arc.c revision 288587
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
27 */
28
29/*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory.  This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about.  Our cache is not so simple.  At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them.  Blocks are only evictable
44 * when there are no external references active.  This makes
45 * eviction far more problematic:  we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space.  In these circumstances we are unable to adjust the cache
50 * size.  To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss.  Our model has a variable sized cache.  It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size.  So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict.  In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes).  We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74/*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists.  The arc_read() interface
80 * uses method 1, while the internal arc algorithms for
81 * adjusting the cache use method 2.  We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * arc list locks.
84 *
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table.  It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each arc state also has a mutex which is used to protect the
97 * buffer list associated with the state.  When attempting to
98 * obtain a hash table lock while holding an arc list lock you
99 * must use: mutex_tryenter() to avoid deadlock.  Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * Arc buffers may have an associated eviction callback function.
103 * This function will be invoked prior to removing the buffer (e.g.
104 * in arc_do_user_evicts()).  Note however that the data associated
105 * with the buffer may be evicted prior to the callback.  The callback
106 * must be made with *no locks held* (to prevent deadlock).  Additionally,
107 * the users of callbacks must ensure that their private data is
108 * protected from simultaneous callbacks from arc_clear_callback()
109 * and arc_do_user_evicts().
110 *
111 * Note that the majority of the performance stats are manipulated
112 * with atomic operations.
113 *
114 * The L2ARC uses the l2ad_mtx on each vdev for the following:
115 *
116 *	- L2ARC buflist creation
117 *	- L2ARC buflist eviction
118 *	- L2ARC write completion, which walks L2ARC buflists
119 *	- ARC header destruction, as it removes from L2ARC buflists
120 *	- ARC header release, as it removes from L2ARC buflists
121 */
122
123#include <sys/spa.h>
124#include <sys/zio.h>
125#include <sys/zio_compress.h>
126#include <sys/zfs_context.h>
127#include <sys/arc.h>
128#include <sys/refcount.h>
129#include <sys/vdev.h>
130#include <sys/vdev_impl.h>
131#include <sys/dsl_pool.h>
132#include <sys/multilist.h>
133#ifdef _KERNEL
134#include <sys/dnlc.h>
135#endif
136#include <sys/callb.h>
137#include <sys/kstat.h>
138#include <sys/trim_map.h>
139#include <zfs_fletcher.h>
140#include <sys/sdt.h>
141
142#include <vm/vm_pageout.h>
143#include <machine/vmparam.h>
144
145#ifdef illumos
146#ifndef _KERNEL
147/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
148boolean_t arc_watch = B_FALSE;
149int arc_procfd;
150#endif
151#endif /* illumos */
152
153static kmutex_t		arc_reclaim_lock;
154static kcondvar_t	arc_reclaim_thread_cv;
155static boolean_t	arc_reclaim_thread_exit;
156static kcondvar_t	arc_reclaim_waiters_cv;
157
158static kmutex_t		arc_user_evicts_lock;
159static kcondvar_t	arc_user_evicts_cv;
160static boolean_t	arc_user_evicts_thread_exit;
161
162uint_t arc_reduce_dnlc_percent = 3;
163
164/*
165 * The number of headers to evict in arc_evict_state_impl() before
166 * dropping the sublist lock and evicting from another sublist. A lower
167 * value means we're more likely to evict the "correct" header (i.e. the
168 * oldest header in the arc state), but comes with higher overhead
169 * (i.e. more invocations of arc_evict_state_impl()).
170 */
171int zfs_arc_evict_batch_limit = 10;
172
173/*
174 * The number of sublists used for each of the arc state lists. If this
175 * is not set to a suitable value by the user, it will be configured to
176 * the number of CPUs on the system in arc_init().
177 */
178int zfs_arc_num_sublists_per_state = 0;
179
180/* number of seconds before growing cache again */
181static int		arc_grow_retry = 60;
182
183/* shift of arc_c for calculating overflow limit in arc_get_data_buf */
184int		zfs_arc_overflow_shift = 8;
185
186/* shift of arc_c for calculating both min and max arc_p */
187static int		arc_p_min_shift = 4;
188
189/* log2(fraction of arc to reclaim) */
190static int		arc_shrink_shift = 7;
191
192/*
193 * log2(fraction of ARC which must be free to allow growing).
194 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
195 * when reading a new block into the ARC, we will evict an equal-sized block
196 * from the ARC.
197 *
198 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
199 * we will still not allow it to grow.
200 */
201int			arc_no_grow_shift = 5;
202
203
204/*
205 * minimum lifespan of a prefetch block in clock ticks
206 * (initialized in arc_init())
207 */
208static int		arc_min_prefetch_lifespan;
209
210/*
211 * If this percent of memory is free, don't throttle.
212 */
213int arc_lotsfree_percent = 10;
214
215static int arc_dead;
216extern int zfs_prefetch_disable;
217
218/*
219 * The arc has filled available memory and has now warmed up.
220 */
221static boolean_t arc_warm;
222
223/*
224 * These tunables are for performance analysis.
225 */
226uint64_t zfs_arc_max;
227uint64_t zfs_arc_min;
228uint64_t zfs_arc_meta_limit = 0;
229uint64_t zfs_arc_meta_min = 0;
230int zfs_arc_grow_retry = 0;
231int zfs_arc_shrink_shift = 0;
232int zfs_arc_p_min_shift = 0;
233int zfs_disable_dup_eviction = 0;
234uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
235u_int zfs_arc_free_target = 0;
236
237static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS);
238static int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS);
239
240#ifdef _KERNEL
241static void
242arc_free_target_init(void *unused __unused)
243{
244
245	zfs_arc_free_target = vm_pageout_wakeup_thresh;
246}
247SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY,
248    arc_free_target_init, NULL);
249
250TUNABLE_QUAD("vfs.zfs.arc_max", &zfs_arc_max);
251TUNABLE_QUAD("vfs.zfs.arc_min", &zfs_arc_min);
252TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
253TUNABLE_QUAD("vfs.zfs.arc_meta_min", &zfs_arc_meta_min);
254TUNABLE_QUAD("vfs.zfs.arc_average_blocksize", &zfs_arc_average_blocksize);
255TUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift);
256SYSCTL_DECL(_vfs_zfs);
257SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_max, CTLFLAG_RDTUN, &zfs_arc_max, 0,
258    "Maximum ARC size");
259SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_min, CTLFLAG_RDTUN, &zfs_arc_min, 0,
260    "Minimum ARC size");
261SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN,
262    &zfs_arc_average_blocksize, 0,
263    "ARC average blocksize");
264SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW,
265    &arc_shrink_shift, 0,
266    "log2(fraction of arc to reclaim)");
267
268/*
269 * We don't have a tunable for arc_free_target due to the dependency on
270 * pagedaemon initialisation.
271 */
272SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target,
273    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int),
274    sysctl_vfs_zfs_arc_free_target, "IU",
275    "Desired number of free pages below which ARC triggers reclaim");
276
277static int
278sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)
279{
280	u_int val;
281	int err;
282
283	val = zfs_arc_free_target;
284	err = sysctl_handle_int(oidp, &val, 0, req);
285	if (err != 0 || req->newptr == NULL)
286		return (err);
287
288	if (val < minfree)
289		return (EINVAL);
290	if (val > cnt.v_page_count)
291		return (EINVAL);
292
293	zfs_arc_free_target = val;
294
295	return (0);
296}
297
298/*
299 * Must be declared here, before the definition of corresponding kstat
300 * macro which uses the same names will confuse the compiler.
301 */
302SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit,
303    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
304    sysctl_vfs_zfs_arc_meta_limit, "QU",
305    "ARC metadata limit");
306#endif
307
308/*
309 * Note that buffers can be in one of 6 states:
310 *	ARC_anon	- anonymous (discussed below)
311 *	ARC_mru		- recently used, currently cached
312 *	ARC_mru_ghost	- recentely used, no longer in cache
313 *	ARC_mfu		- frequently used, currently cached
314 *	ARC_mfu_ghost	- frequently used, no longer in cache
315 *	ARC_l2c_only	- exists in L2ARC but not other states
316 * When there are no active references to the buffer, they are
317 * are linked onto a list in one of these arc states.  These are
318 * the only buffers that can be evicted or deleted.  Within each
319 * state there are multiple lists, one for meta-data and one for
320 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
321 * etc.) is tracked separately so that it can be managed more
322 * explicitly: favored over data, limited explicitly.
323 *
324 * Anonymous buffers are buffers that are not associated with
325 * a DVA.  These are buffers that hold dirty block copies
326 * before they are written to stable storage.  By definition,
327 * they are "ref'd" and are considered part of arc_mru
328 * that cannot be freed.  Generally, they will aquire a DVA
329 * as they are written and migrate onto the arc_mru list.
330 *
331 * The ARC_l2c_only state is for buffers that are in the second
332 * level ARC but no longer in any of the ARC_m* lists.  The second
333 * level ARC itself may also contain buffers that are in any of
334 * the ARC_m* states - meaning that a buffer can exist in two
335 * places.  The reason for the ARC_l2c_only state is to keep the
336 * buffer header in the hash table, so that reads that hit the
337 * second level ARC benefit from these fast lookups.
338 */
339
340typedef struct arc_state {
341	/*
342	 * list of evictable buffers
343	 */
344	multilist_t arcs_list[ARC_BUFC_NUMTYPES];
345	/*
346	 * total amount of evictable data in this state
347	 */
348	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];
349	/*
350	 * total amount of data in this state; this includes: evictable,
351	 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
352	 */
353	refcount_t arcs_size;
354} arc_state_t;
355
356/* The 6 states: */
357static arc_state_t ARC_anon;
358static arc_state_t ARC_mru;
359static arc_state_t ARC_mru_ghost;
360static arc_state_t ARC_mfu;
361static arc_state_t ARC_mfu_ghost;
362static arc_state_t ARC_l2c_only;
363
364typedef struct arc_stats {
365	kstat_named_t arcstat_hits;
366	kstat_named_t arcstat_misses;
367	kstat_named_t arcstat_demand_data_hits;
368	kstat_named_t arcstat_demand_data_misses;
369	kstat_named_t arcstat_demand_metadata_hits;
370	kstat_named_t arcstat_demand_metadata_misses;
371	kstat_named_t arcstat_prefetch_data_hits;
372	kstat_named_t arcstat_prefetch_data_misses;
373	kstat_named_t arcstat_prefetch_metadata_hits;
374	kstat_named_t arcstat_prefetch_metadata_misses;
375	kstat_named_t arcstat_mru_hits;
376	kstat_named_t arcstat_mru_ghost_hits;
377	kstat_named_t arcstat_mfu_hits;
378	kstat_named_t arcstat_mfu_ghost_hits;
379	kstat_named_t arcstat_allocated;
380	kstat_named_t arcstat_deleted;
381	/*
382	 * Number of buffers that could not be evicted because the hash lock
383	 * was held by another thread.  The lock may not necessarily be held
384	 * by something using the same buffer, since hash locks are shared
385	 * by multiple buffers.
386	 */
387	kstat_named_t arcstat_mutex_miss;
388	/*
389	 * Number of buffers skipped because they have I/O in progress, are
390	 * indrect prefetch buffers that have not lived long enough, or are
391	 * not from the spa we're trying to evict from.
392	 */
393	kstat_named_t arcstat_evict_skip;
394	/*
395	 * Number of times arc_evict_state() was unable to evict enough
396	 * buffers to reach it's target amount.
397	 */
398	kstat_named_t arcstat_evict_not_enough;
399	kstat_named_t arcstat_evict_l2_cached;
400	kstat_named_t arcstat_evict_l2_eligible;
401	kstat_named_t arcstat_evict_l2_ineligible;
402	kstat_named_t arcstat_evict_l2_skip;
403	kstat_named_t arcstat_hash_elements;
404	kstat_named_t arcstat_hash_elements_max;
405	kstat_named_t arcstat_hash_collisions;
406	kstat_named_t arcstat_hash_chains;
407	kstat_named_t arcstat_hash_chain_max;
408	kstat_named_t arcstat_p;
409	kstat_named_t arcstat_c;
410	kstat_named_t arcstat_c_min;
411	kstat_named_t arcstat_c_max;
412	kstat_named_t arcstat_size;
413	/*
414	 * Number of bytes consumed by internal ARC structures necessary
415	 * for tracking purposes; these structures are not actually
416	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
417	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
418	 * caches), and arc_buf_t structures (allocated via arc_buf_t
419	 * cache).
420	 */
421	kstat_named_t arcstat_hdr_size;
422	/*
423	 * Number of bytes consumed by ARC buffers of type equal to
424	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
425	 * on disk user data (e.g. plain file contents).
426	 */
427	kstat_named_t arcstat_data_size;
428	/*
429	 * Number of bytes consumed by ARC buffers of type equal to
430	 * ARC_BUFC_METADATA. This is generally consumed by buffers
431	 * backing on disk data that is used for internal ZFS
432	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
433	 */
434	kstat_named_t arcstat_metadata_size;
435	/*
436	 * Number of bytes consumed by various buffers and structures
437	 * not actually backed with ARC buffers. This includes bonus
438	 * buffers (allocated directly via zio_buf_* functions),
439	 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
440	 * cache), and dnode_t structures (allocated via dnode_t cache).
441	 */
442	kstat_named_t arcstat_other_size;
443	/*
444	 * Total number of bytes consumed by ARC buffers residing in the
445	 * arc_anon state. This includes *all* buffers in the arc_anon
446	 * state; e.g. data, metadata, evictable, and unevictable buffers
447	 * are all included in this value.
448	 */
449	kstat_named_t arcstat_anon_size;
450	/*
451	 * Number of bytes consumed by ARC buffers that meet the
452	 * following criteria: backing buffers of type ARC_BUFC_DATA,
453	 * residing in the arc_anon state, and are eligible for eviction
454	 * (e.g. have no outstanding holds on the buffer).
455	 */
456	kstat_named_t arcstat_anon_evictable_data;
457	/*
458	 * Number of bytes consumed by ARC buffers that meet the
459	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
460	 * residing in the arc_anon state, and are eligible for eviction
461	 * (e.g. have no outstanding holds on the buffer).
462	 */
463	kstat_named_t arcstat_anon_evictable_metadata;
464	/*
465	 * Total number of bytes consumed by ARC buffers residing in the
466	 * arc_mru state. This includes *all* buffers in the arc_mru
467	 * state; e.g. data, metadata, evictable, and unevictable buffers
468	 * are all included in this value.
469	 */
470	kstat_named_t arcstat_mru_size;
471	/*
472	 * Number of bytes consumed by ARC buffers that meet the
473	 * following criteria: backing buffers of type ARC_BUFC_DATA,
474	 * residing in the arc_mru state, and are eligible for eviction
475	 * (e.g. have no outstanding holds on the buffer).
476	 */
477	kstat_named_t arcstat_mru_evictable_data;
478	/*
479	 * Number of bytes consumed by ARC buffers that meet the
480	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
481	 * residing in the arc_mru state, and are eligible for eviction
482	 * (e.g. have no outstanding holds on the buffer).
483	 */
484	kstat_named_t arcstat_mru_evictable_metadata;
485	/*
486	 * Total number of bytes that *would have been* consumed by ARC
487	 * buffers in the arc_mru_ghost state. The key thing to note
488	 * here, is the fact that this size doesn't actually indicate
489	 * RAM consumption. The ghost lists only consist of headers and
490	 * don't actually have ARC buffers linked off of these headers.
491	 * Thus, *if* the headers had associated ARC buffers, these
492	 * buffers *would have* consumed this number of bytes.
493	 */
494	kstat_named_t arcstat_mru_ghost_size;
495	/*
496	 * Number of bytes that *would have been* consumed by ARC
497	 * buffers that are eligible for eviction, of type
498	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
499	 */
500	kstat_named_t arcstat_mru_ghost_evictable_data;
501	/*
502	 * Number of bytes that *would have been* consumed by ARC
503	 * buffers that are eligible for eviction, of type
504	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
505	 */
506	kstat_named_t arcstat_mru_ghost_evictable_metadata;
507	/*
508	 * Total number of bytes consumed by ARC buffers residing in the
509	 * arc_mfu state. This includes *all* buffers in the arc_mfu
510	 * state; e.g. data, metadata, evictable, and unevictable buffers
511	 * are all included in this value.
512	 */
513	kstat_named_t arcstat_mfu_size;
514	/*
515	 * Number of bytes consumed by ARC buffers that are eligible for
516	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
517	 * state.
518	 */
519	kstat_named_t arcstat_mfu_evictable_data;
520	/*
521	 * Number of bytes consumed by ARC buffers that are eligible for
522	 * eviction, of type ARC_BUFC_METADATA, and reside in the
523	 * arc_mfu state.
524	 */
525	kstat_named_t arcstat_mfu_evictable_metadata;
526	/*
527	 * Total number of bytes that *would have been* consumed by ARC
528	 * buffers in the arc_mfu_ghost state. See the comment above
529	 * arcstat_mru_ghost_size for more details.
530	 */
531	kstat_named_t arcstat_mfu_ghost_size;
532	/*
533	 * Number of bytes that *would have been* consumed by ARC
534	 * buffers that are eligible for eviction, of type
535	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
536	 */
537	kstat_named_t arcstat_mfu_ghost_evictable_data;
538	/*
539	 * Number of bytes that *would have been* consumed by ARC
540	 * buffers that are eligible for eviction, of type
541	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
542	 */
543	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
544	kstat_named_t arcstat_l2_hits;
545	kstat_named_t arcstat_l2_misses;
546	kstat_named_t arcstat_l2_feeds;
547	kstat_named_t arcstat_l2_rw_clash;
548	kstat_named_t arcstat_l2_read_bytes;
549	kstat_named_t arcstat_l2_write_bytes;
550	kstat_named_t arcstat_l2_writes_sent;
551	kstat_named_t arcstat_l2_writes_done;
552	kstat_named_t arcstat_l2_writes_error;
553	kstat_named_t arcstat_l2_writes_lock_retry;
554	kstat_named_t arcstat_l2_evict_lock_retry;
555	kstat_named_t arcstat_l2_evict_reading;
556	kstat_named_t arcstat_l2_evict_l1cached;
557	kstat_named_t arcstat_l2_free_on_write;
558	kstat_named_t arcstat_l2_cdata_free_on_write;
559	kstat_named_t arcstat_l2_abort_lowmem;
560	kstat_named_t arcstat_l2_cksum_bad;
561	kstat_named_t arcstat_l2_io_error;
562	kstat_named_t arcstat_l2_size;
563	kstat_named_t arcstat_l2_asize;
564	kstat_named_t arcstat_l2_hdr_size;
565	kstat_named_t arcstat_l2_compress_successes;
566	kstat_named_t arcstat_l2_compress_zeros;
567	kstat_named_t arcstat_l2_compress_failures;
568	kstat_named_t arcstat_l2_write_trylock_fail;
569	kstat_named_t arcstat_l2_write_passed_headroom;
570	kstat_named_t arcstat_l2_write_spa_mismatch;
571	kstat_named_t arcstat_l2_write_in_l2;
572	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
573	kstat_named_t arcstat_l2_write_not_cacheable;
574	kstat_named_t arcstat_l2_write_full;
575	kstat_named_t arcstat_l2_write_buffer_iter;
576	kstat_named_t arcstat_l2_write_pios;
577	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
578	kstat_named_t arcstat_l2_write_buffer_list_iter;
579	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
580	kstat_named_t arcstat_memory_throttle_count;
581	kstat_named_t arcstat_duplicate_buffers;
582	kstat_named_t arcstat_duplicate_buffers_size;
583	kstat_named_t arcstat_duplicate_reads;
584	kstat_named_t arcstat_meta_used;
585	kstat_named_t arcstat_meta_limit;
586	kstat_named_t arcstat_meta_max;
587	kstat_named_t arcstat_meta_min;
588} arc_stats_t;
589
590static arc_stats_t arc_stats = {
591	{ "hits",			KSTAT_DATA_UINT64 },
592	{ "misses",			KSTAT_DATA_UINT64 },
593	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
594	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
595	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
596	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
597	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
598	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
599	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
600	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
601	{ "mru_hits",			KSTAT_DATA_UINT64 },
602	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
603	{ "mfu_hits",			KSTAT_DATA_UINT64 },
604	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
605	{ "allocated",			KSTAT_DATA_UINT64 },
606	{ "deleted",			KSTAT_DATA_UINT64 },
607	{ "mutex_miss",			KSTAT_DATA_UINT64 },
608	{ "evict_skip",			KSTAT_DATA_UINT64 },
609	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
610	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
611	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
612	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
613	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
614	{ "hash_elements",		KSTAT_DATA_UINT64 },
615	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
616	{ "hash_collisions",		KSTAT_DATA_UINT64 },
617	{ "hash_chains",		KSTAT_DATA_UINT64 },
618	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
619	{ "p",				KSTAT_DATA_UINT64 },
620	{ "c",				KSTAT_DATA_UINT64 },
621	{ "c_min",			KSTAT_DATA_UINT64 },
622	{ "c_max",			KSTAT_DATA_UINT64 },
623	{ "size",			KSTAT_DATA_UINT64 },
624	{ "hdr_size",			KSTAT_DATA_UINT64 },
625	{ "data_size",			KSTAT_DATA_UINT64 },
626	{ "metadata_size",		KSTAT_DATA_UINT64 },
627	{ "other_size",			KSTAT_DATA_UINT64 },
628	{ "anon_size",			KSTAT_DATA_UINT64 },
629	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
630	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
631	{ "mru_size",			KSTAT_DATA_UINT64 },
632	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
633	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
634	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
635	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
636	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
637	{ "mfu_size",			KSTAT_DATA_UINT64 },
638	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
639	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
640	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
641	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
642	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
643	{ "l2_hits",			KSTAT_DATA_UINT64 },
644	{ "l2_misses",			KSTAT_DATA_UINT64 },
645	{ "l2_feeds",			KSTAT_DATA_UINT64 },
646	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
647	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
648	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
649	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
650	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
651	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
652	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
653	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
654	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
655	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
656	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
657	{ "l2_cdata_free_on_write",	KSTAT_DATA_UINT64 },
658	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
659	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
660	{ "l2_io_error",		KSTAT_DATA_UINT64 },
661	{ "l2_size",			KSTAT_DATA_UINT64 },
662	{ "l2_asize",			KSTAT_DATA_UINT64 },
663	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
664	{ "l2_compress_successes",	KSTAT_DATA_UINT64 },
665	{ "l2_compress_zeros",		KSTAT_DATA_UINT64 },
666	{ "l2_compress_failures",	KSTAT_DATA_UINT64 },
667	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
668	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
669	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
670	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
671	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
672	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
673	{ "l2_write_full",		KSTAT_DATA_UINT64 },
674	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
675	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
676	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
677	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
678	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
679	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
680	{ "duplicate_buffers",		KSTAT_DATA_UINT64 },
681	{ "duplicate_buffers_size",	KSTAT_DATA_UINT64 },
682	{ "duplicate_reads",		KSTAT_DATA_UINT64 },
683	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
684	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
685	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
686	{ "arc_meta_min",		KSTAT_DATA_UINT64 }
687};
688
689#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
690
691#define	ARCSTAT_INCR(stat, val) \
692	atomic_add_64(&arc_stats.stat.value.ui64, (val))
693
694#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
695#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
696
697#define	ARCSTAT_MAX(stat, val) {					\
698	uint64_t m;							\
699	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
700	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
701		continue;						\
702}
703
704#define	ARCSTAT_MAXSTAT(stat) \
705	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
706
707/*
708 * We define a macro to allow ARC hits/misses to be easily broken down by
709 * two separate conditions, giving a total of four different subtypes for
710 * each of hits and misses (so eight statistics total).
711 */
712#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
713	if (cond1) {							\
714		if (cond2) {						\
715			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
716		} else {						\
717			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
718		}							\
719	} else {							\
720		if (cond2) {						\
721			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
722		} else {						\
723			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
724		}							\
725	}
726
727kstat_t			*arc_ksp;
728static arc_state_t	*arc_anon;
729static arc_state_t	*arc_mru;
730static arc_state_t	*arc_mru_ghost;
731static arc_state_t	*arc_mfu;
732static arc_state_t	*arc_mfu_ghost;
733static arc_state_t	*arc_l2c_only;
734
735/*
736 * There are several ARC variables that are critical to export as kstats --
737 * but we don't want to have to grovel around in the kstat whenever we wish to
738 * manipulate them.  For these variables, we therefore define them to be in
739 * terms of the statistic variable.  This assures that we are not introducing
740 * the possibility of inconsistency by having shadow copies of the variables,
741 * while still allowing the code to be readable.
742 */
743#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
744#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
745#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
746#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
747#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
748#define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
749#define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
750#define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
751#define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
752
753#define	L2ARC_IS_VALID_COMPRESS(_c_) \
754	((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
755
756static int		arc_no_grow;	/* Don't try to grow cache size */
757static uint64_t		arc_tempreserve;
758static uint64_t		arc_loaned_bytes;
759
760typedef struct arc_callback arc_callback_t;
761
762struct arc_callback {
763	void			*acb_private;
764	arc_done_func_t		*acb_done;
765	arc_buf_t		*acb_buf;
766	zio_t			*acb_zio_dummy;
767	arc_callback_t		*acb_next;
768};
769
770typedef struct arc_write_callback arc_write_callback_t;
771
772struct arc_write_callback {
773	void		*awcb_private;
774	arc_done_func_t	*awcb_ready;
775	arc_done_func_t	*awcb_physdone;
776	arc_done_func_t	*awcb_done;
777	arc_buf_t	*awcb_buf;
778};
779
780/*
781 * ARC buffers are separated into multiple structs as a memory saving measure:
782 *   - Common fields struct, always defined, and embedded within it:
783 *       - L2-only fields, always allocated but undefined when not in L2ARC
784 *       - L1-only fields, only allocated when in L1ARC
785 *
786 *           Buffer in L1                     Buffer only in L2
787 *    +------------------------+          +------------------------+
788 *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
789 *    |                        |          |                        |
790 *    |                        |          |                        |
791 *    |                        |          |                        |
792 *    +------------------------+          +------------------------+
793 *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
794 *    | (undefined if L1-only) |          |                        |
795 *    +------------------------+          +------------------------+
796 *    | l1arc_buf_hdr_t        |
797 *    |                        |
798 *    |                        |
799 *    |                        |
800 *    |                        |
801 *    +------------------------+
802 *
803 * Because it's possible for the L2ARC to become extremely large, we can wind
804 * up eating a lot of memory in L2ARC buffer headers, so the size of a header
805 * is minimized by only allocating the fields necessary for an L1-cached buffer
806 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
807 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
808 * words in pointers. arc_hdr_realloc() is used to switch a header between
809 * these two allocation states.
810 */
811typedef struct l1arc_buf_hdr {
812	kmutex_t		b_freeze_lock;
813#ifdef ZFS_DEBUG
814	/*
815	 * used for debugging wtih kmem_flags - by allocating and freeing
816	 * b_thawed when the buffer is thawed, we get a record of the stack
817	 * trace that thawed it.
818	 */
819	void			*b_thawed;
820#endif
821
822	arc_buf_t		*b_buf;
823	uint32_t		b_datacnt;
824	/* for waiting on writes to complete */
825	kcondvar_t		b_cv;
826
827	/* protected by arc state mutex */
828	arc_state_t		*b_state;
829	multilist_node_t	b_arc_node;
830
831	/* updated atomically */
832	clock_t			b_arc_access;
833
834	/* self protecting */
835	refcount_t		b_refcnt;
836
837	arc_callback_t		*b_acb;
838	/* temporary buffer holder for in-flight compressed data */
839	void			*b_tmp_cdata;
840} l1arc_buf_hdr_t;
841
842typedef struct l2arc_dev l2arc_dev_t;
843
844typedef struct l2arc_buf_hdr {
845	/* protected by arc_buf_hdr mutex */
846	l2arc_dev_t		*b_dev;		/* L2ARC device */
847	uint64_t		b_daddr;	/* disk address, offset byte */
848	/* real alloc'd buffer size depending on b_compress applied */
849	int32_t			b_asize;
850
851	list_node_t		b_l2node;
852} l2arc_buf_hdr_t;
853
854struct arc_buf_hdr {
855	/* protected by hash lock */
856	dva_t			b_dva;
857	uint64_t		b_birth;
858	/*
859	 * Even though this checksum is only set/verified when a buffer is in
860	 * the L1 cache, it needs to be in the set of common fields because it
861	 * must be preserved from the time before a buffer is written out to
862	 * L2ARC until after it is read back in.
863	 */
864	zio_cksum_t		*b_freeze_cksum;
865
866	arc_buf_hdr_t		*b_hash_next;
867	arc_flags_t		b_flags;
868
869	/* immutable */
870	int32_t			b_size;
871	uint64_t		b_spa;
872
873	/* L2ARC fields. Undefined when not in L2ARC. */
874	l2arc_buf_hdr_t		b_l2hdr;
875	/* L1ARC fields. Undefined when in l2arc_only state */
876	l1arc_buf_hdr_t		b_l1hdr;
877};
878
879#ifdef _KERNEL
880static int
881sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS)
882{
883	uint64_t val;
884	int err;
885
886	val = arc_meta_limit;
887	err = sysctl_handle_64(oidp, &val, 0, req);
888	if (err != 0 || req->newptr == NULL)
889		return (err);
890
891        if (val <= 0 || val > arc_c_max)
892		return (EINVAL);
893
894	arc_meta_limit = val;
895	return (0);
896}
897#endif
898
899static arc_buf_t *arc_eviction_list;
900static arc_buf_hdr_t arc_eviction_hdr;
901
902#define	GHOST_STATE(state)	\
903	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
904	(state) == arc_l2c_only)
905
906#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
907#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
908#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
909#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
910#define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
911#define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
912
913#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
914#define	HDR_L2COMPRESS(hdr)	((hdr)->b_flags & ARC_FLAG_L2COMPRESS)
915#define	HDR_L2_READING(hdr)	\
916	    (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
917	    ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
918#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
919#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
920#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
921
922#define	HDR_ISTYPE_METADATA(hdr)	\
923	    ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
924#define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
925
926#define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
927#define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
928
929/* For storing compression mode in b_flags */
930#define	HDR_COMPRESS_OFFSET	24
931#define	HDR_COMPRESS_NBITS	7
932
933#define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET(hdr->b_flags, \
934	    HDR_COMPRESS_OFFSET, HDR_COMPRESS_NBITS))
935#define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET(hdr->b_flags, \
936	    HDR_COMPRESS_OFFSET, HDR_COMPRESS_NBITS, (cmp))
937
938/*
939 * Other sizes
940 */
941
942#define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
943#define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
944
945/*
946 * Hash table routines
947 */
948
949#define	HT_LOCK_PAD	CACHE_LINE_SIZE
950
951struct ht_lock {
952	kmutex_t	ht_lock;
953#ifdef _KERNEL
954	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
955#endif
956};
957
958#define	BUF_LOCKS 256
959typedef struct buf_hash_table {
960	uint64_t ht_mask;
961	arc_buf_hdr_t **ht_table;
962	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
963} buf_hash_table_t;
964
965static buf_hash_table_t buf_hash_table;
966
967#define	BUF_HASH_INDEX(spa, dva, birth) \
968	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
969#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
970#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
971#define	HDR_LOCK(hdr) \
972	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
973
974uint64_t zfs_crc64_table[256];
975
976/*
977 * Level 2 ARC
978 */
979
980#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
981#define	L2ARC_HEADROOM		2			/* num of writes */
982/*
983 * If we discover during ARC scan any buffers to be compressed, we boost
984 * our headroom for the next scanning cycle by this percentage multiple.
985 */
986#define	L2ARC_HEADROOM_BOOST	200
987#define	L2ARC_FEED_SECS		1		/* caching interval secs */
988#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
989
990/*
991 * Used to distinguish headers that are being process by
992 * l2arc_write_buffers(), but have yet to be assigned to a l2arc disk
993 * address. This can happen when the header is added to the l2arc's list
994 * of buffers to write in the first stage of l2arc_write_buffers(), but
995 * has not yet been written out which happens in the second stage of
996 * l2arc_write_buffers().
997 */
998#define	L2ARC_ADDR_UNSET	((uint64_t)(-1))
999
1000#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
1001#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
1002
1003/* L2ARC Performance Tunables */
1004uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
1005uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
1006uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
1007uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1008uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
1009uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
1010boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
1011boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
1012boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
1013
1014SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
1015    &l2arc_write_max, 0, "max write size");
1016SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
1017    &l2arc_write_boost, 0, "extra write during warmup");
1018SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
1019    &l2arc_headroom, 0, "number of dev writes");
1020SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
1021    &l2arc_feed_secs, 0, "interval seconds");
1022SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
1023    &l2arc_feed_min_ms, 0, "min interval milliseconds");
1024
1025SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
1026    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
1027SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
1028    &l2arc_feed_again, 0, "turbo warmup");
1029SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
1030    &l2arc_norw, 0, "no reads during writes");
1031
1032SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
1033    &ARC_anon.arcs_size.rc_count, 0, "size of anonymous state");
1034SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_lsize, CTLFLAG_RD,
1035    &ARC_anon.arcs_lsize[ARC_BUFC_METADATA], 0, "size of anonymous state");
1036SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_lsize, CTLFLAG_RD,
1037    &ARC_anon.arcs_lsize[ARC_BUFC_DATA], 0, "size of anonymous state");
1038
1039SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
1040    &ARC_mru.arcs_size.rc_count, 0, "size of mru state");
1041SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_lsize, CTLFLAG_RD,
1042    &ARC_mru.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mru state");
1043SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_lsize, CTLFLAG_RD,
1044    &ARC_mru.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mru state");
1045
1046SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
1047    &ARC_mru_ghost.arcs_size.rc_count, 0, "size of mru ghost state");
1048SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_lsize, CTLFLAG_RD,
1049    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
1050    "size of metadata in mru ghost state");
1051SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_lsize, CTLFLAG_RD,
1052    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
1053    "size of data in mru ghost state");
1054
1055SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
1056    &ARC_mfu.arcs_size.rc_count, 0, "size of mfu state");
1057SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_lsize, CTLFLAG_RD,
1058    &ARC_mfu.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mfu state");
1059SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_lsize, CTLFLAG_RD,
1060    &ARC_mfu.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mfu state");
1061
1062SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
1063    &ARC_mfu_ghost.arcs_size.rc_count, 0, "size of mfu ghost state");
1064SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_lsize, CTLFLAG_RD,
1065    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
1066    "size of metadata in mfu ghost state");
1067SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_lsize, CTLFLAG_RD,
1068    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
1069    "size of data in mfu ghost state");
1070
1071SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
1072    &ARC_l2c_only.arcs_size.rc_count, 0, "size of mru state");
1073
1074/*
1075 * L2ARC Internals
1076 */
1077struct l2arc_dev {
1078	vdev_t			*l2ad_vdev;	/* vdev */
1079	spa_t			*l2ad_spa;	/* spa */
1080	uint64_t		l2ad_hand;	/* next write location */
1081	uint64_t		l2ad_start;	/* first addr on device */
1082	uint64_t		l2ad_end;	/* last addr on device */
1083	boolean_t		l2ad_first;	/* first sweep through */
1084	boolean_t		l2ad_writing;	/* currently writing */
1085	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1086	list_t			l2ad_buflist;	/* buffer list */
1087	list_node_t		l2ad_node;	/* device list node */
1088	refcount_t		l2ad_alloc;	/* allocated bytes */
1089};
1090
1091static list_t L2ARC_dev_list;			/* device list */
1092static list_t *l2arc_dev_list;			/* device list pointer */
1093static kmutex_t l2arc_dev_mtx;			/* device list mutex */
1094static l2arc_dev_t *l2arc_dev_last;		/* last device used */
1095static list_t L2ARC_free_on_write;		/* free after write buf list */
1096static list_t *l2arc_free_on_write;		/* free after write list ptr */
1097static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1098static uint64_t l2arc_ndev;			/* number of devices */
1099
1100typedef struct l2arc_read_callback {
1101	arc_buf_t		*l2rcb_buf;		/* read buffer */
1102	spa_t			*l2rcb_spa;		/* spa */
1103	blkptr_t		l2rcb_bp;		/* original blkptr */
1104	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1105	int			l2rcb_flags;		/* original flags */
1106	enum zio_compress	l2rcb_compress;		/* applied compress */
1107} l2arc_read_callback_t;
1108
1109typedef struct l2arc_write_callback {
1110	l2arc_dev_t	*l2wcb_dev;		/* device info */
1111	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1112} l2arc_write_callback_t;
1113
1114typedef struct l2arc_data_free {
1115	/* protected by l2arc_free_on_write_mtx */
1116	void		*l2df_data;
1117	size_t		l2df_size;
1118	void		(*l2df_func)(void *, size_t);
1119	list_node_t	l2df_list_node;
1120} l2arc_data_free_t;
1121
1122static kmutex_t l2arc_feed_thr_lock;
1123static kcondvar_t l2arc_feed_thr_cv;
1124static uint8_t l2arc_thread_exit;
1125
1126static void arc_get_data_buf(arc_buf_t *);
1127static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1128static boolean_t arc_is_overflowing();
1129static void arc_buf_watch(arc_buf_t *);
1130
1131static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1132static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1133
1134static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1135static void l2arc_read_done(zio_t *);
1136
1137static boolean_t l2arc_compress_buf(arc_buf_hdr_t *);
1138static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
1139static void l2arc_release_cdata_buf(arc_buf_hdr_t *);
1140
1141static uint64_t
1142buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1143{
1144	uint8_t *vdva = (uint8_t *)dva;
1145	uint64_t crc = -1ULL;
1146	int i;
1147
1148	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1149
1150	for (i = 0; i < sizeof (dva_t); i++)
1151		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1152
1153	crc ^= (spa>>8) ^ birth;
1154
1155	return (crc);
1156}
1157
1158#define	BUF_EMPTY(buf)						\
1159	((buf)->b_dva.dva_word[0] == 0 &&			\
1160	(buf)->b_dva.dva_word[1] == 0)
1161
1162#define	BUF_EQUAL(spa, dva, birth, buf)				\
1163	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1164	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1165	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
1166
1167static void
1168buf_discard_identity(arc_buf_hdr_t *hdr)
1169{
1170	hdr->b_dva.dva_word[0] = 0;
1171	hdr->b_dva.dva_word[1] = 0;
1172	hdr->b_birth = 0;
1173}
1174
1175static arc_buf_hdr_t *
1176buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1177{
1178	const dva_t *dva = BP_IDENTITY(bp);
1179	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1180	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1181	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1182	arc_buf_hdr_t *hdr;
1183
1184	mutex_enter(hash_lock);
1185	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1186	    hdr = hdr->b_hash_next) {
1187		if (BUF_EQUAL(spa, dva, birth, hdr)) {
1188			*lockp = hash_lock;
1189			return (hdr);
1190		}
1191	}
1192	mutex_exit(hash_lock);
1193	*lockp = NULL;
1194	return (NULL);
1195}
1196
1197/*
1198 * Insert an entry into the hash table.  If there is already an element
1199 * equal to elem in the hash table, then the already existing element
1200 * will be returned and the new element will not be inserted.
1201 * Otherwise returns NULL.
1202 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1203 */
1204static arc_buf_hdr_t *
1205buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1206{
1207	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1208	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1209	arc_buf_hdr_t *fhdr;
1210	uint32_t i;
1211
1212	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1213	ASSERT(hdr->b_birth != 0);
1214	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1215
1216	if (lockp != NULL) {
1217		*lockp = hash_lock;
1218		mutex_enter(hash_lock);
1219	} else {
1220		ASSERT(MUTEX_HELD(hash_lock));
1221	}
1222
1223	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1224	    fhdr = fhdr->b_hash_next, i++) {
1225		if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1226			return (fhdr);
1227	}
1228
1229	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1230	buf_hash_table.ht_table[idx] = hdr;
1231	hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
1232
1233	/* collect some hash table performance data */
1234	if (i > 0) {
1235		ARCSTAT_BUMP(arcstat_hash_collisions);
1236		if (i == 1)
1237			ARCSTAT_BUMP(arcstat_hash_chains);
1238
1239		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1240	}
1241
1242	ARCSTAT_BUMP(arcstat_hash_elements);
1243	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1244
1245	return (NULL);
1246}
1247
1248static void
1249buf_hash_remove(arc_buf_hdr_t *hdr)
1250{
1251	arc_buf_hdr_t *fhdr, **hdrp;
1252	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1253
1254	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1255	ASSERT(HDR_IN_HASH_TABLE(hdr));
1256
1257	hdrp = &buf_hash_table.ht_table[idx];
1258	while ((fhdr = *hdrp) != hdr) {
1259		ASSERT(fhdr != NULL);
1260		hdrp = &fhdr->b_hash_next;
1261	}
1262	*hdrp = hdr->b_hash_next;
1263	hdr->b_hash_next = NULL;
1264	hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
1265
1266	/* collect some hash table performance data */
1267	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1268
1269	if (buf_hash_table.ht_table[idx] &&
1270	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1271		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1272}
1273
1274/*
1275 * Global data structures and functions for the buf kmem cache.
1276 */
1277static kmem_cache_t *hdr_full_cache;
1278static kmem_cache_t *hdr_l2only_cache;
1279static kmem_cache_t *buf_cache;
1280
1281static void
1282buf_fini(void)
1283{
1284	int i;
1285
1286	kmem_free(buf_hash_table.ht_table,
1287	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1288	for (i = 0; i < BUF_LOCKS; i++)
1289		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1290	kmem_cache_destroy(hdr_full_cache);
1291	kmem_cache_destroy(hdr_l2only_cache);
1292	kmem_cache_destroy(buf_cache);
1293}
1294
1295/*
1296 * Constructor callback - called when the cache is empty
1297 * and a new buf is requested.
1298 */
1299/* ARGSUSED */
1300static int
1301hdr_full_cons(void *vbuf, void *unused, int kmflag)
1302{
1303	arc_buf_hdr_t *hdr = vbuf;
1304
1305	bzero(hdr, HDR_FULL_SIZE);
1306	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1307	refcount_create(&hdr->b_l1hdr.b_refcnt);
1308	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1309	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1310	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1311
1312	return (0);
1313}
1314
1315/* ARGSUSED */
1316static int
1317hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1318{
1319	arc_buf_hdr_t *hdr = vbuf;
1320
1321	bzero(hdr, HDR_L2ONLY_SIZE);
1322	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1323
1324	return (0);
1325}
1326
1327/* ARGSUSED */
1328static int
1329buf_cons(void *vbuf, void *unused, int kmflag)
1330{
1331	arc_buf_t *buf = vbuf;
1332
1333	bzero(buf, sizeof (arc_buf_t));
1334	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1335	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1336
1337	return (0);
1338}
1339
1340/*
1341 * Destructor callback - called when a cached buf is
1342 * no longer required.
1343 */
1344/* ARGSUSED */
1345static void
1346hdr_full_dest(void *vbuf, void *unused)
1347{
1348	arc_buf_hdr_t *hdr = vbuf;
1349
1350	ASSERT(BUF_EMPTY(hdr));
1351	cv_destroy(&hdr->b_l1hdr.b_cv);
1352	refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1353	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1354	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1355	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1356}
1357
1358/* ARGSUSED */
1359static void
1360hdr_l2only_dest(void *vbuf, void *unused)
1361{
1362	arc_buf_hdr_t *hdr = vbuf;
1363
1364	ASSERT(BUF_EMPTY(hdr));
1365	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1366}
1367
1368/* ARGSUSED */
1369static void
1370buf_dest(void *vbuf, void *unused)
1371{
1372	arc_buf_t *buf = vbuf;
1373
1374	mutex_destroy(&buf->b_evict_lock);
1375	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1376}
1377
1378/*
1379 * Reclaim callback -- invoked when memory is low.
1380 */
1381/* ARGSUSED */
1382static void
1383hdr_recl(void *unused)
1384{
1385	dprintf("hdr_recl called\n");
1386	/*
1387	 * umem calls the reclaim func when we destroy the buf cache,
1388	 * which is after we do arc_fini().
1389	 */
1390	if (!arc_dead)
1391		cv_signal(&arc_reclaim_thread_cv);
1392}
1393
1394static void
1395buf_init(void)
1396{
1397	uint64_t *ct;
1398	uint64_t hsize = 1ULL << 12;
1399	int i, j;
1400
1401	/*
1402	 * The hash table is big enough to fill all of physical memory
1403	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1404	 * By default, the table will take up
1405	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1406	 */
1407	while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE)
1408		hsize <<= 1;
1409retry:
1410	buf_hash_table.ht_mask = hsize - 1;
1411	buf_hash_table.ht_table =
1412	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1413	if (buf_hash_table.ht_table == NULL) {
1414		ASSERT(hsize > (1ULL << 8));
1415		hsize >>= 1;
1416		goto retry;
1417	}
1418
1419	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1420	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1421	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1422	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1423	    NULL, NULL, 0);
1424	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1425	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1426
1427	for (i = 0; i < 256; i++)
1428		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1429			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1430
1431	for (i = 0; i < BUF_LOCKS; i++) {
1432		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1433		    NULL, MUTEX_DEFAULT, NULL);
1434	}
1435}
1436
1437/*
1438 * Transition between the two allocation states for the arc_buf_hdr struct.
1439 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
1440 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
1441 * version is used when a cache buffer is only in the L2ARC in order to reduce
1442 * memory usage.
1443 */
1444static arc_buf_hdr_t *
1445arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
1446{
1447	ASSERT(HDR_HAS_L2HDR(hdr));
1448
1449	arc_buf_hdr_t *nhdr;
1450	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1451
1452	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
1453	    (old == hdr_l2only_cache && new == hdr_full_cache));
1454
1455	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
1456
1457	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
1458	buf_hash_remove(hdr);
1459
1460	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
1461
1462	if (new == hdr_full_cache) {
1463		nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1464		/*
1465		 * arc_access and arc_change_state need to be aware that a
1466		 * header has just come out of L2ARC, so we set its state to
1467		 * l2c_only even though it's about to change.
1468		 */
1469		nhdr->b_l1hdr.b_state = arc_l2c_only;
1470
1471		/* Verify previous threads set to NULL before freeing */
1472		ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1473	} else {
1474		ASSERT(hdr->b_l1hdr.b_buf == NULL);
1475		ASSERT0(hdr->b_l1hdr.b_datacnt);
1476
1477		/*
1478		 * If we've reached here, We must have been called from
1479		 * arc_evict_hdr(), as such we should have already been
1480		 * removed from any ghost list we were previously on
1481		 * (which protects us from racing with arc_evict_state),
1482		 * thus no locking is needed during this check.
1483		 */
1484		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1485
1486		/*
1487		 * A buffer must not be moved into the arc_l2c_only
1488		 * state if it's not finished being written out to the
1489		 * l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field
1490		 * might try to be accessed, even though it was removed.
1491		 */
1492		VERIFY(!HDR_L2_WRITING(hdr));
1493		VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1494
1495		nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR;
1496	}
1497	/*
1498	 * The header has been reallocated so we need to re-insert it into any
1499	 * lists it was on.
1500	 */
1501	(void) buf_hash_insert(nhdr, NULL);
1502
1503	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
1504
1505	mutex_enter(&dev->l2ad_mtx);
1506
1507	/*
1508	 * We must place the realloc'ed header back into the list at
1509	 * the same spot. Otherwise, if it's placed earlier in the list,
1510	 * l2arc_write_buffers() could find it during the function's
1511	 * write phase, and try to write it out to the l2arc.
1512	 */
1513	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
1514	list_remove(&dev->l2ad_buflist, hdr);
1515
1516	mutex_exit(&dev->l2ad_mtx);
1517
1518	/*
1519	 * Since we're using the pointer address as the tag when
1520	 * incrementing and decrementing the l2ad_alloc refcount, we
1521	 * must remove the old pointer (that we're about to destroy) and
1522	 * add the new pointer to the refcount. Otherwise we'd remove
1523	 * the wrong pointer address when calling arc_hdr_destroy() later.
1524	 */
1525
1526	(void) refcount_remove_many(&dev->l2ad_alloc,
1527	    hdr->b_l2hdr.b_asize, hdr);
1528
1529	(void) refcount_add_many(&dev->l2ad_alloc,
1530	    nhdr->b_l2hdr.b_asize, nhdr);
1531
1532	buf_discard_identity(hdr);
1533	hdr->b_freeze_cksum = NULL;
1534	kmem_cache_free(old, hdr);
1535
1536	return (nhdr);
1537}
1538
1539
1540#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1541
1542static void
1543arc_cksum_verify(arc_buf_t *buf)
1544{
1545	zio_cksum_t zc;
1546
1547	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1548		return;
1549
1550	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1551	if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) {
1552		mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1553		return;
1554	}
1555	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1556	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1557		panic("buffer modified while frozen!");
1558	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1559}
1560
1561static int
1562arc_cksum_equal(arc_buf_t *buf)
1563{
1564	zio_cksum_t zc;
1565	int equal;
1566
1567	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1568	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1569	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1570	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1571
1572	return (equal);
1573}
1574
1575static void
1576arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1577{
1578	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1579		return;
1580
1581	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1582	if (buf->b_hdr->b_freeze_cksum != NULL) {
1583		mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1584		return;
1585	}
1586	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1587	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1588	    buf->b_hdr->b_freeze_cksum);
1589	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1590#ifdef illumos
1591	arc_buf_watch(buf);
1592#endif /* illumos */
1593}
1594
1595#ifdef illumos
1596#ifndef _KERNEL
1597typedef struct procctl {
1598	long cmd;
1599	prwatch_t prwatch;
1600} procctl_t;
1601#endif
1602
1603/* ARGSUSED */
1604static void
1605arc_buf_unwatch(arc_buf_t *buf)
1606{
1607#ifndef _KERNEL
1608	if (arc_watch) {
1609		int result;
1610		procctl_t ctl;
1611		ctl.cmd = PCWATCH;
1612		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1613		ctl.prwatch.pr_size = 0;
1614		ctl.prwatch.pr_wflags = 0;
1615		result = write(arc_procfd, &ctl, sizeof (ctl));
1616		ASSERT3U(result, ==, sizeof (ctl));
1617	}
1618#endif
1619}
1620
1621/* ARGSUSED */
1622static void
1623arc_buf_watch(arc_buf_t *buf)
1624{
1625#ifndef _KERNEL
1626	if (arc_watch) {
1627		int result;
1628		procctl_t ctl;
1629		ctl.cmd = PCWATCH;
1630		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1631		ctl.prwatch.pr_size = buf->b_hdr->b_size;
1632		ctl.prwatch.pr_wflags = WA_WRITE;
1633		result = write(arc_procfd, &ctl, sizeof (ctl));
1634		ASSERT3U(result, ==, sizeof (ctl));
1635	}
1636#endif
1637}
1638#endif /* illumos */
1639
1640static arc_buf_contents_t
1641arc_buf_type(arc_buf_hdr_t *hdr)
1642{
1643	if (HDR_ISTYPE_METADATA(hdr)) {
1644		return (ARC_BUFC_METADATA);
1645	} else {
1646		return (ARC_BUFC_DATA);
1647	}
1648}
1649
1650static uint32_t
1651arc_bufc_to_flags(arc_buf_contents_t type)
1652{
1653	switch (type) {
1654	case ARC_BUFC_DATA:
1655		/* metadata field is 0 if buffer contains normal data */
1656		return (0);
1657	case ARC_BUFC_METADATA:
1658		return (ARC_FLAG_BUFC_METADATA);
1659	default:
1660		break;
1661	}
1662	panic("undefined ARC buffer type!");
1663	return ((uint32_t)-1);
1664}
1665
1666void
1667arc_buf_thaw(arc_buf_t *buf)
1668{
1669	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1670		if (buf->b_hdr->b_l1hdr.b_state != arc_anon)
1671			panic("modifying non-anon buffer!");
1672		if (HDR_IO_IN_PROGRESS(buf->b_hdr))
1673			panic("modifying buffer while i/o in progress!");
1674		arc_cksum_verify(buf);
1675	}
1676
1677	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1678	if (buf->b_hdr->b_freeze_cksum != NULL) {
1679		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1680		buf->b_hdr->b_freeze_cksum = NULL;
1681	}
1682
1683#ifdef ZFS_DEBUG
1684	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1685		if (buf->b_hdr->b_l1hdr.b_thawed != NULL)
1686			kmem_free(buf->b_hdr->b_l1hdr.b_thawed, 1);
1687		buf->b_hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1688	}
1689#endif
1690
1691	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1692
1693#ifdef illumos
1694	arc_buf_unwatch(buf);
1695#endif /* illumos */
1696}
1697
1698void
1699arc_buf_freeze(arc_buf_t *buf)
1700{
1701	kmutex_t *hash_lock;
1702
1703	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1704		return;
1705
1706	hash_lock = HDR_LOCK(buf->b_hdr);
1707	mutex_enter(hash_lock);
1708
1709	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1710	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
1711	arc_cksum_compute(buf, B_FALSE);
1712	mutex_exit(hash_lock);
1713
1714}
1715
1716static void
1717add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1718{
1719	ASSERT(HDR_HAS_L1HDR(hdr));
1720	ASSERT(MUTEX_HELD(hash_lock));
1721	arc_state_t *state = hdr->b_l1hdr.b_state;
1722
1723	if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1724	    (state != arc_anon)) {
1725		/* We don't use the L2-only state list. */
1726		if (state != arc_l2c_only) {
1727			arc_buf_contents_t type = arc_buf_type(hdr);
1728			uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt;
1729			multilist_t *list = &state->arcs_list[type];
1730			uint64_t *size = &state->arcs_lsize[type];
1731
1732			multilist_remove(list, hdr);
1733
1734			if (GHOST_STATE(state)) {
1735				ASSERT0(hdr->b_l1hdr.b_datacnt);
1736				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1737				delta = hdr->b_size;
1738			}
1739			ASSERT(delta > 0);
1740			ASSERT3U(*size, >=, delta);
1741			atomic_add_64(size, -delta);
1742		}
1743		/* remove the prefetch flag if we get a reference */
1744		hdr->b_flags &= ~ARC_FLAG_PREFETCH;
1745	}
1746}
1747
1748static int
1749remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1750{
1751	int cnt;
1752	arc_state_t *state = hdr->b_l1hdr.b_state;
1753
1754	ASSERT(HDR_HAS_L1HDR(hdr));
1755	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1756	ASSERT(!GHOST_STATE(state));
1757
1758	/*
1759	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1760	 * check to prevent usage of the arc_l2c_only list.
1761	 */
1762	if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
1763	    (state != arc_anon)) {
1764		arc_buf_contents_t type = arc_buf_type(hdr);
1765		multilist_t *list = &state->arcs_list[type];
1766		uint64_t *size = &state->arcs_lsize[type];
1767
1768		multilist_insert(list, hdr);
1769
1770		ASSERT(hdr->b_l1hdr.b_datacnt > 0);
1771		atomic_add_64(size, hdr->b_size *
1772		    hdr->b_l1hdr.b_datacnt);
1773	}
1774	return (cnt);
1775}
1776
1777/*
1778 * Move the supplied buffer to the indicated state. The hash lock
1779 * for the buffer must be held by the caller.
1780 */
1781static void
1782arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
1783    kmutex_t *hash_lock)
1784{
1785	arc_state_t *old_state;
1786	int64_t refcnt;
1787	uint32_t datacnt;
1788	uint64_t from_delta, to_delta;
1789	arc_buf_contents_t buftype = arc_buf_type(hdr);
1790
1791	/*
1792	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
1793	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
1794	 * L1 hdr doesn't always exist when we change state to arc_anon before
1795	 * destroying a header, in which case reallocating to add the L1 hdr is
1796	 * pointless.
1797	 */
1798	if (HDR_HAS_L1HDR(hdr)) {
1799		old_state = hdr->b_l1hdr.b_state;
1800		refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
1801		datacnt = hdr->b_l1hdr.b_datacnt;
1802	} else {
1803		old_state = arc_l2c_only;
1804		refcnt = 0;
1805		datacnt = 0;
1806	}
1807
1808	ASSERT(MUTEX_HELD(hash_lock));
1809	ASSERT3P(new_state, !=, old_state);
1810	ASSERT(refcnt == 0 || datacnt > 0);
1811	ASSERT(!GHOST_STATE(new_state) || datacnt == 0);
1812	ASSERT(old_state != arc_anon || datacnt <= 1);
1813
1814	from_delta = to_delta = datacnt * hdr->b_size;
1815
1816	/*
1817	 * If this buffer is evictable, transfer it from the
1818	 * old state list to the new state list.
1819	 */
1820	if (refcnt == 0) {
1821		if (old_state != arc_anon && old_state != arc_l2c_only) {
1822			uint64_t *size = &old_state->arcs_lsize[buftype];
1823
1824			ASSERT(HDR_HAS_L1HDR(hdr));
1825			multilist_remove(&old_state->arcs_list[buftype], hdr);
1826
1827			/*
1828			 * If prefetching out of the ghost cache,
1829			 * we will have a non-zero datacnt.
1830			 */
1831			if (GHOST_STATE(old_state) && datacnt == 0) {
1832				/* ghost elements have a ghost size */
1833				ASSERT(hdr->b_l1hdr.b_buf == NULL);
1834				from_delta = hdr->b_size;
1835			}
1836			ASSERT3U(*size, >=, from_delta);
1837			atomic_add_64(size, -from_delta);
1838		}
1839		if (new_state != arc_anon && new_state != arc_l2c_only) {
1840			uint64_t *size = &new_state->arcs_lsize[buftype];
1841
1842			/*
1843			 * An L1 header always exists here, since if we're
1844			 * moving to some L1-cached state (i.e. not l2c_only or
1845			 * anonymous), we realloc the header to add an L1hdr
1846			 * beforehand.
1847			 */
1848			ASSERT(HDR_HAS_L1HDR(hdr));
1849			multilist_insert(&new_state->arcs_list[buftype], hdr);
1850
1851			/* ghost elements have a ghost size */
1852			if (GHOST_STATE(new_state)) {
1853				ASSERT0(datacnt);
1854				ASSERT(hdr->b_l1hdr.b_buf == NULL);
1855				to_delta = hdr->b_size;
1856			}
1857			atomic_add_64(size, to_delta);
1858		}
1859	}
1860
1861	ASSERT(!BUF_EMPTY(hdr));
1862	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
1863		buf_hash_remove(hdr);
1864
1865	/* adjust state sizes (ignore arc_l2c_only) */
1866
1867	if (to_delta && new_state != arc_l2c_only) {
1868		ASSERT(HDR_HAS_L1HDR(hdr));
1869		if (GHOST_STATE(new_state)) {
1870			ASSERT0(datacnt);
1871
1872			/*
1873			 * We moving a header to a ghost state, we first
1874			 * remove all arc buffers. Thus, we'll have a
1875			 * datacnt of zero, and no arc buffer to use for
1876			 * the reference. As a result, we use the arc
1877			 * header pointer for the reference.
1878			 */
1879			(void) refcount_add_many(&new_state->arcs_size,
1880			    hdr->b_size, hdr);
1881		} else {
1882			ASSERT3U(datacnt, !=, 0);
1883
1884			/*
1885			 * Each individual buffer holds a unique reference,
1886			 * thus we must remove each of these references one
1887			 * at a time.
1888			 */
1889			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
1890			    buf = buf->b_next) {
1891				(void) refcount_add_many(&new_state->arcs_size,
1892				    hdr->b_size, buf);
1893			}
1894		}
1895	}
1896
1897	if (from_delta && old_state != arc_l2c_only) {
1898		ASSERT(HDR_HAS_L1HDR(hdr));
1899		if (GHOST_STATE(old_state)) {
1900			/*
1901			 * When moving a header off of a ghost state,
1902			 * there's the possibility for datacnt to be
1903			 * non-zero. This is because we first add the
1904			 * arc buffer to the header prior to changing
1905			 * the header's state. Since we used the header
1906			 * for the reference when putting the header on
1907			 * the ghost state, we must balance that and use
1908			 * the header when removing off the ghost state
1909			 * (even though datacnt is non zero).
1910			 */
1911
1912			IMPLY(datacnt == 0, new_state == arc_anon ||
1913			    new_state == arc_l2c_only);
1914
1915			(void) refcount_remove_many(&old_state->arcs_size,
1916			    hdr->b_size, hdr);
1917		} else {
1918			ASSERT3P(datacnt, !=, 0);
1919
1920			/*
1921			 * Each individual buffer holds a unique reference,
1922			 * thus we must remove each of these references one
1923			 * at a time.
1924			 */
1925			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
1926			    buf = buf->b_next) {
1927				(void) refcount_remove_many(
1928				    &old_state->arcs_size, hdr->b_size, buf);
1929			}
1930		}
1931	}
1932
1933	if (HDR_HAS_L1HDR(hdr))
1934		hdr->b_l1hdr.b_state = new_state;
1935
1936	/*
1937	 * L2 headers should never be on the L2 state list since they don't
1938	 * have L1 headers allocated.
1939	 */
1940	ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
1941	    multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
1942}
1943
1944void
1945arc_space_consume(uint64_t space, arc_space_type_t type)
1946{
1947	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1948
1949	switch (type) {
1950	case ARC_SPACE_DATA:
1951		ARCSTAT_INCR(arcstat_data_size, space);
1952		break;
1953	case ARC_SPACE_META:
1954		ARCSTAT_INCR(arcstat_metadata_size, space);
1955		break;
1956	case ARC_SPACE_OTHER:
1957		ARCSTAT_INCR(arcstat_other_size, space);
1958		break;
1959	case ARC_SPACE_HDRS:
1960		ARCSTAT_INCR(arcstat_hdr_size, space);
1961		break;
1962	case ARC_SPACE_L2HDRS:
1963		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1964		break;
1965	}
1966
1967	if (type != ARC_SPACE_DATA)
1968		ARCSTAT_INCR(arcstat_meta_used, space);
1969
1970	atomic_add_64(&arc_size, space);
1971}
1972
1973void
1974arc_space_return(uint64_t space, arc_space_type_t type)
1975{
1976	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1977
1978	switch (type) {
1979	case ARC_SPACE_DATA:
1980		ARCSTAT_INCR(arcstat_data_size, -space);
1981		break;
1982	case ARC_SPACE_META:
1983		ARCSTAT_INCR(arcstat_metadata_size, -space);
1984		break;
1985	case ARC_SPACE_OTHER:
1986		ARCSTAT_INCR(arcstat_other_size, -space);
1987		break;
1988	case ARC_SPACE_HDRS:
1989		ARCSTAT_INCR(arcstat_hdr_size, -space);
1990		break;
1991	case ARC_SPACE_L2HDRS:
1992		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1993		break;
1994	}
1995
1996	if (type != ARC_SPACE_DATA) {
1997		ASSERT(arc_meta_used >= space);
1998		if (arc_meta_max < arc_meta_used)
1999			arc_meta_max = arc_meta_used;
2000		ARCSTAT_INCR(arcstat_meta_used, -space);
2001	}
2002
2003	ASSERT(arc_size >= space);
2004	atomic_add_64(&arc_size, -space);
2005}
2006
2007arc_buf_t *
2008arc_buf_alloc(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type)
2009{
2010	arc_buf_hdr_t *hdr;
2011	arc_buf_t *buf;
2012
2013	ASSERT3U(size, >, 0);
2014	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2015	ASSERT(BUF_EMPTY(hdr));
2016	ASSERT3P(hdr->b_freeze_cksum, ==, NULL);
2017	hdr->b_size = size;
2018	hdr->b_spa = spa_load_guid(spa);
2019
2020	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2021	buf->b_hdr = hdr;
2022	buf->b_data = NULL;
2023	buf->b_efunc = NULL;
2024	buf->b_private = NULL;
2025	buf->b_next = NULL;
2026
2027	hdr->b_flags = arc_bufc_to_flags(type);
2028	hdr->b_flags |= ARC_FLAG_HAS_L1HDR;
2029
2030	hdr->b_l1hdr.b_buf = buf;
2031	hdr->b_l1hdr.b_state = arc_anon;
2032	hdr->b_l1hdr.b_arc_access = 0;
2033	hdr->b_l1hdr.b_datacnt = 1;
2034	hdr->b_l1hdr.b_tmp_cdata = NULL;
2035
2036	arc_get_data_buf(buf);
2037	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2038	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2039
2040	return (buf);
2041}
2042
2043static char *arc_onloan_tag = "onloan";
2044
2045/*
2046 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2047 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2048 * buffers must be returned to the arc before they can be used by the DMU or
2049 * freed.
2050 */
2051arc_buf_t *
2052arc_loan_buf(spa_t *spa, int size)
2053{
2054	arc_buf_t *buf;
2055
2056	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
2057
2058	atomic_add_64(&arc_loaned_bytes, size);
2059	return (buf);
2060}
2061
2062/*
2063 * Return a loaned arc buffer to the arc.
2064 */
2065void
2066arc_return_buf(arc_buf_t *buf, void *tag)
2067{
2068	arc_buf_hdr_t *hdr = buf->b_hdr;
2069
2070	ASSERT(buf->b_data != NULL);
2071	ASSERT(HDR_HAS_L1HDR(hdr));
2072	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2073	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2074
2075	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
2076}
2077
2078/* Detach an arc_buf from a dbuf (tag) */
2079void
2080arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2081{
2082	arc_buf_hdr_t *hdr = buf->b_hdr;
2083
2084	ASSERT(buf->b_data != NULL);
2085	ASSERT(HDR_HAS_L1HDR(hdr));
2086	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2087	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2088	buf->b_efunc = NULL;
2089	buf->b_private = NULL;
2090
2091	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
2092}
2093
2094static arc_buf_t *
2095arc_buf_clone(arc_buf_t *from)
2096{
2097	arc_buf_t *buf;
2098	arc_buf_hdr_t *hdr = from->b_hdr;
2099	uint64_t size = hdr->b_size;
2100
2101	ASSERT(HDR_HAS_L1HDR(hdr));
2102	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2103
2104	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2105	buf->b_hdr = hdr;
2106	buf->b_data = NULL;
2107	buf->b_efunc = NULL;
2108	buf->b_private = NULL;
2109	buf->b_next = hdr->b_l1hdr.b_buf;
2110	hdr->b_l1hdr.b_buf = buf;
2111	arc_get_data_buf(buf);
2112	bcopy(from->b_data, buf->b_data, size);
2113
2114	/*
2115	 * This buffer already exists in the arc so create a duplicate
2116	 * copy for the caller.  If the buffer is associated with user data
2117	 * then track the size and number of duplicates.  These stats will be
2118	 * updated as duplicate buffers are created and destroyed.
2119	 */
2120	if (HDR_ISTYPE_DATA(hdr)) {
2121		ARCSTAT_BUMP(arcstat_duplicate_buffers);
2122		ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
2123	}
2124	hdr->b_l1hdr.b_datacnt += 1;
2125	return (buf);
2126}
2127
2128void
2129arc_buf_add_ref(arc_buf_t *buf, void* tag)
2130{
2131	arc_buf_hdr_t *hdr;
2132	kmutex_t *hash_lock;
2133
2134	/*
2135	 * Check to see if this buffer is evicted.  Callers
2136	 * must verify b_data != NULL to know if the add_ref
2137	 * was successful.
2138	 */
2139	mutex_enter(&buf->b_evict_lock);
2140	if (buf->b_data == NULL) {
2141		mutex_exit(&buf->b_evict_lock);
2142		return;
2143	}
2144	hash_lock = HDR_LOCK(buf->b_hdr);
2145	mutex_enter(hash_lock);
2146	hdr = buf->b_hdr;
2147	ASSERT(HDR_HAS_L1HDR(hdr));
2148	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2149	mutex_exit(&buf->b_evict_lock);
2150
2151	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
2152	    hdr->b_l1hdr.b_state == arc_mfu);
2153
2154	add_reference(hdr, hash_lock, tag);
2155	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2156	arc_access(hdr, hash_lock);
2157	mutex_exit(hash_lock);
2158	ARCSTAT_BUMP(arcstat_hits);
2159	ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
2160	    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
2161	    data, metadata, hits);
2162}
2163
2164static void
2165arc_buf_free_on_write(void *data, size_t size,
2166    void (*free_func)(void *, size_t))
2167{
2168	l2arc_data_free_t *df;
2169
2170	df = kmem_alloc(sizeof (*df), KM_SLEEP);
2171	df->l2df_data = data;
2172	df->l2df_size = size;
2173	df->l2df_func = free_func;
2174	mutex_enter(&l2arc_free_on_write_mtx);
2175	list_insert_head(l2arc_free_on_write, df);
2176	mutex_exit(&l2arc_free_on_write_mtx);
2177}
2178
2179/*
2180 * Free the arc data buffer.  If it is an l2arc write in progress,
2181 * the buffer is placed on l2arc_free_on_write to be freed later.
2182 */
2183static void
2184arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
2185{
2186	arc_buf_hdr_t *hdr = buf->b_hdr;
2187
2188	if (HDR_L2_WRITING(hdr)) {
2189		arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
2190		ARCSTAT_BUMP(arcstat_l2_free_on_write);
2191	} else {
2192		free_func(buf->b_data, hdr->b_size);
2193	}
2194}
2195
2196static void
2197arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
2198{
2199	ASSERT(HDR_HAS_L2HDR(hdr));
2200	ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx));
2201
2202	/*
2203	 * The b_tmp_cdata field is linked off of the b_l1hdr, so if
2204	 * that doesn't exist, the header is in the arc_l2c_only state,
2205	 * and there isn't anything to free (it's already been freed).
2206	 */
2207	if (!HDR_HAS_L1HDR(hdr))
2208		return;
2209
2210	/*
2211	 * The header isn't being written to the l2arc device, thus it
2212	 * shouldn't have a b_tmp_cdata to free.
2213	 */
2214	if (!HDR_L2_WRITING(hdr)) {
2215		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2216		return;
2217	}
2218
2219	/*
2220	 * The header does not have compression enabled. This can be due
2221	 * to the buffer not being compressible, or because we're
2222	 * freeing the buffer before the second phase of
2223	 * l2arc_write_buffer() has started (which does the compression
2224	 * step). In either case, b_tmp_cdata does not point to a
2225	 * separately compressed buffer, so there's nothing to free (it
2226	 * points to the same buffer as the arc_buf_t's b_data field).
2227	 */
2228	if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) {
2229		hdr->b_l1hdr.b_tmp_cdata = NULL;
2230		return;
2231	}
2232
2233	/*
2234	 * There's nothing to free since the buffer was all zero's and
2235	 * compressed to a zero length buffer.
2236	 */
2237	if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_EMPTY) {
2238		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2239		return;
2240	}
2241
2242	ASSERT(L2ARC_IS_VALID_COMPRESS(HDR_GET_COMPRESS(hdr)));
2243
2244	arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata,
2245	    hdr->b_size, zio_data_buf_free);
2246
2247	ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
2248	hdr->b_l1hdr.b_tmp_cdata = NULL;
2249}
2250
2251/*
2252 * Free up buf->b_data and if 'remove' is set, then pull the
2253 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
2254 */
2255static void
2256arc_buf_destroy(arc_buf_t *buf, boolean_t remove)
2257{
2258	arc_buf_t **bufp;
2259
2260	/* free up data associated with the buf */
2261	if (buf->b_data != NULL) {
2262		arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
2263		uint64_t size = buf->b_hdr->b_size;
2264		arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
2265
2266		arc_cksum_verify(buf);
2267#ifdef illumos
2268		arc_buf_unwatch(buf);
2269#endif /* illumos */
2270
2271		if (type == ARC_BUFC_METADATA) {
2272			arc_buf_data_free(buf, zio_buf_free);
2273			arc_space_return(size, ARC_SPACE_META);
2274		} else {
2275			ASSERT(type == ARC_BUFC_DATA);
2276			arc_buf_data_free(buf, zio_data_buf_free);
2277			arc_space_return(size, ARC_SPACE_DATA);
2278		}
2279
2280		/* protected by hash lock, if in the hash table */
2281		if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
2282			uint64_t *cnt = &state->arcs_lsize[type];
2283
2284			ASSERT(refcount_is_zero(
2285			    &buf->b_hdr->b_l1hdr.b_refcnt));
2286			ASSERT(state != arc_anon && state != arc_l2c_only);
2287
2288			ASSERT3U(*cnt, >=, size);
2289			atomic_add_64(cnt, -size);
2290		}
2291
2292		(void) refcount_remove_many(&state->arcs_size, size, buf);
2293		buf->b_data = NULL;
2294
2295		/*
2296		 * If we're destroying a duplicate buffer make sure
2297		 * that the appropriate statistics are updated.
2298		 */
2299		if (buf->b_hdr->b_l1hdr.b_datacnt > 1 &&
2300		    HDR_ISTYPE_DATA(buf->b_hdr)) {
2301			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
2302			ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
2303		}
2304		ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0);
2305		buf->b_hdr->b_l1hdr.b_datacnt -= 1;
2306	}
2307
2308	/* only remove the buf if requested */
2309	if (!remove)
2310		return;
2311
2312	/* remove the buf from the hdr list */
2313	for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf;
2314	    bufp = &(*bufp)->b_next)
2315		continue;
2316	*bufp = buf->b_next;
2317	buf->b_next = NULL;
2318
2319	ASSERT(buf->b_efunc == NULL);
2320
2321	/* clean up the buf */
2322	buf->b_hdr = NULL;
2323	kmem_cache_free(buf_cache, buf);
2324}
2325
2326static void
2327arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2328{
2329	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2330	l2arc_dev_t *dev = l2hdr->b_dev;
2331
2332	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2333	ASSERT(HDR_HAS_L2HDR(hdr));
2334
2335	list_remove(&dev->l2ad_buflist, hdr);
2336
2337	/*
2338	 * We don't want to leak the b_tmp_cdata buffer that was
2339	 * allocated in l2arc_write_buffers()
2340	 */
2341	arc_buf_l2_cdata_free(hdr);
2342
2343	/*
2344	 * If the l2hdr's b_daddr is equal to L2ARC_ADDR_UNSET, then
2345	 * this header is being processed by l2arc_write_buffers() (i.e.
2346	 * it's in the first stage of l2arc_write_buffers()).
2347	 * Re-affirming that truth here, just to serve as a reminder. If
2348	 * b_daddr does not equal L2ARC_ADDR_UNSET, then the header may or
2349	 * may not have its HDR_L2_WRITING flag set. (the write may have
2350	 * completed, in which case HDR_L2_WRITING will be false and the
2351	 * b_daddr field will point to the address of the buffer on disk).
2352	 */
2353	IMPLY(l2hdr->b_daddr == L2ARC_ADDR_UNSET, HDR_L2_WRITING(hdr));
2354
2355	/*
2356	 * If b_daddr is equal to L2ARC_ADDR_UNSET, we're racing with
2357	 * l2arc_write_buffers(). Since we've just removed this header
2358	 * from the l2arc buffer list, this header will never reach the
2359	 * second stage of l2arc_write_buffers(), which increments the
2360	 * accounting stats for this header. Thus, we must be careful
2361	 * not to decrement them for this header either.
2362	 */
2363	if (l2hdr->b_daddr != L2ARC_ADDR_UNSET) {
2364		ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
2365		ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
2366
2367		vdev_space_update(dev->l2ad_vdev,
2368		    -l2hdr->b_asize, 0, 0);
2369
2370		(void) refcount_remove_many(&dev->l2ad_alloc,
2371		    l2hdr->b_asize, hdr);
2372	}
2373
2374	hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
2375}
2376
2377static void
2378arc_hdr_destroy(arc_buf_hdr_t *hdr)
2379{
2380	if (HDR_HAS_L1HDR(hdr)) {
2381		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
2382		    hdr->b_l1hdr.b_datacnt > 0);
2383		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2384		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2385	}
2386	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2387	ASSERT(!HDR_IN_HASH_TABLE(hdr));
2388
2389	if (HDR_HAS_L2HDR(hdr)) {
2390		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2391		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
2392
2393		if (!buflist_held)
2394			mutex_enter(&dev->l2ad_mtx);
2395
2396		/*
2397		 * Even though we checked this conditional above, we
2398		 * need to check this again now that we have the
2399		 * l2ad_mtx. This is because we could be racing with
2400		 * another thread calling l2arc_evict() which might have
2401		 * destroyed this header's L2 portion as we were waiting
2402		 * to acquire the l2ad_mtx. If that happens, we don't
2403		 * want to re-destroy the header's L2 portion.
2404		 */
2405		if (HDR_HAS_L2HDR(hdr)) {
2406			if (hdr->b_l2hdr.b_daddr != L2ARC_ADDR_UNSET)
2407				trim_map_free(dev->l2ad_vdev,
2408				    hdr->b_l2hdr.b_daddr,
2409				    hdr->b_l2hdr.b_asize, 0);
2410			arc_hdr_l2hdr_destroy(hdr);
2411		}
2412
2413		if (!buflist_held)
2414			mutex_exit(&dev->l2ad_mtx);
2415	}
2416
2417	if (!BUF_EMPTY(hdr))
2418		buf_discard_identity(hdr);
2419
2420	if (hdr->b_freeze_cksum != NULL) {
2421		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
2422		hdr->b_freeze_cksum = NULL;
2423	}
2424
2425	if (HDR_HAS_L1HDR(hdr)) {
2426		while (hdr->b_l1hdr.b_buf) {
2427			arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2428
2429			if (buf->b_efunc != NULL) {
2430				mutex_enter(&arc_user_evicts_lock);
2431				mutex_enter(&buf->b_evict_lock);
2432				ASSERT(buf->b_hdr != NULL);
2433				arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE);
2434				hdr->b_l1hdr.b_buf = buf->b_next;
2435				buf->b_hdr = &arc_eviction_hdr;
2436				buf->b_next = arc_eviction_list;
2437				arc_eviction_list = buf;
2438				mutex_exit(&buf->b_evict_lock);
2439				cv_signal(&arc_user_evicts_cv);
2440				mutex_exit(&arc_user_evicts_lock);
2441			} else {
2442				arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE);
2443			}
2444		}
2445#ifdef ZFS_DEBUG
2446		if (hdr->b_l1hdr.b_thawed != NULL) {
2447			kmem_free(hdr->b_l1hdr.b_thawed, 1);
2448			hdr->b_l1hdr.b_thawed = NULL;
2449		}
2450#endif
2451	}
2452
2453	ASSERT3P(hdr->b_hash_next, ==, NULL);
2454	if (HDR_HAS_L1HDR(hdr)) {
2455		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2456		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
2457		kmem_cache_free(hdr_full_cache, hdr);
2458	} else {
2459		kmem_cache_free(hdr_l2only_cache, hdr);
2460	}
2461}
2462
2463void
2464arc_buf_free(arc_buf_t *buf, void *tag)
2465{
2466	arc_buf_hdr_t *hdr = buf->b_hdr;
2467	int hashed = hdr->b_l1hdr.b_state != arc_anon;
2468
2469	ASSERT(buf->b_efunc == NULL);
2470	ASSERT(buf->b_data != NULL);
2471
2472	if (hashed) {
2473		kmutex_t *hash_lock = HDR_LOCK(hdr);
2474
2475		mutex_enter(hash_lock);
2476		hdr = buf->b_hdr;
2477		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2478
2479		(void) remove_reference(hdr, hash_lock, tag);
2480		if (hdr->b_l1hdr.b_datacnt > 1) {
2481			arc_buf_destroy(buf, TRUE);
2482		} else {
2483			ASSERT(buf == hdr->b_l1hdr.b_buf);
2484			ASSERT(buf->b_efunc == NULL);
2485			hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2486		}
2487		mutex_exit(hash_lock);
2488	} else if (HDR_IO_IN_PROGRESS(hdr)) {
2489		int destroy_hdr;
2490		/*
2491		 * We are in the middle of an async write.  Don't destroy
2492		 * this buffer unless the write completes before we finish
2493		 * decrementing the reference count.
2494		 */
2495		mutex_enter(&arc_user_evicts_lock);
2496		(void) remove_reference(hdr, NULL, tag);
2497		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2498		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
2499		mutex_exit(&arc_user_evicts_lock);
2500		if (destroy_hdr)
2501			arc_hdr_destroy(hdr);
2502	} else {
2503		if (remove_reference(hdr, NULL, tag) > 0)
2504			arc_buf_destroy(buf, TRUE);
2505		else
2506			arc_hdr_destroy(hdr);
2507	}
2508}
2509
2510boolean_t
2511arc_buf_remove_ref(arc_buf_t *buf, void* tag)
2512{
2513	arc_buf_hdr_t *hdr = buf->b_hdr;
2514	kmutex_t *hash_lock = HDR_LOCK(hdr);
2515	boolean_t no_callback = (buf->b_efunc == NULL);
2516
2517	if (hdr->b_l1hdr.b_state == arc_anon) {
2518		ASSERT(hdr->b_l1hdr.b_datacnt == 1);
2519		arc_buf_free(buf, tag);
2520		return (no_callback);
2521	}
2522
2523	mutex_enter(hash_lock);
2524	hdr = buf->b_hdr;
2525	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
2526	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2527	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2528	ASSERT(buf->b_data != NULL);
2529
2530	(void) remove_reference(hdr, hash_lock, tag);
2531	if (hdr->b_l1hdr.b_datacnt > 1) {
2532		if (no_callback)
2533			arc_buf_destroy(buf, TRUE);
2534	} else if (no_callback) {
2535		ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL);
2536		ASSERT(buf->b_efunc == NULL);
2537		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2538	}
2539	ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 ||
2540	    refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2541	mutex_exit(hash_lock);
2542	return (no_callback);
2543}
2544
2545int32_t
2546arc_buf_size(arc_buf_t *buf)
2547{
2548	return (buf->b_hdr->b_size);
2549}
2550
2551/*
2552 * Called from the DMU to determine if the current buffer should be
2553 * evicted. In order to ensure proper locking, the eviction must be initiated
2554 * from the DMU. Return true if the buffer is associated with user data and
2555 * duplicate buffers still exist.
2556 */
2557boolean_t
2558arc_buf_eviction_needed(arc_buf_t *buf)
2559{
2560	arc_buf_hdr_t *hdr;
2561	boolean_t evict_needed = B_FALSE;
2562
2563	if (zfs_disable_dup_eviction)
2564		return (B_FALSE);
2565
2566	mutex_enter(&buf->b_evict_lock);
2567	hdr = buf->b_hdr;
2568	if (hdr == NULL) {
2569		/*
2570		 * We are in arc_do_user_evicts(); let that function
2571		 * perform the eviction.
2572		 */
2573		ASSERT(buf->b_data == NULL);
2574		mutex_exit(&buf->b_evict_lock);
2575		return (B_FALSE);
2576	} else if (buf->b_data == NULL) {
2577		/*
2578		 * We have already been added to the arc eviction list;
2579		 * recommend eviction.
2580		 */
2581		ASSERT3P(hdr, ==, &arc_eviction_hdr);
2582		mutex_exit(&buf->b_evict_lock);
2583		return (B_TRUE);
2584	}
2585
2586	if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr))
2587		evict_needed = B_TRUE;
2588
2589	mutex_exit(&buf->b_evict_lock);
2590	return (evict_needed);
2591}
2592
2593/*
2594 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
2595 * state of the header is dependent on it's state prior to entering this
2596 * function. The following transitions are possible:
2597 *
2598 *    - arc_mru -> arc_mru_ghost
2599 *    - arc_mfu -> arc_mfu_ghost
2600 *    - arc_mru_ghost -> arc_l2c_only
2601 *    - arc_mru_ghost -> deleted
2602 *    - arc_mfu_ghost -> arc_l2c_only
2603 *    - arc_mfu_ghost -> deleted
2604 */
2605static int64_t
2606arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
2607{
2608	arc_state_t *evicted_state, *state;
2609	int64_t bytes_evicted = 0;
2610
2611	ASSERT(MUTEX_HELD(hash_lock));
2612	ASSERT(HDR_HAS_L1HDR(hdr));
2613
2614	state = hdr->b_l1hdr.b_state;
2615	if (GHOST_STATE(state)) {
2616		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2617		ASSERT(hdr->b_l1hdr.b_buf == NULL);
2618
2619		/*
2620		 * l2arc_write_buffers() relies on a header's L1 portion
2621		 * (i.e. it's b_tmp_cdata field) during it's write phase.
2622		 * Thus, we cannot push a header onto the arc_l2c_only
2623		 * state (removing it's L1 piece) until the header is
2624		 * done being written to the l2arc.
2625		 */
2626		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
2627			ARCSTAT_BUMP(arcstat_evict_l2_skip);
2628			return (bytes_evicted);
2629		}
2630
2631		ARCSTAT_BUMP(arcstat_deleted);
2632		bytes_evicted += hdr->b_size;
2633
2634		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
2635
2636		if (HDR_HAS_L2HDR(hdr)) {
2637			/*
2638			 * This buffer is cached on the 2nd Level ARC;
2639			 * don't destroy the header.
2640			 */
2641			arc_change_state(arc_l2c_only, hdr, hash_lock);
2642			/*
2643			 * dropping from L1+L2 cached to L2-only,
2644			 * realloc to remove the L1 header.
2645			 */
2646			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
2647			    hdr_l2only_cache);
2648		} else {
2649			arc_change_state(arc_anon, hdr, hash_lock);
2650			arc_hdr_destroy(hdr);
2651		}
2652		return (bytes_evicted);
2653	}
2654
2655	ASSERT(state == arc_mru || state == arc_mfu);
2656	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2657
2658	/* prefetch buffers have a minimum lifespan */
2659	if (HDR_IO_IN_PROGRESS(hdr) ||
2660	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2661	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
2662	    arc_min_prefetch_lifespan)) {
2663		ARCSTAT_BUMP(arcstat_evict_skip);
2664		return (bytes_evicted);
2665	}
2666
2667	ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
2668	ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
2669	while (hdr->b_l1hdr.b_buf) {
2670		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2671		if (!mutex_tryenter(&buf->b_evict_lock)) {
2672			ARCSTAT_BUMP(arcstat_mutex_miss);
2673			break;
2674		}
2675		if (buf->b_data != NULL)
2676			bytes_evicted += hdr->b_size;
2677		if (buf->b_efunc != NULL) {
2678			mutex_enter(&arc_user_evicts_lock);
2679			arc_buf_destroy(buf, FALSE);
2680			hdr->b_l1hdr.b_buf = buf->b_next;
2681			buf->b_hdr = &arc_eviction_hdr;
2682			buf->b_next = arc_eviction_list;
2683			arc_eviction_list = buf;
2684			cv_signal(&arc_user_evicts_cv);
2685			mutex_exit(&arc_user_evicts_lock);
2686			mutex_exit(&buf->b_evict_lock);
2687		} else {
2688			mutex_exit(&buf->b_evict_lock);
2689			arc_buf_destroy(buf, TRUE);
2690		}
2691	}
2692
2693	if (HDR_HAS_L2HDR(hdr)) {
2694		ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size);
2695	} else {
2696		if (l2arc_write_eligible(hdr->b_spa, hdr))
2697			ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size);
2698		else
2699			ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size);
2700	}
2701
2702	if (hdr->b_l1hdr.b_datacnt == 0) {
2703		arc_change_state(evicted_state, hdr, hash_lock);
2704		ASSERT(HDR_IN_HASH_TABLE(hdr));
2705		hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
2706		hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
2707		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
2708	}
2709
2710	return (bytes_evicted);
2711}
2712
2713static uint64_t
2714arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
2715    uint64_t spa, int64_t bytes)
2716{
2717	multilist_sublist_t *mls;
2718	uint64_t bytes_evicted = 0;
2719	arc_buf_hdr_t *hdr;
2720	kmutex_t *hash_lock;
2721	int evict_count = 0;
2722
2723	ASSERT3P(marker, !=, NULL);
2724	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2725
2726	mls = multilist_sublist_lock(ml, idx);
2727
2728	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
2729	    hdr = multilist_sublist_prev(mls, marker)) {
2730		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
2731		    (evict_count >= zfs_arc_evict_batch_limit))
2732			break;
2733
2734		/*
2735		 * To keep our iteration location, move the marker
2736		 * forward. Since we're not holding hdr's hash lock, we
2737		 * must be very careful and not remove 'hdr' from the
2738		 * sublist. Otherwise, other consumers might mistake the
2739		 * 'hdr' as not being on a sublist when they call the
2740		 * multilist_link_active() function (they all rely on
2741		 * the hash lock protecting concurrent insertions and
2742		 * removals). multilist_sublist_move_forward() was
2743		 * specifically implemented to ensure this is the case
2744		 * (only 'marker' will be removed and re-inserted).
2745		 */
2746		multilist_sublist_move_forward(mls, marker);
2747
2748		/*
2749		 * The only case where the b_spa field should ever be
2750		 * zero, is the marker headers inserted by
2751		 * arc_evict_state(). It's possible for multiple threads
2752		 * to be calling arc_evict_state() concurrently (e.g.
2753		 * dsl_pool_close() and zio_inject_fault()), so we must
2754		 * skip any markers we see from these other threads.
2755		 */
2756		if (hdr->b_spa == 0)
2757			continue;
2758
2759		/* we're only interested in evicting buffers of a certain spa */
2760		if (spa != 0 && hdr->b_spa != spa) {
2761			ARCSTAT_BUMP(arcstat_evict_skip);
2762			continue;
2763		}
2764
2765		hash_lock = HDR_LOCK(hdr);
2766
2767		/*
2768		 * We aren't calling this function from any code path
2769		 * that would already be holding a hash lock, so we're
2770		 * asserting on this assumption to be defensive in case
2771		 * this ever changes. Without this check, it would be
2772		 * possible to incorrectly increment arcstat_mutex_miss
2773		 * below (e.g. if the code changed such that we called
2774		 * this function with a hash lock held).
2775		 */
2776		ASSERT(!MUTEX_HELD(hash_lock));
2777
2778		if (mutex_tryenter(hash_lock)) {
2779			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
2780			mutex_exit(hash_lock);
2781
2782			bytes_evicted += evicted;
2783
2784			/*
2785			 * If evicted is zero, arc_evict_hdr() must have
2786			 * decided to skip this header, don't increment
2787			 * evict_count in this case.
2788			 */
2789			if (evicted != 0)
2790				evict_count++;
2791
2792			/*
2793			 * If arc_size isn't overflowing, signal any
2794			 * threads that might happen to be waiting.
2795			 *
2796			 * For each header evicted, we wake up a single
2797			 * thread. If we used cv_broadcast, we could
2798			 * wake up "too many" threads causing arc_size
2799			 * to significantly overflow arc_c; since
2800			 * arc_get_data_buf() doesn't check for overflow
2801			 * when it's woken up (it doesn't because it's
2802			 * possible for the ARC to be overflowing while
2803			 * full of un-evictable buffers, and the
2804			 * function should proceed in this case).
2805			 *
2806			 * If threads are left sleeping, due to not
2807			 * using cv_broadcast, they will be woken up
2808			 * just before arc_reclaim_thread() sleeps.
2809			 */
2810			mutex_enter(&arc_reclaim_lock);
2811			if (!arc_is_overflowing())
2812				cv_signal(&arc_reclaim_waiters_cv);
2813			mutex_exit(&arc_reclaim_lock);
2814		} else {
2815			ARCSTAT_BUMP(arcstat_mutex_miss);
2816		}
2817	}
2818
2819	multilist_sublist_unlock(mls);
2820
2821	return (bytes_evicted);
2822}
2823
2824/*
2825 * Evict buffers from the given arc state, until we've removed the
2826 * specified number of bytes. Move the removed buffers to the
2827 * appropriate evict state.
2828 *
2829 * This function makes a "best effort". It skips over any buffers
2830 * it can't get a hash_lock on, and so, may not catch all candidates.
2831 * It may also return without evicting as much space as requested.
2832 *
2833 * If bytes is specified using the special value ARC_EVICT_ALL, this
2834 * will evict all available (i.e. unlocked and evictable) buffers from
2835 * the given arc state; which is used by arc_flush().
2836 */
2837static uint64_t
2838arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
2839    arc_buf_contents_t type)
2840{
2841	uint64_t total_evicted = 0;
2842	multilist_t *ml = &state->arcs_list[type];
2843	int num_sublists;
2844	arc_buf_hdr_t **markers;
2845
2846	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2847
2848	num_sublists = multilist_get_num_sublists(ml);
2849
2850	/*
2851	 * If we've tried to evict from each sublist, made some
2852	 * progress, but still have not hit the target number of bytes
2853	 * to evict, we want to keep trying. The markers allow us to
2854	 * pick up where we left off for each individual sublist, rather
2855	 * than starting from the tail each time.
2856	 */
2857	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
2858	for (int i = 0; i < num_sublists; i++) {
2859		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
2860
2861		/*
2862		 * A b_spa of 0 is used to indicate that this header is
2863		 * a marker. This fact is used in arc_adjust_type() and
2864		 * arc_evict_state_impl().
2865		 */
2866		markers[i]->b_spa = 0;
2867
2868		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2869		multilist_sublist_insert_tail(mls, markers[i]);
2870		multilist_sublist_unlock(mls);
2871	}
2872
2873	/*
2874	 * While we haven't hit our target number of bytes to evict, or
2875	 * we're evicting all available buffers.
2876	 */
2877	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
2878		/*
2879		 * Start eviction using a randomly selected sublist,
2880		 * this is to try and evenly balance eviction across all
2881		 * sublists. Always starting at the same sublist
2882		 * (e.g. index 0) would cause evictions to favor certain
2883		 * sublists over others.
2884		 */
2885		int sublist_idx = multilist_get_random_index(ml);
2886		uint64_t scan_evicted = 0;
2887
2888		for (int i = 0; i < num_sublists; i++) {
2889			uint64_t bytes_remaining;
2890			uint64_t bytes_evicted;
2891
2892			if (bytes == ARC_EVICT_ALL)
2893				bytes_remaining = ARC_EVICT_ALL;
2894			else if (total_evicted < bytes)
2895				bytes_remaining = bytes - total_evicted;
2896			else
2897				break;
2898
2899			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
2900			    markers[sublist_idx], spa, bytes_remaining);
2901
2902			scan_evicted += bytes_evicted;
2903			total_evicted += bytes_evicted;
2904
2905			/* we've reached the end, wrap to the beginning */
2906			if (++sublist_idx >= num_sublists)
2907				sublist_idx = 0;
2908		}
2909
2910		/*
2911		 * If we didn't evict anything during this scan, we have
2912		 * no reason to believe we'll evict more during another
2913		 * scan, so break the loop.
2914		 */
2915		if (scan_evicted == 0) {
2916			/* This isn't possible, let's make that obvious */
2917			ASSERT3S(bytes, !=, 0);
2918
2919			/*
2920			 * When bytes is ARC_EVICT_ALL, the only way to
2921			 * break the loop is when scan_evicted is zero.
2922			 * In that case, we actually have evicted enough,
2923			 * so we don't want to increment the kstat.
2924			 */
2925			if (bytes != ARC_EVICT_ALL) {
2926				ASSERT3S(total_evicted, <, bytes);
2927				ARCSTAT_BUMP(arcstat_evict_not_enough);
2928			}
2929
2930			break;
2931		}
2932	}
2933
2934	for (int i = 0; i < num_sublists; i++) {
2935		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2936		multilist_sublist_remove(mls, markers[i]);
2937		multilist_sublist_unlock(mls);
2938
2939		kmem_cache_free(hdr_full_cache, markers[i]);
2940	}
2941	kmem_free(markers, sizeof (*markers) * num_sublists);
2942
2943	return (total_evicted);
2944}
2945
2946/*
2947 * Flush all "evictable" data of the given type from the arc state
2948 * specified. This will not evict any "active" buffers (i.e. referenced).
2949 *
2950 * When 'retry' is set to FALSE, the function will make a single pass
2951 * over the state and evict any buffers that it can. Since it doesn't
2952 * continually retry the eviction, it might end up leaving some buffers
2953 * in the ARC due to lock misses.
2954 *
2955 * When 'retry' is set to TRUE, the function will continually retry the
2956 * eviction until *all* evictable buffers have been removed from the
2957 * state. As a result, if concurrent insertions into the state are
2958 * allowed (e.g. if the ARC isn't shutting down), this function might
2959 * wind up in an infinite loop, continually trying to evict buffers.
2960 */
2961static uint64_t
2962arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
2963    boolean_t retry)
2964{
2965	uint64_t evicted = 0;
2966
2967	while (state->arcs_lsize[type] != 0) {
2968		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
2969
2970		if (!retry)
2971			break;
2972	}
2973
2974	return (evicted);
2975}
2976
2977/*
2978 * Evict the specified number of bytes from the state specified,
2979 * restricting eviction to the spa and type given. This function
2980 * prevents us from trying to evict more from a state's list than
2981 * is "evictable", and to skip evicting altogether when passed a
2982 * negative value for "bytes". In contrast, arc_evict_state() will
2983 * evict everything it can, when passed a negative value for "bytes".
2984 */
2985static uint64_t
2986arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
2987    arc_buf_contents_t type)
2988{
2989	int64_t delta;
2990
2991	if (bytes > 0 && state->arcs_lsize[type] > 0) {
2992		delta = MIN(state->arcs_lsize[type], bytes);
2993		return (arc_evict_state(state, spa, delta, type));
2994	}
2995
2996	return (0);
2997}
2998
2999/*
3000 * Evict metadata buffers from the cache, such that arc_meta_used is
3001 * capped by the arc_meta_limit tunable.
3002 */
3003static uint64_t
3004arc_adjust_meta(void)
3005{
3006	uint64_t total_evicted = 0;
3007	int64_t target;
3008
3009	/*
3010	 * If we're over the meta limit, we want to evict enough
3011	 * metadata to get back under the meta limit. We don't want to
3012	 * evict so much that we drop the MRU below arc_p, though. If
3013	 * we're over the meta limit more than we're over arc_p, we
3014	 * evict some from the MRU here, and some from the MFU below.
3015	 */
3016	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3017	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3018	    refcount_count(&arc_mru->arcs_size) - arc_p));
3019
3020	total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3021
3022	/*
3023	 * Similar to the above, we want to evict enough bytes to get us
3024	 * below the meta limit, but not so much as to drop us below the
3025	 * space alloted to the MFU (which is defined as arc_c - arc_p).
3026	 */
3027	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3028	    (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
3029
3030	total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3031
3032	return (total_evicted);
3033}
3034
3035/*
3036 * Return the type of the oldest buffer in the given arc state
3037 *
3038 * This function will select a random sublist of type ARC_BUFC_DATA and
3039 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3040 * is compared, and the type which contains the "older" buffer will be
3041 * returned.
3042 */
3043static arc_buf_contents_t
3044arc_adjust_type(arc_state_t *state)
3045{
3046	multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
3047	multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
3048	int data_idx = multilist_get_random_index(data_ml);
3049	int meta_idx = multilist_get_random_index(meta_ml);
3050	multilist_sublist_t *data_mls;
3051	multilist_sublist_t *meta_mls;
3052	arc_buf_contents_t type;
3053	arc_buf_hdr_t *data_hdr;
3054	arc_buf_hdr_t *meta_hdr;
3055
3056	/*
3057	 * We keep the sublist lock until we're finished, to prevent
3058	 * the headers from being destroyed via arc_evict_state().
3059	 */
3060	data_mls = multilist_sublist_lock(data_ml, data_idx);
3061	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3062
3063	/*
3064	 * These two loops are to ensure we skip any markers that
3065	 * might be at the tail of the lists due to arc_evict_state().
3066	 */
3067
3068	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3069	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3070		if (data_hdr->b_spa != 0)
3071			break;
3072	}
3073
3074	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3075	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3076		if (meta_hdr->b_spa != 0)
3077			break;
3078	}
3079
3080	if (data_hdr == NULL && meta_hdr == NULL) {
3081		type = ARC_BUFC_DATA;
3082	} else if (data_hdr == NULL) {
3083		ASSERT3P(meta_hdr, !=, NULL);
3084		type = ARC_BUFC_METADATA;
3085	} else if (meta_hdr == NULL) {
3086		ASSERT3P(data_hdr, !=, NULL);
3087		type = ARC_BUFC_DATA;
3088	} else {
3089		ASSERT3P(data_hdr, !=, NULL);
3090		ASSERT3P(meta_hdr, !=, NULL);
3091
3092		/* The headers can't be on the sublist without an L1 header */
3093		ASSERT(HDR_HAS_L1HDR(data_hdr));
3094		ASSERT(HDR_HAS_L1HDR(meta_hdr));
3095
3096		if (data_hdr->b_l1hdr.b_arc_access <
3097		    meta_hdr->b_l1hdr.b_arc_access) {
3098			type = ARC_BUFC_DATA;
3099		} else {
3100			type = ARC_BUFC_METADATA;
3101		}
3102	}
3103
3104	multilist_sublist_unlock(meta_mls);
3105	multilist_sublist_unlock(data_mls);
3106
3107	return (type);
3108}
3109
3110/*
3111 * Evict buffers from the cache, such that arc_size is capped by arc_c.
3112 */
3113static uint64_t
3114arc_adjust(void)
3115{
3116	uint64_t total_evicted = 0;
3117	uint64_t bytes;
3118	int64_t target;
3119
3120	/*
3121	 * If we're over arc_meta_limit, we want to correct that before
3122	 * potentially evicting data buffers below.
3123	 */
3124	total_evicted += arc_adjust_meta();
3125
3126	/*
3127	 * Adjust MRU size
3128	 *
3129	 * If we're over the target cache size, we want to evict enough
3130	 * from the list to get back to our target size. We don't want
3131	 * to evict too much from the MRU, such that it drops below
3132	 * arc_p. So, if we're over our target cache size more than
3133	 * the MRU is over arc_p, we'll evict enough to get back to
3134	 * arc_p here, and then evict more from the MFU below.
3135	 */
3136	target = MIN((int64_t)(arc_size - arc_c),
3137	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3138	    refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
3139
3140	/*
3141	 * If we're below arc_meta_min, always prefer to evict data.
3142	 * Otherwise, try to satisfy the requested number of bytes to
3143	 * evict from the type which contains older buffers; in an
3144	 * effort to keep newer buffers in the cache regardless of their
3145	 * type. If we cannot satisfy the number of bytes from this
3146	 * type, spill over into the next type.
3147	 */
3148	if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3149	    arc_meta_used > arc_meta_min) {
3150		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3151		total_evicted += bytes;
3152
3153		/*
3154		 * If we couldn't evict our target number of bytes from
3155		 * metadata, we try to get the rest from data.
3156		 */
3157		target -= bytes;
3158
3159		total_evicted +=
3160		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3161	} else {
3162		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3163		total_evicted += bytes;
3164
3165		/*
3166		 * If we couldn't evict our target number of bytes from
3167		 * data, we try to get the rest from metadata.
3168		 */
3169		target -= bytes;
3170
3171		total_evicted +=
3172		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3173	}
3174
3175	/*
3176	 * Adjust MFU size
3177	 *
3178	 * Now that we've tried to evict enough from the MRU to get its
3179	 * size back to arc_p, if we're still above the target cache
3180	 * size, we evict the rest from the MFU.
3181	 */
3182	target = arc_size - arc_c;
3183
3184	if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3185	    arc_meta_used > arc_meta_min) {
3186		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3187		total_evicted += bytes;
3188
3189		/*
3190		 * If we couldn't evict our target number of bytes from
3191		 * metadata, we try to get the rest from data.
3192		 */
3193		target -= bytes;
3194
3195		total_evicted +=
3196		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3197	} else {
3198		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3199		total_evicted += bytes;
3200
3201		/*
3202		 * If we couldn't evict our target number of bytes from
3203		 * data, we try to get the rest from data.
3204		 */
3205		target -= bytes;
3206
3207		total_evicted +=
3208		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3209	}
3210
3211	/*
3212	 * Adjust ghost lists
3213	 *
3214	 * In addition to the above, the ARC also defines target values
3215	 * for the ghost lists. The sum of the mru list and mru ghost
3216	 * list should never exceed the target size of the cache, and
3217	 * the sum of the mru list, mfu list, mru ghost list, and mfu
3218	 * ghost list should never exceed twice the target size of the
3219	 * cache. The following logic enforces these limits on the ghost
3220	 * caches, and evicts from them as needed.
3221	 */
3222	target = refcount_count(&arc_mru->arcs_size) +
3223	    refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3224
3225	bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3226	total_evicted += bytes;
3227
3228	target -= bytes;
3229
3230	total_evicted +=
3231	    arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3232
3233	/*
3234	 * We assume the sum of the mru list and mfu list is less than
3235	 * or equal to arc_c (we enforced this above), which means we
3236	 * can use the simpler of the two equations below:
3237	 *
3238	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3239	 *		    mru ghost + mfu ghost <= arc_c
3240	 */
3241	target = refcount_count(&arc_mru_ghost->arcs_size) +
3242	    refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3243
3244	bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3245	total_evicted += bytes;
3246
3247	target -= bytes;
3248
3249	total_evicted +=
3250	    arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3251
3252	return (total_evicted);
3253}
3254
3255static void
3256arc_do_user_evicts(void)
3257{
3258	mutex_enter(&arc_user_evicts_lock);
3259	while (arc_eviction_list != NULL) {
3260		arc_buf_t *buf = arc_eviction_list;
3261		arc_eviction_list = buf->b_next;
3262		mutex_enter(&buf->b_evict_lock);
3263		buf->b_hdr = NULL;
3264		mutex_exit(&buf->b_evict_lock);
3265		mutex_exit(&arc_user_evicts_lock);
3266
3267		if (buf->b_efunc != NULL)
3268			VERIFY0(buf->b_efunc(buf->b_private));
3269
3270		buf->b_efunc = NULL;
3271		buf->b_private = NULL;
3272		kmem_cache_free(buf_cache, buf);
3273		mutex_enter(&arc_user_evicts_lock);
3274	}
3275	mutex_exit(&arc_user_evicts_lock);
3276}
3277
3278void
3279arc_flush(spa_t *spa, boolean_t retry)
3280{
3281	uint64_t guid = 0;
3282
3283	/*
3284	 * If retry is TRUE, a spa must not be specified since we have
3285	 * no good way to determine if all of a spa's buffers have been
3286	 * evicted from an arc state.
3287	 */
3288	ASSERT(!retry || spa == 0);
3289
3290	if (spa != NULL)
3291		guid = spa_load_guid(spa);
3292
3293	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3294	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3295
3296	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3297	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3298
3299	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3300	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3301
3302	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3303	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3304
3305	arc_do_user_evicts();
3306	ASSERT(spa || arc_eviction_list == NULL);
3307}
3308
3309void
3310arc_shrink(int64_t to_free)
3311{
3312	if (arc_c > arc_c_min) {
3313		DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t,
3314			arc_c_min, uint64_t, arc_p, uint64_t, to_free);
3315		if (arc_c > arc_c_min + to_free)
3316			atomic_add_64(&arc_c, -to_free);
3317		else
3318			arc_c = arc_c_min;
3319
3320		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3321		if (arc_c > arc_size)
3322			arc_c = MAX(arc_size, arc_c_min);
3323		if (arc_p > arc_c)
3324			arc_p = (arc_c >> 1);
3325
3326		DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t,
3327			arc_p);
3328
3329		ASSERT(arc_c >= arc_c_min);
3330		ASSERT((int64_t)arc_p >= 0);
3331	}
3332
3333	if (arc_size > arc_c) {
3334		DTRACE_PROBE2(arc__shrink_adjust, uint64_t, arc_size,
3335			uint64_t, arc_c);
3336		(void) arc_adjust();
3337	}
3338}
3339
3340static long needfree = 0;
3341
3342typedef enum free_memory_reason_t {
3343	FMR_UNKNOWN,
3344	FMR_NEEDFREE,
3345	FMR_LOTSFREE,
3346	FMR_SWAPFS_MINFREE,
3347	FMR_PAGES_PP_MAXIMUM,
3348	FMR_HEAP_ARENA,
3349	FMR_ZIO_ARENA,
3350	FMR_ZIO_FRAG,
3351} free_memory_reason_t;
3352
3353int64_t last_free_memory;
3354free_memory_reason_t last_free_reason;
3355
3356/*
3357 * Additional reserve of pages for pp_reserve.
3358 */
3359int64_t arc_pages_pp_reserve = 64;
3360
3361/*
3362 * Additional reserve of pages for swapfs.
3363 */
3364int64_t arc_swapfs_reserve = 64;
3365
3366/*
3367 * Return the amount of memory that can be consumed before reclaim will be
3368 * needed.  Positive if there is sufficient free memory, negative indicates
3369 * the amount of memory that needs to be freed up.
3370 */
3371static int64_t
3372arc_available_memory(void)
3373{
3374	int64_t lowest = INT64_MAX;
3375	int64_t n;
3376	free_memory_reason_t r = FMR_UNKNOWN;
3377
3378#ifdef _KERNEL
3379	if (needfree > 0) {
3380		n = PAGESIZE * (-needfree);
3381		if (n < lowest) {
3382			lowest = n;
3383			r = FMR_NEEDFREE;
3384		}
3385	}
3386
3387	/*
3388	 * Cooperate with pagedaemon when it's time for it to scan
3389	 * and reclaim some pages.
3390	 */
3391	n = PAGESIZE * ((int64_t)freemem - zfs_arc_free_target);
3392	if (n < lowest) {
3393		lowest = n;
3394		r = FMR_LOTSFREE;
3395	}
3396
3397#ifdef sun
3398	/*
3399	 * check that we're out of range of the pageout scanner.  It starts to
3400	 * schedule paging if freemem is less than lotsfree and needfree.
3401	 * lotsfree is the high-water mark for pageout, and needfree is the
3402	 * number of needed free pages.  We add extra pages here to make sure
3403	 * the scanner doesn't start up while we're freeing memory.
3404	 */
3405	n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3406	if (n < lowest) {
3407		lowest = n;
3408		r = FMR_LOTSFREE;
3409	}
3410
3411	/*
3412	 * check to make sure that swapfs has enough space so that anon
3413	 * reservations can still succeed. anon_resvmem() checks that the
3414	 * availrmem is greater than swapfs_minfree, and the number of reserved
3415	 * swap pages.  We also add a bit of extra here just to prevent
3416	 * circumstances from getting really dire.
3417	 */
3418	n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3419	    desfree - arc_swapfs_reserve);
3420	if (n < lowest) {
3421		lowest = n;
3422		r = FMR_SWAPFS_MINFREE;
3423	}
3424
3425
3426	/*
3427	 * Check that we have enough availrmem that memory locking (e.g., via
3428	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
3429	 * stores the number of pages that cannot be locked; when availrmem
3430	 * drops below pages_pp_maximum, page locking mechanisms such as
3431	 * page_pp_lock() will fail.)
3432	 */
3433	n = PAGESIZE * (availrmem - pages_pp_maximum -
3434	    arc_pages_pp_reserve);
3435	if (n < lowest) {
3436		lowest = n;
3437		r = FMR_PAGES_PP_MAXIMUM;
3438	}
3439
3440#endif	/* sun */
3441#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
3442	/*
3443	 * If we're on an i386 platform, it's possible that we'll exhaust the
3444	 * kernel heap space before we ever run out of available physical
3445	 * memory.  Most checks of the size of the heap_area compare against
3446	 * tune.t_minarmem, which is the minimum available real memory that we
3447	 * can have in the system.  However, this is generally fixed at 25 pages
3448	 * which is so low that it's useless.  In this comparison, we seek to
3449	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3450	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
3451	 * free)
3452	 */
3453	n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
3454	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3455	if (n < lowest) {
3456		lowest = n;
3457		r = FMR_HEAP_ARENA;
3458	}
3459#define	zio_arena	NULL
3460#else
3461#define	zio_arena	heap_arena
3462#endif
3463
3464	/*
3465	 * If zio data pages are being allocated out of a separate heap segment,
3466	 * then enforce that the size of available vmem for this arena remains
3467	 * above about 1/16th free.
3468	 *
3469	 * Note: The 1/16th arena free requirement was put in place
3470	 * to aggressively evict memory from the arc in order to avoid
3471	 * memory fragmentation issues.
3472	 */
3473	if (zio_arena != NULL) {
3474		n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
3475		    (vmem_size(zio_arena, VMEM_ALLOC) >> 4);
3476		if (n < lowest) {
3477			lowest = n;
3478			r = FMR_ZIO_ARENA;
3479		}
3480	}
3481
3482	/*
3483	 * Above limits know nothing about real level of KVA fragmentation.
3484	 * Start aggressive reclamation if too little sequential KVA left.
3485	 */
3486	if (lowest > 0) {
3487		n = (vmem_size(heap_arena, VMEM_MAXFREE) < zfs_max_recordsize) ?
3488		    -((int64_t)vmem_size(heap_arena, VMEM_ALLOC) >> 4) :
3489		    INT64_MAX;
3490		if (n < lowest) {
3491			lowest = n;
3492			r = FMR_ZIO_FRAG;
3493		}
3494	}
3495
3496#else	/* _KERNEL */
3497	/* Every 100 calls, free a small amount */
3498	if (spa_get_random(100) == 0)
3499		lowest = -1024;
3500#endif	/* _KERNEL */
3501
3502	last_free_memory = lowest;
3503	last_free_reason = r;
3504	DTRACE_PROBE2(arc__available_memory, int64_t, lowest, int, r);
3505	return (lowest);
3506}
3507
3508
3509/*
3510 * Determine if the system is under memory pressure and is asking
3511 * to reclaim memory. A return value of TRUE indicates that the system
3512 * is under memory pressure and that the arc should adjust accordingly.
3513 */
3514static boolean_t
3515arc_reclaim_needed(void)
3516{
3517	return (arc_available_memory() < 0);
3518}
3519
3520extern kmem_cache_t	*zio_buf_cache[];
3521extern kmem_cache_t	*zio_data_buf_cache[];
3522extern kmem_cache_t	*range_seg_cache;
3523
3524static __noinline void
3525arc_kmem_reap_now(void)
3526{
3527	size_t			i;
3528	kmem_cache_t		*prev_cache = NULL;
3529	kmem_cache_t		*prev_data_cache = NULL;
3530
3531	DTRACE_PROBE(arc__kmem_reap_start);
3532#ifdef _KERNEL
3533	if (arc_meta_used >= arc_meta_limit) {
3534		/*
3535		 * We are exceeding our meta-data cache limit.
3536		 * Purge some DNLC entries to release holds on meta-data.
3537		 */
3538		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
3539	}
3540#if defined(__i386)
3541	/*
3542	 * Reclaim unused memory from all kmem caches.
3543	 */
3544	kmem_reap();
3545#endif
3546#endif
3547
3548	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
3549		if (zio_buf_cache[i] != prev_cache) {
3550			prev_cache = zio_buf_cache[i];
3551			kmem_cache_reap_now(zio_buf_cache[i]);
3552		}
3553		if (zio_data_buf_cache[i] != prev_data_cache) {
3554			prev_data_cache = zio_data_buf_cache[i];
3555			kmem_cache_reap_now(zio_data_buf_cache[i]);
3556		}
3557	}
3558	kmem_cache_reap_now(buf_cache);
3559	kmem_cache_reap_now(hdr_full_cache);
3560	kmem_cache_reap_now(hdr_l2only_cache);
3561	kmem_cache_reap_now(range_seg_cache);
3562
3563#ifdef sun
3564	if (zio_arena != NULL) {
3565		/*
3566		 * Ask the vmem arena to reclaim unused memory from its
3567		 * quantum caches.
3568		 */
3569		vmem_qcache_reap(zio_arena);
3570	}
3571#endif
3572	DTRACE_PROBE(arc__kmem_reap_end);
3573}
3574
3575/*
3576 * Threads can block in arc_get_data_buf() waiting for this thread to evict
3577 * enough data and signal them to proceed. When this happens, the threads in
3578 * arc_get_data_buf() are sleeping while holding the hash lock for their
3579 * particular arc header. Thus, we must be careful to never sleep on a
3580 * hash lock in this thread. This is to prevent the following deadlock:
3581 *
3582 *  - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
3583 *    waiting for the reclaim thread to signal it.
3584 *
3585 *  - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
3586 *    fails, and goes to sleep forever.
3587 *
3588 * This possible deadlock is avoided by always acquiring a hash lock
3589 * using mutex_tryenter() from arc_reclaim_thread().
3590 */
3591static void
3592arc_reclaim_thread(void *dummy __unused)
3593{
3594	clock_t			growtime = 0;
3595	callb_cpr_t		cpr;
3596
3597	CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
3598
3599	mutex_enter(&arc_reclaim_lock);
3600	while (!arc_reclaim_thread_exit) {
3601		int64_t free_memory = arc_available_memory();
3602		uint64_t evicted = 0;
3603
3604		mutex_exit(&arc_reclaim_lock);
3605
3606		if (free_memory < 0) {
3607
3608			arc_no_grow = B_TRUE;
3609			arc_warm = B_TRUE;
3610
3611			/*
3612			 * Wait at least zfs_grow_retry (default 60) seconds
3613			 * before considering growing.
3614			 */
3615			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
3616
3617			arc_kmem_reap_now();
3618
3619			/*
3620			 * If we are still low on memory, shrink the ARC
3621			 * so that we have arc_shrink_min free space.
3622			 */
3623			free_memory = arc_available_memory();
3624
3625			int64_t to_free =
3626			    (arc_c >> arc_shrink_shift) - free_memory;
3627			if (to_free > 0) {
3628#ifdef _KERNEL
3629				to_free = MAX(to_free, ptob(needfree));
3630#endif
3631				arc_shrink(to_free);
3632			}
3633		} else if (free_memory < arc_c >> arc_no_grow_shift) {
3634			arc_no_grow = B_TRUE;
3635		} else if (ddi_get_lbolt() >= growtime) {
3636			arc_no_grow = B_FALSE;
3637		}
3638
3639		evicted = arc_adjust();
3640
3641		mutex_enter(&arc_reclaim_lock);
3642
3643		/*
3644		 * If evicted is zero, we couldn't evict anything via
3645		 * arc_adjust(). This could be due to hash lock
3646		 * collisions, but more likely due to the majority of
3647		 * arc buffers being unevictable. Therefore, even if
3648		 * arc_size is above arc_c, another pass is unlikely to
3649		 * be helpful and could potentially cause us to enter an
3650		 * infinite loop.
3651		 */
3652		if (arc_size <= arc_c || evicted == 0) {
3653#ifdef _KERNEL
3654			needfree = 0;
3655#endif
3656			/*
3657			 * We're either no longer overflowing, or we
3658			 * can't evict anything more, so we should wake
3659			 * up any threads before we go to sleep.
3660			 */
3661			cv_broadcast(&arc_reclaim_waiters_cv);
3662
3663			/*
3664			 * Block until signaled, or after one second (we
3665			 * might need to perform arc_kmem_reap_now()
3666			 * even if we aren't being signalled)
3667			 */
3668			CALLB_CPR_SAFE_BEGIN(&cpr);
3669			(void) cv_timedwait(&arc_reclaim_thread_cv,
3670			    &arc_reclaim_lock, hz);
3671			CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
3672		}
3673	}
3674
3675	arc_reclaim_thread_exit = FALSE;
3676	cv_broadcast(&arc_reclaim_thread_cv);
3677	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_lock */
3678	thread_exit();
3679}
3680
3681static void
3682arc_user_evicts_thread(void *dummy __unused)
3683{
3684	callb_cpr_t cpr;
3685
3686	CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG);
3687
3688	mutex_enter(&arc_user_evicts_lock);
3689	while (!arc_user_evicts_thread_exit) {
3690		mutex_exit(&arc_user_evicts_lock);
3691
3692		arc_do_user_evicts();
3693
3694		/*
3695		 * This is necessary in order for the mdb ::arc dcmd to
3696		 * show up to date information. Since the ::arc command
3697		 * does not call the kstat's update function, without
3698		 * this call, the command may show stale stats for the
3699		 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
3700		 * with this change, the data might be up to 1 second
3701		 * out of date; but that should suffice. The arc_state_t
3702		 * structures can be queried directly if more accurate
3703		 * information is needed.
3704		 */
3705		if (arc_ksp != NULL)
3706			arc_ksp->ks_update(arc_ksp, KSTAT_READ);
3707
3708		mutex_enter(&arc_user_evicts_lock);
3709
3710		/*
3711		 * Block until signaled, or after one second (we need to
3712		 * call the arc's kstat update function regularly).
3713		 */
3714		CALLB_CPR_SAFE_BEGIN(&cpr);
3715		(void) cv_timedwait(&arc_user_evicts_cv,
3716		    &arc_user_evicts_lock, hz);
3717		CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock);
3718	}
3719
3720	arc_user_evicts_thread_exit = FALSE;
3721	cv_broadcast(&arc_user_evicts_cv);
3722	CALLB_CPR_EXIT(&cpr);		/* drops arc_user_evicts_lock */
3723	thread_exit();
3724}
3725
3726/*
3727 * Adapt arc info given the number of bytes we are trying to add and
3728 * the state that we are comming from.  This function is only called
3729 * when we are adding new content to the cache.
3730 */
3731static void
3732arc_adapt(int bytes, arc_state_t *state)
3733{
3734	int mult;
3735	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
3736	int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
3737	int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
3738
3739	if (state == arc_l2c_only)
3740		return;
3741
3742	ASSERT(bytes > 0);
3743	/*
3744	 * Adapt the target size of the MRU list:
3745	 *	- if we just hit in the MRU ghost list, then increase
3746	 *	  the target size of the MRU list.
3747	 *	- if we just hit in the MFU ghost list, then increase
3748	 *	  the target size of the MFU list by decreasing the
3749	 *	  target size of the MRU list.
3750	 */
3751	if (state == arc_mru_ghost) {
3752		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
3753		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
3754
3755		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
3756	} else if (state == arc_mfu_ghost) {
3757		uint64_t delta;
3758
3759		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
3760		mult = MIN(mult, 10);
3761
3762		delta = MIN(bytes * mult, arc_p);
3763		arc_p = MAX(arc_p_min, arc_p - delta);
3764	}
3765	ASSERT((int64_t)arc_p >= 0);
3766
3767	if (arc_reclaim_needed()) {
3768		cv_signal(&arc_reclaim_thread_cv);
3769		return;
3770	}
3771
3772	if (arc_no_grow)
3773		return;
3774
3775	if (arc_c >= arc_c_max)
3776		return;
3777
3778	/*
3779	 * If we're within (2 * maxblocksize) bytes of the target
3780	 * cache size, increment the target cache size
3781	 */
3782	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
3783		DTRACE_PROBE1(arc__inc_adapt, int, bytes);
3784		atomic_add_64(&arc_c, (int64_t)bytes);
3785		if (arc_c > arc_c_max)
3786			arc_c = arc_c_max;
3787		else if (state == arc_anon)
3788			atomic_add_64(&arc_p, (int64_t)bytes);
3789		if (arc_p > arc_c)
3790			arc_p = arc_c;
3791	}
3792	ASSERT((int64_t)arc_p >= 0);
3793}
3794
3795/*
3796 * Check if arc_size has grown past our upper threshold, determined by
3797 * zfs_arc_overflow_shift.
3798 */
3799static boolean_t
3800arc_is_overflowing(void)
3801{
3802	/* Always allow at least one block of overflow */
3803	uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
3804	    arc_c >> zfs_arc_overflow_shift);
3805
3806	return (arc_size >= arc_c + overflow);
3807}
3808
3809/*
3810 * The buffer, supplied as the first argument, needs a data block. If we
3811 * are hitting the hard limit for the cache size, we must sleep, waiting
3812 * for the eviction thread to catch up. If we're past the target size
3813 * but below the hard limit, we'll only signal the reclaim thread and
3814 * continue on.
3815 */
3816static void
3817arc_get_data_buf(arc_buf_t *buf)
3818{
3819	arc_state_t		*state = buf->b_hdr->b_l1hdr.b_state;
3820	uint64_t		size = buf->b_hdr->b_size;
3821	arc_buf_contents_t	type = arc_buf_type(buf->b_hdr);
3822
3823	arc_adapt(size, state);
3824
3825	/*
3826	 * If arc_size is currently overflowing, and has grown past our
3827	 * upper limit, we must be adding data faster than the evict
3828	 * thread can evict. Thus, to ensure we don't compound the
3829	 * problem by adding more data and forcing arc_size to grow even
3830	 * further past it's target size, we halt and wait for the
3831	 * eviction thread to catch up.
3832	 *
3833	 * It's also possible that the reclaim thread is unable to evict
3834	 * enough buffers to get arc_size below the overflow limit (e.g.
3835	 * due to buffers being un-evictable, or hash lock collisions).
3836	 * In this case, we want to proceed regardless if we're
3837	 * overflowing; thus we don't use a while loop here.
3838	 */
3839	if (arc_is_overflowing()) {
3840		mutex_enter(&arc_reclaim_lock);
3841
3842		/*
3843		 * Now that we've acquired the lock, we may no longer be
3844		 * over the overflow limit, lets check.
3845		 *
3846		 * We're ignoring the case of spurious wake ups. If that
3847		 * were to happen, it'd let this thread consume an ARC
3848		 * buffer before it should have (i.e. before we're under
3849		 * the overflow limit and were signalled by the reclaim
3850		 * thread). As long as that is a rare occurrence, it
3851		 * shouldn't cause any harm.
3852		 */
3853		if (arc_is_overflowing()) {
3854			cv_signal(&arc_reclaim_thread_cv);
3855			cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
3856		}
3857
3858		mutex_exit(&arc_reclaim_lock);
3859	}
3860
3861	if (type == ARC_BUFC_METADATA) {
3862		buf->b_data = zio_buf_alloc(size);
3863		arc_space_consume(size, ARC_SPACE_META);
3864	} else {
3865		ASSERT(type == ARC_BUFC_DATA);
3866		buf->b_data = zio_data_buf_alloc(size);
3867		arc_space_consume(size, ARC_SPACE_DATA);
3868	}
3869
3870	/*
3871	 * Update the state size.  Note that ghost states have a
3872	 * "ghost size" and so don't need to be updated.
3873	 */
3874	if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) {
3875		arc_buf_hdr_t *hdr = buf->b_hdr;
3876		arc_state_t *state = hdr->b_l1hdr.b_state;
3877
3878		(void) refcount_add_many(&state->arcs_size, size, buf);
3879
3880		/*
3881		 * If this is reached via arc_read, the link is
3882		 * protected by the hash lock. If reached via
3883		 * arc_buf_alloc, the header should not be accessed by
3884		 * any other thread. And, if reached via arc_read_done,
3885		 * the hash lock will protect it if it's found in the
3886		 * hash table; otherwise no other thread should be
3887		 * trying to [add|remove]_reference it.
3888		 */
3889		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
3890			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3891			atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type],
3892			    size);
3893		}
3894		/*
3895		 * If we are growing the cache, and we are adding anonymous
3896		 * data, and we have outgrown arc_p, update arc_p
3897		 */
3898		if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
3899		    (refcount_count(&arc_anon->arcs_size) +
3900		    refcount_count(&arc_mru->arcs_size) > arc_p))
3901			arc_p = MIN(arc_c, arc_p + size);
3902	}
3903	ARCSTAT_BUMP(arcstat_allocated);
3904}
3905
3906/*
3907 * This routine is called whenever a buffer is accessed.
3908 * NOTE: the hash lock is dropped in this function.
3909 */
3910static void
3911arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3912{
3913	clock_t now;
3914
3915	ASSERT(MUTEX_HELD(hash_lock));
3916	ASSERT(HDR_HAS_L1HDR(hdr));
3917
3918	if (hdr->b_l1hdr.b_state == arc_anon) {
3919		/*
3920		 * This buffer is not in the cache, and does not
3921		 * appear in our "ghost" list.  Add the new buffer
3922		 * to the MRU state.
3923		 */
3924
3925		ASSERT0(hdr->b_l1hdr.b_arc_access);
3926		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3927		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3928		arc_change_state(arc_mru, hdr, hash_lock);
3929
3930	} else if (hdr->b_l1hdr.b_state == arc_mru) {
3931		now = ddi_get_lbolt();
3932
3933		/*
3934		 * If this buffer is here because of a prefetch, then either:
3935		 * - clear the flag if this is a "referencing" read
3936		 *   (any subsequent access will bump this into the MFU state).
3937		 * or
3938		 * - move the buffer to the head of the list if this is
3939		 *   another prefetch (to make it less likely to be evicted).
3940		 */
3941		if (HDR_PREFETCH(hdr)) {
3942			if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
3943				/* link protected by hash lock */
3944				ASSERT(multilist_link_active(
3945				    &hdr->b_l1hdr.b_arc_node));
3946			} else {
3947				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3948				ARCSTAT_BUMP(arcstat_mru_hits);
3949			}
3950			hdr->b_l1hdr.b_arc_access = now;
3951			return;
3952		}
3953
3954		/*
3955		 * This buffer has been "accessed" only once so far,
3956		 * but it is still in the cache. Move it to the MFU
3957		 * state.
3958		 */
3959		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
3960			/*
3961			 * More than 125ms have passed since we
3962			 * instantiated this buffer.  Move it to the
3963			 * most frequently used state.
3964			 */
3965			hdr->b_l1hdr.b_arc_access = now;
3966			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3967			arc_change_state(arc_mfu, hdr, hash_lock);
3968		}
3969		ARCSTAT_BUMP(arcstat_mru_hits);
3970	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
3971		arc_state_t	*new_state;
3972		/*
3973		 * This buffer has been "accessed" recently, but
3974		 * was evicted from the cache.  Move it to the
3975		 * MFU state.
3976		 */
3977
3978		if (HDR_PREFETCH(hdr)) {
3979			new_state = arc_mru;
3980			if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
3981				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3982			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3983		} else {
3984			new_state = arc_mfu;
3985			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3986		}
3987
3988		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3989		arc_change_state(new_state, hdr, hash_lock);
3990
3991		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
3992	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
3993		/*
3994		 * This buffer has been accessed more than once and is
3995		 * still in the cache.  Keep it in the MFU state.
3996		 *
3997		 * NOTE: an add_reference() that occurred when we did
3998		 * the arc_read() will have kicked this off the list.
3999		 * If it was a prefetch, we will explicitly move it to
4000		 * the head of the list now.
4001		 */
4002		if ((HDR_PREFETCH(hdr)) != 0) {
4003			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4004			/* link protected by hash_lock */
4005			ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4006		}
4007		ARCSTAT_BUMP(arcstat_mfu_hits);
4008		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4009	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4010		arc_state_t	*new_state = arc_mfu;
4011		/*
4012		 * This buffer has been accessed more than once but has
4013		 * been evicted from the cache.  Move it back to the
4014		 * MFU state.
4015		 */
4016
4017		if (HDR_PREFETCH(hdr)) {
4018			/*
4019			 * This is a prefetch access...
4020			 * move this block back to the MRU state.
4021			 */
4022			ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4023			new_state = arc_mru;
4024		}
4025
4026		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4027		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4028		arc_change_state(new_state, hdr, hash_lock);
4029
4030		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4031	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4032		/*
4033		 * This buffer is on the 2nd Level ARC.
4034		 */
4035
4036		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4037		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4038		arc_change_state(arc_mfu, hdr, hash_lock);
4039	} else {
4040		ASSERT(!"invalid arc state");
4041	}
4042}
4043
4044/* a generic arc_done_func_t which you can use */
4045/* ARGSUSED */
4046void
4047arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4048{
4049	if (zio == NULL || zio->io_error == 0)
4050		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
4051	VERIFY(arc_buf_remove_ref(buf, arg));
4052}
4053
4054/* a generic arc_done_func_t */
4055void
4056arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4057{
4058	arc_buf_t **bufp = arg;
4059	if (zio && zio->io_error) {
4060		VERIFY(arc_buf_remove_ref(buf, arg));
4061		*bufp = NULL;
4062	} else {
4063		*bufp = buf;
4064		ASSERT(buf->b_data);
4065	}
4066}
4067
4068static void
4069arc_read_done(zio_t *zio)
4070{
4071	arc_buf_hdr_t	*hdr;
4072	arc_buf_t	*buf;
4073	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
4074	kmutex_t	*hash_lock = NULL;
4075	arc_callback_t	*callback_list, *acb;
4076	int		freeable = FALSE;
4077
4078	buf = zio->io_private;
4079	hdr = buf->b_hdr;
4080
4081	/*
4082	 * The hdr was inserted into hash-table and removed from lists
4083	 * prior to starting I/O.  We should find this header, since
4084	 * it's in the hash table, and it should be legit since it's
4085	 * not possible to evict it during the I/O.  The only possible
4086	 * reason for it not to be found is if we were freed during the
4087	 * read.
4088	 */
4089	if (HDR_IN_HASH_TABLE(hdr)) {
4090		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4091		ASSERT3U(hdr->b_dva.dva_word[0], ==,
4092		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
4093		ASSERT3U(hdr->b_dva.dva_word[1], ==,
4094		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
4095
4096		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
4097		    &hash_lock);
4098
4099		ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
4100		    hash_lock == NULL) ||
4101		    (found == hdr &&
4102		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4103		    (found == hdr && HDR_L2_READING(hdr)));
4104	}
4105
4106	hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
4107	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4108		hdr->b_flags &= ~ARC_FLAG_L2CACHE;
4109
4110	/* byteswap if necessary */
4111	callback_list = hdr->b_l1hdr.b_acb;
4112	ASSERT(callback_list != NULL);
4113	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
4114		dmu_object_byteswap_t bswap =
4115		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4116		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
4117		    byteswap_uint64_array :
4118		    dmu_ot_byteswap[bswap].ob_func;
4119		func(buf->b_data, hdr->b_size);
4120	}
4121
4122	arc_cksum_compute(buf, B_FALSE);
4123#ifdef illumos
4124	arc_buf_watch(buf);
4125#endif /* illumos */
4126
4127	if (hash_lock && zio->io_error == 0 &&
4128	    hdr->b_l1hdr.b_state == arc_anon) {
4129		/*
4130		 * Only call arc_access on anonymous buffers.  This is because
4131		 * if we've issued an I/O for an evicted buffer, we've already
4132		 * called arc_access (to prevent any simultaneous readers from
4133		 * getting confused).
4134		 */
4135		arc_access(hdr, hash_lock);
4136	}
4137
4138	/* create copies of the data buffer for the callers */
4139	abuf = buf;
4140	for (acb = callback_list; acb; acb = acb->acb_next) {
4141		if (acb->acb_done) {
4142			if (abuf == NULL) {
4143				ARCSTAT_BUMP(arcstat_duplicate_reads);
4144				abuf = arc_buf_clone(buf);
4145			}
4146			acb->acb_buf = abuf;
4147			abuf = NULL;
4148		}
4149	}
4150	hdr->b_l1hdr.b_acb = NULL;
4151	hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4152	ASSERT(!HDR_BUF_AVAILABLE(hdr));
4153	if (abuf == buf) {
4154		ASSERT(buf->b_efunc == NULL);
4155		ASSERT(hdr->b_l1hdr.b_datacnt == 1);
4156		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4157	}
4158
4159	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4160	    callback_list != NULL);
4161
4162	if (zio->io_error != 0) {
4163		hdr->b_flags |= ARC_FLAG_IO_ERROR;
4164		if (hdr->b_l1hdr.b_state != arc_anon)
4165			arc_change_state(arc_anon, hdr, hash_lock);
4166		if (HDR_IN_HASH_TABLE(hdr))
4167			buf_hash_remove(hdr);
4168		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4169	}
4170
4171	/*
4172	 * Broadcast before we drop the hash_lock to avoid the possibility
4173	 * that the hdr (and hence the cv) might be freed before we get to
4174	 * the cv_broadcast().
4175	 */
4176	cv_broadcast(&hdr->b_l1hdr.b_cv);
4177
4178	if (hash_lock != NULL) {
4179		mutex_exit(hash_lock);
4180	} else {
4181		/*
4182		 * This block was freed while we waited for the read to
4183		 * complete.  It has been removed from the hash table and
4184		 * moved to the anonymous state (so that it won't show up
4185		 * in the cache).
4186		 */
4187		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4188		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4189	}
4190
4191	/* execute each callback and free its structure */
4192	while ((acb = callback_list) != NULL) {
4193		if (acb->acb_done)
4194			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4195
4196		if (acb->acb_zio_dummy != NULL) {
4197			acb->acb_zio_dummy->io_error = zio->io_error;
4198			zio_nowait(acb->acb_zio_dummy);
4199		}
4200
4201		callback_list = acb->acb_next;
4202		kmem_free(acb, sizeof (arc_callback_t));
4203	}
4204
4205	if (freeable)
4206		arc_hdr_destroy(hdr);
4207}
4208
4209/*
4210 * "Read" the block at the specified DVA (in bp) via the
4211 * cache.  If the block is found in the cache, invoke the provided
4212 * callback immediately and return.  Note that the `zio' parameter
4213 * in the callback will be NULL in this case, since no IO was
4214 * required.  If the block is not in the cache pass the read request
4215 * on to the spa with a substitute callback function, so that the
4216 * requested block will be added to the cache.
4217 *
4218 * If a read request arrives for a block that has a read in-progress,
4219 * either wait for the in-progress read to complete (and return the
4220 * results); or, if this is a read with a "done" func, add a record
4221 * to the read to invoke the "done" func when the read completes,
4222 * and return; or just return.
4223 *
4224 * arc_read_done() will invoke all the requested "done" functions
4225 * for readers of this block.
4226 */
4227int
4228arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
4229    void *private, zio_priority_t priority, int zio_flags,
4230    arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
4231{
4232	arc_buf_hdr_t *hdr = NULL;
4233	arc_buf_t *buf = NULL;
4234	kmutex_t *hash_lock = NULL;
4235	zio_t *rzio;
4236	uint64_t guid = spa_load_guid(spa);
4237
4238	ASSERT(!BP_IS_EMBEDDED(bp) ||
4239	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4240
4241top:
4242	if (!BP_IS_EMBEDDED(bp)) {
4243		/*
4244		 * Embedded BP's have no DVA and require no I/O to "read".
4245		 * Create an anonymous arc buf to back it.
4246		 */
4247		hdr = buf_hash_find(guid, bp, &hash_lock);
4248	}
4249
4250	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) {
4251
4252		*arc_flags |= ARC_FLAG_CACHED;
4253
4254		if (HDR_IO_IN_PROGRESS(hdr)) {
4255
4256			if (*arc_flags & ARC_FLAG_WAIT) {
4257				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
4258				mutex_exit(hash_lock);
4259				goto top;
4260			}
4261			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4262
4263			if (done) {
4264				arc_callback_t	*acb = NULL;
4265
4266				acb = kmem_zalloc(sizeof (arc_callback_t),
4267				    KM_SLEEP);
4268				acb->acb_done = done;
4269				acb->acb_private = private;
4270				if (pio != NULL)
4271					acb->acb_zio_dummy = zio_null(pio,
4272					    spa, NULL, NULL, NULL, zio_flags);
4273
4274				ASSERT(acb->acb_done != NULL);
4275				acb->acb_next = hdr->b_l1hdr.b_acb;
4276				hdr->b_l1hdr.b_acb = acb;
4277				add_reference(hdr, hash_lock, private);
4278				mutex_exit(hash_lock);
4279				return (0);
4280			}
4281			mutex_exit(hash_lock);
4282			return (0);
4283		}
4284
4285		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4286		    hdr->b_l1hdr.b_state == arc_mfu);
4287
4288		if (done) {
4289			add_reference(hdr, hash_lock, private);
4290			/*
4291			 * If this block is already in use, create a new
4292			 * copy of the data so that we will be guaranteed
4293			 * that arc_release() will always succeed.
4294			 */
4295			buf = hdr->b_l1hdr.b_buf;
4296			ASSERT(buf);
4297			ASSERT(buf->b_data);
4298			if (HDR_BUF_AVAILABLE(hdr)) {
4299				ASSERT(buf->b_efunc == NULL);
4300				hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4301			} else {
4302				buf = arc_buf_clone(buf);
4303			}
4304
4305		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
4306		    refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4307			hdr->b_flags |= ARC_FLAG_PREFETCH;
4308		}
4309		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4310		arc_access(hdr, hash_lock);
4311		if (*arc_flags & ARC_FLAG_L2CACHE)
4312			hdr->b_flags |= ARC_FLAG_L2CACHE;
4313		if (*arc_flags & ARC_FLAG_L2COMPRESS)
4314			hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4315		mutex_exit(hash_lock);
4316		ARCSTAT_BUMP(arcstat_hits);
4317		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4318		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4319		    data, metadata, hits);
4320
4321		if (done)
4322			done(NULL, buf, private);
4323	} else {
4324		uint64_t size = BP_GET_LSIZE(bp);
4325		arc_callback_t *acb;
4326		vdev_t *vd = NULL;
4327		uint64_t addr = 0;
4328		boolean_t devw = B_FALSE;
4329		enum zio_compress b_compress = ZIO_COMPRESS_OFF;
4330		int32_t b_asize = 0;
4331
4332		if (hdr == NULL) {
4333			/* this block is not in the cache */
4334			arc_buf_hdr_t *exists = NULL;
4335			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4336			buf = arc_buf_alloc(spa, size, private, type);
4337			hdr = buf->b_hdr;
4338			if (!BP_IS_EMBEDDED(bp)) {
4339				hdr->b_dva = *BP_IDENTITY(bp);
4340				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
4341				exists = buf_hash_insert(hdr, &hash_lock);
4342			}
4343			if (exists != NULL) {
4344				/* somebody beat us to the hash insert */
4345				mutex_exit(hash_lock);
4346				buf_discard_identity(hdr);
4347				(void) arc_buf_remove_ref(buf, private);
4348				goto top; /* restart the IO request */
4349			}
4350
4351			/* if this is a prefetch, we don't have a reference */
4352			if (*arc_flags & ARC_FLAG_PREFETCH) {
4353				(void) remove_reference(hdr, hash_lock,
4354				    private);
4355				hdr->b_flags |= ARC_FLAG_PREFETCH;
4356			}
4357			if (*arc_flags & ARC_FLAG_L2CACHE)
4358				hdr->b_flags |= ARC_FLAG_L2CACHE;
4359			if (*arc_flags & ARC_FLAG_L2COMPRESS)
4360				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4361			if (BP_GET_LEVEL(bp) > 0)
4362				hdr->b_flags |= ARC_FLAG_INDIRECT;
4363		} else {
4364			/*
4365			 * This block is in the ghost cache. If it was L2-only
4366			 * (and thus didn't have an L1 hdr), we realloc the
4367			 * header to add an L1 hdr.
4368			 */
4369			if (!HDR_HAS_L1HDR(hdr)) {
4370				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4371				    hdr_full_cache);
4372			}
4373
4374			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
4375			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4376			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4377			ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
4378
4379			/* if this is a prefetch, we don't have a reference */
4380			if (*arc_flags & ARC_FLAG_PREFETCH)
4381				hdr->b_flags |= ARC_FLAG_PREFETCH;
4382			else
4383				add_reference(hdr, hash_lock, private);
4384			if (*arc_flags & ARC_FLAG_L2CACHE)
4385				hdr->b_flags |= ARC_FLAG_L2CACHE;
4386			if (*arc_flags & ARC_FLAG_L2COMPRESS)
4387				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4388			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
4389			buf->b_hdr = hdr;
4390			buf->b_data = NULL;
4391			buf->b_efunc = NULL;
4392			buf->b_private = NULL;
4393			buf->b_next = NULL;
4394			hdr->b_l1hdr.b_buf = buf;
4395			ASSERT0(hdr->b_l1hdr.b_datacnt);
4396			hdr->b_l1hdr.b_datacnt = 1;
4397			arc_get_data_buf(buf);
4398			arc_access(hdr, hash_lock);
4399		}
4400
4401		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
4402
4403		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
4404		acb->acb_done = done;
4405		acb->acb_private = private;
4406
4407		ASSERT(hdr->b_l1hdr.b_acb == NULL);
4408		hdr->b_l1hdr.b_acb = acb;
4409		hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4410
4411		if (HDR_HAS_L2HDR(hdr) &&
4412		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
4413			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
4414			addr = hdr->b_l2hdr.b_daddr;
4415			b_compress = HDR_GET_COMPRESS(hdr);
4416			b_asize = hdr->b_l2hdr.b_asize;
4417			/*
4418			 * Lock out device removal.
4419			 */
4420			if (vdev_is_dead(vd) ||
4421			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
4422				vd = NULL;
4423		}
4424
4425		if (hash_lock != NULL)
4426			mutex_exit(hash_lock);
4427
4428		/*
4429		 * At this point, we have a level 1 cache miss.  Try again in
4430		 * L2ARC if possible.
4431		 */
4432		ASSERT3U(hdr->b_size, ==, size);
4433		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
4434		    uint64_t, size, zbookmark_phys_t *, zb);
4435		ARCSTAT_BUMP(arcstat_misses);
4436		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4437		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4438		    data, metadata, misses);
4439#ifdef _KERNEL
4440		curthread->td_ru.ru_inblock++;
4441#endif
4442
4443		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
4444			/*
4445			 * Read from the L2ARC if the following are true:
4446			 * 1. The L2ARC vdev was previously cached.
4447			 * 2. This buffer still has L2ARC metadata.
4448			 * 3. This buffer isn't currently writing to the L2ARC.
4449			 * 4. The L2ARC entry wasn't evicted, which may
4450			 *    also have invalidated the vdev.
4451			 * 5. This isn't prefetch and l2arc_noprefetch is set.
4452			 */
4453			if (HDR_HAS_L2HDR(hdr) &&
4454			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
4455			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
4456				l2arc_read_callback_t *cb;
4457
4458				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
4459				ARCSTAT_BUMP(arcstat_l2_hits);
4460
4461				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
4462				    KM_SLEEP);
4463				cb->l2rcb_buf = buf;
4464				cb->l2rcb_spa = spa;
4465				cb->l2rcb_bp = *bp;
4466				cb->l2rcb_zb = *zb;
4467				cb->l2rcb_flags = zio_flags;
4468				cb->l2rcb_compress = b_compress;
4469
4470				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
4471				    addr + size < vd->vdev_psize -
4472				    VDEV_LABEL_END_SIZE);
4473
4474				/*
4475				 * l2arc read.  The SCL_L2ARC lock will be
4476				 * released by l2arc_read_done().
4477				 * Issue a null zio if the underlying buffer
4478				 * was squashed to zero size by compression.
4479				 */
4480				if (b_compress == ZIO_COMPRESS_EMPTY) {
4481					rzio = zio_null(pio, spa, vd,
4482					    l2arc_read_done, cb,
4483					    zio_flags | ZIO_FLAG_DONT_CACHE |
4484					    ZIO_FLAG_CANFAIL |
4485					    ZIO_FLAG_DONT_PROPAGATE |
4486					    ZIO_FLAG_DONT_RETRY);
4487				} else {
4488					rzio = zio_read_phys(pio, vd, addr,
4489					    b_asize, buf->b_data,
4490					    ZIO_CHECKSUM_OFF,
4491					    l2arc_read_done, cb, priority,
4492					    zio_flags | ZIO_FLAG_DONT_CACHE |
4493					    ZIO_FLAG_CANFAIL |
4494					    ZIO_FLAG_DONT_PROPAGATE |
4495					    ZIO_FLAG_DONT_RETRY, B_FALSE);
4496				}
4497				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
4498				    zio_t *, rzio);
4499				ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
4500
4501				if (*arc_flags & ARC_FLAG_NOWAIT) {
4502					zio_nowait(rzio);
4503					return (0);
4504				}
4505
4506				ASSERT(*arc_flags & ARC_FLAG_WAIT);
4507				if (zio_wait(rzio) == 0)
4508					return (0);
4509
4510				/* l2arc read error; goto zio_read() */
4511			} else {
4512				DTRACE_PROBE1(l2arc__miss,
4513				    arc_buf_hdr_t *, hdr);
4514				ARCSTAT_BUMP(arcstat_l2_misses);
4515				if (HDR_L2_WRITING(hdr))
4516					ARCSTAT_BUMP(arcstat_l2_rw_clash);
4517				spa_config_exit(spa, SCL_L2ARC, vd);
4518			}
4519		} else {
4520			if (vd != NULL)
4521				spa_config_exit(spa, SCL_L2ARC, vd);
4522			if (l2arc_ndev != 0) {
4523				DTRACE_PROBE1(l2arc__miss,
4524				    arc_buf_hdr_t *, hdr);
4525				ARCSTAT_BUMP(arcstat_l2_misses);
4526			}
4527		}
4528
4529		rzio = zio_read(pio, spa, bp, buf->b_data, size,
4530		    arc_read_done, buf, priority, zio_flags, zb);
4531
4532		if (*arc_flags & ARC_FLAG_WAIT)
4533			return (zio_wait(rzio));
4534
4535		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4536		zio_nowait(rzio);
4537	}
4538	return (0);
4539}
4540
4541void
4542arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
4543{
4544	ASSERT(buf->b_hdr != NULL);
4545	ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon);
4546	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) ||
4547	    func == NULL);
4548	ASSERT(buf->b_efunc == NULL);
4549	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
4550
4551	buf->b_efunc = func;
4552	buf->b_private = private;
4553}
4554
4555/*
4556 * Notify the arc that a block was freed, and thus will never be used again.
4557 */
4558void
4559arc_freed(spa_t *spa, const blkptr_t *bp)
4560{
4561	arc_buf_hdr_t *hdr;
4562	kmutex_t *hash_lock;
4563	uint64_t guid = spa_load_guid(spa);
4564
4565	ASSERT(!BP_IS_EMBEDDED(bp));
4566
4567	hdr = buf_hash_find(guid, bp, &hash_lock);
4568	if (hdr == NULL)
4569		return;
4570	if (HDR_BUF_AVAILABLE(hdr)) {
4571		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
4572		add_reference(hdr, hash_lock, FTAG);
4573		hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4574		mutex_exit(hash_lock);
4575
4576		arc_release(buf, FTAG);
4577		(void) arc_buf_remove_ref(buf, FTAG);
4578	} else {
4579		mutex_exit(hash_lock);
4580	}
4581
4582}
4583
4584/*
4585 * Clear the user eviction callback set by arc_set_callback(), first calling
4586 * it if it exists.  Because the presence of a callback keeps an arc_buf cached
4587 * clearing the callback may result in the arc_buf being destroyed.  However,
4588 * it will not result in the *last* arc_buf being destroyed, hence the data
4589 * will remain cached in the ARC. We make a copy of the arc buffer here so
4590 * that we can process the callback without holding any locks.
4591 *
4592 * It's possible that the callback is already in the process of being cleared
4593 * by another thread.  In this case we can not clear the callback.
4594 *
4595 * Returns B_TRUE if the callback was successfully called and cleared.
4596 */
4597boolean_t
4598arc_clear_callback(arc_buf_t *buf)
4599{
4600	arc_buf_hdr_t *hdr;
4601	kmutex_t *hash_lock;
4602	arc_evict_func_t *efunc = buf->b_efunc;
4603	void *private = buf->b_private;
4604
4605	mutex_enter(&buf->b_evict_lock);
4606	hdr = buf->b_hdr;
4607	if (hdr == NULL) {
4608		/*
4609		 * We are in arc_do_user_evicts().
4610		 */
4611		ASSERT(buf->b_data == NULL);
4612		mutex_exit(&buf->b_evict_lock);
4613		return (B_FALSE);
4614	} else if (buf->b_data == NULL) {
4615		/*
4616		 * We are on the eviction list; process this buffer now
4617		 * but let arc_do_user_evicts() do the reaping.
4618		 */
4619		buf->b_efunc = NULL;
4620		mutex_exit(&buf->b_evict_lock);
4621		VERIFY0(efunc(private));
4622		return (B_TRUE);
4623	}
4624	hash_lock = HDR_LOCK(hdr);
4625	mutex_enter(hash_lock);
4626	hdr = buf->b_hdr;
4627	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4628
4629	ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <,
4630	    hdr->b_l1hdr.b_datacnt);
4631	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4632	    hdr->b_l1hdr.b_state == arc_mfu);
4633
4634	buf->b_efunc = NULL;
4635	buf->b_private = NULL;
4636
4637	if (hdr->b_l1hdr.b_datacnt > 1) {
4638		mutex_exit(&buf->b_evict_lock);
4639		arc_buf_destroy(buf, TRUE);
4640	} else {
4641		ASSERT(buf == hdr->b_l1hdr.b_buf);
4642		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4643		mutex_exit(&buf->b_evict_lock);
4644	}
4645
4646	mutex_exit(hash_lock);
4647	VERIFY0(efunc(private));
4648	return (B_TRUE);
4649}
4650
4651/*
4652 * Release this buffer from the cache, making it an anonymous buffer.  This
4653 * must be done after a read and prior to modifying the buffer contents.
4654 * If the buffer has more than one reference, we must make
4655 * a new hdr for the buffer.
4656 */
4657void
4658arc_release(arc_buf_t *buf, void *tag)
4659{
4660	arc_buf_hdr_t *hdr = buf->b_hdr;
4661
4662	/*
4663	 * It would be nice to assert that if it's DMU metadata (level >
4664	 * 0 || it's the dnode file), then it must be syncing context.
4665	 * But we don't know that information at this level.
4666	 */
4667
4668	mutex_enter(&buf->b_evict_lock);
4669
4670	ASSERT(HDR_HAS_L1HDR(hdr));
4671
4672	/*
4673	 * We don't grab the hash lock prior to this check, because if
4674	 * the buffer's header is in the arc_anon state, it won't be
4675	 * linked into the hash table.
4676	 */
4677	if (hdr->b_l1hdr.b_state == arc_anon) {
4678		mutex_exit(&buf->b_evict_lock);
4679		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4680		ASSERT(!HDR_IN_HASH_TABLE(hdr));
4681		ASSERT(!HDR_HAS_L2HDR(hdr));
4682		ASSERT(BUF_EMPTY(hdr));
4683		ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1);
4684		ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
4685		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
4686
4687		ASSERT3P(buf->b_efunc, ==, NULL);
4688		ASSERT3P(buf->b_private, ==, NULL);
4689
4690		hdr->b_l1hdr.b_arc_access = 0;
4691		arc_buf_thaw(buf);
4692
4693		return;
4694	}
4695
4696	kmutex_t *hash_lock = HDR_LOCK(hdr);
4697	mutex_enter(hash_lock);
4698
4699	/*
4700	 * This assignment is only valid as long as the hash_lock is
4701	 * held, we must be careful not to reference state or the
4702	 * b_state field after dropping the lock.
4703	 */
4704	arc_state_t *state = hdr->b_l1hdr.b_state;
4705	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4706	ASSERT3P(state, !=, arc_anon);
4707
4708	/* this buffer is not on any list */
4709	ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
4710
4711	if (HDR_HAS_L2HDR(hdr)) {
4712		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4713
4714		/*
4715		 * We have to recheck this conditional again now that
4716		 * we're holding the l2ad_mtx to prevent a race with
4717		 * another thread which might be concurrently calling
4718		 * l2arc_evict(). In that case, l2arc_evict() might have
4719		 * destroyed the header's L2 portion as we were waiting
4720		 * to acquire the l2ad_mtx.
4721		 */
4722		if (HDR_HAS_L2HDR(hdr)) {
4723			if (hdr->b_l2hdr.b_daddr != L2ARC_ADDR_UNSET)
4724				trim_map_free(hdr->b_l2hdr.b_dev->l2ad_vdev,
4725				    hdr->b_l2hdr.b_daddr,
4726				    hdr->b_l2hdr.b_asize, 0);
4727			arc_hdr_l2hdr_destroy(hdr);
4728		}
4729
4730		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4731	}
4732
4733	/*
4734	 * Do we have more than one buf?
4735	 */
4736	if (hdr->b_l1hdr.b_datacnt > 1) {
4737		arc_buf_hdr_t *nhdr;
4738		arc_buf_t **bufp;
4739		uint64_t blksz = hdr->b_size;
4740		uint64_t spa = hdr->b_spa;
4741		arc_buf_contents_t type = arc_buf_type(hdr);
4742		uint32_t flags = hdr->b_flags;
4743
4744		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
4745		/*
4746		 * Pull the data off of this hdr and attach it to
4747		 * a new anonymous hdr.
4748		 */
4749		(void) remove_reference(hdr, hash_lock, tag);
4750		bufp = &hdr->b_l1hdr.b_buf;
4751		while (*bufp != buf)
4752			bufp = &(*bufp)->b_next;
4753		*bufp = buf->b_next;
4754		buf->b_next = NULL;
4755
4756		ASSERT3P(state, !=, arc_l2c_only);
4757
4758		(void) refcount_remove_many(
4759		    &state->arcs_size, hdr->b_size, buf);
4760
4761		if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
4762			ASSERT3P(state, !=, arc_l2c_only);
4763			uint64_t *size = &state->arcs_lsize[type];
4764			ASSERT3U(*size, >=, hdr->b_size);
4765			atomic_add_64(size, -hdr->b_size);
4766		}
4767
4768		/*
4769		 * We're releasing a duplicate user data buffer, update
4770		 * our statistics accordingly.
4771		 */
4772		if (HDR_ISTYPE_DATA(hdr)) {
4773			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
4774			ARCSTAT_INCR(arcstat_duplicate_buffers_size,
4775			    -hdr->b_size);
4776		}
4777		hdr->b_l1hdr.b_datacnt -= 1;
4778		arc_cksum_verify(buf);
4779#ifdef illumos
4780		arc_buf_unwatch(buf);
4781#endif /* illumos */
4782
4783		mutex_exit(hash_lock);
4784
4785		nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
4786		nhdr->b_size = blksz;
4787		nhdr->b_spa = spa;
4788
4789		nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
4790		nhdr->b_flags |= arc_bufc_to_flags(type);
4791		nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
4792
4793		nhdr->b_l1hdr.b_buf = buf;
4794		nhdr->b_l1hdr.b_datacnt = 1;
4795		nhdr->b_l1hdr.b_state = arc_anon;
4796		nhdr->b_l1hdr.b_arc_access = 0;
4797		nhdr->b_l1hdr.b_tmp_cdata = NULL;
4798		nhdr->b_freeze_cksum = NULL;
4799
4800		(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
4801		buf->b_hdr = nhdr;
4802		mutex_exit(&buf->b_evict_lock);
4803		(void) refcount_add_many(&arc_anon->arcs_size, blksz, buf);
4804	} else {
4805		mutex_exit(&buf->b_evict_lock);
4806		ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
4807		/* protected by hash lock, or hdr is on arc_anon */
4808		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4809		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4810		arc_change_state(arc_anon, hdr, hash_lock);
4811		hdr->b_l1hdr.b_arc_access = 0;
4812		mutex_exit(hash_lock);
4813
4814		buf_discard_identity(hdr);
4815		arc_buf_thaw(buf);
4816	}
4817	buf->b_efunc = NULL;
4818	buf->b_private = NULL;
4819}
4820
4821int
4822arc_released(arc_buf_t *buf)
4823{
4824	int released;
4825
4826	mutex_enter(&buf->b_evict_lock);
4827	released = (buf->b_data != NULL &&
4828	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
4829	mutex_exit(&buf->b_evict_lock);
4830	return (released);
4831}
4832
4833#ifdef ZFS_DEBUG
4834int
4835arc_referenced(arc_buf_t *buf)
4836{
4837	int referenced;
4838
4839	mutex_enter(&buf->b_evict_lock);
4840	referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
4841	mutex_exit(&buf->b_evict_lock);
4842	return (referenced);
4843}
4844#endif
4845
4846static void
4847arc_write_ready(zio_t *zio)
4848{
4849	arc_write_callback_t *callback = zio->io_private;
4850	arc_buf_t *buf = callback->awcb_buf;
4851	arc_buf_hdr_t *hdr = buf->b_hdr;
4852
4853	ASSERT(HDR_HAS_L1HDR(hdr));
4854	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
4855	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
4856	callback->awcb_ready(zio, buf, callback->awcb_private);
4857
4858	/*
4859	 * If the IO is already in progress, then this is a re-write
4860	 * attempt, so we need to thaw and re-compute the cksum.
4861	 * It is the responsibility of the callback to handle the
4862	 * accounting for any re-write attempt.
4863	 */
4864	if (HDR_IO_IN_PROGRESS(hdr)) {
4865		mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
4866		if (hdr->b_freeze_cksum != NULL) {
4867			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
4868			hdr->b_freeze_cksum = NULL;
4869		}
4870		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
4871	}
4872	arc_cksum_compute(buf, B_FALSE);
4873	hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4874}
4875
4876/*
4877 * The SPA calls this callback for each physical write that happens on behalf
4878 * of a logical write.  See the comment in dbuf_write_physdone() for details.
4879 */
4880static void
4881arc_write_physdone(zio_t *zio)
4882{
4883	arc_write_callback_t *cb = zio->io_private;
4884	if (cb->awcb_physdone != NULL)
4885		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
4886}
4887
4888static void
4889arc_write_done(zio_t *zio)
4890{
4891	arc_write_callback_t *callback = zio->io_private;
4892	arc_buf_t *buf = callback->awcb_buf;
4893	arc_buf_hdr_t *hdr = buf->b_hdr;
4894
4895	ASSERT(hdr->b_l1hdr.b_acb == NULL);
4896
4897	if (zio->io_error == 0) {
4898		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
4899			buf_discard_identity(hdr);
4900		} else {
4901			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
4902			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
4903		}
4904	} else {
4905		ASSERT(BUF_EMPTY(hdr));
4906	}
4907
4908	/*
4909	 * If the block to be written was all-zero or compressed enough to be
4910	 * embedded in the BP, no write was performed so there will be no
4911	 * dva/birth/checksum.  The buffer must therefore remain anonymous
4912	 * (and uncached).
4913	 */
4914	if (!BUF_EMPTY(hdr)) {
4915		arc_buf_hdr_t *exists;
4916		kmutex_t *hash_lock;
4917
4918		ASSERT(zio->io_error == 0);
4919
4920		arc_cksum_verify(buf);
4921
4922		exists = buf_hash_insert(hdr, &hash_lock);
4923		if (exists != NULL) {
4924			/*
4925			 * This can only happen if we overwrite for
4926			 * sync-to-convergence, because we remove
4927			 * buffers from the hash table when we arc_free().
4928			 */
4929			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
4930				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4931					panic("bad overwrite, hdr=%p exists=%p",
4932					    (void *)hdr, (void *)exists);
4933				ASSERT(refcount_is_zero(
4934				    &exists->b_l1hdr.b_refcnt));
4935				arc_change_state(arc_anon, exists, hash_lock);
4936				mutex_exit(hash_lock);
4937				arc_hdr_destroy(exists);
4938				exists = buf_hash_insert(hdr, &hash_lock);
4939				ASSERT3P(exists, ==, NULL);
4940			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
4941				/* nopwrite */
4942				ASSERT(zio->io_prop.zp_nopwrite);
4943				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4944					panic("bad nopwrite, hdr=%p exists=%p",
4945					    (void *)hdr, (void *)exists);
4946			} else {
4947				/* Dedup */
4948				ASSERT(hdr->b_l1hdr.b_datacnt == 1);
4949				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
4950				ASSERT(BP_GET_DEDUP(zio->io_bp));
4951				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
4952			}
4953		}
4954		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4955		/* if it's not anon, we are doing a scrub */
4956		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
4957			arc_access(hdr, hash_lock);
4958		mutex_exit(hash_lock);
4959	} else {
4960		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4961	}
4962
4963	ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4964	callback->awcb_done(zio, buf, callback->awcb_private);
4965
4966	kmem_free(callback, sizeof (arc_write_callback_t));
4967}
4968
4969zio_t *
4970arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
4971    blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
4972    const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
4973    arc_done_func_t *done, void *private, zio_priority_t priority,
4974    int zio_flags, const zbookmark_phys_t *zb)
4975{
4976	arc_buf_hdr_t *hdr = buf->b_hdr;
4977	arc_write_callback_t *callback;
4978	zio_t *zio;
4979
4980	ASSERT(ready != NULL);
4981	ASSERT(done != NULL);
4982	ASSERT(!HDR_IO_ERROR(hdr));
4983	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4984	ASSERT(hdr->b_l1hdr.b_acb == NULL);
4985	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
4986	if (l2arc)
4987		hdr->b_flags |= ARC_FLAG_L2CACHE;
4988	if (l2arc_compress)
4989		hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4990	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
4991	callback->awcb_ready = ready;
4992	callback->awcb_physdone = physdone;
4993	callback->awcb_done = done;
4994	callback->awcb_private = private;
4995	callback->awcb_buf = buf;
4996
4997	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
4998	    arc_write_ready, arc_write_physdone, arc_write_done, callback,
4999	    priority, zio_flags, zb);
5000
5001	return (zio);
5002}
5003
5004static int
5005arc_memory_throttle(uint64_t reserve, uint64_t txg)
5006{
5007#ifdef _KERNEL
5008	uint64_t available_memory = ptob(freemem);
5009	static uint64_t page_load = 0;
5010	static uint64_t last_txg = 0;
5011
5012#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
5013	available_memory =
5014	    MIN(available_memory, ptob(vmem_size(heap_arena, VMEM_FREE)));
5015#endif
5016
5017	if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100)
5018		return (0);
5019
5020	if (txg > last_txg) {
5021		last_txg = txg;
5022		page_load = 0;
5023	}
5024	/*
5025	 * If we are in pageout, we know that memory is already tight,
5026	 * the arc is already going to be evicting, so we just want to
5027	 * continue to let page writes occur as quickly as possible.
5028	 */
5029	if (curproc == pageproc) {
5030		if (page_load > MAX(ptob(minfree), available_memory) / 4)
5031			return (SET_ERROR(ERESTART));
5032		/* Note: reserve is inflated, so we deflate */
5033		page_load += reserve / 8;
5034		return (0);
5035	} else if (page_load > 0 && arc_reclaim_needed()) {
5036		/* memory is low, delay before restarting */
5037		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
5038		return (SET_ERROR(EAGAIN));
5039	}
5040	page_load = 0;
5041#endif
5042	return (0);
5043}
5044
5045void
5046arc_tempreserve_clear(uint64_t reserve)
5047{
5048	atomic_add_64(&arc_tempreserve, -reserve);
5049	ASSERT((int64_t)arc_tempreserve >= 0);
5050}
5051
5052int
5053arc_tempreserve_space(uint64_t reserve, uint64_t txg)
5054{
5055	int error;
5056	uint64_t anon_size;
5057
5058	if (reserve > arc_c/4 && !arc_no_grow) {
5059		arc_c = MIN(arc_c_max, reserve * 4);
5060		DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c);
5061	}
5062	if (reserve > arc_c)
5063		return (SET_ERROR(ENOMEM));
5064
5065	/*
5066	 * Don't count loaned bufs as in flight dirty data to prevent long
5067	 * network delays from blocking transactions that are ready to be
5068	 * assigned to a txg.
5069	 */
5070	anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5071	    arc_loaned_bytes), 0);
5072
5073	/*
5074	 * Writes will, almost always, require additional memory allocations
5075	 * in order to compress/encrypt/etc the data.  We therefore need to
5076	 * make sure that there is sufficient available memory for this.
5077	 */
5078	error = arc_memory_throttle(reserve, txg);
5079	if (error != 0)
5080		return (error);
5081
5082	/*
5083	 * Throttle writes when the amount of dirty data in the cache
5084	 * gets too large.  We try to keep the cache less than half full
5085	 * of dirty blocks so that our sync times don't grow too large.
5086	 * Note: if two requests come in concurrently, we might let them
5087	 * both succeed, when one of them should fail.  Not a huge deal.
5088	 */
5089
5090	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5091	    anon_size > arc_c / 4) {
5092		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5093		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5094		    arc_tempreserve>>10,
5095		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
5096		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
5097		    reserve>>10, arc_c>>10);
5098		return (SET_ERROR(ERESTART));
5099	}
5100	atomic_add_64(&arc_tempreserve, reserve);
5101	return (0);
5102}
5103
5104static void
5105arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5106    kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5107{
5108	size->value.ui64 = refcount_count(&state->arcs_size);
5109	evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
5110	evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
5111}
5112
5113static int
5114arc_kstat_update(kstat_t *ksp, int rw)
5115{
5116	arc_stats_t *as = ksp->ks_data;
5117
5118	if (rw == KSTAT_WRITE) {
5119		return (EACCES);
5120	} else {
5121		arc_kstat_update_state(arc_anon,
5122		    &as->arcstat_anon_size,
5123		    &as->arcstat_anon_evictable_data,
5124		    &as->arcstat_anon_evictable_metadata);
5125		arc_kstat_update_state(arc_mru,
5126		    &as->arcstat_mru_size,
5127		    &as->arcstat_mru_evictable_data,
5128		    &as->arcstat_mru_evictable_metadata);
5129		arc_kstat_update_state(arc_mru_ghost,
5130		    &as->arcstat_mru_ghost_size,
5131		    &as->arcstat_mru_ghost_evictable_data,
5132		    &as->arcstat_mru_ghost_evictable_metadata);
5133		arc_kstat_update_state(arc_mfu,
5134		    &as->arcstat_mfu_size,
5135		    &as->arcstat_mfu_evictable_data,
5136		    &as->arcstat_mfu_evictable_metadata);
5137		arc_kstat_update_state(arc_mfu_ghost,
5138		    &as->arcstat_mfu_ghost_size,
5139		    &as->arcstat_mfu_ghost_evictable_data,
5140		    &as->arcstat_mfu_ghost_evictable_metadata);
5141	}
5142
5143	return (0);
5144}
5145
5146/*
5147 * This function *must* return indices evenly distributed between all
5148 * sublists of the multilist. This is needed due to how the ARC eviction
5149 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
5150 * distributed between all sublists and uses this assumption when
5151 * deciding which sublist to evict from and how much to evict from it.
5152 */
5153unsigned int
5154arc_state_multilist_index_func(multilist_t *ml, void *obj)
5155{
5156	arc_buf_hdr_t *hdr = obj;
5157
5158	/*
5159	 * We rely on b_dva to generate evenly distributed index
5160	 * numbers using buf_hash below. So, as an added precaution,
5161	 * let's make sure we never add empty buffers to the arc lists.
5162	 */
5163	ASSERT(!BUF_EMPTY(hdr));
5164
5165	/*
5166	 * The assumption here, is the hash value for a given
5167	 * arc_buf_hdr_t will remain constant throughout it's lifetime
5168	 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
5169	 * Thus, we don't need to store the header's sublist index
5170	 * on insertion, as this index can be recalculated on removal.
5171	 *
5172	 * Also, the low order bits of the hash value are thought to be
5173	 * distributed evenly. Otherwise, in the case that the multilist
5174	 * has a power of two number of sublists, each sublists' usage
5175	 * would not be evenly distributed.
5176	 */
5177	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
5178	    multilist_get_num_sublists(ml));
5179}
5180
5181#ifdef _KERNEL
5182static eventhandler_tag arc_event_lowmem = NULL;
5183
5184static void
5185arc_lowmem(void *arg __unused, int howto __unused)
5186{
5187
5188	mutex_enter(&arc_reclaim_lock);
5189	/* XXX: Memory deficit should be passed as argument. */
5190	needfree = btoc(arc_c >> arc_shrink_shift);
5191	DTRACE_PROBE(arc__needfree);
5192	cv_signal(&arc_reclaim_thread_cv);
5193
5194	/*
5195	 * It is unsafe to block here in arbitrary threads, because we can come
5196	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
5197	 * with ARC reclaim thread.
5198	 */
5199	if (curproc == pageproc)
5200		(void) cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
5201	mutex_exit(&arc_reclaim_lock);
5202}
5203#endif
5204
5205void
5206arc_init(void)
5207{
5208	int i, prefetch_tunable_set = 0;
5209
5210	mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
5211	cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
5212	cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
5213
5214	mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
5215	cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL);
5216
5217	/* Convert seconds to clock ticks */
5218	arc_min_prefetch_lifespan = 1 * hz;
5219
5220	/* Start out with 1/8 of all memory */
5221	arc_c = kmem_size() / 8;
5222
5223#ifdef sun
5224#ifdef _KERNEL
5225	/*
5226	 * On architectures where the physical memory can be larger
5227	 * than the addressable space (intel in 32-bit mode), we may
5228	 * need to limit the cache to 1/8 of VM size.
5229	 */
5230	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
5231#endif
5232#endif	/* sun */
5233	/* set min cache to 1/32 of all memory, or 16MB, whichever is more */
5234	arc_c_min = MAX(arc_c / 4, 16 << 20);
5235	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
5236	if (arc_c * 8 >= 1 << 30)
5237		arc_c_max = (arc_c * 8) - (1 << 30);
5238	else
5239		arc_c_max = arc_c_min;
5240	arc_c_max = MAX(arc_c * 5, arc_c_max);
5241
5242#ifdef _KERNEL
5243	/*
5244	 * Allow the tunables to override our calculations if they are
5245	 * reasonable (ie. over 16MB)
5246	 */
5247	if (zfs_arc_max > 16 << 20 && zfs_arc_max < kmem_size())
5248		arc_c_max = zfs_arc_max;
5249	if (zfs_arc_min > 16 << 20 && zfs_arc_min <= arc_c_max)
5250		arc_c_min = zfs_arc_min;
5251#endif
5252
5253	arc_c = arc_c_max;
5254	arc_p = (arc_c >> 1);
5255
5256	/* limit meta-data to 1/4 of the arc capacity */
5257	arc_meta_limit = arc_c_max / 4;
5258
5259	/* Allow the tunable to override if it is reasonable */
5260	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
5261		arc_meta_limit = zfs_arc_meta_limit;
5262
5263	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
5264		arc_c_min = arc_meta_limit / 2;
5265
5266	if (zfs_arc_meta_min > 0) {
5267		arc_meta_min = zfs_arc_meta_min;
5268	} else {
5269		arc_meta_min = arc_c_min / 2;
5270	}
5271
5272	if (zfs_arc_grow_retry > 0)
5273		arc_grow_retry = zfs_arc_grow_retry;
5274
5275	if (zfs_arc_shrink_shift > 0)
5276		arc_shrink_shift = zfs_arc_shrink_shift;
5277
5278	/*
5279	 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
5280	 */
5281	if (arc_no_grow_shift >= arc_shrink_shift)
5282		arc_no_grow_shift = arc_shrink_shift - 1;
5283
5284	if (zfs_arc_p_min_shift > 0)
5285		arc_p_min_shift = zfs_arc_p_min_shift;
5286
5287	if (zfs_arc_num_sublists_per_state < 1)
5288		zfs_arc_num_sublists_per_state = MAX(max_ncpus, 1);
5289
5290	/* if kmem_flags are set, lets try to use less memory */
5291	if (kmem_debugging())
5292		arc_c = arc_c / 2;
5293	if (arc_c < arc_c_min)
5294		arc_c = arc_c_min;
5295
5296	zfs_arc_min = arc_c_min;
5297	zfs_arc_max = arc_c_max;
5298
5299	arc_anon = &ARC_anon;
5300	arc_mru = &ARC_mru;
5301	arc_mru_ghost = &ARC_mru_ghost;
5302	arc_mfu = &ARC_mfu;
5303	arc_mfu_ghost = &ARC_mfu_ghost;
5304	arc_l2c_only = &ARC_l2c_only;
5305	arc_size = 0;
5306
5307	multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
5308	    sizeof (arc_buf_hdr_t),
5309	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5310	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5311	multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
5312	    sizeof (arc_buf_hdr_t),
5313	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5314	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5315	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
5316	    sizeof (arc_buf_hdr_t),
5317	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5318	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5319	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
5320	    sizeof (arc_buf_hdr_t),
5321	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5322	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5323	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
5324	    sizeof (arc_buf_hdr_t),
5325	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5326	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5327	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
5328	    sizeof (arc_buf_hdr_t),
5329	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5330	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5331	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
5332	    sizeof (arc_buf_hdr_t),
5333	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5334	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5335	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
5336	    sizeof (arc_buf_hdr_t),
5337	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5338	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5339	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
5340	    sizeof (arc_buf_hdr_t),
5341	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5342	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5343	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
5344	    sizeof (arc_buf_hdr_t),
5345	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5346	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5347
5348	refcount_create(&arc_anon->arcs_size);
5349	refcount_create(&arc_mru->arcs_size);
5350	refcount_create(&arc_mru_ghost->arcs_size);
5351	refcount_create(&arc_mfu->arcs_size);
5352	refcount_create(&arc_mfu_ghost->arcs_size);
5353	refcount_create(&arc_l2c_only->arcs_size);
5354
5355	buf_init();
5356
5357	arc_reclaim_thread_exit = FALSE;
5358	arc_user_evicts_thread_exit = FALSE;
5359	arc_eviction_list = NULL;
5360	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
5361
5362	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
5363	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
5364
5365	if (arc_ksp != NULL) {
5366		arc_ksp->ks_data = &arc_stats;
5367		arc_ksp->ks_update = arc_kstat_update;
5368		kstat_install(arc_ksp);
5369	}
5370
5371	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
5372	    TS_RUN, minclsyspri);
5373
5374#ifdef _KERNEL
5375	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
5376	    EVENTHANDLER_PRI_FIRST);
5377#endif
5378
5379	(void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0,
5380	    TS_RUN, minclsyspri);
5381
5382	arc_dead = FALSE;
5383	arc_warm = B_FALSE;
5384
5385	/*
5386	 * Calculate maximum amount of dirty data per pool.
5387	 *
5388	 * If it has been set by /etc/system, take that.
5389	 * Otherwise, use a percentage of physical memory defined by
5390	 * zfs_dirty_data_max_percent (default 10%) with a cap at
5391	 * zfs_dirty_data_max_max (default 4GB).
5392	 */
5393	if (zfs_dirty_data_max == 0) {
5394		zfs_dirty_data_max = ptob(physmem) *
5395		    zfs_dirty_data_max_percent / 100;
5396		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
5397		    zfs_dirty_data_max_max);
5398	}
5399
5400#ifdef _KERNEL
5401	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
5402		prefetch_tunable_set = 1;
5403
5404#ifdef __i386__
5405	if (prefetch_tunable_set == 0) {
5406		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
5407		    "-- to enable,\n");
5408		printf("            add \"vfs.zfs.prefetch_disable=0\" "
5409		    "to /boot/loader.conf.\n");
5410		zfs_prefetch_disable = 1;
5411	}
5412#else
5413	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
5414	    prefetch_tunable_set == 0) {
5415		printf("ZFS NOTICE: Prefetch is disabled by default if less "
5416		    "than 4GB of RAM is present;\n"
5417		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
5418		    "to /boot/loader.conf.\n");
5419		zfs_prefetch_disable = 1;
5420	}
5421#endif
5422	/* Warn about ZFS memory and address space requirements. */
5423	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
5424		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
5425		    "expect unstable behavior.\n");
5426	}
5427	if (kmem_size() < 512 * (1 << 20)) {
5428		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
5429		    "expect unstable behavior.\n");
5430		printf("             Consider tuning vm.kmem_size and "
5431		    "vm.kmem_size_max\n");
5432		printf("             in /boot/loader.conf.\n");
5433	}
5434#endif
5435}
5436
5437void
5438arc_fini(void)
5439{
5440	mutex_enter(&arc_reclaim_lock);
5441	arc_reclaim_thread_exit = TRUE;
5442	/*
5443	 * The reclaim thread will set arc_reclaim_thread_exit back to
5444	 * FALSE when it is finished exiting; we're waiting for that.
5445	 */
5446	while (arc_reclaim_thread_exit) {
5447		cv_signal(&arc_reclaim_thread_cv);
5448		cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
5449	}
5450	mutex_exit(&arc_reclaim_lock);
5451
5452	mutex_enter(&arc_user_evicts_lock);
5453	arc_user_evicts_thread_exit = TRUE;
5454	/*
5455	 * The user evicts thread will set arc_user_evicts_thread_exit
5456	 * to FALSE when it is finished exiting; we're waiting for that.
5457	 */
5458	while (arc_user_evicts_thread_exit) {
5459		cv_signal(&arc_user_evicts_cv);
5460		cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock);
5461	}
5462	mutex_exit(&arc_user_evicts_lock);
5463
5464	/* Use TRUE to ensure *all* buffers are evicted */
5465	arc_flush(NULL, TRUE);
5466
5467	arc_dead = TRUE;
5468
5469	if (arc_ksp != NULL) {
5470		kstat_delete(arc_ksp);
5471		arc_ksp = NULL;
5472	}
5473
5474	mutex_destroy(&arc_reclaim_lock);
5475	cv_destroy(&arc_reclaim_thread_cv);
5476	cv_destroy(&arc_reclaim_waiters_cv);
5477
5478	mutex_destroy(&arc_user_evicts_lock);
5479	cv_destroy(&arc_user_evicts_cv);
5480
5481	refcount_destroy(&arc_anon->arcs_size);
5482	refcount_destroy(&arc_mru->arcs_size);
5483	refcount_destroy(&arc_mru_ghost->arcs_size);
5484	refcount_destroy(&arc_mfu->arcs_size);
5485	refcount_destroy(&arc_mfu_ghost->arcs_size);
5486	refcount_destroy(&arc_l2c_only->arcs_size);
5487
5488	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
5489	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5490	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5491	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5492	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
5493	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5494	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
5495	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5496
5497	buf_fini();
5498
5499	ASSERT0(arc_loaned_bytes);
5500
5501#ifdef _KERNEL
5502	if (arc_event_lowmem != NULL)
5503		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
5504#endif
5505}
5506
5507/*
5508 * Level 2 ARC
5509 *
5510 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
5511 * It uses dedicated storage devices to hold cached data, which are populated
5512 * using large infrequent writes.  The main role of this cache is to boost
5513 * the performance of random read workloads.  The intended L2ARC devices
5514 * include short-stroked disks, solid state disks, and other media with
5515 * substantially faster read latency than disk.
5516 *
5517 *                 +-----------------------+
5518 *                 |         ARC           |
5519 *                 +-----------------------+
5520 *                    |         ^     ^
5521 *                    |         |     |
5522 *      l2arc_feed_thread()    arc_read()
5523 *                    |         |     |
5524 *                    |  l2arc read   |
5525 *                    V         |     |
5526 *               +---------------+    |
5527 *               |     L2ARC     |    |
5528 *               +---------------+    |
5529 *                   |    ^           |
5530 *          l2arc_write() |           |
5531 *                   |    |           |
5532 *                   V    |           |
5533 *                 +-------+      +-------+
5534 *                 | vdev  |      | vdev  |
5535 *                 | cache |      | cache |
5536 *                 +-------+      +-------+
5537 *                 +=========+     .-----.
5538 *                 :  L2ARC  :    |-_____-|
5539 *                 : devices :    | Disks |
5540 *                 +=========+    `-_____-'
5541 *
5542 * Read requests are satisfied from the following sources, in order:
5543 *
5544 *	1) ARC
5545 *	2) vdev cache of L2ARC devices
5546 *	3) L2ARC devices
5547 *	4) vdev cache of disks
5548 *	5) disks
5549 *
5550 * Some L2ARC device types exhibit extremely slow write performance.
5551 * To accommodate for this there are some significant differences between
5552 * the L2ARC and traditional cache design:
5553 *
5554 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
5555 * the ARC behave as usual, freeing buffers and placing headers on ghost
5556 * lists.  The ARC does not send buffers to the L2ARC during eviction as
5557 * this would add inflated write latencies for all ARC memory pressure.
5558 *
5559 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
5560 * It does this by periodically scanning buffers from the eviction-end of
5561 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
5562 * not already there. It scans until a headroom of buffers is satisfied,
5563 * which itself is a buffer for ARC eviction. If a compressible buffer is
5564 * found during scanning and selected for writing to an L2ARC device, we
5565 * temporarily boost scanning headroom during the next scan cycle to make
5566 * sure we adapt to compression effects (which might significantly reduce
5567 * the data volume we write to L2ARC). The thread that does this is
5568 * l2arc_feed_thread(), illustrated below; example sizes are included to
5569 * provide a better sense of ratio than this diagram:
5570 *
5571 *	       head -->                        tail
5572 *	        +---------------------+----------+
5573 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
5574 *	        +---------------------+----------+   |   o L2ARC eligible
5575 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
5576 *	        +---------------------+----------+   |
5577 *	             15.9 Gbytes      ^ 32 Mbytes    |
5578 *	                           headroom          |
5579 *	                                      l2arc_feed_thread()
5580 *	                                             |
5581 *	                 l2arc write hand <--[oooo]--'
5582 *	                         |           8 Mbyte
5583 *	                         |          write max
5584 *	                         V
5585 *		  +==============================+
5586 *	L2ARC dev |####|#|###|###|    |####| ... |
5587 *	          +==============================+
5588 *	                     32 Gbytes
5589 *
5590 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
5591 * evicted, then the L2ARC has cached a buffer much sooner than it probably
5592 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
5593 * safe to say that this is an uncommon case, since buffers at the end of
5594 * the ARC lists have moved there due to inactivity.
5595 *
5596 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
5597 * then the L2ARC simply misses copying some buffers.  This serves as a
5598 * pressure valve to prevent heavy read workloads from both stalling the ARC
5599 * with waits and clogging the L2ARC with writes.  This also helps prevent
5600 * the potential for the L2ARC to churn if it attempts to cache content too
5601 * quickly, such as during backups of the entire pool.
5602 *
5603 * 5. After system boot and before the ARC has filled main memory, there are
5604 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
5605 * lists can remain mostly static.  Instead of searching from tail of these
5606 * lists as pictured, the l2arc_feed_thread() will search from the list heads
5607 * for eligible buffers, greatly increasing its chance of finding them.
5608 *
5609 * The L2ARC device write speed is also boosted during this time so that
5610 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
5611 * there are no L2ARC reads, and no fear of degrading read performance
5612 * through increased writes.
5613 *
5614 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
5615 * the vdev queue can aggregate them into larger and fewer writes.  Each
5616 * device is written to in a rotor fashion, sweeping writes through
5617 * available space then repeating.
5618 *
5619 * 7. The L2ARC does not store dirty content.  It never needs to flush
5620 * write buffers back to disk based storage.
5621 *
5622 * 8. If an ARC buffer is written (and dirtied) which also exists in the
5623 * L2ARC, the now stale L2ARC buffer is immediately dropped.
5624 *
5625 * The performance of the L2ARC can be tweaked by a number of tunables, which
5626 * may be necessary for different workloads:
5627 *
5628 *	l2arc_write_max		max write bytes per interval
5629 *	l2arc_write_boost	extra write bytes during device warmup
5630 *	l2arc_noprefetch	skip caching prefetched buffers
5631 *	l2arc_headroom		number of max device writes to precache
5632 *	l2arc_headroom_boost	when we find compressed buffers during ARC
5633 *				scanning, we multiply headroom by this
5634 *				percentage factor for the next scan cycle,
5635 *				since more compressed buffers are likely to
5636 *				be present
5637 *	l2arc_feed_secs		seconds between L2ARC writing
5638 *
5639 * Tunables may be removed or added as future performance improvements are
5640 * integrated, and also may become zpool properties.
5641 *
5642 * There are three key functions that control how the L2ARC warms up:
5643 *
5644 *	l2arc_write_eligible()	check if a buffer is eligible to cache
5645 *	l2arc_write_size()	calculate how much to write
5646 *	l2arc_write_interval()	calculate sleep delay between writes
5647 *
5648 * These three functions determine what to write, how much, and how quickly
5649 * to send writes.
5650 */
5651
5652static boolean_t
5653l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
5654{
5655	/*
5656	 * A buffer is *not* eligible for the L2ARC if it:
5657	 * 1. belongs to a different spa.
5658	 * 2. is already cached on the L2ARC.
5659	 * 3. has an I/O in progress (it may be an incomplete read).
5660	 * 4. is flagged not eligible (zfs property).
5661	 */
5662	if (hdr->b_spa != spa_guid) {
5663		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
5664		return (B_FALSE);
5665	}
5666	if (HDR_HAS_L2HDR(hdr)) {
5667		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
5668		return (B_FALSE);
5669	}
5670	if (HDR_IO_IN_PROGRESS(hdr)) {
5671		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
5672		return (B_FALSE);
5673	}
5674	if (!HDR_L2CACHE(hdr)) {
5675		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
5676		return (B_FALSE);
5677	}
5678
5679	return (B_TRUE);
5680}
5681
5682static uint64_t
5683l2arc_write_size(void)
5684{
5685	uint64_t size;
5686
5687	/*
5688	 * Make sure our globals have meaningful values in case the user
5689	 * altered them.
5690	 */
5691	size = l2arc_write_max;
5692	if (size == 0) {
5693		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
5694		    "be greater than zero, resetting it to the default (%d)",
5695		    L2ARC_WRITE_SIZE);
5696		size = l2arc_write_max = L2ARC_WRITE_SIZE;
5697	}
5698
5699	if (arc_warm == B_FALSE)
5700		size += l2arc_write_boost;
5701
5702	return (size);
5703
5704}
5705
5706static clock_t
5707l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
5708{
5709	clock_t interval, next, now;
5710
5711	/*
5712	 * If the ARC lists are busy, increase our write rate; if the
5713	 * lists are stale, idle back.  This is achieved by checking
5714	 * how much we previously wrote - if it was more than half of
5715	 * what we wanted, schedule the next write much sooner.
5716	 */
5717	if (l2arc_feed_again && wrote > (wanted / 2))
5718		interval = (hz * l2arc_feed_min_ms) / 1000;
5719	else
5720		interval = hz * l2arc_feed_secs;
5721
5722	now = ddi_get_lbolt();
5723	next = MAX(now, MIN(now + interval, began + interval));
5724
5725	return (next);
5726}
5727
5728/*
5729 * Cycle through L2ARC devices.  This is how L2ARC load balances.
5730 * If a device is returned, this also returns holding the spa config lock.
5731 */
5732static l2arc_dev_t *
5733l2arc_dev_get_next(void)
5734{
5735	l2arc_dev_t *first, *next = NULL;
5736
5737	/*
5738	 * Lock out the removal of spas (spa_namespace_lock), then removal
5739	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
5740	 * both locks will be dropped and a spa config lock held instead.
5741	 */
5742	mutex_enter(&spa_namespace_lock);
5743	mutex_enter(&l2arc_dev_mtx);
5744
5745	/* if there are no vdevs, there is nothing to do */
5746	if (l2arc_ndev == 0)
5747		goto out;
5748
5749	first = NULL;
5750	next = l2arc_dev_last;
5751	do {
5752		/* loop around the list looking for a non-faulted vdev */
5753		if (next == NULL) {
5754			next = list_head(l2arc_dev_list);
5755		} else {
5756			next = list_next(l2arc_dev_list, next);
5757			if (next == NULL)
5758				next = list_head(l2arc_dev_list);
5759		}
5760
5761		/* if we have come back to the start, bail out */
5762		if (first == NULL)
5763			first = next;
5764		else if (next == first)
5765			break;
5766
5767	} while (vdev_is_dead(next->l2ad_vdev));
5768
5769	/* if we were unable to find any usable vdevs, return NULL */
5770	if (vdev_is_dead(next->l2ad_vdev))
5771		next = NULL;
5772
5773	l2arc_dev_last = next;
5774
5775out:
5776	mutex_exit(&l2arc_dev_mtx);
5777
5778	/*
5779	 * Grab the config lock to prevent the 'next' device from being
5780	 * removed while we are writing to it.
5781	 */
5782	if (next != NULL)
5783		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
5784	mutex_exit(&spa_namespace_lock);
5785
5786	return (next);
5787}
5788
5789/*
5790 * Free buffers that were tagged for destruction.
5791 */
5792static void
5793l2arc_do_free_on_write()
5794{
5795	list_t *buflist;
5796	l2arc_data_free_t *df, *df_prev;
5797
5798	mutex_enter(&l2arc_free_on_write_mtx);
5799	buflist = l2arc_free_on_write;
5800
5801	for (df = list_tail(buflist); df; df = df_prev) {
5802		df_prev = list_prev(buflist, df);
5803		ASSERT(df->l2df_data != NULL);
5804		ASSERT(df->l2df_func != NULL);
5805		df->l2df_func(df->l2df_data, df->l2df_size);
5806		list_remove(buflist, df);
5807		kmem_free(df, sizeof (l2arc_data_free_t));
5808	}
5809
5810	mutex_exit(&l2arc_free_on_write_mtx);
5811}
5812
5813/*
5814 * A write to a cache device has completed.  Update all headers to allow
5815 * reads from these buffers to begin.
5816 */
5817static void
5818l2arc_write_done(zio_t *zio)
5819{
5820	l2arc_write_callback_t *cb;
5821	l2arc_dev_t *dev;
5822	list_t *buflist;
5823	arc_buf_hdr_t *head, *hdr, *hdr_prev;
5824	kmutex_t *hash_lock;
5825	int64_t bytes_dropped = 0;
5826
5827	cb = zio->io_private;
5828	ASSERT(cb != NULL);
5829	dev = cb->l2wcb_dev;
5830	ASSERT(dev != NULL);
5831	head = cb->l2wcb_head;
5832	ASSERT(head != NULL);
5833	buflist = &dev->l2ad_buflist;
5834	ASSERT(buflist != NULL);
5835	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
5836	    l2arc_write_callback_t *, cb);
5837
5838	if (zio->io_error != 0)
5839		ARCSTAT_BUMP(arcstat_l2_writes_error);
5840
5841	/*
5842	 * All writes completed, or an error was hit.
5843	 */
5844top:
5845	mutex_enter(&dev->l2ad_mtx);
5846	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
5847		hdr_prev = list_prev(buflist, hdr);
5848
5849		hash_lock = HDR_LOCK(hdr);
5850
5851		/*
5852		 * We cannot use mutex_enter or else we can deadlock
5853		 * with l2arc_write_buffers (due to swapping the order
5854		 * the hash lock and l2ad_mtx are taken).
5855		 */
5856		if (!mutex_tryenter(hash_lock)) {
5857			/*
5858			 * Missed the hash lock. We must retry so we
5859			 * don't leave the ARC_FLAG_L2_WRITING bit set.
5860			 */
5861			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
5862
5863			/*
5864			 * We don't want to rescan the headers we've
5865			 * already marked as having been written out, so
5866			 * we reinsert the head node so we can pick up
5867			 * where we left off.
5868			 */
5869			list_remove(buflist, head);
5870			list_insert_after(buflist, hdr, head);
5871
5872			mutex_exit(&dev->l2ad_mtx);
5873
5874			/*
5875			 * We wait for the hash lock to become available
5876			 * to try and prevent busy waiting, and increase
5877			 * the chance we'll be able to acquire the lock
5878			 * the next time around.
5879			 */
5880			mutex_enter(hash_lock);
5881			mutex_exit(hash_lock);
5882			goto top;
5883		}
5884
5885		/*
5886		 * We could not have been moved into the arc_l2c_only
5887		 * state while in-flight due to our ARC_FLAG_L2_WRITING
5888		 * bit being set. Let's just ensure that's being enforced.
5889		 */
5890		ASSERT(HDR_HAS_L1HDR(hdr));
5891
5892		/*
5893		 * We may have allocated a buffer for L2ARC compression,
5894		 * we must release it to avoid leaking this data.
5895		 */
5896		l2arc_release_cdata_buf(hdr);
5897
5898		if (zio->io_error != 0) {
5899			/*
5900			 * Error - drop L2ARC entry.
5901			 */
5902			list_remove(buflist, hdr);
5903			trim_map_free(hdr->b_l2hdr.b_dev->l2ad_vdev,
5904			    hdr->b_l2hdr.b_daddr, hdr->b_l2hdr.b_asize, 0);
5905			hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
5906
5907			ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
5908			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
5909
5910			bytes_dropped += hdr->b_l2hdr.b_asize;
5911			(void) refcount_remove_many(&dev->l2ad_alloc,
5912			    hdr->b_l2hdr.b_asize, hdr);
5913		}
5914
5915		/*
5916		 * Allow ARC to begin reads and ghost list evictions to
5917		 * this L2ARC entry.
5918		 */
5919		hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
5920
5921		mutex_exit(hash_lock);
5922	}
5923
5924	atomic_inc_64(&l2arc_writes_done);
5925	list_remove(buflist, head);
5926	ASSERT(!HDR_HAS_L1HDR(head));
5927	kmem_cache_free(hdr_l2only_cache, head);
5928	mutex_exit(&dev->l2ad_mtx);
5929
5930	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
5931
5932	l2arc_do_free_on_write();
5933
5934	kmem_free(cb, sizeof (l2arc_write_callback_t));
5935}
5936
5937/*
5938 * A read to a cache device completed.  Validate buffer contents before
5939 * handing over to the regular ARC routines.
5940 */
5941static void
5942l2arc_read_done(zio_t *zio)
5943{
5944	l2arc_read_callback_t *cb;
5945	arc_buf_hdr_t *hdr;
5946	arc_buf_t *buf;
5947	kmutex_t *hash_lock;
5948	int equal;
5949
5950	ASSERT(zio->io_vd != NULL);
5951	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
5952
5953	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
5954
5955	cb = zio->io_private;
5956	ASSERT(cb != NULL);
5957	buf = cb->l2rcb_buf;
5958	ASSERT(buf != NULL);
5959
5960	hash_lock = HDR_LOCK(buf->b_hdr);
5961	mutex_enter(hash_lock);
5962	hdr = buf->b_hdr;
5963	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5964
5965	/*
5966	 * If the buffer was compressed, decompress it first.
5967	 */
5968	if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
5969		l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
5970	ASSERT(zio->io_data != NULL);
5971
5972	/*
5973	 * Check this survived the L2ARC journey.
5974	 */
5975	equal = arc_cksum_equal(buf);
5976	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
5977		mutex_exit(hash_lock);
5978		zio->io_private = buf;
5979		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
5980		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
5981		arc_read_done(zio);
5982	} else {
5983		mutex_exit(hash_lock);
5984		/*
5985		 * Buffer didn't survive caching.  Increment stats and
5986		 * reissue to the original storage device.
5987		 */
5988		if (zio->io_error != 0) {
5989			ARCSTAT_BUMP(arcstat_l2_io_error);
5990		} else {
5991			zio->io_error = SET_ERROR(EIO);
5992		}
5993		if (!equal)
5994			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
5995
5996		/*
5997		 * If there's no waiter, issue an async i/o to the primary
5998		 * storage now.  If there *is* a waiter, the caller must
5999		 * issue the i/o in a context where it's OK to block.
6000		 */
6001		if (zio->io_waiter == NULL) {
6002			zio_t *pio = zio_unique_parent(zio);
6003
6004			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6005
6006			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
6007			    buf->b_data, zio->io_size, arc_read_done, buf,
6008			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
6009		}
6010	}
6011
6012	kmem_free(cb, sizeof (l2arc_read_callback_t));
6013}
6014
6015/*
6016 * This is the list priority from which the L2ARC will search for pages to
6017 * cache.  This is used within loops (0..3) to cycle through lists in the
6018 * desired order.  This order can have a significant effect on cache
6019 * performance.
6020 *
6021 * Currently the metadata lists are hit first, MFU then MRU, followed by
6022 * the data lists.  This function returns a locked list, and also returns
6023 * the lock pointer.
6024 */
6025static multilist_sublist_t *
6026l2arc_sublist_lock(int list_num)
6027{
6028	multilist_t *ml = NULL;
6029	unsigned int idx;
6030
6031	ASSERT(list_num >= 0 && list_num <= 3);
6032
6033	switch (list_num) {
6034	case 0:
6035		ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
6036		break;
6037	case 1:
6038		ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
6039		break;
6040	case 2:
6041		ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
6042		break;
6043	case 3:
6044		ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
6045		break;
6046	}
6047
6048	/*
6049	 * Return a randomly-selected sublist. This is acceptable
6050	 * because the caller feeds only a little bit of data for each
6051	 * call (8MB). Subsequent calls will result in different
6052	 * sublists being selected.
6053	 */
6054	idx = multilist_get_random_index(ml);
6055	return (multilist_sublist_lock(ml, idx));
6056}
6057
6058/*
6059 * Evict buffers from the device write hand to the distance specified in
6060 * bytes.  This distance may span populated buffers, it may span nothing.
6061 * This is clearing a region on the L2ARC device ready for writing.
6062 * If the 'all' boolean is set, every buffer is evicted.
6063 */
6064static void
6065l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6066{
6067	list_t *buflist;
6068	arc_buf_hdr_t *hdr, *hdr_prev;
6069	kmutex_t *hash_lock;
6070	uint64_t taddr;
6071
6072	buflist = &dev->l2ad_buflist;
6073
6074	if (!all && dev->l2ad_first) {
6075		/*
6076		 * This is the first sweep through the device.  There is
6077		 * nothing to evict.
6078		 */
6079		return;
6080	}
6081
6082	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
6083		/*
6084		 * When nearing the end of the device, evict to the end
6085		 * before the device write hand jumps to the start.
6086		 */
6087		taddr = dev->l2ad_end;
6088	} else {
6089		taddr = dev->l2ad_hand + distance;
6090	}
6091	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6092	    uint64_t, taddr, boolean_t, all);
6093
6094top:
6095	mutex_enter(&dev->l2ad_mtx);
6096	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6097		hdr_prev = list_prev(buflist, hdr);
6098
6099		hash_lock = HDR_LOCK(hdr);
6100
6101		/*
6102		 * We cannot use mutex_enter or else we can deadlock
6103		 * with l2arc_write_buffers (due to swapping the order
6104		 * the hash lock and l2ad_mtx are taken).
6105		 */
6106		if (!mutex_tryenter(hash_lock)) {
6107			/*
6108			 * Missed the hash lock.  Retry.
6109			 */
6110			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
6111			mutex_exit(&dev->l2ad_mtx);
6112			mutex_enter(hash_lock);
6113			mutex_exit(hash_lock);
6114			goto top;
6115		}
6116
6117		if (HDR_L2_WRITE_HEAD(hdr)) {
6118			/*
6119			 * We hit a write head node.  Leave it for
6120			 * l2arc_write_done().
6121			 */
6122			list_remove(buflist, hdr);
6123			mutex_exit(hash_lock);
6124			continue;
6125		}
6126
6127		if (!all && HDR_HAS_L2HDR(hdr) &&
6128		    (hdr->b_l2hdr.b_daddr > taddr ||
6129		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
6130			/*
6131			 * We've evicted to the target address,
6132			 * or the end of the device.
6133			 */
6134			mutex_exit(hash_lock);
6135			break;
6136		}
6137
6138		ASSERT(HDR_HAS_L2HDR(hdr));
6139		if (!HDR_HAS_L1HDR(hdr)) {
6140			ASSERT(!HDR_L2_READING(hdr));
6141			/*
6142			 * This doesn't exist in the ARC.  Destroy.
6143			 * arc_hdr_destroy() will call list_remove()
6144			 * and decrement arcstat_l2_size.
6145			 */
6146			arc_change_state(arc_anon, hdr, hash_lock);
6147			arc_hdr_destroy(hdr);
6148		} else {
6149			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6150			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
6151			/*
6152			 * Invalidate issued or about to be issued
6153			 * reads, since we may be about to write
6154			 * over this location.
6155			 */
6156			if (HDR_L2_READING(hdr)) {
6157				ARCSTAT_BUMP(arcstat_l2_evict_reading);
6158				hdr->b_flags |= ARC_FLAG_L2_EVICTED;
6159			}
6160
6161			/* Ensure this header has finished being written */
6162			ASSERT(!HDR_L2_WRITING(hdr));
6163			ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6164
6165			arc_hdr_l2hdr_destroy(hdr);
6166		}
6167		mutex_exit(hash_lock);
6168	}
6169	mutex_exit(&dev->l2ad_mtx);
6170}
6171
6172/*
6173 * Find and write ARC buffers to the L2ARC device.
6174 *
6175 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
6176 * for reading until they have completed writing.
6177 * The headroom_boost is an in-out parameter used to maintain headroom boost
6178 * state between calls to this function.
6179 *
6180 * Returns the number of bytes actually written (which may be smaller than
6181 * the delta by which the device hand has changed due to alignment).
6182 */
6183static uint64_t
6184l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
6185    boolean_t *headroom_boost)
6186{
6187	arc_buf_hdr_t *hdr, *hdr_prev, *head;
6188	uint64_t write_asize, write_sz, headroom, buf_compress_minsz;
6189	void *buf_data;
6190	boolean_t full;
6191	l2arc_write_callback_t *cb;
6192	zio_t *pio, *wzio;
6193	uint64_t guid = spa_load_guid(spa);
6194	const boolean_t do_headroom_boost = *headroom_boost;
6195	int try;
6196
6197	ASSERT(dev->l2ad_vdev != NULL);
6198
6199	/* Lower the flag now, we might want to raise it again later. */
6200	*headroom_boost = B_FALSE;
6201
6202	pio = NULL;
6203	write_sz = write_asize = 0;
6204	full = B_FALSE;
6205	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
6206	head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
6207	head->b_flags |= ARC_FLAG_HAS_L2HDR;
6208
6209	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
6210	/*
6211	 * We will want to try to compress buffers that are at least 2x the
6212	 * device sector size.
6213	 */
6214	buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
6215
6216	/*
6217	 * Copy buffers for L2ARC writing.
6218	 */
6219	for (try = 0; try <= 3; try++) {
6220		multilist_sublist_t *mls = l2arc_sublist_lock(try);
6221		uint64_t passed_sz = 0;
6222
6223		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
6224
6225		/*
6226		 * L2ARC fast warmup.
6227		 *
6228		 * Until the ARC is warm and starts to evict, read from the
6229		 * head of the ARC lists rather than the tail.
6230		 */
6231		if (arc_warm == B_FALSE)
6232			hdr = multilist_sublist_head(mls);
6233		else
6234			hdr = multilist_sublist_tail(mls);
6235		if (hdr == NULL)
6236			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
6237
6238		headroom = target_sz * l2arc_headroom;
6239		if (do_headroom_boost)
6240			headroom = (headroom * l2arc_headroom_boost) / 100;
6241
6242		for (; hdr; hdr = hdr_prev) {
6243			kmutex_t *hash_lock;
6244			uint64_t buf_sz;
6245			uint64_t buf_a_sz;
6246
6247			if (arc_warm == B_FALSE)
6248				hdr_prev = multilist_sublist_next(mls, hdr);
6249			else
6250				hdr_prev = multilist_sublist_prev(mls, hdr);
6251			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned, hdr->b_size);
6252
6253			hash_lock = HDR_LOCK(hdr);
6254			if (!mutex_tryenter(hash_lock)) {
6255				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
6256				/*
6257				 * Skip this buffer rather than waiting.
6258				 */
6259				continue;
6260			}
6261
6262			passed_sz += hdr->b_size;
6263			if (passed_sz > headroom) {
6264				/*
6265				 * Searched too far.
6266				 */
6267				mutex_exit(hash_lock);
6268				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
6269				break;
6270			}
6271
6272			if (!l2arc_write_eligible(guid, hdr)) {
6273				mutex_exit(hash_lock);
6274				continue;
6275			}
6276
6277			/*
6278			 * Assume that the buffer is not going to be compressed
6279			 * and could take more space on disk because of a larger
6280			 * disk block size.
6281			 */
6282			buf_sz = hdr->b_size;
6283			buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
6284
6285			if ((write_asize + buf_a_sz) > target_sz) {
6286				full = B_TRUE;
6287				mutex_exit(hash_lock);
6288				ARCSTAT_BUMP(arcstat_l2_write_full);
6289				break;
6290			}
6291
6292			if (pio == NULL) {
6293				/*
6294				 * Insert a dummy header on the buflist so
6295				 * l2arc_write_done() can find where the
6296				 * write buffers begin without searching.
6297				 */
6298				mutex_enter(&dev->l2ad_mtx);
6299				list_insert_head(&dev->l2ad_buflist, head);
6300				mutex_exit(&dev->l2ad_mtx);
6301
6302				cb = kmem_alloc(
6303				    sizeof (l2arc_write_callback_t), KM_SLEEP);
6304				cb->l2wcb_dev = dev;
6305				cb->l2wcb_head = head;
6306				pio = zio_root(spa, l2arc_write_done, cb,
6307				    ZIO_FLAG_CANFAIL);
6308				ARCSTAT_BUMP(arcstat_l2_write_pios);
6309			}
6310
6311			/*
6312			 * Create and add a new L2ARC header.
6313			 */
6314			hdr->b_l2hdr.b_dev = dev;
6315			hdr->b_flags |= ARC_FLAG_L2_WRITING;
6316			/*
6317			 * Temporarily stash the data buffer in b_tmp_cdata.
6318			 * The subsequent write step will pick it up from
6319			 * there. This is because can't access b_l1hdr.b_buf
6320			 * without holding the hash_lock, which we in turn
6321			 * can't access without holding the ARC list locks
6322			 * (which we want to avoid during compression/writing).
6323			 */
6324			HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
6325			hdr->b_l2hdr.b_asize = hdr->b_size;
6326			hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data;
6327
6328			/*
6329			 * Explicitly set the b_daddr field to a known
6330			 * value which means "invalid address". This
6331			 * enables us to differentiate which stage of
6332			 * l2arc_write_buffers() the particular header
6333			 * is in (e.g. this loop, or the one below).
6334			 * ARC_FLAG_L2_WRITING is not enough to make
6335			 * this distinction, and we need to know in
6336			 * order to do proper l2arc vdev accounting in
6337			 * arc_release() and arc_hdr_destroy().
6338			 *
6339			 * Note, we can't use a new flag to distinguish
6340			 * the two stages because we don't hold the
6341			 * header's hash_lock below, in the second stage
6342			 * of this function. Thus, we can't simply
6343			 * change the b_flags field to denote that the
6344			 * IO has been sent. We can change the b_daddr
6345			 * field of the L2 portion, though, since we'll
6346			 * be holding the l2ad_mtx; which is why we're
6347			 * using it to denote the header's state change.
6348			 */
6349			hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET;
6350			hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
6351
6352			mutex_enter(&dev->l2ad_mtx);
6353			list_insert_head(&dev->l2ad_buflist, hdr);
6354			mutex_exit(&dev->l2ad_mtx);
6355
6356			/*
6357			 * Compute and store the buffer cksum before
6358			 * writing.  On debug the cksum is verified first.
6359			 */
6360			arc_cksum_verify(hdr->b_l1hdr.b_buf);
6361			arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE);
6362
6363			mutex_exit(hash_lock);
6364
6365			write_sz += buf_sz;
6366			write_asize += buf_a_sz;
6367		}
6368
6369		multilist_sublist_unlock(mls);
6370
6371		if (full == B_TRUE)
6372			break;
6373	}
6374
6375	/* No buffers selected for writing? */
6376	if (pio == NULL) {
6377		ASSERT0(write_sz);
6378		ASSERT(!HDR_HAS_L1HDR(head));
6379		kmem_cache_free(hdr_l2only_cache, head);
6380		return (0);
6381	}
6382
6383	mutex_enter(&dev->l2ad_mtx);
6384
6385	/*
6386	 * Note that elsewhere in this file arcstat_l2_asize
6387	 * and the used space on l2ad_vdev are updated using b_asize,
6388	 * which is not necessarily rounded up to the device block size.
6389	 * Too keep accounting consistent we do the same here as well:
6390	 * stats_size accumulates the sum of b_asize of the written buffers,
6391	 * while write_asize accumulates the sum of b_asize rounded up
6392	 * to the device block size.
6393	 * The latter sum is used only to validate the corectness of the code.
6394	 */
6395	uint64_t stats_size = 0;
6396	write_asize = 0;
6397
6398	/*
6399	 * Now start writing the buffers. We're starting at the write head
6400	 * and work backwards, retracing the course of the buffer selector
6401	 * loop above.
6402	 */
6403	for (hdr = list_prev(&dev->l2ad_buflist, head); hdr;
6404	    hdr = list_prev(&dev->l2ad_buflist, hdr)) {
6405		uint64_t buf_sz;
6406
6407		/*
6408		 * We rely on the L1 portion of the header below, so
6409		 * it's invalid for this header to have been evicted out
6410		 * of the ghost cache, prior to being written out. The
6411		 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6412		 */
6413		ASSERT(HDR_HAS_L1HDR(hdr));
6414
6415		/*
6416		 * We shouldn't need to lock the buffer here, since we flagged
6417		 * it as ARC_FLAG_L2_WRITING in the previous step, but we must
6418		 * take care to only access its L2 cache parameters. In
6419		 * particular, hdr->l1hdr.b_buf may be invalid by now due to
6420		 * ARC eviction.
6421		 */
6422		hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
6423
6424		if ((HDR_L2COMPRESS(hdr)) &&
6425		    hdr->b_l2hdr.b_asize >= buf_compress_minsz) {
6426			if (l2arc_compress_buf(hdr)) {
6427				/*
6428				 * If compression succeeded, enable headroom
6429				 * boost on the next scan cycle.
6430				 */
6431				*headroom_boost = B_TRUE;
6432			}
6433		}
6434
6435		/*
6436		 * Pick up the buffer data we had previously stashed away
6437		 * (and now potentially also compressed).
6438		 */
6439		buf_data = hdr->b_l1hdr.b_tmp_cdata;
6440		buf_sz = hdr->b_l2hdr.b_asize;
6441
6442		/*
6443		 * We need to do this regardless if buf_sz is zero or
6444		 * not, otherwise, when this l2hdr is evicted we'll
6445		 * remove a reference that was never added.
6446		 */
6447		(void) refcount_add_many(&dev->l2ad_alloc, buf_sz, hdr);
6448
6449		/* Compression may have squashed the buffer to zero length. */
6450		if (buf_sz != 0) {
6451			uint64_t buf_a_sz;
6452
6453			wzio = zio_write_phys(pio, dev->l2ad_vdev,
6454			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
6455			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
6456			    ZIO_FLAG_CANFAIL, B_FALSE);
6457
6458			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
6459			    zio_t *, wzio);
6460			(void) zio_nowait(wzio);
6461
6462			stats_size += buf_sz;
6463
6464			/*
6465			 * Keep the clock hand suitably device-aligned.
6466			 */
6467			buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
6468			write_asize += buf_a_sz;
6469			dev->l2ad_hand += buf_a_sz;
6470		}
6471	}
6472
6473	mutex_exit(&dev->l2ad_mtx);
6474
6475	ASSERT3U(write_asize, <=, target_sz);
6476	ARCSTAT_BUMP(arcstat_l2_writes_sent);
6477	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
6478	ARCSTAT_INCR(arcstat_l2_size, write_sz);
6479	ARCSTAT_INCR(arcstat_l2_asize, stats_size);
6480	vdev_space_update(dev->l2ad_vdev, stats_size, 0, 0);
6481
6482	/*
6483	 * Bump device hand to the device start if it is approaching the end.
6484	 * l2arc_evict() will already have evicted ahead for this case.
6485	 */
6486	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
6487		dev->l2ad_hand = dev->l2ad_start;
6488		dev->l2ad_first = B_FALSE;
6489	}
6490
6491	dev->l2ad_writing = B_TRUE;
6492	(void) zio_wait(pio);
6493	dev->l2ad_writing = B_FALSE;
6494
6495	return (write_asize);
6496}
6497
6498/*
6499 * Compresses an L2ARC buffer.
6500 * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its
6501 * size in l2hdr->b_asize. This routine tries to compress the data and
6502 * depending on the compression result there are three possible outcomes:
6503 * *) The buffer was incompressible. The original l2hdr contents were left
6504 *    untouched and are ready for writing to an L2 device.
6505 * *) The buffer was all-zeros, so there is no need to write it to an L2
6506 *    device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
6507 *    set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
6508 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
6509 *    data buffer which holds the compressed data to be written, and b_asize
6510 *    tells us how much data there is. b_compress is set to the appropriate
6511 *    compression algorithm. Once writing is done, invoke
6512 *    l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
6513 *
6514 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
6515 * buffer was incompressible).
6516 */
6517static boolean_t
6518l2arc_compress_buf(arc_buf_hdr_t *hdr)
6519{
6520	void *cdata;
6521	size_t csize, len, rounded;
6522	ASSERT(HDR_HAS_L2HDR(hdr));
6523	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
6524
6525	ASSERT(HDR_HAS_L1HDR(hdr));
6526	ASSERT(HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF);
6527	ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6528
6529	len = l2hdr->b_asize;
6530	cdata = zio_data_buf_alloc(len);
6531	ASSERT3P(cdata, !=, NULL);
6532	csize = zio_compress_data(ZIO_COMPRESS_LZ4, hdr->b_l1hdr.b_tmp_cdata,
6533	    cdata, l2hdr->b_asize);
6534
6535	rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE);
6536	if (rounded > csize) {
6537		bzero((char *)cdata + csize, rounded - csize);
6538		csize = rounded;
6539	}
6540
6541	if (csize == 0) {
6542		/* zero block, indicate that there's nothing to write */
6543		zio_data_buf_free(cdata, len);
6544		HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_EMPTY);
6545		l2hdr->b_asize = 0;
6546		hdr->b_l1hdr.b_tmp_cdata = NULL;
6547		ARCSTAT_BUMP(arcstat_l2_compress_zeros);
6548		return (B_TRUE);
6549	} else if (csize > 0 && csize < len) {
6550		/*
6551		 * Compression succeeded, we'll keep the cdata around for
6552		 * writing and release it afterwards.
6553		 */
6554		HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_LZ4);
6555		l2hdr->b_asize = csize;
6556		hdr->b_l1hdr.b_tmp_cdata = cdata;
6557		ARCSTAT_BUMP(arcstat_l2_compress_successes);
6558		return (B_TRUE);
6559	} else {
6560		/*
6561		 * Compression failed, release the compressed buffer.
6562		 * l2hdr will be left unmodified.
6563		 */
6564		zio_data_buf_free(cdata, len);
6565		ARCSTAT_BUMP(arcstat_l2_compress_failures);
6566		return (B_FALSE);
6567	}
6568}
6569
6570/*
6571 * Decompresses a zio read back from an l2arc device. On success, the
6572 * underlying zio's io_data buffer is overwritten by the uncompressed
6573 * version. On decompression error (corrupt compressed stream), the
6574 * zio->io_error value is set to signal an I/O error.
6575 *
6576 * Please note that the compressed data stream is not checksummed, so
6577 * if the underlying device is experiencing data corruption, we may feed
6578 * corrupt data to the decompressor, so the decompressor needs to be
6579 * able to handle this situation (LZ4 does).
6580 */
6581static void
6582l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
6583{
6584	ASSERT(L2ARC_IS_VALID_COMPRESS(c));
6585
6586	if (zio->io_error != 0) {
6587		/*
6588		 * An io error has occured, just restore the original io
6589		 * size in preparation for a main pool read.
6590		 */
6591		zio->io_orig_size = zio->io_size = hdr->b_size;
6592		return;
6593	}
6594
6595	if (c == ZIO_COMPRESS_EMPTY) {
6596		/*
6597		 * An empty buffer results in a null zio, which means we
6598		 * need to fill its io_data after we're done restoring the
6599		 * buffer's contents.
6600		 */
6601		ASSERT(hdr->b_l1hdr.b_buf != NULL);
6602		bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size);
6603		zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data;
6604	} else {
6605		ASSERT(zio->io_data != NULL);
6606		/*
6607		 * We copy the compressed data from the start of the arc buffer
6608		 * (the zio_read will have pulled in only what we need, the
6609		 * rest is garbage which we will overwrite at decompression)
6610		 * and then decompress back to the ARC data buffer. This way we
6611		 * can minimize copying by simply decompressing back over the
6612		 * original compressed data (rather than decompressing to an
6613		 * aux buffer and then copying back the uncompressed buffer,
6614		 * which is likely to be much larger).
6615		 */
6616		uint64_t csize;
6617		void *cdata;
6618
6619		csize = zio->io_size;
6620		cdata = zio_data_buf_alloc(csize);
6621		bcopy(zio->io_data, cdata, csize);
6622		if (zio_decompress_data(c, cdata, zio->io_data, csize,
6623		    hdr->b_size) != 0)
6624			zio->io_error = EIO;
6625		zio_data_buf_free(cdata, csize);
6626	}
6627
6628	/* Restore the expected uncompressed IO size. */
6629	zio->io_orig_size = zio->io_size = hdr->b_size;
6630}
6631
6632/*
6633 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
6634 * This buffer serves as a temporary holder of compressed data while
6635 * the buffer entry is being written to an l2arc device. Once that is
6636 * done, we can dispose of it.
6637 */
6638static void
6639l2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
6640{
6641	enum zio_compress comp = HDR_GET_COMPRESS(hdr);
6642
6643	ASSERT(HDR_HAS_L1HDR(hdr));
6644	ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp));
6645
6646	if (comp == ZIO_COMPRESS_OFF) {
6647		/*
6648		 * In this case, b_tmp_cdata points to the same buffer
6649		 * as the arc_buf_t's b_data field. We don't want to
6650		 * free it, since the arc_buf_t will handle that.
6651		 */
6652		hdr->b_l1hdr.b_tmp_cdata = NULL;
6653	} else if (comp == ZIO_COMPRESS_EMPTY) {
6654		/*
6655		 * In this case, b_tmp_cdata was compressed to an empty
6656		 * buffer, thus there's nothing to free and b_tmp_cdata
6657		 * should have been set to NULL in l2arc_write_buffers().
6658		 */
6659		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6660	} else {
6661		/*
6662		 * If the data was compressed, then we've allocated a
6663		 * temporary buffer for it, so now we need to release it.
6664		 */
6665		ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6666		zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata,
6667		    hdr->b_size);
6668		hdr->b_l1hdr.b_tmp_cdata = NULL;
6669	}
6670
6671}
6672
6673/*
6674 * This thread feeds the L2ARC at regular intervals.  This is the beating
6675 * heart of the L2ARC.
6676 */
6677static void
6678l2arc_feed_thread(void *dummy __unused)
6679{
6680	callb_cpr_t cpr;
6681	l2arc_dev_t *dev;
6682	spa_t *spa;
6683	uint64_t size, wrote;
6684	clock_t begin, next = ddi_get_lbolt();
6685	boolean_t headroom_boost = B_FALSE;
6686
6687	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
6688
6689	mutex_enter(&l2arc_feed_thr_lock);
6690
6691	while (l2arc_thread_exit == 0) {
6692		CALLB_CPR_SAFE_BEGIN(&cpr);
6693		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
6694		    next - ddi_get_lbolt());
6695		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
6696		next = ddi_get_lbolt() + hz;
6697
6698		/*
6699		 * Quick check for L2ARC devices.
6700		 */
6701		mutex_enter(&l2arc_dev_mtx);
6702		if (l2arc_ndev == 0) {
6703			mutex_exit(&l2arc_dev_mtx);
6704			continue;
6705		}
6706		mutex_exit(&l2arc_dev_mtx);
6707		begin = ddi_get_lbolt();
6708
6709		/*
6710		 * This selects the next l2arc device to write to, and in
6711		 * doing so the next spa to feed from: dev->l2ad_spa.   This
6712		 * will return NULL if there are now no l2arc devices or if
6713		 * they are all faulted.
6714		 *
6715		 * If a device is returned, its spa's config lock is also
6716		 * held to prevent device removal.  l2arc_dev_get_next()
6717		 * will grab and release l2arc_dev_mtx.
6718		 */
6719		if ((dev = l2arc_dev_get_next()) == NULL)
6720			continue;
6721
6722		spa = dev->l2ad_spa;
6723		ASSERT(spa != NULL);
6724
6725		/*
6726		 * If the pool is read-only then force the feed thread to
6727		 * sleep a little longer.
6728		 */
6729		if (!spa_writeable(spa)) {
6730			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
6731			spa_config_exit(spa, SCL_L2ARC, dev);
6732			continue;
6733		}
6734
6735		/*
6736		 * Avoid contributing to memory pressure.
6737		 */
6738		if (arc_reclaim_needed()) {
6739			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
6740			spa_config_exit(spa, SCL_L2ARC, dev);
6741			continue;
6742		}
6743
6744		ARCSTAT_BUMP(arcstat_l2_feeds);
6745
6746		size = l2arc_write_size();
6747
6748		/*
6749		 * Evict L2ARC buffers that will be overwritten.
6750		 */
6751		l2arc_evict(dev, size, B_FALSE);
6752
6753		/*
6754		 * Write ARC buffers.
6755		 */
6756		wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
6757
6758		/*
6759		 * Calculate interval between writes.
6760		 */
6761		next = l2arc_write_interval(begin, size, wrote);
6762		spa_config_exit(spa, SCL_L2ARC, dev);
6763	}
6764
6765	l2arc_thread_exit = 0;
6766	cv_broadcast(&l2arc_feed_thr_cv);
6767	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
6768	thread_exit();
6769}
6770
6771boolean_t
6772l2arc_vdev_present(vdev_t *vd)
6773{
6774	l2arc_dev_t *dev;
6775
6776	mutex_enter(&l2arc_dev_mtx);
6777	for (dev = list_head(l2arc_dev_list); dev != NULL;
6778	    dev = list_next(l2arc_dev_list, dev)) {
6779		if (dev->l2ad_vdev == vd)
6780			break;
6781	}
6782	mutex_exit(&l2arc_dev_mtx);
6783
6784	return (dev != NULL);
6785}
6786
6787/*
6788 * Add a vdev for use by the L2ARC.  By this point the spa has already
6789 * validated the vdev and opened it.
6790 */
6791void
6792l2arc_add_vdev(spa_t *spa, vdev_t *vd)
6793{
6794	l2arc_dev_t *adddev;
6795
6796	ASSERT(!l2arc_vdev_present(vd));
6797
6798	vdev_ashift_optimize(vd);
6799
6800	/*
6801	 * Create a new l2arc device entry.
6802	 */
6803	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
6804	adddev->l2ad_spa = spa;
6805	adddev->l2ad_vdev = vd;
6806	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
6807	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
6808	adddev->l2ad_hand = adddev->l2ad_start;
6809	adddev->l2ad_first = B_TRUE;
6810	adddev->l2ad_writing = B_FALSE;
6811
6812	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
6813	/*
6814	 * This is a list of all ARC buffers that are still valid on the
6815	 * device.
6816	 */
6817	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
6818	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
6819
6820	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
6821	refcount_create(&adddev->l2ad_alloc);
6822
6823	/*
6824	 * Add device to global list
6825	 */
6826	mutex_enter(&l2arc_dev_mtx);
6827	list_insert_head(l2arc_dev_list, adddev);
6828	atomic_inc_64(&l2arc_ndev);
6829	mutex_exit(&l2arc_dev_mtx);
6830}
6831
6832/*
6833 * Remove a vdev from the L2ARC.
6834 */
6835void
6836l2arc_remove_vdev(vdev_t *vd)
6837{
6838	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
6839
6840	/*
6841	 * Find the device by vdev
6842	 */
6843	mutex_enter(&l2arc_dev_mtx);
6844	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
6845		nextdev = list_next(l2arc_dev_list, dev);
6846		if (vd == dev->l2ad_vdev) {
6847			remdev = dev;
6848			break;
6849		}
6850	}
6851	ASSERT(remdev != NULL);
6852
6853	/*
6854	 * Remove device from global list
6855	 */
6856	list_remove(l2arc_dev_list, remdev);
6857	l2arc_dev_last = NULL;		/* may have been invalidated */
6858	atomic_dec_64(&l2arc_ndev);
6859	mutex_exit(&l2arc_dev_mtx);
6860
6861	/*
6862	 * Clear all buflists and ARC references.  L2ARC device flush.
6863	 */
6864	l2arc_evict(remdev, 0, B_TRUE);
6865	list_destroy(&remdev->l2ad_buflist);
6866	mutex_destroy(&remdev->l2ad_mtx);
6867	refcount_destroy(&remdev->l2ad_alloc);
6868	kmem_free(remdev, sizeof (l2arc_dev_t));
6869}
6870
6871void
6872l2arc_init(void)
6873{
6874	l2arc_thread_exit = 0;
6875	l2arc_ndev = 0;
6876	l2arc_writes_sent = 0;
6877	l2arc_writes_done = 0;
6878
6879	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
6880	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
6881	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
6882	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
6883
6884	l2arc_dev_list = &L2ARC_dev_list;
6885	l2arc_free_on_write = &L2ARC_free_on_write;
6886	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
6887	    offsetof(l2arc_dev_t, l2ad_node));
6888	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
6889	    offsetof(l2arc_data_free_t, l2df_list_node));
6890}
6891
6892void
6893l2arc_fini(void)
6894{
6895	/*
6896	 * This is called from dmu_fini(), which is called from spa_fini();
6897	 * Because of this, we can assume that all l2arc devices have
6898	 * already been removed when the pools themselves were removed.
6899	 */
6900
6901	l2arc_do_free_on_write();
6902
6903	mutex_destroy(&l2arc_feed_thr_lock);
6904	cv_destroy(&l2arc_feed_thr_cv);
6905	mutex_destroy(&l2arc_dev_mtx);
6906	mutex_destroy(&l2arc_free_on_write_mtx);
6907
6908	list_destroy(l2arc_dev_list);
6909	list_destroy(l2arc_free_on_write);
6910}
6911
6912void
6913l2arc_start(void)
6914{
6915	if (!(spa_mode_global & FWRITE))
6916		return;
6917
6918	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
6919	    TS_RUN, minclsyspri);
6920}
6921
6922void
6923l2arc_stop(void)
6924{
6925	if (!(spa_mode_global & FWRITE))
6926		return;
6927
6928	mutex_enter(&l2arc_feed_thr_lock);
6929	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
6930	l2arc_thread_exit = 1;
6931	while (l2arc_thread_exit != 0)
6932		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
6933	mutex_exit(&l2arc_feed_thr_lock);
6934}
6935