdr));
2003		if (GHOST_STATE(old_state)) {
2004			/*
2005			 * When moving a header off of a ghost state,
2006			 * there's the possibility for datacnt to be
2007			 * non-zero. This is because we first add the
2008			 * arc buffer to the header prior to changing
2009			 * the header's state. Since we used the header
2010			 * for the reference when putting the header on
2011			 * the ghost state, we must balance that and use
2012			 * the header when removing off the ghost state
2013			 * (even though datacnt is non zero).
2014			 */
2015
2016			IMPLY(datacnt == 0, new_state == arc_anon ||
2017			    new_state == arc_l2c_only);
2018
2019			(void) refcount_remove_many(&old_state->arcs_size,
2020			    hdr->b_size, hdr);
2021		} else {
2022			ASSERT3P(datacnt, !=, 0);
2023
2024			/*
2025			 * Each individual buffer holds a unique reference,
2026			 * thus we must remove each of these references one
2027			 * at a time.
2028			 */
2029			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2030			    buf = buf->b_next) {
2031				(void) refcount_remove_many(
2032				    &old_state->arcs_size, hdr->b_size, buf);
2033			}
2034		}
2035	}
2036
2037	if (HDR_HAS_L1HDR(hdr))
2038		hdr->b_l1hdr.b_state = new_state;
2039
2040	/*
2041	 * L2 headers should never be on the L2 state list since they don't
2042	 * have L1 headers allocated.
2043	 */
2044	ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2045	    multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2046}
2047
2048void
2049arc_space_consume(uint64_t space, arc_space_type_t type)
2050{
2051	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2052
2053	switch (type) {
2054	case ARC_SPACE_DATA:
2055		ARCSTAT_INCR(arcstat_data_size, space);
2056		break;
2057	case ARC_SPACE_META:
2058		ARCSTAT_INCR(arcstat_metadata_size, space);
2059		break;
2060	case ARC_SPACE_OTHER:
2061		ARCSTAT_INCR(arcstat_other_size, space);
2062		break;
2063	case ARC_SPACE_HDRS:
2064		ARCSTAT_INCR(arcstat_hdr_size, space);
2065		break;
2066	case ARC_SPACE_L2HDRS:
2067		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
2068		break;
2069	}
2070
2071	if (type != ARC_SPACE_DATA)
2072		ARCSTAT_INCR(arcstat_meta_used, space);
2073
2074	atomic_add_64(&arc_size, space);
2075}
2076
2077void
2078arc_space_return(uint64_t space, arc_space_type_t type)
2079{
2080	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2081
2082	switch (type) {
2083	case ARC_SPACE_DATA:
2084		ARCSTAT_INCR(arcstat_data_size, -space);
2085		break;
2086	case ARC_SPACE_META:
2087		ARCSTAT_INCR(arcstat_metadata_size, -space);
2088		break;
2089	case ARC_SPACE_OTHER:
2090		ARCSTAT_INCR(arcstat_other_size, -space);
2091		break;
2092	case ARC_SPACE_HDRS:
2093		ARCSTAT_INCR(arcstat_hdr_size, -space);
2094		break;
2095	case ARC_SPACE_L2HDRS:
2096		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
2097		break;
2098	}
2099
2100	if (type != ARC_SPACE_DATA) {
2101		ASSERT(arc_meta_used >= space);
2102		if (arc_meta_max < arc_meta_used)
2103			arc_meta_max = arc_meta_used;
2104		ARCSTAT_INCR(arcstat_meta_used, -space);
2105	}
2106
2107	ASSERT(arc_size >= space);
2108	atomic_add_64(&arc_size, -space);
2109}
2110
2111arc_buf_t *
2112arc_buf_alloc(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type)
2113{
2114	arc_buf_hdr_t *hdr;
2115	arc_buf_t *buf;
2116
2117	ASSERT3U(size, >, 0);
2118	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2119	ASSERT(BUF_EMPTY(hdr));
2120	ASSERT3P(hdr->b_freeze_cksum, ==, NULL);
2121	hdr->b_size = size;
2122	hdr->b_spa = spa_load_guid(spa);
2123
2124	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2125	buf->b_hdr = hdr;
2126	buf->b_data = NULL;
2127	buf->b_efunc = NULL;
2128	buf->b_private = NULL;
2129	buf->b_next = NULL;
2130
2131	hdr->b_flags = arc_bufc_to_flags(type);
2132	hdr->b_flags |= ARC_FLAG_HAS_L1HDR;
2133
2134	hdr->b_l1hdr.b_buf = buf;
2135	hdr->b_l1hdr.b_state = arc_anon;
2136	hdr->b_l1hdr.b_arc_access = 0;
2137	hdr->b_l1hdr.b_datacnt = 1;
2138	hdr->b_l1hdr.b_tmp_cdata = NULL;
2139
2140	arc_get_data_buf(buf);
2141	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2142	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2143
2144	return (buf);
2145}
2146
2147static char *arc_onloan_tag = "onloan";
2148
2149/*
2150 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2151 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2152 * buffers must be returned to the arc before they can be used by the DMU or
2153 * freed.
2154 */
2155arc_buf_t *
2156arc_loan_buf(spa_t *spa, int size)
2157{
2158	arc_buf_t *buf;
2159
2160	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
2161
2162	atomic_add_64(&arc_loaned_bytes, size);
2163	return (buf);
2164}
2165
2166/*
2167 * Return a loaned arc buffer to the arc.
2168 */
2169void
2170arc_return_buf(arc_buf_t *buf, void *tag)
2171{
2172	arc_buf_hdr_t *hdr = buf->b_hdr;
2173
2174	ASSERT(buf->b_data != NULL);
2175	ASSERT(HDR_HAS_L1HDR(hdr));
2176	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2177	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2178
2179	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
2180}
2181
2182/* Detach an arc_buf from a dbuf (tag) */
2183void
2184arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2185{
2186	arc_buf_hdr_t *hdr = buf->b_hdr;
2187
2188	ASSERT(buf->b_data != NULL);
2189	ASSERT(HDR_HAS_L1HDR(hdr));
2190	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2191	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2192	buf->b_efunc = NULL;
2193	buf->b_private = NULL;
2194
2195	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
2196}
2197
2198static arc_buf_t *
2199arc_buf_clone(arc_buf_t *from)
2200{
2201	arc_buf_t *buf;
2202	arc_buf_hdr_t *hdr = from->b_hdr;
2203	uint64_t size = hdr->b_size;
2204
2205	ASSERT(HDR_HAS_L1HDR(hdr));
2206	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2207
2208	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2209	buf->b_hdr = hdr;
2210	buf->b_data = NULL;
2211	buf->b_efunc = NULL;
2212	buf->b_private = NULL;
2213	buf->b_next = hdr->b_l1hdr.b_buf;
2214	hdr->b_l1hdr.b_buf = buf;
2215	arc_get_data_buf(buf);
2216	bcopy(from->b_data, buf->b_data, size);
2217
2218	/*
2219	 * This buffer already exists in the arc so create a duplicate
2220	 * copy for the caller.  If the buffer is associated with user data
2221	 * then track the size and number of duplicates.  These stats will be
2222	 * updated as duplicate buffers are created and destroyed.
2223	 */
2224	if (HDR_ISTYPE_DATA(hdr)) {
2225		ARCSTAT_BUMP(arcstat_duplicate_buffers);
2226		ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
2227	}
2228	hdr->b_l1hdr.b_datacnt += 1;
2229	return (buf);
2230}
2231
2232void
2233arc_buf_add_ref(arc_buf_t *buf, void* tag)
2234{
2235	arc_buf_hdr_t *hdr;
2236	kmutex_t *hash_lock;
2237
2238	/*
2239	 * Check to see if this buffer is evicted.  Callers
2240	 * must verify b_data != NULL to know if the add_ref
2241	 * was successful.
2242	 */
2243	mutex_enter(&buf->b_evict_lock);
2244	if (buf->b_data == NULL) {
2245		mutex_exit(&buf->b_evict_lock);
2246		return;
2247	}
2248	hash_lock = HDR_LOCK(buf->b_hdr);
2249	mutex_enter(hash_lock);
2250	hdr = buf->b_hdr;
2251	ASSERT(HDR_HAS_L1HDR(hdr));
2252	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2253	mutex_exit(&buf->b_evict_lock);
2254
2255	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
2256	    hdr->b_l1hdr.b_state == arc_mfu);
2257
2258	add_reference(hdr, hash_lock, tag);
2259	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2260	arc_access(hdr, hash_lock);
2261	mutex_exit(hash_lock);
2262	ARCSTAT_BUMP(arcstat_hits);
2263	ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
2264	    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
2265	    data, metadata, hits);
2266}
2267
2268static void
2269arc_buf_free_on_write(void *data, size_t size,
2270    void (*free_func)(void *, size_t))
2271{
2272	l2arc_data_free_t *df;
2273
2274	df = kmem_alloc(sizeof (*df), KM_SLEEP);
2275	df->l2df_data = data;
2276	df->l2df_size = size;
2277	df->l2df_func = free_func;
2278	mutex_enter(&l2arc_free_on_write_mtx);
2279	list_insert_head(l2arc_free_on_write, df);
2280	mutex_exit(&l2arc_free_on_write_mtx);
2281}
2282
2283/*
2284 * Free the arc data buffer.  If it is an l2arc write in progress,
2285 * the buffer is placed on l2arc_free_on_write to be freed later.
2286 */
2287static void
2288arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
2289{
2290	arc_buf_hdr_t *hdr = buf->b_hdr;
2291
2292	if (HDR_L2_WRITING(hdr)) {
2293		arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
2294		ARCSTAT_BUMP(arcstat_l2_free_on_write);
2295	} else {
2296		free_func(buf->b_data, hdr->b_size);
2297	}
2298}
2299
2300static void
2301arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
2302{
2303	size_t align, asize, len;
2304
2305	ASSERT(HDR_HAS_L2HDR(hdr));
2306	ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx));
2307
2308	/*
2309	 * The b_tmp_cdata field is linked off of the b_l1hdr, so if
2310	 * that doesn't exist, the header is in the arc_l2c_only state,
2311	 * and there isn't anything to free (it's already been freed).
2312	 */
2313	if (!HDR_HAS_L1HDR(hdr))
2314		return;
2315
2316	/*
2317	 * The header isn't being written to the l2arc device, thus it
2318	 * shouldn't have a b_tmp_cdata to free.
2319	 */
2320	if (!HDR_L2_WRITING(hdr)) {
2321		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2322		return;
2323	}
2324
2325	/*
2326	 * The bufer has been chosen for writing to L2ARC, but it's
2327	 * not being written just yet.  In other words,
2328	 * b_tmp_cdata points to exactly the same buffer as b_data,
2329	 * l2arc_transform_buf hasn't been called.
2330	 */
2331	if (hdr->b_l2hdr.b_daddr == L2ARC_ADDR_UNSET) {
2332		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==,
2333		    hdr->b_l1hdr.b_buf->b_data);
2334		ASSERT3U(hdr->b_l2hdr.b_compress, ==, ZIO_COMPRESS_OFF);
2335		return;
2336	}
2337
2338	/*
2339	 * There's nothing to free since the buffer was all zero's and
2340	 * compressed to a zero length buffer.
2341	 */
2342	if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_EMPTY) {
2343		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2344		return;
2345	}
2346
2347	/*
2348	 * Nothing to do if the temporary buffer was not required.
2349	 */
2350	if (hdr->b_l1hdr.b_tmp_cdata == NULL)
2351		return;
2352
2353	ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
2354	len = hdr->b_size;
2355	align = (size_t)1 << hdr->b_l2hdr.b_dev->l2ad_vdev->vdev_ashift;
2356	asize = P2ROUNDUP(len, align);
2357	arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata, asize,
2358	    zio_data_buf_free);
2359	hdr->b_l1hdr.b_tmp_cdata = NULL;
2360}
2361
2362/*
2363 * Free up buf->b_data and if 'remove' is set, then pull the
2364 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
2365 */
2366static void
2367arc_buf_destroy(arc_buf_t *buf, boolean_t remove)
2368{
2369	arc_buf_t **bufp;
2370
2371	/* free up data associated with the buf */
2372	if (buf->b_data != NULL) {
2373		arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
2374		uint64_t size = buf->b_hdr->b_size;
2375		arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
2376
2377		arc_cksum_verify(buf);
2378#ifdef illumos
2379		arc_buf_unwatch(buf);
2380#endif
2381
2382		if (type == ARC_BUFC_METADATA) {
2383			arc_buf_data_free(buf, zio_buf_free);
2384			arc_space_return(size, ARC_SPACE_META);
2385		} else {
2386			ASSERT(type == ARC_BUFC_DATA);
2387			arc_buf_data_free(buf, zio_data_buf_free);
2388			arc_space_return(size, ARC_SPACE_DATA);
2389		}
2390
2391		/* protected by hash lock, if in the hash table */
2392		if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
2393			uint64_t *cnt = &state->arcs_lsize[type];
2394
2395			ASSERT(refcount_is_zero(
2396			    &buf->b_hdr->b_l1hdr.b_refcnt));
2397			ASSERT(state != arc_anon && state != arc_l2c_only);
2398
2399			ASSERT3U(*cnt, >=, size);
2400			atomic_add_64(cnt, -size);
2401		}
2402
2403		(void) refcount_remove_many(&state->arcs_size, size, buf);
2404		buf->b_data = NULL;
2405
2406		/*
2407		 * If we're destroying a duplicate buffer make sure
2408		 * that the appropriate statistics are updated.
2409		 */
2410		if (buf->b_hdr->b_l1hdr.b_datacnt > 1 &&
2411		    HDR_ISTYPE_DATA(buf->b_hdr)) {
2412			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
2413			ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
2414		}
2415		ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0);
2416		buf->b_hdr->b_l1hdr.b_datacnt -= 1;
2417	}
2418
2419	/* only remove the buf if requested */
2420	if (!remove)
2421		return;
2422
2423	/* remove the buf from the hdr list */
2424	for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf;
2425	    bufp = &(*bufp)->b_next)
2426		continue;
2427	*bufp = buf->b_next;
2428	buf->b_next = NULL;
2429
2430	ASSERT(buf->b_efunc == NULL);
2431
2432	/* clean up the buf */
2433	buf->b_hdr = NULL;
2434	kmem_cache_free(buf_cache, buf);
2435}
2436
2437static void
2438arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2439{
2440	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2441	l2arc_dev_t *dev = l2hdr->b_dev;
2442
2443	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2444	ASSERT(HDR_HAS_L2HDR(hdr));
2445
2446	list_remove(&dev->l2ad_buflist, hdr);
2447
2448	/*
2449	 * We don't want to leak the b_tmp_cdata buffer that was
2450	 * allocated in l2arc_write_buffers()
2451	 */
2452	arc_buf_l2_cdata_free(hdr);
2453
2454	/*
2455	 * If the l2hdr's b_daddr is equal to L2ARC_ADDR_UNSET, then
2456	 * this header is being processed by l2arc_write_buffers() (i.e.
2457	 * it's in the first stage of l2arc_write_buffers()).
2458	 * Re-affirming that truth here, just to serve as a reminder. If
2459	 * b_daddr does not equal L2ARC_ADDR_UNSET, then the header may or
2460	 * may not have its HDR_L2_WRITING flag set. (the write may have
2461	 * completed, in which case HDR_L2_WRITING will be false and the
2462	 * b_daddr field will point to the address of the buffer on disk).
2463	 */
2464	IMPLY(l2hdr->b_daddr == L2ARC_ADDR_UNSET, HDR_L2_WRITING(hdr));
2465
2466	/*
2467	 * If b_daddr is equal to L2ARC_ADDR_UNSET, we're racing with
2468	 * l2arc_write_buffers(). Since we've just removed this header
2469	 * from the l2arc buffer list, this header will never reach the
2470	 * second stage of l2arc_write_buffers(), which increments the
2471	 * accounting stats for this header. Thus, we must be careful
2472	 * not to decrement them for this header either.
2473	 */
2474	if (l2hdr->b_daddr != L2ARC_ADDR_UNSET) {
2475		ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
2476		ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
2477
2478		vdev_space_update(dev->l2ad_vdev,
2479		    -l2hdr->b_asize, 0, 0);
2480
2481		(void) refcount_remove_many(&dev->l2ad_alloc,
2482		    l2hdr->b_asize, hdr);
2483	}
2484
2485	hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
2486}
2487
2488static void
2489arc_hdr_destroy(arc_buf_hdr_t *hdr)
2490{
2491	if (HDR_HAS_L1HDR(hdr)) {
2492		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
2493		    hdr->b_l1hdr.b_datacnt > 0);
2494		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2495		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2496	}
2497	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2498	ASSERT(!HDR_IN_HASH_TABLE(hdr));
2499
2500	if (HDR_HAS_L2HDR(hdr)) {
2501		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2502		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
2503
2504		if (!buflist_held)
2505			mutex_enter(&dev->l2ad_mtx);
2506
2507		/*
2508		 * Even though we checked this conditional above, we
2509		 * need to check this again now that we have the
2510		 * l2ad_mtx. This is because we could be racing with
2511		 * another thread calling l2arc_evict() which might have
2512		 * destroyed this header's L2 portion as we were waiting
2513		 * to acquire the l2ad_mtx. If that happens, we don't
2514		 * want to re-destroy the header's L2 portion.
2515		 */
2516		if (HDR_HAS_L2HDR(hdr)) {
2517			l2arc_trim(hdr);
2518			arc_hdr_l2hdr_destroy(hdr);
2519		}
2520
2521		if (!buflist_held)
2522			mutex_exit(&dev->l2ad_mtx);
2523	}
2524
2525	if (!BUF_EMPTY(hdr))
2526		buf_discard_identity(hdr);
2527
2528	if (hdr->b_freeze_cksum != NULL) {
2529		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
2530		hdr->b_freeze_cksum = NULL;
2531	}
2532
2533	if (HDR_HAS_L1HDR(hdr)) {
2534		while (hdr->b_l1hdr.b_buf) {
2535			arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2536
2537			if (buf->b_efunc != NULL) {
2538				mutex_enter(&arc_user_evicts_lock);
2539				mutex_enter(&buf->b_evict_lock);
2540				ASSERT(buf->b_hdr != NULL);
2541				arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE);
2542				hdr->b_l1hdr.b_buf = buf->b_next;
2543				buf->b_hdr = &arc_eviction_hdr;
2544				buf->b_next = arc_eviction_list;
2545				arc_eviction_list = buf;
2546				mutex_exit(&buf->b_evict_lock);
2547				cv_signal(&arc_user_evicts_cv);
2548				mutex_exit(&arc_user_evicts_lock);
2549			} else {
2550				arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE);
2551			}
2552		}
2553#ifdef ZFS_DEBUG
2554		if (hdr->b_l1hdr.b_thawed != NULL) {
2555			kmem_free(hdr->b_l1hdr.b_thawed, 1);
2556			hdr->b_l1hdr.b_thawed = NULL;
2557		}
2558#endif
2559	}
2560
2561	ASSERT3P(hdr->b_hash_next, ==, NULL);
2562	if (HDR_HAS_L1HDR(hdr)) {
2563		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2564		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
2565		kmem_cache_free(hdr_full_cache, hdr);
2566	} else {
2567		kmem_cache_free(hdr_l2only_cache, hdr);
2568	}
2569}
2570
2571void
2572arc_buf_free(arc_buf_t *buf, void *tag)
2573{
2574	arc_buf_hdr_t *hdr = buf->b_hdr;
2575	int hashed = hdr->b_l1hdr.b_state != arc_anon;
2576
2577	ASSERT(buf->b_efunc == NULL);
2578	ASSERT(buf->b_data != NULL);
2579
2580	if (hashed) {
2581		kmutex_t *hash_lock = HDR_LOCK(hdr);
2582
2583		mutex_enter(hash_lock);
2584		hdr = buf->b_hdr;
2585		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2586
2587		(void) remove_reference(hdr, hash_lock, tag);
2588		if (hdr->b_l1hdr.b_datacnt > 1) {
2589			arc_buf_destroy(buf, TRUE);
2590		} else {
2591			ASSERT(buf == hdr->b_l1hdr.b_buf);
2592			ASSERT(buf->b_efunc == NULL);
2593			hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2594		}
2595		mutex_exit(hash_lock);
2596	} else if (HDR_IO_IN_PROGRESS(hdr)) {
2597		int destroy_hdr;
2598		/*
2599		 * We are in the middle of an async write.  Don't destroy
2600		 * this buffer unless the write completes before we finish
2601		 * decrementing the reference count.
2602		 */
2603		mutex_enter(&arc_user_evicts_lock);
2604		(void) remove_reference(hdr, NULL, tag);
2605		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2606		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
2607		mutex_exit(&arc_user_evicts_lock);
2608		if (destroy_hdr)
2609			arc_hdr_destroy(hdr);
2610	} else {
2611		if (remove_reference(hdr, NULL, tag) > 0)
2612			arc_buf_destroy(buf, TRUE);
2613		else
2614			arc_hdr_destroy(hdr);
2615	}
2616}
2617
2618boolean_t
2619arc_buf_remove_ref(arc_buf_t *buf, void* tag)
2620{
2621	arc_buf_hdr_t *hdr = buf->b_hdr;
2622	kmutex_t *hash_lock = HDR_LOCK(hdr);
2623	boolean_t no_callback = (buf->b_efunc == NULL);
2624
2625	if (hdr->b_l1hdr.b_state == arc_anon) {
2626		ASSERT(hdr->b_l1hdr.b_datacnt == 1);
2627		arc_buf_free(buf, tag);
2628		return (no_callback);
2629	}
2630
2631	mutex_enter(hash_lock);
2632	hdr = buf->b_hdr;
2633	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
2634	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2635	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2636	ASSERT(buf->b_data != NULL);
2637
2638	(void) remove_reference(hdr, hash_lock, tag);
2639	if (hdr->b_l1hdr.b_datacnt > 1) {
2640		if (no_callback)
2641			arc_buf_destroy(buf, TRUE);
2642	} else if (no_callback) {
2643		ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL);
2644		ASSERT(buf->b_efunc == NULL);
2645		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2646	}
2647	ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 ||
2648	    refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2649	mutex_exit(hash_lock);
2650	return (no_callback);
2651}
2652
2653int32_t
2654arc_buf_size(arc_buf_t *buf)
2655{
2656	return (buf->b_hdr->b_size);
2657}
2658
2659/*
2660 * Called from the DMU to determine if the current buffer should be
2661 * evicted. In order to ensure proper locking, the eviction must be initiated
2662 * from the DMU. Return true if the buffer is associated with user data and
2663 * duplicate buffers still exist.
2664 */
2665boolean_t
2666arc_buf_eviction_needed(arc_buf_t *buf)
2667{
2668	arc_buf_hdr_t *hdr;
2669	boolean_t evict_needed = B_FALSE;
2670
2671	if (zfs_disable_dup_eviction)
2672		return (B_FALSE);
2673
2674	mutex_enter(&buf->b_evict_lock);
2675	hdr = buf->b_hdr;
2676	if (hdr == NULL) {
2677		/*
2678		 * We are in arc_do_user_evicts(); let that function
2679		 * perform the eviction.
2680		 */
2681		ASSERT(buf->b_data == NULL);
2682		mutex_exit(&buf->b_evict_lock);
2683		return (B_FALSE);
2684	} else if (buf->b_data == NULL) {
2685		/*
2686		 * We have already been added to the arc eviction list;
2687		 * recommend eviction.
2688		 */
2689		ASSERT3P(hdr, ==, &arc_eviction_hdr);
2690		mutex_exit(&buf->b_evict_lock);
2691		return (B_TRUE);
2692	}
2693
2694	if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr))
2695		evict_needed = B_TRUE;
2696
2697	mutex_exit(&buf->b_evict_lock);
2698	return (evict_needed);
2699}
2700
2701/*
2702 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
2703 * state of the header is dependent on it's state prior to entering this
2704 * function. The following transitions are possible:
2705 *
2706 *    - arc_mru -> arc_mru_ghost
2707 *    - arc_mfu -> arc_mfu_ghost
2708 *    - arc_mru_ghost -> arc_l2c_only
2709 *    - arc_mru_ghost -> deleted
2710 *    - arc_mfu_ghost -> arc_l2c_only
2711 *    - arc_mfu_ghost -> deleted
2712 */
2713static int64_t
2714arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
2715{
2716	arc_state_t *evicted_state, *state;
2717	int64_t bytes_evicted = 0;
2718
2719	ASSERT(MUTEX_HELD(hash_lock));
2720	ASSERT(HDR_HAS_L1HDR(hdr));
2721
2722	state = hdr->b_l1hdr.b_state;
2723	if (GHOST_STATE(state)) {
2724		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2725		ASSERT(hdr->b_l1hdr.b_buf == NULL);
2726
2727		/*
2728		 * l2arc_write_buffers() relies on a header's L1 portion
2729		 * (i.e. it's b_tmp_cdata field) during it's write phase.
2730		 * Thus, we cannot push a header onto the arc_l2c_only
2731		 * state (removing it's L1 piece) until the header is
2732		 * done being written to the l2arc.
2733		 */
2734		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
2735			ARCSTAT_BUMP(arcstat_evict_l2_skip);
2736			return (bytes_evicted);
2737		}
2738
2739		ARCSTAT_BUMP(arcstat_deleted);
2740		bytes_evicted += hdr->b_size;
2741
2742		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
2743
2744		if (HDR_HAS_L2HDR(hdr)) {
2745			/*
2746			 * This buffer is cached on the 2nd Level ARC;
2747			 * don't destroy the header.
2748			 */
2749			arc_change_state(arc_l2c_only, hdr, hash_lock);
2750			/*
2751			 * dropping from L1+L2 cached to L2-only,
2752			 * realloc to remove the L1 header.
2753			 */
2754			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
2755			    hdr_l2only_cache);
2756		} else {
2757			arc_change_state(arc_anon, hdr, hash_lock);
2758			arc_hdr_destroy(hdr);
2759		}
2760		return (bytes_evicted);
2761	}
2762
2763	ASSERT(state == arc_mru || state == arc_mfu);
2764	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2765
2766	/* prefetch buffers have a minimum lifespan */
2767	if (HDR_IO_IN_PROGRESS(hdr) ||
2768	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2769	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
2770	    arc_min_prefetch_lifespan)) {
2771		ARCSTAT_BUMP(arcstat_evict_skip);
2772		return (bytes_evicted);
2773	}
2774
2775	ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
2776	ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
2777	while (hdr->b_l1hdr.b_buf) {
2778		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2779		if (!mutex_tryenter(&buf->b_evict_lock)) {
2780			ARCSTAT_BUMP(arcstat_mutex_miss);
2781			break;
2782		}
2783		if (buf->b_data != NULL)
2784			bytes_evicted += hdr->b_size;
2785		if (buf->b_efunc != NULL) {
2786			mutex_enter(&arc_user_evicts_lock);
2787			arc_buf_destroy(buf, FALSE);
2788			hdr->b_l1hdr.b_buf = buf->b_next;
2789			buf->b_hdr = &arc_eviction_hdr;
2790			buf->b_next = arc_eviction_list;
2791			arc_eviction_list = buf;
2792			cv_signal(&arc_user_evicts_cv);
2793			mutex_exit(&arc_user_evicts_lock);
2794			mutex_exit(&buf->b_evict_lock);
2795		} else {
2796			mutex_exit(&buf->b_evict_lock);
2797			arc_buf_destroy(buf, TRUE);
2798		}
2799	}
2800
2801	if (HDR_HAS_L2HDR(hdr)) {
2802		ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size);
2803	} else {
2804		if (l2arc_write_eligible(hdr->b_spa, hdr))
2805			ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size);
2806		else
2807			ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size);
2808	}
2809
2810	if (hdr->b_l1hdr.b_datacnt == 0) {
2811		arc_change_state(evicted_state, hdr, hash_lock);
2812		ASSERT(HDR_IN_HASH_TABLE(hdr));
2813		hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
2814		hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
2815		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
2816	}
2817
2818	return (bytes_evicted);
2819}
2820
2821static uint64_t
2822arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
2823    uint64_t spa, int64_t bytes)
2824{
2825	multilist_sublist_t *mls;
2826	uint64_t bytes_evicted = 0;
2827	arc_buf_hdr_t *hdr;
2828	kmutex_t *hash_lock;
2829	int evict_count = 0;
2830
2831	ASSERT3P(marker, !=, NULL);
2832	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2833
2834	mls = multilist_sublist_lock(ml, idx);
2835
2836	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
2837	    hdr = multilist_sublist_prev(mls, marker)) {
2838		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
2839		    (evict_count >= zfs_arc_evict_batch_limit))
2840			break;
2841
2842		/*
2843		 * To keep our iteration location, move the marker
2844		 * forward. Since we're not holding hdr's hash lock, we
2845		 * must be very careful and not remove 'hdr' from the
2846		 * sublist. Otherwise, other consumers might mistake the
2847		 * 'hdr' as not being on a sublist when they call the
2848		 * multilist_link_active() function (they all rely on
2849		 * the hash lock protecting concurrent insertions and
2850		 * removals). multilist_sublist_move_forward() was
2851		 * specifically implemented to ensure this is the case
2852		 * (only 'marker' will be removed and re-inserted).
2853		 */
2854		multilist_sublist_move_forward(mls, marker);
2855
2856		/*
2857		 * The only case where the b_spa field should ever be
2858		 * zero, is the marker headers inserted by
2859		 * arc_evict_state(). It's possible for multiple threads
2860		 * to be calling arc_evict_state() concurrently (e.g.
2861		 * dsl_pool_close() and zio_inject_fault()), so we must
2862		 * skip any markers we see from these other threads.
2863		 */
2864		if (hdr->b_spa == 0)
2865			continue;
2866
2867		/* we're only interested in evicting buffers of a certain spa */
2868		if (spa != 0 && hdr->b_spa != spa) {
2869			ARCSTAT_BUMP(arcstat_evict_skip);
2870			continue;
2871		}
2872
2873		hash_lock = HDR_LOCK(hdr);
2874
2875		/*
2876		 * We aren't calling this function from any code path
2877		 * that would already be holding a hash lock, so we're
2878		 * asserting on this assumption to be defensive in case
2879		 * this ever changes. Without this check, it would be
2880		 * possible to incorrectly increment arcstat_mutex_miss
2881		 * below (e.g. if the code changed such that we called
2882		 * this function with a hash lock held).
2883		 */
2884		ASSERT(!MUTEX_HELD(hash_lock));
2885
2886		if (mutex_tryenter(hash_lock)) {
2887			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
2888			mutex_exit(hash_lock);
2889
2890			bytes_evicted += evicted;
2891
2892			/*
2893			 * If evicted is zero, arc_evict_hdr() must have
2894			 * decided to skip this header, don't increment
2895			 * evict_count in this case.
2896			 */
2897			if (evicted != 0)
2898				evict_count++;
2899
2900			/*
2901			 * If arc_size isn't overflowing, signal any
2902			 * threads that might happen to be waiting.
2903			 *
2904			 * For each header evicted, we wake up a single
2905			 * thread. If we used cv_broadcast, we could
2906			 * wake up "too many" threads causing arc_size
2907			 * to significantly overflow arc_c; since
2908			 * arc_get_data_buf() doesn't check for overflow
2909			 * when it's woken up (it doesn't because it's
2910			 * possible for the ARC to be overflowing while
2911			 * full of un-evictable buffers, and the
2912			 * function should proceed in this case).
2913			 *
2914			 * If threads are left sleeping, due to not
2915			 * using cv_broadcast, they will be woken up
2916			 * just before arc_reclaim_thread() sleeps.
2917			 */
2918			mutex_enter(&arc_reclaim_lock);
2919			if (!arc_is_overflowing())
2920				cv_signal(&arc_reclaim_waiters_cv);
2921			mutex_exit(&arc_reclaim_lock);
2922		} else {
2923			ARCSTAT_BUMP(arcstat_mutex_miss);
2924		}
2925	}
2926
2927	multilist_sublist_unlock(mls);
2928
2929	return (bytes_evicted);
2930}
2931
2932/*
2933 * Evict buffers from the given arc state, until we've removed the
2934 * specified number of bytes. Move the removed buffers to the
2935 * appropriate evict state.
2936 *
2937 * This function makes a "best effort". It skips over any buffers
2938 * it can't get a hash_lock on, and so, may not catch all candidates.
2939 * It may also return without evicting as much space as requested.
2940 *
2941 * If bytes is specified using the special value ARC_EVICT_ALL, this
2942 * will evict all available (i.e. unlocked and evictable) buffers from
2943 * the given arc state; which is used by arc_flush().
2944 */
2945static uint64_t
2946arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
2947    arc_buf_contents_t type)
2948{
2949	uint64_t total_evicted = 0;
2950	multilist_t *ml = &state->arcs_list[type];
2951	int num_sublists;
2952	arc_buf_hdr_t **markers;
2953
2954	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2955
2956	num_sublists = multilist_get_num_sublists(ml);
2957
2958	/*
2959	 * If we've tried to evict from each sublist, made some
2960	 * progress, but still have not hit the target number of bytes
2961	 * to evict, we want to keep trying. The markers allow us to
2962	 * pick up where we left off for each individual sublist, rather
2963	 * than starting from the tail each time.
2964	 */
2965	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
2966	for (int i = 0; i < num_sublists; i++) {
2967		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
2968
2969		/*
2970		 * A b_spa of 0 is used to indicate that this header is
2971		 * a marker. This fact is used in arc_adjust_type() and
2972		 * arc_evict_state_impl().
2973		 */
2974		markers[i]->b_spa = 0;
2975
2976		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2977		multilist_sublist_insert_tail(mls, markers[i]);
2978		multilist_sublist_unlock(mls);
2979	}
2980
2981	/*
2982	 * While we haven't hit our target number of bytes to evict, or
2983	 * we're evicting all available buffers.
2984	 */
2985	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
2986		/*
2987		 * Start eviction using a randomly selected sublist,
2988		 * this is to try and evenly balance eviction across all
2989		 * sublists. Always starting at the same sublist
2990		 * (e.g. index 0) would cause evictions to favor certain
2991		 * sublists over others.
2992		 */
2993		int sublist_idx = multilist_get_random_index(ml);
2994		uint64_t scan_evicted = 0;
2995
2996		for (int i = 0; i < num_sublists; i++) {
2997			uint64_t bytes_remaining;
2998			uint64_t bytes_evicted;
2999
3000			if (bytes == ARC_EVICT_ALL)
3001				bytes_remaining = ARC_EVICT_ALL;
3002			else if (total_evicted < bytes)
3003				bytes_remaining = bytes - total_evicted;
3004			else
3005				break;
3006
3007			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3008			    markers[sublist_idx], spa, bytes_remaining);
3009
3010			scan_evicted += bytes_evicted;
3011			total_evicted += bytes_evicted;
3012
3013			/* we've reached the end, wrap to the beginning */
3014			if (++sublist_idx >= num_sublists)
3015				sublist_idx = 0;
3016		}
3017
3018		/*
3019		 * If we didn't evict anything during this scan, we have
3020		 * no reason to believe we'll evict more during another
3021		 * scan, so break the loop.
3022		 */
3023		if (scan_evicted == 0) {
3024			/* This isn't possible, let's make that obvious */
3025			ASSERT3S(bytes, !=, 0);
3026
3027			/*
3028			 * When bytes is ARC_EVICT_ALL, the only way to
3029			 * break the loop is when scan_evicted is zero.
3030			 * In that case, we actually have evicted enough,
3031			 * so we don't want to increment the kstat.
3032			 */
3033			if (bytes != ARC_EVICT_ALL) {
3034				ASSERT3S(total_evicted, <, bytes);
3035				ARCSTAT_BUMP(arcstat_evict_not_enough);
3036			}
3037
3038			break;
3039		}
3040	}
3041
3042	for (int i = 0; i < num_sublists; i++) {
3043		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3044		multilist_sublist_remove(mls, markers[i]);
3045		multilist_sublist_unlock(mls);
3046
3047		kmem_cache_free(hdr_full_cache, markers[i]);
3048	}
3049	kmem_free(markers, sizeof (*markers) * num_sublists);
3050
3051	return (total_evicted);
3052}
3053
3054/*
3055 * Flush all "evictable" data of the given type from the arc state
3056 * specified. This will not evict any "active" buffers (i.e. referenced).
3057 *
3058 * When 'retry' is set to FALSE, the function will make a single pass
3059 * over the state and evict any buffers that it can. Since it doesn't
3060 * continually retry the eviction, it might end up leaving some buffers
3061 * in the ARC due to lock misses.
3062 *
3063 * When 'retry' is set to TRUE, the function will continually retry the
3064 * eviction until *all* evictable buffers have been removed from the
3065 * state. As a result, if concurrent insertions into the state are
3066 * allowed (e.g. if the ARC isn't shutting down), this function might
3067 * wind up in an infinite loop, continually trying to evict buffers.
3068 */
3069static uint64_t
3070arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3071    boolean_t retry)
3072{
3073	uint64_t evicted = 0;
3074
3075	while (state->arcs_lsize[type] != 0) {
3076		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3077
3078		if (!retry)
3079			break;
3080	}
3081
3082	return (evicted);
3083}
3084
3085/*
3086 * Evict the specified number of bytes from the state specified,
3087 * restricting eviction to the spa and type given. This function
3088 * prevents us from trying to evict more from a state's list than
3089 * is "evictable", and to skip evicting altogether when passed a
3090 * negative value for "bytes". In contrast, arc_evict_state() will
3091 * evict everything it can, when passed a negative value for "bytes".
3092 */
3093static uint64_t
3094arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3095    arc_buf_contents_t type)
3096{
3097	int64_t delta;
3098
3099	if (bytes > 0 && state->arcs_lsize[type] > 0) {
3100		delta = MIN(state->arcs_lsize[type], bytes);
3101		return (arc_evict_state(state, spa, delta, type));
3102	}
3103
3104	return (0);
3105}
3106
3107/*
3108 * Evict metadata buffers from the cache, such that arc_meta_used is
3109 * capped by the arc_meta_limit tunable.
3110 */
3111static uint64_t
3112arc_adjust_meta(void)
3113{
3114	uint64_t total_evicted = 0;
3115	int64_t target;
3116
3117	/*
3118	 * If we're over the meta limit, we want to evict enough
3119	 * metadata to get back under the meta limit. We don't want to
3120	 * evict so much that we drop the MRU below arc_p, though. If
3121	 * we're over the meta limit more than we're over arc_p, we
3122	 * evict some from the MRU here, and some from the MFU below.
3123	 */
3124	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3125	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3126	    refcount_count(&arc_mru->arcs_size) - arc_p));
3127
3128	total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3129
3130	/*
3131	 * Similar to the above, we want to evict enough bytes to get us
3132	 * below the meta limit, but not so much as to drop us below the
3133	 * space alloted to the MFU (which is defined as arc_c - arc_p).
3134	 */
3135	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3136	    (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
3137
3138	total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3139
3140	return (total_evicted);
3141}
3142
3143/*
3144 * Return the type of the oldest buffer in the given arc state
3145 *
3146 * This function will select a random sublist of type ARC_BUFC_DATA and
3147 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3148 * is compared, and the type which contains the "older" buffer will be
3149 * returned.
3150 */
3151static arc_buf_contents_t
3152arc_adjust_type(arc_state_t *state)
3153{
3154	multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
3155	multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
3156	int data_idx = multilist_get_random_index(data_ml);
3157	int meta_idx = multilist_get_random_index(meta_ml);
3158	multilist_sublist_t *data_mls;
3159	multilist_sublist_t *meta_mls;
3160	arc_buf_contents_t type;
3161	arc_buf_hdr_t *data_hdr;
3162	arc_buf_hdr_t *meta_hdr;
3163
3164	/*
3165	 * We keep the sublist lock until we're finished, to prevent
3166	 * the headers from being destroyed via arc_evict_state().
3167	 */
3168	data_mls = multilist_sublist_lock(data_ml, data_idx);
3169	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3170
3171	/*
3172	 * These two loops are to ensure we skip any markers that
3173	 * might be at the tail of the lists due to arc_evict_state().
3174	 */
3175
3176	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3177	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3178		if (data_hdr->b_spa != 0)
3179			break;
3180	}
3181
3182	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3183	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3184		if (meta_hdr->b_spa != 0)
3185			break;
3186	}
3187
3188	if (data_hdr == NULL && meta_hdr == NULL) {
3189		type = ARC_BUFC_DATA;
3190	} else if (data_hdr == NULL) {
3191		ASSERT3P(meta_hdr, !=, NULL);
3192		type = ARC_BUFC_METADATA;
3193	} else if (meta_hdr == NULL) {
3194		ASSERT3P(data_hdr, !=, NULL);
3195		type = ARC_BUFC_DATA;
3196	} else {
3197		ASSERT3P(data_hdr, !=, NULL);
3198		ASSERT3P(meta_hdr, !=, NULL);
3199
3200		/* The headers can't be on the sublist without an L1 header */
3201		ASSERT(HDR_HAS_L1HDR(data_hdr));
3202		ASSERT(HDR_HAS_L1HDR(meta_hdr));
3203
3204		if (data_hdr->b_l1hdr.b_arc_access <
3205		    meta_hdr->b_l1hdr.b_arc_access) {
3206			type = ARC_BUFC_DATA;
3207		} else {
3208			type = ARC_BUFC_METADATA;
3209		}
3210	}
3211
3212	multilist_sublist_unlock(meta_mls);
3213	multilist_sublist_unlock(data_mls);
3214
3215	return (type);
3216}
3217
3218/*
3219 * Evict buffers from the cache, such that arc_size is capped by arc_c.
3220 */
3221static uint64_t
3222arc_adjust(void)
3223{
3224	uint64_t total_evicted = 0;
3225	uint64_t bytes;
3226	int64_t target;
3227
3228	/*
3229	 * If we're over arc_meta_limit, we want to correct that before
3230	 * potentially evicting data buffers below.
3231	 */
3232	total_evicted += arc_adjust_meta();
3233
3234	/*
3235	 * Adjust MRU size
3236	 *
3237	 * If we're over the target cache size, we want to evict enough
3238	 * from the list to get back to our target size. We don't want
3239	 * to evict too much from the MRU, such that it drops below
3240	 * arc_p. So, if we're over our target cache size more than
3241	 * the MRU is over arc_p, we'll evict enough to get back to
3242	 * arc_p here, and then evict more from the MFU below.
3243	 */
3244	target = MIN((int64_t)(arc_size - arc_c),
3245	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3246	    refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
3247
3248	/*
3249	 * If we're below arc_meta_min, always prefer to evict data.
3250	 * Otherwise, try to satisfy the requested number of bytes to
3251	 * evict from the type which contains older buffers; in an
3252	 * effort to keep newer buffers in the cache regardless of their
3253	 * type. If we cannot satisfy the number of bytes from this
3254	 * type, spill over into the next type.
3255	 */
3256	if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3257	    arc_meta_used > arc_meta_min) {
3258		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3259		total_evicted += bytes;
3260
3261		/*
3262		 * If we couldn't evict our target number of bytes from
3263		 * metadata, we try to get the rest from data.
3264		 */
3265		target -= bytes;
3266
3267		total_evicted +=
3268		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3269	} else {
3270		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3271		total_evicted += bytes;
3272
3273		/*
3274		 * If we couldn't evict our target number of bytes from
3275		 * data, we try to get the rest from metadata.
3276		 */
3277		target -= bytes;
3278
3279		total_evicted +=
3280		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3281	}
3282
3283	/*
3284	 * Adjust MFU size
3285	 *
3286	 * Now that we've tried to evict enough from the MRU to get its
3287	 * size back to arc_p, if we're still above the target cache
3288	 * size, we evict the rest from the MFU.
3289	 */
3290	target = arc_size - arc_c;
3291
3292	if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3293	    arc_meta_used > arc_meta_min) {
3294		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3295		total_evicted += bytes;
3296
3297		/*
3298		 * If we couldn't evict our target number of bytes from
3299		 * metadata, we try to get the rest from data.
3300		 */
3301		target -= bytes;
3302
3303		total_evicted +=
3304		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3305	} else {
3306		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3307		total_evicted += bytes;
3308
3309		/*
3310		 * If we couldn't evict our target number of bytes from
3311		 * data, we try to get the rest from data.
3312		 */
3313		target -= bytes;
3314
3315		total_evicted +=
3316		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3317	}
3318
3319	/*
3320	 * Adjust ghost lists
3321	 *
3322	 * In addition to the above, the ARC also defines target values
3323	 * for the ghost lists. The sum of the mru list and mru ghost
3324	 * list should never exceed the target size of the cache, and
3325	 * the sum of the mru list, mfu list, mru ghost list, and mfu
3326	 * ghost list should never exceed twice the target size of the
3327	 * cache. The following logic enforces these limits on the ghost
3328	 * caches, and evicts from them as needed.
3329	 */
3330	target = refcount_count(&arc_mru->arcs_size) +
3331	    refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3332
3333	bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3334	total_evicted += bytes;
3335
3336	target -= bytes;
3337
3338	total_evicted +=
3339	    arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3340
3341	/*
3342	 * We assume the sum of the mru list and mfu list is less than
3343	 * or equal to arc_c (we enforced this above), which means we
3344	 * can use the simpler of the two equations below:
3345	 *
3346	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3347	 *		    mru ghost + mfu ghost <= arc_c
3348	 */
3349	target = refcount_count(&arc_mru_ghost->arcs_size) +
3350	    refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3351
3352	bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3353	total_evicted += bytes;
3354
3355	target -= bytes;
3356
3357	total_evicted +=
3358	    arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3359
3360	return (total_evicted);
3361}
3362
3363static void
3364arc_do_user_evicts(void)
3365{
3366	mutex_enter(&arc_user_evicts_lock);
3367	while (arc_eviction_list != NULL) {
3368		arc_buf_t *buf = arc_eviction_list;
3369		arc_eviction_list = buf->b_next;
3370		mutex_enter(&buf->b_evict_lock);
3371		buf->b_hdr = NULL;
3372		mutex_exit(&buf->b_evict_lock);
3373		mutex_exit(&arc_user_evicts_lock);
3374
3375		if (buf->b_efunc != NULL)
3376			VERIFY0(buf->b_efunc(buf->b_private));
3377
3378		buf->b_efunc = NULL;
3379		buf->b_private = NULL;
3380		kmem_cache_free(buf_cache, buf);
3381		mutex_enter(&arc_user_evicts_lock);
3382	}
3383	mutex_exit(&arc_user_evicts_lock);
3384}
3385
3386void
3387arc_flush(spa_t *spa, boolean_t retry)
3388{
3389	uint64_t guid = 0;
3390
3391	/*
3392	 * If retry is TRUE, a spa must not be specified since we have
3393	 * no good way to determine if all of a spa's buffers have been
3394	 * evicted from an arc state.
3395	 */
3396	ASSERT(!retry || spa == 0);
3397
3398	if (spa != NULL)
3399		guid = spa_load_guid(spa);
3400
3401	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3402	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3403
3404	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3405	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3406
3407	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3408	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3409
3410	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3411	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3412
3413	arc_do_user_evicts();
3414	ASSERT(spa || arc_eviction_list == NULL);
3415}
3416
3417void
3418arc_shrink(int64_t to_free)
3419{
3420	if (arc_c > arc_c_min) {
3421		DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t,
3422			arc_c_min, uint64_t, arc_p, uint64_t, to_free);
3423		if (arc_c > arc_c_min + to_free)
3424			atomic_add_64(&arc_c, -to_free);
3425		else
3426			arc_c = arc_c_min;
3427
3428		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3429		if (arc_c > arc_size)
3430			arc_c = MAX(arc_size, arc_c_min);
3431		if (arc_p > arc_c)
3432			arc_p = (arc_c >> 1);
3433
3434		DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t,
3435			arc_p);
3436
3437		ASSERT(arc_c >= arc_c_min);
3438		ASSERT((int64_t)arc_p >= 0);
3439	}
3440
3441	if (arc_size > arc_c) {
3442		DTRACE_PROBE2(arc__shrink_adjust, uint64_t, arc_size,
3443			uint64_t, arc_c);
3444		(void) arc_adjust();
3445	}
3446}
3447
3448static long needfree = 0;
3449
3450typedef enum free_memory_reason_t {
3451	FMR_UNKNOWN,
3452	FMR_NEEDFREE,
3453	FMR_LOTSFREE,
3454	FMR_SWAPFS_MINFREE,
3455	FMR_PAGES_PP_MAXIMUM,
3456	FMR_HEAP_ARENA,
3457	FMR_ZIO_ARENA,
3458	FMR_ZIO_FRAG,
3459} free_memory_reason_t;
3460
3461int64_t last_free_memory;
3462free_memory_reason_t last_free_reason;
3463
3464/*
3465 * Additional reserve of pages for pp_reserve.
3466 */
3467int64_t arc_pages_pp_reserve = 64;
3468
3469/*
3470 * Additional reserve of pages for swapfs.
3471 */
3472int64_t arc_swapfs_reserve = 64;
3473
3474/*
3475 * Return the amount of memory that can be consumed before reclaim will be
3476 * needed.  Positive if there is sufficient free memory, negative indicates
3477 * the amount of memory that needs to be freed up.
3478 */
3479static int64_t
3480arc_available_memory(void)
3481{
3482	int64_t lowest = INT64_MAX;
3483	int64_t n;
3484	free_memory_reason_t r = FMR_UNKNOWN;
3485
3486#ifdef _KERNEL
3487	if (needfree > 0) {
3488		n = PAGESIZE * (-needfree);
3489		if (n < lowest) {
3490			lowest = n;
3491			r = FMR_NEEDFREE;
3492		}
3493	}
3494
3495	/*
3496	 * Cooperate with pagedaemon when it's time for it to scan
3497	 * and reclaim some pages.
3498	 */
3499	n = PAGESIZE * ((int64_t)freemem - zfs_arc_free_target);
3500	if (n < lowest) {
3501		lowest = n;
3502		r = FMR_LOTSFREE;
3503	}
3504
3505#ifdef illumos
3506	/*
3507	 * check that we're out of range of the pageout scanner.  It starts to
3508	 * schedule paging if freemem is less than lotsfree and needfree.
3509	 * lotsfree is the high-water mark for pageout, and needfree is the
3510	 * number of needed free pages.  We add extra pages here to make sure
3511	 * the scanner doesn't start up while we're freeing memory.
3512	 */
3513	n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3514	if (n < lowest) {
3515		lowest = n;
3516		r = FMR_LOTSFREE;
3517	}
3518
3519	/*
3520	 * check to make sure that swapfs has enough space so that anon
3521	 * reservations can still succeed. anon_resvmem() checks that the
3522	 * availrmem is greater than swapfs_minfree, and the number of reserved
3523	 * swap pages.  We also add a bit of extra here just to prevent
3524	 * circumstances from getting really dire.
3525	 */
3526	n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3527	    desfree - arc_swapfs_reserve);
3528	if (n < lowest) {
3529		lowest = n;
3530		r = FMR_SWAPFS_MINFREE;
3531	}
3532
3533
3534	/*
3535	 * Check that we have enough availrmem that memory locking (e.g., via
3536	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
3537	 * stores the number of pages that cannot be locked; when availrmem
3538	 * drops below pages_pp_maximum, page locking mechanisms such as
3539	 * page_pp_lock() will fail.)
3540	 */
3541	n = PAGESIZE * (availrmem - pages_pp_maximum -
3542	    arc_pages_pp_reserve);
3543	if (n < lowest) {
3544		lowest = n;
3545		r = FMR_PAGES_PP_MAXIMUM;
3546	}
3547
3548#endif	/* illumos */
3549#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
3550	/*
3551	 * If we're on an i386 platform, it's possible that we'll exhaust the
3552	 * kernel heap space before we ever run out of available physical
3553	 * memory.  Most checks of the size of the heap_area compare against
3554	 * tune.t_minarmem, which is the minimum available real memory that we
3555	 * can have in the system.  However, this is generally fixed at 25 pages
3556	 * which is so low that it's useless.  In this comparison, we seek to
3557	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3558	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
3559	 * free)
3560	 */
3561	n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
3562	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3563	if (n < lowest) {
3564		lowest = n;
3565		r = FMR_HEAP_ARENA;
3566	}
3567#define	zio_arena	NULL
3568#else
3569#define	zio_arena	heap_arena
3570#endif
3571
3572	/*
3573	 * If zio data pages are being allocated out of a separate heap segment,
3574	 * then enforce that the size of available vmem for this arena remains
3575	 * above about 1/16th free.
3576	 *
3577	 * Note: The 1/16th arena free requirement was put in place
3578	 * to aggressively evict memory from the arc in order to avoid
3579	 * memory fragmentation issues.
3580	 */
3581	if (zio_arena != NULL) {
3582		n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
3583		    (vmem_size(zio_arena, VMEM_ALLOC) >> 4);
3584		if (n < lowest) {
3585			lowest = n;
3586			r = FMR_ZIO_ARENA;
3587		}
3588	}
3589
3590	/*
3591	 * Above limits know nothing about real level of KVA fragmentation.
3592	 * Start aggressive reclamation if too little sequential KVA left.
3593	 */
3594	if (lowest > 0) {
3595		n = (vmem_size(heap_arena, VMEM_MAXFREE) < zfs_max_recordsize) ?
3596		    -((int64_t)vmem_size(heap_arena, VMEM_ALLOC) >> 4) :
3597		    INT64_MAX;
3598		if (n < lowest) {
3599			lowest = n;
3600			r = FMR_ZIO_FRAG;
3601		}
3602	}
3603
3604#else	/* _KERNEL */
3605	/* Every 100 calls, free a small amount */
3606	if (spa_get_random(100) == 0)
3607		lowest = -1024;
3608#endif	/* _KERNEL */
3609
3610	last_free_memory = lowest;
3611	last_free_reason = r;
3612	DTRACE_PROBE2(arc__available_memory, int64_t, lowest, int, r);
3613	return (lowest);
3614}
3615
3616
3617/*
3618 * Determine if the system is under memory pressure and is asking
3619 * to reclaim memory. A return value of TRUE indicates that the system
3620 * is under memory pressure and that the arc should adjust accordingly.
3621 */
3622static boolean_t
3623arc_reclaim_needed(void)
3624{
3625	return (arc_available_memory() < 0);
3626}
3627
3628extern kmem_cache_t	*zio_buf_cache[];
3629extern kmem_cache_t	*zio_data_buf_cache[];
3630extern kmem_cache_t	*range_seg_cache;
3631
3632static __noinline void
3633arc_kmem_reap_now(void)
3634{
3635	size_t			i;
3636	kmem_cache_t		*prev_cache = NULL;
3637	kmem_cache_t		*prev_data_cache = NULL;
3638
3639	DTRACE_PROBE(arc__kmem_reap_start);
3640#ifdef _KERNEL
3641	if (arc_meta_used >= arc_meta_limit) {
3642		/*
3643		 * We are exceeding our meta-data cache limit.
3644		 * Purge some DNLC entries to release holds on meta-data.
3645		 */
3646		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
3647	}
3648#if defined(__i386)
3649	/*
3650	 * Reclaim unused memory from all kmem caches.
3651	 */
3652	kmem_reap();
3653#endif
3654#endif
3655
3656	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
3657		if (zio_buf_cache[i] != prev_cache) {
3658			prev_cache = zio_buf_cache[i];
3659			kmem_cache_reap_now(zio_buf_cache[i]);
3660		}
3661		if (zio_data_buf_cache[i] != prev_data_cache) {
3662			prev_data_cache = zio_data_buf_cache[i];
3663			kmem_cache_reap_now(zio_data_buf_cache[i]);
3664		}
3665	}
3666	kmem_cache_reap_now(buf_cache);
3667	kmem_cache_reap_now(hdr_full_cache);
3668	kmem_cache_reap_now(hdr_l2only_cache);
3669	kmem_cache_reap_now(range_seg_cache);
3670
3671#ifdef illumos
3672	if (zio_arena != NULL) {
3673		/*
3674		 * Ask the vmem arena to reclaim unused memory from its
3675		 * quantum caches.
3676		 */
3677		vmem_qcache_reap(zio_arena);
3678	}
3679#endif
3680	DTRACE_PROBE(arc__kmem_reap_end);
3681}
3682
3683/*
3684 * Threads can block in arc_get_data_buf() waiting for this thread to evict
3685 * enough data and signal them to proceed. When this happens, the threads in
3686 * arc_get_data_buf() are sleeping while holding the hash lock for their
3687 * particular arc header. Thus, we must be careful to never sleep on a
3688 * hash lock in this thread. This is to prevent the following deadlock:
3689 *
3690 *  - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
3691 *    waiting for the reclaim thread to signal it.
3692 *
3693 *  - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
3694 *    fails, and goes to sleep forever.
3695 *
3696 * This possible deadlock is avoided by always acquiring a hash lock
3697 * using mutex_tryenter() from arc_reclaim_thread().
3698 */
3699static void
3700arc_reclaim_thread(void *dummy __unused)
3701{
3702	hrtime_t		growtime = 0;
3703	callb_cpr_t		cpr;
3704
3705	CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
3706
3707	mutex_enter(&arc_reclaim_lock);
3708	while (!arc_reclaim_thread_exit) {
3709		int64_t free_memory = arc_available_memory();
3710		uint64_t evicted = 0;
3711
3712		mutex_exit(&arc_reclaim_lock);
3713
3714		if (free_memory < 0) {
3715
3716			arc_no_grow = B_TRUE;
3717			arc_warm = B_TRUE;
3718
3719			/*
3720			 * Wait at least zfs_grow_retry (default 60) seconds
3721			 * before considering growing.
3722			 */
3723			growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
3724
3725			arc_kmem_reap_now();
3726
3727			/*
3728			 * If we are still low on memory, shrink the ARC
3729			 * so that we have arc_shrink_min free space.
3730			 */
3731			free_memory = arc_available_memory();
3732
3733			int64_t to_free =
3734			    (arc_c >> arc_shrink_shift) - free_memory;
3735			if (to_free > 0) {
3736#ifdef _KERNEL
3737				to_free = MAX(to_free, ptob(needfree));
3738#endif
3739				arc_shrink(to_free);
3740			}
3741		} else if (free_memory < arc_c >> arc_no_grow_shift) {
3742			arc_no_grow = B_TRUE;
3743		} else if (gethrtime() >= growtime) {
3744			arc_no_grow = B_FALSE;
3745		}
3746
3747		evicted = arc_adjust();
3748
3749		mutex_enter(&arc_reclaim_lock);
3750
3751		/*
3752		 * If evicted is zero, we couldn't evict anything via
3753		 * arc_adjust(). This could be due to hash lock
3754		 * collisions, but more likely due to the majority of
3755		 * arc buffers being unevictable. Therefore, even if
3756		 * arc_size is above arc_c, another pass is unlikely to
3757		 * be helpful and could potentially cause us to enter an
3758		 * infinite loop.
3759		 */
3760		if (arc_size <= arc_c || evicted == 0) {
3761#ifdef _KERNEL
3762			needfree = 0;
3763#endif
3764			/*
3765			 * We're either no longer overflowing, or we
3766			 * can't evict anything more, so we should wake
3767			 * up any threads before we go to sleep.
3768			 */
3769			cv_broadcast(&arc_reclaim_waiters_cv);
3770
3771			/*
3772			 * Block until signaled, or after one second (we
3773			 * might need to perform arc_kmem_reap_now()
3774			 * even if we aren't being signalled)
3775			 */
3776			CALLB_CPR_SAFE_BEGIN(&cpr);
3777			(void) cv_timedwait_hires(&arc_reclaim_thread_cv,
3778			    &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
3779			CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
3780		}
3781	}
3782
3783	arc_reclaim_thread_exit = FALSE;
3784	cv_broadcast(&arc_reclaim_thread_cv);
3785	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_lock */
3786	thread_exit();
3787}
3788
3789static void
3790arc_user_evicts_thread(void *dummy __unused)
3791{
3792	callb_cpr_t cpr;
3793
3794	CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG);
3795
3796	mutex_enter(&arc_user_evicts_lock);
3797	while (!arc_user_evicts_thread_exit) {
3798		mutex_exit(&arc_user_evicts_lock);
3799
3800		arc_do_user_evicts();
3801
3802		/*
3803		 * This is necessary in order for the mdb ::arc dcmd to
3804		 * show up to date information. Since the ::arc command
3805		 * does not call the kstat's update function, without
3806		 * this call, the command may show stale stats for the
3807		 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
3808		 * with this change, the data might be up to 1 second
3809		 * out of date; but that should suffice. The arc_state_t
3810		 * structures can be queried directly if more accurate
3811		 * information is needed.
3812		 */
3813		if (arc_ksp != NULL)
3814			arc_ksp->ks_update(arc_ksp, KSTAT_READ);
3815
3816		mutex_enter(&arc_user_evicts_lock);
3817
3818		/*
3819		 * Block until signaled, or after one second (we need to
3820		 * call the arc's kstat update function regularly).
3821		 */
3822		CALLB_CPR_SAFE_BEGIN(&cpr);
3823		(void) cv_timedwait(&arc_user_evicts_cv,
3824		    &arc_user_evicts_lock, hz);
3825		CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock);
3826	}
3827
3828	arc_user_evicts_thread_exit = FALSE;
3829	cv_broadcast(&arc_user_evicts_cv);
3830	CALLB_CPR_EXIT(&cpr);		/* drops arc_user_evicts_lock */
3831	thread_exit();
3832}
3833
3834/*
3835 * Adapt arc info given the number of bytes we are trying to add and
3836 * the state that we are comming from.  This function is only called
3837 * when we are adding new content to the cache.
3838 */
3839static void
3840arc_adapt(int bytes, arc_state_t *state)
3841{
3842	int mult;
3843	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
3844	int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
3845	int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
3846
3847	if (state == arc_l2c_only)
3848		return;
3849
3850	ASSERT(bytes > 0);
3851	/*
3852	 * Adapt the target size of the MRU list:
3853	 *	- if we just hit in the MRU ghost list, then increase
3854	 *	  the target size of the MRU list.
3855	 *	- if we just hit in the MFU ghost list, then increase
3856	 *	  the target size of the MFU list by decreasing the
3857	 *	  target size of the MRU list.
3858	 */
3859	if (state == arc_mru_ghost) {
3860		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
3861		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
3862
3863		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
3864	} else if (state == arc_mfu_ghost) {
3865		uint64_t delta;
3866
3867		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
3868		mult = MIN(mult, 10);
3869
3870		delta = MIN(bytes * mult, arc_p);
3871		arc_p = MAX(arc_p_min, arc_p - delta);
3872	}
3873	ASSERT((int64_t)arc_p >= 0);
3874
3875	if (arc_reclaim_needed()) {
3876		cv_signal(&arc_reclaim_thread_cv);
3877		return;
3878	}
3879
3880	if (arc_no_grow)
3881		return;
3882
3883	if (arc_c >= arc_c_max)
3884		return;
3885
3886	/*
3887	 * If we're within (2 * maxblocksize) bytes of the target
3888	 * cache size, increment the target cache size
3889	 */
3890	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
3891		DTRACE_PROBE1(arc__inc_adapt, int, bytes);
3892		atomic_add_64(&arc_c, (int64_t)bytes);
3893		if (arc_c > arc_c_max)
3894			arc_c = arc_c_max;
3895		else if (state == arc_anon)
3896			atomic_add_64(&arc_p, (int64_t)bytes);
3897		if (arc_p > arc_c)
3898			arc_p = arc_c;
3899	}
3900	ASSERT((int64_t)arc_p >= 0);
3901}
3902
3903/*
3904 * Check if arc_size has grown past our upper threshold, determined by
3905 * zfs_arc_overflow_shift.
3906 */
3907static boolean_t
3908arc_is_overflowing(void)
3909{
3910	/* Always allow at least one block of overflow */
3911	uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
3912	    arc_c >> zfs_arc_overflow_shift);
3913
3914	return (arc_size >= arc_c + overflow);
3915}
3916
3917/*
3918 * The buffer, supplied as the first argument, needs a data block. If we
3919 * are hitting the hard limit for the cache size, we must sleep, waiting
3920 * for the eviction thread to catch up. If we're past the target size
3921 * but below the hard limit, we'll only signal the reclaim thread and
3922 * continue on.
3923 */
3924static void
3925arc_get_data_buf(arc_buf_t *buf)
3926{
3927	arc_state_t		*state = buf->b_hdr->b_l1hdr.b_state;
3928	uint64_t		size = buf->b_hdr->b_size;
3929	arc_buf_contents_t	type = arc_buf_type(buf->b_hdr);
3930
3931	arc_adapt(size, state);
3932
3933	/*
3934	 * If arc_size is currently overflowing, and has grown past our
3935	 * upper limit, we must be adding data faster than the evict
3936	 * thread can evict. Thus, to ensure we don't compound the
3937	 * problem by adding more data and forcing arc_size to grow even
3938	 * further past it's target size, we halt and wait for the
3939	 * eviction thread to catch up.
3940	 *
3941	 * It's also possible that the reclaim thread is unable to evict
3942	 * enough buffers to get arc_size below the overflow limit (e.g.
3943	 * due to buffers being un-evictable, or hash lock collisions).
3944	 * In this case, we want to proceed regardless if we're
3945	 * overflowing; thus we don't use a while loop here.
3946	 */
3947	if (arc_is_overflowing()) {
3948		mutex_enter(&arc_reclaim_lock);
3949
3950		/*
3951		 * Now that we've acquired the lock, we may no longer be
3952		 * over the overflow limit, lets check.
3953		 *
3954		 * We're ignoring the case of spurious wake ups. If that
3955		 * were to happen, it'd let this thread consume an ARC
3956		 * buffer before it should have (i.e. before we're under
3957		 * the overflow limit and were signalled by the reclaim
3958		 * thread). As long as that is a rare occurrence, it
3959		 * shouldn't cause any harm.
3960		 */
3961		if (arc_is_overflowing()) {
3962			cv_signal(&arc_reclaim_thread_cv);
3963			cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
3964		}
3965
3966		mutex_exit(&arc_reclaim_lock);
3967	}
3968
3969	if (type == ARC_BUFC_METADATA) {
3970		buf->b_data = zio_buf_alloc(size);
3971		arc_space_consume(size, ARC_SPACE_META);
3972	} else {
3973		ASSERT(type == ARC_BUFC_DATA);
3974		buf->b_data = zio_data_buf_alloc(size);
3975		arc_space_consume(size, ARC_SPACE_DATA);
3976	}
3977
3978	/*
3979	 * Update the state size.  Note that ghost states have a
3980	 * "ghost size" and so don't need to be updated.
3981	 */
3982	if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) {
3983		arc_buf_hdr_t *hdr = buf->b_hdr;
3984		arc_state_t *state = hdr->b_l1hdr.b_state;
3985
3986		(void) refcount_add_many(&state->arcs_size, size, buf);
3987
3988		/*
3989		 * If this is reached via arc_read, the link is
3990		 * protected by the hash lock. If reached via
3991		 * arc_buf_alloc, the header should not be accessed by
3992		 * any other thread. And, if reached via arc_read_done,
3993		 * the hash lock will protect it if it's found in the
3994		 * hash table; otherwise no other thread should be
3995		 * trying to [add|remove]_reference it.
3996		 */
3997		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
3998			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3999			atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type],
4000			    size);
4001		}
4002		/*
4003		 * If we are growing the cache, and we are adding anonymous
4004		 * data, and we have outgrown arc_p, update arc_p
4005		 */
4006		if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
4007		    (refcount_count(&arc_anon->arcs_size) +
4008		    refcount_count(&arc_mru->arcs_size) > arc_p))
4009			arc_p = MIN(arc_c, arc_p + size);
4010	}
4011	ARCSTAT_BUMP(arcstat_allocated);
4012}
4013
4014/*
4015 * This routine is called whenever a buffer is accessed.
4016 * NOTE: the hash lock is dropped in this function.
4017 */
4018static void
4019arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4020{
4021	clock_t now;
4022
4023	ASSERT(MUTEX_HELD(hash_lock));
4024	ASSERT(HDR_HAS_L1HDR(hdr));
4025
4026	if (hdr->b_l1hdr.b_state == arc_anon) {
4027		/*
4028		 * This buffer is not in the cache, and does not
4029		 * appear in our "ghost" list.  Add the new buffer
4030		 * to the MRU state.
4031		 */
4032
4033		ASSERT0(hdr->b_l1hdr.b_arc_access);
4034		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4035		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4036		arc_change_state(arc_mru, hdr, hash_lock);
4037
4038	} else if (hdr->b_l1hdr.b_state == arc_mru) {
4039		now = ddi_get_lbolt();
4040
4041		/*
4042		 * If this buffer is here because of a prefetch, then either:
4043		 * - clear the flag if this is a "referencing" read
4044		 *   (any subsequent access will bump this into the MFU state).
4045		 * or
4046		 * - move the buffer to the head of the list if this is
4047		 *   another prefetch (to make it less likely to be evicted).
4048		 */
4049		if (HDR_PREFETCH(hdr)) {
4050			if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4051				/* link protected by hash lock */
4052				ASSERT(multilist_link_active(
4053				    &hdr->b_l1hdr.b_arc_node));
4054			} else {
4055				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
4056				ARCSTAT_BUMP(arcstat_mru_hits);
4057			}
4058			hdr->b_l1hdr.b_arc_access = now;
4059			return;
4060		}
4061
4062		/*
4063		 * This buffer has been "accessed" only once so far,
4064		 * but it is still in the cache. Move it to the MFU
4065		 * state.
4066		 */
4067		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
4068			/*
4069			 * More than 125ms have passed since we
4070			 * instantiated this buffer.  Move it to the
4071			 * most frequently used state.
4072			 */
4073			hdr->b_l1hdr.b_arc_access = now;
4074			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4075			arc_change_state(arc_mfu, hdr, hash_lock);
4076		}
4077		ARCSTAT_BUMP(arcstat_mru_hits);
4078	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
4079		arc_state_t	*new_state;
4080		/*
4081		 * This buffer has been "accessed" recently, but
4082		 * was evicted from the cache.  Move it to the
4083		 * MFU state.
4084		 */
4085
4086		if (HDR_PREFETCH(hdr)) {
4087			new_state = arc_mru;
4088			if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
4089				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
4090			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4091		} else {
4092			new_state = arc_mfu;
4093			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4094		}
4095
4096		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4097		arc_change_state(new_state, hdr, hash_lock);
4098
4099		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4100	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
4101		/*
4102		 * This buffer has been accessed more than once and is
4103		 * still in the cache.  Keep it in the MFU state.
4104		 *
4105		 * NOTE: an add_reference() that occurred when we did
4106		 * the arc_read() will have kicked this off the list.
4107		 * If it was a prefetch, we will explicitly move it to
4108		 * the head of the list now.
4109		 */
4110		if ((HDR_PREFETCH(hdr)) != 0) {
4111			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4112			/* link protected by hash_lock */
4113			ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4114		}
4115		ARCSTAT_BUMP(arcstat_mfu_hits);
4116		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4117	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4118		arc_state_t	*new_state = arc_mfu;
4119		/*
4120		 * This buffer has been accessed more than once but has
4121		 * been evicted from the cache.  Move it back to the
4122		 * MFU state.
4123		 */
4124
4125		if (HDR_PREFETCH(hdr)) {
4126			/*
4127			 * This is a prefetch access...
4128			 * move this block back to the MRU state.
4129			 */
4130			ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4131			new_state = arc_mru;
4132		}
4133
4134		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4135		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4136		arc_change_state(new_state, hdr, hash_lock);
4137
4138		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4139	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4140		/*
4141		 * This buffer is on the 2nd Level ARC.
4142		 */
4143
4144		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4145		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4146		arc_change_state(arc_mfu, hdr, hash_lock);
4147	} else {
4148		ASSERT(!"invalid arc state");
4149	}
4150}
4151
4152/* a generic arc_done_func_t which you can use */
4153/* ARGSUSED */
4154void
4155arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4156{
4157	if (zio == NULL || zio->io_error == 0)
4158		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
4159	VERIFY(arc_buf_remove_ref(buf, arg));
4160}
4161
4162/* a generic arc_done_func_t */
4163void
4164arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4165{
4166	arc_buf_t **bufp = arg;
4167	if (zio && zio->io_error) {
4168		VERIFY(arc_buf_remove_ref(buf, arg));
4169		*bufp = NULL;
4170	} else {
4171		*bufp = buf;
4172		ASSERT(buf->b_data);
4173	}
4174}
4175
4176static void
4177arc_read_done(zio_t *zio)
4178{
4179	arc_buf_hdr_t	*hdr;
4180	arc_buf_t	*buf;
4181	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
4182	kmutex_t	*hash_lock = NULL;
4183	arc_callback_t	*callback_list, *acb;
4184	int		freeable = FALSE;
4185
4186	buf = zio->io_private;
4187	hdr = buf->b_hdr;
4188
4189	/*
4190	 * The hdr was inserted into hash-table and removed from lists
4191	 * prior to starting I/O.  We should find this header, since
4192	 * it's in the hash table, and it should be legit since it's
4193	 * not possible to evict it during the I/O.  The only possible
4194	 * reason for it not to be found is if we were freed during the
4195	 * read.
4196	 */
4197	if (HDR_IN_HASH_TABLE(hdr)) {
4198		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4199		ASSERT3U(hdr->b_dva.dva_word[0], ==,
4200		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
4201		ASSERT3U(hdr->b_dva.dva_word[1], ==,
4202		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
4203
4204		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
4205		    &hash_lock);
4206
4207		ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
4208		    hash_lock == NULL) ||
4209		    (found == hdr &&
4210		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4211		    (found == hdr && HDR_L2_READING(hdr)));
4212	}
4213
4214	hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
4215	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4216		hdr->b_flags &= ~ARC_FLAG_L2CACHE;
4217
4218	/* byteswap if necessary */
4219	callback_list = hdr->b_l1hdr.b_acb;
4220	ASSERT(callback_list != NULL);
4221	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
4222		dmu_object_byteswap_t bswap =
4223		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4224		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
4225		    byteswap_uint64_array :
4226		    dmu_ot_byteswap[bswap].ob_func;
4227		func(buf->b_data, hdr->b_size);
4228	}
4229
4230	arc_cksum_compute(buf, B_FALSE);
4231#ifdef illumos
4232	arc_buf_watch(buf);
4233#endif
4234
4235	if (hash_lock && zio->io_error == 0 &&
4236	    hdr->b_l1hdr.b_state == arc_anon) {
4237		/*
4238		 * Only call arc_access on anonymous buffers.  This is because
4239		 * if we've issued an I/O for an evicted buffer, we've already
4240		 * called arc_access (to prevent any simultaneous readers from
4241		 * getting confused).
4242		 */
4243		arc_access(hdr, hash_lock);
4244	}
4245
4246	/* create copies of the data buffer for the callers */
4247	abuf = buf;
4248	for (acb = callback_list; acb; acb = acb->acb_next) {
4249		if (acb->acb_done) {
4250			if (abuf == NULL) {
4251				ARCSTAT_BUMP(arcstat_duplicate_reads);
4252				abuf = arc_buf_clone(buf);
4253			}
4254			acb->acb_buf = abuf;
4255			abuf = NULL;
4256		}
4257	}
4258	hdr->b_l1hdr.b_acb = NULL;
4259	hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4260	ASSERT(!HDR_BUF_AVAILABLE(hdr));
4261	if (abuf == buf) {
4262		ASSERT(buf->b_efunc == NULL);
4263		ASSERT(hdr->b_l1hdr.b_datacnt == 1);
4264		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4265	}
4266
4267	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4268	    callback_list != NULL);
4269
4270	if (zio->io_error != 0) {
4271		hdr->b_flags |= ARC_FLAG_IO_ERROR;
4272		if (hdr->b_l1hdr.b_state != arc_anon)
4273			arc_change_state(arc_anon, hdr, hash_lock);
4274		if (HDR_IN_HASH_TABLE(hdr))
4275			buf_hash_remove(hdr);
4276		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4277	}
4278
4279	/*
4280	 * Broadcast before we drop the hash_lock to avoid the possibility
4281	 * that the hdr (and hence the cv) might be freed before we get to
4282	 * the cv_broadcast().
4283	 */
4284	cv_broadcast(&hdr->b_l1hdr.b_cv);
4285
4286	if (hash_lock != NULL) {
4287		mutex_exit(hash_lock);
4288	} else {
4289		/*
4290		 * This block was freed while we waited for the read to
4291		 * complete.  It has been removed from the hash table and
4292		 * moved to the anonymous state (so that it won't show up
4293		 * in the cache).
4294		 */
4295		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4296		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4297	}
4298
4299	/* execute each callback and free its structure */
4300	while ((acb = callback_list) != NULL) {
4301		if (acb->acb_done)
4302			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4303
4304		if (acb->acb_zio_dummy != NULL) {
4305			acb->acb_zio_dummy->io_error = zio->io_error;
4306			zio_nowait(acb->acb_zio_dummy);
4307		}
4308
4309		callback_list = acb->acb_next;
4310		kmem_free(acb, sizeof (arc_callback_t));
4311	}
4312
4313	if (freeable)
4314		arc_hdr_destroy(hdr);
4315}
4316
4317/*
4318 * "Read" the block at the specified DVA (in bp) via the
4319 * cache.  If the block is found in the cache, invoke the provided
4320 * callback immediately and return.  Note that the `zio' parameter
4321 * in the callback will be NULL in this case, since no IO was
4322 * required.  If the block is not in the cache pass the read request
4323 * on to the spa with a substitute callback function, so that the
4324 * requested block will be added to the cache.
4325 *
4326 * If a read request arrives for a block that has a read in-progress,
4327 * either wait for the in-progress read to complete (and return the
4328 * results); or, if this is a read with a "done" func, add a record
4329 * to the read to invoke the "done" func when the read completes,
4330 * and return; or just return.
4331 *
4332 * arc_read_done() will invoke all the requested "done" functions
4333 * for readers of this block.
4334 */
4335int
4336arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
4337    void *private, zio_priority_t priority, int zio_flags,
4338    arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
4339{
4340	arc_buf_hdr_t *hdr = NULL;
4341	arc_buf_t *buf = NULL;
4342	kmutex_t *hash_lock = NULL;
4343	zio_t *rzio;
4344	uint64_t guid = spa_load_guid(spa);
4345
4346	ASSERT(!BP_IS_EMBEDDED(bp) ||
4347	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4348
4349top:
4350	if (!BP_IS_EMBEDDED(bp)) {
4351		/*
4352		 * Embedded BP's have no DVA and require no I/O to "read".
4353		 * Create an anonymous arc buf to back it.
4354		 */
4355		hdr = buf_hash_find(guid, bp, &hash_lock);
4356	}
4357
4358	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) {
4359
4360		*arc_flags |= ARC_FLAG_CACHED;
4361
4362		if (HDR_IO_IN_PROGRESS(hdr)) {
4363
4364			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
4365			    priority == ZIO_PRIORITY_SYNC_READ) {
4366				/*
4367				 * This sync read must wait for an
4368				 * in-progress async read (e.g. a predictive
4369				 * prefetch).  Async reads are queued
4370				 * separately at the vdev_queue layer, so
4371				 * this is a form of priority inversion.
4372				 * Ideally, we would "inherit" the demand
4373				 * i/o's priority by moving the i/o from
4374				 * the async queue to the synchronous queue,
4375				 * but there is currently no mechanism to do
4376				 * so.  Track this so that we can evaluate
4377				 * the magnitude of this potential performance
4378				 * problem.
4379				 *
4380				 * Note that if the prefetch i/o is already
4381				 * active (has been issued to the device),
4382				 * the prefetch improved performance, because
4383				 * we issued it sooner than we would have
4384				 * without the prefetch.
4385				 */
4386				DTRACE_PROBE1(arc__sync__wait__for__async,
4387				    arc_buf_hdr_t *, hdr);
4388				ARCSTAT_BUMP(arcstat_sync_wait_for_async);
4389			}
4390			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4391				hdr->b_flags &= ~ARC_FLAG_PREDICTIVE_PREFETCH;
4392			}
4393
4394			if (*arc_flags & ARC_FLAG_WAIT) {
4395				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
4396				mutex_exit(hash_lock);
4397				goto top;
4398			}
4399			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4400
4401			if (done) {
4402				arc_callback_t *acb = NULL;
4403
4404				acb = kmem_zalloc(sizeof (arc_callback_t),
4405				    KM_SLEEP);
4406				acb->acb_done = done;
4407				acb->acb_private = private;
4408				if (pio != NULL)
4409					acb->acb_zio_dummy = zio_null(pio,
4410					    spa, NULL, NULL, NULL, zio_flags);
4411
4412				ASSERT(acb->acb_done != NULL);
4413				acb->acb_next = hdr->b_l1hdr.b_acb;
4414				hdr->b_l1hdr.b_acb = acb;
4415				add_reference(hdr, hash_lock, private);
4416				mutex_exit(hash_lock);
4417				return (0);
4418			}
4419			mutex_exit(hash_lock);
4420			return (0);
4421		}
4422
4423		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4424		    hdr->b_l1hdr.b_state == arc_mfu);
4425
4426		if (done) {
4427			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4428				/*
4429				 * This is a demand read which does not have to
4430				 * wait for i/o because we did a predictive
4431				 * prefetch i/o for it, which has completed.
4432				 */
4433				DTRACE_PROBE1(
4434				    arc__demand__hit__predictive__prefetch,
4435				    arc_buf_hdr_t *, hdr);
4436				ARCSTAT_BUMP(
4437				    arcstat_demand_hit_predictive_prefetch);
4438				hdr->b_flags &= ~ARC_FLAG_PREDICTIVE_PREFETCH;
4439			}
4440			add_reference(hdr, hash_lock, private);
4441			/*
4442			 * If this block is already in use, create a new
4443			 * copy of the data so that we will be guaranteed
4444			 * that arc_release() will always succeed.
4445			 */
4446			buf = hdr->b_l1hdr.b_buf;
4447			ASSERT(buf);
4448			ASSERT(buf->b_data);
4449			if (HDR_BUF_AVAILABLE(hdr)) {
4450				ASSERT(buf->b_efunc == NULL);
4451				hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4452			} else {
4453				buf = arc_buf_clone(buf);
4454			}
4455
4456		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
4457		    refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4458			hdr->b_flags |= ARC_FLAG_PREFETCH;
4459		}
4460		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4461		arc_access(hdr, hash_lock);
4462		if (*arc_flags & ARC_FLAG_L2CACHE)
4463			hdr->b_flags |= ARC_FLAG_L2CACHE;
4464		if (*arc_flags & ARC_FLAG_L2COMPRESS)
4465			hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4466		mutex_exit(hash_lock);
4467		ARCSTAT_BUMP(arcstat_hits);
4468		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4469		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4470		    data, metadata, hits);
4471
4472		if (done)
4473			done(NULL, buf, private);
4474	} else {
4475		uint64_t size = BP_GET_LSIZE(bp);
4476		arc_callback_t *acb;
4477		vdev_t *vd = NULL;
4478		uint64_t addr = 0;
4479		boolean_t devw = B_FALSE;
4480		enum zio_compress b_compress = ZIO_COMPRESS_OFF;
4481		int32_t b_asize = 0;
4482
4483		if (hdr == NULL) {
4484			/* this block is not in the cache */
4485			arc_buf_hdr_t *exists = NULL;
4486			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4487			buf = arc_buf_alloc(spa, size, private, type);
4488			hdr = buf->b_hdr;
4489			if (!BP_IS_EMBEDDED(bp)) {
4490				hdr->b_dva = *BP_IDENTITY(bp);
4491				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
4492				exists = buf_hash_insert(hdr, &hash_lock);
4493			}
4494			if (exists != NULL) {
4495				/* somebody beat us to the hash insert */
4496				mutex_exit(hash_lock);
4497				buf_discard_identity(hdr);
4498				(void) arc_buf_remove_ref(buf, private);
4499				goto top; /* restart the IO request */
4500			}
4501
4502			/*
4503			 * If there is a callback, we pass our reference to
4504			 * it; otherwise we remove our reference.
4505			 */
4506			if (done == NULL) {
4507				(void) remove_reference(hdr, hash_lock,
4508				    private);
4509			}
4510			if (*arc_flags & ARC_FLAG_PREFETCH)
4511				hdr->b_flags |= ARC_FLAG_PREFETCH;
4512			if (*arc_flags & ARC_FLAG_L2CACHE)
4513				hdr->b_flags |= ARC_FLAG_L2CACHE;
4514			if (*arc_flags & ARC_FLAG_L2COMPRESS)
4515				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4516			if (BP_GET_LEVEL(bp) > 0)
4517				hdr->b_flags |= ARC_FLAG_INDIRECT;
4518		} else {
4519			/*
4520			 * This block is in the ghost cache. If it was L2-only
4521			 * (and thus didn't have an L1 hdr), we realloc the
4522			 * header to add an L1 hdr.
4523			 */
4524			if (!HDR_HAS_L1HDR(hdr)) {
4525				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4526				    hdr_full_cache);
4527			}
4528
4529			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
4530			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4531			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4532			ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
4533
4534			/*
4535			 * If there is a callback, we pass a reference to it.
4536			 */
4537			if (done != NULL)
4538				add_reference(hdr, hash_lock, private);
4539			if (*arc_flags & ARC_FLAG_PREFETCH)
4540				hdr->b_flags |= ARC_FLAG_PREFETCH;
4541			if (*arc_flags & ARC_FLAG_L2CACHE)
4542				hdr->b_flags |= ARC_FLAG_L2CACHE;
4543			if (*arc_flags & ARC_FLAG_L2COMPRESS)
4544				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4545			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
4546			buf->b_hdr = hdr;
4547			buf->b_data = NULL;
4548			buf->b_efunc = NULL;
4549			buf->b_private = NULL;
4550			buf->b_next = NULL;
4551			hdr->b_l1hdr.b_buf = buf;
4552			ASSERT0(hdr->b_l1hdr.b_datacnt);
4553			hdr->b_l1hdr.b_datacnt = 1;
4554			arc_get_data_buf(buf);
4555			arc_access(hdr, hash_lock);
4556		}
4557
4558		if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
4559			hdr->b_flags |= ARC_FLAG_PREDICTIVE_PREFETCH;
4560		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
4561
4562		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
4563		acb->acb_done = done;
4564		acb->acb_private = private;
4565
4566		ASSERT(hdr->b_l1hdr.b_acb == NULL);
4567		hdr->b_l1hdr.b_acb = acb;
4568		hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4569
4570		if (HDR_HAS_L2HDR(hdr) &&
4571		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
4572			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
4573			addr = hdr->b_l2hdr.b_daddr;
4574			b_compress = hdr->b_l2hdr.b_compress;
4575			b_asize = hdr->b_l2hdr.b_asize;
4576			/*
4577			 * Lock out device removal.
4578			 */
4579			if (vdev_is_dead(vd) ||
4580			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
4581				vd = NULL;
4582		}
4583
4584		if (hash_lock != NULL)
4585			mutex_exit(hash_lock);
4586
4587		/*
4588		 * At this point, we have a level 1 cache miss.  Try again in
4589		 * L2ARC if possible.
4590		 */
4591		ASSERT3U(hdr->b_size, ==, size);
4592		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
4593		    uint64_t, size, zbookmark_phys_t *, zb);
4594		ARCSTAT_BUMP(arcstat_misses);
4595		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4596		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4597		    data, metadata, misses);
4598#ifdef _KERNEL
4599		curthread->td_ru.ru_inblock++;
4600#endif
4601
4602		if (priority == ZIO_PRIORITY_ASYNC_READ)
4603			hdr->b_flags |= ARC_FLAG_PRIO_ASYNC_READ;
4604		else
4605			hdr->b_flags &= ~ARC_FLAG_PRIO_ASYNC_READ;
4606
4607		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
4608			/*
4609			 * Read from the L2ARC if the following are true:
4610			 * 1. The L2ARC vdev was previously cached.
4611			 * 2. This buffer still has L2ARC metadata.
4612			 * 3. This buffer isn't currently writing to the L2ARC.
4613			 * 4. The L2ARC entry wasn't evicted, which may
4614			 *    also have invalidated the vdev.
4615			 * 5. This isn't prefetch and l2arc_noprefetch is set.
4616			 */
4617			if (HDR_HAS_L2HDR(hdr) &&
4618			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
4619			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
4620				l2arc_read_callback_t *cb;
4621				void* b_data;
4622
4623				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
4624				ARCSTAT_BUMP(arcstat_l2_hits);
4625
4626				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
4627				    KM_SLEEP);
4628				cb->l2rcb_buf = buf;
4629				cb->l2rcb_spa = spa;
4630				cb->l2rcb_bp = *bp;
4631				cb->l2rcb_zb = *zb;
4632				cb->l2rcb_flags = zio_flags;
4633				cb->l2rcb_compress = b_compress;
4634				if (b_asize > hdr->b_size) {
4635					ASSERT3U(b_compress, ==,
4636					    ZIO_COMPRESS_OFF);
4637					b_data = zio_data_buf_alloc(b_asize);
4638					cb->l2rcb_data = b_data;
4639				} else {
4640					b_data = buf->b_data;
4641				}
4642
4643				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
4644				    addr + size < vd->vdev_psize -
4645				    VDEV_LABEL_END_SIZE);
4646
4647				/*
4648				 * l2arc read.  The SCL_L2ARC lock will be
4649				 * released by l2arc_read_done().
4650				 * Issue a null zio if the underlying buffer
4651				 * was squashed to zero size by compression.
4652				 */
4653				if (b_compress == ZIO_COMPRESS_EMPTY) {
4654					ASSERT3U(b_asize, ==, 0);
4655					rzio = zio_null(pio, spa, vd,
4656					    l2arc_read_done, cb,
4657					    zio_flags | ZIO_FLAG_DONT_CACHE |
4658					    ZIO_FLAG_CANFAIL |
4659					    ZIO_FLAG_DONT_PROPAGATE |
4660					    ZIO_FLAG_DONT_RETRY);
4661				} else {
4662					rzio = zio_read_phys(pio, vd, addr,
4663					    b_asize, b_data,
4664					    ZIO_CHECKSUM_OFF,
4665					    l2arc_read_done, cb, priority,
4666					    zio_flags | ZIO_FLAG_DONT_CACHE |
4667					    ZIO_FLAG_CANFAIL |
4668					    ZIO_FLAG_DONT_PROPAGATE |
4669					    ZIO_FLAG_DONT_RETRY, B_FALSE);
4670				}
4671				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
4672				    zio_t *, rzio);
4673				ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
4674
4675				if (*arc_flags & ARC_FLAG_NOWAIT) {
4676					zio_nowait(rzio);
4677					return (0);
4678				}
4679
4680				ASSERT(*arc_flags & ARC_FLAG_WAIT);
4681				if (zio_wait(rzio) == 0)
4682					return (0);
4683
4684				/* l2arc read error; goto zio_read() */
4685			} else {
4686				DTRACE_PROBE1(l2arc__miss,
4687				    arc_buf_hdr_t *, hdr);
4688				ARCSTAT_BUMP(arcstat_l2_misses);
4689				if (HDR_L2_WRITING(hdr))
4690					ARCSTAT_BUMP(arcstat_l2_rw_clash);
4691				spa_config_exit(spa, SCL_L2ARC, vd);
4692			}
4693		} else {
4694			if (vd != NULL)
4695				spa_config_exit(spa, SCL_L2ARC, vd);
4696			if (l2arc_ndev != 0) {
4697				DTRACE_PROBE1(l2arc__miss,
4698				    arc_buf_hdr_t *, hdr);
4699				ARCSTAT_BUMP(arcstat_l2_misses);
4700			}
4701		}
4702
4703		rzio = zio_read(pio, spa, bp, buf->b_data, size,
4704		    arc_read_done, buf, priority, zio_flags, zb);
4705
4706		if (*arc_flags & ARC_FLAG_WAIT)
4707			return (zio_wait(rzio));
4708
4709		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4710		zio_nowait(rzio);
4711	}
4712	return (0);
4713}
4714
4715void
4716arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
4717{
4718	ASSERT(buf->b_hdr != NULL);
4719	ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon);
4720	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) ||
4721	    func == NULL);
4722	ASSERT(buf->b_efunc == NULL);
4723	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
4724
4725	buf->b_efunc = func;
4726	buf->b_private = private;
4727}
4728
4729/*
4730 * Notify the arc that a block was freed, and thus will never be used again.
4731 */
4732void
4733arc_freed(spa_t *spa, const blkptr_t *bp)
4734{
4735	arc_buf_hdr_t *hdr;
4736	kmutex_t *hash_lock;
4737	uint64_t guid = spa_load_guid(spa);
4738
4739	ASSERT(!BP_IS_EMBEDDED(bp));
4740
4741	hdr = buf_hash_find(guid, bp, &hash_lock);
4742	if (hdr == NULL)
4743		return;
4744	if (HDR_BUF_AVAILABLE(hdr)) {
4745		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
4746		add_reference(hdr, hash_lock, FTAG);
4747		hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4748		mutex_exit(hash_lock);
4749
4750		arc_release(buf, FTAG);
4751		(void) arc_buf_remove_ref(buf, FTAG);
4752	} else {
4753		mutex_exit(hash_lock);
4754	}
4755
4756}
4757
4758/*
4759 * Clear the user eviction callback set by arc_set_callback(), first calling
4760 * it if it exists.  Because the presence of a callback keeps an arc_buf cached
4761 * clearing the callback may result in the arc_buf being destroyed.  However,
4762 * it will not result in the *last* arc_buf being destroyed, hence the data
4763 * will remain cached in the ARC. We make a copy of the arc buffer here so
4764 * that we can process the callback without holding any locks.
4765 *
4766 * It's possible that the callback is already in the process of being cleared
4767 * by another thread.  In this case we can not clear the callback.
4768 *
4769 * Returns B_TRUE if the callback was successfully called and cleared.
4770 */
4771boolean_t
4772arc_clear_callback(arc_buf_t *buf)
4773{
4774	arc_buf_hdr_t *hdr;
4775	kmutex_t *hash_lock;
4776	arc_evict_func_t *efunc = buf->b_efunc;
4777	void *private = buf->b_private;
4778
4779	mutex_enter(&buf->b_evict_lock);
4780	hdr = buf->b_hdr;
4781	if (hdr == NULL) {
4782		/*
4783		 * We are in arc_do_user_evicts().
4784		 */
4785		ASSERT(buf->b_data == NULL);
4786		mutex_exit(&buf->b_evict_lock);
4787		return (B_FALSE);
4788	} else if (buf->b_data == NULL) {
4789		/*
4790		 * We are on the eviction list; process this buffer now
4791		 * but let arc_do_user_evicts() do the reaping.
4792		 */
4793		buf->b_efunc = NULL;
4794		mutex_exit(&buf->b_evict_lock);
4795		VERIFY0(efunc(private));
4796		return (B_TRUE);
4797	}
4798	hash_lock = HDR_LOCK(hdr);
4799	mutex_enter(hash_lock);
4800	hdr = buf->b_hdr;
4801	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4802
4803	ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <,
4804	    hdr->b_l1hdr.b_datacnt);
4805	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4806	    hdr->b_l1hdr.b_state == arc_mfu);
4807
4808	buf->b_efunc = NULL;
4809	buf->b_private = NULL;
4810
4811	if (hdr->b_l1hdr.b_datacnt > 1) {
4812		mutex_exit(&buf->b_evict_lock);
4813		arc_buf_destroy(buf, TRUE);
4814	} else {
4815		ASSERT(buf == hdr->b_l1hdr.b_buf);
4816		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4817		mutex_exit(&buf->b_evict_lock);
4818	}
4819
4820	mutex_exit(hash_lock);
4821	VERIFY0(efunc(private));
4822	return (B_TRUE);
4823}
4824
4825/*
4826 * Release this buffer from the cache, making it an anonymous buffer.  This
4827 * must be done after a read and prior to modifying the buffer contents.
4828 * If the buffer has more than one reference, we must make
4829 * a new hdr for the buffer.
4830 */
4831void
4832arc_release(arc_buf_t *buf, void *tag)
4833{
4834	arc_buf_hdr_t *hdr = buf->b_hdr;
4835
4836	/*
4837	 * It would be nice to assert that if it's DMU metadata (level >
4838	 * 0 || it's the dnode file), then it must be syncing context.
4839	 * But we don't know that information at this level.
4840	 */
4841
4842	mutex_enter(&buf->b_evict_lock);
4843
4844	ASSERT(HDR_HAS_L1HDR(hdr));
4845
4846	/*
4847	 * We don't grab the hash lock prior to this check, because if
4848	 * the buffer's header is in the arc_anon state, it won't be
4849	 * linked into the hash table.
4850	 */
4851	if (hdr->b_l1hdr.b_state == arc_anon) {
4852		mutex_exit(&buf->b_evict_lock);
4853		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4854		ASSERT(!HDR_IN_HASH_TABLE(hdr));
4855		ASSERT(!HDR_HAS_L2HDR(hdr));
4856		ASSERT(BUF_EMPTY(hdr));
4857		ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1);
4858		ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
4859		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
4860
4861		ASSERT3P(buf->b_efunc, ==, NULL);
4862		ASSERT3P(buf->b_private, ==, NULL);
4863
4864		hdr->b_l1hdr.b_arc_access = 0;
4865		arc_buf_thaw(buf);
4866
4867		return;
4868	}
4869
4870	kmutex_t *hash_lock = HDR_LOCK(hdr);
4871	mutex_enter(hash_lock);
4872
4873	/*
4874	 * This assignment is only valid as long as the hash_lock is
4875	 * held, we must be careful not to reference state or the
4876	 * b_state field after dropping the lock.
4877	 */
4878	arc_state_t *state = hdr->b_l1hdr.b_state;
4879	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4880	ASSERT3P(state, !=, arc_anon);
4881
4882	/* this buffer is not on any list */
4883	ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
4884
4885	if (HDR_HAS_L2HDR(hdr)) {
4886		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4887
4888		/*
4889		 * We have to recheck this conditional again now that
4890		 * we're holding the l2ad_mtx to prevent a race with
4891		 * another thread which might be concurrently calling
4892		 * l2arc_evict(). In that case, l2arc_evict() might have
4893		 * destroyed the header's L2 portion as we were waiting
4894		 * to acquire the l2ad_mtx.
4895		 */
4896		if (HDR_HAS_L2HDR(hdr)) {
4897			l2arc_trim(hdr);
4898			arc_hdr_l2hdr_destroy(hdr);
4899		}
4900
4901		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4902	}
4903
4904	/*
4905	 * Do we have more than one buf?
4906	 */
4907	if (hdr->b_l1hdr.b_datacnt > 1) {
4908		arc_buf_hdr_t *nhdr;
4909		arc_buf_t **bufp;
4910		uint64_t blksz = hdr->b_size;
4911		uint64_t spa = hdr->b_spa;
4912		arc_buf_contents_t type = arc_buf_type(hdr);
4913		uint32_t flags = hdr->b_flags;
4914
4915		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
4916		/*
4917		 * Pull the data off of this hdr and attach it to
4918		 * a new anonymous hdr.
4919		 */
4920		(void) remove_reference(hdr, hash_lock, tag);
4921		bufp = &hdr->b_l1hdr.b_buf;
4922		while (*bufp != buf)
4923			bufp = &(*bufp)->b_next;
4924		*bufp = buf->b_next;
4925		buf->b_next = NULL;
4926
4927		ASSERT3P(state, !=, arc_l2c_only);
4928
4929		(void) refcount_remove_many(
4930		    &state->arcs_size, hdr->b_size, buf);
4931
4932		if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
4933			ASSERT3P(state, !=, arc_l2c_only);
4934			uint64_t *size = &state->arcs_lsize[type];
4935			ASSERT3U(*size, >=, hdr->b_size);
4936			atomic_add_64(size, -hdr->b_size);
4937		}
4938
4939		/*
4940		 * We're releasing a duplicate user data buffer, update
4941		 * our statistics accordingly.
4942		 */
4943		if (HDR_ISTYPE_DATA(hdr)) {
4944			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
4945			ARCSTAT_INCR(arcstat_duplicate_buffers_size,
4946			    -hdr->b_size);
4947		}
4948		hdr->b_l1hdr.b_datacnt -= 1;
4949		arc_cksum_verify(buf);
4950#ifdef illumos
4951		arc_buf_unwatch(buf);
4952#endif
4953
4954		mutex_exit(hash_lock);
4955
4956		nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
4957		nhdr->b_size = blksz;
4958		nhdr->b_spa = spa;
4959
4960		nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
4961		nhdr->b_flags |= arc_bufc_to_flags(type);
4962		nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
4963
4964		nhdr->b_l1hdr.b_buf = buf;
4965		nhdr->b_l1hdr.b_datacnt = 1;
4966		nhdr->b_l1hdr.b_state = arc_anon;
4967		nhdr->b_l1hdr.b_arc_access = 0;
4968		nhdr->b_l1hdr.b_tmp_cdata = NULL;
4969		nhdr->b_freeze_cksum = NULL;
4970
4971		(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
4972		buf->b_hdr = nhdr;
4973		mutex_exit(&buf->b_evict_lock);
4974		(void) refcount_add_many(&arc_anon->arcs_size, blksz, buf);
4975	} else {
4976		mutex_exit(&buf->b_evict_lock);
4977		ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
4978		/* protected by hash lock, or hdr is on arc_anon */
4979		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4980		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4981		arc_change_state(arc_anon, hdr, hash_lock);
4982		hdr->b_l1hdr.b_arc_access = 0;
4983		mutex_exit(hash_lock);
4984
4985		buf_discard_identity(hdr);
4986		arc_buf_thaw(buf);
4987	}
4988	buf->b_efunc = NULL;
4989	buf->b_private = NULL;
4990}
4991
4992int
4993arc_released(arc_buf_t *buf)
4994{
4995	int released;
4996
4997	mutex_enter(&buf->b_evict_lock);
4998	released = (buf->b_data != NULL &&
4999	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
5000	mutex_exit(&buf->b_evict_lock);
5001	return (released);
5002}
5003
5004#ifdef ZFS_DEBUG
5005int
5006arc_referenced(arc_buf_t *buf)
5007{
5008	int referenced;
5009
5010	mutex_enter(&buf->b_evict_lock);
5011	referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
5012	mutex_exit(&buf->b_evict_lock);
5013	return (referenced);
5014}
5015#endif
5016
5017static void
5018arc_write_ready(zio_t *zio)
5019{
5020	arc_write_callback_t *callback = zio->io_private;
5021	arc_buf_t *buf = callback->awcb_buf;
5022	arc_buf_hdr_t *hdr = buf->b_hdr;
5023
5024	ASSERT(HDR_HAS_L1HDR(hdr));
5025	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
5026	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
5027	callback->awcb_ready(zio, buf, callback->awcb_private);
5028
5029	/*
5030	 * If the IO is already in progress, then this is a re-write
5031	 * attempt, so we need to thaw and re-compute the cksum.
5032	 * It is the responsibility of the callback to handle the
5033	 * accounting for any re-write attempt.
5034	 */
5035	if (HDR_IO_IN_PROGRESS(hdr)) {
5036		mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
5037		if (hdr->b_freeze_cksum != NULL) {
5038			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
5039			hdr->b_freeze_cksum = NULL;
5040		}
5041		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
5042	}
5043	arc_cksum_compute(buf, B_FALSE);
5044	hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
5045}
5046
5047/*
5048 * The SPA calls this callback for each physical write that happens on behalf
5049 * of a logical write.  See the comment in dbuf_write_physdone() for details.
5050 */
5051static void
5052arc_write_physdone(zio_t *zio)
5053{
5054	arc_write_callback_t *cb = zio->io_private;
5055	if (cb->awcb_physdone != NULL)
5056		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
5057}
5058
5059static void
5060arc_write_done(zio_t *zio)
5061{
5062	arc_write_callback_t *callback = zio->io_private;
5063	arc_buf_t *buf = callback->awcb_buf;
5064	arc_buf_hdr_t *hdr = buf->b_hdr;
5065
5066	ASSERT(hdr->b_l1hdr.b_acb == NULL);
5067
5068	if (zio->io_error == 0) {
5069		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5070			buf_discard_identity(hdr);
5071		} else {
5072			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
5073			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
5074		}
5075	} else {
5076		ASSERT(BUF_EMPTY(hdr));
5077	}
5078
5079	/*
5080	 * If the block to be written was all-zero or compressed enough to be
5081	 * embedded in the BP, no write was performed so there will be no
5082	 * dva/birth/checksum.  The buffer must therefore remain anonymous
5083	 * (and uncached).
5084	 */
5085	if (!BUF_EMPTY(hdr)) {
5086		arc_buf_hdr_t *exists;
5087		kmutex_t *hash_lock;
5088
5089		ASSERT(zio->io_error == 0);
5090
5091		arc_cksum_verify(buf);
5092
5093		exists = buf_hash_insert(hdr, &hash_lock);
5094		if (exists != NULL) {
5095			/*
5096			 * This can only happen if we overwrite for
5097			 * sync-to-convergence, because we remove
5098			 * buffers from the hash table when we arc_free().
5099			 */
5100			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
5101				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5102					panic("bad overwrite, hdr=%p exists=%p",
5103					    (void *)hdr, (void *)exists);
5104				ASSERT(refcount_is_zero(
5105				    &exists->b_l1hdr.b_refcnt));
5106				arc_change_state(arc_anon, exists, hash_lock);
5107				mutex_exit(hash_lock);
5108				arc_hdr_destroy(exists);
5109				exists = buf_hash_insert(hdr, &hash_lock);
5110				ASSERT3P(exists, ==, NULL);
5111			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5112				/* nopwrite */
5113				ASSERT(zio->io_prop.zp_nopwrite);
5114				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5115					panic("bad nopwrite, hdr=%p exists=%p",
5116					    (void *)hdr, (void *)exists);
5117			} else {
5118				/* Dedup */
5119				ASSERT(hdr->b_l1hdr.b_datacnt == 1);
5120				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
5121				ASSERT(BP_GET_DEDUP(zio->io_bp));
5122				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5123			}
5124		}
5125		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
5126		/* if it's not anon, we are doing a scrub */
5127		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
5128			arc_access(hdr, hash_lock);
5129		mutex_exit(hash_lock);
5130	} else {
5131		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
5132	}
5133
5134	ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5135	callback->awcb_done(zio, buf, callback->awcb_private);
5136
5137	kmem_free(callback, sizeof (arc_write_callback_t));
5138}
5139
5140zio_t *
5141arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
5142    blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
5143    const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
5144    arc_done_func_t *done, void *private, zio_priority_t priority,
5145    int zio_flags, const zbookmark_phys_t *zb)
5146{
5147	arc_buf_hdr_t *hdr = buf->b_hdr;
5148	arc_write_callback_t *callback;
5149	zio_t *zio;
5150
5151	ASSERT(ready != NULL);
5152	ASSERT(done != NULL);
5153	ASSERT(!HDR_IO_ERROR(hdr));
5154	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5155	ASSERT(hdr->b_l1hdr.b_acb == NULL);
5156	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
5157	if (l2arc)
5158		hdr->b_flags |= ARC_FLAG_L2CACHE;
5159	if (l2arc_compress)
5160		hdr->b_flags |= ARC_FLAG_L2COMPRESS;
5161	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
5162	callback->awcb_ready = ready;
5163	callback->awcb_physdone = physdone;
5164	callback->awcb_done = done;
5165	callback->awcb_private = private;
5166	callback->awcb_buf = buf;
5167
5168	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
5169	    arc_write_ready, arc_write_physdone, arc_write_done, callback,
5170	    priority, zio_flags, zb);
5171
5172	return (zio);
5173}
5174
5175static int
5176arc_memory_throttle(uint64_t reserve, uint64_t txg)
5177{
5178#ifdef _KERNEL
5179	uint64_t available_memory = ptob(freemem);
5180	static uint64_t page_load = 0;
5181	static uint64_t last_txg = 0;
5182
5183#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
5184	available_memory =
5185	    MIN(available_memory, ptob(vmem_size(heap_arena, VMEM_FREE)));
5186#endif
5187
5188	if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100)
5189		return (0);
5190
5191	if (txg > last_txg) {
5192		last_txg = txg;
5193		page_load = 0;
5194	}
5195	/*
5196	 * If we are in pageout, we know that memory is already tight,
5197	 * the arc is already going to be evicting, so we just want to
5198	 * continue to let page writes occur as quickly as possible.
5199	 */
5200	if (curproc == pageproc) {
5201		if (page_load > MAX(ptob(minfree), available_memory) / 4)
5202			return (SET_ERROR(ERESTART));
5203		/* Note: reserve is inflated, so we deflate */
5204		page_load += reserve / 8;
5205		return (0);
5206	} else if (page_load > 0 && arc_reclaim_needed()) {
5207		/* memory is low, delay before restarting */
5208		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
5209		return (SET_ERROR(EAGAIN));
5210	}
5211	page_load = 0;
5212#endif
5213	return (0);
5214}
5215
5216void
5217arc_tempreserve_clear(uint64_t reserve)
5218{
5219	atomic_add_64(&arc_tempreserve, -reserve);
5220	ASSERT((int64_t)arc_tempreserve >= 0);
5221}
5222
5223int
5224arc_tempreserve_space(uint64_t reserve, uint64_t txg)
5225{
5226	int error;
5227	uint64_t anon_size;
5228
5229	if (reserve > arc_c/4 && !arc_no_grow) {
5230		arc_c = MIN(arc_c_max, reserve * 4);
5231		DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c);
5232	}
5233	if (reserve > arc_c)
5234		return (SET_ERROR(ENOMEM));
5235
5236	/*
5237	 * Don't count loaned bufs as in flight dirty data to prevent long
5238	 * network delays from blocking transactions that are ready to be
5239	 * assigned to a txg.
5240	 */
5241	anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5242	    arc_loaned_bytes), 0);
5243
5244	/*
5245	 * Writes will, almost always, require additional memory allocations
5246	 * in order to compress/encrypt/etc the data.  We therefore need to
5247	 * make sure that there is sufficient available memory for this.
5248	 */
5249	error = arc_memory_throttle(reserve, txg);
5250	if (error != 0)
5251		return (error);
5252
5253	/*
5254	 * Throttle writes when the amount of dirty data in the cache
5255	 * gets too large.  We try to keep the cache less than half full
5256	 * of dirty blocks so that our sync times don't grow too large.
5257	 * Note: if two requests come in concurrently, we might let them
5258	 * both succeed, when one of them should fail.  Not a huge deal.
5259	 */
5260
5261	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5262	    anon_size > arc_c / 4) {
5263		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5264		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5265		    arc_tempreserve>>10,
5266		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
5267		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
5268		    reserve>>10, arc_c>>10);
5269		return (SET_ERROR(ERESTART));
5270	}
5271	atomic_add_64(&arc_tempreserve, reserve);
5272	return (0);
5273}
5274
5275static void
5276arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5277    kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5278{
5279	size->value.ui64 = refcount_count(&state->arcs_size);
5280	evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
5281	evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
5282}
5283
5284static int
5285arc_kstat_update(kstat_t *ksp, int rw)
5286{
5287	arc_stats_t *as = ksp->ks_data;
5288
5289	if (rw == KSTAT_WRITE) {
5290		return (EACCES);
5291	} else {
5292		arc_kstat_update_state(arc_anon,
5293		    &as->arcstat_anon_size,
5294		    &as->arcstat_anon_evictable_data,
5295		    &as->arcstat_anon_evictable_metadata);
5296		arc_kstat_update_state(arc_mru,
5297		    &as->arcstat_mru_size,
5298		    &as->arcstat_mru_evictable_data,
5299		    &as->arcstat_mru_evictable_metadata);
5300		arc_kstat_update_state(arc_mru_ghost,
5301		    &as->arcstat_mru_ghost_size,
5302		    &as->arcstat_mru_ghost_evictable_data,
5303		    &as->arcstat_mru_ghost_evictable_metadata);
5304		arc_kstat_update_state(arc_mfu,
5305		    &as->arcstat_mfu_size,
5306		    &as->arcstat_mfu_evictable_data,
5307		    &as->arcstat_mfu_evictable_metadata);
5308		arc_kstat_update_state(arc_mfu_ghost,
5309		    &as->arcstat_mfu_ghost_size,
5310		    &as->arcstat_mfu_ghost_evictable_data,
5311		    &as->arcstat_mfu_ghost_evictable_metadata);
5312	}
5313
5314	return (0);
5315}
5316
5317/*
5318 * This function *must* return indices evenly distributed between all
5319 * sublists of the multilist. This is needed due to how the ARC eviction
5320 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
5321 * distributed between all sublists and uses this assumption when
5322 * deciding which sublist to evict from and how much to evict from it.
5323 */
5324unsigned int
5325arc_state_multilist_index_func(multilist_t *ml, void *obj)
5326{
5327	arc_buf_hdr_t *hdr = obj;
5328
5329	/*
5330	 * We rely on b_dva to generate evenly distributed index
5331	 * numbers using buf_hash below. So, as an added precaution,
5332	 * let's make sure we never add empty buffers to the arc lists.
5333	 */
5334	ASSERT(!BUF_EMPTY(hdr));
5335
5336	/*
5337	 * The assumption here, is the hash value for a given
5338	 * arc_buf_hdr_t will remain constant throughout it's lifetime
5339	 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
5340	 * Thus, we don't need to store the header's sublist index
5341	 * on insertion, as this index can be recalculated on removal.
5342	 *
5343	 * Also, the low order bits of the hash value are thought to be
5344	 * distributed evenly. Otherwise, in the case that the multilist
5345	 * has a power of two number of sublists, each sublists' usage
5346	 * would not be evenly distributed.
5347	 */
5348	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
5349	    multilist_get_num_sublists(ml));
5350}
5351
5352#ifdef _KERNEL
5353static eventhandler_tag arc_event_lowmem = NULL;
5354
5355static void
5356arc_lowmem(void *arg __unused, int howto __unused)
5357{
5358
5359	mutex_enter(&arc_reclaim_lock);
5360	/* XXX: Memory deficit should be passed as argument. */
5361	needfree = btoc(arc_c >> arc_shrink_shift);
5362	DTRACE_PROBE(arc__needfree);
5363	cv_signal(&arc_reclaim_thread_cv);
5364
5365	/*
5366	 * It is unsafe to block here in arbitrary threads, because we can come
5367	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
5368	 * with ARC reclaim thread.
5369	 */
5370	if (curproc == pageproc)
5371		(void) cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
5372	mutex_exit(&arc_reclaim_lock);
5373}
5374#endif
5375
5376void
5377arc_init(void)
5378{
5379	int i, prefetch_tunable_set = 0;
5380
5381	mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
5382	cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
5383	cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
5384
5385	mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
5386	cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL);
5387
5388	/* Convert seconds to clock ticks */
5389	arc_min_prefetch_lifespan = 1 * hz;
5390
5391	/* Start out with 1/8 of all memory */
5392	arc_c = kmem_size() / 8;
5393
5394#ifdef illumos
5395#ifdef _KERNEL
5396	/*
5397	 * On architectures where the physical memory can be larger
5398	 * than the addressable space (intel in 32-bit mode), we may
5399	 * need to limit the cache to 1/8 of VM size.
5400	 */
5401	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
5402#endif
5403#endif	/* illumos */
5404	/* set min cache to 1/32 of all memory, or arc_abs_min, whichever is more */
5405	arc_c_min = MAX(arc_c / 4, arc_abs_min);
5406	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
5407	if (arc_c * 8 >= 1 << 30)
5408		arc_c_max = (arc_c * 8) - (1 << 30);
5409	else
5410		arc_c_max = arc_c_min;
5411	arc_c_max = MAX(arc_c * 5, arc_c_max);
5412
5413	/*
5414	 * In userland, there's only the memory pressure that we artificially
5415	 * create (see arc_available_memory()).  Don't let arc_c get too
5416	 * small, because it can cause transactions to be larger than
5417	 * arc_c, causing arc_tempreserve_space() to fail.
5418	 */
5419#ifndef _KERNEL
5420	arc_c_min = arc_c_max / 2;
5421#endif
5422
5423#ifdef _KERNEL
5424	/*
5425	 * Allow the tunables to override our calculations if they are
5426	 * reasonable.
5427	 */
5428	if (zfs_arc_max > arc_abs_min && zfs_arc_max < kmem_size())
5429		arc_c_max = zfs_arc_max;
5430	if (zfs_arc_min > arc_abs_min && zfs_arc_min <= arc_c_max)
5431		arc_c_min = zfs_arc_min;
5432#endif
5433
5434	arc_c = arc_c_max;
5435	arc_p = (arc_c >> 1);
5436
5437	/* limit meta-data to 1/4 of the arc capacity */
5438	arc_meta_limit = arc_c_max / 4;
5439
5440	/* Allow the tunable to override if it is reasonable */
5441	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
5442		arc_meta_limit = zfs_arc_meta_limit;
5443
5444	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
5445		arc_c_min = arc_meta_limit / 2;
5446
5447	if (zfs_arc_meta_min > 0) {
5448		arc_meta_min = zfs_arc_meta_min;
5449	} else {
5450		arc_meta_min = arc_c_min / 2;
5451	}
5452
5453	if (zfs_arc_grow_retry > 0)
5454		arc_grow_retry = zfs_arc_grow_retry;
5455
5456	if (zfs_arc_shrink_shift > 0)
5457		arc_shrink_shift = zfs_arc_shrink_shift;
5458
5459	/*
5460	 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
5461	 */
5462	if (arc_no_grow_shift >= arc_shrink_shift)
5463		arc_no_grow_shift = arc_shrink_shift - 1;
5464
5465	if (zfs_arc_p_min_shift > 0)
5466		arc_p_min_shift = zfs_arc_p_min_shift;
5467
5468	if (zfs_arc_num_sublists_per_state < 1)
5469		zfs_arc_num_sublists_per_state = MAX(max_ncpus, 1);
5470
5471	/* if kmem_flags are set, lets try to use less memory */
5472	if (kmem_debugging())
5473		arc_c = arc_c / 2;
5474	if (arc_c < arc_c_min)
5475		arc_c = arc_c_min;
5476
5477	zfs_arc_min = arc_c_min;
5478	zfs_arc_max = arc_c_max;
5479
5480	arc_anon = &ARC_anon;
5481	arc_mru = &ARC_mru;
5482	arc_mru_ghost = &ARC_mru_ghost;
5483	arc_mfu = &ARC_mfu;
5484	arc_mfu_ghost = &ARC_mfu_ghost;
5485	arc_l2c_only = &ARC_l2c_only;
5486	arc_size = 0;
5487
5488	multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
5489	    sizeof (arc_buf_hdr_t),
5490	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5491	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5492	multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
5493	    sizeof (arc_buf_hdr_t),
5494	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5495	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5496	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
5497	    sizeof (arc_buf_hdr_t),
5498	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5499	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5500	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
5501	    sizeof (arc_buf_hdr_t),
5502	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5503	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5504	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
5505	    sizeof (arc_buf_hdr_t),
5506	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5507	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5508	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
5509	    sizeof (arc_buf_hdr_t),
5510	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5511	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5512	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
5513	    sizeof (arc_buf_hdr_t),
5514	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5515	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5516	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
5517	    sizeof (arc_buf_hdr_t),
5518	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5519	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5520	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
5521	    sizeof (arc_buf_hdr_t),
5522	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5523	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5524	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
5525	    sizeof (arc_buf_hdr_t),
5526	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5527	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5528
5529	refcount_create(&arc_anon->arcs_size);
5530	refcount_create(&arc_mru->arcs_size);
5531	refcount_create(&arc_mru_ghost->arcs_size);
5532	refcount_create(&arc_mfu->arcs_size);
5533	refcount_create(&arc_mfu_ghost->arcs_size);
5534	refcount_create(&arc_l2c_only->arcs_size);
5535
5536	buf_init();
5537
5538	arc_reclaim_thread_exit = FALSE;
5539	arc_user_evicts_thread_exit = FALSE;
5540	arc_eviction_list = NULL;
5541	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
5542
5543	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
5544	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
5545
5546	if (arc_ksp != NULL) {
5547		arc_ksp->ks_data = &arc_stats;
5548		arc_ksp->ks_update = arc_kstat_update;
5549		kstat_install(arc_ksp);
5550	}
5551
5552	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
5553	    TS_RUN, minclsyspri);
5554
5555#ifdef _KERNEL
5556	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
5557	    EVENTHANDLER_PRI_FIRST);
5558#endif
5559
5560	(void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0,
5561	    TS_RUN, minclsyspri);
5562
5563	arc_dead = FALSE;
5564	arc_warm = B_FALSE;
5565
5566	/*
5567	 * Calculate maximum amount of dirty data per pool.
5568	 *
5569	 * If it has been set by /etc/system, take that.
5570	 * Otherwise, use a percentage of physical memory defined by
5571	 * zfs_dirty_data_max_percent (default 10%) with a cap at
5572	 * zfs_dirty_data_max_max (default 4GB).
5573	 */
5574	if (zfs_dirty_data_max == 0) {
5575		zfs_dirty_data_max = ptob(physmem) *
5576		    zfs_dirty_data_max_percent / 100;
5577		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
5578		    zfs_dirty_data_max_max);
5579	}
5580
5581#ifdef _KERNEL
5582	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
5583		prefetch_tunable_set = 1;
5584
5585#ifdef __i386__
5586	if (prefetch_tunable_set == 0) {
5587		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
5588		    "-- to enable,\n");
5589		printf("            add \"vfs.zfs.prefetch_disable=0\" "
5590		    "to /boot/loader.conf.\n");
5591		zfs_prefetch_disable = 1;
5592	}
5593#else
5594	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
5595	    prefetch_tunable_set == 0) {
5596		printf("ZFS NOTICE: Prefetch is disabled by default if less "
5597		    "than 4GB of RAM is present;\n"
5598		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
5599		    "to /boot/loader.conf.\n");
5600		zfs_prefetch_disable = 1;
5601	}
5602#endif
5603	/* Warn about ZFS memory and address space requirements. */
5604	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
5605		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
5606		    "expect unstable behavior.\n");
5607	}
5608	if (kmem_size() < 512 * (1 << 20)) {
5609		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
5610		    "expect unstable behavior.\n");
5611		printf("             Consider tuning vm.kmem_size and "
5612		    "vm.kmem_size_max\n");
5613		printf("             in /boot/loader.conf.\n");
5614	}
5615#endif
5616}
5617
5618void
5619arc_fini(void)
5620{
5621	mutex_enter(&arc_reclaim_lock);
5622	arc_reclaim_thread_exit = TRUE;
5623	/*
5624	 * The reclaim thread will set arc_reclaim_thread_exit back to
5625	 * FALSE when it is finished exiting; we're waiting for that.
5626	 */
5627	while (arc_reclaim_thread_exit) {
5628		cv_signal(&arc_reclaim_thread_cv);
5629		cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
5630	}
5631	mutex_exit(&arc_reclaim_lock);
5632
5633	mutex_enter(&arc_user_evicts_lock);
5634	arc_user_evicts_thread_exit = TRUE;
5635	/*
5636	 * The user evicts thread will set arc_user_evicts_thread_exit
5637	 * to FALSE when it is finished exiting; we're waiting for that.
5638	 */
5639	while (arc_user_evicts_thread_exit) {
5640		cv_signal(&arc_user_evicts_cv);
5641		cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock);
5642	}
5643	mutex_exit(&arc_user_evicts_lock);
5644
5645	/* Use TRUE to ensure *all* buffers are evicted */
5646	arc_flush(NULL, TRUE);
5647
5648	arc_dead = TRUE;
5649
5650	if (arc_ksp != NULL) {
5651		kstat_delete(arc_ksp);
5652		arc_ksp = NULL;
5653	}
5654
5655	mutex_destroy(&arc_reclaim_lock);
5656	cv_destroy(&arc_reclaim_thread_cv);
5657	cv_destroy(&arc_reclaim_waiters_cv);
5658
5659	mutex_destroy(&arc_user_evicts_lock);
5660	cv_destroy(&arc_user_evicts_cv);
5661
5662	refcount_destroy(&arc_anon->arcs_size);
5663	refcount_destroy(&arc_mru->arcs_size);
5664	refcount_destroy(&arc_mru_ghost->arcs_size);
5665	refcount_destroy(&arc_mfu->arcs_size);
5666	refcount_destroy(&arc_mfu_ghost->arcs_size);
5667	refcount_destroy(&arc_l2c_only->arcs_size);
5668
5669	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
5670	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5671	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5672	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5673	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
5674	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
5675	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5676	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
5677	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5678	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
5679
5680	buf_fini();
5681
5682	ASSERT0(arc_loaned_bytes);
5683
5684#ifdef _KERNEL
5685	if (arc_event_lowmem != NULL)
5686		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
5687#endif
5688}
5689
5690/*
5691 * Level 2 ARC
5692 *
5693 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
5694 * It uses dedicated storage devices to hold cached data, which are populated
5695 * using large infrequent writes.  The main role of this cache is to boost
5696 * the performance of random read workloads.  The intended L2ARC devices
5697 * include short-stroked disks, solid state disks, and other media with
5698 * substantially faster read latency than disk.
5699 *
5700 *                 +-----------------------+
5701 *                 |         ARC           |
5702 *                 +-----------------------+
5703 *                    |         ^     ^
5704 *                    |         |     |
5705 *      l2arc_feed_thread()    arc_read()
5706 *                    |         |     |
5707 *                    |  l2arc read   |
5708 *                    V         |     |
5709 *               +---------------+    |
5710 *               |     L2ARC     |    |
5711 *               +---------------+    |
5712 *                   |    ^           |
5713 *          l2arc_write() |           |
5714 *                   |    |           |
5715 *                   V    |           |
5716 *                 +-------+      +-------+
5717 *                 | vdev  |      | vdev  |
5718 *                 | cache |      | cache |
5719 *                 +-------+      +-------+
5720 *                 +=========+     .-----.
5721 *                 :  L2ARC  :    |-_____-|
5722 *                 : devices :    | Disks |
5723 *                 +=========+    `-_____-'
5724 *
5725 * Read requests are satisfied from the following sources, in order:
5726 *
5727 *	1) ARC
5728 *	2) vdev cache of L2ARC devices
5729 *	3) L2ARC devices
5730 *	4) vdev cache of disks
5731 *	5) disks
5732 *
5733 * Some L2ARC device types exhibit extremely slow write performance.
5734 * To accommodate for this there are some significant differences between
5735 * the L2ARC and traditional cache design:
5736 *
5737 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
5738 * the ARC behave as usual, freeing buffers and placing headers on ghost
5739 * lists.  The ARC does not send buffers to the L2ARC during eviction as
5740 * this would add inflated write latencies for all ARC memory pressure.
5741 *
5742 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
5743 * It does this by periodically scanning buffers from the eviction-end of
5744 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
5745 * not already there. It scans until a headroom of buffers is satisfied,
5746 * which itself is a buffer for ARC eviction. If a compressible buffer is
5747 * found during scanning and selected for writing to an L2ARC device, we
5748 * temporarily boost scanning headroom during the next scan cycle to make
5749 * sure we adapt to compression effects (which might significantly reduce
5750 * the data volume we write to L2ARC). The thread that does this is
5751 * l2arc_feed_thread(), illustrated below; example sizes are included to
5752 * provide a better sense of ratio than this diagram:
5753 *
5754 *	       head -->                        tail
5755 *	        +---------------------+----------+
5756 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
5757 *	        +---------------------+----------+   |   o L2ARC eligible
5758 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
5759 *	        +---------------------+----------+   |
5760 *	             15.9 Gbytes      ^ 32 Mbytes    |
5761 *	                           headroom          |
5762 *	                                      l2arc_feed_thread()
5763 *	                                             |
5764 *	                 l2arc write hand <--[oooo]--'
5765 *	                         |           8 Mbyte
5766 *	                         |          write max
5767 *	                         V
5768 *		  +==============================+
5769 *	L2ARC dev |####|#|###|###|    |####| ... |
5770 *	          +==============================+
5771 *	                     32 Gbytes
5772 *
5773 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
5774 * evicted, then the L2ARC has cached a buffer much sooner than it probably
5775 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
5776 * safe to say that this is an uncommon case, since buffers at the end of
5777 * the ARC lists have moved there due to inactivity.
5778 *
5779 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
5780 * then the L2ARC simply misses copying some buffers.  This serves as a
5781 * pressure valve to prevent heavy read workloads from both stalling the ARC
5782 * with waits and clogging the L2ARC with writes.  This also helps prevent
5783 * the potential for the L2ARC to churn if it attempts to cache content too
5784 * quickly, such as during backups of the entire pool.
5785 *
5786 * 5. After system boot and before the ARC has filled main memory, there are
5787 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
5788 * lists can remain mostly static.  Instead of searching from tail of these
5789 * lists as pictured, the l2arc_feed_thread() will search from the list heads
5790 * for eligible buffers, greatly increasing its chance of finding them.
5791 *
5792 * The L2ARC device write speed is also boosted during this time so that
5793 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
5794 * there are no L2ARC reads, and no fear of degrading read performance
5795 * through increased writes.
5796 *
5797 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
5798 * the vdev queue can aggregate them into larger and fewer writes.  Each
5799 * device is written to in a rotor fashion, sweeping writes through
5800 * available space then repeating.
5801 *
5802 * 7. The L2ARC does not store dirty content.  It never needs to flush
5803 * write buffers back to disk based storage.
5804 *
5805 * 8. If an ARC buffer is written (and dirtied) which also exists in the
5806 * L2ARC, the now stale L2ARC buffer is immediately dropped.
5807 *
5808 * The performance of the L2ARC can be tweaked by a number of tunables, which
5809 * may be necessary for different workloads:
5810 *
5811 *	l2arc_write_max		max write bytes per interval
5812 *	l2arc_write_boost	extra write bytes during device warmup
5813 *	l2arc_noprefetch	skip caching prefetched buffers
5814 *	l2arc_headroom		number of max device writes to precache
5815 *	l2arc_headroom_boost	when we find compressed buffers during ARC
5816 *				scanning, we multiply headroom by this
5817 *				percentage factor for the next scan cycle,
5818 *				since more compressed buffers are likely to
5819 *				be present
5820 *	l2arc_feed_secs		seconds between L2ARC writing
5821 *
5822 * Tunables may be removed or added as future performance improvements are
5823 * integrated, and also may become zpool properties.
5824 *
5825 * There are three key functions that control how the L2ARC warms up:
5826 *
5827 *	l2arc_write_eligible()	check if a buffer is eligible to cache
5828 *	l2arc_write_size()	calculate how much to write
5829 *	l2arc_write_interval()	calculate sleep delay between writes
5830 *
5831 * These three functions determine what to write, how much, and how quickly
5832 * to send writes.
5833 */
5834
5835static boolean_t
5836l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
5837{
5838	/*
5839	 * A buffer is *not* eligible for the L2ARC if it:
5840	 * 1. belongs to a different spa.
5841	 * 2. is already cached on the L2ARC.
5842	 * 3. has an I/O in progress (it may be an incomplete read).
5843	 * 4. is flagged not eligible (zfs property).
5844	 */
5845	if (hdr->b_spa != spa_guid) {
5846		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
5847		return (B_FALSE);
5848	}
5849	if (HDR_HAS_L2HDR(hdr)) {
5850		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
5851		return (B_FALSE);
5852	}
5853	if (HDR_IO_IN_PROGRESS(hdr)) {
5854		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
5855		return (B_FALSE);
5856	}
5857	if (!HDR_L2CACHE(hdr)) {
5858		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
5859		return (B_FALSE);
5860	}
5861
5862	return (B_TRUE);
5863}
5864
5865static uint64_t
5866l2arc_write_size(void)
5867{
5868	uint64_t size;
5869
5870	/*
5871	 * Make sure our globals have meaningful values in case the user
5872	 * altered them.
5873	 */
5874	size = l2arc_write_max;
5875	if (size == 0) {
5876		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
5877		    "be greater than zero, resetting it to the default (%d)",
5878		    L2ARC_WRITE_SIZE);
5879		size = l2arc_write_max = L2ARC_WRITE_SIZE;
5880	}
5881
5882	if (arc_warm == B_FALSE)
5883		size += l2arc_write_boost;
5884
5885	return (size);
5886
5887}
5888
5889static clock_t
5890l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
5891{
5892	clock_t interval, next, now;
5893
5894	/*
5895	 * If the ARC lists are busy, increase our write rate; if the
5896	 * lists are stale, idle back.  This is achieved by checking
5897	 * how much we previously wrote - if it was more than half of
5898	 * what we wanted, schedule the next write much sooner.
5899	 */
5900	if (l2arc_feed_again && wrote > (wanted / 2))
5901		interval = (hz * l2arc_feed_min_ms) / 1000;
5902	else
5903		interval = hz * l2arc_feed_secs;
5904
5905	now = ddi_get_lbolt();
5906	next = MAX(now, MIN(now + interval, began + interval));
5907
5908	return (next);
5909}
5910
5911/*
5912 * Cycle through L2ARC devices.  This is how L2ARC load balances.
5913 * If a device is returned, this also returns holding the spa config lock.
5914 */
5915static l2arc_dev_t *
5916l2arc_dev_get_next(void)
5917{
5918	l2arc_dev_t *first, *next = NULL;
5919
5920	/*
5921	 * Lock out the removal of spas (spa_namespace_lock), then removal
5922	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
5923	 * both locks will be dropped and a spa config lock held instead.
5924	 */
5925	mutex_enter(&spa_namespace_lock);
5926	mutex_enter(&l2arc_dev_mtx);
5927
5928	/* if there are no vdevs, there is nothing to do */
5929	if (l2arc_ndev == 0)
5930		goto out;
5931
5932	first = NULL;
5933	next = l2arc_dev_last;
5934	do {
5935		/* loop around the list looking for a non-faulted vdev */
5936		if (next == NULL) {
5937			next = list_head(l2arc_dev_list);
5938		} else {
5939			next = list_next(l2arc_dev_list, next);
5940			if (next == NULL)
5941				next = list_head(l2arc_dev_list);
5942		}
5943
5944		/* if we have come back to the start, bail out */
5945		if (first == NULL)
5946			first = next;
5947		else if (next == first)
5948			break;
5949
5950	} while (vdev_is_dead(next->l2ad_vdev));
5951
5952	/* if we were unable to find any usable vdevs, return NULL */
5953	if (vdev_is_dead(next->l2ad_vdev))
5954		next = NULL;
5955
5956	l2arc_dev_last = next;
5957
5958out:
5959	mutex_exit(&l2arc_dev_mtx);
5960
5961	/*
5962	 * Grab the config lock to prevent the 'next' device from being
5963	 * removed while we are writing to it.
5964	 */
5965	if (next != NULL)
5966		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
5967	mutex_exit(&spa_namespace_lock);
5968
5969	return (next);
5970}
5971
5972/*
5973 * Free buffers that were tagged for destruction.
5974 */
5975static void
5976l2arc_do_free_on_write()
5977{
5978	list_t *buflist;
5979	l2arc_data_free_t *df, *df_prev;
5980
5981	mutex_enter(&l2arc_free_on_write_mtx);
5982	buflist = l2arc_free_on_write;
5983
5984	for (df = list_tail(buflist); df; df = df_prev) {
5985		df_prev = list_prev(buflist, df);
5986		ASSERT(df->l2df_data != NULL);
5987		ASSERT(df->l2df_func != NULL);
5988		df->l2df_func(df->l2df_data, df->l2df_size);
5989		list_remove(buflist, df);
5990		kmem_free(df, sizeof (l2arc_data_free_t));
5991	}
5992
5993	mutex_exit(&l2arc_free_on_write_mtx);
5994}
5995
5996/*
5997 * A write to a cache device has completed.  Update all headers to allow
5998 * reads from these buffers to begin.
5999 */
6000static void
6001l2arc_write_done(zio_t *zio)
6002{
6003	l2arc_write_callback_t *cb;
6004	l2arc_dev_t *dev;
6005	list_t *buflist;
6006	arc_buf_hdr_t *head, *hdr, *hdr_prev;
6007	kmutex_t *hash_lock;
6008	int64_t bytes_dropped = 0;
6009
6010	cb = zio->io_private;
6011	ASSERT(cb != NULL);
6012	dev = cb->l2wcb_dev;
6013	ASSERT(dev != NULL);
6014	head = cb->l2wcb_head;
6015	ASSERT(head != NULL);
6016	buflist = &dev->l2ad_buflist;
6017	ASSERT(buflist != NULL);
6018	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
6019	    l2arc_write_callback_t *, cb);
6020
6021	if (zio->io_error != 0)
6022		ARCSTAT_BUMP(arcstat_l2_writes_error);
6023
6024	/*
6025	 * All writes completed, or an error was hit.
6026	 */
6027top:
6028	mutex_enter(&dev->l2ad_mtx);
6029	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
6030		hdr_prev = list_prev(buflist, hdr);
6031
6032		hash_lock = HDR_LOCK(hdr);
6033
6034		/*
6035		 * We cannot use mutex_enter or else we can deadlock
6036		 * with l2arc_write_buffers (due to swapping the order
6037		 * the hash lock and l2ad_mtx are taken).
6038		 */
6039		if (!mutex_tryenter(hash_lock)) {
6040			/*
6041			 * Missed the hash lock. We must retry so we
6042			 * don't leave the ARC_FLAG_L2_WRITING bit set.
6043			 */
6044			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
6045
6046			/*
6047			 * We don't want to rescan the headers we've
6048			 * already marked as having been written out, so
6049			 * we reinsert the head node so we can pick up
6050			 * where we left off.
6051			 */
6052			list_remove(buflist, head);
6053			list_insert_after(buflist, hdr, head);
6054
6055			mutex_exit(&dev->l2ad_mtx);
6056
6057			/*
6058			 * We wait for the hash lock to become available
6059			 * to try and prevent busy waiting, and increase
6060			 * the chance we'll be able to acquire the lock
6061			 * the next time around.
6062			 */
6063			mutex_enter(hash_lock);
6064			mutex_exit(hash_lock);
6065			goto top;
6066		}
6067
6068		/*
6069		 * We could not have been moved into the arc_l2c_only
6070		 * state while in-flight due to our ARC_FLAG_L2_WRITING
6071		 * bit being set. Let's just ensure that's being enforced.
6072		 */
6073		ASSERT(HDR_HAS_L1HDR(hdr));
6074
6075		/*
6076		 * We may have allocated a buffer for L2ARC compression,
6077		 * we must release it to avoid leaking this data.
6078		 */
6079		l2arc_release_cdata_buf(hdr);
6080
6081		if (zio->io_error != 0) {
6082			/*
6083			 * Error - drop L2ARC entry.
6084			 */
6085			list_remove(buflist, hdr);
6086			l2arc_trim(hdr);
6087			hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
6088
6089			ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
6090			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
6091
6092			bytes_dropped += hdr->b_l2hdr.b_asize;
6093			(void) refcount_remove_many(&dev->l2ad_alloc,
6094			    hdr->b_l2hdr.b_asize, hdr);
6095		}
6096
6097		/*
6098		 * Allow ARC to begin reads and ghost list evictions to
6099		 * this L2ARC entry.
6100		 */
6101		hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
6102
6103		mutex_exit(hash_lock);
6104	}
6105
6106	atomic_inc_64(&l2arc_writes_done);
6107	list_remove(buflist, head);
6108	ASSERT(!HDR_HAS_L1HDR(head));
6109	kmem_cache_free(hdr_l2only_cache, head);
6110	mutex_exit(&dev->l2ad_mtx);
6111
6112	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
6113
6114	l2arc_do_free_on_write();
6115
6116	kmem_free(cb, sizeof (l2arc_write_callback_t));
6117}
6118
6119/*
6120 * A read to a cache device completed.  Validate buffer contents before
6121 * handing over to the regular ARC routines.
6122 */
6123static void
6124l2arc_read_done(zio_t *zio)
6125{
6126	l2arc_read_callback_t *cb;
6127	arc_buf_hdr_t *hdr;
6128	arc_buf_t *buf;
6129	kmutex_t *hash_lock;
6130	int equal;
6131
6132	ASSERT(zio->io_vd != NULL);
6133	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
6134
6135	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
6136
6137	cb = zio->io_private;
6138	ASSERT(cb != NULL);
6139	buf = cb->l2rcb_buf;
6140	ASSERT(buf != NULL);
6141
6142	hash_lock = HDR_LOCK(buf->b_hdr);
6143	mutex_enter(hash_lock);
6144	hdr = buf->b_hdr;
6145	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6146
6147	/*
6148	 * If the data was read into a temporary buffer,
6149	 * move it and free the buffer.
6150	 */
6151	if (cb->l2rcb_data != NULL) {
6152		ASSERT3U(hdr->b_size, <, zio->io_size);
6153		ASSERT3U(cb->l2rcb_compress, ==, ZIO_COMPRESS_OFF);
6154		if (zio->io_error == 0)
6155			bcopy(cb->l2rcb_data, buf->b_data, hdr->b_size);
6156
6157		/*
6158		 * The following must be done regardless of whether
6159		 * there was an error:
6160		 * - free the temporary buffer
6161		 * - point zio to the real ARC buffer
6162		 * - set zio size accordingly
6163		 * These are required because zio is either re-used for
6164		 * an I/O of the block in the case of the error
6165		 * or the zio is passed to arc_read_done() and it
6166		 * needs real data.
6167		 */
6168		zio_data_buf_free(cb->l2rcb_data, zio->io_size);
6169		zio->io_size = zio->io_orig_size = hdr->b_size;
6170		zio->io_data = zio->io_orig_data = buf->b_data;
6171	}
6172
6173	/*
6174	 * If the buffer was compressed, decompress it first.
6175	 */
6176	if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
6177		l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
6178	ASSERT(zio->io_data != NULL);
6179	ASSERT3U(zio->io_size, ==, hdr->b_size);
6180	ASSERT3U(BP_GET_LSIZE(&cb->l2rcb_bp), ==, hdr->b_size);
6181
6182	/*
6183	 * Check this survived the L2ARC journey.
6184	 */
6185	equal = arc_cksum_equal(buf);
6186	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
6187		mutex_exit(hash_lock);
6188		zio->io_private = buf;
6189		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
6190		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
6191		arc_read_done(zio);
6192	} else {
6193		mutex_exit(hash_lock);
6194		/*
6195		 * Buffer didn't survive caching.  Increment stats and
6196		 * reissue to the original storage device.
6197		 */
6198		if (zio->io_error != 0) {
6199			ARCSTAT_BUMP(arcstat_l2_io_error);
6200		} else {
6201			zio->io_error = SET_ERROR(EIO);
6202		}
6203		if (!equal)
6204			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
6205
6206		/*
6207		 * If there's no waiter, issue an async i/o to the primary
6208		 * storage now.  If there *is* a waiter, the caller must
6209		 * issue the i/o in a context where it's OK to block.
6210		 */
6211		if (zio->io_waiter == NULL) {
6212			zio_t *pio = zio_unique_parent(zio);
6213
6214			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6215
6216			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
6217			    buf->b_data, hdr->b_size, arc_read_done, buf,
6218			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
6219		}
6220	}
6221
6222	kmem_free(cb, sizeof (l2arc_read_callback_t));
6223}
6224
6225/*
6226 * This is the list priority from which the L2ARC will search for pages to
6227 * cache.  This is used within loops (0..3) to cycle through lists in the
6228 * desired order.  This order can have a significant effect on cache
6229 * performance.
6230 *
6231 * Currently the metadata lists are hit first, MFU then MRU, followed by
6232 * the data lists.  This function returns a locked list, and also returns
6233 * the lock pointer.
6234 */
6235static multilist_sublist_t *
6236l2arc_sublist_lock(int list_num)
6237{
6238	multilist_t *ml = NULL;
6239	unsigned int idx;
6240
6241	ASSERT(list_num >= 0 && list_num <= 3);
6242
6243	switch (list_num) {
6244	case 0:
6245		ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
6246		break;
6247	case 1:
6248		ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
6249		break;
6250	case 2:
6251		ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
6252		break;
6253	case 3:
6254		ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
6255		break;
6256	}
6257
6258	/*
6259	 * Return a randomly-selected sublist. This is acceptable
6260	 * because the caller feeds only a little bit of data for each
6261	 * call (8MB). Subsequent calls will result in different
6262	 * sublists being selected.
6263	 */
6264	idx = multilist_get_random_index(ml);
6265	return (multilist_sublist_lock(ml, idx));
6266}
6267
6268/*
6269 * Evict buffers from the device write hand to the distance specified in
6270 * bytes.  This distance may span populated buffers, it may span nothing.
6271 * This is clearing a region on the L2ARC device ready for writing.
6272 * If the 'all' boolean is set, every buffer is evicted.
6273 */
6274static void
6275l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6276{
6277	list_t *buflist;
6278	arc_buf_hdr_t *hdr, *hdr_prev;
6279	kmutex_t *hash_lock;
6280	uint64_t taddr;
6281
6282	buflist = &dev->l2ad_buflist;
6283
6284	if (!all && dev->l2ad_first) {
6285		/*
6286		 * This is the first sweep through the device.  There is
6287		 * nothing to evict.
6288		 */
6289		return;
6290	}
6291
6292	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
6293		/*
6294		 * When nearing the end of the device, evict to the end
6295		 * before the device write hand jumps to the start.
6296		 */
6297		taddr = dev->l2ad_end;
6298	} else {
6299		taddr = dev->l2ad_hand + distance;
6300	}
6301	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6302	    uint64_t, taddr, boolean_t, all);
6303
6304top:
6305	mutex_enter(&dev->l2ad_mtx);
6306	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6307		hdr_prev = list_prev(buflist, hdr);
6308
6309		hash_lock = HDR_LOCK(hdr);
6310
6311		/*
6312		 * We cannot use mutex_enter or else we can deadlock
6313		 * with l2arc_write_buffers (due to swapping the order
6314		 * the hash lock and l2ad_mtx are taken).
6315		 */
6316		if (!mutex_tryenter(hash_lock)) {
6317			/*
6318			 * Missed the hash lock.  Retry.
6319			 */
6320			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
6321			mutex_exit(&dev->l2ad_mtx);
6322			mutex_enter(hash_lock);
6323			mutex_exit(hash_lock);
6324			goto top;
6325		}
6326
6327		if (HDR_L2_WRITE_HEAD(hdr)) {
6328			/*
6329			 * We hit a write head node.  Leave it for
6330			 * l2arc_write_done().
6331			 */
6332			list_remove(buflist, hdr);
6333			mutex_exit(hash_lock);
6334			continue;
6335		}
6336
6337		if (!all && HDR_HAS_L2HDR(hdr) &&
6338		    (hdr->b_l2hdr.b_daddr > taddr ||
6339		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
6340			/*
6341			 * We've evicted to the target address,
6342			 * or the end of the device.
6343			 */
6344			mutex_exit(hash_lock);
6345			break;
6346		}
6347
6348		ASSERT(HDR_HAS_L2HDR(hdr));
6349		if (!HDR_HAS_L1HDR(hdr)) {
6350			ASSERT(!HDR_L2_READING(hdr));
6351			/*
6352			 * This doesn't exist in the ARC.  Destroy.
6353			 * arc_hdr_destroy() will call list_remove()
6354			 * and decrement arcstat_l2_size.
6355			 */
6356			arc_change_state(arc_anon, hdr, hash_lock);
6357			arc_hdr_destroy(hdr);
6358		} else {
6359			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6360			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
6361			/*
6362			 * Invalidate issued or about to be issued
6363			 * reads, since we may be about to write
6364			 * over this location.
6365			 */
6366			if (HDR_L2_READING(hdr)) {
6367				ARCSTAT_BUMP(arcstat_l2_evict_reading);
6368				hdr->b_flags |= ARC_FLAG_L2_EVICTED;
6369			}
6370
6371			/* Ensure this header has finished being written */
6372			ASSERT(!HDR_L2_WRITING(hdr));
6373			ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6374
6375			arc_hdr_l2hdr_destroy(hdr);
6376		}
6377		mutex_exit(hash_lock);
6378	}
6379	mutex_exit(&dev->l2ad_mtx);
6380}
6381
6382/*
6383 * Find and write ARC buffers to the L2ARC device.
6384 *
6385 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
6386 * for reading until they have completed writing.
6387 * The headroom_boost is an in-out parameter used to maintain headroom boost
6388 * state between calls to this function.
6389 *
6390 * Returns the number of bytes actually written (which may be smaller than
6391 * the delta by which the device hand has changed due to alignment).
6392 */
6393static uint64_t
6394l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
6395    boolean_t *headroom_boost)
6396{
6397	arc_buf_hdr_t *hdr, *hdr_prev, *head;
6398	uint64_t write_asize, write_sz, headroom,
6399	    buf_compress_minsz;
6400	void *buf_data;
6401	boolean_t full;
6402	l2arc_write_callback_t *cb;
6403	zio_t *pio, *wzio;
6404	uint64_t guid = spa_load_guid(spa);
6405	const boolean_t do_headroom_boost = *headroom_boost;
6406	int try;
6407
6408	ASSERT(dev->l2ad_vdev != NULL);
6409
6410	/* Lower the flag now, we might want to raise it again later. */
6411	*headroom_boost = B_FALSE;
6412
6413	pio = NULL;
6414	write_sz = write_asize = 0;
6415	full = B_FALSE;
6416	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
6417	head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
6418	head->b_flags |= ARC_FLAG_HAS_L2HDR;
6419
6420	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
6421	/*
6422	 * We will want to try to compress buffers that are at least 2x the
6423	 * device sector size.
6424	 */
6425	buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
6426
6427	/*
6428	 * Copy buffers for L2ARC writing.
6429	 */
6430	for (try = 0; try <= 3; try++) {
6431		multilist_sublist_t *mls = l2arc_sublist_lock(try);
6432		uint64_t passed_sz = 0;
6433
6434		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
6435
6436		/*
6437		 * L2ARC fast warmup.
6438		 *
6439		 * Until the ARC is warm and starts to evict, read from the
6440		 * head of the ARC lists rather than the tail.
6441		 */
6442		if (arc_warm == B_FALSE)
6443			hdr = multilist_sublist_head(mls);
6444		else
6445			hdr = multilist_sublist_tail(mls);
6446		if (hdr == NULL)
6447			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
6448
6449		headroom = target_sz * l2arc_headroom;
6450		if (do_headroom_boost)
6451			headroom = (headroom * l2arc_headroom_boost) / 100;
6452
6453		for (; hdr; hdr = hdr_prev) {
6454			kmutex_t *hash_lock;
6455			uint64_t buf_sz;
6456			uint64_t buf_a_sz;
6457			size_t align;
6458
6459			if (arc_warm == B_FALSE)
6460				hdr_prev = multilist_sublist_next(mls, hdr);
6461			else
6462				hdr_prev = multilist_sublist_prev(mls, hdr);
6463			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned, hdr->b_size);
6464
6465			hash_lock = HDR_LOCK(hdr);
6466			if (!mutex_tryenter(hash_lock)) {
6467				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
6468				/*
6469				 * Skip this buffer rather than waiting.
6470				 */
6471				continue;
6472			}
6473
6474			passed_sz += hdr->b_size;
6475			if (passed_sz > headroom) {
6476				/*
6477				 * Searched too far.
6478				 */
6479				mutex_exit(hash_lock);
6480				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
6481				break;
6482			}
6483
6484			if (!l2arc_write_eligible(guid, hdr)) {
6485				mutex_exit(hash_lock);
6486				continue;
6487			}
6488
6489			/*
6490			 * Assume that the buffer is not going to be compressed
6491			 * and could take more space on disk because of a larger
6492			 * disk block size.
6493			 */
6494			buf_sz = hdr->b_size;
6495			align = (size_t)1 << dev->l2ad_vdev->vdev_ashift;
6496			buf_a_sz = P2ROUNDUP(buf_sz, align);
6497
6498			if ((write_asize + buf_a_sz) > target_sz) {
6499				full = B_TRUE;
6500				mutex_exit(hash_lock);
6501				ARCSTAT_BUMP(arcstat_l2_write_full);
6502				break;
6503			}
6504
6505			if (pio == NULL) {
6506				/*
6507				 * Insert a dummy header on the buflist so
6508				 * l2arc_write_done() can find where the
6509				 * write buffers begin without searching.
6510				 */
6511				mutex_enter(&dev->l2ad_mtx);
6512				list_insert_head(&dev->l2ad_buflist, head);
6513				mutex_exit(&dev->l2ad_mtx);
6514
6515				cb = kmem_alloc(
6516				    sizeof (l2arc_write_callback_t), KM_SLEEP);
6517				cb->l2wcb_dev = dev;
6518				cb->l2wcb_head = head;
6519				pio = zio_root(spa, l2arc_write_done, cb,
6520				    ZIO_FLAG_CANFAIL);
6521				ARCSTAT_BUMP(arcstat_l2_write_pios);
6522			}
6523
6524			/*
6525			 * Create and add a new L2ARC header.
6526			 */
6527			hdr->b_l2hdr.b_dev = dev;
6528			hdr->b_flags |= ARC_FLAG_L2_WRITING;
6529			/*
6530			 * Temporarily stash the data buffer in b_tmp_cdata.
6531			 * The subsequent write step will pick it up from
6532			 * there. This is because can't access b_l1hdr.b_buf
6533			 * without holding the hash_lock, which we in turn
6534			 * can't access without holding the ARC list locks
6535			 * (which we want to avoid during compression/writing).
6536			 */
6537			hdr->b_l2hdr.b_compress = ZIO_COMPRESS_OFF;
6538			hdr->b_l2hdr.b_asize = hdr->b_size;
6539			hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data;
6540
6541			/*
6542			 * Explicitly set the b_daddr field to a known
6543			 * value which means "invalid address". This
6544			 * enables us to differentiate which stage of
6545			 * l2arc_write_buffers() the particular header
6546			 * is in (e.g. this loop, or the one below).
6547			 * ARC_FLAG_L2_WRITING is not enough to make
6548			 * this distinction, and we need to know in
6549			 * order to do proper l2arc vdev accounting in
6550			 * arc_release() and arc_hdr_destroy().
6551			 *
6552			 * Note, we can't use a new flag to distinguish
6553			 * the two stages because we don't hold the
6554			 * header's hash_lock below, in the second stage
6555			 * of this function. Thus, we can't simply
6556			 * change the b_flags field to denote that the
6557			 * IO has been sent. We can change the b_daddr
6558			 * field of the L2 portion, though, since we'll
6559			 * be holding the l2ad_mtx; which is why we're
6560			 * using it to denote the header's state change.
6561			 */
6562			hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET;
6563
6564			hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
6565
6566			mutex_enter(&dev->l2ad_mtx);
6567			list_insert_head(&dev->l2ad_buflist, hdr);
6568			mutex_exit(&dev->l2ad_mtx);
6569
6570			/*
6571			 * Compute and store the buffer cksum before
6572			 * writing.  On debug the cksum is verified first.
6573			 */
6574			arc_cksum_verify(hdr->b_l1hdr.b_buf);
6575			arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE);
6576
6577			mutex_exit(hash_lock);
6578
6579			write_sz += buf_sz;
6580			write_asize += buf_a_sz;
6581		}
6582
6583		multilist_sublist_unlock(mls);
6584
6585		if (full == B_TRUE)
6586			break;
6587	}
6588
6589	/* No buffers selected for writing? */
6590	if (pio == NULL) {
6591		ASSERT0(write_sz);
6592		ASSERT(!HDR_HAS_L1HDR(head));
6593		kmem_cache_free(hdr_l2only_cache, head);
6594		return (0);
6595	}
6596
6597	mutex_enter(&dev->l2ad_mtx);
6598
6599	/*
6600	 * Now start writing the buffers. We're starting at the write head
6601	 * and work backwards, retracing the course of the buffer selector
6602	 * loop above.
6603	 */
6604	write_asize = 0;
6605	for (hdr = list_prev(&dev->l2ad_buflist, head); hdr;
6606	    hdr = list_prev(&dev->l2ad_buflist, hdr)) {
6607		uint64_t buf_sz;
6608		boolean_t compress;
6609
6610		/*
6611		 * We rely on the L1 portion of the header below, so
6612		 * it's invalid for this header to have been evicted out
6613		 * of the ghost cache, prior to being written out. The
6614		 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6615		 */
6616		ASSERT(HDR_HAS_L1HDR(hdr));
6617
6618		/*
6619		 * We shouldn't need to lock the buffer here, since we flagged
6620		 * it as ARC_FLAG_L2_WRITING in the previous step, but we must
6621		 * take care to only access its L2 cache parameters. In
6622		 * particular, hdr->l1hdr.b_buf may be invalid by now due to
6623		 * ARC eviction.
6624		 */
6625		hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
6626
6627		/*
6628		 * Save a pointer to the original buffer data we had previously
6629		 * stashed away.
6630		 */
6631		buf_data = hdr->b_l1hdr.b_tmp_cdata;
6632
6633		compress = HDR_L2COMPRESS(hdr) &&
6634		    hdr->b_l2hdr.b_asize >= buf_compress_minsz;
6635		if (l2arc_transform_buf(hdr, compress)) {
6636			/*
6637			 * If compression succeeded, enable headroom
6638			 * boost on the next scan cycle.
6639			 */
6640			*headroom_boost = B_TRUE;
6641		}
6642
6643		/*
6644		 * Get the new buffer size that accounts for compression
6645		 * and padding.
6646		 */
6647		buf_sz = hdr->b_l2hdr.b_asize;
6648
6649		/*
6650		 * We need to do this regardless if buf_sz is zero or
6651		 * not, otherwise, when this l2hdr is evicted we'll
6652		 * remove a reference that was never added.
6653		 */
6654		(void) refcount_add_many(&dev->l2ad_alloc, buf_sz, hdr);
6655
6656		/* Compression may have squashed the buffer to zero length. */
6657		if (buf_sz != 0) {
6658			/*
6659			 * If the data was padded or compressed, then it
6660			 * it is in a new buffer.
6661			 */
6662			if (hdr->b_l1hdr.b_tmp_cdata != NULL)
6663				buf_data = hdr->b_l1hdr.b_tmp_cdata;
6664			wzio = zio_write_phys(pio, dev->l2ad_vdev,
6665			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
6666			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
6667			    ZIO_FLAG_CANFAIL, B_FALSE);
6668
6669			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
6670			    zio_t *, wzio);
6671			(void) zio_nowait(wzio);
6672
6673			write_asize += buf_sz;
6674			dev->l2ad_hand += buf_sz;
6675		}
6676	}
6677
6678	mutex_exit(&dev->l2ad_mtx);
6679
6680	ASSERT3U(write_asize, <=, target_sz);
6681	ARCSTAT_BUMP(arcstat_l2_writes_sent);
6682	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
6683	ARCSTAT_INCR(arcstat_l2_size, write_sz);
6684	ARCSTAT_INCR(arcstat_l2_asize, write_asize);
6685	vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0);
6686
6687	/*
6688	 * Bump device hand to the device start if it is approaching the end.
6689	 * l2arc_evict() will already have evicted ahead for this case.
6690	 */
6691	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
6692		dev->l2ad_hand = dev->l2ad_start;
6693		dev->l2ad_first = B_FALSE;
6694	}
6695
6696	dev->l2ad_writing = B_TRUE;
6697	(void) zio_wait(pio);
6698	dev->l2ad_writing = B_FALSE;
6699
6700	return (write_asize);
6701}
6702
6703/*
6704 * Transforms, possibly compresses and pads, an L2ARC buffer.
6705 * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its
6706 * size in l2hdr->b_asize. This routine tries to compress the data and
6707 * depending on the compression result there are three possible outcomes:
6708 * *) The buffer was incompressible. The buffer size was already ashift aligned.
6709 *    The original hdr contents were left untouched except for b_tmp_cdata,
6710 *    which is reset to NULL. The caller must keep a pointer to the original
6711 *    data.
6712 * *) The buffer was incompressible. The buffer size was not ashift aligned.
6713 *    b_tmp_cdata was replaced with a temporary data buffer which holds a padded
6714 *    (aligned) copy of the data. Once writing is done, invoke
6715 *    l2arc_release_cdata_buf on this hdr to free the temporary buffer.
6716 * *) The buffer was all-zeros, so there is no need to write it to an L2
6717 *    device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
6718 *    set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
6719 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
6720 *    data buffer which holds the compressed data to be written, and b_asize
6721 *    tells us how much data there is. b_compress is set to the appropriate
6722 *    compression algorithm. Once writing is done, invoke
6723 *    l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
6724 *
6725 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
6726 * buffer was incompressible).
6727 */
6728static boolean_t
6729l2arc_transform_buf(arc_buf_hdr_t *hdr, boolean_t compress)
6730{
6731	void *cdata;
6732	size_t align, asize, csize, len, rounded;
6733
6734	ASSERT(HDR_HAS_L2HDR(hdr));
6735	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
6736
6737	ASSERT(HDR_HAS_L1HDR(hdr));
6738	ASSERT3S(l2hdr->b_compress, ==, ZIO_COMPRESS_OFF);
6739	ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6740
6741	len = l2hdr->b_asize;
6742	align = (size_t)1 << l2hdr->b_dev->l2ad_vdev->vdev_ashift;
6743	asize = P2ROUNDUP(len, align);
6744	cdata = zio_data_buf_alloc(asize);
6745	ASSERT3P(cdata, !=, NULL);
6746	if (compress)
6747		csize = zio_compress_data(ZIO_COMPRESS_LZ4,
6748		    hdr->b_l1hdr.b_tmp_cdata, cdata, len);
6749	else
6750		csize = len;
6751
6752	if (csize == 0) {
6753		/* zero block, indicate that there's nothing to write */
6754		zio_data_buf_free(cdata, asize);
6755		l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
6756		l2hdr->b_asize = 0;
6757		hdr->b_l1hdr.b_tmp_cdata = NULL;
6758		ARCSTAT_BUMP(arcstat_l2_compress_zeros);
6759		return (B_TRUE);
6760	}
6761
6762	rounded = P2ROUNDUP(csize, align);
6763	ASSERT3U(rounded, <=, asize);
6764	if (rounded < len) {
6765		/*
6766		 * Compression succeeded, we'll keep the cdata around for
6767		 * writing and release it afterwards.
6768		 */
6769		if (rounded > csize) {
6770			bzero((char *)cdata + csize, rounded - csize);
6771			csize = rounded;
6772		}
6773		l2hdr->b_compress = ZIO_COMPRESS_LZ4;
6774		l2hdr->b_asize = csize;
6775		hdr->b_l1hdr.b_tmp_cdata = cdata;
6776		ARCSTAT_BUMP(arcstat_l2_compress_successes);
6777		return (B_TRUE);
6778	} else {
6779		/*
6780		 * Compression did not save space.
6781		 */
6782		if (P2PHASE(len, align) != 0) {
6783			/*
6784			 * Use compression buffer for a copy of data padded to
6785			 * the proper size.  Compression algorithm remains set
6786			 * to ZIO_COMPRESS_OFF.
6787			 */
6788			ASSERT3U(len, <, asize);
6789			bcopy(hdr->b_l1hdr.b_tmp_cdata, cdata, len);
6790			bzero((char *)cdata + len, asize - len);
6791			l2hdr->b_asize = asize;
6792			hdr->b_l1hdr.b_tmp_cdata = cdata;
6793			ARCSTAT_BUMP(arcstat_l2_padding_needed);
6794		} else {
6795			ASSERT3U(len, ==, asize);
6796			/*
6797			 * The original buffer is good as is,
6798			 * release the compressed buffer.
6799			 * l2hdr will be left unmodified except for b_tmp_cdata.
6800			 */
6801			zio_data_buf_free(cdata, asize);
6802			hdr->b_l1hdr.b_tmp_cdata = NULL;
6803		}
6804		if (compress)
6805			ARCSTAT_BUMP(arcstat_l2_compress_failures);
6806		return (B_FALSE);
6807	}
6808}
6809
6810/*
6811 * Decompresses a zio read back from an l2arc device. On success, the
6812 * underlying zio's io_data buffer is overwritten by the uncompressed
6813 * version. On decompression error (corrupt compressed stream), the
6814 * zio->io_error value is set to signal an I/O error.
6815 *
6816 * Please note that the compressed data stream is not checksummed, so
6817 * if the underlying device is experiencing data corruption, we may feed
6818 * corrupt data to the decompressor, so the decompressor needs to be
6819 * able to handle this situation (LZ4 does).
6820 */
6821static void
6822l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
6823{
6824	ASSERT(L2ARC_IS_VALID_COMPRESS(c));
6825
6826	if (zio->io_error != 0) {
6827		/*
6828		 * An io error has occured, just restore the original io
6829		 * size in preparation for a main pool read.
6830		 */
6831		zio->io_orig_size = zio->io_size = hdr->b_size;
6832		return;
6833	}
6834
6835	if (c == ZIO_COMPRESS_EMPTY) {
6836		/*
6837		 * An empty buffer results in a null zio, which means we
6838		 * need to fill its io_data after we're done restoring the
6839		 * buffer's contents.
6840		 */
6841		ASSERT(hdr->b_l1hdr.b_buf != NULL);
6842		bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size);
6843		zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data;
6844	} else {
6845		ASSERT(zio->io_data != NULL);
6846		/*
6847		 * We copy the compressed data from the start of the arc buffer
6848		 * (the zio_read will have pulled in only what we need, the
6849		 * rest is garbage which we will overwrite at decompression)
6850		 * and then decompress back to the ARC data buffer. This way we
6851		 * can minimize copying by simply decompressing back over the
6852		 * original compressed data (rather than decompressing to an
6853		 * aux buffer and then copying back the uncompressed buffer,
6854		 * which is likely to be much larger).
6855		 */
6856		uint64_t csize;
6857		void *cdata;
6858
6859		csize = zio->io_size;
6860		cdata = zio_data_buf_alloc(csize);
6861		bcopy(zio->io_data, cdata, csize);
6862		if (zio_decompress_data(c, cdata, zio->io_data, csize,
6863		    hdr->b_size) != 0)
6864			zio->io_error = EIO;
6865		zio_data_buf_free(cdata, csize);
6866	}
6867
6868	/* Restore the expected uncompressed IO size. */
6869	zio->io_orig_size = zio->io_size = hdr->b_size;
6870}
6871
6872/*
6873 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
6874 * This buffer serves as a temporary holder of compressed or padded data while
6875 * the buffer entry is being written to an l2arc device. Once that is
6876 * done, we can dispose of it.
6877 */
6878static void
6879l2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
6880{
6881	size_t align, asize, len;
6882	enum zio_compress comp = hdr->b_l2hdr.b_compress;
6883
6884	ASSERT(HDR_HAS_L2HDR(hdr));
6885	ASSERT(HDR_HAS_L1HDR(hdr));
6886	ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp));
6887
6888	if (hdr->b_l1hdr.b_tmp_cdata != NULL) {
6889		ASSERT(comp != ZIO_COMPRESS_EMPTY);
6890		len = hdr->b_size;
6891		align = (size_t)1 << hdr->b_l2hdr.b_dev->l2ad_vdev->vdev_ashift;
6892		asize = P2ROUNDUP(len, align);
6893		zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata, asize);
6894		hdr->b_l1hdr.b_tmp_cdata = NULL;
6895	} else {
6896		ASSERT(comp == ZIO_COMPRESS_OFF || comp == ZIO_COMPRESS_EMPTY);
6897	}
6898}
6899
6900/*
6901 * This thread feeds the L2ARC at regular intervals.  This is the beating
6902 * heart of the L2ARC.
6903 */
6904static void
6905l2arc_feed_thread(void *dummy __unused)
6906{
6907	callb_cpr_t cpr;
6908	l2arc_dev_t *dev;
6909	spa_t *spa;
6910	uint64_t size, wrote;
6911	clock_t begin, next = ddi_get_lbolt();
6912	boolean_t headroom_boost = B_FALSE;
6913
6914	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
6915
6916	mutex_enter(&l2arc_feed_thr_lock);
6917
6918	while (l2arc_thread_exit == 0) {
6919		CALLB_CPR_SAFE_BEGIN(&cpr);
6920		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
6921		    next - ddi_get_lbolt());
6922		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
6923		next = ddi_get_lbolt() + hz;
6924
6925		/*
6926		 * Quick check for L2ARC devices.
6927		 */
6928		mutex_enter(&l2arc_dev_mtx);
6929		if (l2arc_ndev == 0) {
6930			mutex_exit(&l2arc_dev_mtx);
6931			continue;
6932		}
6933		mutex_exit(&l2arc_dev_mtx);
6934		begin = ddi_get_lbolt();
6935
6936		/*
6937		 * This selects the next l2arc device to write to, and in
6938		 * doing so the next spa to feed from: dev->l2ad_spa.   This
6939		 * will return NULL if there are now no l2arc devices or if
6940		 * they are all faulted.
6941		 *
6942		 * If a device is returned, its spa's config lock is also
6943		 * held to prevent device removal.  l2arc_dev_get_next()
6944		 * will grab and release l2arc_dev_mtx.
6945		 */
6946		if ((dev = l2arc_dev_get_next()) == NULL)
6947			continue;
6948
6949		spa = dev->l2ad_spa;
6950		ASSERT(spa != NULL);
6951
6952		/*
6953		 * If the pool is read-only then force the feed thread to
6954		 * sleep a little longer.
6955		 */
6956		if (!spa_writeable(spa)) {
6957			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
6958			spa_config_exit(spa, SCL_L2ARC, dev);
6959			continue;
6960		}
6961
6962		/*
6963		 * Avoid contributing to memory pressure.
6964		 */
6965		if (arc_reclaim_needed()) {
6966			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
6967			spa_config_exit(spa, SCL_L2ARC, dev);
6968			continue;
6969		}
6970
6971		ARCSTAT_BUMP(arcstat_l2_feeds);
6972
6973		size = l2arc_write_size();
6974
6975		/*
6976		 * Evict L2ARC buffers that will be overwritten.
6977		 */
6978		l2arc_evict(dev, size, B_FALSE);
6979
6980		/*
6981		 * Write ARC buffers.
6982		 */
6983		wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
6984
6985		/*
6986		 * Calculate interval between writes.
6987		 */
6988		next = l2arc_write_interval(begin, size, wrote);
6989		spa_config_exit(spa, SCL_L2ARC, dev);
6990	}
6991
6992	l2arc_thread_exit = 0;
6993	cv_broadcast(&l2arc_feed_thr_cv);
6994	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
6995	thread_exit();
6996}
6997
6998boolean_t
6999l2arc_vdev_present(vdev_t *vd)
7000{
7001	l2arc_dev_t *dev;
7002
7003	mutex_enter(&l2arc_dev_mtx);
7004	for (dev = list_head(l2arc_dev_list); dev != NULL;
7005	    dev = list_next(l2arc_dev_list, dev)) {
7006		if (dev->l2ad_vdev == vd)
7007			break;
7008	}
7009	mutex_exit(&l2arc_dev_mtx);
7010
7011	return (dev != NULL);
7012}
7013
7014/*
7015 * Add a vdev for use by the L2ARC.  By this point the spa has already
7016 * validated the vdev and opened it.
7017 */
7018void
7019l2arc_add_vdev(spa_t *spa, vdev_t *vd)
7020{
7021	l2arc_dev_t *adddev;
7022
7023	ASSERT(!l2arc_vdev_present(vd));
7024
7025	vdev_ashift_optimize(vd);
7026
7027	/*
7028	 * Create a new l2arc device entry.
7029	 */
7030	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7031	adddev->l2ad_spa = spa;
7032	adddev->l2ad_vdev = vd;
7033	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7034	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
7035	adddev->l2ad_hand = adddev->l2ad_start;
7036	adddev->l2ad_first = B_TRUE;
7037	adddev->l2ad_writing = B_FALSE;
7038
7039	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
7040	/*
7041	 * This is a list of all ARC buffers that are still valid on the
7042	 * device.
7043	 */
7044	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7045	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
7046
7047	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
7048	refcount_create(&adddev->l2ad_alloc);
7049
7050	/*
7051	 * Add device to global list
7052	 */
7053	mutex_enter(&l2arc_dev_mtx);
7054	list_insert_head(l2arc_dev_list, adddev);
7055	atomic_inc_64(&l2arc_ndev);
7056	mutex_exit(&l2arc_dev_mtx);
7057}
7058
7059/*
7060 * Remove a vdev from the L2ARC.
7061 */
7062void
7063l2arc_remove_vdev(vdev_t *vd)
7064{
7065	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7066
7067	/*
7068	 * Find the device by vdev
7069	 */
7070	mutex_enter(&l2arc_dev_mtx);
7071	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7072		nextdev = list_next(l2arc_dev_list, dev);
7073		if (vd == dev->l2ad_vdev) {
7074			remdev = dev;
7075			break;
7076		}
7077	}
7078	ASSERT(remdev != NULL);
7079
7080	/*
7081	 * Remove device from global list
7082	 */
7083	list_remove(l2arc_dev_list, remdev);
7084	l2arc_dev_last = NULL;		/* may have been invalidated */
7085	atomic_dec_64(&l2arc_ndev);
7086	mutex_exit(&l2arc_dev_mtx);
7087
7088	/*
7089	 * Clear all buflists and ARC references.  L2ARC device flush.
7090	 */
7091	l2arc_evict(remdev, 0, B_TRUE);
7092	list_destroy(&remdev->l2ad_buflist);
7093	mutex_destroy(&remdev->l2ad_mtx);
7094	refcount_destroy(&remdev->l2ad_alloc);
7095	kmem_free(remdev, sizeof (l2arc_dev_t));
7096}
7097
7098void
7099l2arc_init(void)
7100{
7101	l2arc_thread_exit = 0;
7102	l2arc_ndev = 0;
7103	l2arc_writes_sent = 0;
7104	l2arc_writes_done = 0;
7105
7106	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7107	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7108	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
7109	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7110
7111	l2arc_dev_list = &L2ARC_dev_list;
7112	l2arc_free_on_write = &L2ARC_free_on_write;
7113	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7114	    offsetof(l2arc_dev_t, l2ad_node));
7115	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7116	    offsetof(l2arc_data_free_t, l2df_list_node));
7117}
7118
7119void
7120l2arc_fini(void)
7121{
7122	/*
7123	 * This is called from dmu_fini(), which is called from spa_fini();
7124	 * Because of this, we can assume that all l2arc devices have
7125	 * already been removed when the pools themselves were removed.
7126	 */
7127
7128	l2arc_do_free_on_write();
7129
7130	mutex_destroy(&l2arc_feed_thr_lock);
7131	cv_destroy(&l2arc_feed_thr_cv);
7132	mutex_destroy(&l2arc_dev_mtx);
7133	mutex_destroy(&l2arc_free_on_write_mtx);
7134
7135	list_destroy(l2arc_dev_list);
7136	list_destroy(l2arc_free_on_write);
7137}
7138
7139void
7140l2arc_start(void)
7141{
7142	if (!(spa_mode_global & FWRITE))
7143		return;
7144
7145	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7146	    TS_RUN, minclsyspri);
7147}
7148
7149void
7150l2arc_stop(void)
7151{
7152	if (!(spa_mode_global & FWRITE))
7153		return;
7154
7155	mutex_enter(&l2arc_feed_thr_lock);
7156	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
7157	l2arc_thread_exit = 1;
7158	while (l2arc_thread_exit != 0)
7159		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7160	mutex_exit(&l2arc_feed_thr_lock);
7161}
7162