arc.c revision 282361
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
25 * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
26 */
27
28/*
29 * DVA-based Adjustable Replacement Cache
30 *
31 * While much of the theory of operation used here is
32 * based on the self-tuning, low overhead replacement cache
33 * presented by Megiddo and Modha at FAST 2003, there are some
34 * significant differences:
35 *
36 * 1. The Megiddo and Modha model assumes any page is evictable.
37 * Pages in its cache cannot be "locked" into memory.  This makes
38 * the eviction algorithm simple: evict the last page in the list.
39 * This also make the performance characteristics easy to reason
40 * about.  Our cache is not so simple.  At any given moment, some
41 * subset of the blocks in the cache are un-evictable because we
42 * have handed out a reference to them.  Blocks are only evictable
43 * when there are no external references active.  This makes
44 * eviction far more problematic:  we choose to evict the evictable
45 * blocks that are the "lowest" in the list.
46 *
47 * There are times when it is not possible to evict the requested
48 * space.  In these circumstances we are unable to adjust the cache
49 * size.  To prevent the cache growing unbounded at these times we
50 * implement a "cache throttle" that slows the flow of new data
51 * into the cache until we can make space available.
52 *
53 * 2. The Megiddo and Modha model assumes a fixed cache size.
54 * Pages are evicted when the cache is full and there is a cache
55 * miss.  Our model has a variable sized cache.  It grows with
56 * high use, but also tries to react to memory pressure from the
57 * operating system: decreasing its size when system memory is
58 * tight.
59 *
60 * 3. The Megiddo and Modha model assumes a fixed page size. All
61 * elements of the cache are therefore exactly the same size.  So
62 * when adjusting the cache size following a cache miss, its simply
63 * a matter of choosing a single page to evict.  In our model, we
64 * have variable sized cache blocks (rangeing from 512 bytes to
65 * 128K bytes).  We therefore choose a set of blocks to evict to make
66 * space for a cache miss that approximates as closely as possible
67 * the space used by the new block.
68 *
69 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70 * by N. Megiddo & D. Modha, FAST 2003
71 */
72
73/*
74 * The locking model:
75 *
76 * A new reference to a cache buffer can be obtained in two
77 * ways: 1) via a hash table lookup using the DVA as a key,
78 * or 2) via one of the ARC lists.  The arc_read() interface
79 * uses method 1, while the internal arc algorithms for
80 * adjusting the cache use method 2.  We therefore provide two
81 * types of locks: 1) the hash table lock array, and 2) the
82 * arc list locks.
83 *
84 * Buffers do not have their own mutexs, rather they rely on the
85 * hash table mutexs for the bulk of their protection (i.e. most
86 * fields in the arc_buf_hdr_t are protected by these mutexs).
87 *
88 * buf_hash_find() returns the appropriate mutex (held) when it
89 * locates the requested buffer in the hash table.  It returns
90 * NULL for the mutex if the buffer was not in the table.
91 *
92 * buf_hash_remove() expects the appropriate hash mutex to be
93 * already held before it is invoked.
94 *
95 * Each arc state also has a mutex which is used to protect the
96 * buffer list associated with the state.  When attempting to
97 * obtain a hash table lock while holding an arc list lock you
98 * must use: mutex_tryenter() to avoid deadlock.  Also note that
99 * the active state mutex must be held before the ghost state mutex.
100 *
101 * Arc buffers may have an associated eviction callback function.
102 * This function will be invoked prior to removing the buffer (e.g.
103 * in arc_do_user_evicts()).  Note however that the data associated
104 * with the buffer may be evicted prior to the callback.  The callback
105 * must be made with *no locks held* (to prevent deadlock).  Additionally,
106 * the users of callbacks must ensure that their private data is
107 * protected from simultaneous callbacks from arc_clear_callback()
108 * and arc_do_user_evicts().
109 *
110 * Note that the majority of the performance stats are manipulated
111 * with atomic operations.
112 *
113 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
114 *
115 *	- L2ARC buflist creation
116 *	- L2ARC buflist eviction
117 *	- L2ARC write completion, which walks L2ARC buflists
118 *	- ARC header destruction, as it removes from L2ARC buflists
119 *	- ARC header release, as it removes from L2ARC buflists
120 */
121
122#include <sys/spa.h>
123#include <sys/zio.h>
124#include <sys/zio_compress.h>
125#include <sys/zfs_context.h>
126#include <sys/arc.h>
127#include <sys/refcount.h>
128#include <sys/vdev.h>
129#include <sys/vdev_impl.h>
130#include <sys/dsl_pool.h>
131#ifdef _KERNEL
132#include <sys/dnlc.h>
133#endif
134#include <sys/callb.h>
135#include <sys/kstat.h>
136#include <sys/trim_map.h>
137#include <zfs_fletcher.h>
138#include <sys/sdt.h>
139
140#include <vm/vm_pageout.h>
141#include <machine/vmparam.h>
142
143#ifdef illumos
144#ifndef _KERNEL
145/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
146boolean_t arc_watch = B_FALSE;
147int arc_procfd;
148#endif
149#endif /* illumos */
150
151static kmutex_t		arc_reclaim_thr_lock;
152static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
153static uint8_t		arc_thread_exit;
154
155#define	ARC_REDUCE_DNLC_PERCENT	3
156uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
157
158typedef enum arc_reclaim_strategy {
159	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
160	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
161} arc_reclaim_strategy_t;
162
163/*
164 * The number of iterations through arc_evict_*() before we
165 * drop & reacquire the lock.
166 */
167int arc_evict_iterations = 100;
168
169/* number of seconds before growing cache again */
170static int		arc_grow_retry = 60;
171
172/* shift of arc_c for calculating both min and max arc_p */
173static int		arc_p_min_shift = 4;
174
175/* log2(fraction of arc to reclaim) */
176static int		arc_shrink_shift = 5;
177
178/*
179 * minimum lifespan of a prefetch block in clock ticks
180 * (initialized in arc_init())
181 */
182static int		arc_min_prefetch_lifespan;
183
184/*
185 * If this percent of memory is free, don't throttle.
186 */
187int arc_lotsfree_percent = 10;
188
189static int arc_dead;
190extern int zfs_prefetch_disable;
191
192/*
193 * The arc has filled available memory and has now warmed up.
194 */
195static boolean_t arc_warm;
196
197uint64_t zfs_arc_max;
198uint64_t zfs_arc_min;
199uint64_t zfs_arc_meta_limit = 0;
200int zfs_arc_grow_retry = 0;
201int zfs_arc_shrink_shift = 0;
202int zfs_arc_p_min_shift = 0;
203int zfs_disable_dup_eviction = 0;
204uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
205u_int zfs_arc_free_target = 0;
206
207static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS);
208static int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS);
209
210#ifdef _KERNEL
211static void
212arc_free_target_init(void *unused __unused)
213{
214
215	zfs_arc_free_target = vm_pageout_wakeup_thresh;
216}
217SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY,
218    arc_free_target_init, NULL);
219
220TUNABLE_QUAD("vfs.zfs.arc_max", &zfs_arc_max);
221TUNABLE_QUAD("vfs.zfs.arc_min", &zfs_arc_min);
222TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
223TUNABLE_QUAD("vfs.zfs.arc_average_blocksize", &zfs_arc_average_blocksize);
224TUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift);
225SYSCTL_DECL(_vfs_zfs);
226SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_max, CTLFLAG_RDTUN, &zfs_arc_max, 0,
227    "Maximum ARC size");
228SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_min, CTLFLAG_RDTUN, &zfs_arc_min, 0,
229    "Minimum ARC size");
230SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN,
231    &zfs_arc_average_blocksize, 0,
232    "ARC average blocksize");
233SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW,
234    &arc_shrink_shift, 0,
235    "log2(fraction of arc to reclaim)");
236
237/*
238 * We don't have a tunable for arc_free_target due to the dependency on
239 * pagedaemon initialisation.
240 */
241SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target,
242    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int),
243    sysctl_vfs_zfs_arc_free_target, "IU",
244    "Desired number of free pages below which ARC triggers reclaim");
245
246static int
247sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)
248{
249	u_int val;
250	int err;
251
252	val = zfs_arc_free_target;
253	err = sysctl_handle_int(oidp, &val, 0, req);
254	if (err != 0 || req->newptr == NULL)
255		return (err);
256
257	if (val < minfree)
258		return (EINVAL);
259	if (val > cnt.v_page_count)
260		return (EINVAL);
261
262	zfs_arc_free_target = val;
263
264	return (0);
265}
266
267/*
268 * Must be declared here, before the definition of corresponding kstat
269 * macro which uses the same names will confuse the compiler.
270 */
271SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit,
272    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
273    sysctl_vfs_zfs_arc_meta_limit, "QU",
274    "ARC metadata limit");
275#endif
276
277/*
278 * Note that buffers can be in one of 6 states:
279 *	ARC_anon	- anonymous (discussed below)
280 *	ARC_mru		- recently used, currently cached
281 *	ARC_mru_ghost	- recentely used, no longer in cache
282 *	ARC_mfu		- frequently used, currently cached
283 *	ARC_mfu_ghost	- frequently used, no longer in cache
284 *	ARC_l2c_only	- exists in L2ARC but not other states
285 * When there are no active references to the buffer, they are
286 * are linked onto a list in one of these arc states.  These are
287 * the only buffers that can be evicted or deleted.  Within each
288 * state there are multiple lists, one for meta-data and one for
289 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
290 * etc.) is tracked separately so that it can be managed more
291 * explicitly: favored over data, limited explicitly.
292 *
293 * Anonymous buffers are buffers that are not associated with
294 * a DVA.  These are buffers that hold dirty block copies
295 * before they are written to stable storage.  By definition,
296 * they are "ref'd" and are considered part of arc_mru
297 * that cannot be freed.  Generally, they will aquire a DVA
298 * as they are written and migrate onto the arc_mru list.
299 *
300 * The ARC_l2c_only state is for buffers that are in the second
301 * level ARC but no longer in any of the ARC_m* lists.  The second
302 * level ARC itself may also contain buffers that are in any of
303 * the ARC_m* states - meaning that a buffer can exist in two
304 * places.  The reason for the ARC_l2c_only state is to keep the
305 * buffer header in the hash table, so that reads that hit the
306 * second level ARC benefit from these fast lookups.
307 */
308
309#define	ARCS_LOCK_PAD		CACHE_LINE_SIZE
310struct arcs_lock {
311	kmutex_t	arcs_lock;
312#ifdef _KERNEL
313	unsigned char	pad[(ARCS_LOCK_PAD - sizeof (kmutex_t))];
314#endif
315};
316
317/*
318 * must be power of two for mask use to work
319 *
320 */
321#define ARC_BUFC_NUMDATALISTS		16
322#define ARC_BUFC_NUMMETADATALISTS	16
323#define ARC_BUFC_NUMLISTS	(ARC_BUFC_NUMMETADATALISTS + ARC_BUFC_NUMDATALISTS)
324
325typedef struct arc_state {
326	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
327	uint64_t arcs_size;	/* total amount of data in this state */
328	list_t	arcs_lists[ARC_BUFC_NUMLISTS]; /* list of evictable buffers */
329	struct arcs_lock arcs_locks[ARC_BUFC_NUMLISTS] __aligned(CACHE_LINE_SIZE);
330} arc_state_t;
331
332#define ARCS_LOCK(s, i)	(&((s)->arcs_locks[(i)].arcs_lock))
333
334/* The 6 states: */
335static arc_state_t ARC_anon;
336static arc_state_t ARC_mru;
337static arc_state_t ARC_mru_ghost;
338static arc_state_t ARC_mfu;
339static arc_state_t ARC_mfu_ghost;
340static arc_state_t ARC_l2c_only;
341
342typedef struct arc_stats {
343	kstat_named_t arcstat_hits;
344	kstat_named_t arcstat_misses;
345	kstat_named_t arcstat_demand_data_hits;
346	kstat_named_t arcstat_demand_data_misses;
347	kstat_named_t arcstat_demand_metadata_hits;
348	kstat_named_t arcstat_demand_metadata_misses;
349	kstat_named_t arcstat_prefetch_data_hits;
350	kstat_named_t arcstat_prefetch_data_misses;
351	kstat_named_t arcstat_prefetch_metadata_hits;
352	kstat_named_t arcstat_prefetch_metadata_misses;
353	kstat_named_t arcstat_mru_hits;
354	kstat_named_t arcstat_mru_ghost_hits;
355	kstat_named_t arcstat_mfu_hits;
356	kstat_named_t arcstat_mfu_ghost_hits;
357	kstat_named_t arcstat_allocated;
358	kstat_named_t arcstat_deleted;
359	kstat_named_t arcstat_stolen;
360	kstat_named_t arcstat_recycle_miss;
361	/*
362	 * Number of buffers that could not be evicted because the hash lock
363	 * was held by another thread.  The lock may not necessarily be held
364	 * by something using the same buffer, since hash locks are shared
365	 * by multiple buffers.
366	 */
367	kstat_named_t arcstat_mutex_miss;
368	/*
369	 * Number of buffers skipped because they have I/O in progress, are
370	 * indrect prefetch buffers that have not lived long enough, or are
371	 * not from the spa we're trying to evict from.
372	 */
373	kstat_named_t arcstat_evict_skip;
374	kstat_named_t arcstat_evict_l2_cached;
375	kstat_named_t arcstat_evict_l2_eligible;
376	kstat_named_t arcstat_evict_l2_ineligible;
377	kstat_named_t arcstat_hash_elements;
378	kstat_named_t arcstat_hash_elements_max;
379	kstat_named_t arcstat_hash_collisions;
380	kstat_named_t arcstat_hash_chains;
381	kstat_named_t arcstat_hash_chain_max;
382	kstat_named_t arcstat_p;
383	kstat_named_t arcstat_c;
384	kstat_named_t arcstat_c_min;
385	kstat_named_t arcstat_c_max;
386	kstat_named_t arcstat_size;
387	kstat_named_t arcstat_hdr_size;
388	kstat_named_t arcstat_data_size;
389	kstat_named_t arcstat_other_size;
390	kstat_named_t arcstat_l2_hits;
391	kstat_named_t arcstat_l2_misses;
392	kstat_named_t arcstat_l2_feeds;
393	kstat_named_t arcstat_l2_rw_clash;
394	kstat_named_t arcstat_l2_read_bytes;
395	kstat_named_t arcstat_l2_write_bytes;
396	kstat_named_t arcstat_l2_writes_sent;
397	kstat_named_t arcstat_l2_writes_done;
398	kstat_named_t arcstat_l2_writes_error;
399	kstat_named_t arcstat_l2_writes_hdr_miss;
400	kstat_named_t arcstat_l2_evict_lock_retry;
401	kstat_named_t arcstat_l2_evict_reading;
402	kstat_named_t arcstat_l2_free_on_write;
403	kstat_named_t arcstat_l2_cdata_free_on_write;
404	kstat_named_t arcstat_l2_abort_lowmem;
405	kstat_named_t arcstat_l2_cksum_bad;
406	kstat_named_t arcstat_l2_io_error;
407	kstat_named_t arcstat_l2_size;
408	kstat_named_t arcstat_l2_asize;
409	kstat_named_t arcstat_l2_hdr_size;
410	kstat_named_t arcstat_l2_compress_successes;
411	kstat_named_t arcstat_l2_compress_zeros;
412	kstat_named_t arcstat_l2_compress_failures;
413	kstat_named_t arcstat_l2_write_trylock_fail;
414	kstat_named_t arcstat_l2_write_passed_headroom;
415	kstat_named_t arcstat_l2_write_spa_mismatch;
416	kstat_named_t arcstat_l2_write_in_l2;
417	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
418	kstat_named_t arcstat_l2_write_not_cacheable;
419	kstat_named_t arcstat_l2_write_full;
420	kstat_named_t arcstat_l2_write_buffer_iter;
421	kstat_named_t arcstat_l2_write_pios;
422	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
423	kstat_named_t arcstat_l2_write_buffer_list_iter;
424	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
425	kstat_named_t arcstat_memory_throttle_count;
426	kstat_named_t arcstat_duplicate_buffers;
427	kstat_named_t arcstat_duplicate_buffers_size;
428	kstat_named_t arcstat_duplicate_reads;
429	kstat_named_t arcstat_meta_used;
430	kstat_named_t arcstat_meta_limit;
431	kstat_named_t arcstat_meta_max;
432} arc_stats_t;
433
434static arc_stats_t arc_stats = {
435	{ "hits",			KSTAT_DATA_UINT64 },
436	{ "misses",			KSTAT_DATA_UINT64 },
437	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
438	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
439	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
440	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
441	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
442	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
443	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
444	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
445	{ "mru_hits",			KSTAT_DATA_UINT64 },
446	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
447	{ "mfu_hits",			KSTAT_DATA_UINT64 },
448	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
449	{ "allocated",			KSTAT_DATA_UINT64 },
450	{ "deleted",			KSTAT_DATA_UINT64 },
451	{ "stolen",			KSTAT_DATA_UINT64 },
452	{ "recycle_miss",		KSTAT_DATA_UINT64 },
453	{ "mutex_miss",			KSTAT_DATA_UINT64 },
454	{ "evict_skip",			KSTAT_DATA_UINT64 },
455	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
456	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
457	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
458	{ "hash_elements",		KSTAT_DATA_UINT64 },
459	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
460	{ "hash_collisions",		KSTAT_DATA_UINT64 },
461	{ "hash_chains",		KSTAT_DATA_UINT64 },
462	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
463	{ "p",				KSTAT_DATA_UINT64 },
464	{ "c",				KSTAT_DATA_UINT64 },
465	{ "c_min",			KSTAT_DATA_UINT64 },
466	{ "c_max",			KSTAT_DATA_UINT64 },
467	{ "size",			KSTAT_DATA_UINT64 },
468	{ "hdr_size",			KSTAT_DATA_UINT64 },
469	{ "data_size",			KSTAT_DATA_UINT64 },
470	{ "other_size",			KSTAT_DATA_UINT64 },
471	{ "l2_hits",			KSTAT_DATA_UINT64 },
472	{ "l2_misses",			KSTAT_DATA_UINT64 },
473	{ "l2_feeds",			KSTAT_DATA_UINT64 },
474	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
475	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
476	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
477	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
478	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
479	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
480	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
481	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
482	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
483	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
484	{ "l2_cdata_free_on_write",	KSTAT_DATA_UINT64 },
485	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
486	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
487	{ "l2_io_error",		KSTAT_DATA_UINT64 },
488	{ "l2_size",			KSTAT_DATA_UINT64 },
489	{ "l2_asize",			KSTAT_DATA_UINT64 },
490	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
491	{ "l2_compress_successes",	KSTAT_DATA_UINT64 },
492	{ "l2_compress_zeros",		KSTAT_DATA_UINT64 },
493	{ "l2_compress_failures",	KSTAT_DATA_UINT64 },
494	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
495	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
496	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
497	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
498	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
499	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
500	{ "l2_write_full",		KSTAT_DATA_UINT64 },
501	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
502	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
503	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
504	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
505	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
506	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
507	{ "duplicate_buffers",		KSTAT_DATA_UINT64 },
508	{ "duplicate_buffers_size",	KSTAT_DATA_UINT64 },
509	{ "duplicate_reads",		KSTAT_DATA_UINT64 },
510	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
511	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
512	{ "arc_meta_max",		KSTAT_DATA_UINT64 }
513};
514
515#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
516
517#define	ARCSTAT_INCR(stat, val) \
518	atomic_add_64(&arc_stats.stat.value.ui64, (val))
519
520#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
521#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
522
523#define	ARCSTAT_MAX(stat, val) {					\
524	uint64_t m;							\
525	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
526	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
527		continue;						\
528}
529
530#define	ARCSTAT_MAXSTAT(stat) \
531	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
532
533/*
534 * We define a macro to allow ARC hits/misses to be easily broken down by
535 * two separate conditions, giving a total of four different subtypes for
536 * each of hits and misses (so eight statistics total).
537 */
538#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
539	if (cond1) {							\
540		if (cond2) {						\
541			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
542		} else {						\
543			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
544		}							\
545	} else {							\
546		if (cond2) {						\
547			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
548		} else {						\
549			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
550		}							\
551	}
552
553kstat_t			*arc_ksp;
554static arc_state_t	*arc_anon;
555static arc_state_t	*arc_mru;
556static arc_state_t	*arc_mru_ghost;
557static arc_state_t	*arc_mfu;
558static arc_state_t	*arc_mfu_ghost;
559static arc_state_t	*arc_l2c_only;
560
561/*
562 * There are several ARC variables that are critical to export as kstats --
563 * but we don't want to have to grovel around in the kstat whenever we wish to
564 * manipulate them.  For these variables, we therefore define them to be in
565 * terms of the statistic variable.  This assures that we are not introducing
566 * the possibility of inconsistency by having shadow copies of the variables,
567 * while still allowing the code to be readable.
568 */
569#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
570#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
571#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
572#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
573#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
574#define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
575#define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
576#define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
577
578#define	L2ARC_IS_VALID_COMPRESS(_c_) \
579	((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
580
581static int		arc_no_grow;	/* Don't try to grow cache size */
582static uint64_t		arc_tempreserve;
583static uint64_t		arc_loaned_bytes;
584
585typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
586
587typedef struct arc_callback arc_callback_t;
588
589struct arc_callback {
590	void			*acb_private;
591	arc_done_func_t		*acb_done;
592	arc_buf_t		*acb_buf;
593	zio_t			*acb_zio_dummy;
594	arc_callback_t		*acb_next;
595};
596
597typedef struct arc_write_callback arc_write_callback_t;
598
599struct arc_write_callback {
600	void		*awcb_private;
601	arc_done_func_t	*awcb_ready;
602	arc_done_func_t	*awcb_physdone;
603	arc_done_func_t	*awcb_done;
604	arc_buf_t	*awcb_buf;
605};
606
607struct arc_buf_hdr {
608	/* protected by hash lock */
609	dva_t			b_dva;
610	uint64_t		b_birth;
611	uint64_t		b_cksum0;
612
613	kmutex_t		b_freeze_lock;
614	zio_cksum_t		*b_freeze_cksum;
615	void			*b_thawed;
616
617	arc_buf_hdr_t		*b_hash_next;
618	arc_buf_t		*b_buf;
619	arc_flags_t		b_flags;
620	uint32_t		b_datacnt;
621
622	arc_callback_t		*b_acb;
623	kcondvar_t		b_cv;
624
625	/* immutable */
626	arc_buf_contents_t	b_type;
627	uint64_t		b_size;
628	uint64_t		b_spa;
629
630	/* protected by arc state mutex */
631	arc_state_t		*b_state;
632	list_node_t		b_arc_node;
633
634	/* updated atomically */
635	clock_t			b_arc_access;
636
637	/* self protecting */
638	refcount_t		b_refcnt;
639
640	l2arc_buf_hdr_t		*b_l2hdr;
641	list_node_t		b_l2node;
642};
643
644#ifdef _KERNEL
645static int
646sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS)
647{
648	uint64_t val;
649	int err;
650
651	val = arc_meta_limit;
652	err = sysctl_handle_64(oidp, &val, 0, req);
653	if (err != 0 || req->newptr == NULL)
654		return (err);
655
656        if (val <= 0 || val > arc_c_max)
657		return (EINVAL);
658
659	arc_meta_limit = val;
660	return (0);
661}
662#endif
663
664static arc_buf_t *arc_eviction_list;
665static kmutex_t arc_eviction_mtx;
666static arc_buf_hdr_t arc_eviction_hdr;
667
668#define	GHOST_STATE(state)	\
669	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
670	(state) == arc_l2c_only)
671
672#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
673#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
674#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
675#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
676#define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
677#define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
678#define	HDR_FREE_IN_PROGRESS(hdr)	\
679	((hdr)->b_flags & ARC_FLAG_FREE_IN_PROGRESS)
680#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
681#define	HDR_L2_READING(hdr)	\
682	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS &&	\
683	    (hdr)->b_l2hdr != NULL)
684#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
685#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
686#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
687
688/*
689 * Other sizes
690 */
691
692#define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
693#define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
694
695/*
696 * Hash table routines
697 */
698
699#define	HT_LOCK_PAD	CACHE_LINE_SIZE
700
701struct ht_lock {
702	kmutex_t	ht_lock;
703#ifdef _KERNEL
704	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
705#endif
706};
707
708#define	BUF_LOCKS 256
709typedef struct buf_hash_table {
710	uint64_t ht_mask;
711	arc_buf_hdr_t **ht_table;
712	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
713} buf_hash_table_t;
714
715static buf_hash_table_t buf_hash_table;
716
717#define	BUF_HASH_INDEX(spa, dva, birth) \
718	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
719#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
720#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
721#define	HDR_LOCK(hdr) \
722	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
723
724uint64_t zfs_crc64_table[256];
725
726/*
727 * Level 2 ARC
728 */
729
730#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
731#define	L2ARC_HEADROOM		2			/* num of writes */
732/*
733 * If we discover during ARC scan any buffers to be compressed, we boost
734 * our headroom for the next scanning cycle by this percentage multiple.
735 */
736#define	L2ARC_HEADROOM_BOOST	200
737#define	L2ARC_FEED_SECS		1		/* caching interval secs */
738#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
739
740#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
741#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
742
743/* L2ARC Performance Tunables */
744uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
745uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
746uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
747uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
748uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
749uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
750boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
751boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
752boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
753
754SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
755    &l2arc_write_max, 0, "max write size");
756SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
757    &l2arc_write_boost, 0, "extra write during warmup");
758SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
759    &l2arc_headroom, 0, "number of dev writes");
760SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
761    &l2arc_feed_secs, 0, "interval seconds");
762SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
763    &l2arc_feed_min_ms, 0, "min interval milliseconds");
764
765SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
766    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
767SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
768    &l2arc_feed_again, 0, "turbo warmup");
769SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
770    &l2arc_norw, 0, "no reads during writes");
771
772SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
773    &ARC_anon.arcs_size, 0, "size of anonymous state");
774SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_lsize, CTLFLAG_RD,
775    &ARC_anon.arcs_lsize[ARC_BUFC_METADATA], 0, "size of anonymous state");
776SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_lsize, CTLFLAG_RD,
777    &ARC_anon.arcs_lsize[ARC_BUFC_DATA], 0, "size of anonymous state");
778
779SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
780    &ARC_mru.arcs_size, 0, "size of mru state");
781SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_lsize, CTLFLAG_RD,
782    &ARC_mru.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mru state");
783SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_lsize, CTLFLAG_RD,
784    &ARC_mru.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mru state");
785
786SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
787    &ARC_mru_ghost.arcs_size, 0, "size of mru ghost state");
788SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_lsize, CTLFLAG_RD,
789    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
790    "size of metadata in mru ghost state");
791SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_lsize, CTLFLAG_RD,
792    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
793    "size of data in mru ghost state");
794
795SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
796    &ARC_mfu.arcs_size, 0, "size of mfu state");
797SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_lsize, CTLFLAG_RD,
798    &ARC_mfu.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mfu state");
799SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_lsize, CTLFLAG_RD,
800    &ARC_mfu.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mfu state");
801
802SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
803    &ARC_mfu_ghost.arcs_size, 0, "size of mfu ghost state");
804SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_lsize, CTLFLAG_RD,
805    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
806    "size of metadata in mfu ghost state");
807SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_lsize, CTLFLAG_RD,
808    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
809    "size of data in mfu ghost state");
810
811SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
812    &ARC_l2c_only.arcs_size, 0, "size of mru state");
813
814/*
815 * L2ARC Internals
816 */
817typedef struct l2arc_dev {
818	vdev_t			*l2ad_vdev;	/* vdev */
819	spa_t			*l2ad_spa;	/* spa */
820	uint64_t		l2ad_hand;	/* next write location */
821	uint64_t		l2ad_start;	/* first addr on device */
822	uint64_t		l2ad_end;	/* last addr on device */
823	uint64_t		l2ad_evict;	/* last addr eviction reached */
824	boolean_t		l2ad_first;	/* first sweep through */
825	boolean_t		l2ad_writing;	/* currently writing */
826	list_t			*l2ad_buflist;	/* buffer list */
827	list_node_t		l2ad_node;	/* device list node */
828} l2arc_dev_t;
829
830static list_t L2ARC_dev_list;			/* device list */
831static list_t *l2arc_dev_list;			/* device list pointer */
832static kmutex_t l2arc_dev_mtx;			/* device list mutex */
833static l2arc_dev_t *l2arc_dev_last;		/* last device used */
834static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
835static list_t L2ARC_free_on_write;		/* free after write buf list */
836static list_t *l2arc_free_on_write;		/* free after write list ptr */
837static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
838static uint64_t l2arc_ndev;			/* number of devices */
839
840typedef struct l2arc_read_callback {
841	arc_buf_t		*l2rcb_buf;		/* read buffer */
842	spa_t			*l2rcb_spa;		/* spa */
843	blkptr_t		l2rcb_bp;		/* original blkptr */
844	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
845	int			l2rcb_flags;		/* original flags */
846	enum zio_compress	l2rcb_compress;		/* applied compress */
847} l2arc_read_callback_t;
848
849typedef struct l2arc_write_callback {
850	l2arc_dev_t	*l2wcb_dev;		/* device info */
851	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
852} l2arc_write_callback_t;
853
854struct l2arc_buf_hdr {
855	/* protected by arc_buf_hdr  mutex */
856	l2arc_dev_t		*b_dev;		/* L2ARC device */
857	uint64_t		b_daddr;	/* disk address, offset byte */
858	/* compression applied to buffer data */
859	enum zio_compress	b_compress;
860	/* real alloc'd buffer size depending on b_compress applied */
861	int			b_asize;
862	/* temporary buffer holder for in-flight compressed data */
863	void			*b_tmp_cdata;
864};
865
866typedef struct l2arc_data_free {
867	/* protected by l2arc_free_on_write_mtx */
868	void		*l2df_data;
869	size_t		l2df_size;
870	void		(*l2df_func)(void *, size_t);
871	list_node_t	l2df_list_node;
872} l2arc_data_free_t;
873
874static kmutex_t l2arc_feed_thr_lock;
875static kcondvar_t l2arc_feed_thr_cv;
876static uint8_t l2arc_thread_exit;
877
878static void arc_get_data_buf(arc_buf_t *);
879static void arc_access(arc_buf_hdr_t *, kmutex_t *);
880static int arc_evict_needed(arc_buf_contents_t);
881static void arc_evict_ghost(arc_state_t *, uint64_t, int64_t);
882static void arc_buf_watch(arc_buf_t *);
883
884static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
885static void l2arc_read_done(zio_t *);
886static void l2arc_hdr_stat_add(void);
887static void l2arc_hdr_stat_remove(void);
888
889static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *);
890static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
891static void l2arc_release_cdata_buf(arc_buf_hdr_t *);
892
893static uint64_t
894buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
895{
896	uint8_t *vdva = (uint8_t *)dva;
897	uint64_t crc = -1ULL;
898	int i;
899
900	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
901
902	for (i = 0; i < sizeof (dva_t); i++)
903		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
904
905	crc ^= (spa>>8) ^ birth;
906
907	return (crc);
908}
909
910#define	BUF_EMPTY(buf)						\
911	((buf)->b_dva.dva_word[0] == 0 &&			\
912	(buf)->b_dva.dva_word[1] == 0 &&			\
913	(buf)->b_cksum0 == 0)
914
915#define	BUF_EQUAL(spa, dva, birth, buf)				\
916	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
917	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
918	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
919
920static void
921buf_discard_identity(arc_buf_hdr_t *hdr)
922{
923	hdr->b_dva.dva_word[0] = 0;
924	hdr->b_dva.dva_word[1] = 0;
925	hdr->b_birth = 0;
926	hdr->b_cksum0 = 0;
927}
928
929static arc_buf_hdr_t *
930buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
931{
932	const dva_t *dva = BP_IDENTITY(bp);
933	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
934	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
935	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
936	arc_buf_hdr_t *hdr;
937
938	mutex_enter(hash_lock);
939	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
940	    hdr = hdr->b_hash_next) {
941		if (BUF_EQUAL(spa, dva, birth, hdr)) {
942			*lockp = hash_lock;
943			return (hdr);
944		}
945	}
946	mutex_exit(hash_lock);
947	*lockp = NULL;
948	return (NULL);
949}
950
951/*
952 * Insert an entry into the hash table.  If there is already an element
953 * equal to elem in the hash table, then the already existing element
954 * will be returned and the new element will not be inserted.
955 * Otherwise returns NULL.
956 */
957static arc_buf_hdr_t *
958buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
959{
960	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
961	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
962	arc_buf_hdr_t *fhdr;
963	uint32_t i;
964
965	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
966	ASSERT(hdr->b_birth != 0);
967	ASSERT(!HDR_IN_HASH_TABLE(hdr));
968	*lockp = hash_lock;
969	mutex_enter(hash_lock);
970	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
971	    fhdr = fhdr->b_hash_next, i++) {
972		if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
973			return (fhdr);
974	}
975
976	hdr->b_hash_next = buf_hash_table.ht_table[idx];
977	buf_hash_table.ht_table[idx] = hdr;
978	hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
979
980	/* collect some hash table performance data */
981	if (i > 0) {
982		ARCSTAT_BUMP(arcstat_hash_collisions);
983		if (i == 1)
984			ARCSTAT_BUMP(arcstat_hash_chains);
985
986		ARCSTAT_MAX(arcstat_hash_chain_max, i);
987	}
988
989	ARCSTAT_BUMP(arcstat_hash_elements);
990	ARCSTAT_MAXSTAT(arcstat_hash_elements);
991
992	return (NULL);
993}
994
995static void
996buf_hash_remove(arc_buf_hdr_t *hdr)
997{
998	arc_buf_hdr_t *fhdr, **hdrp;
999	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1000
1001	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1002	ASSERT(HDR_IN_HASH_TABLE(hdr));
1003
1004	hdrp = &buf_hash_table.ht_table[idx];
1005	while ((fhdr = *hdrp) != hdr) {
1006		ASSERT(fhdr != NULL);
1007		hdrp = &fhdr->b_hash_next;
1008	}
1009	*hdrp = hdr->b_hash_next;
1010	hdr->b_hash_next = NULL;
1011	hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
1012
1013	/* collect some hash table performance data */
1014	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1015
1016	if (buf_hash_table.ht_table[idx] &&
1017	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1018		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1019}
1020
1021/*
1022 * Global data structures and functions for the buf kmem cache.
1023 */
1024static kmem_cache_t *hdr_cache;
1025static kmem_cache_t *buf_cache;
1026
1027static void
1028buf_fini(void)
1029{
1030	int i;
1031
1032	kmem_free(buf_hash_table.ht_table,
1033	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1034	for (i = 0; i < BUF_LOCKS; i++)
1035		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1036	kmem_cache_destroy(hdr_cache);
1037	kmem_cache_destroy(buf_cache);
1038}
1039
1040/*
1041 * Constructor callback - called when the cache is empty
1042 * and a new buf is requested.
1043 */
1044/* ARGSUSED */
1045static int
1046hdr_cons(void *vbuf, void *unused, int kmflag)
1047{
1048	arc_buf_hdr_t *hdr = vbuf;
1049
1050	bzero(hdr, sizeof (arc_buf_hdr_t));
1051	refcount_create(&hdr->b_refcnt);
1052	cv_init(&hdr->b_cv, NULL, CV_DEFAULT, NULL);
1053	mutex_init(&hdr->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1054	arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
1055
1056	return (0);
1057}
1058
1059/* ARGSUSED */
1060static int
1061buf_cons(void *vbuf, void *unused, int kmflag)
1062{
1063	arc_buf_t *buf = vbuf;
1064
1065	bzero(buf, sizeof (arc_buf_t));
1066	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1067	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1068
1069	return (0);
1070}
1071
1072/*
1073 * Destructor callback - called when a cached buf is
1074 * no longer required.
1075 */
1076/* ARGSUSED */
1077static void
1078hdr_dest(void *vbuf, void *unused)
1079{
1080	arc_buf_hdr_t *hdr = vbuf;
1081
1082	ASSERT(BUF_EMPTY(hdr));
1083	refcount_destroy(&hdr->b_refcnt);
1084	cv_destroy(&hdr->b_cv);
1085	mutex_destroy(&hdr->b_freeze_lock);
1086	arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
1087}
1088
1089/* ARGSUSED */
1090static void
1091buf_dest(void *vbuf, void *unused)
1092{
1093	arc_buf_t *buf = vbuf;
1094
1095	mutex_destroy(&buf->b_evict_lock);
1096	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1097}
1098
1099/*
1100 * Reclaim callback -- invoked when memory is low.
1101 */
1102/* ARGSUSED */
1103static void
1104hdr_recl(void *unused)
1105{
1106	dprintf("hdr_recl called\n");
1107	/*
1108	 * umem calls the reclaim func when we destroy the buf cache,
1109	 * which is after we do arc_fini().
1110	 */
1111	if (!arc_dead)
1112		cv_signal(&arc_reclaim_thr_cv);
1113}
1114
1115static void
1116buf_init(void)
1117{
1118	uint64_t *ct;
1119	uint64_t hsize = 1ULL << 12;
1120	int i, j;
1121
1122	/*
1123	 * The hash table is big enough to fill all of physical memory
1124	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1125	 * By default, the table will take up
1126	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1127	 */
1128	while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE)
1129		hsize <<= 1;
1130retry:
1131	buf_hash_table.ht_mask = hsize - 1;
1132	buf_hash_table.ht_table =
1133	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1134	if (buf_hash_table.ht_table == NULL) {
1135		ASSERT(hsize > (1ULL << 8));
1136		hsize >>= 1;
1137		goto retry;
1138	}
1139
1140	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
1141	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
1142	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1143	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1144
1145	for (i = 0; i < 256; i++)
1146		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1147			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1148
1149	for (i = 0; i < BUF_LOCKS; i++) {
1150		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1151		    NULL, MUTEX_DEFAULT, NULL);
1152	}
1153}
1154
1155#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1156
1157static void
1158arc_cksum_verify(arc_buf_t *buf)
1159{
1160	zio_cksum_t zc;
1161
1162	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1163		return;
1164
1165	mutex_enter(&buf->b_hdr->b_freeze_lock);
1166	if (buf->b_hdr->b_freeze_cksum == NULL ||
1167	    (buf->b_hdr->b_flags & ARC_FLAG_IO_ERROR)) {
1168		mutex_exit(&buf->b_hdr->b_freeze_lock);
1169		return;
1170	}
1171	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1172	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1173		panic("buffer modified while frozen!");
1174	mutex_exit(&buf->b_hdr->b_freeze_lock);
1175}
1176
1177static int
1178arc_cksum_equal(arc_buf_t *buf)
1179{
1180	zio_cksum_t zc;
1181	int equal;
1182
1183	mutex_enter(&buf->b_hdr->b_freeze_lock);
1184	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1185	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1186	mutex_exit(&buf->b_hdr->b_freeze_lock);
1187
1188	return (equal);
1189}
1190
1191static void
1192arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1193{
1194	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1195		return;
1196
1197	mutex_enter(&buf->b_hdr->b_freeze_lock);
1198	if (buf->b_hdr->b_freeze_cksum != NULL) {
1199		mutex_exit(&buf->b_hdr->b_freeze_lock);
1200		return;
1201	}
1202	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1203	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1204	    buf->b_hdr->b_freeze_cksum);
1205	mutex_exit(&buf->b_hdr->b_freeze_lock);
1206#ifdef illumos
1207	arc_buf_watch(buf);
1208#endif /* illumos */
1209}
1210
1211#ifdef illumos
1212#ifndef _KERNEL
1213typedef struct procctl {
1214	long cmd;
1215	prwatch_t prwatch;
1216} procctl_t;
1217#endif
1218
1219/* ARGSUSED */
1220static void
1221arc_buf_unwatch(arc_buf_t *buf)
1222{
1223#ifndef _KERNEL
1224	if (arc_watch) {
1225		int result;
1226		procctl_t ctl;
1227		ctl.cmd = PCWATCH;
1228		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1229		ctl.prwatch.pr_size = 0;
1230		ctl.prwatch.pr_wflags = 0;
1231		result = write(arc_procfd, &ctl, sizeof (ctl));
1232		ASSERT3U(result, ==, sizeof (ctl));
1233	}
1234#endif
1235}
1236
1237/* ARGSUSED */
1238static void
1239arc_buf_watch(arc_buf_t *buf)
1240{
1241#ifndef _KERNEL
1242	if (arc_watch) {
1243		int result;
1244		procctl_t ctl;
1245		ctl.cmd = PCWATCH;
1246		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1247		ctl.prwatch.pr_size = buf->b_hdr->b_size;
1248		ctl.prwatch.pr_wflags = WA_WRITE;
1249		result = write(arc_procfd, &ctl, sizeof (ctl));
1250		ASSERT3U(result, ==, sizeof (ctl));
1251	}
1252#endif
1253}
1254#endif /* illumos */
1255
1256void
1257arc_buf_thaw(arc_buf_t *buf)
1258{
1259	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1260		if (buf->b_hdr->b_state != arc_anon)
1261			panic("modifying non-anon buffer!");
1262		if (buf->b_hdr->b_flags & ARC_FLAG_IO_IN_PROGRESS)
1263			panic("modifying buffer while i/o in progress!");
1264		arc_cksum_verify(buf);
1265	}
1266
1267	mutex_enter(&buf->b_hdr->b_freeze_lock);
1268	if (buf->b_hdr->b_freeze_cksum != NULL) {
1269		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1270		buf->b_hdr->b_freeze_cksum = NULL;
1271	}
1272
1273	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1274		if (buf->b_hdr->b_thawed)
1275			kmem_free(buf->b_hdr->b_thawed, 1);
1276		buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
1277	}
1278
1279	mutex_exit(&buf->b_hdr->b_freeze_lock);
1280
1281#ifdef illumos
1282	arc_buf_unwatch(buf);
1283#endif /* illumos */
1284}
1285
1286void
1287arc_buf_freeze(arc_buf_t *buf)
1288{
1289	kmutex_t *hash_lock;
1290
1291	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1292		return;
1293
1294	hash_lock = HDR_LOCK(buf->b_hdr);
1295	mutex_enter(hash_lock);
1296
1297	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1298	    buf->b_hdr->b_state == arc_anon);
1299	arc_cksum_compute(buf, B_FALSE);
1300	mutex_exit(hash_lock);
1301
1302}
1303
1304static void
1305get_buf_info(arc_buf_hdr_t *hdr, arc_state_t *state, list_t **list, kmutex_t **lock)
1306{
1307	uint64_t buf_hashid = buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1308
1309	if (hdr->b_type == ARC_BUFC_METADATA)
1310		buf_hashid &= (ARC_BUFC_NUMMETADATALISTS - 1);
1311	else {
1312		buf_hashid &= (ARC_BUFC_NUMDATALISTS - 1);
1313		buf_hashid += ARC_BUFC_NUMMETADATALISTS;
1314	}
1315
1316	*list = &state->arcs_lists[buf_hashid];
1317	*lock = ARCS_LOCK(state, buf_hashid);
1318}
1319
1320
1321static void
1322add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1323{
1324	ASSERT(MUTEX_HELD(hash_lock));
1325
1326	if ((refcount_add(&hdr->b_refcnt, tag) == 1) &&
1327	    (hdr->b_state != arc_anon)) {
1328		uint64_t delta = hdr->b_size * hdr->b_datacnt;
1329		uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
1330		list_t *list;
1331		kmutex_t *lock;
1332
1333		get_buf_info(hdr, hdr->b_state, &list, &lock);
1334		ASSERT(!MUTEX_HELD(lock));
1335		mutex_enter(lock);
1336		ASSERT(list_link_active(&hdr->b_arc_node));
1337		list_remove(list, hdr);
1338		if (GHOST_STATE(hdr->b_state)) {
1339			ASSERT0(hdr->b_datacnt);
1340			ASSERT3P(hdr->b_buf, ==, NULL);
1341			delta = hdr->b_size;
1342		}
1343		ASSERT(delta > 0);
1344		ASSERT3U(*size, >=, delta);
1345		atomic_add_64(size, -delta);
1346		mutex_exit(lock);
1347		/* remove the prefetch flag if we get a reference */
1348		if (hdr->b_flags & ARC_FLAG_PREFETCH)
1349			hdr->b_flags &= ~ARC_FLAG_PREFETCH;
1350	}
1351}
1352
1353static int
1354remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1355{
1356	int cnt;
1357	arc_state_t *state = hdr->b_state;
1358
1359	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1360	ASSERT(!GHOST_STATE(state));
1361
1362	if (((cnt = refcount_remove(&hdr->b_refcnt, tag)) == 0) &&
1363	    (state != arc_anon)) {
1364		uint64_t *size = &state->arcs_lsize[hdr->b_type];
1365		list_t *list;
1366		kmutex_t *lock;
1367
1368		get_buf_info(hdr, state, &list, &lock);
1369		ASSERT(!MUTEX_HELD(lock));
1370		mutex_enter(lock);
1371		ASSERT(!list_link_active(&hdr->b_arc_node));
1372		list_insert_head(list, hdr);
1373		ASSERT(hdr->b_datacnt > 0);
1374		atomic_add_64(size, hdr->b_size * hdr->b_datacnt);
1375		mutex_exit(lock);
1376	}
1377	return (cnt);
1378}
1379
1380/*
1381 * Move the supplied buffer to the indicated state.  The mutex
1382 * for the buffer must be held by the caller.
1383 */
1384static void
1385arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
1386    kmutex_t *hash_lock)
1387{
1388	arc_state_t *old_state = hdr->b_state;
1389	int64_t refcnt = refcount_count(&hdr->b_refcnt);
1390	uint64_t from_delta, to_delta;
1391	list_t *list;
1392	kmutex_t *lock;
1393
1394	ASSERT(MUTEX_HELD(hash_lock));
1395	ASSERT3P(new_state, !=, old_state);
1396	ASSERT(refcnt == 0 || hdr->b_datacnt > 0);
1397	ASSERT(hdr->b_datacnt == 0 || !GHOST_STATE(new_state));
1398	ASSERT(hdr->b_datacnt <= 1 || old_state != arc_anon);
1399
1400	from_delta = to_delta = hdr->b_datacnt * hdr->b_size;
1401
1402	/*
1403	 * If this buffer is evictable, transfer it from the
1404	 * old state list to the new state list.
1405	 */
1406	if (refcnt == 0) {
1407		if (old_state != arc_anon) {
1408			int use_mutex;
1409			uint64_t *size = &old_state->arcs_lsize[hdr->b_type];
1410
1411			get_buf_info(hdr, old_state, &list, &lock);
1412			use_mutex = !MUTEX_HELD(lock);
1413			if (use_mutex)
1414				mutex_enter(lock);
1415
1416			ASSERT(list_link_active(&hdr->b_arc_node));
1417			list_remove(list, hdr);
1418
1419			/*
1420			 * If prefetching out of the ghost cache,
1421			 * we will have a non-zero datacnt.
1422			 */
1423			if (GHOST_STATE(old_state) && hdr->b_datacnt == 0) {
1424				/* ghost elements have a ghost size */
1425				ASSERT(hdr->b_buf == NULL);
1426				from_delta = hdr->b_size;
1427			}
1428			ASSERT3U(*size, >=, from_delta);
1429			atomic_add_64(size, -from_delta);
1430
1431			if (use_mutex)
1432				mutex_exit(lock);
1433		}
1434		if (new_state != arc_anon) {
1435			int use_mutex;
1436			uint64_t *size = &new_state->arcs_lsize[hdr->b_type];
1437
1438			get_buf_info(hdr, new_state, &list, &lock);
1439			use_mutex = !MUTEX_HELD(lock);
1440			if (use_mutex)
1441				mutex_enter(lock);
1442
1443			list_insert_head(list, hdr);
1444
1445			/* ghost elements have a ghost size */
1446			if (GHOST_STATE(new_state)) {
1447				ASSERT(hdr->b_datacnt == 0);
1448				ASSERT(hdr->b_buf == NULL);
1449				to_delta = hdr->b_size;
1450			}
1451			atomic_add_64(size, to_delta);
1452
1453			if (use_mutex)
1454				mutex_exit(lock);
1455		}
1456	}
1457
1458	ASSERT(!BUF_EMPTY(hdr));
1459	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
1460		buf_hash_remove(hdr);
1461
1462	/* adjust state sizes */
1463	if (to_delta)
1464		atomic_add_64(&new_state->arcs_size, to_delta);
1465	if (from_delta) {
1466		ASSERT3U(old_state->arcs_size, >=, from_delta);
1467		atomic_add_64(&old_state->arcs_size, -from_delta);
1468	}
1469	hdr->b_state = new_state;
1470
1471	/* adjust l2arc hdr stats */
1472	if (new_state == arc_l2c_only)
1473		l2arc_hdr_stat_add();
1474	else if (old_state == arc_l2c_only)
1475		l2arc_hdr_stat_remove();
1476}
1477
1478void
1479arc_space_consume(uint64_t space, arc_space_type_t type)
1480{
1481	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1482
1483	switch (type) {
1484	case ARC_SPACE_DATA:
1485		ARCSTAT_INCR(arcstat_data_size, space);
1486		break;
1487	case ARC_SPACE_OTHER:
1488		ARCSTAT_INCR(arcstat_other_size, space);
1489		break;
1490	case ARC_SPACE_HDRS:
1491		ARCSTAT_INCR(arcstat_hdr_size, space);
1492		break;
1493	case ARC_SPACE_L2HDRS:
1494		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1495		break;
1496	}
1497
1498	ARCSTAT_INCR(arcstat_meta_used, space);
1499	atomic_add_64(&arc_size, space);
1500}
1501
1502void
1503arc_space_return(uint64_t space, arc_space_type_t type)
1504{
1505	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1506
1507	switch (type) {
1508	case ARC_SPACE_DATA:
1509		ARCSTAT_INCR(arcstat_data_size, -space);
1510		break;
1511	case ARC_SPACE_OTHER:
1512		ARCSTAT_INCR(arcstat_other_size, -space);
1513		break;
1514	case ARC_SPACE_HDRS:
1515		ARCSTAT_INCR(arcstat_hdr_size, -space);
1516		break;
1517	case ARC_SPACE_L2HDRS:
1518		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1519		break;
1520	}
1521
1522	ASSERT(arc_meta_used >= space);
1523	if (arc_meta_max < arc_meta_used)
1524		arc_meta_max = arc_meta_used;
1525	ARCSTAT_INCR(arcstat_meta_used, -space);
1526	ASSERT(arc_size >= space);
1527	atomic_add_64(&arc_size, -space);
1528}
1529
1530arc_buf_t *
1531arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1532{
1533	arc_buf_hdr_t *hdr;
1534	arc_buf_t *buf;
1535
1536	ASSERT3U(size, >, 0);
1537	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1538	ASSERT(BUF_EMPTY(hdr));
1539	hdr->b_size = size;
1540	hdr->b_type = type;
1541	hdr->b_spa = spa_load_guid(spa);
1542	hdr->b_state = arc_anon;
1543	hdr->b_arc_access = 0;
1544	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1545	buf->b_hdr = hdr;
1546	buf->b_data = NULL;
1547	buf->b_efunc = NULL;
1548	buf->b_private = NULL;
1549	buf->b_next = NULL;
1550	hdr->b_buf = buf;
1551	arc_get_data_buf(buf);
1552	hdr->b_datacnt = 1;
1553	hdr->b_flags = 0;
1554	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1555	(void) refcount_add(&hdr->b_refcnt, tag);
1556
1557	return (buf);
1558}
1559
1560static char *arc_onloan_tag = "onloan";
1561
1562/*
1563 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1564 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1565 * buffers must be returned to the arc before they can be used by the DMU or
1566 * freed.
1567 */
1568arc_buf_t *
1569arc_loan_buf(spa_t *spa, int size)
1570{
1571	arc_buf_t *buf;
1572
1573	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1574
1575	atomic_add_64(&arc_loaned_bytes, size);
1576	return (buf);
1577}
1578
1579/*
1580 * Return a loaned arc buffer to the arc.
1581 */
1582void
1583arc_return_buf(arc_buf_t *buf, void *tag)
1584{
1585	arc_buf_hdr_t *hdr = buf->b_hdr;
1586
1587	ASSERT(buf->b_data != NULL);
1588	(void) refcount_add(&hdr->b_refcnt, tag);
1589	(void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1590
1591	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1592}
1593
1594/* Detach an arc_buf from a dbuf (tag) */
1595void
1596arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1597{
1598	arc_buf_hdr_t *hdr;
1599
1600	ASSERT(buf->b_data != NULL);
1601	hdr = buf->b_hdr;
1602	(void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1603	(void) refcount_remove(&hdr->b_refcnt, tag);
1604	buf->b_efunc = NULL;
1605	buf->b_private = NULL;
1606
1607	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1608}
1609
1610static arc_buf_t *
1611arc_buf_clone(arc_buf_t *from)
1612{
1613	arc_buf_t *buf;
1614	arc_buf_hdr_t *hdr = from->b_hdr;
1615	uint64_t size = hdr->b_size;
1616
1617	ASSERT(hdr->b_state != arc_anon);
1618
1619	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1620	buf->b_hdr = hdr;
1621	buf->b_data = NULL;
1622	buf->b_efunc = NULL;
1623	buf->b_private = NULL;
1624	buf->b_next = hdr->b_buf;
1625	hdr->b_buf = buf;
1626	arc_get_data_buf(buf);
1627	bcopy(from->b_data, buf->b_data, size);
1628
1629	/*
1630	 * This buffer already exists in the arc so create a duplicate
1631	 * copy for the caller.  If the buffer is associated with user data
1632	 * then track the size and number of duplicates.  These stats will be
1633	 * updated as duplicate buffers are created and destroyed.
1634	 */
1635	if (hdr->b_type == ARC_BUFC_DATA) {
1636		ARCSTAT_BUMP(arcstat_duplicate_buffers);
1637		ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1638	}
1639	hdr->b_datacnt += 1;
1640	return (buf);
1641}
1642
1643void
1644arc_buf_add_ref(arc_buf_t *buf, void* tag)
1645{
1646	arc_buf_hdr_t *hdr;
1647	kmutex_t *hash_lock;
1648
1649	/*
1650	 * Check to see if this buffer is evicted.  Callers
1651	 * must verify b_data != NULL to know if the add_ref
1652	 * was successful.
1653	 */
1654	mutex_enter(&buf->b_evict_lock);
1655	if (buf->b_data == NULL) {
1656		mutex_exit(&buf->b_evict_lock);
1657		return;
1658	}
1659	hash_lock = HDR_LOCK(buf->b_hdr);
1660	mutex_enter(hash_lock);
1661	hdr = buf->b_hdr;
1662	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1663	mutex_exit(&buf->b_evict_lock);
1664
1665	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1666	add_reference(hdr, hash_lock, tag);
1667	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1668	arc_access(hdr, hash_lock);
1669	mutex_exit(hash_lock);
1670	ARCSTAT_BUMP(arcstat_hits);
1671	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_FLAG_PREFETCH),
1672	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1673	    data, metadata, hits);
1674}
1675
1676static void
1677arc_buf_free_on_write(void *data, size_t size,
1678    void (*free_func)(void *, size_t))
1679{
1680	l2arc_data_free_t *df;
1681
1682	df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1683	df->l2df_data = data;
1684	df->l2df_size = size;
1685	df->l2df_func = free_func;
1686	mutex_enter(&l2arc_free_on_write_mtx);
1687	list_insert_head(l2arc_free_on_write, df);
1688	mutex_exit(&l2arc_free_on_write_mtx);
1689}
1690
1691/*
1692 * Free the arc data buffer.  If it is an l2arc write in progress,
1693 * the buffer is placed on l2arc_free_on_write to be freed later.
1694 */
1695static void
1696arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
1697{
1698	arc_buf_hdr_t *hdr = buf->b_hdr;
1699
1700	if (HDR_L2_WRITING(hdr)) {
1701		arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
1702		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1703	} else {
1704		free_func(buf->b_data, hdr->b_size);
1705	}
1706}
1707
1708/*
1709 * Free up buf->b_data and if 'remove' is set, then pull the
1710 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
1711 */
1712static void
1713arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
1714{
1715	l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1716
1717	ASSERT(MUTEX_HELD(&l2arc_buflist_mtx));
1718
1719	if (l2hdr->b_tmp_cdata == NULL)
1720		return;
1721
1722	ASSERT(HDR_L2_WRITING(hdr));
1723	arc_buf_free_on_write(l2hdr->b_tmp_cdata, hdr->b_size,
1724	    zio_data_buf_free);
1725	ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
1726	l2hdr->b_tmp_cdata = NULL;
1727}
1728
1729static void
1730arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t remove)
1731{
1732	arc_buf_t **bufp;
1733
1734	/* free up data associated with the buf */
1735	if (buf->b_data) {
1736		arc_state_t *state = buf->b_hdr->b_state;
1737		uint64_t size = buf->b_hdr->b_size;
1738		arc_buf_contents_t type = buf->b_hdr->b_type;
1739
1740		arc_cksum_verify(buf);
1741#ifdef illumos
1742		arc_buf_unwatch(buf);
1743#endif /* illumos */
1744
1745		if (!recycle) {
1746			if (type == ARC_BUFC_METADATA) {
1747				arc_buf_data_free(buf, zio_buf_free);
1748				arc_space_return(size, ARC_SPACE_DATA);
1749			} else {
1750				ASSERT(type == ARC_BUFC_DATA);
1751				arc_buf_data_free(buf, zio_data_buf_free);
1752				ARCSTAT_INCR(arcstat_data_size, -size);
1753				atomic_add_64(&arc_size, -size);
1754			}
1755		}
1756		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1757			uint64_t *cnt = &state->arcs_lsize[type];
1758
1759			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1760			ASSERT(state != arc_anon);
1761
1762			ASSERT3U(*cnt, >=, size);
1763			atomic_add_64(cnt, -size);
1764		}
1765		ASSERT3U(state->arcs_size, >=, size);
1766		atomic_add_64(&state->arcs_size, -size);
1767		buf->b_data = NULL;
1768
1769		/*
1770		 * If we're destroying a duplicate buffer make sure
1771		 * that the appropriate statistics are updated.
1772		 */
1773		if (buf->b_hdr->b_datacnt > 1 &&
1774		    buf->b_hdr->b_type == ARC_BUFC_DATA) {
1775			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1776			ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1777		}
1778		ASSERT(buf->b_hdr->b_datacnt > 0);
1779		buf->b_hdr->b_datacnt -= 1;
1780	}
1781
1782	/* only remove the buf if requested */
1783	if (!remove)
1784		return;
1785
1786	/* remove the buf from the hdr list */
1787	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1788		continue;
1789	*bufp = buf->b_next;
1790	buf->b_next = NULL;
1791
1792	ASSERT(buf->b_efunc == NULL);
1793
1794	/* clean up the buf */
1795	buf->b_hdr = NULL;
1796	kmem_cache_free(buf_cache, buf);
1797}
1798
1799static void
1800arc_hdr_destroy(arc_buf_hdr_t *hdr)
1801{
1802	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1803	ASSERT3P(hdr->b_state, ==, arc_anon);
1804	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1805	l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1806
1807	if (l2hdr != NULL) {
1808		boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1809		/*
1810		 * To prevent arc_free() and l2arc_evict() from
1811		 * attempting to free the same buffer at the same time,
1812		 * a FREE_IN_PROGRESS flag is given to arc_free() to
1813		 * give it priority.  l2arc_evict() can't destroy this
1814		 * header while we are waiting on l2arc_buflist_mtx.
1815		 *
1816		 * The hdr may be removed from l2ad_buflist before we
1817		 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1818		 */
1819		if (!buflist_held) {
1820			mutex_enter(&l2arc_buflist_mtx);
1821			l2hdr = hdr->b_l2hdr;
1822		}
1823
1824		if (l2hdr != NULL) {
1825			trim_map_free(l2hdr->b_dev->l2ad_vdev, l2hdr->b_daddr,
1826			    hdr->b_size, 0);
1827			list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1828			arc_buf_l2_cdata_free(hdr);
1829			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1830			ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
1831			vdev_space_update(l2hdr->b_dev->l2ad_vdev,
1832			    -l2hdr->b_asize, 0, 0);
1833			kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1834			if (hdr->b_state == arc_l2c_only)
1835				l2arc_hdr_stat_remove();
1836			hdr->b_l2hdr = NULL;
1837		}
1838
1839		if (!buflist_held)
1840			mutex_exit(&l2arc_buflist_mtx);
1841	}
1842
1843	if (!BUF_EMPTY(hdr)) {
1844		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1845		buf_discard_identity(hdr);
1846	}
1847	while (hdr->b_buf) {
1848		arc_buf_t *buf = hdr->b_buf;
1849
1850		if (buf->b_efunc) {
1851			mutex_enter(&arc_eviction_mtx);
1852			mutex_enter(&buf->b_evict_lock);
1853			ASSERT(buf->b_hdr != NULL);
1854			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1855			hdr->b_buf = buf->b_next;
1856			buf->b_hdr = &arc_eviction_hdr;
1857			buf->b_next = arc_eviction_list;
1858			arc_eviction_list = buf;
1859			mutex_exit(&buf->b_evict_lock);
1860			mutex_exit(&arc_eviction_mtx);
1861		} else {
1862			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1863		}
1864	}
1865	if (hdr->b_freeze_cksum != NULL) {
1866		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1867		hdr->b_freeze_cksum = NULL;
1868	}
1869	if (hdr->b_thawed) {
1870		kmem_free(hdr->b_thawed, 1);
1871		hdr->b_thawed = NULL;
1872	}
1873
1874	ASSERT(!list_link_active(&hdr->b_arc_node));
1875	ASSERT3P(hdr->b_hash_next, ==, NULL);
1876	ASSERT3P(hdr->b_acb, ==, NULL);
1877	kmem_cache_free(hdr_cache, hdr);
1878}
1879
1880void
1881arc_buf_free(arc_buf_t *buf, void *tag)
1882{
1883	arc_buf_hdr_t *hdr = buf->b_hdr;
1884	int hashed = hdr->b_state != arc_anon;
1885
1886	ASSERT(buf->b_efunc == NULL);
1887	ASSERT(buf->b_data != NULL);
1888
1889	if (hashed) {
1890		kmutex_t *hash_lock = HDR_LOCK(hdr);
1891
1892		mutex_enter(hash_lock);
1893		hdr = buf->b_hdr;
1894		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1895
1896		(void) remove_reference(hdr, hash_lock, tag);
1897		if (hdr->b_datacnt > 1) {
1898			arc_buf_destroy(buf, FALSE, TRUE);
1899		} else {
1900			ASSERT(buf == hdr->b_buf);
1901			ASSERT(buf->b_efunc == NULL);
1902			hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
1903		}
1904		mutex_exit(hash_lock);
1905	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1906		int destroy_hdr;
1907		/*
1908		 * We are in the middle of an async write.  Don't destroy
1909		 * this buffer unless the write completes before we finish
1910		 * decrementing the reference count.
1911		 */
1912		mutex_enter(&arc_eviction_mtx);
1913		(void) remove_reference(hdr, NULL, tag);
1914		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1915		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1916		mutex_exit(&arc_eviction_mtx);
1917		if (destroy_hdr)
1918			arc_hdr_destroy(hdr);
1919	} else {
1920		if (remove_reference(hdr, NULL, tag) > 0)
1921			arc_buf_destroy(buf, FALSE, TRUE);
1922		else
1923			arc_hdr_destroy(hdr);
1924	}
1925}
1926
1927boolean_t
1928arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1929{
1930	arc_buf_hdr_t *hdr = buf->b_hdr;
1931	kmutex_t *hash_lock = HDR_LOCK(hdr);
1932	boolean_t no_callback = (buf->b_efunc == NULL);
1933
1934	if (hdr->b_state == arc_anon) {
1935		ASSERT(hdr->b_datacnt == 1);
1936		arc_buf_free(buf, tag);
1937		return (no_callback);
1938	}
1939
1940	mutex_enter(hash_lock);
1941	hdr = buf->b_hdr;
1942	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1943	ASSERT(hdr->b_state != arc_anon);
1944	ASSERT(buf->b_data != NULL);
1945
1946	(void) remove_reference(hdr, hash_lock, tag);
1947	if (hdr->b_datacnt > 1) {
1948		if (no_callback)
1949			arc_buf_destroy(buf, FALSE, TRUE);
1950	} else if (no_callback) {
1951		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1952		ASSERT(buf->b_efunc == NULL);
1953		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
1954	}
1955	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1956	    refcount_is_zero(&hdr->b_refcnt));
1957	mutex_exit(hash_lock);
1958	return (no_callback);
1959}
1960
1961int
1962arc_buf_size(arc_buf_t *buf)
1963{
1964	return (buf->b_hdr->b_size);
1965}
1966
1967/*
1968 * Called from the DMU to determine if the current buffer should be
1969 * evicted. In order to ensure proper locking, the eviction must be initiated
1970 * from the DMU. Return true if the buffer is associated with user data and
1971 * duplicate buffers still exist.
1972 */
1973boolean_t
1974arc_buf_eviction_needed(arc_buf_t *buf)
1975{
1976	arc_buf_hdr_t *hdr;
1977	boolean_t evict_needed = B_FALSE;
1978
1979	if (zfs_disable_dup_eviction)
1980		return (B_FALSE);
1981
1982	mutex_enter(&buf->b_evict_lock);
1983	hdr = buf->b_hdr;
1984	if (hdr == NULL) {
1985		/*
1986		 * We are in arc_do_user_evicts(); let that function
1987		 * perform the eviction.
1988		 */
1989		ASSERT(buf->b_data == NULL);
1990		mutex_exit(&buf->b_evict_lock);
1991		return (B_FALSE);
1992	} else if (buf->b_data == NULL) {
1993		/*
1994		 * We have already been added to the arc eviction list;
1995		 * recommend eviction.
1996		 */
1997		ASSERT3P(hdr, ==, &arc_eviction_hdr);
1998		mutex_exit(&buf->b_evict_lock);
1999		return (B_TRUE);
2000	}
2001
2002	if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA)
2003		evict_needed = B_TRUE;
2004
2005	mutex_exit(&buf->b_evict_lock);
2006	return (evict_needed);
2007}
2008
2009/*
2010 * Evict buffers from list until we've removed the specified number of
2011 * bytes.  Move the removed buffers to the appropriate evict state.
2012 * If the recycle flag is set, then attempt to "recycle" a buffer:
2013 * - look for a buffer to evict that is `bytes' long.
2014 * - return the data block from this buffer rather than freeing it.
2015 * This flag is used by callers that are trying to make space for a
2016 * new buffer in a full arc cache.
2017 *
2018 * This function makes a "best effort".  It skips over any buffers
2019 * it can't get a hash_lock on, and so may not catch all candidates.
2020 * It may also return without evicting as much space as requested.
2021 */
2022static void *
2023arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
2024    arc_buf_contents_t type)
2025{
2026	arc_state_t *evicted_state;
2027	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
2028	int64_t bytes_remaining;
2029	arc_buf_hdr_t *hdr, *hdr_prev = NULL;
2030	list_t *evicted_list, *list, *evicted_list_start, *list_start;
2031	kmutex_t *lock, *evicted_lock;
2032	kmutex_t *hash_lock;
2033	boolean_t have_lock;
2034	void *stolen = NULL;
2035	arc_buf_hdr_t marker = { 0 };
2036	int count = 0;
2037	static int evict_metadata_offset, evict_data_offset;
2038	int i, idx, offset, list_count, lists;
2039
2040	ASSERT(state == arc_mru || state == arc_mfu);
2041
2042	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2043
2044	if (type == ARC_BUFC_METADATA) {
2045		offset = 0;
2046		list_count = ARC_BUFC_NUMMETADATALISTS;
2047		list_start = &state->arcs_lists[0];
2048		evicted_list_start = &evicted_state->arcs_lists[0];
2049		idx = evict_metadata_offset;
2050	} else {
2051		offset = ARC_BUFC_NUMMETADATALISTS;
2052		list_start = &state->arcs_lists[offset];
2053		evicted_list_start = &evicted_state->arcs_lists[offset];
2054		list_count = ARC_BUFC_NUMDATALISTS;
2055		idx = evict_data_offset;
2056	}
2057	bytes_remaining = evicted_state->arcs_lsize[type];
2058	lists = 0;
2059
2060evict_start:
2061	list = &list_start[idx];
2062	evicted_list = &evicted_list_start[idx];
2063	lock = ARCS_LOCK(state, (offset + idx));
2064	evicted_lock = ARCS_LOCK(evicted_state, (offset + idx));
2065
2066	mutex_enter(lock);
2067	mutex_enter(evicted_lock);
2068
2069	for (hdr = list_tail(list); hdr; hdr = hdr_prev) {
2070		hdr_prev = list_prev(list, hdr);
2071		bytes_remaining -= (hdr->b_size * hdr->b_datacnt);
2072		/* prefetch buffers have a minimum lifespan */
2073		if (HDR_IO_IN_PROGRESS(hdr) ||
2074		    (spa && hdr->b_spa != spa) ||
2075		    (hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT) &&
2076		    ddi_get_lbolt() - hdr->b_arc_access <
2077		    arc_min_prefetch_lifespan)) {
2078			skipped++;
2079			continue;
2080		}
2081		/* "lookahead" for better eviction candidate */
2082		if (recycle && hdr->b_size != bytes &&
2083		    hdr_prev && hdr_prev->b_size == bytes)
2084			continue;
2085
2086		/* ignore markers */
2087		if (hdr->b_spa == 0)
2088			continue;
2089
2090		/*
2091		 * It may take a long time to evict all the bufs requested.
2092		 * To avoid blocking all arc activity, periodically drop
2093		 * the arcs_mtx and give other threads a chance to run
2094		 * before reacquiring the lock.
2095		 *
2096		 * If we are looking for a buffer to recycle, we are in
2097		 * the hot code path, so don't sleep.
2098		 */
2099		if (!recycle && count++ > arc_evict_iterations) {
2100			list_insert_after(list, hdr, &marker);
2101			mutex_exit(evicted_lock);
2102			mutex_exit(lock);
2103			kpreempt(KPREEMPT_SYNC);
2104			mutex_enter(lock);
2105			mutex_enter(evicted_lock);
2106			hdr_prev = list_prev(list, &marker);
2107			list_remove(list, &marker);
2108			count = 0;
2109			continue;
2110		}
2111
2112		hash_lock = HDR_LOCK(hdr);
2113		have_lock = MUTEX_HELD(hash_lock);
2114		if (have_lock || mutex_tryenter(hash_lock)) {
2115			ASSERT0(refcount_count(&hdr->b_refcnt));
2116			ASSERT(hdr->b_datacnt > 0);
2117			while (hdr->b_buf) {
2118				arc_buf_t *buf = hdr->b_buf;
2119				if (!mutex_tryenter(&buf->b_evict_lock)) {
2120					missed += 1;
2121					break;
2122				}
2123				if (buf->b_data) {
2124					bytes_evicted += hdr->b_size;
2125					if (recycle && hdr->b_type == type &&
2126					    hdr->b_size == bytes &&
2127					    !HDR_L2_WRITING(hdr)) {
2128						stolen = buf->b_data;
2129						recycle = FALSE;
2130					}
2131				}
2132				if (buf->b_efunc) {
2133					mutex_enter(&arc_eviction_mtx);
2134					arc_buf_destroy(buf,
2135					    buf->b_data == stolen, FALSE);
2136					hdr->b_buf = buf->b_next;
2137					buf->b_hdr = &arc_eviction_hdr;
2138					buf->b_next = arc_eviction_list;
2139					arc_eviction_list = buf;
2140					mutex_exit(&arc_eviction_mtx);
2141					mutex_exit(&buf->b_evict_lock);
2142				} else {
2143					mutex_exit(&buf->b_evict_lock);
2144					arc_buf_destroy(buf,
2145					    buf->b_data == stolen, TRUE);
2146				}
2147			}
2148
2149			if (hdr->b_l2hdr) {
2150				ARCSTAT_INCR(arcstat_evict_l2_cached,
2151				    hdr->b_size);
2152			} else {
2153				if (l2arc_write_eligible(hdr->b_spa, hdr)) {
2154					ARCSTAT_INCR(arcstat_evict_l2_eligible,
2155					    hdr->b_size);
2156				} else {
2157					ARCSTAT_INCR(
2158					    arcstat_evict_l2_ineligible,
2159					    hdr->b_size);
2160				}
2161			}
2162
2163			if (hdr->b_datacnt == 0) {
2164				arc_change_state(evicted_state, hdr, hash_lock);
2165				ASSERT(HDR_IN_HASH_TABLE(hdr));
2166				hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
2167				hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
2168				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
2169			}
2170			if (!have_lock)
2171				mutex_exit(hash_lock);
2172			if (bytes >= 0 && bytes_evicted >= bytes)
2173				break;
2174			if (bytes_remaining > 0) {
2175				mutex_exit(evicted_lock);
2176				mutex_exit(lock);
2177				idx  = ((idx + 1) & (list_count - 1));
2178				lists++;
2179				goto evict_start;
2180			}
2181		} else {
2182			missed += 1;
2183		}
2184	}
2185
2186	mutex_exit(evicted_lock);
2187	mutex_exit(lock);
2188
2189	idx  = ((idx + 1) & (list_count - 1));
2190	lists++;
2191
2192	if (bytes_evicted < bytes) {
2193		if (lists < list_count)
2194			goto evict_start;
2195		else
2196			dprintf("only evicted %lld bytes from %x",
2197			    (longlong_t)bytes_evicted, state);
2198	}
2199	if (type == ARC_BUFC_METADATA)
2200		evict_metadata_offset = idx;
2201	else
2202		evict_data_offset = idx;
2203
2204	if (skipped)
2205		ARCSTAT_INCR(arcstat_evict_skip, skipped);
2206
2207	if (missed)
2208		ARCSTAT_INCR(arcstat_mutex_miss, missed);
2209
2210	/*
2211	 * Note: we have just evicted some data into the ghost state,
2212	 * potentially putting the ghost size over the desired size.  Rather
2213	 * that evicting from the ghost list in this hot code path, leave
2214	 * this chore to the arc_reclaim_thread().
2215	 */
2216
2217	if (stolen)
2218		ARCSTAT_BUMP(arcstat_stolen);
2219	return (stolen);
2220}
2221
2222/*
2223 * Remove buffers from list until we've removed the specified number of
2224 * bytes.  Destroy the buffers that are removed.
2225 */
2226static void
2227arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
2228{
2229	arc_buf_hdr_t *hdr, *hdr_prev;
2230	arc_buf_hdr_t marker = { 0 };
2231	list_t *list, *list_start;
2232	kmutex_t *hash_lock, *lock;
2233	uint64_t bytes_deleted = 0;
2234	uint64_t bufs_skipped = 0;
2235	int count = 0;
2236	static int evict_offset;
2237	int list_count, idx = evict_offset;
2238	int offset, lists = 0;
2239
2240	ASSERT(GHOST_STATE(state));
2241
2242	/*
2243	 * data lists come after metadata lists
2244	 */
2245	list_start = &state->arcs_lists[ARC_BUFC_NUMMETADATALISTS];
2246	list_count = ARC_BUFC_NUMDATALISTS;
2247	offset = ARC_BUFC_NUMMETADATALISTS;
2248
2249evict_start:
2250	list = &list_start[idx];
2251	lock = ARCS_LOCK(state, idx + offset);
2252
2253	mutex_enter(lock);
2254	for (hdr = list_tail(list); hdr; hdr = hdr_prev) {
2255		hdr_prev = list_prev(list, hdr);
2256		if (hdr->b_type > ARC_BUFC_NUMTYPES)
2257			panic("invalid hdr=%p", (void *)hdr);
2258		if (spa && hdr->b_spa != spa)
2259			continue;
2260
2261		/* ignore markers */
2262		if (hdr->b_spa == 0)
2263			continue;
2264
2265		hash_lock = HDR_LOCK(hdr);
2266		/* caller may be trying to modify this buffer, skip it */
2267		if (MUTEX_HELD(hash_lock))
2268			continue;
2269
2270		/*
2271		 * It may take a long time to evict all the bufs requested.
2272		 * To avoid blocking all arc activity, periodically drop
2273		 * the arcs_mtx and give other threads a chance to run
2274		 * before reacquiring the lock.
2275		 */
2276		if (count++ > arc_evict_iterations) {
2277			list_insert_after(list, hdr, &marker);
2278			mutex_exit(lock);
2279			kpreempt(KPREEMPT_SYNC);
2280			mutex_enter(lock);
2281			hdr_prev = list_prev(list, &marker);
2282			list_remove(list, &marker);
2283			count = 0;
2284			continue;
2285		}
2286		if (mutex_tryenter(hash_lock)) {
2287			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2288			ASSERT(hdr->b_buf == NULL);
2289			ARCSTAT_BUMP(arcstat_deleted);
2290			bytes_deleted += hdr->b_size;
2291
2292			if (hdr->b_l2hdr != NULL) {
2293				/*
2294				 * This buffer is cached on the 2nd Level ARC;
2295				 * don't destroy the header.
2296				 */
2297				arc_change_state(arc_l2c_only, hdr, hash_lock);
2298				mutex_exit(hash_lock);
2299			} else {
2300				arc_change_state(arc_anon, hdr, hash_lock);
2301				mutex_exit(hash_lock);
2302				arc_hdr_destroy(hdr);
2303			}
2304
2305			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
2306			if (bytes >= 0 && bytes_deleted >= bytes)
2307				break;
2308		} else if (bytes < 0) {
2309			/*
2310			 * Insert a list marker and then wait for the
2311			 * hash lock to become available. Once its
2312			 * available, restart from where we left off.
2313			 */
2314			list_insert_after(list, hdr, &marker);
2315			mutex_exit(lock);
2316			mutex_enter(hash_lock);
2317			mutex_exit(hash_lock);
2318			mutex_enter(lock);
2319			hdr_prev = list_prev(list, &marker);
2320			list_remove(list, &marker);
2321		} else {
2322			bufs_skipped += 1;
2323		}
2324
2325	}
2326	mutex_exit(lock);
2327	idx  = ((idx + 1) & (ARC_BUFC_NUMDATALISTS - 1));
2328	lists++;
2329
2330	if (lists < list_count)
2331		goto evict_start;
2332
2333	evict_offset = idx;
2334	if ((uintptr_t)list > (uintptr_t)&state->arcs_lists[ARC_BUFC_NUMMETADATALISTS] &&
2335	    (bytes < 0 || bytes_deleted < bytes)) {
2336		list_start = &state->arcs_lists[0];
2337		list_count = ARC_BUFC_NUMMETADATALISTS;
2338		offset = lists = 0;
2339		goto evict_start;
2340	}
2341
2342	if (bufs_skipped) {
2343		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
2344		ASSERT(bytes >= 0);
2345	}
2346
2347	if (bytes_deleted < bytes)
2348		dprintf("only deleted %lld bytes from %p",
2349		    (longlong_t)bytes_deleted, state);
2350}
2351
2352static void
2353arc_adjust(void)
2354{
2355	int64_t adjustment, delta;
2356
2357	/*
2358	 * Adjust MRU size
2359	 */
2360
2361	adjustment = MIN((int64_t)(arc_size - arc_c),
2362	    (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
2363	    arc_p));
2364
2365	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
2366		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
2367		(void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA);
2368		adjustment -= delta;
2369	}
2370
2371	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2372		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2373		(void) arc_evict(arc_mru, 0, delta, FALSE,
2374		    ARC_BUFC_METADATA);
2375	}
2376
2377	/*
2378	 * Adjust MFU size
2379	 */
2380
2381	adjustment = arc_size - arc_c;
2382
2383	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
2384		delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
2385		(void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA);
2386		adjustment -= delta;
2387	}
2388
2389	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2390		int64_t delta = MIN(adjustment,
2391		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
2392		(void) arc_evict(arc_mfu, 0, delta, FALSE,
2393		    ARC_BUFC_METADATA);
2394	}
2395
2396	/*
2397	 * Adjust ghost lists
2398	 */
2399
2400	adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2401
2402	if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2403		delta = MIN(arc_mru_ghost->arcs_size, adjustment);
2404		arc_evict_ghost(arc_mru_ghost, 0, delta);
2405	}
2406
2407	adjustment =
2408	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
2409
2410	if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2411		delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
2412		arc_evict_ghost(arc_mfu_ghost, 0, delta);
2413	}
2414}
2415
2416static void
2417arc_do_user_evicts(void)
2418{
2419	static arc_buf_t *tmp_arc_eviction_list;
2420
2421	/*
2422	 * Move list over to avoid LOR
2423	 */
2424restart:
2425	mutex_enter(&arc_eviction_mtx);
2426	tmp_arc_eviction_list = arc_eviction_list;
2427	arc_eviction_list = NULL;
2428	mutex_exit(&arc_eviction_mtx);
2429
2430	while (tmp_arc_eviction_list != NULL) {
2431		arc_buf_t *buf = tmp_arc_eviction_list;
2432		tmp_arc_eviction_list = buf->b_next;
2433		mutex_enter(&buf->b_evict_lock);
2434		buf->b_hdr = NULL;
2435		mutex_exit(&buf->b_evict_lock);
2436
2437		if (buf->b_efunc != NULL)
2438			VERIFY0(buf->b_efunc(buf->b_private));
2439
2440		buf->b_efunc = NULL;
2441		buf->b_private = NULL;
2442		kmem_cache_free(buf_cache, buf);
2443	}
2444
2445	if (arc_eviction_list != NULL)
2446		goto restart;
2447}
2448
2449/*
2450 * Flush all *evictable* data from the cache for the given spa.
2451 * NOTE: this will not touch "active" (i.e. referenced) data.
2452 */
2453void
2454arc_flush(spa_t *spa)
2455{
2456	uint64_t guid = 0;
2457
2458	if (spa)
2459		guid = spa_load_guid(spa);
2460
2461	while (arc_mru->arcs_lsize[ARC_BUFC_DATA]) {
2462		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
2463		if (spa)
2464			break;
2465	}
2466	while (arc_mru->arcs_lsize[ARC_BUFC_METADATA]) {
2467		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
2468		if (spa)
2469			break;
2470	}
2471	while (arc_mfu->arcs_lsize[ARC_BUFC_DATA]) {
2472		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
2473		if (spa)
2474			break;
2475	}
2476	while (arc_mfu->arcs_lsize[ARC_BUFC_METADATA]) {
2477		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
2478		if (spa)
2479			break;
2480	}
2481
2482	arc_evict_ghost(arc_mru_ghost, guid, -1);
2483	arc_evict_ghost(arc_mfu_ghost, guid, -1);
2484
2485	mutex_enter(&arc_reclaim_thr_lock);
2486	arc_do_user_evicts();
2487	mutex_exit(&arc_reclaim_thr_lock);
2488	ASSERT(spa || arc_eviction_list == NULL);
2489}
2490
2491void
2492arc_shrink(void)
2493{
2494
2495	if (arc_c > arc_c_min) {
2496		uint64_t to_free;
2497
2498		DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t,
2499			arc_c_min, uint64_t, arc_p, uint64_t, to_free);
2500#ifdef _KERNEL
2501		to_free = arc_c >> arc_shrink_shift;
2502#else
2503		to_free = arc_c >> arc_shrink_shift;
2504#endif
2505		if (arc_c > arc_c_min + to_free)
2506			atomic_add_64(&arc_c, -to_free);
2507		else
2508			arc_c = arc_c_min;
2509
2510		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
2511		if (arc_c > arc_size)
2512			arc_c = MAX(arc_size, arc_c_min);
2513		if (arc_p > arc_c)
2514			arc_p = (arc_c >> 1);
2515
2516		DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t,
2517			arc_p);
2518
2519		ASSERT(arc_c >= arc_c_min);
2520		ASSERT((int64_t)arc_p >= 0);
2521	}
2522
2523	if (arc_size > arc_c) {
2524		DTRACE_PROBE2(arc__shrink_adjust, uint64_t, arc_size,
2525			uint64_t, arc_c);
2526		arc_adjust();
2527	}
2528}
2529
2530static int needfree = 0;
2531
2532static int
2533arc_reclaim_needed(void)
2534{
2535
2536#ifdef _KERNEL
2537
2538	if (needfree) {
2539		DTRACE_PROBE(arc__reclaim_needfree);
2540		return (1);
2541	}
2542
2543	/*
2544	 * Cooperate with pagedaemon when it's time for it to scan
2545	 * and reclaim some pages.
2546	 */
2547	if (freemem < zfs_arc_free_target) {
2548		DTRACE_PROBE2(arc__reclaim_freemem, uint64_t,
2549		    freemem, uint64_t, zfs_arc_free_target);
2550		return (1);
2551	}
2552
2553#ifdef sun
2554	/*
2555	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
2556	 */
2557	extra = desfree;
2558
2559	/*
2560	 * check that we're out of range of the pageout scanner.  It starts to
2561	 * schedule paging if freemem is less than lotsfree and needfree.
2562	 * lotsfree is the high-water mark for pageout, and needfree is the
2563	 * number of needed free pages.  We add extra pages here to make sure
2564	 * the scanner doesn't start up while we're freeing memory.
2565	 */
2566	if (freemem < lotsfree + needfree + extra)
2567		return (1);
2568
2569	/*
2570	 * check to make sure that swapfs has enough space so that anon
2571	 * reservations can still succeed. anon_resvmem() checks that the
2572	 * availrmem is greater than swapfs_minfree, and the number of reserved
2573	 * swap pages.  We also add a bit of extra here just to prevent
2574	 * circumstances from getting really dire.
2575	 */
2576	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2577		return (1);
2578
2579	/*
2580	 * Check that we have enough availrmem that memory locking (e.g., via
2581	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
2582	 * stores the number of pages that cannot be locked; when availrmem
2583	 * drops below pages_pp_maximum, page locking mechanisms such as
2584	 * page_pp_lock() will fail.)
2585	 */
2586	if (availrmem <= pages_pp_maximum)
2587		return (1);
2588
2589#endif	/* sun */
2590#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
2591	/*
2592	 * If we're on an i386 platform, it's possible that we'll exhaust the
2593	 * kernel heap space before we ever run out of available physical
2594	 * memory.  Most checks of the size of the heap_area compare against
2595	 * tune.t_minarmem, which is the minimum available real memory that we
2596	 * can have in the system.  However, this is generally fixed at 25 pages
2597	 * which is so low that it's useless.  In this comparison, we seek to
2598	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
2599	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
2600	 * free)
2601	 */
2602	if (vmem_size(heap_arena, VMEM_FREE) <
2603	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2)) {
2604		DTRACE_PROBE2(arc__reclaim_used, uint64_t,
2605		    vmem_size(heap_arena, VMEM_FREE), uint64_t,
2606		    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2);
2607		return (1);
2608	}
2609#define	zio_arena	NULL
2610#else
2611#define	zio_arena	heap_arena
2612#endif
2613
2614	/*
2615	 * If zio data pages are being allocated out of a separate heap segment,
2616	 * then enforce that the size of available vmem for this arena remains
2617	 * above about 1/16th free.
2618	 *
2619	 * Note: The 1/16th arena free requirement was put in place
2620	 * to aggressively evict memory from the arc in order to avoid
2621	 * memory fragmentation issues.
2622	 */
2623	if (zio_arena != NULL &&
2624	    vmem_size(zio_arena, VMEM_FREE) <
2625	    (vmem_size(zio_arena, VMEM_ALLOC) >> 4))
2626		return (1);
2627
2628	/*
2629	 * Above limits know nothing about real level of KVA fragmentation.
2630	 * Start aggressive reclamation if too little sequential KVA left.
2631	 */
2632	if (vmem_size(heap_arena, VMEM_MAXFREE) < zfs_max_recordsize)
2633		return (1);
2634
2635#else	/* _KERNEL */
2636	if (spa_get_random(100) == 0)
2637		return (1);
2638#endif	/* _KERNEL */
2639	DTRACE_PROBE(arc__reclaim_no);
2640
2641	return (0);
2642}
2643
2644extern kmem_cache_t	*zio_buf_cache[];
2645extern kmem_cache_t	*zio_data_buf_cache[];
2646extern kmem_cache_t	*range_seg_cache;
2647
2648static void __noinline
2649arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2650{
2651	size_t			i;
2652	kmem_cache_t		*prev_cache = NULL;
2653	kmem_cache_t		*prev_data_cache = NULL;
2654
2655	DTRACE_PROBE(arc__kmem_reap_start);
2656#ifdef _KERNEL
2657	if (arc_meta_used >= arc_meta_limit) {
2658		/*
2659		 * We are exceeding our meta-data cache limit.
2660		 * Purge some DNLC entries to release holds on meta-data.
2661		 */
2662		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2663	}
2664#if defined(__i386)
2665	/*
2666	 * Reclaim unused memory from all kmem caches.
2667	 */
2668	kmem_reap();
2669#endif
2670#endif
2671
2672	/*
2673	 * An aggressive reclamation will shrink the cache size as well as
2674	 * reap free buffers from the arc kmem caches.
2675	 */
2676	if (strat == ARC_RECLAIM_AGGR)
2677		arc_shrink();
2678
2679	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2680		if (zio_buf_cache[i] != prev_cache) {
2681			prev_cache = zio_buf_cache[i];
2682			kmem_cache_reap_now(zio_buf_cache[i]);
2683		}
2684		if (zio_data_buf_cache[i] != prev_data_cache) {
2685			prev_data_cache = zio_data_buf_cache[i];
2686			kmem_cache_reap_now(zio_data_buf_cache[i]);
2687		}
2688	}
2689	kmem_cache_reap_now(buf_cache);
2690	kmem_cache_reap_now(hdr_cache);
2691	kmem_cache_reap_now(range_seg_cache);
2692
2693#ifdef sun
2694	/*
2695	 * Ask the vmem arena to reclaim unused memory from its
2696	 * quantum caches.
2697	 */
2698	if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR)
2699		vmem_qcache_reap(zio_arena);
2700#endif
2701	DTRACE_PROBE(arc__kmem_reap_end);
2702}
2703
2704static void
2705arc_reclaim_thread(void *dummy __unused)
2706{
2707	clock_t			growtime = 0;
2708	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
2709	callb_cpr_t		cpr;
2710
2711	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2712
2713	mutex_enter(&arc_reclaim_thr_lock);
2714	while (arc_thread_exit == 0) {
2715		if (arc_reclaim_needed()) {
2716
2717			if (arc_no_grow) {
2718				if (last_reclaim == ARC_RECLAIM_CONS) {
2719					DTRACE_PROBE(arc__reclaim_aggr_no_grow);
2720					last_reclaim = ARC_RECLAIM_AGGR;
2721				} else {
2722					last_reclaim = ARC_RECLAIM_CONS;
2723				}
2724			} else {
2725				arc_no_grow = TRUE;
2726				last_reclaim = ARC_RECLAIM_AGGR;
2727				DTRACE_PROBE(arc__reclaim_aggr);
2728				membar_producer();
2729			}
2730
2731			/* reset the growth delay for every reclaim */
2732			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
2733
2734			if (needfree && last_reclaim == ARC_RECLAIM_CONS) {
2735				/*
2736				 * If needfree is TRUE our vm_lowmem hook
2737				 * was called and in that case we must free some
2738				 * memory, so switch to aggressive mode.
2739				 */
2740				arc_no_grow = TRUE;
2741				last_reclaim = ARC_RECLAIM_AGGR;
2742			}
2743			arc_kmem_reap_now(last_reclaim);
2744			arc_warm = B_TRUE;
2745
2746		} else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
2747			arc_no_grow = FALSE;
2748		}
2749
2750		arc_adjust();
2751
2752		if (arc_eviction_list != NULL)
2753			arc_do_user_evicts();
2754
2755#ifdef _KERNEL
2756		if (needfree) {
2757			needfree = 0;
2758			wakeup(&needfree);
2759		}
2760#endif
2761
2762		/* block until needed, or one second, whichever is shorter */
2763		CALLB_CPR_SAFE_BEGIN(&cpr);
2764		(void) cv_timedwait(&arc_reclaim_thr_cv,
2765		    &arc_reclaim_thr_lock, hz);
2766		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2767	}
2768
2769	arc_thread_exit = 0;
2770	cv_broadcast(&arc_reclaim_thr_cv);
2771	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
2772	thread_exit();
2773}
2774
2775/*
2776 * Adapt arc info given the number of bytes we are trying to add and
2777 * the state that we are comming from.  This function is only called
2778 * when we are adding new content to the cache.
2779 */
2780static void
2781arc_adapt(int bytes, arc_state_t *state)
2782{
2783	int mult;
2784	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2785
2786	if (state == arc_l2c_only)
2787		return;
2788
2789	ASSERT(bytes > 0);
2790	/*
2791	 * Adapt the target size of the MRU list:
2792	 *	- if we just hit in the MRU ghost list, then increase
2793	 *	  the target size of the MRU list.
2794	 *	- if we just hit in the MFU ghost list, then increase
2795	 *	  the target size of the MFU list by decreasing the
2796	 *	  target size of the MRU list.
2797	 */
2798	if (state == arc_mru_ghost) {
2799		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2800		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2801		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
2802
2803		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2804	} else if (state == arc_mfu_ghost) {
2805		uint64_t delta;
2806
2807		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2808		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2809		mult = MIN(mult, 10);
2810
2811		delta = MIN(bytes * mult, arc_p);
2812		arc_p = MAX(arc_p_min, arc_p - delta);
2813	}
2814	ASSERT((int64_t)arc_p >= 0);
2815
2816	if (arc_reclaim_needed()) {
2817		cv_signal(&arc_reclaim_thr_cv);
2818		return;
2819	}
2820
2821	if (arc_no_grow)
2822		return;
2823
2824	if (arc_c >= arc_c_max)
2825		return;
2826
2827	/*
2828	 * If we're within (2 * maxblocksize) bytes of the target
2829	 * cache size, increment the target cache size
2830	 */
2831	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2832		DTRACE_PROBE1(arc__inc_adapt, int, bytes);
2833		atomic_add_64(&arc_c, (int64_t)bytes);
2834		if (arc_c > arc_c_max)
2835			arc_c = arc_c_max;
2836		else if (state == arc_anon)
2837			atomic_add_64(&arc_p, (int64_t)bytes);
2838		if (arc_p > arc_c)
2839			arc_p = arc_c;
2840	}
2841	ASSERT((int64_t)arc_p >= 0);
2842}
2843
2844/*
2845 * Check if the cache has reached its limits and eviction is required
2846 * prior to insert.
2847 */
2848static int
2849arc_evict_needed(arc_buf_contents_t type)
2850{
2851	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2852		return (1);
2853
2854	if (arc_reclaim_needed())
2855		return (1);
2856
2857	return (arc_size > arc_c);
2858}
2859
2860/*
2861 * The buffer, supplied as the first argument, needs a data block.
2862 * So, if we are at cache max, determine which cache should be victimized.
2863 * We have the following cases:
2864 *
2865 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2866 * In this situation if we're out of space, but the resident size of the MFU is
2867 * under the limit, victimize the MFU cache to satisfy this insertion request.
2868 *
2869 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2870 * Here, we've used up all of the available space for the MRU, so we need to
2871 * evict from our own cache instead.  Evict from the set of resident MRU
2872 * entries.
2873 *
2874 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2875 * c minus p represents the MFU space in the cache, since p is the size of the
2876 * cache that is dedicated to the MRU.  In this situation there's still space on
2877 * the MFU side, so the MRU side needs to be victimized.
2878 *
2879 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2880 * MFU's resident set is consuming more space than it has been allotted.  In
2881 * this situation, we must victimize our own cache, the MFU, for this insertion.
2882 */
2883static void
2884arc_get_data_buf(arc_buf_t *buf)
2885{
2886	arc_state_t		*state = buf->b_hdr->b_state;
2887	uint64_t		size = buf->b_hdr->b_size;
2888	arc_buf_contents_t	type = buf->b_hdr->b_type;
2889
2890	arc_adapt(size, state);
2891
2892	/*
2893	 * We have not yet reached cache maximum size,
2894	 * just allocate a new buffer.
2895	 */
2896	if (!arc_evict_needed(type)) {
2897		if (type == ARC_BUFC_METADATA) {
2898			buf->b_data = zio_buf_alloc(size);
2899			arc_space_consume(size, ARC_SPACE_DATA);
2900		} else {
2901			ASSERT(type == ARC_BUFC_DATA);
2902			buf->b_data = zio_data_buf_alloc(size);
2903			ARCSTAT_INCR(arcstat_data_size, size);
2904			atomic_add_64(&arc_size, size);
2905		}
2906		goto out;
2907	}
2908
2909	/*
2910	 * If we are prefetching from the mfu ghost list, this buffer
2911	 * will end up on the mru list; so steal space from there.
2912	 */
2913	if (state == arc_mfu_ghost)
2914		state = buf->b_hdr->b_flags & ARC_FLAG_PREFETCH ?
2915		    arc_mru : arc_mfu;
2916	else if (state == arc_mru_ghost)
2917		state = arc_mru;
2918
2919	if (state == arc_mru || state == arc_anon) {
2920		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2921		state = (arc_mfu->arcs_lsize[type] >= size &&
2922		    arc_p > mru_used) ? arc_mfu : arc_mru;
2923	} else {
2924		/* MFU cases */
2925		uint64_t mfu_space = arc_c - arc_p;
2926		state =  (arc_mru->arcs_lsize[type] >= size &&
2927		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2928	}
2929	if ((buf->b_data = arc_evict(state, 0, size, TRUE, type)) == NULL) {
2930		if (type == ARC_BUFC_METADATA) {
2931			buf->b_data = zio_buf_alloc(size);
2932			arc_space_consume(size, ARC_SPACE_DATA);
2933		} else {
2934			ASSERT(type == ARC_BUFC_DATA);
2935			buf->b_data = zio_data_buf_alloc(size);
2936			ARCSTAT_INCR(arcstat_data_size, size);
2937			atomic_add_64(&arc_size, size);
2938		}
2939		ARCSTAT_BUMP(arcstat_recycle_miss);
2940	}
2941	ASSERT(buf->b_data != NULL);
2942out:
2943	/*
2944	 * Update the state size.  Note that ghost states have a
2945	 * "ghost size" and so don't need to be updated.
2946	 */
2947	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2948		arc_buf_hdr_t *hdr = buf->b_hdr;
2949
2950		atomic_add_64(&hdr->b_state->arcs_size, size);
2951		if (list_link_active(&hdr->b_arc_node)) {
2952			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2953			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2954		}
2955		/*
2956		 * If we are growing the cache, and we are adding anonymous
2957		 * data, and we have outgrown arc_p, update arc_p
2958		 */
2959		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2960		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2961			arc_p = MIN(arc_c, arc_p + size);
2962	}
2963	ARCSTAT_BUMP(arcstat_allocated);
2964}
2965
2966/*
2967 * This routine is called whenever a buffer is accessed.
2968 * NOTE: the hash lock is dropped in this function.
2969 */
2970static void
2971arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
2972{
2973	clock_t now;
2974
2975	ASSERT(MUTEX_HELD(hash_lock));
2976
2977	if (hdr->b_state == arc_anon) {
2978		/*
2979		 * This buffer is not in the cache, and does not
2980		 * appear in our "ghost" list.  Add the new buffer
2981		 * to the MRU state.
2982		 */
2983
2984		ASSERT(hdr->b_arc_access == 0);
2985		hdr->b_arc_access = ddi_get_lbolt();
2986		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
2987		arc_change_state(arc_mru, hdr, hash_lock);
2988
2989	} else if (hdr->b_state == arc_mru) {
2990		now = ddi_get_lbolt();
2991
2992		/*
2993		 * If this buffer is here because of a prefetch, then either:
2994		 * - clear the flag if this is a "referencing" read
2995		 *   (any subsequent access will bump this into the MFU state).
2996		 * or
2997		 * - move the buffer to the head of the list if this is
2998		 *   another prefetch (to make it less likely to be evicted).
2999		 */
3000		if ((hdr->b_flags & ARC_FLAG_PREFETCH) != 0) {
3001			if (refcount_count(&hdr->b_refcnt) == 0) {
3002				ASSERT(list_link_active(&hdr->b_arc_node));
3003			} else {
3004				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3005				ARCSTAT_BUMP(arcstat_mru_hits);
3006			}
3007			hdr->b_arc_access = now;
3008			return;
3009		}
3010
3011		/*
3012		 * This buffer has been "accessed" only once so far,
3013		 * but it is still in the cache. Move it to the MFU
3014		 * state.
3015		 */
3016		if (now > hdr->b_arc_access + ARC_MINTIME) {
3017			/*
3018			 * More than 125ms have passed since we
3019			 * instantiated this buffer.  Move it to the
3020			 * most frequently used state.
3021			 */
3022			hdr->b_arc_access = now;
3023			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3024			arc_change_state(arc_mfu, hdr, hash_lock);
3025		}
3026		ARCSTAT_BUMP(arcstat_mru_hits);
3027	} else if (hdr->b_state == arc_mru_ghost) {
3028		arc_state_t	*new_state;
3029		/*
3030		 * This buffer has been "accessed" recently, but
3031		 * was evicted from the cache.  Move it to the
3032		 * MFU state.
3033		 */
3034
3035		if (hdr->b_flags & ARC_FLAG_PREFETCH) {
3036			new_state = arc_mru;
3037			if (refcount_count(&hdr->b_refcnt) > 0)
3038				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3039			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3040		} else {
3041			new_state = arc_mfu;
3042			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3043		}
3044
3045		hdr->b_arc_access = ddi_get_lbolt();
3046		arc_change_state(new_state, hdr, hash_lock);
3047
3048		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
3049	} else if (hdr->b_state == arc_mfu) {
3050		/*
3051		 * This buffer has been accessed more than once and is
3052		 * still in the cache.  Keep it in the MFU state.
3053		 *
3054		 * NOTE: an add_reference() that occurred when we did
3055		 * the arc_read() will have kicked this off the list.
3056		 * If it was a prefetch, we will explicitly move it to
3057		 * the head of the list now.
3058		 */
3059		if ((hdr->b_flags & ARC_FLAG_PREFETCH) != 0) {
3060			ASSERT(refcount_count(&hdr->b_refcnt) == 0);
3061			ASSERT(list_link_active(&hdr->b_arc_node));
3062		}
3063		ARCSTAT_BUMP(arcstat_mfu_hits);
3064		hdr->b_arc_access = ddi_get_lbolt();
3065	} else if (hdr->b_state == arc_mfu_ghost) {
3066		arc_state_t	*new_state = arc_mfu;
3067		/*
3068		 * This buffer has been accessed more than once but has
3069		 * been evicted from the cache.  Move it back to the
3070		 * MFU state.
3071		 */
3072
3073		if (hdr->b_flags & ARC_FLAG_PREFETCH) {
3074			/*
3075			 * This is a prefetch access...
3076			 * move this block back to the MRU state.
3077			 */
3078			ASSERT0(refcount_count(&hdr->b_refcnt));
3079			new_state = arc_mru;
3080		}
3081
3082		hdr->b_arc_access = ddi_get_lbolt();
3083		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3084		arc_change_state(new_state, hdr, hash_lock);
3085
3086		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
3087	} else if (hdr->b_state == arc_l2c_only) {
3088		/*
3089		 * This buffer is on the 2nd Level ARC.
3090		 */
3091
3092		hdr->b_arc_access = ddi_get_lbolt();
3093		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3094		arc_change_state(arc_mfu, hdr, hash_lock);
3095	} else {
3096		ASSERT(!"invalid arc state");
3097	}
3098}
3099
3100/* a generic arc_done_func_t which you can use */
3101/* ARGSUSED */
3102void
3103arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
3104{
3105	if (zio == NULL || zio->io_error == 0)
3106		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
3107	VERIFY(arc_buf_remove_ref(buf, arg));
3108}
3109
3110/* a generic arc_done_func_t */
3111void
3112arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
3113{
3114	arc_buf_t **bufp = arg;
3115	if (zio && zio->io_error) {
3116		VERIFY(arc_buf_remove_ref(buf, arg));
3117		*bufp = NULL;
3118	} else {
3119		*bufp = buf;
3120		ASSERT(buf->b_data);
3121	}
3122}
3123
3124static void
3125arc_read_done(zio_t *zio)
3126{
3127	arc_buf_hdr_t	*hdr;
3128	arc_buf_t	*buf;
3129	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
3130	kmutex_t	*hash_lock = NULL;
3131	arc_callback_t	*callback_list, *acb;
3132	int		freeable = FALSE;
3133
3134	buf = zio->io_private;
3135	hdr = buf->b_hdr;
3136
3137	/*
3138	 * The hdr was inserted into hash-table and removed from lists
3139	 * prior to starting I/O.  We should find this header, since
3140	 * it's in the hash table, and it should be legit since it's
3141	 * not possible to evict it during the I/O.  The only possible
3142	 * reason for it not to be found is if we were freed during the
3143	 * read.
3144	 */
3145	if (HDR_IN_HASH_TABLE(hdr)) {
3146		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
3147		ASSERT3U(hdr->b_dva.dva_word[0], ==,
3148		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
3149		ASSERT3U(hdr->b_dva.dva_word[1], ==,
3150		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
3151
3152		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
3153		    &hash_lock);
3154
3155		ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
3156		    hash_lock == NULL) ||
3157		    (found == hdr &&
3158		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
3159		    (found == hdr && HDR_L2_READING(hdr)));
3160	}
3161
3162	hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
3163	if (l2arc_noprefetch && (hdr->b_flags & ARC_FLAG_PREFETCH))
3164		hdr->b_flags &= ~ARC_FLAG_L2CACHE;
3165
3166	/* byteswap if necessary */
3167	callback_list = hdr->b_acb;
3168	ASSERT(callback_list != NULL);
3169	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
3170		dmu_object_byteswap_t bswap =
3171		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
3172		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
3173		    byteswap_uint64_array :
3174		    dmu_ot_byteswap[bswap].ob_func;
3175		func(buf->b_data, hdr->b_size);
3176	}
3177
3178	arc_cksum_compute(buf, B_FALSE);
3179#ifdef illumos
3180	arc_buf_watch(buf);
3181#endif /* illumos */
3182
3183	if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
3184		/*
3185		 * Only call arc_access on anonymous buffers.  This is because
3186		 * if we've issued an I/O for an evicted buffer, we've already
3187		 * called arc_access (to prevent any simultaneous readers from
3188		 * getting confused).
3189		 */
3190		arc_access(hdr, hash_lock);
3191	}
3192
3193	/* create copies of the data buffer for the callers */
3194	abuf = buf;
3195	for (acb = callback_list; acb; acb = acb->acb_next) {
3196		if (acb->acb_done) {
3197			if (abuf == NULL) {
3198				ARCSTAT_BUMP(arcstat_duplicate_reads);
3199				abuf = arc_buf_clone(buf);
3200			}
3201			acb->acb_buf = abuf;
3202			abuf = NULL;
3203		}
3204	}
3205	hdr->b_acb = NULL;
3206	hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
3207	ASSERT(!HDR_BUF_AVAILABLE(hdr));
3208	if (abuf == buf) {
3209		ASSERT(buf->b_efunc == NULL);
3210		ASSERT(hdr->b_datacnt == 1);
3211		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
3212	}
3213
3214	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
3215
3216	if (zio->io_error != 0) {
3217		hdr->b_flags |= ARC_FLAG_IO_ERROR;
3218		if (hdr->b_state != arc_anon)
3219			arc_change_state(arc_anon, hdr, hash_lock);
3220		if (HDR_IN_HASH_TABLE(hdr))
3221			buf_hash_remove(hdr);
3222		freeable = refcount_is_zero(&hdr->b_refcnt);
3223	}
3224
3225	/*
3226	 * Broadcast before we drop the hash_lock to avoid the possibility
3227	 * that the hdr (and hence the cv) might be freed before we get to
3228	 * the cv_broadcast().
3229	 */
3230	cv_broadcast(&hdr->b_cv);
3231
3232	if (hash_lock) {
3233		mutex_exit(hash_lock);
3234	} else {
3235		/*
3236		 * This block was freed while we waited for the read to
3237		 * complete.  It has been removed from the hash table and
3238		 * moved to the anonymous state (so that it won't show up
3239		 * in the cache).
3240		 */
3241		ASSERT3P(hdr->b_state, ==, arc_anon);
3242		freeable = refcount_is_zero(&hdr->b_refcnt);
3243	}
3244
3245	/* execute each callback and free its structure */
3246	while ((acb = callback_list) != NULL) {
3247		if (acb->acb_done)
3248			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
3249
3250		if (acb->acb_zio_dummy != NULL) {
3251			acb->acb_zio_dummy->io_error = zio->io_error;
3252			zio_nowait(acb->acb_zio_dummy);
3253		}
3254
3255		callback_list = acb->acb_next;
3256		kmem_free(acb, sizeof (arc_callback_t));
3257	}
3258
3259	if (freeable)
3260		arc_hdr_destroy(hdr);
3261}
3262
3263/*
3264 * "Read" the block block at the specified DVA (in bp) via the
3265 * cache.  If the block is found in the cache, invoke the provided
3266 * callback immediately and return.  Note that the `zio' parameter
3267 * in the callback will be NULL in this case, since no IO was
3268 * required.  If the block is not in the cache pass the read request
3269 * on to the spa with a substitute callback function, so that the
3270 * requested block will be added to the cache.
3271 *
3272 * If a read request arrives for a block that has a read in-progress,
3273 * either wait for the in-progress read to complete (and return the
3274 * results); or, if this is a read with a "done" func, add a record
3275 * to the read to invoke the "done" func when the read completes,
3276 * and return; or just return.
3277 *
3278 * arc_read_done() will invoke all the requested "done" functions
3279 * for readers of this block.
3280 */
3281int
3282arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
3283    void *private, zio_priority_t priority, int zio_flags,
3284    arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
3285{
3286	arc_buf_hdr_t *hdr = NULL;
3287	arc_buf_t *buf = NULL;
3288	kmutex_t *hash_lock = NULL;
3289	zio_t *rzio;
3290	uint64_t guid = spa_load_guid(spa);
3291
3292	ASSERT(!BP_IS_EMBEDDED(bp) ||
3293	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
3294
3295top:
3296	if (!BP_IS_EMBEDDED(bp)) {
3297		/*
3298		 * Embedded BP's have no DVA and require no I/O to "read".
3299		 * Create an anonymous arc buf to back it.
3300		 */
3301		hdr = buf_hash_find(guid, bp, &hash_lock);
3302	}
3303
3304	if (hdr != NULL && hdr->b_datacnt > 0) {
3305
3306		*arc_flags |= ARC_FLAG_CACHED;
3307
3308		if (HDR_IO_IN_PROGRESS(hdr)) {
3309
3310			if (*arc_flags & ARC_FLAG_WAIT) {
3311				cv_wait(&hdr->b_cv, hash_lock);
3312				mutex_exit(hash_lock);
3313				goto top;
3314			}
3315			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
3316
3317			if (done) {
3318				arc_callback_t	*acb = NULL;
3319
3320				acb = kmem_zalloc(sizeof (arc_callback_t),
3321				    KM_SLEEP);
3322				acb->acb_done = done;
3323				acb->acb_private = private;
3324				if (pio != NULL)
3325					acb->acb_zio_dummy = zio_null(pio,
3326					    spa, NULL, NULL, NULL, zio_flags);
3327
3328				ASSERT(acb->acb_done != NULL);
3329				acb->acb_next = hdr->b_acb;
3330				hdr->b_acb = acb;
3331				add_reference(hdr, hash_lock, private);
3332				mutex_exit(hash_lock);
3333				return (0);
3334			}
3335			mutex_exit(hash_lock);
3336			return (0);
3337		}
3338
3339		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3340
3341		if (done) {
3342			add_reference(hdr, hash_lock, private);
3343			/*
3344			 * If this block is already in use, create a new
3345			 * copy of the data so that we will be guaranteed
3346			 * that arc_release() will always succeed.
3347			 */
3348			buf = hdr->b_buf;
3349			ASSERT(buf);
3350			ASSERT(buf->b_data);
3351			if (HDR_BUF_AVAILABLE(hdr)) {
3352				ASSERT(buf->b_efunc == NULL);
3353				hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
3354			} else {
3355				buf = arc_buf_clone(buf);
3356			}
3357
3358		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
3359		    refcount_count(&hdr->b_refcnt) == 0) {
3360			hdr->b_flags |= ARC_FLAG_PREFETCH;
3361		}
3362		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
3363		arc_access(hdr, hash_lock);
3364		if (*arc_flags & ARC_FLAG_L2CACHE)
3365			hdr->b_flags |= ARC_FLAG_L2CACHE;
3366		if (*arc_flags & ARC_FLAG_L2COMPRESS)
3367			hdr->b_flags |= ARC_FLAG_L2COMPRESS;
3368		mutex_exit(hash_lock);
3369		ARCSTAT_BUMP(arcstat_hits);
3370		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_FLAG_PREFETCH),
3371		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3372		    data, metadata, hits);
3373
3374		if (done)
3375			done(NULL, buf, private);
3376	} else {
3377		uint64_t size = BP_GET_LSIZE(bp);
3378		arc_callback_t *acb;
3379		vdev_t *vd = NULL;
3380		uint64_t addr = 0;
3381		boolean_t devw = B_FALSE;
3382		enum zio_compress b_compress = ZIO_COMPRESS_OFF;
3383		uint64_t b_asize = 0;
3384
3385		if (hdr == NULL) {
3386			/* this block is not in the cache */
3387			arc_buf_hdr_t *exists = NULL;
3388			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
3389			buf = arc_buf_alloc(spa, size, private, type);
3390			hdr = buf->b_hdr;
3391			if (!BP_IS_EMBEDDED(bp)) {
3392				hdr->b_dva = *BP_IDENTITY(bp);
3393				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
3394				hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
3395				exists = buf_hash_insert(hdr, &hash_lock);
3396			}
3397			if (exists != NULL) {
3398				/* somebody beat us to the hash insert */
3399				mutex_exit(hash_lock);
3400				buf_discard_identity(hdr);
3401				(void) arc_buf_remove_ref(buf, private);
3402				goto top; /* restart the IO request */
3403			}
3404
3405			/* if this is a prefetch, we don't have a reference */
3406			if (*arc_flags & ARC_FLAG_PREFETCH) {
3407				(void) remove_reference(hdr, hash_lock,
3408				    private);
3409				hdr->b_flags |= ARC_FLAG_PREFETCH;
3410			}
3411			if (*arc_flags & ARC_FLAG_L2CACHE)
3412				hdr->b_flags |= ARC_FLAG_L2CACHE;
3413			if (*arc_flags & ARC_FLAG_L2COMPRESS)
3414				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
3415			if (BP_GET_LEVEL(bp) > 0)
3416				hdr->b_flags |= ARC_FLAG_INDIRECT;
3417		} else {
3418			/* this block is in the ghost cache */
3419			ASSERT(GHOST_STATE(hdr->b_state));
3420			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3421			ASSERT0(refcount_count(&hdr->b_refcnt));
3422			ASSERT(hdr->b_buf == NULL);
3423
3424			/* if this is a prefetch, we don't have a reference */
3425			if (*arc_flags & ARC_FLAG_PREFETCH)
3426				hdr->b_flags |= ARC_FLAG_PREFETCH;
3427			else
3428				add_reference(hdr, hash_lock, private);
3429			if (*arc_flags & ARC_FLAG_L2CACHE)
3430				hdr->b_flags |= ARC_FLAG_L2CACHE;
3431			if (*arc_flags & ARC_FLAG_L2COMPRESS)
3432				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
3433			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
3434			buf->b_hdr = hdr;
3435			buf->b_data = NULL;
3436			buf->b_efunc = NULL;
3437			buf->b_private = NULL;
3438			buf->b_next = NULL;
3439			hdr->b_buf = buf;
3440			ASSERT(hdr->b_datacnt == 0);
3441			hdr->b_datacnt = 1;
3442			arc_get_data_buf(buf);
3443			arc_access(hdr, hash_lock);
3444		}
3445
3446		ASSERT(!GHOST_STATE(hdr->b_state));
3447
3448		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
3449		acb->acb_done = done;
3450		acb->acb_private = private;
3451
3452		ASSERT(hdr->b_acb == NULL);
3453		hdr->b_acb = acb;
3454		hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
3455
3456		if (hdr->b_l2hdr != NULL &&
3457		    (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
3458			devw = hdr->b_l2hdr->b_dev->l2ad_writing;
3459			addr = hdr->b_l2hdr->b_daddr;
3460			b_compress = hdr->b_l2hdr->b_compress;
3461			b_asize = hdr->b_l2hdr->b_asize;
3462			/*
3463			 * Lock out device removal.
3464			 */
3465			if (vdev_is_dead(vd) ||
3466			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
3467				vd = NULL;
3468		}
3469
3470		if (hash_lock != NULL)
3471			mutex_exit(hash_lock);
3472
3473		/*
3474		 * At this point, we have a level 1 cache miss.  Try again in
3475		 * L2ARC if possible.
3476		 */
3477		ASSERT3U(hdr->b_size, ==, size);
3478		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
3479		    uint64_t, size, zbookmark_phys_t *, zb);
3480		ARCSTAT_BUMP(arcstat_misses);
3481		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_FLAG_PREFETCH),
3482		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3483		    data, metadata, misses);
3484#ifdef _KERNEL
3485		curthread->td_ru.ru_inblock++;
3486#endif
3487
3488		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
3489			/*
3490			 * Read from the L2ARC if the following are true:
3491			 * 1. The L2ARC vdev was previously cached.
3492			 * 2. This buffer still has L2ARC metadata.
3493			 * 3. This buffer isn't currently writing to the L2ARC.
3494			 * 4. The L2ARC entry wasn't evicted, which may
3495			 *    also have invalidated the vdev.
3496			 * 5. This isn't prefetch and l2arc_noprefetch is set.
3497			 */
3498			if (hdr->b_l2hdr != NULL &&
3499			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
3500			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
3501				l2arc_read_callback_t *cb;
3502
3503				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
3504				ARCSTAT_BUMP(arcstat_l2_hits);
3505
3506				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
3507				    KM_SLEEP);
3508				cb->l2rcb_buf = buf;
3509				cb->l2rcb_spa = spa;
3510				cb->l2rcb_bp = *bp;
3511				cb->l2rcb_zb = *zb;
3512				cb->l2rcb_flags = zio_flags;
3513				cb->l2rcb_compress = b_compress;
3514
3515				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
3516				    addr + size < vd->vdev_psize -
3517				    VDEV_LABEL_END_SIZE);
3518
3519				/*
3520				 * l2arc read.  The SCL_L2ARC lock will be
3521				 * released by l2arc_read_done().
3522				 * Issue a null zio if the underlying buffer
3523				 * was squashed to zero size by compression.
3524				 */
3525				if (b_compress == ZIO_COMPRESS_EMPTY) {
3526					rzio = zio_null(pio, spa, vd,
3527					    l2arc_read_done, cb,
3528					    zio_flags | ZIO_FLAG_DONT_CACHE |
3529					    ZIO_FLAG_CANFAIL |
3530					    ZIO_FLAG_DONT_PROPAGATE |
3531					    ZIO_FLAG_DONT_RETRY);
3532				} else {
3533					rzio = zio_read_phys(pio, vd, addr,
3534					    b_asize, buf->b_data,
3535					    ZIO_CHECKSUM_OFF,
3536					    l2arc_read_done, cb, priority,
3537					    zio_flags | ZIO_FLAG_DONT_CACHE |
3538					    ZIO_FLAG_CANFAIL |
3539					    ZIO_FLAG_DONT_PROPAGATE |
3540					    ZIO_FLAG_DONT_RETRY, B_FALSE);
3541				}
3542				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3543				    zio_t *, rzio);
3544				ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
3545
3546				if (*arc_flags & ARC_FLAG_NOWAIT) {
3547					zio_nowait(rzio);
3548					return (0);
3549				}
3550
3551				ASSERT(*arc_flags & ARC_FLAG_WAIT);
3552				if (zio_wait(rzio) == 0)
3553					return (0);
3554
3555				/* l2arc read error; goto zio_read() */
3556			} else {
3557				DTRACE_PROBE1(l2arc__miss,
3558				    arc_buf_hdr_t *, hdr);
3559				ARCSTAT_BUMP(arcstat_l2_misses);
3560				if (HDR_L2_WRITING(hdr))
3561					ARCSTAT_BUMP(arcstat_l2_rw_clash);
3562				spa_config_exit(spa, SCL_L2ARC, vd);
3563			}
3564		} else {
3565			if (vd != NULL)
3566				spa_config_exit(spa, SCL_L2ARC, vd);
3567			if (l2arc_ndev != 0) {
3568				DTRACE_PROBE1(l2arc__miss,
3569				    arc_buf_hdr_t *, hdr);
3570				ARCSTAT_BUMP(arcstat_l2_misses);
3571			}
3572		}
3573
3574		rzio = zio_read(pio, spa, bp, buf->b_data, size,
3575		    arc_read_done, buf, priority, zio_flags, zb);
3576
3577		if (*arc_flags & ARC_FLAG_WAIT)
3578			return (zio_wait(rzio));
3579
3580		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
3581		zio_nowait(rzio);
3582	}
3583	return (0);
3584}
3585
3586void
3587arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3588{
3589	ASSERT(buf->b_hdr != NULL);
3590	ASSERT(buf->b_hdr->b_state != arc_anon);
3591	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
3592	ASSERT(buf->b_efunc == NULL);
3593	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3594
3595	buf->b_efunc = func;
3596	buf->b_private = private;
3597}
3598
3599/*
3600 * Notify the arc that a block was freed, and thus will never be used again.
3601 */
3602void
3603arc_freed(spa_t *spa, const blkptr_t *bp)
3604{
3605	arc_buf_hdr_t *hdr;
3606	kmutex_t *hash_lock;
3607	uint64_t guid = spa_load_guid(spa);
3608
3609	ASSERT(!BP_IS_EMBEDDED(bp));
3610
3611	hdr = buf_hash_find(guid, bp, &hash_lock);
3612	if (hdr == NULL)
3613		return;
3614	if (HDR_BUF_AVAILABLE(hdr)) {
3615		arc_buf_t *buf = hdr->b_buf;
3616		add_reference(hdr, hash_lock, FTAG);
3617		hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
3618		mutex_exit(hash_lock);
3619
3620		arc_release(buf, FTAG);
3621		(void) arc_buf_remove_ref(buf, FTAG);
3622	} else {
3623		mutex_exit(hash_lock);
3624	}
3625
3626}
3627
3628/*
3629 * Clear the user eviction callback set by arc_set_callback(), first calling
3630 * it if it exists.  Because the presence of a callback keeps an arc_buf cached
3631 * clearing the callback may result in the arc_buf being destroyed.  However,
3632 * it will not result in the *last* arc_buf being destroyed, hence the data
3633 * will remain cached in the ARC. We make a copy of the arc buffer here so
3634 * that we can process the callback without holding any locks.
3635 *
3636 * It's possible that the callback is already in the process of being cleared
3637 * by another thread.  In this case we can not clear the callback.
3638 *
3639 * Returns B_TRUE if the callback was successfully called and cleared.
3640 */
3641boolean_t
3642arc_clear_callback(arc_buf_t *buf)
3643{
3644	arc_buf_hdr_t *hdr;
3645	kmutex_t *hash_lock;
3646	arc_evict_func_t *efunc = buf->b_efunc;
3647	void *private = buf->b_private;
3648	list_t *list, *evicted_list;
3649	kmutex_t *lock, *evicted_lock;
3650
3651	mutex_enter(&buf->b_evict_lock);
3652	hdr = buf->b_hdr;
3653	if (hdr == NULL) {
3654		/*
3655		 * We are in arc_do_user_evicts().
3656		 */
3657		ASSERT(buf->b_data == NULL);
3658		mutex_exit(&buf->b_evict_lock);
3659		return (B_FALSE);
3660	} else if (buf->b_data == NULL) {
3661		/*
3662		 * We are on the eviction list; process this buffer now
3663		 * but let arc_do_user_evicts() do the reaping.
3664		 */
3665		buf->b_efunc = NULL;
3666		mutex_exit(&buf->b_evict_lock);
3667		VERIFY0(efunc(private));
3668		return (B_TRUE);
3669	}
3670	hash_lock = HDR_LOCK(hdr);
3671	mutex_enter(hash_lock);
3672	hdr = buf->b_hdr;
3673	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3674
3675	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3676	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3677
3678	buf->b_efunc = NULL;
3679	buf->b_private = NULL;
3680
3681	if (hdr->b_datacnt > 1) {
3682		mutex_exit(&buf->b_evict_lock);
3683		arc_buf_destroy(buf, FALSE, TRUE);
3684	} else {
3685		ASSERT(buf == hdr->b_buf);
3686		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
3687		mutex_exit(&buf->b_evict_lock);
3688	}
3689
3690	mutex_exit(hash_lock);
3691	VERIFY0(efunc(private));
3692	return (B_TRUE);
3693}
3694
3695/*
3696 * Release this buffer from the cache, making it an anonymous buffer.  This
3697 * must be done after a read and prior to modifying the buffer contents.
3698 * If the buffer has more than one reference, we must make
3699 * a new hdr for the buffer.
3700 */
3701void
3702arc_release(arc_buf_t *buf, void *tag)
3703{
3704	arc_buf_hdr_t *hdr;
3705	kmutex_t *hash_lock = NULL;
3706	l2arc_buf_hdr_t *l2hdr;
3707	uint64_t buf_size;
3708
3709	/*
3710	 * It would be nice to assert that if it's DMU metadata (level >
3711	 * 0 || it's the dnode file), then it must be syncing context.
3712	 * But we don't know that information at this level.
3713	 */
3714
3715	mutex_enter(&buf->b_evict_lock);
3716	hdr = buf->b_hdr;
3717
3718	/* this buffer is not on any list */
3719	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3720
3721	if (hdr->b_state == arc_anon) {
3722		/* this buffer is already released */
3723		ASSERT(buf->b_efunc == NULL);
3724	} else {
3725		hash_lock = HDR_LOCK(hdr);
3726		mutex_enter(hash_lock);
3727		hdr = buf->b_hdr;
3728		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3729	}
3730
3731	l2hdr = hdr->b_l2hdr;
3732	if (l2hdr) {
3733		mutex_enter(&l2arc_buflist_mtx);
3734		arc_buf_l2_cdata_free(hdr);
3735		hdr->b_l2hdr = NULL;
3736		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3737	}
3738	buf_size = hdr->b_size;
3739
3740	/*
3741	 * Do we have more than one buf?
3742	 */
3743	if (hdr->b_datacnt > 1) {
3744		arc_buf_hdr_t *nhdr;
3745		arc_buf_t **bufp;
3746		uint64_t blksz = hdr->b_size;
3747		uint64_t spa = hdr->b_spa;
3748		arc_buf_contents_t type = hdr->b_type;
3749		uint32_t flags = hdr->b_flags;
3750
3751		ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3752		/*
3753		 * Pull the data off of this hdr and attach it to
3754		 * a new anonymous hdr.
3755		 */
3756		(void) remove_reference(hdr, hash_lock, tag);
3757		bufp = &hdr->b_buf;
3758		while (*bufp != buf)
3759			bufp = &(*bufp)->b_next;
3760		*bufp = buf->b_next;
3761		buf->b_next = NULL;
3762
3763		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3764		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3765		if (refcount_is_zero(&hdr->b_refcnt)) {
3766			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3767			ASSERT3U(*size, >=, hdr->b_size);
3768			atomic_add_64(size, -hdr->b_size);
3769		}
3770
3771		/*
3772		 * We're releasing a duplicate user data buffer, update
3773		 * our statistics accordingly.
3774		 */
3775		if (hdr->b_type == ARC_BUFC_DATA) {
3776			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
3777			ARCSTAT_INCR(arcstat_duplicate_buffers_size,
3778			    -hdr->b_size);
3779		}
3780		hdr->b_datacnt -= 1;
3781		arc_cksum_verify(buf);
3782#ifdef illumos
3783		arc_buf_unwatch(buf);
3784#endif /* illumos */
3785
3786		mutex_exit(hash_lock);
3787
3788		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3789		nhdr->b_size = blksz;
3790		nhdr->b_spa = spa;
3791		nhdr->b_type = type;
3792		nhdr->b_buf = buf;
3793		nhdr->b_state = arc_anon;
3794		nhdr->b_arc_access = 0;
3795		nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
3796		nhdr->b_l2hdr = NULL;
3797		nhdr->b_datacnt = 1;
3798		nhdr->b_freeze_cksum = NULL;
3799		(void) refcount_add(&nhdr->b_refcnt, tag);
3800		buf->b_hdr = nhdr;
3801		mutex_exit(&buf->b_evict_lock);
3802		atomic_add_64(&arc_anon->arcs_size, blksz);
3803	} else {
3804		mutex_exit(&buf->b_evict_lock);
3805		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3806		ASSERT(!list_link_active(&hdr->b_arc_node));
3807		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3808		if (hdr->b_state != arc_anon)
3809			arc_change_state(arc_anon, hdr, hash_lock);
3810		hdr->b_arc_access = 0;
3811		if (hash_lock)
3812			mutex_exit(hash_lock);
3813
3814		buf_discard_identity(hdr);
3815		arc_buf_thaw(buf);
3816	}
3817	buf->b_efunc = NULL;
3818	buf->b_private = NULL;
3819
3820	if (l2hdr) {
3821		ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
3822		vdev_space_update(l2hdr->b_dev->l2ad_vdev,
3823		    -l2hdr->b_asize, 0, 0);
3824		trim_map_free(l2hdr->b_dev->l2ad_vdev, l2hdr->b_daddr,
3825		    hdr->b_size, 0);
3826		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3827		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3828		mutex_exit(&l2arc_buflist_mtx);
3829	}
3830}
3831
3832int
3833arc_released(arc_buf_t *buf)
3834{
3835	int released;
3836
3837	mutex_enter(&buf->b_evict_lock);
3838	released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3839	mutex_exit(&buf->b_evict_lock);
3840	return (released);
3841}
3842
3843#ifdef ZFS_DEBUG
3844int
3845arc_referenced(arc_buf_t *buf)
3846{
3847	int referenced;
3848
3849	mutex_enter(&buf->b_evict_lock);
3850	referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3851	mutex_exit(&buf->b_evict_lock);
3852	return (referenced);
3853}
3854#endif
3855
3856static void
3857arc_write_ready(zio_t *zio)
3858{
3859	arc_write_callback_t *callback = zio->io_private;
3860	arc_buf_t *buf = callback->awcb_buf;
3861	arc_buf_hdr_t *hdr = buf->b_hdr;
3862
3863	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3864	callback->awcb_ready(zio, buf, callback->awcb_private);
3865
3866	/*
3867	 * If the IO is already in progress, then this is a re-write
3868	 * attempt, so we need to thaw and re-compute the cksum.
3869	 * It is the responsibility of the callback to handle the
3870	 * accounting for any re-write attempt.
3871	 */
3872	if (HDR_IO_IN_PROGRESS(hdr)) {
3873		mutex_enter(&hdr->b_freeze_lock);
3874		if (hdr->b_freeze_cksum != NULL) {
3875			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3876			hdr->b_freeze_cksum = NULL;
3877		}
3878		mutex_exit(&hdr->b_freeze_lock);
3879	}
3880	arc_cksum_compute(buf, B_FALSE);
3881	hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
3882}
3883
3884/*
3885 * The SPA calls this callback for each physical write that happens on behalf
3886 * of a logical write.  See the comment in dbuf_write_physdone() for details.
3887 */
3888static void
3889arc_write_physdone(zio_t *zio)
3890{
3891	arc_write_callback_t *cb = zio->io_private;
3892	if (cb->awcb_physdone != NULL)
3893		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
3894}
3895
3896static void
3897arc_write_done(zio_t *zio)
3898{
3899	arc_write_callback_t *callback = zio->io_private;
3900	arc_buf_t *buf = callback->awcb_buf;
3901	arc_buf_hdr_t *hdr = buf->b_hdr;
3902
3903	ASSERT(hdr->b_acb == NULL);
3904
3905	if (zio->io_error == 0) {
3906		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
3907			buf_discard_identity(hdr);
3908		} else {
3909			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3910			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3911			hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3912		}
3913	} else {
3914		ASSERT(BUF_EMPTY(hdr));
3915	}
3916
3917	/*
3918	 * If the block to be written was all-zero or compressed enough to be
3919	 * embedded in the BP, no write was performed so there will be no
3920	 * dva/birth/checksum.  The buffer must therefore remain anonymous
3921	 * (and uncached).
3922	 */
3923	if (!BUF_EMPTY(hdr)) {
3924		arc_buf_hdr_t *exists;
3925		kmutex_t *hash_lock;
3926
3927		ASSERT(zio->io_error == 0);
3928
3929		arc_cksum_verify(buf);
3930
3931		exists = buf_hash_insert(hdr, &hash_lock);
3932		if (exists) {
3933			/*
3934			 * This can only happen if we overwrite for
3935			 * sync-to-convergence, because we remove
3936			 * buffers from the hash table when we arc_free().
3937			 */
3938			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3939				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3940					panic("bad overwrite, hdr=%p exists=%p",
3941					    (void *)hdr, (void *)exists);
3942				ASSERT(refcount_is_zero(&exists->b_refcnt));
3943				arc_change_state(arc_anon, exists, hash_lock);
3944				mutex_exit(hash_lock);
3945				arc_hdr_destroy(exists);
3946				exists = buf_hash_insert(hdr, &hash_lock);
3947				ASSERT3P(exists, ==, NULL);
3948			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
3949				/* nopwrite */
3950				ASSERT(zio->io_prop.zp_nopwrite);
3951				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3952					panic("bad nopwrite, hdr=%p exists=%p",
3953					    (void *)hdr, (void *)exists);
3954			} else {
3955				/* Dedup */
3956				ASSERT(hdr->b_datacnt == 1);
3957				ASSERT(hdr->b_state == arc_anon);
3958				ASSERT(BP_GET_DEDUP(zio->io_bp));
3959				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3960			}
3961		}
3962		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
3963		/* if it's not anon, we are doing a scrub */
3964		if (!exists && hdr->b_state == arc_anon)
3965			arc_access(hdr, hash_lock);
3966		mutex_exit(hash_lock);
3967	} else {
3968		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
3969	}
3970
3971	ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3972	callback->awcb_done(zio, buf, callback->awcb_private);
3973
3974	kmem_free(callback, sizeof (arc_write_callback_t));
3975}
3976
3977zio_t *
3978arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3979    blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
3980    const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
3981    arc_done_func_t *done, void *private, zio_priority_t priority,
3982    int zio_flags, const zbookmark_phys_t *zb)
3983{
3984	arc_buf_hdr_t *hdr = buf->b_hdr;
3985	arc_write_callback_t *callback;
3986	zio_t *zio;
3987
3988	ASSERT(ready != NULL);
3989	ASSERT(done != NULL);
3990	ASSERT(!HDR_IO_ERROR(hdr));
3991	ASSERT((hdr->b_flags & ARC_FLAG_IO_IN_PROGRESS) == 0);
3992	ASSERT(hdr->b_acb == NULL);
3993	if (l2arc)
3994		hdr->b_flags |= ARC_FLAG_L2CACHE;
3995	if (l2arc_compress)
3996		hdr->b_flags |= ARC_FLAG_L2COMPRESS;
3997	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3998	callback->awcb_ready = ready;
3999	callback->awcb_physdone = physdone;
4000	callback->awcb_done = done;
4001	callback->awcb_private = private;
4002	callback->awcb_buf = buf;
4003
4004	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
4005	    arc_write_ready, arc_write_physdone, arc_write_done, callback,
4006	    priority, zio_flags, zb);
4007
4008	return (zio);
4009}
4010
4011static int
4012arc_memory_throttle(uint64_t reserve, uint64_t txg)
4013{
4014#ifdef _KERNEL
4015	uint64_t available_memory = ptob(freemem);
4016	static uint64_t page_load = 0;
4017	static uint64_t last_txg = 0;
4018
4019#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
4020	available_memory =
4021	    MIN(available_memory, ptob(vmem_size(heap_arena, VMEM_FREE)));
4022#endif
4023
4024	if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100)
4025		return (0);
4026
4027	if (txg > last_txg) {
4028		last_txg = txg;
4029		page_load = 0;
4030	}
4031	/*
4032	 * If we are in pageout, we know that memory is already tight,
4033	 * the arc is already going to be evicting, so we just want to
4034	 * continue to let page writes occur as quickly as possible.
4035	 */
4036	if (curproc == pageproc) {
4037		if (page_load > MAX(ptob(minfree), available_memory) / 4)
4038			return (SET_ERROR(ERESTART));
4039		/* Note: reserve is inflated, so we deflate */
4040		page_load += reserve / 8;
4041		return (0);
4042	} else if (page_load > 0 && arc_reclaim_needed()) {
4043		/* memory is low, delay before restarting */
4044		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
4045		return (SET_ERROR(EAGAIN));
4046	}
4047	page_load = 0;
4048#endif
4049	return (0);
4050}
4051
4052void
4053arc_tempreserve_clear(uint64_t reserve)
4054{
4055	atomic_add_64(&arc_tempreserve, -reserve);
4056	ASSERT((int64_t)arc_tempreserve >= 0);
4057}
4058
4059int
4060arc_tempreserve_space(uint64_t reserve, uint64_t txg)
4061{
4062	int error;
4063	uint64_t anon_size;
4064
4065	if (reserve > arc_c/4 && !arc_no_grow) {
4066		arc_c = MIN(arc_c_max, reserve * 4);
4067		DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c);
4068	}
4069	if (reserve > arc_c)
4070		return (SET_ERROR(ENOMEM));
4071
4072	/*
4073	 * Don't count loaned bufs as in flight dirty data to prevent long
4074	 * network delays from blocking transactions that are ready to be
4075	 * assigned to a txg.
4076	 */
4077	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
4078
4079	/*
4080	 * Writes will, almost always, require additional memory allocations
4081	 * in order to compress/encrypt/etc the data.  We therefore need to
4082	 * make sure that there is sufficient available memory for this.
4083	 */
4084	error = arc_memory_throttle(reserve, txg);
4085	if (error != 0)
4086		return (error);
4087
4088	/*
4089	 * Throttle writes when the amount of dirty data in the cache
4090	 * gets too large.  We try to keep the cache less than half full
4091	 * of dirty blocks so that our sync times don't grow too large.
4092	 * Note: if two requests come in concurrently, we might let them
4093	 * both succeed, when one of them should fail.  Not a huge deal.
4094	 */
4095
4096	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
4097	    anon_size > arc_c / 4) {
4098		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
4099		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
4100		    arc_tempreserve>>10,
4101		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
4102		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
4103		    reserve>>10, arc_c>>10);
4104		return (SET_ERROR(ERESTART));
4105	}
4106	atomic_add_64(&arc_tempreserve, reserve);
4107	return (0);
4108}
4109
4110static kmutex_t arc_lowmem_lock;
4111#ifdef _KERNEL
4112static eventhandler_tag arc_event_lowmem = NULL;
4113
4114static void
4115arc_lowmem(void *arg __unused, int howto __unused)
4116{
4117
4118	/* Serialize access via arc_lowmem_lock. */
4119	mutex_enter(&arc_lowmem_lock);
4120	mutex_enter(&arc_reclaim_thr_lock);
4121	needfree = 1;
4122	DTRACE_PROBE(arc__needfree);
4123	cv_signal(&arc_reclaim_thr_cv);
4124
4125	/*
4126	 * It is unsafe to block here in arbitrary threads, because we can come
4127	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
4128	 * with ARC reclaim thread.
4129	 */
4130	if (curproc == pageproc) {
4131		while (needfree)
4132			msleep(&needfree, &arc_reclaim_thr_lock, 0, "zfs:lowmem", 0);
4133	}
4134	mutex_exit(&arc_reclaim_thr_lock);
4135	mutex_exit(&arc_lowmem_lock);
4136}
4137#endif
4138
4139void
4140arc_init(void)
4141{
4142	int i, prefetch_tunable_set = 0;
4143
4144	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4145	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
4146	mutex_init(&arc_lowmem_lock, NULL, MUTEX_DEFAULT, NULL);
4147
4148	/* Convert seconds to clock ticks */
4149	arc_min_prefetch_lifespan = 1 * hz;
4150
4151	/* Start out with 1/8 of all memory */
4152	arc_c = kmem_size() / 8;
4153
4154#ifdef sun
4155#ifdef _KERNEL
4156	/*
4157	 * On architectures where the physical memory can be larger
4158	 * than the addressable space (intel in 32-bit mode), we may
4159	 * need to limit the cache to 1/8 of VM size.
4160	 */
4161	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
4162#endif
4163#endif	/* sun */
4164	/* set min cache to 1/32 of all memory, or 16MB, whichever is more */
4165	arc_c_min = MAX(arc_c / 4, 16 << 20);
4166	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
4167	if (arc_c * 8 >= 1 << 30)
4168		arc_c_max = (arc_c * 8) - (1 << 30);
4169	else
4170		arc_c_max = arc_c_min;
4171	arc_c_max = MAX(arc_c * 5, arc_c_max);
4172
4173#ifdef _KERNEL
4174	/*
4175	 * Allow the tunables to override our calculations if they are
4176	 * reasonable (ie. over 16MB)
4177	 */
4178	if (zfs_arc_max > 16 << 20 && zfs_arc_max < kmem_size())
4179		arc_c_max = zfs_arc_max;
4180	if (zfs_arc_min > 16 << 20 && zfs_arc_min <= arc_c_max)
4181		arc_c_min = zfs_arc_min;
4182#endif
4183
4184	arc_c = arc_c_max;
4185	arc_p = (arc_c >> 1);
4186
4187	/* limit meta-data to 1/4 of the arc capacity */
4188	arc_meta_limit = arc_c_max / 4;
4189
4190	/* Allow the tunable to override if it is reasonable */
4191	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
4192		arc_meta_limit = zfs_arc_meta_limit;
4193
4194	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
4195		arc_c_min = arc_meta_limit / 2;
4196
4197	if (zfs_arc_grow_retry > 0)
4198		arc_grow_retry = zfs_arc_grow_retry;
4199
4200	if (zfs_arc_shrink_shift > 0)
4201		arc_shrink_shift = zfs_arc_shrink_shift;
4202
4203	if (zfs_arc_p_min_shift > 0)
4204		arc_p_min_shift = zfs_arc_p_min_shift;
4205
4206	/* if kmem_flags are set, lets try to use less memory */
4207	if (kmem_debugging())
4208		arc_c = arc_c / 2;
4209	if (arc_c < arc_c_min)
4210		arc_c = arc_c_min;
4211
4212	zfs_arc_min = arc_c_min;
4213	zfs_arc_max = arc_c_max;
4214
4215	arc_anon = &ARC_anon;
4216	arc_mru = &ARC_mru;
4217	arc_mru_ghost = &ARC_mru_ghost;
4218	arc_mfu = &ARC_mfu;
4219	arc_mfu_ghost = &ARC_mfu_ghost;
4220	arc_l2c_only = &ARC_l2c_only;
4221	arc_size = 0;
4222
4223	for (i = 0; i < ARC_BUFC_NUMLISTS; i++) {
4224		mutex_init(&arc_anon->arcs_locks[i].arcs_lock,
4225		    NULL, MUTEX_DEFAULT, NULL);
4226		mutex_init(&arc_mru->arcs_locks[i].arcs_lock,
4227		    NULL, MUTEX_DEFAULT, NULL);
4228		mutex_init(&arc_mru_ghost->arcs_locks[i].arcs_lock,
4229		    NULL, MUTEX_DEFAULT, NULL);
4230		mutex_init(&arc_mfu->arcs_locks[i].arcs_lock,
4231		    NULL, MUTEX_DEFAULT, NULL);
4232		mutex_init(&arc_mfu_ghost->arcs_locks[i].arcs_lock,
4233		    NULL, MUTEX_DEFAULT, NULL);
4234		mutex_init(&arc_l2c_only->arcs_locks[i].arcs_lock,
4235		    NULL, MUTEX_DEFAULT, NULL);
4236
4237		list_create(&arc_mru->arcs_lists[i],
4238		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4239		list_create(&arc_mru_ghost->arcs_lists[i],
4240		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4241		list_create(&arc_mfu->arcs_lists[i],
4242		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4243		list_create(&arc_mfu_ghost->arcs_lists[i],
4244		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4245		list_create(&arc_mfu_ghost->arcs_lists[i],
4246		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4247		list_create(&arc_l2c_only->arcs_lists[i],
4248		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4249	}
4250
4251	buf_init();
4252
4253	arc_thread_exit = 0;
4254	arc_eviction_list = NULL;
4255	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
4256	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
4257
4258	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
4259	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
4260
4261	if (arc_ksp != NULL) {
4262		arc_ksp->ks_data = &arc_stats;
4263		kstat_install(arc_ksp);
4264	}
4265
4266	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
4267	    TS_RUN, minclsyspri);
4268
4269#ifdef _KERNEL
4270	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
4271	    EVENTHANDLER_PRI_FIRST);
4272#endif
4273
4274	arc_dead = FALSE;
4275	arc_warm = B_FALSE;
4276
4277	/*
4278	 * Calculate maximum amount of dirty data per pool.
4279	 *
4280	 * If it has been set by /etc/system, take that.
4281	 * Otherwise, use a percentage of physical memory defined by
4282	 * zfs_dirty_data_max_percent (default 10%) with a cap at
4283	 * zfs_dirty_data_max_max (default 4GB).
4284	 */
4285	if (zfs_dirty_data_max == 0) {
4286		zfs_dirty_data_max = ptob(physmem) *
4287		    zfs_dirty_data_max_percent / 100;
4288		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
4289		    zfs_dirty_data_max_max);
4290	}
4291
4292#ifdef _KERNEL
4293	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
4294		prefetch_tunable_set = 1;
4295
4296#ifdef __i386__
4297	if (prefetch_tunable_set == 0) {
4298		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
4299		    "-- to enable,\n");
4300		printf("            add \"vfs.zfs.prefetch_disable=0\" "
4301		    "to /boot/loader.conf.\n");
4302		zfs_prefetch_disable = 1;
4303	}
4304#else
4305	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
4306	    prefetch_tunable_set == 0) {
4307		printf("ZFS NOTICE: Prefetch is disabled by default if less "
4308		    "than 4GB of RAM is present;\n"
4309		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
4310		    "to /boot/loader.conf.\n");
4311		zfs_prefetch_disable = 1;
4312	}
4313#endif
4314	/* Warn about ZFS memory and address space requirements. */
4315	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
4316		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
4317		    "expect unstable behavior.\n");
4318	}
4319	if (kmem_size() < 512 * (1 << 20)) {
4320		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
4321		    "expect unstable behavior.\n");
4322		printf("             Consider tuning vm.kmem_size and "
4323		    "vm.kmem_size_max\n");
4324		printf("             in /boot/loader.conf.\n");
4325	}
4326#endif
4327}
4328
4329void
4330arc_fini(void)
4331{
4332	int i;
4333
4334	mutex_enter(&arc_reclaim_thr_lock);
4335	arc_thread_exit = 1;
4336	cv_signal(&arc_reclaim_thr_cv);
4337	while (arc_thread_exit != 0)
4338		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
4339	mutex_exit(&arc_reclaim_thr_lock);
4340
4341	arc_flush(NULL);
4342
4343	arc_dead = TRUE;
4344
4345	if (arc_ksp != NULL) {
4346		kstat_delete(arc_ksp);
4347		arc_ksp = NULL;
4348	}
4349
4350	mutex_destroy(&arc_eviction_mtx);
4351	mutex_destroy(&arc_reclaim_thr_lock);
4352	cv_destroy(&arc_reclaim_thr_cv);
4353
4354	for (i = 0; i < ARC_BUFC_NUMLISTS; i++) {
4355		list_destroy(&arc_mru->arcs_lists[i]);
4356		list_destroy(&arc_mru_ghost->arcs_lists[i]);
4357		list_destroy(&arc_mfu->arcs_lists[i]);
4358		list_destroy(&arc_mfu_ghost->arcs_lists[i]);
4359		list_destroy(&arc_l2c_only->arcs_lists[i]);
4360
4361		mutex_destroy(&arc_anon->arcs_locks[i].arcs_lock);
4362		mutex_destroy(&arc_mru->arcs_locks[i].arcs_lock);
4363		mutex_destroy(&arc_mru_ghost->arcs_locks[i].arcs_lock);
4364		mutex_destroy(&arc_mfu->arcs_locks[i].arcs_lock);
4365		mutex_destroy(&arc_mfu_ghost->arcs_locks[i].arcs_lock);
4366		mutex_destroy(&arc_l2c_only->arcs_locks[i].arcs_lock);
4367	}
4368
4369	buf_fini();
4370
4371	ASSERT(arc_loaned_bytes == 0);
4372
4373	mutex_destroy(&arc_lowmem_lock);
4374#ifdef _KERNEL
4375	if (arc_event_lowmem != NULL)
4376		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
4377#endif
4378}
4379
4380/*
4381 * Level 2 ARC
4382 *
4383 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
4384 * It uses dedicated storage devices to hold cached data, which are populated
4385 * using large infrequent writes.  The main role of this cache is to boost
4386 * the performance of random read workloads.  The intended L2ARC devices
4387 * include short-stroked disks, solid state disks, and other media with
4388 * substantially faster read latency than disk.
4389 *
4390 *                 +-----------------------+
4391 *                 |         ARC           |
4392 *                 +-----------------------+
4393 *                    |         ^     ^
4394 *                    |         |     |
4395 *      l2arc_feed_thread()    arc_read()
4396 *                    |         |     |
4397 *                    |  l2arc read   |
4398 *                    V         |     |
4399 *               +---------------+    |
4400 *               |     L2ARC     |    |
4401 *               +---------------+    |
4402 *                   |    ^           |
4403 *          l2arc_write() |           |
4404 *                   |    |           |
4405 *                   V    |           |
4406 *                 +-------+      +-------+
4407 *                 | vdev  |      | vdev  |
4408 *                 | cache |      | cache |
4409 *                 +-------+      +-------+
4410 *                 +=========+     .-----.
4411 *                 :  L2ARC  :    |-_____-|
4412 *                 : devices :    | Disks |
4413 *                 +=========+    `-_____-'
4414 *
4415 * Read requests are satisfied from the following sources, in order:
4416 *
4417 *	1) ARC
4418 *	2) vdev cache of L2ARC devices
4419 *	3) L2ARC devices
4420 *	4) vdev cache of disks
4421 *	5) disks
4422 *
4423 * Some L2ARC device types exhibit extremely slow write performance.
4424 * To accommodate for this there are some significant differences between
4425 * the L2ARC and traditional cache design:
4426 *
4427 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
4428 * the ARC behave as usual, freeing buffers and placing headers on ghost
4429 * lists.  The ARC does not send buffers to the L2ARC during eviction as
4430 * this would add inflated write latencies for all ARC memory pressure.
4431 *
4432 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
4433 * It does this by periodically scanning buffers from the eviction-end of
4434 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
4435 * not already there. It scans until a headroom of buffers is satisfied,
4436 * which itself is a buffer for ARC eviction. If a compressible buffer is
4437 * found during scanning and selected for writing to an L2ARC device, we
4438 * temporarily boost scanning headroom during the next scan cycle to make
4439 * sure we adapt to compression effects (which might significantly reduce
4440 * the data volume we write to L2ARC). The thread that does this is
4441 * l2arc_feed_thread(), illustrated below; example sizes are included to
4442 * provide a better sense of ratio than this diagram:
4443 *
4444 *	       head -->                        tail
4445 *	        +---------------------+----------+
4446 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
4447 *	        +---------------------+----------+   |   o L2ARC eligible
4448 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
4449 *	        +---------------------+----------+   |
4450 *	             15.9 Gbytes      ^ 32 Mbytes    |
4451 *	                           headroom          |
4452 *	                                      l2arc_feed_thread()
4453 *	                                             |
4454 *	                 l2arc write hand <--[oooo]--'
4455 *	                         |           8 Mbyte
4456 *	                         |          write max
4457 *	                         V
4458 *		  +==============================+
4459 *	L2ARC dev |####|#|###|###|    |####| ... |
4460 *	          +==============================+
4461 *	                     32 Gbytes
4462 *
4463 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
4464 * evicted, then the L2ARC has cached a buffer much sooner than it probably
4465 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
4466 * safe to say that this is an uncommon case, since buffers at the end of
4467 * the ARC lists have moved there due to inactivity.
4468 *
4469 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
4470 * then the L2ARC simply misses copying some buffers.  This serves as a
4471 * pressure valve to prevent heavy read workloads from both stalling the ARC
4472 * with waits and clogging the L2ARC with writes.  This also helps prevent
4473 * the potential for the L2ARC to churn if it attempts to cache content too
4474 * quickly, such as during backups of the entire pool.
4475 *
4476 * 5. After system boot and before the ARC has filled main memory, there are
4477 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
4478 * lists can remain mostly static.  Instead of searching from tail of these
4479 * lists as pictured, the l2arc_feed_thread() will search from the list heads
4480 * for eligible buffers, greatly increasing its chance of finding them.
4481 *
4482 * The L2ARC device write speed is also boosted during this time so that
4483 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
4484 * there are no L2ARC reads, and no fear of degrading read performance
4485 * through increased writes.
4486 *
4487 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
4488 * the vdev queue can aggregate them into larger and fewer writes.  Each
4489 * device is written to in a rotor fashion, sweeping writes through
4490 * available space then repeating.
4491 *
4492 * 7. The L2ARC does not store dirty content.  It never needs to flush
4493 * write buffers back to disk based storage.
4494 *
4495 * 8. If an ARC buffer is written (and dirtied) which also exists in the
4496 * L2ARC, the now stale L2ARC buffer is immediately dropped.
4497 *
4498 * The performance of the L2ARC can be tweaked by a number of tunables, which
4499 * may be necessary for different workloads:
4500 *
4501 *	l2arc_write_max		max write bytes per interval
4502 *	l2arc_write_boost	extra write bytes during device warmup
4503 *	l2arc_noprefetch	skip caching prefetched buffers
4504 *	l2arc_headroom		number of max device writes to precache
4505 *	l2arc_headroom_boost	when we find compressed buffers during ARC
4506 *				scanning, we multiply headroom by this
4507 *				percentage factor for the next scan cycle,
4508 *				since more compressed buffers are likely to
4509 *				be present
4510 *	l2arc_feed_secs		seconds between L2ARC writing
4511 *
4512 * Tunables may be removed or added as future performance improvements are
4513 * integrated, and also may become zpool properties.
4514 *
4515 * There are three key functions that control how the L2ARC warms up:
4516 *
4517 *	l2arc_write_eligible()	check if a buffer is eligible to cache
4518 *	l2arc_write_size()	calculate how much to write
4519 *	l2arc_write_interval()	calculate sleep delay between writes
4520 *
4521 * These three functions determine what to write, how much, and how quickly
4522 * to send writes.
4523 */
4524
4525static boolean_t
4526l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
4527{
4528	/*
4529	 * A buffer is *not* eligible for the L2ARC if it:
4530	 * 1. belongs to a different spa.
4531	 * 2. is already cached on the L2ARC.
4532	 * 3. has an I/O in progress (it may be an incomplete read).
4533	 * 4. is flagged not eligible (zfs property).
4534	 */
4535	if (hdr->b_spa != spa_guid) {
4536		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
4537		return (B_FALSE);
4538	}
4539	if (hdr->b_l2hdr != NULL) {
4540		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
4541		return (B_FALSE);
4542	}
4543	if (HDR_IO_IN_PROGRESS(hdr)) {
4544		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
4545		return (B_FALSE);
4546	}
4547	if (!HDR_L2CACHE(hdr)) {
4548		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
4549		return (B_FALSE);
4550	}
4551
4552	return (B_TRUE);
4553}
4554
4555static uint64_t
4556l2arc_write_size(void)
4557{
4558	uint64_t size;
4559
4560	/*
4561	 * Make sure our globals have meaningful values in case the user
4562	 * altered them.
4563	 */
4564	size = l2arc_write_max;
4565	if (size == 0) {
4566		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
4567		    "be greater than zero, resetting it to the default (%d)",
4568		    L2ARC_WRITE_SIZE);
4569		size = l2arc_write_max = L2ARC_WRITE_SIZE;
4570	}
4571
4572	if (arc_warm == B_FALSE)
4573		size += l2arc_write_boost;
4574
4575	return (size);
4576
4577}
4578
4579static clock_t
4580l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
4581{
4582	clock_t interval, next, now;
4583
4584	/*
4585	 * If the ARC lists are busy, increase our write rate; if the
4586	 * lists are stale, idle back.  This is achieved by checking
4587	 * how much we previously wrote - if it was more than half of
4588	 * what we wanted, schedule the next write much sooner.
4589	 */
4590	if (l2arc_feed_again && wrote > (wanted / 2))
4591		interval = (hz * l2arc_feed_min_ms) / 1000;
4592	else
4593		interval = hz * l2arc_feed_secs;
4594
4595	now = ddi_get_lbolt();
4596	next = MAX(now, MIN(now + interval, began + interval));
4597
4598	return (next);
4599}
4600
4601static void
4602l2arc_hdr_stat_add(void)
4603{
4604	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
4605	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
4606}
4607
4608static void
4609l2arc_hdr_stat_remove(void)
4610{
4611	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
4612	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
4613}
4614
4615/*
4616 * Cycle through L2ARC devices.  This is how L2ARC load balances.
4617 * If a device is returned, this also returns holding the spa config lock.
4618 */
4619static l2arc_dev_t *
4620l2arc_dev_get_next(void)
4621{
4622	l2arc_dev_t *first, *next = NULL;
4623
4624	/*
4625	 * Lock out the removal of spas (spa_namespace_lock), then removal
4626	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
4627	 * both locks will be dropped and a spa config lock held instead.
4628	 */
4629	mutex_enter(&spa_namespace_lock);
4630	mutex_enter(&l2arc_dev_mtx);
4631
4632	/* if there are no vdevs, there is nothing to do */
4633	if (l2arc_ndev == 0)
4634		goto out;
4635
4636	first = NULL;
4637	next = l2arc_dev_last;
4638	do {
4639		/* loop around the list looking for a non-faulted vdev */
4640		if (next == NULL) {
4641			next = list_head(l2arc_dev_list);
4642		} else {
4643			next = list_next(l2arc_dev_list, next);
4644			if (next == NULL)
4645				next = list_head(l2arc_dev_list);
4646		}
4647
4648		/* if we have come back to the start, bail out */
4649		if (first == NULL)
4650			first = next;
4651		else if (next == first)
4652			break;
4653
4654	} while (vdev_is_dead(next->l2ad_vdev));
4655
4656	/* if we were unable to find any usable vdevs, return NULL */
4657	if (vdev_is_dead(next->l2ad_vdev))
4658		next = NULL;
4659
4660	l2arc_dev_last = next;
4661
4662out:
4663	mutex_exit(&l2arc_dev_mtx);
4664
4665	/*
4666	 * Grab the config lock to prevent the 'next' device from being
4667	 * removed while we are writing to it.
4668	 */
4669	if (next != NULL)
4670		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
4671	mutex_exit(&spa_namespace_lock);
4672
4673	return (next);
4674}
4675
4676/*
4677 * Free buffers that were tagged for destruction.
4678 */
4679static void
4680l2arc_do_free_on_write()
4681{
4682	list_t *buflist;
4683	l2arc_data_free_t *df, *df_prev;
4684
4685	mutex_enter(&l2arc_free_on_write_mtx);
4686	buflist = l2arc_free_on_write;
4687
4688	for (df = list_tail(buflist); df; df = df_prev) {
4689		df_prev = list_prev(buflist, df);
4690		ASSERT(df->l2df_data != NULL);
4691		ASSERT(df->l2df_func != NULL);
4692		df->l2df_func(df->l2df_data, df->l2df_size);
4693		list_remove(buflist, df);
4694		kmem_free(df, sizeof (l2arc_data_free_t));
4695	}
4696
4697	mutex_exit(&l2arc_free_on_write_mtx);
4698}
4699
4700/*
4701 * A write to a cache device has completed.  Update all headers to allow
4702 * reads from these buffers to begin.
4703 */
4704static void
4705l2arc_write_done(zio_t *zio)
4706{
4707	l2arc_write_callback_t *cb;
4708	l2arc_dev_t *dev;
4709	list_t *buflist;
4710	arc_buf_hdr_t *head, *hdr, *hdr_prev;
4711	l2arc_buf_hdr_t *abl2;
4712	kmutex_t *hash_lock;
4713	int64_t bytes_dropped = 0;
4714
4715	cb = zio->io_private;
4716	ASSERT(cb != NULL);
4717	dev = cb->l2wcb_dev;
4718	ASSERT(dev != NULL);
4719	head = cb->l2wcb_head;
4720	ASSERT(head != NULL);
4721	buflist = dev->l2ad_buflist;
4722	ASSERT(buflist != NULL);
4723	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4724	    l2arc_write_callback_t *, cb);
4725
4726	if (zio->io_error != 0)
4727		ARCSTAT_BUMP(arcstat_l2_writes_error);
4728
4729	mutex_enter(&l2arc_buflist_mtx);
4730
4731	/*
4732	 * All writes completed, or an error was hit.
4733	 */
4734	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
4735		hdr_prev = list_prev(buflist, hdr);
4736		abl2 = hdr->b_l2hdr;
4737
4738		/*
4739		 * Release the temporary compressed buffer as soon as possible.
4740		 */
4741		if (abl2->b_compress != ZIO_COMPRESS_OFF)
4742			l2arc_release_cdata_buf(hdr);
4743
4744		hash_lock = HDR_LOCK(hdr);
4745		if (!mutex_tryenter(hash_lock)) {
4746			/*
4747			 * This buffer misses out.  It may be in a stage
4748			 * of eviction.  Its ARC_L2_WRITING flag will be
4749			 * left set, denying reads to this buffer.
4750			 */
4751			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4752			continue;
4753		}
4754
4755		if (zio->io_error != 0) {
4756			/*
4757			 * Error - drop L2ARC entry.
4758			 */
4759			list_remove(buflist, hdr);
4760			ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
4761			bytes_dropped += abl2->b_asize;
4762			hdr->b_l2hdr = NULL;
4763			trim_map_free(abl2->b_dev->l2ad_vdev, abl2->b_daddr,
4764			    hdr->b_size, 0);
4765			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4766			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
4767		}
4768
4769		/*
4770		 * Allow ARC to begin reads to this L2ARC entry.
4771		 */
4772		hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
4773
4774		mutex_exit(hash_lock);
4775	}
4776
4777	atomic_inc_64(&l2arc_writes_done);
4778	list_remove(buflist, head);
4779	kmem_cache_free(hdr_cache, head);
4780	mutex_exit(&l2arc_buflist_mtx);
4781
4782	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
4783
4784	l2arc_do_free_on_write();
4785
4786	kmem_free(cb, sizeof (l2arc_write_callback_t));
4787}
4788
4789/*
4790 * A read to a cache device completed.  Validate buffer contents before
4791 * handing over to the regular ARC routines.
4792 */
4793static void
4794l2arc_read_done(zio_t *zio)
4795{
4796	l2arc_read_callback_t *cb;
4797	arc_buf_hdr_t *hdr;
4798	arc_buf_t *buf;
4799	kmutex_t *hash_lock;
4800	int equal;
4801
4802	ASSERT(zio->io_vd != NULL);
4803	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4804
4805	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4806
4807	cb = zio->io_private;
4808	ASSERT(cb != NULL);
4809	buf = cb->l2rcb_buf;
4810	ASSERT(buf != NULL);
4811
4812	hash_lock = HDR_LOCK(buf->b_hdr);
4813	mutex_enter(hash_lock);
4814	hdr = buf->b_hdr;
4815	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4816
4817	/*
4818	 * If the buffer was compressed, decompress it first.
4819	 */
4820	if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
4821		l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
4822	ASSERT(zio->io_data != NULL);
4823
4824	/*
4825	 * Check this survived the L2ARC journey.
4826	 */
4827	equal = arc_cksum_equal(buf);
4828	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4829		mutex_exit(hash_lock);
4830		zio->io_private = buf;
4831		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
4832		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
4833		arc_read_done(zio);
4834	} else {
4835		mutex_exit(hash_lock);
4836		/*
4837		 * Buffer didn't survive caching.  Increment stats and
4838		 * reissue to the original storage device.
4839		 */
4840		if (zio->io_error != 0) {
4841			ARCSTAT_BUMP(arcstat_l2_io_error);
4842		} else {
4843			zio->io_error = SET_ERROR(EIO);
4844		}
4845		if (!equal)
4846			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4847
4848		/*
4849		 * If there's no waiter, issue an async i/o to the primary
4850		 * storage now.  If there *is* a waiter, the caller must
4851		 * issue the i/o in a context where it's OK to block.
4852		 */
4853		if (zio->io_waiter == NULL) {
4854			zio_t *pio = zio_unique_parent(zio);
4855
4856			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4857
4858			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4859			    buf->b_data, zio->io_size, arc_read_done, buf,
4860			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4861		}
4862	}
4863
4864	kmem_free(cb, sizeof (l2arc_read_callback_t));
4865}
4866
4867/*
4868 * This is the list priority from which the L2ARC will search for pages to
4869 * cache.  This is used within loops (0..3) to cycle through lists in the
4870 * desired order.  This order can have a significant effect on cache
4871 * performance.
4872 *
4873 * Currently the metadata lists are hit first, MFU then MRU, followed by
4874 * the data lists.  This function returns a locked list, and also returns
4875 * the lock pointer.
4876 */
4877static list_t *
4878l2arc_list_locked(int list_num, kmutex_t **lock)
4879{
4880	list_t *list = NULL;
4881	int idx;
4882
4883	ASSERT(list_num >= 0 && list_num < 2 * ARC_BUFC_NUMLISTS);
4884
4885	if (list_num < ARC_BUFC_NUMMETADATALISTS) {
4886		idx = list_num;
4887		list = &arc_mfu->arcs_lists[idx];
4888		*lock = ARCS_LOCK(arc_mfu, idx);
4889	} else if (list_num < ARC_BUFC_NUMMETADATALISTS * 2) {
4890		idx = list_num - ARC_BUFC_NUMMETADATALISTS;
4891		list = &arc_mru->arcs_lists[idx];
4892		*lock = ARCS_LOCK(arc_mru, idx);
4893	} else if (list_num < (ARC_BUFC_NUMMETADATALISTS * 2 +
4894		ARC_BUFC_NUMDATALISTS)) {
4895		idx = list_num - ARC_BUFC_NUMMETADATALISTS;
4896		list = &arc_mfu->arcs_lists[idx];
4897		*lock = ARCS_LOCK(arc_mfu, idx);
4898	} else {
4899		idx = list_num - ARC_BUFC_NUMLISTS;
4900		list = &arc_mru->arcs_lists[idx];
4901		*lock = ARCS_LOCK(arc_mru, idx);
4902	}
4903
4904	ASSERT(!(MUTEX_HELD(*lock)));
4905	mutex_enter(*lock);
4906	return (list);
4907}
4908
4909/*
4910 * Evict buffers from the device write hand to the distance specified in
4911 * bytes.  This distance may span populated buffers, it may span nothing.
4912 * This is clearing a region on the L2ARC device ready for writing.
4913 * If the 'all' boolean is set, every buffer is evicted.
4914 */
4915static void
4916l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4917{
4918	list_t *buflist;
4919	l2arc_buf_hdr_t *abl2;
4920	arc_buf_hdr_t *hdr, *hdr_prev;
4921	kmutex_t *hash_lock;
4922	uint64_t taddr;
4923	int64_t bytes_evicted = 0;
4924
4925	buflist = dev->l2ad_buflist;
4926
4927	if (buflist == NULL)
4928		return;
4929
4930	if (!all && dev->l2ad_first) {
4931		/*
4932		 * This is the first sweep through the device.  There is
4933		 * nothing to evict.
4934		 */
4935		return;
4936	}
4937
4938	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4939		/*
4940		 * When nearing the end of the device, evict to the end
4941		 * before the device write hand jumps to the start.
4942		 */
4943		taddr = dev->l2ad_end;
4944	} else {
4945		taddr = dev->l2ad_hand + distance;
4946	}
4947	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4948	    uint64_t, taddr, boolean_t, all);
4949
4950top:
4951	mutex_enter(&l2arc_buflist_mtx);
4952	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
4953		hdr_prev = list_prev(buflist, hdr);
4954
4955		hash_lock = HDR_LOCK(hdr);
4956		if (!mutex_tryenter(hash_lock)) {
4957			/*
4958			 * Missed the hash lock.  Retry.
4959			 */
4960			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4961			mutex_exit(&l2arc_buflist_mtx);
4962			mutex_enter(hash_lock);
4963			mutex_exit(hash_lock);
4964			goto top;
4965		}
4966
4967		if (HDR_L2_WRITE_HEAD(hdr)) {
4968			/*
4969			 * We hit a write head node.  Leave it for
4970			 * l2arc_write_done().
4971			 */
4972			list_remove(buflist, hdr);
4973			mutex_exit(hash_lock);
4974			continue;
4975		}
4976
4977		if (!all && hdr->b_l2hdr != NULL &&
4978		    (hdr->b_l2hdr->b_daddr > taddr ||
4979		    hdr->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4980			/*
4981			 * We've evicted to the target address,
4982			 * or the end of the device.
4983			 */
4984			mutex_exit(hash_lock);
4985			break;
4986		}
4987
4988		if (HDR_FREE_IN_PROGRESS(hdr)) {
4989			/*
4990			 * Already on the path to destruction.
4991			 */
4992			mutex_exit(hash_lock);
4993			continue;
4994		}
4995
4996		if (hdr->b_state == arc_l2c_only) {
4997			ASSERT(!HDR_L2_READING(hdr));
4998			/*
4999			 * This doesn't exist in the ARC.  Destroy.
5000			 * arc_hdr_destroy() will call list_remove()
5001			 * and decrement arcstat_l2_size.
5002			 */
5003			arc_change_state(arc_anon, hdr, hash_lock);
5004			arc_hdr_destroy(hdr);
5005		} else {
5006			/*
5007			 * Invalidate issued or about to be issued
5008			 * reads, since we may be about to write
5009			 * over this location.
5010			 */
5011			if (HDR_L2_READING(hdr)) {
5012				ARCSTAT_BUMP(arcstat_l2_evict_reading);
5013				hdr->b_flags |= ARC_FLAG_L2_EVICTED;
5014			}
5015
5016			/*
5017			 * Tell ARC this no longer exists in L2ARC.
5018			 */
5019			if (hdr->b_l2hdr != NULL) {
5020				abl2 = hdr->b_l2hdr;
5021				ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
5022				bytes_evicted += abl2->b_asize;
5023				hdr->b_l2hdr = NULL;
5024				/*
5025				 * We are destroying l2hdr, so ensure that
5026				 * its compressed buffer, if any, is not leaked.
5027				 */
5028				ASSERT(abl2->b_tmp_cdata == NULL);
5029				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
5030				ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
5031			}
5032			list_remove(buflist, hdr);
5033
5034			/*
5035			 * This may have been leftover after a
5036			 * failed write.
5037			 */
5038			hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
5039		}
5040		mutex_exit(hash_lock);
5041	}
5042	mutex_exit(&l2arc_buflist_mtx);
5043
5044	vdev_space_update(dev->l2ad_vdev, -bytes_evicted, 0, 0);
5045	dev->l2ad_evict = taddr;
5046}
5047
5048/*
5049 * Find and write ARC buffers to the L2ARC device.
5050 *
5051 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
5052 * for reading until they have completed writing.
5053 * The headroom_boost is an in-out parameter used to maintain headroom boost
5054 * state between calls to this function.
5055 *
5056 * Returns the number of bytes actually written (which may be smaller than
5057 * the delta by which the device hand has changed due to alignment).
5058 */
5059static uint64_t
5060l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
5061    boolean_t *headroom_boost)
5062{
5063	arc_buf_hdr_t *hdr, *hdr_prev, *head;
5064	list_t *list;
5065	uint64_t write_asize, write_psize, write_sz, headroom,
5066	    buf_compress_minsz;
5067	void *buf_data;
5068	kmutex_t *list_lock;
5069	boolean_t full;
5070	l2arc_write_callback_t *cb;
5071	zio_t *pio, *wzio;
5072	uint64_t guid = spa_load_guid(spa);
5073	const boolean_t do_headroom_boost = *headroom_boost;
5074	int try;
5075
5076	ASSERT(dev->l2ad_vdev != NULL);
5077
5078	/* Lower the flag now, we might want to raise it again later. */
5079	*headroom_boost = B_FALSE;
5080
5081	pio = NULL;
5082	write_sz = write_asize = write_psize = 0;
5083	full = B_FALSE;
5084	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
5085	head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
5086
5087	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
5088	/*
5089	 * We will want to try to compress buffers that are at least 2x the
5090	 * device sector size.
5091	 */
5092	buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
5093
5094	/*
5095	 * Copy buffers for L2ARC writing.
5096	 */
5097	mutex_enter(&l2arc_buflist_mtx);
5098	for (try = 0; try < 2 * ARC_BUFC_NUMLISTS; try++) {
5099		uint64_t passed_sz = 0;
5100
5101		list = l2arc_list_locked(try, &list_lock);
5102		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
5103
5104		/*
5105		 * L2ARC fast warmup.
5106		 *
5107		 * Until the ARC is warm and starts to evict, read from the
5108		 * head of the ARC lists rather than the tail.
5109		 */
5110		if (arc_warm == B_FALSE)
5111			hdr = list_head(list);
5112		else
5113			hdr = list_tail(list);
5114		if (hdr == NULL)
5115			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
5116
5117		headroom = target_sz * l2arc_headroom * 2 / ARC_BUFC_NUMLISTS;
5118		if (do_headroom_boost)
5119			headroom = (headroom * l2arc_headroom_boost) / 100;
5120
5121		for (; hdr; hdr = hdr_prev) {
5122			l2arc_buf_hdr_t *l2hdr;
5123			kmutex_t *hash_lock;
5124			uint64_t buf_sz;
5125
5126			if (arc_warm == B_FALSE)
5127				hdr_prev = list_next(list, hdr);
5128			else
5129				hdr_prev = list_prev(list, hdr);
5130			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned, hdr->b_size);
5131
5132			hash_lock = HDR_LOCK(hdr);
5133			if (!mutex_tryenter(hash_lock)) {
5134				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
5135				/*
5136				 * Skip this buffer rather than waiting.
5137				 */
5138				continue;
5139			}
5140
5141			passed_sz += hdr->b_size;
5142			if (passed_sz > headroom) {
5143				/*
5144				 * Searched too far.
5145				 */
5146				mutex_exit(hash_lock);
5147				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
5148				break;
5149			}
5150
5151			if (!l2arc_write_eligible(guid, hdr)) {
5152				mutex_exit(hash_lock);
5153				continue;
5154			}
5155
5156			if ((write_sz + hdr->b_size) > target_sz) {
5157				full = B_TRUE;
5158				mutex_exit(hash_lock);
5159				ARCSTAT_BUMP(arcstat_l2_write_full);
5160				break;
5161			}
5162
5163			if (pio == NULL) {
5164				/*
5165				 * Insert a dummy header on the buflist so
5166				 * l2arc_write_done() can find where the
5167				 * write buffers begin without searching.
5168				 */
5169				list_insert_head(dev->l2ad_buflist, head);
5170
5171				cb = kmem_alloc(
5172				    sizeof (l2arc_write_callback_t), KM_SLEEP);
5173				cb->l2wcb_dev = dev;
5174				cb->l2wcb_head = head;
5175				pio = zio_root(spa, l2arc_write_done, cb,
5176				    ZIO_FLAG_CANFAIL);
5177				ARCSTAT_BUMP(arcstat_l2_write_pios);
5178			}
5179
5180			/*
5181			 * Create and add a new L2ARC header.
5182			 */
5183			l2hdr = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
5184			l2hdr->b_dev = dev;
5185			hdr->b_flags |= ARC_FLAG_L2_WRITING;
5186
5187			/*
5188			 * Temporarily stash the data buffer in b_tmp_cdata.
5189			 * The subsequent write step will pick it up from
5190			 * there. This is because can't access hdr->b_buf
5191			 * without holding the hash_lock, which we in turn
5192			 * can't access without holding the ARC list locks
5193			 * (which we want to avoid during compression/writing).
5194			 */
5195			l2hdr->b_compress = ZIO_COMPRESS_OFF;
5196			l2hdr->b_asize = hdr->b_size;
5197			l2hdr->b_tmp_cdata = hdr->b_buf->b_data;
5198
5199			buf_sz = hdr->b_size;
5200			hdr->b_l2hdr = l2hdr;
5201
5202			list_insert_head(dev->l2ad_buflist, hdr);
5203
5204			/*
5205			 * Compute and store the buffer cksum before
5206			 * writing.  On debug the cksum is verified first.
5207			 */
5208			arc_cksum_verify(hdr->b_buf);
5209			arc_cksum_compute(hdr->b_buf, B_TRUE);
5210
5211			mutex_exit(hash_lock);
5212
5213			write_sz += buf_sz;
5214		}
5215
5216		mutex_exit(list_lock);
5217
5218		if (full == B_TRUE)
5219			break;
5220	}
5221
5222	/* No buffers selected for writing? */
5223	if (pio == NULL) {
5224		ASSERT0(write_sz);
5225		mutex_exit(&l2arc_buflist_mtx);
5226		kmem_cache_free(hdr_cache, head);
5227		return (0);
5228	}
5229
5230	/*
5231	 * Now start writing the buffers. We're starting at the write head
5232	 * and work backwards, retracing the course of the buffer selector
5233	 * loop above.
5234	 */
5235	for (hdr = list_prev(dev->l2ad_buflist, head); hdr;
5236	    hdr = list_prev(dev->l2ad_buflist, hdr)) {
5237		l2arc_buf_hdr_t *l2hdr;
5238		uint64_t buf_sz;
5239
5240		/*
5241		 * We shouldn't need to lock the buffer here, since we flagged
5242		 * it as ARC_FLAG_L2_WRITING in the previous step, but we must
5243		 * take care to only access its L2 cache parameters. In
5244		 * particular, hdr->b_buf may be invalid by now due to
5245		 * ARC eviction.
5246		 */
5247		l2hdr = hdr->b_l2hdr;
5248		l2hdr->b_daddr = dev->l2ad_hand;
5249
5250		if ((hdr->b_flags & ARC_FLAG_L2COMPRESS) &&
5251		    l2hdr->b_asize >= buf_compress_minsz) {
5252			if (l2arc_compress_buf(l2hdr)) {
5253				/*
5254				 * If compression succeeded, enable headroom
5255				 * boost on the next scan cycle.
5256				 */
5257				*headroom_boost = B_TRUE;
5258			}
5259		}
5260
5261		/*
5262		 * Pick up the buffer data we had previously stashed away
5263		 * (and now potentially also compressed).
5264		 */
5265		buf_data = l2hdr->b_tmp_cdata;
5266		buf_sz = l2hdr->b_asize;
5267
5268		/*
5269		 * If the data has not been compressed, then clear b_tmp_cdata
5270		 * to make sure that it points only to a temporary compression
5271		 * buffer.
5272		 */
5273		if (!L2ARC_IS_VALID_COMPRESS(l2hdr->b_compress))
5274			l2hdr->b_tmp_cdata = NULL;
5275
5276		/* Compression may have squashed the buffer to zero length. */
5277		if (buf_sz != 0) {
5278			uint64_t buf_p_sz;
5279
5280			wzio = zio_write_phys(pio, dev->l2ad_vdev,
5281			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
5282			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
5283			    ZIO_FLAG_CANFAIL, B_FALSE);
5284
5285			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
5286			    zio_t *, wzio);
5287			(void) zio_nowait(wzio);
5288
5289			write_asize += buf_sz;
5290			/*
5291			 * Keep the clock hand suitably device-aligned.
5292			 */
5293			buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
5294			write_psize += buf_p_sz;
5295			dev->l2ad_hand += buf_p_sz;
5296		}
5297	}
5298
5299	mutex_exit(&l2arc_buflist_mtx);
5300
5301	ASSERT3U(write_asize, <=, target_sz);
5302	ARCSTAT_BUMP(arcstat_l2_writes_sent);
5303	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
5304	ARCSTAT_INCR(arcstat_l2_size, write_sz);
5305	ARCSTAT_INCR(arcstat_l2_asize, write_asize);
5306	vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
5307
5308	/*
5309	 * Bump device hand to the device start if it is approaching the end.
5310	 * l2arc_evict() will already have evicted ahead for this case.
5311	 */
5312	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
5313		dev->l2ad_hand = dev->l2ad_start;
5314		dev->l2ad_evict = dev->l2ad_start;
5315		dev->l2ad_first = B_FALSE;
5316	}
5317
5318	dev->l2ad_writing = B_TRUE;
5319	(void) zio_wait(pio);
5320	dev->l2ad_writing = B_FALSE;
5321
5322	return (write_asize);
5323}
5324
5325/*
5326 * Compresses an L2ARC buffer.
5327 * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its
5328 * size in l2hdr->b_asize. This routine tries to compress the data and
5329 * depending on the compression result there are three possible outcomes:
5330 * *) The buffer was incompressible. The original l2hdr contents were left
5331 *    untouched and are ready for writing to an L2 device.
5332 * *) The buffer was all-zeros, so there is no need to write it to an L2
5333 *    device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
5334 *    set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
5335 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
5336 *    data buffer which holds the compressed data to be written, and b_asize
5337 *    tells us how much data there is. b_compress is set to the appropriate
5338 *    compression algorithm. Once writing is done, invoke
5339 *    l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
5340 *
5341 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
5342 * buffer was incompressible).
5343 */
5344static boolean_t
5345l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr)
5346{
5347	void *cdata;
5348	size_t csize, len, rounded;
5349
5350	ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF);
5351	ASSERT(l2hdr->b_tmp_cdata != NULL);
5352
5353	len = l2hdr->b_asize;
5354	cdata = zio_data_buf_alloc(len);
5355	csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata,
5356	    cdata, l2hdr->b_asize);
5357
5358	if (csize == 0) {
5359		/* zero block, indicate that there's nothing to write */
5360		zio_data_buf_free(cdata, len);
5361		l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
5362		l2hdr->b_asize = 0;
5363		l2hdr->b_tmp_cdata = NULL;
5364		ARCSTAT_BUMP(arcstat_l2_compress_zeros);
5365		return (B_TRUE);
5366	}
5367
5368	rounded = P2ROUNDUP(csize,
5369	    (size_t)1 << l2hdr->b_dev->l2ad_vdev->vdev_ashift);
5370	if (rounded < len) {
5371		/*
5372		 * Compression succeeded, we'll keep the cdata around for
5373		 * writing and release it afterwards.
5374		 */
5375		if (rounded > csize) {
5376			bzero((char *)cdata + csize, rounded - csize);
5377			csize = rounded;
5378		}
5379		l2hdr->b_compress = ZIO_COMPRESS_LZ4;
5380		l2hdr->b_asize = csize;
5381		l2hdr->b_tmp_cdata = cdata;
5382		ARCSTAT_BUMP(arcstat_l2_compress_successes);
5383		return (B_TRUE);
5384	} else {
5385		/*
5386		 * Compression failed, release the compressed buffer.
5387		 * l2hdr will be left unmodified.
5388		 */
5389		zio_data_buf_free(cdata, len);
5390		ARCSTAT_BUMP(arcstat_l2_compress_failures);
5391		return (B_FALSE);
5392	}
5393}
5394
5395/*
5396 * Decompresses a zio read back from an l2arc device. On success, the
5397 * underlying zio's io_data buffer is overwritten by the uncompressed
5398 * version. On decompression error (corrupt compressed stream), the
5399 * zio->io_error value is set to signal an I/O error.
5400 *
5401 * Please note that the compressed data stream is not checksummed, so
5402 * if the underlying device is experiencing data corruption, we may feed
5403 * corrupt data to the decompressor, so the decompressor needs to be
5404 * able to handle this situation (LZ4 does).
5405 */
5406static void
5407l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
5408{
5409	ASSERT(L2ARC_IS_VALID_COMPRESS(c));
5410
5411	if (zio->io_error != 0) {
5412		/*
5413		 * An io error has occured, just restore the original io
5414		 * size in preparation for a main pool read.
5415		 */
5416		zio->io_orig_size = zio->io_size = hdr->b_size;
5417		return;
5418	}
5419
5420	if (c == ZIO_COMPRESS_EMPTY) {
5421		/*
5422		 * An empty buffer results in a null zio, which means we
5423		 * need to fill its io_data after we're done restoring the
5424		 * buffer's contents.
5425		 */
5426		ASSERT(hdr->b_buf != NULL);
5427		bzero(hdr->b_buf->b_data, hdr->b_size);
5428		zio->io_data = zio->io_orig_data = hdr->b_buf->b_data;
5429	} else {
5430		ASSERT(zio->io_data != NULL);
5431		/*
5432		 * We copy the compressed data from the start of the arc buffer
5433		 * (the zio_read will have pulled in only what we need, the
5434		 * rest is garbage which we will overwrite at decompression)
5435		 * and then decompress back to the ARC data buffer. This way we
5436		 * can minimize copying by simply decompressing back over the
5437		 * original compressed data (rather than decompressing to an
5438		 * aux buffer and then copying back the uncompressed buffer,
5439		 * which is likely to be much larger).
5440		 */
5441		uint64_t csize;
5442		void *cdata;
5443
5444		csize = zio->io_size;
5445		cdata = zio_data_buf_alloc(csize);
5446		bcopy(zio->io_data, cdata, csize);
5447		if (zio_decompress_data(c, cdata, zio->io_data, csize,
5448		    hdr->b_size) != 0)
5449			zio->io_error = EIO;
5450		zio_data_buf_free(cdata, csize);
5451	}
5452
5453	/* Restore the expected uncompressed IO size. */
5454	zio->io_orig_size = zio->io_size = hdr->b_size;
5455}
5456
5457/*
5458 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
5459 * This buffer serves as a temporary holder of compressed data while
5460 * the buffer entry is being written to an l2arc device. Once that is
5461 * done, we can dispose of it.
5462 */
5463static void
5464l2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
5465{
5466	l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
5467
5468	ASSERT(L2ARC_IS_VALID_COMPRESS(l2hdr->b_compress));
5469	if (l2hdr->b_compress != ZIO_COMPRESS_EMPTY) {
5470		/*
5471		 * If the data was compressed, then we've allocated a
5472		 * temporary buffer for it, so now we need to release it.
5473		 */
5474		ASSERT(l2hdr->b_tmp_cdata != NULL);
5475		zio_data_buf_free(l2hdr->b_tmp_cdata, hdr->b_size);
5476		l2hdr->b_tmp_cdata = NULL;
5477	} else {
5478		ASSERT(l2hdr->b_tmp_cdata == NULL);
5479	}
5480}
5481
5482/*
5483 * This thread feeds the L2ARC at regular intervals.  This is the beating
5484 * heart of the L2ARC.
5485 */
5486static void
5487l2arc_feed_thread(void *dummy __unused)
5488{
5489	callb_cpr_t cpr;
5490	l2arc_dev_t *dev;
5491	spa_t *spa;
5492	uint64_t size, wrote;
5493	clock_t begin, next = ddi_get_lbolt();
5494	boolean_t headroom_boost = B_FALSE;
5495
5496	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
5497
5498	mutex_enter(&l2arc_feed_thr_lock);
5499
5500	while (l2arc_thread_exit == 0) {
5501		CALLB_CPR_SAFE_BEGIN(&cpr);
5502		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
5503		    next - ddi_get_lbolt());
5504		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
5505		next = ddi_get_lbolt() + hz;
5506
5507		/*
5508		 * Quick check for L2ARC devices.
5509		 */
5510		mutex_enter(&l2arc_dev_mtx);
5511		if (l2arc_ndev == 0) {
5512			mutex_exit(&l2arc_dev_mtx);
5513			continue;
5514		}
5515		mutex_exit(&l2arc_dev_mtx);
5516		begin = ddi_get_lbolt();
5517
5518		/*
5519		 * This selects the next l2arc device to write to, and in
5520		 * doing so the next spa to feed from: dev->l2ad_spa.   This
5521		 * will return NULL if there are now no l2arc devices or if
5522		 * they are all faulted.
5523		 *
5524		 * If a device is returned, its spa's config lock is also
5525		 * held to prevent device removal.  l2arc_dev_get_next()
5526		 * will grab and release l2arc_dev_mtx.
5527		 */
5528		if ((dev = l2arc_dev_get_next()) == NULL)
5529			continue;
5530
5531		spa = dev->l2ad_spa;
5532		ASSERT(spa != NULL);
5533
5534		/*
5535		 * If the pool is read-only then force the feed thread to
5536		 * sleep a little longer.
5537		 */
5538		if (!spa_writeable(spa)) {
5539			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
5540			spa_config_exit(spa, SCL_L2ARC, dev);
5541			continue;
5542		}
5543
5544		/*
5545		 * Avoid contributing to memory pressure.
5546		 */
5547		if (arc_reclaim_needed()) {
5548			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
5549			spa_config_exit(spa, SCL_L2ARC, dev);
5550			continue;
5551		}
5552
5553		ARCSTAT_BUMP(arcstat_l2_feeds);
5554
5555		size = l2arc_write_size();
5556
5557		/*
5558		 * Evict L2ARC buffers that will be overwritten.
5559		 */
5560		l2arc_evict(dev, size, B_FALSE);
5561
5562		/*
5563		 * Write ARC buffers.
5564		 */
5565		wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
5566
5567		/*
5568		 * Calculate interval between writes.
5569		 */
5570		next = l2arc_write_interval(begin, size, wrote);
5571		spa_config_exit(spa, SCL_L2ARC, dev);
5572	}
5573
5574	l2arc_thread_exit = 0;
5575	cv_broadcast(&l2arc_feed_thr_cv);
5576	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
5577	thread_exit();
5578}
5579
5580boolean_t
5581l2arc_vdev_present(vdev_t *vd)
5582{
5583	l2arc_dev_t *dev;
5584
5585	mutex_enter(&l2arc_dev_mtx);
5586	for (dev = list_head(l2arc_dev_list); dev != NULL;
5587	    dev = list_next(l2arc_dev_list, dev)) {
5588		if (dev->l2ad_vdev == vd)
5589			break;
5590	}
5591	mutex_exit(&l2arc_dev_mtx);
5592
5593	return (dev != NULL);
5594}
5595
5596/*
5597 * Add a vdev for use by the L2ARC.  By this point the spa has already
5598 * validated the vdev and opened it.
5599 */
5600void
5601l2arc_add_vdev(spa_t *spa, vdev_t *vd)
5602{
5603	l2arc_dev_t *adddev;
5604
5605	ASSERT(!l2arc_vdev_present(vd));
5606
5607	vdev_ashift_optimize(vd);
5608
5609	/*
5610	 * Create a new l2arc device entry.
5611	 */
5612	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
5613	adddev->l2ad_spa = spa;
5614	adddev->l2ad_vdev = vd;
5615	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
5616	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
5617	adddev->l2ad_hand = adddev->l2ad_start;
5618	adddev->l2ad_evict = adddev->l2ad_start;
5619	adddev->l2ad_first = B_TRUE;
5620	adddev->l2ad_writing = B_FALSE;
5621
5622	/*
5623	 * This is a list of all ARC buffers that are still valid on the
5624	 * device.
5625	 */
5626	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
5627	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
5628	    offsetof(arc_buf_hdr_t, b_l2node));
5629
5630	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
5631
5632	/*
5633	 * Add device to global list
5634	 */
5635	mutex_enter(&l2arc_dev_mtx);
5636	list_insert_head(l2arc_dev_list, adddev);
5637	atomic_inc_64(&l2arc_ndev);
5638	mutex_exit(&l2arc_dev_mtx);
5639}
5640
5641/*
5642 * Remove a vdev from the L2ARC.
5643 */
5644void
5645l2arc_remove_vdev(vdev_t *vd)
5646{
5647	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
5648
5649	/*
5650	 * Find the device by vdev
5651	 */
5652	mutex_enter(&l2arc_dev_mtx);
5653	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
5654		nextdev = list_next(l2arc_dev_list, dev);
5655		if (vd == dev->l2ad_vdev) {
5656			remdev = dev;
5657			break;
5658		}
5659	}
5660	ASSERT(remdev != NULL);
5661
5662	/*
5663	 * Remove device from global list
5664	 */
5665	list_remove(l2arc_dev_list, remdev);
5666	l2arc_dev_last = NULL;		/* may have been invalidated */
5667	atomic_dec_64(&l2arc_ndev);
5668	mutex_exit(&l2arc_dev_mtx);
5669
5670	/*
5671	 * Clear all buflists and ARC references.  L2ARC device flush.
5672	 */
5673	l2arc_evict(remdev, 0, B_TRUE);
5674	list_destroy(remdev->l2ad_buflist);
5675	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
5676	kmem_free(remdev, sizeof (l2arc_dev_t));
5677}
5678
5679void
5680l2arc_init(void)
5681{
5682	l2arc_thread_exit = 0;
5683	l2arc_ndev = 0;
5684	l2arc_writes_sent = 0;
5685	l2arc_writes_done = 0;
5686
5687	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
5688	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
5689	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
5690	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
5691	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
5692
5693	l2arc_dev_list = &L2ARC_dev_list;
5694	l2arc_free_on_write = &L2ARC_free_on_write;
5695	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
5696	    offsetof(l2arc_dev_t, l2ad_node));
5697	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
5698	    offsetof(l2arc_data_free_t, l2df_list_node));
5699}
5700
5701void
5702l2arc_fini(void)
5703{
5704	/*
5705	 * This is called from dmu_fini(), which is called from spa_fini();
5706	 * Because of this, we can assume that all l2arc devices have
5707	 * already been removed when the pools themselves were removed.
5708	 */
5709
5710	l2arc_do_free_on_write();
5711
5712	mutex_destroy(&l2arc_feed_thr_lock);
5713	cv_destroy(&l2arc_feed_thr_cv);
5714	mutex_destroy(&l2arc_dev_mtx);
5715	mutex_destroy(&l2arc_buflist_mtx);
5716	mutex_destroy(&l2arc_free_on_write_mtx);
5717
5718	list_destroy(l2arc_dev_list);
5719	list_destroy(l2arc_free_on_write);
5720}
5721
5722void
5723l2arc_start(void)
5724{
5725	if (!(spa_mode_global & FWRITE))
5726		return;
5727
5728	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
5729	    TS_RUN, minclsyspri);
5730}
5731
5732void
5733l2arc_stop(void)
5734{
5735	if (!(spa_mode_global & FWRITE))
5736		return;
5737
5738	mutex_enter(&l2arc_feed_thr_lock);
5739	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
5740	l2arc_thread_exit = 1;
5741	while (l2arc_thread_exit != 0)
5742		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
5743	mutex_exit(&l2arc_feed_thr_lock);
5744}
5745