dtrace.c revision 268572
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 * $FreeBSD: stable/10/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c 268572 2014-07-12 18:23:35Z pfg $
22 */
23
24/*
25 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 * Copyright (c) 2012 by Delphix. All rights reserved.
28 */
29
30/*
31 * DTrace - Dynamic Tracing for Solaris
32 *
33 * This is the implementation of the Solaris Dynamic Tracing framework
34 * (DTrace).  The user-visible interface to DTrace is described at length in
35 * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
36 * library, the in-kernel DTrace framework, and the DTrace providers are
37 * described in the block comments in the <sys/dtrace.h> header file.  The
38 * internal architecture of DTrace is described in the block comments in the
39 * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
40 * implementation very much assume mastery of all of these sources; if one has
41 * an unanswered question about the implementation, one should consult them
42 * first.
43 *
44 * The functions here are ordered roughly as follows:
45 *
46 *   - Probe context functions
47 *   - Probe hashing functions
48 *   - Non-probe context utility functions
49 *   - Matching functions
50 *   - Provider-to-Framework API functions
51 *   - Probe management functions
52 *   - DIF object functions
53 *   - Format functions
54 *   - Predicate functions
55 *   - ECB functions
56 *   - Buffer functions
57 *   - Enabling functions
58 *   - DOF functions
59 *   - Anonymous enabling functions
60 *   - Consumer state functions
61 *   - Helper functions
62 *   - Hook functions
63 *   - Driver cookbook functions
64 *
65 * Each group of functions begins with a block comment labelled the "DTrace
66 * [Group] Functions", allowing one to find each block by searching forward
67 * on capital-f functions.
68 */
69#include <sys/errno.h>
70#if !defined(sun)
71#include <sys/time.h>
72#endif
73#include <sys/stat.h>
74#include <sys/modctl.h>
75#include <sys/conf.h>
76#include <sys/systm.h>
77#if defined(sun)
78#include <sys/ddi.h>
79#include <sys/sunddi.h>
80#endif
81#include <sys/cpuvar.h>
82#include <sys/kmem.h>
83#if defined(sun)
84#include <sys/strsubr.h>
85#endif
86#include <sys/sysmacros.h>
87#include <sys/dtrace_impl.h>
88#include <sys/atomic.h>
89#include <sys/cmn_err.h>
90#if defined(sun)
91#include <sys/mutex_impl.h>
92#include <sys/rwlock_impl.h>
93#endif
94#include <sys/ctf_api.h>
95#if defined(sun)
96#include <sys/panic.h>
97#include <sys/priv_impl.h>
98#endif
99#include <sys/policy.h>
100#if defined(sun)
101#include <sys/cred_impl.h>
102#include <sys/procfs_isa.h>
103#endif
104#include <sys/taskq.h>
105#if defined(sun)
106#include <sys/mkdev.h>
107#include <sys/kdi.h>
108#endif
109#include <sys/zone.h>
110#include <sys/socket.h>
111#include <netinet/in.h>
112
113/* FreeBSD includes: */
114#if !defined(sun)
115#include <sys/callout.h>
116#include <sys/ctype.h>
117#include <sys/eventhandler.h>
118#include <sys/limits.h>
119#include <sys/kdb.h>
120#include <sys/kernel.h>
121#include <sys/malloc.h>
122#include <sys/sysctl.h>
123#include <sys/lock.h>
124#include <sys/mutex.h>
125#include <sys/rwlock.h>
126#include <sys/sx.h>
127#include <sys/dtrace_bsd.h>
128#include <netinet/in.h>
129#include "dtrace_cddl.h"
130#include "dtrace_debug.c"
131#endif
132
133/*
134 * DTrace Tunable Variables
135 *
136 * The following variables may be tuned by adding a line to /etc/system that
137 * includes both the name of the DTrace module ("dtrace") and the name of the
138 * variable.  For example:
139 *
140 *   set dtrace:dtrace_destructive_disallow = 1
141 *
142 * In general, the only variables that one should be tuning this way are those
143 * that affect system-wide DTrace behavior, and for which the default behavior
144 * is undesirable.  Most of these variables are tunable on a per-consumer
145 * basis using DTrace options, and need not be tuned on a system-wide basis.
146 * When tuning these variables, avoid pathological values; while some attempt
147 * is made to verify the integrity of these variables, they are not considered
148 * part of the supported interface to DTrace, and they are therefore not
149 * checked comprehensively.  Further, these variables should not be tuned
150 * dynamically via "mdb -kw" or other means; they should only be tuned via
151 * /etc/system.
152 */
153int		dtrace_destructive_disallow = 0;
154dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
155size_t		dtrace_difo_maxsize = (256 * 1024);
156dtrace_optval_t	dtrace_dof_maxsize = (8 * 1024 * 1024);
157size_t		dtrace_global_maxsize = (16 * 1024);
158size_t		dtrace_actions_max = (16 * 1024);
159size_t		dtrace_retain_max = 1024;
160dtrace_optval_t	dtrace_helper_actions_max = 128;
161dtrace_optval_t	dtrace_helper_providers_max = 32;
162dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
163size_t		dtrace_strsize_default = 256;
164dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
165dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
166dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
167dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
168dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
169dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
170dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
171dtrace_optval_t	dtrace_nspec_default = 1;
172dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
173dtrace_optval_t dtrace_stackframes_default = 20;
174dtrace_optval_t dtrace_ustackframes_default = 20;
175dtrace_optval_t dtrace_jstackframes_default = 50;
176dtrace_optval_t dtrace_jstackstrsize_default = 512;
177int		dtrace_msgdsize_max = 128;
178hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
179hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
180int		dtrace_devdepth_max = 32;
181int		dtrace_err_verbose;
182hrtime_t	dtrace_deadman_interval = NANOSEC;
183hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
184hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
185hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
186
187/*
188 * DTrace External Variables
189 *
190 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
191 * available to DTrace consumers via the backtick (`) syntax.  One of these,
192 * dtrace_zero, is made deliberately so:  it is provided as a source of
193 * well-known, zero-filled memory.  While this variable is not documented,
194 * it is used by some translators as an implementation detail.
195 */
196const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
197
198/*
199 * DTrace Internal Variables
200 */
201#if defined(sun)
202static dev_info_t	*dtrace_devi;		/* device info */
203#endif
204#if defined(sun)
205static vmem_t		*dtrace_arena;		/* probe ID arena */
206static vmem_t		*dtrace_minor;		/* minor number arena */
207#else
208static taskq_t		*dtrace_taskq;		/* task queue */
209static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
210#endif
211static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
212static int		dtrace_nprobes;		/* number of probes */
213static dtrace_provider_t *dtrace_provider;	/* provider list */
214static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
215static int		dtrace_opens;		/* number of opens */
216static int		dtrace_helpers;		/* number of helpers */
217#if defined(sun)
218static void		*dtrace_softstate;	/* softstate pointer */
219#endif
220static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
221static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
222static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
223static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
224static int		dtrace_toxranges;	/* number of toxic ranges */
225static int		dtrace_toxranges_max;	/* size of toxic range array */
226static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
227static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
228static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
229static kthread_t	*dtrace_panicked;	/* panicking thread */
230static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
231static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
232static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
233static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
234static dtrace_genid_t	dtrace_retained_gen;	/* current retained enab gen */
235static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
236#if !defined(sun)
237static struct mtx	dtrace_unr_mtx;
238MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
239int		dtrace_in_probe;	/* non-zero if executing a probe */
240#if defined(__i386__) || defined(__amd64__) || defined(__mips__) || defined(__powerpc__)
241uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
242#endif
243static eventhandler_tag	dtrace_kld_load_tag;
244static eventhandler_tag	dtrace_kld_unload_try_tag;
245#endif
246
247/*
248 * DTrace Locking
249 * DTrace is protected by three (relatively coarse-grained) locks:
250 *
251 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
252 *     including enabling state, probes, ECBs, consumer state, helper state,
253 *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
254 *     probe context is lock-free -- synchronization is handled via the
255 *     dtrace_sync() cross call mechanism.
256 *
257 * (2) dtrace_provider_lock is required when manipulating provider state, or
258 *     when provider state must be held constant.
259 *
260 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
261 *     when meta provider state must be held constant.
262 *
263 * The lock ordering between these three locks is dtrace_meta_lock before
264 * dtrace_provider_lock before dtrace_lock.  (In particular, there are
265 * several places where dtrace_provider_lock is held by the framework as it
266 * calls into the providers -- which then call back into the framework,
267 * grabbing dtrace_lock.)
268 *
269 * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
270 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
271 * role as a coarse-grained lock; it is acquired before both of these locks.
272 * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
273 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
274 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
275 * acquired _between_ dtrace_provider_lock and dtrace_lock.
276 */
277static kmutex_t		dtrace_lock;		/* probe state lock */
278static kmutex_t		dtrace_provider_lock;	/* provider state lock */
279static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
280
281#if !defined(sun)
282/* XXX FreeBSD hacks. */
283#define cr_suid		cr_svuid
284#define cr_sgid		cr_svgid
285#define	ipaddr_t	in_addr_t
286#define mod_modname	pathname
287#define vuprintf	vprintf
288#define ttoproc(_a)	((_a)->td_proc)
289#define crgetzoneid(_a)	0
290#define	NCPU		MAXCPU
291#define SNOCD		0
292#define CPU_ON_INTR(_a)	0
293
294#define PRIV_EFFECTIVE		(1 << 0)
295#define PRIV_DTRACE_KERNEL	(1 << 1)
296#define PRIV_DTRACE_PROC	(1 << 2)
297#define PRIV_DTRACE_USER	(1 << 3)
298#define PRIV_PROC_OWNER		(1 << 4)
299#define PRIV_PROC_ZONE		(1 << 5)
300#define PRIV_ALL		~0
301
302SYSCTL_DECL(_debug_dtrace);
303SYSCTL_DECL(_kern_dtrace);
304#endif
305
306#if defined(sun)
307#define curcpu	CPU->cpu_id
308#endif
309
310
311/*
312 * DTrace Provider Variables
313 *
314 * These are the variables relating to DTrace as a provider (that is, the
315 * provider of the BEGIN, END, and ERROR probes).
316 */
317static dtrace_pattr_t	dtrace_provider_attr = {
318{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
319{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
320{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
321{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
322{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
323};
324
325static void
326dtrace_nullop(void)
327{}
328
329static dtrace_pops_t	dtrace_provider_ops = {
330	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
331	(void (*)(void *, modctl_t *))dtrace_nullop,
332	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
333	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
334	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
335	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
336	NULL,
337	NULL,
338	NULL,
339	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
340};
341
342static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
343static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
344dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
345
346/*
347 * DTrace Helper Tracing Variables
348 */
349uint32_t dtrace_helptrace_next = 0;
350uint32_t dtrace_helptrace_nlocals;
351char	*dtrace_helptrace_buffer;
352int	dtrace_helptrace_bufsize = 512 * 1024;
353
354#ifdef DEBUG
355int	dtrace_helptrace_enabled = 1;
356#else
357int	dtrace_helptrace_enabled = 0;
358#endif
359
360/*
361 * DTrace Error Hashing
362 *
363 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
364 * table.  This is very useful for checking coverage of tests that are
365 * expected to induce DIF or DOF processing errors, and may be useful for
366 * debugging problems in the DIF code generator or in DOF generation .  The
367 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
368 */
369#ifdef DEBUG
370static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
371static const char *dtrace_errlast;
372static kthread_t *dtrace_errthread;
373static kmutex_t dtrace_errlock;
374#endif
375
376/*
377 * DTrace Macros and Constants
378 *
379 * These are various macros that are useful in various spots in the
380 * implementation, along with a few random constants that have no meaning
381 * outside of the implementation.  There is no real structure to this cpp
382 * mishmash -- but is there ever?
383 */
384#define	DTRACE_HASHSTR(hash, probe)	\
385	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
386
387#define	DTRACE_HASHNEXT(hash, probe)	\
388	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
389
390#define	DTRACE_HASHPREV(hash, probe)	\
391	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
392
393#define	DTRACE_HASHEQ(hash, lhs, rhs)	\
394	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
395	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
396
397#define	DTRACE_AGGHASHSIZE_SLEW		17
398
399#define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
400
401/*
402 * The key for a thread-local variable consists of the lower 61 bits of the
403 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
404 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
405 * equal to a variable identifier.  This is necessary (but not sufficient) to
406 * assure that global associative arrays never collide with thread-local
407 * variables.  To guarantee that they cannot collide, we must also define the
408 * order for keying dynamic variables.  That order is:
409 *
410 *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
411 *
412 * Because the variable-key and the tls-key are in orthogonal spaces, there is
413 * no way for a global variable key signature to match a thread-local key
414 * signature.
415 */
416#if defined(sun)
417#define	DTRACE_TLS_THRKEY(where) { \
418	uint_t intr = 0; \
419	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
420	for (; actv; actv >>= 1) \
421		intr++; \
422	ASSERT(intr < (1 << 3)); \
423	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
424	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
425}
426#else
427#define	DTRACE_TLS_THRKEY(where) { \
428	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
429	uint_t intr = 0; \
430	uint_t actv = _c->cpu_intr_actv; \
431	for (; actv; actv >>= 1) \
432		intr++; \
433	ASSERT(intr < (1 << 3)); \
434	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
435	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
436}
437#endif
438
439#define	DT_BSWAP_8(x)	((x) & 0xff)
440#define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
441#define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
442#define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
443
444#define	DT_MASK_LO 0x00000000FFFFFFFFULL
445
446#define	DTRACE_STORE(type, tomax, offset, what) \
447	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
448
449#ifndef __x86
450#define	DTRACE_ALIGNCHECK(addr, size, flags)				\
451	if (addr & (size - 1)) {					\
452		*flags |= CPU_DTRACE_BADALIGN;				\
453		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
454		return (0);						\
455	}
456#else
457#define	DTRACE_ALIGNCHECK(addr, size, flags)
458#endif
459
460/*
461 * Test whether a range of memory starting at testaddr of size testsz falls
462 * within the range of memory described by addr, sz.  We take care to avoid
463 * problems with overflow and underflow of the unsigned quantities, and
464 * disallow all negative sizes.  Ranges of size 0 are allowed.
465 */
466#define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
467	((testaddr) - (baseaddr) < (basesz) && \
468	(testaddr) + (testsz) - (baseaddr) <= (basesz) && \
469	(testaddr) + (testsz) >= (testaddr))
470
471/*
472 * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
473 * alloc_sz on the righthand side of the comparison in order to avoid overflow
474 * or underflow in the comparison with it.  This is simpler than the INRANGE
475 * check above, because we know that the dtms_scratch_ptr is valid in the
476 * range.  Allocations of size zero are allowed.
477 */
478#define	DTRACE_INSCRATCH(mstate, alloc_sz) \
479	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
480	(mstate)->dtms_scratch_ptr >= (alloc_sz))
481
482#define	DTRACE_LOADFUNC(bits)						\
483/*CSTYLED*/								\
484uint##bits##_t								\
485dtrace_load##bits(uintptr_t addr)					\
486{									\
487	size_t size = bits / NBBY;					\
488	/*CSTYLED*/							\
489	uint##bits##_t rval;						\
490	int i;								\
491	volatile uint16_t *flags = (volatile uint16_t *)		\
492	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
493									\
494	DTRACE_ALIGNCHECK(addr, size, flags);				\
495									\
496	for (i = 0; i < dtrace_toxranges; i++) {			\
497		if (addr >= dtrace_toxrange[i].dtt_limit)		\
498			continue;					\
499									\
500		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
501			continue;					\
502									\
503		/*							\
504		 * This address falls within a toxic region; return 0.	\
505		 */							\
506		*flags |= CPU_DTRACE_BADADDR;				\
507		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
508		return (0);						\
509	}								\
510									\
511	*flags |= CPU_DTRACE_NOFAULT;					\
512	/*CSTYLED*/							\
513	rval = *((volatile uint##bits##_t *)addr);			\
514	*flags &= ~CPU_DTRACE_NOFAULT;					\
515									\
516	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
517}
518
519#ifdef _LP64
520#define	dtrace_loadptr	dtrace_load64
521#else
522#define	dtrace_loadptr	dtrace_load32
523#endif
524
525#define	DTRACE_DYNHASH_FREE	0
526#define	DTRACE_DYNHASH_SINK	1
527#define	DTRACE_DYNHASH_VALID	2
528
529#define	DTRACE_MATCH_NEXT	0
530#define	DTRACE_MATCH_DONE	1
531#define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
532#define	DTRACE_STATE_ALIGN	64
533
534#define	DTRACE_FLAGS2FLT(flags)						\
535	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
536	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
537	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
538	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
539	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
540	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
541	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
542	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
543	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
544	DTRACEFLT_UNKNOWN)
545
546#define	DTRACEACT_ISSTRING(act)						\
547	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
548	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
549
550/* Function prototype definitions: */
551static size_t dtrace_strlen(const char *, size_t);
552static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
553static void dtrace_enabling_provide(dtrace_provider_t *);
554static int dtrace_enabling_match(dtrace_enabling_t *, int *);
555static void dtrace_enabling_matchall(void);
556static void dtrace_enabling_reap(void);
557static dtrace_state_t *dtrace_anon_grab(void);
558static uint64_t dtrace_helper(int, dtrace_mstate_t *,
559    dtrace_state_t *, uint64_t, uint64_t);
560static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
561static void dtrace_buffer_drop(dtrace_buffer_t *);
562static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
563static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
564    dtrace_state_t *, dtrace_mstate_t *);
565static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
566    dtrace_optval_t);
567static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
568static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
569uint16_t dtrace_load16(uintptr_t);
570uint32_t dtrace_load32(uintptr_t);
571uint64_t dtrace_load64(uintptr_t);
572uint8_t dtrace_load8(uintptr_t);
573void dtrace_dynvar_clean(dtrace_dstate_t *);
574dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
575    size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
576uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
577
578/*
579 * DTrace Probe Context Functions
580 *
581 * These functions are called from probe context.  Because probe context is
582 * any context in which C may be called, arbitrarily locks may be held,
583 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
584 * As a result, functions called from probe context may only call other DTrace
585 * support functions -- they may not interact at all with the system at large.
586 * (Note that the ASSERT macro is made probe-context safe by redefining it in
587 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
588 * loads are to be performed from probe context, they _must_ be in terms of
589 * the safe dtrace_load*() variants.
590 *
591 * Some functions in this block are not actually called from probe context;
592 * for these functions, there will be a comment above the function reading
593 * "Note:  not called from probe context."
594 */
595void
596dtrace_panic(const char *format, ...)
597{
598	va_list alist;
599
600	va_start(alist, format);
601	dtrace_vpanic(format, alist);
602	va_end(alist);
603}
604
605int
606dtrace_assfail(const char *a, const char *f, int l)
607{
608	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
609
610	/*
611	 * We just need something here that even the most clever compiler
612	 * cannot optimize away.
613	 */
614	return (a[(uintptr_t)f]);
615}
616
617/*
618 * Atomically increment a specified error counter from probe context.
619 */
620static void
621dtrace_error(uint32_t *counter)
622{
623	/*
624	 * Most counters stored to in probe context are per-CPU counters.
625	 * However, there are some error conditions that are sufficiently
626	 * arcane that they don't merit per-CPU storage.  If these counters
627	 * are incremented concurrently on different CPUs, scalability will be
628	 * adversely affected -- but we don't expect them to be white-hot in a
629	 * correctly constructed enabling...
630	 */
631	uint32_t oval, nval;
632
633	do {
634		oval = *counter;
635
636		if ((nval = oval + 1) == 0) {
637			/*
638			 * If the counter would wrap, set it to 1 -- assuring
639			 * that the counter is never zero when we have seen
640			 * errors.  (The counter must be 32-bits because we
641			 * aren't guaranteed a 64-bit compare&swap operation.)
642			 * To save this code both the infamy of being fingered
643			 * by a priggish news story and the indignity of being
644			 * the target of a neo-puritan witch trial, we're
645			 * carefully avoiding any colorful description of the
646			 * likelihood of this condition -- but suffice it to
647			 * say that it is only slightly more likely than the
648			 * overflow of predicate cache IDs, as discussed in
649			 * dtrace_predicate_create().
650			 */
651			nval = 1;
652		}
653	} while (dtrace_cas32(counter, oval, nval) != oval);
654}
655
656/*
657 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
658 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
659 */
660DTRACE_LOADFUNC(8)
661DTRACE_LOADFUNC(16)
662DTRACE_LOADFUNC(32)
663DTRACE_LOADFUNC(64)
664
665static int
666dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
667{
668	if (dest < mstate->dtms_scratch_base)
669		return (0);
670
671	if (dest + size < dest)
672		return (0);
673
674	if (dest + size > mstate->dtms_scratch_ptr)
675		return (0);
676
677	return (1);
678}
679
680static int
681dtrace_canstore_statvar(uint64_t addr, size_t sz,
682    dtrace_statvar_t **svars, int nsvars)
683{
684	int i;
685
686	for (i = 0; i < nsvars; i++) {
687		dtrace_statvar_t *svar = svars[i];
688
689		if (svar == NULL || svar->dtsv_size == 0)
690			continue;
691
692		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
693			return (1);
694	}
695
696	return (0);
697}
698
699/*
700 * Check to see if the address is within a memory region to which a store may
701 * be issued.  This includes the DTrace scratch areas, and any DTrace variable
702 * region.  The caller of dtrace_canstore() is responsible for performing any
703 * alignment checks that are needed before stores are actually executed.
704 */
705static int
706dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
707    dtrace_vstate_t *vstate)
708{
709	/*
710	 * First, check to see if the address is in scratch space...
711	 */
712	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
713	    mstate->dtms_scratch_size))
714		return (1);
715
716	/*
717	 * Now check to see if it's a dynamic variable.  This check will pick
718	 * up both thread-local variables and any global dynamically-allocated
719	 * variables.
720	 */
721	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
722	    vstate->dtvs_dynvars.dtds_size)) {
723		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
724		uintptr_t base = (uintptr_t)dstate->dtds_base +
725		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
726		uintptr_t chunkoffs;
727
728		/*
729		 * Before we assume that we can store here, we need to make
730		 * sure that it isn't in our metadata -- storing to our
731		 * dynamic variable metadata would corrupt our state.  For
732		 * the range to not include any dynamic variable metadata,
733		 * it must:
734		 *
735		 *	(1) Start above the hash table that is at the base of
736		 *	the dynamic variable space
737		 *
738		 *	(2) Have a starting chunk offset that is beyond the
739		 *	dtrace_dynvar_t that is at the base of every chunk
740		 *
741		 *	(3) Not span a chunk boundary
742		 *
743		 */
744		if (addr < base)
745			return (0);
746
747		chunkoffs = (addr - base) % dstate->dtds_chunksize;
748
749		if (chunkoffs < sizeof (dtrace_dynvar_t))
750			return (0);
751
752		if (chunkoffs + sz > dstate->dtds_chunksize)
753			return (0);
754
755		return (1);
756	}
757
758	/*
759	 * Finally, check the static local and global variables.  These checks
760	 * take the longest, so we perform them last.
761	 */
762	if (dtrace_canstore_statvar(addr, sz,
763	    vstate->dtvs_locals, vstate->dtvs_nlocals))
764		return (1);
765
766	if (dtrace_canstore_statvar(addr, sz,
767	    vstate->dtvs_globals, vstate->dtvs_nglobals))
768		return (1);
769
770	return (0);
771}
772
773
774/*
775 * Convenience routine to check to see if the address is within a memory
776 * region in which a load may be issued given the user's privilege level;
777 * if not, it sets the appropriate error flags and loads 'addr' into the
778 * illegal value slot.
779 *
780 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
781 * appropriate memory access protection.
782 */
783static int
784dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
785    dtrace_vstate_t *vstate)
786{
787	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
788
789	/*
790	 * If we hold the privilege to read from kernel memory, then
791	 * everything is readable.
792	 */
793	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
794		return (1);
795
796	/*
797	 * You can obviously read that which you can store.
798	 */
799	if (dtrace_canstore(addr, sz, mstate, vstate))
800		return (1);
801
802	/*
803	 * We're allowed to read from our own string table.
804	 */
805	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
806	    mstate->dtms_difo->dtdo_strlen))
807		return (1);
808
809	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
810	*illval = addr;
811	return (0);
812}
813
814/*
815 * Convenience routine to check to see if a given string is within a memory
816 * region in which a load may be issued given the user's privilege level;
817 * this exists so that we don't need to issue unnecessary dtrace_strlen()
818 * calls in the event that the user has all privileges.
819 */
820static int
821dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
822    dtrace_vstate_t *vstate)
823{
824	size_t strsz;
825
826	/*
827	 * If we hold the privilege to read from kernel memory, then
828	 * everything is readable.
829	 */
830	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
831		return (1);
832
833	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
834	if (dtrace_canload(addr, strsz, mstate, vstate))
835		return (1);
836
837	return (0);
838}
839
840/*
841 * Convenience routine to check to see if a given variable is within a memory
842 * region in which a load may be issued given the user's privilege level.
843 */
844static int
845dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
846    dtrace_vstate_t *vstate)
847{
848	size_t sz;
849	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
850
851	/*
852	 * If we hold the privilege to read from kernel memory, then
853	 * everything is readable.
854	 */
855	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
856		return (1);
857
858	if (type->dtdt_kind == DIF_TYPE_STRING)
859		sz = dtrace_strlen(src,
860		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
861	else
862		sz = type->dtdt_size;
863
864	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
865}
866
867/*
868 * Compare two strings using safe loads.
869 */
870static int
871dtrace_strncmp(char *s1, char *s2, size_t limit)
872{
873	uint8_t c1, c2;
874	volatile uint16_t *flags;
875
876	if (s1 == s2 || limit == 0)
877		return (0);
878
879	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
880
881	do {
882		if (s1 == NULL) {
883			c1 = '\0';
884		} else {
885			c1 = dtrace_load8((uintptr_t)s1++);
886		}
887
888		if (s2 == NULL) {
889			c2 = '\0';
890		} else {
891			c2 = dtrace_load8((uintptr_t)s2++);
892		}
893
894		if (c1 != c2)
895			return (c1 - c2);
896	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
897
898	return (0);
899}
900
901/*
902 * Compute strlen(s) for a string using safe memory accesses.  The additional
903 * len parameter is used to specify a maximum length to ensure completion.
904 */
905static size_t
906dtrace_strlen(const char *s, size_t lim)
907{
908	uint_t len;
909
910	for (len = 0; len != lim; len++) {
911		if (dtrace_load8((uintptr_t)s++) == '\0')
912			break;
913	}
914
915	return (len);
916}
917
918/*
919 * Check if an address falls within a toxic region.
920 */
921static int
922dtrace_istoxic(uintptr_t kaddr, size_t size)
923{
924	uintptr_t taddr, tsize;
925	int i;
926
927	for (i = 0; i < dtrace_toxranges; i++) {
928		taddr = dtrace_toxrange[i].dtt_base;
929		tsize = dtrace_toxrange[i].dtt_limit - taddr;
930
931		if (kaddr - taddr < tsize) {
932			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
933			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
934			return (1);
935		}
936
937		if (taddr - kaddr < size) {
938			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
939			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
940			return (1);
941		}
942	}
943
944	return (0);
945}
946
947/*
948 * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
949 * memory specified by the DIF program.  The dst is assumed to be safe memory
950 * that we can store to directly because it is managed by DTrace.  As with
951 * standard bcopy, overlapping copies are handled properly.
952 */
953static void
954dtrace_bcopy(const void *src, void *dst, size_t len)
955{
956	if (len != 0) {
957		uint8_t *s1 = dst;
958		const uint8_t *s2 = src;
959
960		if (s1 <= s2) {
961			do {
962				*s1++ = dtrace_load8((uintptr_t)s2++);
963			} while (--len != 0);
964		} else {
965			s2 += len;
966			s1 += len;
967
968			do {
969				*--s1 = dtrace_load8((uintptr_t)--s2);
970			} while (--len != 0);
971		}
972	}
973}
974
975/*
976 * Copy src to dst using safe memory accesses, up to either the specified
977 * length, or the point that a nul byte is encountered.  The src is assumed to
978 * be unsafe memory specified by the DIF program.  The dst is assumed to be
979 * safe memory that we can store to directly because it is managed by DTrace.
980 * Unlike dtrace_bcopy(), overlapping regions are not handled.
981 */
982static void
983dtrace_strcpy(const void *src, void *dst, size_t len)
984{
985	if (len != 0) {
986		uint8_t *s1 = dst, c;
987		const uint8_t *s2 = src;
988
989		do {
990			*s1++ = c = dtrace_load8((uintptr_t)s2++);
991		} while (--len != 0 && c != '\0');
992	}
993}
994
995/*
996 * Copy src to dst, deriving the size and type from the specified (BYREF)
997 * variable type.  The src is assumed to be unsafe memory specified by the DIF
998 * program.  The dst is assumed to be DTrace variable memory that is of the
999 * specified type; we assume that we can store to directly.
1000 */
1001static void
1002dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1003{
1004	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1005
1006	if (type->dtdt_kind == DIF_TYPE_STRING) {
1007		dtrace_strcpy(src, dst, type->dtdt_size);
1008	} else {
1009		dtrace_bcopy(src, dst, type->dtdt_size);
1010	}
1011}
1012
1013/*
1014 * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1015 * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1016 * safe memory that we can access directly because it is managed by DTrace.
1017 */
1018static int
1019dtrace_bcmp(const void *s1, const void *s2, size_t len)
1020{
1021	volatile uint16_t *flags;
1022
1023	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1024
1025	if (s1 == s2)
1026		return (0);
1027
1028	if (s1 == NULL || s2 == NULL)
1029		return (1);
1030
1031	if (s1 != s2 && len != 0) {
1032		const uint8_t *ps1 = s1;
1033		const uint8_t *ps2 = s2;
1034
1035		do {
1036			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1037				return (1);
1038		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1039	}
1040	return (0);
1041}
1042
1043/*
1044 * Zero the specified region using a simple byte-by-byte loop.  Note that this
1045 * is for safe DTrace-managed memory only.
1046 */
1047static void
1048dtrace_bzero(void *dst, size_t len)
1049{
1050	uchar_t *cp;
1051
1052	for (cp = dst; len != 0; len--)
1053		*cp++ = 0;
1054}
1055
1056static void
1057dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1058{
1059	uint64_t result[2];
1060
1061	result[0] = addend1[0] + addend2[0];
1062	result[1] = addend1[1] + addend2[1] +
1063	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1064
1065	sum[0] = result[0];
1066	sum[1] = result[1];
1067}
1068
1069/*
1070 * Shift the 128-bit value in a by b. If b is positive, shift left.
1071 * If b is negative, shift right.
1072 */
1073static void
1074dtrace_shift_128(uint64_t *a, int b)
1075{
1076	uint64_t mask;
1077
1078	if (b == 0)
1079		return;
1080
1081	if (b < 0) {
1082		b = -b;
1083		if (b >= 64) {
1084			a[0] = a[1] >> (b - 64);
1085			a[1] = 0;
1086		} else {
1087			a[0] >>= b;
1088			mask = 1LL << (64 - b);
1089			mask -= 1;
1090			a[0] |= ((a[1] & mask) << (64 - b));
1091			a[1] >>= b;
1092		}
1093	} else {
1094		if (b >= 64) {
1095			a[1] = a[0] << (b - 64);
1096			a[0] = 0;
1097		} else {
1098			a[1] <<= b;
1099			mask = a[0] >> (64 - b);
1100			a[1] |= mask;
1101			a[0] <<= b;
1102		}
1103	}
1104}
1105
1106/*
1107 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1108 * use native multiplication on those, and then re-combine into the
1109 * resulting 128-bit value.
1110 *
1111 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1112 *     hi1 * hi2 << 64 +
1113 *     hi1 * lo2 << 32 +
1114 *     hi2 * lo1 << 32 +
1115 *     lo1 * lo2
1116 */
1117static void
1118dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1119{
1120	uint64_t hi1, hi2, lo1, lo2;
1121	uint64_t tmp[2];
1122
1123	hi1 = factor1 >> 32;
1124	hi2 = factor2 >> 32;
1125
1126	lo1 = factor1 & DT_MASK_LO;
1127	lo2 = factor2 & DT_MASK_LO;
1128
1129	product[0] = lo1 * lo2;
1130	product[1] = hi1 * hi2;
1131
1132	tmp[0] = hi1 * lo2;
1133	tmp[1] = 0;
1134	dtrace_shift_128(tmp, 32);
1135	dtrace_add_128(product, tmp, product);
1136
1137	tmp[0] = hi2 * lo1;
1138	tmp[1] = 0;
1139	dtrace_shift_128(tmp, 32);
1140	dtrace_add_128(product, tmp, product);
1141}
1142
1143/*
1144 * This privilege check should be used by actions and subroutines to
1145 * verify that the user credentials of the process that enabled the
1146 * invoking ECB match the target credentials
1147 */
1148static int
1149dtrace_priv_proc_common_user(dtrace_state_t *state)
1150{
1151	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1152
1153	/*
1154	 * We should always have a non-NULL state cred here, since if cred
1155	 * is null (anonymous tracing), we fast-path bypass this routine.
1156	 */
1157	ASSERT(s_cr != NULL);
1158
1159	if ((cr = CRED()) != NULL &&
1160	    s_cr->cr_uid == cr->cr_uid &&
1161	    s_cr->cr_uid == cr->cr_ruid &&
1162	    s_cr->cr_uid == cr->cr_suid &&
1163	    s_cr->cr_gid == cr->cr_gid &&
1164	    s_cr->cr_gid == cr->cr_rgid &&
1165	    s_cr->cr_gid == cr->cr_sgid)
1166		return (1);
1167
1168	return (0);
1169}
1170
1171/*
1172 * This privilege check should be used by actions and subroutines to
1173 * verify that the zone of the process that enabled the invoking ECB
1174 * matches the target credentials
1175 */
1176static int
1177dtrace_priv_proc_common_zone(dtrace_state_t *state)
1178{
1179#if defined(sun)
1180	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1181
1182	/*
1183	 * We should always have a non-NULL state cred here, since if cred
1184	 * is null (anonymous tracing), we fast-path bypass this routine.
1185	 */
1186	ASSERT(s_cr != NULL);
1187
1188	if ((cr = CRED()) != NULL &&
1189	    s_cr->cr_zone == cr->cr_zone)
1190		return (1);
1191
1192	return (0);
1193#else
1194	return (1);
1195#endif
1196}
1197
1198/*
1199 * This privilege check should be used by actions and subroutines to
1200 * verify that the process has not setuid or changed credentials.
1201 */
1202static int
1203dtrace_priv_proc_common_nocd(void)
1204{
1205	proc_t *proc;
1206
1207	if ((proc = ttoproc(curthread)) != NULL &&
1208	    !(proc->p_flag & SNOCD))
1209		return (1);
1210
1211	return (0);
1212}
1213
1214static int
1215dtrace_priv_proc_destructive(dtrace_state_t *state)
1216{
1217	int action = state->dts_cred.dcr_action;
1218
1219	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1220	    dtrace_priv_proc_common_zone(state) == 0)
1221		goto bad;
1222
1223	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1224	    dtrace_priv_proc_common_user(state) == 0)
1225		goto bad;
1226
1227	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1228	    dtrace_priv_proc_common_nocd() == 0)
1229		goto bad;
1230
1231	return (1);
1232
1233bad:
1234	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1235
1236	return (0);
1237}
1238
1239static int
1240dtrace_priv_proc_control(dtrace_state_t *state)
1241{
1242	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1243		return (1);
1244
1245	if (dtrace_priv_proc_common_zone(state) &&
1246	    dtrace_priv_proc_common_user(state) &&
1247	    dtrace_priv_proc_common_nocd())
1248		return (1);
1249
1250	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1251
1252	return (0);
1253}
1254
1255static int
1256dtrace_priv_proc(dtrace_state_t *state)
1257{
1258	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1259		return (1);
1260
1261	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1262
1263	return (0);
1264}
1265
1266static int
1267dtrace_priv_kernel(dtrace_state_t *state)
1268{
1269	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1270		return (1);
1271
1272	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1273
1274	return (0);
1275}
1276
1277static int
1278dtrace_priv_kernel_destructive(dtrace_state_t *state)
1279{
1280	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1281		return (1);
1282
1283	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1284
1285	return (0);
1286}
1287
1288/*
1289 * Note:  not called from probe context.  This function is called
1290 * asynchronously (and at a regular interval) from outside of probe context to
1291 * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1292 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1293 */
1294void
1295dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1296{
1297	dtrace_dynvar_t *dirty;
1298	dtrace_dstate_percpu_t *dcpu;
1299	int i, work = 0;
1300
1301	for (i = 0; i < NCPU; i++) {
1302		dcpu = &dstate->dtds_percpu[i];
1303
1304		ASSERT(dcpu->dtdsc_rinsing == NULL);
1305
1306		/*
1307		 * If the dirty list is NULL, there is no dirty work to do.
1308		 */
1309		if (dcpu->dtdsc_dirty == NULL)
1310			continue;
1311
1312		/*
1313		 * If the clean list is non-NULL, then we're not going to do
1314		 * any work for this CPU -- it means that there has not been
1315		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1316		 * since the last time we cleaned house.
1317		 */
1318		if (dcpu->dtdsc_clean != NULL)
1319			continue;
1320
1321		work = 1;
1322
1323		/*
1324		 * Atomically move the dirty list aside.
1325		 */
1326		do {
1327			dirty = dcpu->dtdsc_dirty;
1328
1329			/*
1330			 * Before we zap the dirty list, set the rinsing list.
1331			 * (This allows for a potential assertion in
1332			 * dtrace_dynvar():  if a free dynamic variable appears
1333			 * on a hash chain, either the dirty list or the
1334			 * rinsing list for some CPU must be non-NULL.)
1335			 */
1336			dcpu->dtdsc_rinsing = dirty;
1337			dtrace_membar_producer();
1338		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1339		    dirty, NULL) != dirty);
1340	}
1341
1342	if (!work) {
1343		/*
1344		 * We have no work to do; we can simply return.
1345		 */
1346		return;
1347	}
1348
1349	dtrace_sync();
1350
1351	for (i = 0; i < NCPU; i++) {
1352		dcpu = &dstate->dtds_percpu[i];
1353
1354		if (dcpu->dtdsc_rinsing == NULL)
1355			continue;
1356
1357		/*
1358		 * We are now guaranteed that no hash chain contains a pointer
1359		 * into this dirty list; we can make it clean.
1360		 */
1361		ASSERT(dcpu->dtdsc_clean == NULL);
1362		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1363		dcpu->dtdsc_rinsing = NULL;
1364	}
1365
1366	/*
1367	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1368	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1369	 * This prevents a race whereby a CPU incorrectly decides that
1370	 * the state should be something other than DTRACE_DSTATE_CLEAN
1371	 * after dtrace_dynvar_clean() has completed.
1372	 */
1373	dtrace_sync();
1374
1375	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1376}
1377
1378/*
1379 * Depending on the value of the op parameter, this function looks-up,
1380 * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1381 * allocation is requested, this function will return a pointer to a
1382 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1383 * variable can be allocated.  If NULL is returned, the appropriate counter
1384 * will be incremented.
1385 */
1386dtrace_dynvar_t *
1387dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1388    dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1389    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1390{
1391	uint64_t hashval = DTRACE_DYNHASH_VALID;
1392	dtrace_dynhash_t *hash = dstate->dtds_hash;
1393	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1394	processorid_t me = curcpu, cpu = me;
1395	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1396	size_t bucket, ksize;
1397	size_t chunksize = dstate->dtds_chunksize;
1398	uintptr_t kdata, lock, nstate;
1399	uint_t i;
1400
1401	ASSERT(nkeys != 0);
1402
1403	/*
1404	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1405	 * algorithm.  For the by-value portions, we perform the algorithm in
1406	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1407	 * bit, and seems to have only a minute effect on distribution.  For
1408	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1409	 * over each referenced byte.  It's painful to do this, but it's much
1410	 * better than pathological hash distribution.  The efficacy of the
1411	 * hashing algorithm (and a comparison with other algorithms) may be
1412	 * found by running the ::dtrace_dynstat MDB dcmd.
1413	 */
1414	for (i = 0; i < nkeys; i++) {
1415		if (key[i].dttk_size == 0) {
1416			uint64_t val = key[i].dttk_value;
1417
1418			hashval += (val >> 48) & 0xffff;
1419			hashval += (hashval << 10);
1420			hashval ^= (hashval >> 6);
1421
1422			hashval += (val >> 32) & 0xffff;
1423			hashval += (hashval << 10);
1424			hashval ^= (hashval >> 6);
1425
1426			hashval += (val >> 16) & 0xffff;
1427			hashval += (hashval << 10);
1428			hashval ^= (hashval >> 6);
1429
1430			hashval += val & 0xffff;
1431			hashval += (hashval << 10);
1432			hashval ^= (hashval >> 6);
1433		} else {
1434			/*
1435			 * This is incredibly painful, but it beats the hell
1436			 * out of the alternative.
1437			 */
1438			uint64_t j, size = key[i].dttk_size;
1439			uintptr_t base = (uintptr_t)key[i].dttk_value;
1440
1441			if (!dtrace_canload(base, size, mstate, vstate))
1442				break;
1443
1444			for (j = 0; j < size; j++) {
1445				hashval += dtrace_load8(base + j);
1446				hashval += (hashval << 10);
1447				hashval ^= (hashval >> 6);
1448			}
1449		}
1450	}
1451
1452	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1453		return (NULL);
1454
1455	hashval += (hashval << 3);
1456	hashval ^= (hashval >> 11);
1457	hashval += (hashval << 15);
1458
1459	/*
1460	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1461	 * comes out to be one of our two sentinel hash values.  If this
1462	 * actually happens, we set the hashval to be a value known to be a
1463	 * non-sentinel value.
1464	 */
1465	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1466		hashval = DTRACE_DYNHASH_VALID;
1467
1468	/*
1469	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1470	 * important here, tricks can be pulled to reduce it.  (However, it's
1471	 * critical that hash collisions be kept to an absolute minimum;
1472	 * they're much more painful than a divide.)  It's better to have a
1473	 * solution that generates few collisions and still keeps things
1474	 * relatively simple.
1475	 */
1476	bucket = hashval % dstate->dtds_hashsize;
1477
1478	if (op == DTRACE_DYNVAR_DEALLOC) {
1479		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1480
1481		for (;;) {
1482			while ((lock = *lockp) & 1)
1483				continue;
1484
1485			if (dtrace_casptr((volatile void *)lockp,
1486			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1487				break;
1488		}
1489
1490		dtrace_membar_producer();
1491	}
1492
1493top:
1494	prev = NULL;
1495	lock = hash[bucket].dtdh_lock;
1496
1497	dtrace_membar_consumer();
1498
1499	start = hash[bucket].dtdh_chain;
1500	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1501	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1502	    op != DTRACE_DYNVAR_DEALLOC));
1503
1504	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1505		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1506		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1507
1508		if (dvar->dtdv_hashval != hashval) {
1509			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1510				/*
1511				 * We've reached the sink, and therefore the
1512				 * end of the hash chain; we can kick out of
1513				 * the loop knowing that we have seen a valid
1514				 * snapshot of state.
1515				 */
1516				ASSERT(dvar->dtdv_next == NULL);
1517				ASSERT(dvar == &dtrace_dynhash_sink);
1518				break;
1519			}
1520
1521			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1522				/*
1523				 * We've gone off the rails:  somewhere along
1524				 * the line, one of the members of this hash
1525				 * chain was deleted.  Note that we could also
1526				 * detect this by simply letting this loop run
1527				 * to completion, as we would eventually hit
1528				 * the end of the dirty list.  However, we
1529				 * want to avoid running the length of the
1530				 * dirty list unnecessarily (it might be quite
1531				 * long), so we catch this as early as
1532				 * possible by detecting the hash marker.  In
1533				 * this case, we simply set dvar to NULL and
1534				 * break; the conditional after the loop will
1535				 * send us back to top.
1536				 */
1537				dvar = NULL;
1538				break;
1539			}
1540
1541			goto next;
1542		}
1543
1544		if (dtuple->dtt_nkeys != nkeys)
1545			goto next;
1546
1547		for (i = 0; i < nkeys; i++, dkey++) {
1548			if (dkey->dttk_size != key[i].dttk_size)
1549				goto next; /* size or type mismatch */
1550
1551			if (dkey->dttk_size != 0) {
1552				if (dtrace_bcmp(
1553				    (void *)(uintptr_t)key[i].dttk_value,
1554				    (void *)(uintptr_t)dkey->dttk_value,
1555				    dkey->dttk_size))
1556					goto next;
1557			} else {
1558				if (dkey->dttk_value != key[i].dttk_value)
1559					goto next;
1560			}
1561		}
1562
1563		if (op != DTRACE_DYNVAR_DEALLOC)
1564			return (dvar);
1565
1566		ASSERT(dvar->dtdv_next == NULL ||
1567		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1568
1569		if (prev != NULL) {
1570			ASSERT(hash[bucket].dtdh_chain != dvar);
1571			ASSERT(start != dvar);
1572			ASSERT(prev->dtdv_next == dvar);
1573			prev->dtdv_next = dvar->dtdv_next;
1574		} else {
1575			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1576			    start, dvar->dtdv_next) != start) {
1577				/*
1578				 * We have failed to atomically swing the
1579				 * hash table head pointer, presumably because
1580				 * of a conflicting allocation on another CPU.
1581				 * We need to reread the hash chain and try
1582				 * again.
1583				 */
1584				goto top;
1585			}
1586		}
1587
1588		dtrace_membar_producer();
1589
1590		/*
1591		 * Now set the hash value to indicate that it's free.
1592		 */
1593		ASSERT(hash[bucket].dtdh_chain != dvar);
1594		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1595
1596		dtrace_membar_producer();
1597
1598		/*
1599		 * Set the next pointer to point at the dirty list, and
1600		 * atomically swing the dirty pointer to the newly freed dvar.
1601		 */
1602		do {
1603			next = dcpu->dtdsc_dirty;
1604			dvar->dtdv_next = next;
1605		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1606
1607		/*
1608		 * Finally, unlock this hash bucket.
1609		 */
1610		ASSERT(hash[bucket].dtdh_lock == lock);
1611		ASSERT(lock & 1);
1612		hash[bucket].dtdh_lock++;
1613
1614		return (NULL);
1615next:
1616		prev = dvar;
1617		continue;
1618	}
1619
1620	if (dvar == NULL) {
1621		/*
1622		 * If dvar is NULL, it is because we went off the rails:
1623		 * one of the elements that we traversed in the hash chain
1624		 * was deleted while we were traversing it.  In this case,
1625		 * we assert that we aren't doing a dealloc (deallocs lock
1626		 * the hash bucket to prevent themselves from racing with
1627		 * one another), and retry the hash chain traversal.
1628		 */
1629		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1630		goto top;
1631	}
1632
1633	if (op != DTRACE_DYNVAR_ALLOC) {
1634		/*
1635		 * If we are not to allocate a new variable, we want to
1636		 * return NULL now.  Before we return, check that the value
1637		 * of the lock word hasn't changed.  If it has, we may have
1638		 * seen an inconsistent snapshot.
1639		 */
1640		if (op == DTRACE_DYNVAR_NOALLOC) {
1641			if (hash[bucket].dtdh_lock != lock)
1642				goto top;
1643		} else {
1644			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1645			ASSERT(hash[bucket].dtdh_lock == lock);
1646			ASSERT(lock & 1);
1647			hash[bucket].dtdh_lock++;
1648		}
1649
1650		return (NULL);
1651	}
1652
1653	/*
1654	 * We need to allocate a new dynamic variable.  The size we need is the
1655	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1656	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1657	 * the size of any referred-to data (dsize).  We then round the final
1658	 * size up to the chunksize for allocation.
1659	 */
1660	for (ksize = 0, i = 0; i < nkeys; i++)
1661		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1662
1663	/*
1664	 * This should be pretty much impossible, but could happen if, say,
1665	 * strange DIF specified the tuple.  Ideally, this should be an
1666	 * assertion and not an error condition -- but that requires that the
1667	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1668	 * bullet-proof.  (That is, it must not be able to be fooled by
1669	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1670	 * solving this would presumably not amount to solving the Halting
1671	 * Problem -- but it still seems awfully hard.
1672	 */
1673	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1674	    ksize + dsize > chunksize) {
1675		dcpu->dtdsc_drops++;
1676		return (NULL);
1677	}
1678
1679	nstate = DTRACE_DSTATE_EMPTY;
1680
1681	do {
1682retry:
1683		free = dcpu->dtdsc_free;
1684
1685		if (free == NULL) {
1686			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1687			void *rval;
1688
1689			if (clean == NULL) {
1690				/*
1691				 * We're out of dynamic variable space on
1692				 * this CPU.  Unless we have tried all CPUs,
1693				 * we'll try to allocate from a different
1694				 * CPU.
1695				 */
1696				switch (dstate->dtds_state) {
1697				case DTRACE_DSTATE_CLEAN: {
1698					void *sp = &dstate->dtds_state;
1699
1700					if (++cpu >= NCPU)
1701						cpu = 0;
1702
1703					if (dcpu->dtdsc_dirty != NULL &&
1704					    nstate == DTRACE_DSTATE_EMPTY)
1705						nstate = DTRACE_DSTATE_DIRTY;
1706
1707					if (dcpu->dtdsc_rinsing != NULL)
1708						nstate = DTRACE_DSTATE_RINSING;
1709
1710					dcpu = &dstate->dtds_percpu[cpu];
1711
1712					if (cpu != me)
1713						goto retry;
1714
1715					(void) dtrace_cas32(sp,
1716					    DTRACE_DSTATE_CLEAN, nstate);
1717
1718					/*
1719					 * To increment the correct bean
1720					 * counter, take another lap.
1721					 */
1722					goto retry;
1723				}
1724
1725				case DTRACE_DSTATE_DIRTY:
1726					dcpu->dtdsc_dirty_drops++;
1727					break;
1728
1729				case DTRACE_DSTATE_RINSING:
1730					dcpu->dtdsc_rinsing_drops++;
1731					break;
1732
1733				case DTRACE_DSTATE_EMPTY:
1734					dcpu->dtdsc_drops++;
1735					break;
1736				}
1737
1738				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1739				return (NULL);
1740			}
1741
1742			/*
1743			 * The clean list appears to be non-empty.  We want to
1744			 * move the clean list to the free list; we start by
1745			 * moving the clean pointer aside.
1746			 */
1747			if (dtrace_casptr(&dcpu->dtdsc_clean,
1748			    clean, NULL) != clean) {
1749				/*
1750				 * We are in one of two situations:
1751				 *
1752				 *  (a)	The clean list was switched to the
1753				 *	free list by another CPU.
1754				 *
1755				 *  (b)	The clean list was added to by the
1756				 *	cleansing cyclic.
1757				 *
1758				 * In either of these situations, we can
1759				 * just reattempt the free list allocation.
1760				 */
1761				goto retry;
1762			}
1763
1764			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1765
1766			/*
1767			 * Now we'll move the clean list to the free list.
1768			 * It's impossible for this to fail:  the only way
1769			 * the free list can be updated is through this
1770			 * code path, and only one CPU can own the clean list.
1771			 * Thus, it would only be possible for this to fail if
1772			 * this code were racing with dtrace_dynvar_clean().
1773			 * (That is, if dtrace_dynvar_clean() updated the clean
1774			 * list, and we ended up racing to update the free
1775			 * list.)  This race is prevented by the dtrace_sync()
1776			 * in dtrace_dynvar_clean() -- which flushes the
1777			 * owners of the clean lists out before resetting
1778			 * the clean lists.
1779			 */
1780			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1781			ASSERT(rval == NULL);
1782			goto retry;
1783		}
1784
1785		dvar = free;
1786		new_free = dvar->dtdv_next;
1787	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1788
1789	/*
1790	 * We have now allocated a new chunk.  We copy the tuple keys into the
1791	 * tuple array and copy any referenced key data into the data space
1792	 * following the tuple array.  As we do this, we relocate dttk_value
1793	 * in the final tuple to point to the key data address in the chunk.
1794	 */
1795	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1796	dvar->dtdv_data = (void *)(kdata + ksize);
1797	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1798
1799	for (i = 0; i < nkeys; i++) {
1800		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1801		size_t kesize = key[i].dttk_size;
1802
1803		if (kesize != 0) {
1804			dtrace_bcopy(
1805			    (const void *)(uintptr_t)key[i].dttk_value,
1806			    (void *)kdata, kesize);
1807			dkey->dttk_value = kdata;
1808			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1809		} else {
1810			dkey->dttk_value = key[i].dttk_value;
1811		}
1812
1813		dkey->dttk_size = kesize;
1814	}
1815
1816	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1817	dvar->dtdv_hashval = hashval;
1818	dvar->dtdv_next = start;
1819
1820	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1821		return (dvar);
1822
1823	/*
1824	 * The cas has failed.  Either another CPU is adding an element to
1825	 * this hash chain, or another CPU is deleting an element from this
1826	 * hash chain.  The simplest way to deal with both of these cases
1827	 * (though not necessarily the most efficient) is to free our
1828	 * allocated block and tail-call ourselves.  Note that the free is
1829	 * to the dirty list and _not_ to the free list.  This is to prevent
1830	 * races with allocators, above.
1831	 */
1832	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1833
1834	dtrace_membar_producer();
1835
1836	do {
1837		free = dcpu->dtdsc_dirty;
1838		dvar->dtdv_next = free;
1839	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1840
1841	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1842}
1843
1844/*ARGSUSED*/
1845static void
1846dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1847{
1848	if ((int64_t)nval < (int64_t)*oval)
1849		*oval = nval;
1850}
1851
1852/*ARGSUSED*/
1853static void
1854dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1855{
1856	if ((int64_t)nval > (int64_t)*oval)
1857		*oval = nval;
1858}
1859
1860static void
1861dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1862{
1863	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1864	int64_t val = (int64_t)nval;
1865
1866	if (val < 0) {
1867		for (i = 0; i < zero; i++) {
1868			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1869				quanta[i] += incr;
1870				return;
1871			}
1872		}
1873	} else {
1874		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1875			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1876				quanta[i - 1] += incr;
1877				return;
1878			}
1879		}
1880
1881		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1882		return;
1883	}
1884
1885	ASSERT(0);
1886}
1887
1888static void
1889dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1890{
1891	uint64_t arg = *lquanta++;
1892	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1893	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1894	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1895	int32_t val = (int32_t)nval, level;
1896
1897	ASSERT(step != 0);
1898	ASSERT(levels != 0);
1899
1900	if (val < base) {
1901		/*
1902		 * This is an underflow.
1903		 */
1904		lquanta[0] += incr;
1905		return;
1906	}
1907
1908	level = (val - base) / step;
1909
1910	if (level < levels) {
1911		lquanta[level + 1] += incr;
1912		return;
1913	}
1914
1915	/*
1916	 * This is an overflow.
1917	 */
1918	lquanta[levels + 1] += incr;
1919}
1920
1921static int
1922dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
1923    uint16_t high, uint16_t nsteps, int64_t value)
1924{
1925	int64_t this = 1, last, next;
1926	int base = 1, order;
1927
1928	ASSERT(factor <= nsteps);
1929	ASSERT(nsteps % factor == 0);
1930
1931	for (order = 0; order < low; order++)
1932		this *= factor;
1933
1934	/*
1935	 * If our value is less than our factor taken to the power of the
1936	 * low order of magnitude, it goes into the zeroth bucket.
1937	 */
1938	if (value < (last = this))
1939		return (0);
1940
1941	for (this *= factor; order <= high; order++) {
1942		int nbuckets = this > nsteps ? nsteps : this;
1943
1944		if ((next = this * factor) < this) {
1945			/*
1946			 * We should not generally get log/linear quantizations
1947			 * with a high magnitude that allows 64-bits to
1948			 * overflow, but we nonetheless protect against this
1949			 * by explicitly checking for overflow, and clamping
1950			 * our value accordingly.
1951			 */
1952			value = this - 1;
1953		}
1954
1955		if (value < this) {
1956			/*
1957			 * If our value lies within this order of magnitude,
1958			 * determine its position by taking the offset within
1959			 * the order of magnitude, dividing by the bucket
1960			 * width, and adding to our (accumulated) base.
1961			 */
1962			return (base + (value - last) / (this / nbuckets));
1963		}
1964
1965		base += nbuckets - (nbuckets / factor);
1966		last = this;
1967		this = next;
1968	}
1969
1970	/*
1971	 * Our value is greater than or equal to our factor taken to the
1972	 * power of one plus the high magnitude -- return the top bucket.
1973	 */
1974	return (base);
1975}
1976
1977static void
1978dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
1979{
1980	uint64_t arg = *llquanta++;
1981	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1982	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
1983	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
1984	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1985
1986	llquanta[dtrace_aggregate_llquantize_bucket(factor,
1987	    low, high, nsteps, nval)] += incr;
1988}
1989
1990/*ARGSUSED*/
1991static void
1992dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1993{
1994	data[0]++;
1995	data[1] += nval;
1996}
1997
1998/*ARGSUSED*/
1999static void
2000dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2001{
2002	int64_t snval = (int64_t)nval;
2003	uint64_t tmp[2];
2004
2005	data[0]++;
2006	data[1] += nval;
2007
2008	/*
2009	 * What we want to say here is:
2010	 *
2011	 * data[2] += nval * nval;
2012	 *
2013	 * But given that nval is 64-bit, we could easily overflow, so
2014	 * we do this as 128-bit arithmetic.
2015	 */
2016	if (snval < 0)
2017		snval = -snval;
2018
2019	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2020	dtrace_add_128(data + 2, tmp, data + 2);
2021}
2022
2023/*ARGSUSED*/
2024static void
2025dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2026{
2027	*oval = *oval + 1;
2028}
2029
2030/*ARGSUSED*/
2031static void
2032dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2033{
2034	*oval += nval;
2035}
2036
2037/*
2038 * Aggregate given the tuple in the principal data buffer, and the aggregating
2039 * action denoted by the specified dtrace_aggregation_t.  The aggregation
2040 * buffer is specified as the buf parameter.  This routine does not return
2041 * failure; if there is no space in the aggregation buffer, the data will be
2042 * dropped, and a corresponding counter incremented.
2043 */
2044static void
2045dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2046    intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2047{
2048	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2049	uint32_t i, ndx, size, fsize;
2050	uint32_t align = sizeof (uint64_t) - 1;
2051	dtrace_aggbuffer_t *agb;
2052	dtrace_aggkey_t *key;
2053	uint32_t hashval = 0, limit, isstr;
2054	caddr_t tomax, data, kdata;
2055	dtrace_actkind_t action;
2056	dtrace_action_t *act;
2057	uintptr_t offs;
2058
2059	if (buf == NULL)
2060		return;
2061
2062	if (!agg->dtag_hasarg) {
2063		/*
2064		 * Currently, only quantize() and lquantize() take additional
2065		 * arguments, and they have the same semantics:  an increment
2066		 * value that defaults to 1 when not present.  If additional
2067		 * aggregating actions take arguments, the setting of the
2068		 * default argument value will presumably have to become more
2069		 * sophisticated...
2070		 */
2071		arg = 1;
2072	}
2073
2074	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2075	size = rec->dtrd_offset - agg->dtag_base;
2076	fsize = size + rec->dtrd_size;
2077
2078	ASSERT(dbuf->dtb_tomax != NULL);
2079	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2080
2081	if ((tomax = buf->dtb_tomax) == NULL) {
2082		dtrace_buffer_drop(buf);
2083		return;
2084	}
2085
2086	/*
2087	 * The metastructure is always at the bottom of the buffer.
2088	 */
2089	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2090	    sizeof (dtrace_aggbuffer_t));
2091
2092	if (buf->dtb_offset == 0) {
2093		/*
2094		 * We just kludge up approximately 1/8th of the size to be
2095		 * buckets.  If this guess ends up being routinely
2096		 * off-the-mark, we may need to dynamically readjust this
2097		 * based on past performance.
2098		 */
2099		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2100
2101		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2102		    (uintptr_t)tomax || hashsize == 0) {
2103			/*
2104			 * We've been given a ludicrously small buffer;
2105			 * increment our drop count and leave.
2106			 */
2107			dtrace_buffer_drop(buf);
2108			return;
2109		}
2110
2111		/*
2112		 * And now, a pathetic attempt to try to get a an odd (or
2113		 * perchance, a prime) hash size for better hash distribution.
2114		 */
2115		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2116			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2117
2118		agb->dtagb_hashsize = hashsize;
2119		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2120		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2121		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2122
2123		for (i = 0; i < agb->dtagb_hashsize; i++)
2124			agb->dtagb_hash[i] = NULL;
2125	}
2126
2127	ASSERT(agg->dtag_first != NULL);
2128	ASSERT(agg->dtag_first->dta_intuple);
2129
2130	/*
2131	 * Calculate the hash value based on the key.  Note that we _don't_
2132	 * include the aggid in the hashing (but we will store it as part of
2133	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2134	 * algorithm: a simple, quick algorithm that has no known funnels, and
2135	 * gets good distribution in practice.  The efficacy of the hashing
2136	 * algorithm (and a comparison with other algorithms) may be found by
2137	 * running the ::dtrace_aggstat MDB dcmd.
2138	 */
2139	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2140		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2141		limit = i + act->dta_rec.dtrd_size;
2142		ASSERT(limit <= size);
2143		isstr = DTRACEACT_ISSTRING(act);
2144
2145		for (; i < limit; i++) {
2146			hashval += data[i];
2147			hashval += (hashval << 10);
2148			hashval ^= (hashval >> 6);
2149
2150			if (isstr && data[i] == '\0')
2151				break;
2152		}
2153	}
2154
2155	hashval += (hashval << 3);
2156	hashval ^= (hashval >> 11);
2157	hashval += (hashval << 15);
2158
2159	/*
2160	 * Yes, the divide here is expensive -- but it's generally the least
2161	 * of the performance issues given the amount of data that we iterate
2162	 * over to compute hash values, compare data, etc.
2163	 */
2164	ndx = hashval % agb->dtagb_hashsize;
2165
2166	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2167		ASSERT((caddr_t)key >= tomax);
2168		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2169
2170		if (hashval != key->dtak_hashval || key->dtak_size != size)
2171			continue;
2172
2173		kdata = key->dtak_data;
2174		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2175
2176		for (act = agg->dtag_first; act->dta_intuple;
2177		    act = act->dta_next) {
2178			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2179			limit = i + act->dta_rec.dtrd_size;
2180			ASSERT(limit <= size);
2181			isstr = DTRACEACT_ISSTRING(act);
2182
2183			for (; i < limit; i++) {
2184				if (kdata[i] != data[i])
2185					goto next;
2186
2187				if (isstr && data[i] == '\0')
2188					break;
2189			}
2190		}
2191
2192		if (action != key->dtak_action) {
2193			/*
2194			 * We are aggregating on the same value in the same
2195			 * aggregation with two different aggregating actions.
2196			 * (This should have been picked up in the compiler,
2197			 * so we may be dealing with errant or devious DIF.)
2198			 * This is an error condition; we indicate as much,
2199			 * and return.
2200			 */
2201			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2202			return;
2203		}
2204
2205		/*
2206		 * This is a hit:  we need to apply the aggregator to
2207		 * the value at this key.
2208		 */
2209		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2210		return;
2211next:
2212		continue;
2213	}
2214
2215	/*
2216	 * We didn't find it.  We need to allocate some zero-filled space,
2217	 * link it into the hash table appropriately, and apply the aggregator
2218	 * to the (zero-filled) value.
2219	 */
2220	offs = buf->dtb_offset;
2221	while (offs & (align - 1))
2222		offs += sizeof (uint32_t);
2223
2224	/*
2225	 * If we don't have enough room to both allocate a new key _and_
2226	 * its associated data, increment the drop count and return.
2227	 */
2228	if ((uintptr_t)tomax + offs + fsize >
2229	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2230		dtrace_buffer_drop(buf);
2231		return;
2232	}
2233
2234	/*CONSTCOND*/
2235	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2236	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2237	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2238
2239	key->dtak_data = kdata = tomax + offs;
2240	buf->dtb_offset = offs + fsize;
2241
2242	/*
2243	 * Now copy the data across.
2244	 */
2245	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2246
2247	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2248		kdata[i] = data[i];
2249
2250	/*
2251	 * Because strings are not zeroed out by default, we need to iterate
2252	 * looking for actions that store strings, and we need to explicitly
2253	 * pad these strings out with zeroes.
2254	 */
2255	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2256		int nul;
2257
2258		if (!DTRACEACT_ISSTRING(act))
2259			continue;
2260
2261		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2262		limit = i + act->dta_rec.dtrd_size;
2263		ASSERT(limit <= size);
2264
2265		for (nul = 0; i < limit; i++) {
2266			if (nul) {
2267				kdata[i] = '\0';
2268				continue;
2269			}
2270
2271			if (data[i] != '\0')
2272				continue;
2273
2274			nul = 1;
2275		}
2276	}
2277
2278	for (i = size; i < fsize; i++)
2279		kdata[i] = 0;
2280
2281	key->dtak_hashval = hashval;
2282	key->dtak_size = size;
2283	key->dtak_action = action;
2284	key->dtak_next = agb->dtagb_hash[ndx];
2285	agb->dtagb_hash[ndx] = key;
2286
2287	/*
2288	 * Finally, apply the aggregator.
2289	 */
2290	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2291	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2292}
2293
2294/*
2295 * Given consumer state, this routine finds a speculation in the INACTIVE
2296 * state and transitions it into the ACTIVE state.  If there is no speculation
2297 * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2298 * incremented -- it is up to the caller to take appropriate action.
2299 */
2300static int
2301dtrace_speculation(dtrace_state_t *state)
2302{
2303	int i = 0;
2304	dtrace_speculation_state_t current;
2305	uint32_t *stat = &state->dts_speculations_unavail, count;
2306
2307	while (i < state->dts_nspeculations) {
2308		dtrace_speculation_t *spec = &state->dts_speculations[i];
2309
2310		current = spec->dtsp_state;
2311
2312		if (current != DTRACESPEC_INACTIVE) {
2313			if (current == DTRACESPEC_COMMITTINGMANY ||
2314			    current == DTRACESPEC_COMMITTING ||
2315			    current == DTRACESPEC_DISCARDING)
2316				stat = &state->dts_speculations_busy;
2317			i++;
2318			continue;
2319		}
2320
2321		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2322		    current, DTRACESPEC_ACTIVE) == current)
2323			return (i + 1);
2324	}
2325
2326	/*
2327	 * We couldn't find a speculation.  If we found as much as a single
2328	 * busy speculation buffer, we'll attribute this failure as "busy"
2329	 * instead of "unavail".
2330	 */
2331	do {
2332		count = *stat;
2333	} while (dtrace_cas32(stat, count, count + 1) != count);
2334
2335	return (0);
2336}
2337
2338/*
2339 * This routine commits an active speculation.  If the specified speculation
2340 * is not in a valid state to perform a commit(), this routine will silently do
2341 * nothing.  The state of the specified speculation is transitioned according
2342 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2343 */
2344static void
2345dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2346    dtrace_specid_t which)
2347{
2348	dtrace_speculation_t *spec;
2349	dtrace_buffer_t *src, *dest;
2350	uintptr_t daddr, saddr, dlimit, slimit;
2351	dtrace_speculation_state_t current, new = 0;
2352	intptr_t offs;
2353	uint64_t timestamp;
2354
2355	if (which == 0)
2356		return;
2357
2358	if (which > state->dts_nspeculations) {
2359		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2360		return;
2361	}
2362
2363	spec = &state->dts_speculations[which - 1];
2364	src = &spec->dtsp_buffer[cpu];
2365	dest = &state->dts_buffer[cpu];
2366
2367	do {
2368		current = spec->dtsp_state;
2369
2370		if (current == DTRACESPEC_COMMITTINGMANY)
2371			break;
2372
2373		switch (current) {
2374		case DTRACESPEC_INACTIVE:
2375		case DTRACESPEC_DISCARDING:
2376			return;
2377
2378		case DTRACESPEC_COMMITTING:
2379			/*
2380			 * This is only possible if we are (a) commit()'ing
2381			 * without having done a prior speculate() on this CPU
2382			 * and (b) racing with another commit() on a different
2383			 * CPU.  There's nothing to do -- we just assert that
2384			 * our offset is 0.
2385			 */
2386			ASSERT(src->dtb_offset == 0);
2387			return;
2388
2389		case DTRACESPEC_ACTIVE:
2390			new = DTRACESPEC_COMMITTING;
2391			break;
2392
2393		case DTRACESPEC_ACTIVEONE:
2394			/*
2395			 * This speculation is active on one CPU.  If our
2396			 * buffer offset is non-zero, we know that the one CPU
2397			 * must be us.  Otherwise, we are committing on a
2398			 * different CPU from the speculate(), and we must
2399			 * rely on being asynchronously cleaned.
2400			 */
2401			if (src->dtb_offset != 0) {
2402				new = DTRACESPEC_COMMITTING;
2403				break;
2404			}
2405			/*FALLTHROUGH*/
2406
2407		case DTRACESPEC_ACTIVEMANY:
2408			new = DTRACESPEC_COMMITTINGMANY;
2409			break;
2410
2411		default:
2412			ASSERT(0);
2413		}
2414	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2415	    current, new) != current);
2416
2417	/*
2418	 * We have set the state to indicate that we are committing this
2419	 * speculation.  Now reserve the necessary space in the destination
2420	 * buffer.
2421	 */
2422	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2423	    sizeof (uint64_t), state, NULL)) < 0) {
2424		dtrace_buffer_drop(dest);
2425		goto out;
2426	}
2427
2428	/*
2429	 * We have sufficient space to copy the speculative buffer into the
2430	 * primary buffer.  First, modify the speculative buffer, filling
2431	 * in the timestamp of all entries with the current time.  The data
2432	 * must have the commit() time rather than the time it was traced,
2433	 * so that all entries in the primary buffer are in timestamp order.
2434	 */
2435	timestamp = dtrace_gethrtime();
2436	saddr = (uintptr_t)src->dtb_tomax;
2437	slimit = saddr + src->dtb_offset;
2438	while (saddr < slimit) {
2439		size_t size;
2440		dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2441
2442		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2443			saddr += sizeof (dtrace_epid_t);
2444			continue;
2445		}
2446		ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2447		size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2448
2449		ASSERT3U(saddr + size, <=, slimit);
2450		ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2451		ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2452
2453		DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2454
2455		saddr += size;
2456	}
2457
2458	/*
2459	 * Copy the buffer across.  (Note that this is a
2460	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2461	 * a serious performance issue, a high-performance DTrace-specific
2462	 * bcopy() should obviously be invented.)
2463	 */
2464	daddr = (uintptr_t)dest->dtb_tomax + offs;
2465	dlimit = daddr + src->dtb_offset;
2466	saddr = (uintptr_t)src->dtb_tomax;
2467
2468	/*
2469	 * First, the aligned portion.
2470	 */
2471	while (dlimit - daddr >= sizeof (uint64_t)) {
2472		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2473
2474		daddr += sizeof (uint64_t);
2475		saddr += sizeof (uint64_t);
2476	}
2477
2478	/*
2479	 * Now any left-over bit...
2480	 */
2481	while (dlimit - daddr)
2482		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2483
2484	/*
2485	 * Finally, commit the reserved space in the destination buffer.
2486	 */
2487	dest->dtb_offset = offs + src->dtb_offset;
2488
2489out:
2490	/*
2491	 * If we're lucky enough to be the only active CPU on this speculation
2492	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2493	 */
2494	if (current == DTRACESPEC_ACTIVE ||
2495	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2496		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2497		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2498
2499		ASSERT(rval == DTRACESPEC_COMMITTING);
2500	}
2501
2502	src->dtb_offset = 0;
2503	src->dtb_xamot_drops += src->dtb_drops;
2504	src->dtb_drops = 0;
2505}
2506
2507/*
2508 * This routine discards an active speculation.  If the specified speculation
2509 * is not in a valid state to perform a discard(), this routine will silently
2510 * do nothing.  The state of the specified speculation is transitioned
2511 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2512 */
2513static void
2514dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2515    dtrace_specid_t which)
2516{
2517	dtrace_speculation_t *spec;
2518	dtrace_speculation_state_t current, new = 0;
2519	dtrace_buffer_t *buf;
2520
2521	if (which == 0)
2522		return;
2523
2524	if (which > state->dts_nspeculations) {
2525		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2526		return;
2527	}
2528
2529	spec = &state->dts_speculations[which - 1];
2530	buf = &spec->dtsp_buffer[cpu];
2531
2532	do {
2533		current = spec->dtsp_state;
2534
2535		switch (current) {
2536		case DTRACESPEC_INACTIVE:
2537		case DTRACESPEC_COMMITTINGMANY:
2538		case DTRACESPEC_COMMITTING:
2539		case DTRACESPEC_DISCARDING:
2540			return;
2541
2542		case DTRACESPEC_ACTIVE:
2543		case DTRACESPEC_ACTIVEMANY:
2544			new = DTRACESPEC_DISCARDING;
2545			break;
2546
2547		case DTRACESPEC_ACTIVEONE:
2548			if (buf->dtb_offset != 0) {
2549				new = DTRACESPEC_INACTIVE;
2550			} else {
2551				new = DTRACESPEC_DISCARDING;
2552			}
2553			break;
2554
2555		default:
2556			ASSERT(0);
2557		}
2558	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2559	    current, new) != current);
2560
2561	buf->dtb_offset = 0;
2562	buf->dtb_drops = 0;
2563}
2564
2565/*
2566 * Note:  not called from probe context.  This function is called
2567 * asynchronously from cross call context to clean any speculations that are
2568 * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2569 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2570 * speculation.
2571 */
2572static void
2573dtrace_speculation_clean_here(dtrace_state_t *state)
2574{
2575	dtrace_icookie_t cookie;
2576	processorid_t cpu = curcpu;
2577	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2578	dtrace_specid_t i;
2579
2580	cookie = dtrace_interrupt_disable();
2581
2582	if (dest->dtb_tomax == NULL) {
2583		dtrace_interrupt_enable(cookie);
2584		return;
2585	}
2586
2587	for (i = 0; i < state->dts_nspeculations; i++) {
2588		dtrace_speculation_t *spec = &state->dts_speculations[i];
2589		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2590
2591		if (src->dtb_tomax == NULL)
2592			continue;
2593
2594		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2595			src->dtb_offset = 0;
2596			continue;
2597		}
2598
2599		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2600			continue;
2601
2602		if (src->dtb_offset == 0)
2603			continue;
2604
2605		dtrace_speculation_commit(state, cpu, i + 1);
2606	}
2607
2608	dtrace_interrupt_enable(cookie);
2609}
2610
2611/*
2612 * Note:  not called from probe context.  This function is called
2613 * asynchronously (and at a regular interval) to clean any speculations that
2614 * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2615 * is work to be done, it cross calls all CPUs to perform that work;
2616 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2617 * INACTIVE state until they have been cleaned by all CPUs.
2618 */
2619static void
2620dtrace_speculation_clean(dtrace_state_t *state)
2621{
2622	int work = 0, rv;
2623	dtrace_specid_t i;
2624
2625	for (i = 0; i < state->dts_nspeculations; i++) {
2626		dtrace_speculation_t *spec = &state->dts_speculations[i];
2627
2628		ASSERT(!spec->dtsp_cleaning);
2629
2630		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2631		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2632			continue;
2633
2634		work++;
2635		spec->dtsp_cleaning = 1;
2636	}
2637
2638	if (!work)
2639		return;
2640
2641	dtrace_xcall(DTRACE_CPUALL,
2642	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2643
2644	/*
2645	 * We now know that all CPUs have committed or discarded their
2646	 * speculation buffers, as appropriate.  We can now set the state
2647	 * to inactive.
2648	 */
2649	for (i = 0; i < state->dts_nspeculations; i++) {
2650		dtrace_speculation_t *spec = &state->dts_speculations[i];
2651		dtrace_speculation_state_t current, new;
2652
2653		if (!spec->dtsp_cleaning)
2654			continue;
2655
2656		current = spec->dtsp_state;
2657		ASSERT(current == DTRACESPEC_DISCARDING ||
2658		    current == DTRACESPEC_COMMITTINGMANY);
2659
2660		new = DTRACESPEC_INACTIVE;
2661
2662		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2663		ASSERT(rv == current);
2664		spec->dtsp_cleaning = 0;
2665	}
2666}
2667
2668/*
2669 * Called as part of a speculate() to get the speculative buffer associated
2670 * with a given speculation.  Returns NULL if the specified speculation is not
2671 * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2672 * the active CPU is not the specified CPU -- the speculation will be
2673 * atomically transitioned into the ACTIVEMANY state.
2674 */
2675static dtrace_buffer_t *
2676dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2677    dtrace_specid_t which)
2678{
2679	dtrace_speculation_t *spec;
2680	dtrace_speculation_state_t current, new = 0;
2681	dtrace_buffer_t *buf;
2682
2683	if (which == 0)
2684		return (NULL);
2685
2686	if (which > state->dts_nspeculations) {
2687		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2688		return (NULL);
2689	}
2690
2691	spec = &state->dts_speculations[which - 1];
2692	buf = &spec->dtsp_buffer[cpuid];
2693
2694	do {
2695		current = spec->dtsp_state;
2696
2697		switch (current) {
2698		case DTRACESPEC_INACTIVE:
2699		case DTRACESPEC_COMMITTINGMANY:
2700		case DTRACESPEC_DISCARDING:
2701			return (NULL);
2702
2703		case DTRACESPEC_COMMITTING:
2704			ASSERT(buf->dtb_offset == 0);
2705			return (NULL);
2706
2707		case DTRACESPEC_ACTIVEONE:
2708			/*
2709			 * This speculation is currently active on one CPU.
2710			 * Check the offset in the buffer; if it's non-zero,
2711			 * that CPU must be us (and we leave the state alone).
2712			 * If it's zero, assume that we're starting on a new
2713			 * CPU -- and change the state to indicate that the
2714			 * speculation is active on more than one CPU.
2715			 */
2716			if (buf->dtb_offset != 0)
2717				return (buf);
2718
2719			new = DTRACESPEC_ACTIVEMANY;
2720			break;
2721
2722		case DTRACESPEC_ACTIVEMANY:
2723			return (buf);
2724
2725		case DTRACESPEC_ACTIVE:
2726			new = DTRACESPEC_ACTIVEONE;
2727			break;
2728
2729		default:
2730			ASSERT(0);
2731		}
2732	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2733	    current, new) != current);
2734
2735	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2736	return (buf);
2737}
2738
2739/*
2740 * Return a string.  In the event that the user lacks the privilege to access
2741 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2742 * don't fail access checking.
2743 *
2744 * dtrace_dif_variable() uses this routine as a helper for various
2745 * builtin values such as 'execname' and 'probefunc.'
2746 */
2747uintptr_t
2748dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2749    dtrace_mstate_t *mstate)
2750{
2751	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2752	uintptr_t ret;
2753	size_t strsz;
2754
2755	/*
2756	 * The easy case: this probe is allowed to read all of memory, so
2757	 * we can just return this as a vanilla pointer.
2758	 */
2759	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2760		return (addr);
2761
2762	/*
2763	 * This is the tougher case: we copy the string in question from
2764	 * kernel memory into scratch memory and return it that way: this
2765	 * ensures that we won't trip up when access checking tests the
2766	 * BYREF return value.
2767	 */
2768	strsz = dtrace_strlen((char *)addr, size) + 1;
2769
2770	if (mstate->dtms_scratch_ptr + strsz >
2771	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2772		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2773		return (0);
2774	}
2775
2776	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2777	    strsz);
2778	ret = mstate->dtms_scratch_ptr;
2779	mstate->dtms_scratch_ptr += strsz;
2780	return (ret);
2781}
2782
2783/*
2784 * Return a string from a memoy address which is known to have one or
2785 * more concatenated, individually zero terminated, sub-strings.
2786 * In the event that the user lacks the privilege to access
2787 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2788 * don't fail access checking.
2789 *
2790 * dtrace_dif_variable() uses this routine as a helper for various
2791 * builtin values such as 'execargs'.
2792 */
2793static uintptr_t
2794dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
2795    dtrace_mstate_t *mstate)
2796{
2797	char *p;
2798	size_t i;
2799	uintptr_t ret;
2800
2801	if (mstate->dtms_scratch_ptr + strsz >
2802	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2803		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2804		return (0);
2805	}
2806
2807	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2808	    strsz);
2809
2810	/* Replace sub-string termination characters with a space. */
2811	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
2812	    p++, i++)
2813		if (*p == '\0')
2814			*p = ' ';
2815
2816	ret = mstate->dtms_scratch_ptr;
2817	mstate->dtms_scratch_ptr += strsz;
2818	return (ret);
2819}
2820
2821/*
2822 * This function implements the DIF emulator's variable lookups.  The emulator
2823 * passes a reserved variable identifier and optional built-in array index.
2824 */
2825static uint64_t
2826dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2827    uint64_t ndx)
2828{
2829	/*
2830	 * If we're accessing one of the uncached arguments, we'll turn this
2831	 * into a reference in the args array.
2832	 */
2833	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2834		ndx = v - DIF_VAR_ARG0;
2835		v = DIF_VAR_ARGS;
2836	}
2837
2838	switch (v) {
2839	case DIF_VAR_ARGS:
2840		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2841		if (ndx >= sizeof (mstate->dtms_arg) /
2842		    sizeof (mstate->dtms_arg[0])) {
2843			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2844			dtrace_provider_t *pv;
2845			uint64_t val;
2846
2847			pv = mstate->dtms_probe->dtpr_provider;
2848			if (pv->dtpv_pops.dtps_getargval != NULL)
2849				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2850				    mstate->dtms_probe->dtpr_id,
2851				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2852			else
2853				val = dtrace_getarg(ndx, aframes);
2854
2855			/*
2856			 * This is regrettably required to keep the compiler
2857			 * from tail-optimizing the call to dtrace_getarg().
2858			 * The condition always evaluates to true, but the
2859			 * compiler has no way of figuring that out a priori.
2860			 * (None of this would be necessary if the compiler
2861			 * could be relied upon to _always_ tail-optimize
2862			 * the call to dtrace_getarg() -- but it can't.)
2863			 */
2864			if (mstate->dtms_probe != NULL)
2865				return (val);
2866
2867			ASSERT(0);
2868		}
2869
2870		return (mstate->dtms_arg[ndx]);
2871
2872#if defined(sun)
2873	case DIF_VAR_UREGS: {
2874		klwp_t *lwp;
2875
2876		if (!dtrace_priv_proc(state))
2877			return (0);
2878
2879		if ((lwp = curthread->t_lwp) == NULL) {
2880			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2881			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
2882			return (0);
2883		}
2884
2885		return (dtrace_getreg(lwp->lwp_regs, ndx));
2886		return (0);
2887	}
2888#else
2889	case DIF_VAR_UREGS: {
2890		struct trapframe *tframe;
2891
2892		if (!dtrace_priv_proc(state))
2893			return (0);
2894
2895		if ((tframe = curthread->td_frame) == NULL) {
2896			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2897			cpu_core[curcpu].cpuc_dtrace_illval = 0;
2898			return (0);
2899		}
2900
2901		return (dtrace_getreg(tframe, ndx));
2902	}
2903#endif
2904
2905	case DIF_VAR_CURTHREAD:
2906		if (!dtrace_priv_kernel(state))
2907			return (0);
2908		return ((uint64_t)(uintptr_t)curthread);
2909
2910	case DIF_VAR_TIMESTAMP:
2911		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2912			mstate->dtms_timestamp = dtrace_gethrtime();
2913			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2914		}
2915		return (mstate->dtms_timestamp);
2916
2917	case DIF_VAR_VTIMESTAMP:
2918		ASSERT(dtrace_vtime_references != 0);
2919		return (curthread->t_dtrace_vtime);
2920
2921	case DIF_VAR_WALLTIMESTAMP:
2922		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2923			mstate->dtms_walltimestamp = dtrace_gethrestime();
2924			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2925		}
2926		return (mstate->dtms_walltimestamp);
2927
2928#if defined(sun)
2929	case DIF_VAR_IPL:
2930		if (!dtrace_priv_kernel(state))
2931			return (0);
2932		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2933			mstate->dtms_ipl = dtrace_getipl();
2934			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2935		}
2936		return (mstate->dtms_ipl);
2937#endif
2938
2939	case DIF_VAR_EPID:
2940		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2941		return (mstate->dtms_epid);
2942
2943	case DIF_VAR_ID:
2944		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2945		return (mstate->dtms_probe->dtpr_id);
2946
2947	case DIF_VAR_STACKDEPTH:
2948		if (!dtrace_priv_kernel(state))
2949			return (0);
2950		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2951			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2952
2953			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2954			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2955		}
2956		return (mstate->dtms_stackdepth);
2957
2958	case DIF_VAR_USTACKDEPTH:
2959		if (!dtrace_priv_proc(state))
2960			return (0);
2961		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2962			/*
2963			 * See comment in DIF_VAR_PID.
2964			 */
2965			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2966			    CPU_ON_INTR(CPU)) {
2967				mstate->dtms_ustackdepth = 0;
2968			} else {
2969				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2970				mstate->dtms_ustackdepth =
2971				    dtrace_getustackdepth();
2972				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2973			}
2974			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2975		}
2976		return (mstate->dtms_ustackdepth);
2977
2978	case DIF_VAR_CALLER:
2979		if (!dtrace_priv_kernel(state))
2980			return (0);
2981		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2982			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2983
2984			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2985				/*
2986				 * If this is an unanchored probe, we are
2987				 * required to go through the slow path:
2988				 * dtrace_caller() only guarantees correct
2989				 * results for anchored probes.
2990				 */
2991				pc_t caller[2] = {0, 0};
2992
2993				dtrace_getpcstack(caller, 2, aframes,
2994				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2995				mstate->dtms_caller = caller[1];
2996			} else if ((mstate->dtms_caller =
2997			    dtrace_caller(aframes)) == -1) {
2998				/*
2999				 * We have failed to do this the quick way;
3000				 * we must resort to the slower approach of
3001				 * calling dtrace_getpcstack().
3002				 */
3003				pc_t caller = 0;
3004
3005				dtrace_getpcstack(&caller, 1, aframes, NULL);
3006				mstate->dtms_caller = caller;
3007			}
3008
3009			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3010		}
3011		return (mstate->dtms_caller);
3012
3013	case DIF_VAR_UCALLER:
3014		if (!dtrace_priv_proc(state))
3015			return (0);
3016
3017		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3018			uint64_t ustack[3];
3019
3020			/*
3021			 * dtrace_getupcstack() fills in the first uint64_t
3022			 * with the current PID.  The second uint64_t will
3023			 * be the program counter at user-level.  The third
3024			 * uint64_t will contain the caller, which is what
3025			 * we're after.
3026			 */
3027			ustack[2] = 0;
3028			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3029			dtrace_getupcstack(ustack, 3);
3030			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3031			mstate->dtms_ucaller = ustack[2];
3032			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3033		}
3034
3035		return (mstate->dtms_ucaller);
3036
3037	case DIF_VAR_PROBEPROV:
3038		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3039		return (dtrace_dif_varstr(
3040		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3041		    state, mstate));
3042
3043	case DIF_VAR_PROBEMOD:
3044		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3045		return (dtrace_dif_varstr(
3046		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3047		    state, mstate));
3048
3049	case DIF_VAR_PROBEFUNC:
3050		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3051		return (dtrace_dif_varstr(
3052		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3053		    state, mstate));
3054
3055	case DIF_VAR_PROBENAME:
3056		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3057		return (dtrace_dif_varstr(
3058		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3059		    state, mstate));
3060
3061	case DIF_VAR_PID:
3062		if (!dtrace_priv_proc(state))
3063			return (0);
3064
3065#if defined(sun)
3066		/*
3067		 * Note that we are assuming that an unanchored probe is
3068		 * always due to a high-level interrupt.  (And we're assuming
3069		 * that there is only a single high level interrupt.)
3070		 */
3071		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3072			return (pid0.pid_id);
3073
3074		/*
3075		 * It is always safe to dereference one's own t_procp pointer:
3076		 * it always points to a valid, allocated proc structure.
3077		 * Further, it is always safe to dereference the p_pidp member
3078		 * of one's own proc structure.  (These are truisms becuase
3079		 * threads and processes don't clean up their own state --
3080		 * they leave that task to whomever reaps them.)
3081		 */
3082		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3083#else
3084		return ((uint64_t)curproc->p_pid);
3085#endif
3086
3087	case DIF_VAR_PPID:
3088		if (!dtrace_priv_proc(state))
3089			return (0);
3090
3091#if defined(sun)
3092		/*
3093		 * See comment in DIF_VAR_PID.
3094		 */
3095		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3096			return (pid0.pid_id);
3097
3098		/*
3099		 * It is always safe to dereference one's own t_procp pointer:
3100		 * it always points to a valid, allocated proc structure.
3101		 * (This is true because threads don't clean up their own
3102		 * state -- they leave that task to whomever reaps them.)
3103		 */
3104		return ((uint64_t)curthread->t_procp->p_ppid);
3105#else
3106		return ((uint64_t)curproc->p_pptr->p_pid);
3107#endif
3108
3109	case DIF_VAR_TID:
3110#if defined(sun)
3111		/*
3112		 * See comment in DIF_VAR_PID.
3113		 */
3114		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3115			return (0);
3116#endif
3117
3118		return ((uint64_t)curthread->t_tid);
3119
3120	case DIF_VAR_EXECARGS: {
3121		struct pargs *p_args = curthread->td_proc->p_args;
3122
3123		if (p_args == NULL)
3124			return(0);
3125
3126		return (dtrace_dif_varstrz(
3127		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3128	}
3129
3130	case DIF_VAR_EXECNAME:
3131#if defined(sun)
3132		if (!dtrace_priv_proc(state))
3133			return (0);
3134
3135		/*
3136		 * See comment in DIF_VAR_PID.
3137		 */
3138		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3139			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3140
3141		/*
3142		 * It is always safe to dereference one's own t_procp pointer:
3143		 * it always points to a valid, allocated proc structure.
3144		 * (This is true because threads don't clean up their own
3145		 * state -- they leave that task to whomever reaps them.)
3146		 */
3147		return (dtrace_dif_varstr(
3148		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3149		    state, mstate));
3150#else
3151		return (dtrace_dif_varstr(
3152		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3153#endif
3154
3155	case DIF_VAR_ZONENAME:
3156#if defined(sun)
3157		if (!dtrace_priv_proc(state))
3158			return (0);
3159
3160		/*
3161		 * See comment in DIF_VAR_PID.
3162		 */
3163		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3164			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3165
3166		/*
3167		 * It is always safe to dereference one's own t_procp pointer:
3168		 * it always points to a valid, allocated proc structure.
3169		 * (This is true because threads don't clean up their own
3170		 * state -- they leave that task to whomever reaps them.)
3171		 */
3172		return (dtrace_dif_varstr(
3173		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3174		    state, mstate));
3175#else
3176		return (0);
3177#endif
3178
3179	case DIF_VAR_UID:
3180		if (!dtrace_priv_proc(state))
3181			return (0);
3182
3183#if defined(sun)
3184		/*
3185		 * See comment in DIF_VAR_PID.
3186		 */
3187		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3188			return ((uint64_t)p0.p_cred->cr_uid);
3189#endif
3190
3191		/*
3192		 * It is always safe to dereference one's own t_procp pointer:
3193		 * it always points to a valid, allocated proc structure.
3194		 * (This is true because threads don't clean up their own
3195		 * state -- they leave that task to whomever reaps them.)
3196		 *
3197		 * Additionally, it is safe to dereference one's own process
3198		 * credential, since this is never NULL after process birth.
3199		 */
3200		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3201
3202	case DIF_VAR_GID:
3203		if (!dtrace_priv_proc(state))
3204			return (0);
3205
3206#if defined(sun)
3207		/*
3208		 * See comment in DIF_VAR_PID.
3209		 */
3210		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3211			return ((uint64_t)p0.p_cred->cr_gid);
3212#endif
3213
3214		/*
3215		 * It is always safe to dereference one's own t_procp pointer:
3216		 * it always points to a valid, allocated proc structure.
3217		 * (This is true because threads don't clean up their own
3218		 * state -- they leave that task to whomever reaps them.)
3219		 *
3220		 * Additionally, it is safe to dereference one's own process
3221		 * credential, since this is never NULL after process birth.
3222		 */
3223		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3224
3225	case DIF_VAR_ERRNO: {
3226#if defined(sun)
3227		klwp_t *lwp;
3228		if (!dtrace_priv_proc(state))
3229			return (0);
3230
3231		/*
3232		 * See comment in DIF_VAR_PID.
3233		 */
3234		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3235			return (0);
3236
3237		/*
3238		 * It is always safe to dereference one's own t_lwp pointer in
3239		 * the event that this pointer is non-NULL.  (This is true
3240		 * because threads and lwps don't clean up their own state --
3241		 * they leave that task to whomever reaps them.)
3242		 */
3243		if ((lwp = curthread->t_lwp) == NULL)
3244			return (0);
3245
3246		return ((uint64_t)lwp->lwp_errno);
3247#else
3248		return (curthread->td_errno);
3249#endif
3250	}
3251#if !defined(sun)
3252	case DIF_VAR_CPU: {
3253		return curcpu;
3254	}
3255#endif
3256	default:
3257		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3258		return (0);
3259	}
3260}
3261
3262/*
3263 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3264 * Notice that we don't bother validating the proper number of arguments or
3265 * their types in the tuple stack.  This isn't needed because all argument
3266 * interpretation is safe because of our load safety -- the worst that can
3267 * happen is that a bogus program can obtain bogus results.
3268 */
3269static void
3270dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3271    dtrace_key_t *tupregs, int nargs,
3272    dtrace_mstate_t *mstate, dtrace_state_t *state)
3273{
3274	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
3275	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
3276	dtrace_vstate_t *vstate = &state->dts_vstate;
3277
3278#if defined(sun)
3279	union {
3280		mutex_impl_t mi;
3281		uint64_t mx;
3282	} m;
3283
3284	union {
3285		krwlock_t ri;
3286		uintptr_t rw;
3287	} r;
3288#else
3289	struct thread *lowner;
3290	union {
3291		struct lock_object *li;
3292		uintptr_t lx;
3293	} l;
3294#endif
3295
3296	switch (subr) {
3297	case DIF_SUBR_RAND:
3298		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3299		break;
3300
3301#if defined(sun)
3302	case DIF_SUBR_MUTEX_OWNED:
3303		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3304		    mstate, vstate)) {
3305			regs[rd] = 0;
3306			break;
3307		}
3308
3309		m.mx = dtrace_load64(tupregs[0].dttk_value);
3310		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3311			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3312		else
3313			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3314		break;
3315
3316	case DIF_SUBR_MUTEX_OWNER:
3317		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3318		    mstate, vstate)) {
3319			regs[rd] = 0;
3320			break;
3321		}
3322
3323		m.mx = dtrace_load64(tupregs[0].dttk_value);
3324		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3325		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3326			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3327		else
3328			regs[rd] = 0;
3329		break;
3330
3331	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3332		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3333		    mstate, vstate)) {
3334			regs[rd] = 0;
3335			break;
3336		}
3337
3338		m.mx = dtrace_load64(tupregs[0].dttk_value);
3339		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3340		break;
3341
3342	case DIF_SUBR_MUTEX_TYPE_SPIN:
3343		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3344		    mstate, vstate)) {
3345			regs[rd] = 0;
3346			break;
3347		}
3348
3349		m.mx = dtrace_load64(tupregs[0].dttk_value);
3350		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3351		break;
3352
3353	case DIF_SUBR_RW_READ_HELD: {
3354		uintptr_t tmp;
3355
3356		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3357		    mstate, vstate)) {
3358			regs[rd] = 0;
3359			break;
3360		}
3361
3362		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3363		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3364		break;
3365	}
3366
3367	case DIF_SUBR_RW_WRITE_HELD:
3368		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3369		    mstate, vstate)) {
3370			regs[rd] = 0;
3371			break;
3372		}
3373
3374		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3375		regs[rd] = _RW_WRITE_HELD(&r.ri);
3376		break;
3377
3378	case DIF_SUBR_RW_ISWRITER:
3379		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3380		    mstate, vstate)) {
3381			regs[rd] = 0;
3382			break;
3383		}
3384
3385		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3386		regs[rd] = _RW_ISWRITER(&r.ri);
3387		break;
3388
3389#else
3390	case DIF_SUBR_MUTEX_OWNED:
3391		if (!dtrace_canload(tupregs[0].dttk_value,
3392			sizeof (struct lock_object), mstate, vstate)) {
3393			regs[rd] = 0;
3394			break;
3395		}
3396		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3397		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3398		break;
3399
3400	case DIF_SUBR_MUTEX_OWNER:
3401		if (!dtrace_canload(tupregs[0].dttk_value,
3402			sizeof (struct lock_object), mstate, vstate)) {
3403			regs[rd] = 0;
3404			break;
3405		}
3406		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3407		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3408		regs[rd] = (uintptr_t)lowner;
3409		break;
3410
3411	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3412		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3413		    mstate, vstate)) {
3414			regs[rd] = 0;
3415			break;
3416		}
3417		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3418		/* XXX - should be only LC_SLEEPABLE? */
3419		regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
3420		    (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
3421		break;
3422
3423	case DIF_SUBR_MUTEX_TYPE_SPIN:
3424		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3425		    mstate, vstate)) {
3426			regs[rd] = 0;
3427			break;
3428		}
3429		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3430		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
3431		break;
3432
3433	case DIF_SUBR_RW_READ_HELD:
3434	case DIF_SUBR_SX_SHARED_HELD:
3435		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3436		    mstate, vstate)) {
3437			regs[rd] = 0;
3438			break;
3439		}
3440		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3441		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3442		    lowner == NULL;
3443		break;
3444
3445	case DIF_SUBR_RW_WRITE_HELD:
3446	case DIF_SUBR_SX_EXCLUSIVE_HELD:
3447		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3448		    mstate, vstate)) {
3449			regs[rd] = 0;
3450			break;
3451		}
3452		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3453		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3454		regs[rd] = (lowner == curthread);
3455		break;
3456
3457	case DIF_SUBR_RW_ISWRITER:
3458	case DIF_SUBR_SX_ISEXCLUSIVE:
3459		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3460		    mstate, vstate)) {
3461			regs[rd] = 0;
3462			break;
3463		}
3464		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3465		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3466		    lowner != NULL;
3467		break;
3468#endif /* ! defined(sun) */
3469
3470	case DIF_SUBR_BCOPY: {
3471		/*
3472		 * We need to be sure that the destination is in the scratch
3473		 * region -- no other region is allowed.
3474		 */
3475		uintptr_t src = tupregs[0].dttk_value;
3476		uintptr_t dest = tupregs[1].dttk_value;
3477		size_t size = tupregs[2].dttk_value;
3478
3479		if (!dtrace_inscratch(dest, size, mstate)) {
3480			*flags |= CPU_DTRACE_BADADDR;
3481			*illval = regs[rd];
3482			break;
3483		}
3484
3485		if (!dtrace_canload(src, size, mstate, vstate)) {
3486			regs[rd] = 0;
3487			break;
3488		}
3489
3490		dtrace_bcopy((void *)src, (void *)dest, size);
3491		break;
3492	}
3493
3494	case DIF_SUBR_ALLOCA:
3495	case DIF_SUBR_COPYIN: {
3496		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3497		uint64_t size =
3498		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3499		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3500
3501		/*
3502		 * This action doesn't require any credential checks since
3503		 * probes will not activate in user contexts to which the
3504		 * enabling user does not have permissions.
3505		 */
3506
3507		/*
3508		 * Rounding up the user allocation size could have overflowed
3509		 * a large, bogus allocation (like -1ULL) to 0.
3510		 */
3511		if (scratch_size < size ||
3512		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
3513			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3514			regs[rd] = 0;
3515			break;
3516		}
3517
3518		if (subr == DIF_SUBR_COPYIN) {
3519			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3520			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3521			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3522		}
3523
3524		mstate->dtms_scratch_ptr += scratch_size;
3525		regs[rd] = dest;
3526		break;
3527	}
3528
3529	case DIF_SUBR_COPYINTO: {
3530		uint64_t size = tupregs[1].dttk_value;
3531		uintptr_t dest = tupregs[2].dttk_value;
3532
3533		/*
3534		 * This action doesn't require any credential checks since
3535		 * probes will not activate in user contexts to which the
3536		 * enabling user does not have permissions.
3537		 */
3538		if (!dtrace_inscratch(dest, size, mstate)) {
3539			*flags |= CPU_DTRACE_BADADDR;
3540			*illval = regs[rd];
3541			break;
3542		}
3543
3544		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3545		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3546		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3547		break;
3548	}
3549
3550	case DIF_SUBR_COPYINSTR: {
3551		uintptr_t dest = mstate->dtms_scratch_ptr;
3552		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3553
3554		if (nargs > 1 && tupregs[1].dttk_value < size)
3555			size = tupregs[1].dttk_value + 1;
3556
3557		/*
3558		 * This action doesn't require any credential checks since
3559		 * probes will not activate in user contexts to which the
3560		 * enabling user does not have permissions.
3561		 */
3562		if (!DTRACE_INSCRATCH(mstate, size)) {
3563			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3564			regs[rd] = 0;
3565			break;
3566		}
3567
3568		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3569		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3570		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3571
3572		((char *)dest)[size - 1] = '\0';
3573		mstate->dtms_scratch_ptr += size;
3574		regs[rd] = dest;
3575		break;
3576	}
3577
3578#if defined(sun)
3579	case DIF_SUBR_MSGSIZE:
3580	case DIF_SUBR_MSGDSIZE: {
3581		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3582		uintptr_t wptr, rptr;
3583		size_t count = 0;
3584		int cont = 0;
3585
3586		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
3587
3588			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3589			    vstate)) {
3590				regs[rd] = 0;
3591				break;
3592			}
3593
3594			wptr = dtrace_loadptr(baddr +
3595			    offsetof(mblk_t, b_wptr));
3596
3597			rptr = dtrace_loadptr(baddr +
3598			    offsetof(mblk_t, b_rptr));
3599
3600			if (wptr < rptr) {
3601				*flags |= CPU_DTRACE_BADADDR;
3602				*illval = tupregs[0].dttk_value;
3603				break;
3604			}
3605
3606			daddr = dtrace_loadptr(baddr +
3607			    offsetof(mblk_t, b_datap));
3608
3609			baddr = dtrace_loadptr(baddr +
3610			    offsetof(mblk_t, b_cont));
3611
3612			/*
3613			 * We want to prevent against denial-of-service here,
3614			 * so we're only going to search the list for
3615			 * dtrace_msgdsize_max mblks.
3616			 */
3617			if (cont++ > dtrace_msgdsize_max) {
3618				*flags |= CPU_DTRACE_ILLOP;
3619				break;
3620			}
3621
3622			if (subr == DIF_SUBR_MSGDSIZE) {
3623				if (dtrace_load8(daddr +
3624				    offsetof(dblk_t, db_type)) != M_DATA)
3625					continue;
3626			}
3627
3628			count += wptr - rptr;
3629		}
3630
3631		if (!(*flags & CPU_DTRACE_FAULT))
3632			regs[rd] = count;
3633
3634		break;
3635	}
3636#endif
3637
3638	case DIF_SUBR_PROGENYOF: {
3639		pid_t pid = tupregs[0].dttk_value;
3640		proc_t *p;
3641		int rval = 0;
3642
3643		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3644
3645		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3646#if defined(sun)
3647			if (p->p_pidp->pid_id == pid) {
3648#else
3649			if (p->p_pid == pid) {
3650#endif
3651				rval = 1;
3652				break;
3653			}
3654		}
3655
3656		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3657
3658		regs[rd] = rval;
3659		break;
3660	}
3661
3662	case DIF_SUBR_SPECULATION:
3663		regs[rd] = dtrace_speculation(state);
3664		break;
3665
3666	case DIF_SUBR_COPYOUT: {
3667		uintptr_t kaddr = tupregs[0].dttk_value;
3668		uintptr_t uaddr = tupregs[1].dttk_value;
3669		uint64_t size = tupregs[2].dttk_value;
3670
3671		if (!dtrace_destructive_disallow &&
3672		    dtrace_priv_proc_control(state) &&
3673		    !dtrace_istoxic(kaddr, size)) {
3674			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3675			dtrace_copyout(kaddr, uaddr, size, flags);
3676			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3677		}
3678		break;
3679	}
3680
3681	case DIF_SUBR_COPYOUTSTR: {
3682		uintptr_t kaddr = tupregs[0].dttk_value;
3683		uintptr_t uaddr = tupregs[1].dttk_value;
3684		uint64_t size = tupregs[2].dttk_value;
3685
3686		if (!dtrace_destructive_disallow &&
3687		    dtrace_priv_proc_control(state) &&
3688		    !dtrace_istoxic(kaddr, size)) {
3689			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3690			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3691			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3692		}
3693		break;
3694	}
3695
3696	case DIF_SUBR_STRLEN: {
3697		size_t sz;
3698		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3699		sz = dtrace_strlen((char *)addr,
3700		    state->dts_options[DTRACEOPT_STRSIZE]);
3701
3702		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3703			regs[rd] = 0;
3704			break;
3705		}
3706
3707		regs[rd] = sz;
3708
3709		break;
3710	}
3711
3712	case DIF_SUBR_STRCHR:
3713	case DIF_SUBR_STRRCHR: {
3714		/*
3715		 * We're going to iterate over the string looking for the
3716		 * specified character.  We will iterate until we have reached
3717		 * the string length or we have found the character.  If this
3718		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3719		 * of the specified character instead of the first.
3720		 */
3721		uintptr_t saddr = tupregs[0].dttk_value;
3722		uintptr_t addr = tupregs[0].dttk_value;
3723		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3724		char c, target = (char)tupregs[1].dttk_value;
3725
3726		for (regs[rd] = 0; addr < limit; addr++) {
3727			if ((c = dtrace_load8(addr)) == target) {
3728				regs[rd] = addr;
3729
3730				if (subr == DIF_SUBR_STRCHR)
3731					break;
3732			}
3733
3734			if (c == '\0')
3735				break;
3736		}
3737
3738		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3739			regs[rd] = 0;
3740			break;
3741		}
3742
3743		break;
3744	}
3745
3746	case DIF_SUBR_STRSTR:
3747	case DIF_SUBR_INDEX:
3748	case DIF_SUBR_RINDEX: {
3749		/*
3750		 * We're going to iterate over the string looking for the
3751		 * specified string.  We will iterate until we have reached
3752		 * the string length or we have found the string.  (Yes, this
3753		 * is done in the most naive way possible -- but considering
3754		 * that the string we're searching for is likely to be
3755		 * relatively short, the complexity of Rabin-Karp or similar
3756		 * hardly seems merited.)
3757		 */
3758		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3759		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3760		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3761		size_t len = dtrace_strlen(addr, size);
3762		size_t sublen = dtrace_strlen(substr, size);
3763		char *limit = addr + len, *orig = addr;
3764		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3765		int inc = 1;
3766
3767		regs[rd] = notfound;
3768
3769		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3770			regs[rd] = 0;
3771			break;
3772		}
3773
3774		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3775		    vstate)) {
3776			regs[rd] = 0;
3777			break;
3778		}
3779
3780		/*
3781		 * strstr() and index()/rindex() have similar semantics if
3782		 * both strings are the empty string: strstr() returns a
3783		 * pointer to the (empty) string, and index() and rindex()
3784		 * both return index 0 (regardless of any position argument).
3785		 */
3786		if (sublen == 0 && len == 0) {
3787			if (subr == DIF_SUBR_STRSTR)
3788				regs[rd] = (uintptr_t)addr;
3789			else
3790				regs[rd] = 0;
3791			break;
3792		}
3793
3794		if (subr != DIF_SUBR_STRSTR) {
3795			if (subr == DIF_SUBR_RINDEX) {
3796				limit = orig - 1;
3797				addr += len;
3798				inc = -1;
3799			}
3800
3801			/*
3802			 * Both index() and rindex() take an optional position
3803			 * argument that denotes the starting position.
3804			 */
3805			if (nargs == 3) {
3806				int64_t pos = (int64_t)tupregs[2].dttk_value;
3807
3808				/*
3809				 * If the position argument to index() is
3810				 * negative, Perl implicitly clamps it at
3811				 * zero.  This semantic is a little surprising
3812				 * given the special meaning of negative
3813				 * positions to similar Perl functions like
3814				 * substr(), but it appears to reflect a
3815				 * notion that index() can start from a
3816				 * negative index and increment its way up to
3817				 * the string.  Given this notion, Perl's
3818				 * rindex() is at least self-consistent in
3819				 * that it implicitly clamps positions greater
3820				 * than the string length to be the string
3821				 * length.  Where Perl completely loses
3822				 * coherence, however, is when the specified
3823				 * substring is the empty string ("").  In
3824				 * this case, even if the position is
3825				 * negative, rindex() returns 0 -- and even if
3826				 * the position is greater than the length,
3827				 * index() returns the string length.  These
3828				 * semantics violate the notion that index()
3829				 * should never return a value less than the
3830				 * specified position and that rindex() should
3831				 * never return a value greater than the
3832				 * specified position.  (One assumes that
3833				 * these semantics are artifacts of Perl's
3834				 * implementation and not the results of
3835				 * deliberate design -- it beggars belief that
3836				 * even Larry Wall could desire such oddness.)
3837				 * While in the abstract one would wish for
3838				 * consistent position semantics across
3839				 * substr(), index() and rindex() -- or at the
3840				 * very least self-consistent position
3841				 * semantics for index() and rindex() -- we
3842				 * instead opt to keep with the extant Perl
3843				 * semantics, in all their broken glory.  (Do
3844				 * we have more desire to maintain Perl's
3845				 * semantics than Perl does?  Probably.)
3846				 */
3847				if (subr == DIF_SUBR_RINDEX) {
3848					if (pos < 0) {
3849						if (sublen == 0)
3850							regs[rd] = 0;
3851						break;
3852					}
3853
3854					if (pos > len)
3855						pos = len;
3856				} else {
3857					if (pos < 0)
3858						pos = 0;
3859
3860					if (pos >= len) {
3861						if (sublen == 0)
3862							regs[rd] = len;
3863						break;
3864					}
3865				}
3866
3867				addr = orig + pos;
3868			}
3869		}
3870
3871		for (regs[rd] = notfound; addr != limit; addr += inc) {
3872			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3873				if (subr != DIF_SUBR_STRSTR) {
3874					/*
3875					 * As D index() and rindex() are
3876					 * modeled on Perl (and not on awk),
3877					 * we return a zero-based (and not a
3878					 * one-based) index.  (For you Perl
3879					 * weenies: no, we're not going to add
3880					 * $[ -- and shouldn't you be at a con
3881					 * or something?)
3882					 */
3883					regs[rd] = (uintptr_t)(addr - orig);
3884					break;
3885				}
3886
3887				ASSERT(subr == DIF_SUBR_STRSTR);
3888				regs[rd] = (uintptr_t)addr;
3889				break;
3890			}
3891		}
3892
3893		break;
3894	}
3895
3896	case DIF_SUBR_STRTOK: {
3897		uintptr_t addr = tupregs[0].dttk_value;
3898		uintptr_t tokaddr = tupregs[1].dttk_value;
3899		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3900		uintptr_t limit, toklimit = tokaddr + size;
3901		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
3902		char *dest = (char *)mstate->dtms_scratch_ptr;
3903		int i;
3904
3905		/*
3906		 * Check both the token buffer and (later) the input buffer,
3907		 * since both could be non-scratch addresses.
3908		 */
3909		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3910			regs[rd] = 0;
3911			break;
3912		}
3913
3914		if (!DTRACE_INSCRATCH(mstate, size)) {
3915			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3916			regs[rd] = 0;
3917			break;
3918		}
3919
3920		if (addr == 0) {
3921			/*
3922			 * If the address specified is NULL, we use our saved
3923			 * strtok pointer from the mstate.  Note that this
3924			 * means that the saved strtok pointer is _only_
3925			 * valid within multiple enablings of the same probe --
3926			 * it behaves like an implicit clause-local variable.
3927			 */
3928			addr = mstate->dtms_strtok;
3929		} else {
3930			/*
3931			 * If the user-specified address is non-NULL we must
3932			 * access check it.  This is the only time we have
3933			 * a chance to do so, since this address may reside
3934			 * in the string table of this clause-- future calls
3935			 * (when we fetch addr from mstate->dtms_strtok)
3936			 * would fail this access check.
3937			 */
3938			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3939				regs[rd] = 0;
3940				break;
3941			}
3942		}
3943
3944		/*
3945		 * First, zero the token map, and then process the token
3946		 * string -- setting a bit in the map for every character
3947		 * found in the token string.
3948		 */
3949		for (i = 0; i < sizeof (tokmap); i++)
3950			tokmap[i] = 0;
3951
3952		for (; tokaddr < toklimit; tokaddr++) {
3953			if ((c = dtrace_load8(tokaddr)) == '\0')
3954				break;
3955
3956			ASSERT((c >> 3) < sizeof (tokmap));
3957			tokmap[c >> 3] |= (1 << (c & 0x7));
3958		}
3959
3960		for (limit = addr + size; addr < limit; addr++) {
3961			/*
3962			 * We're looking for a character that is _not_ contained
3963			 * in the token string.
3964			 */
3965			if ((c = dtrace_load8(addr)) == '\0')
3966				break;
3967
3968			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3969				break;
3970		}
3971
3972		if (c == '\0') {
3973			/*
3974			 * We reached the end of the string without finding
3975			 * any character that was not in the token string.
3976			 * We return NULL in this case, and we set the saved
3977			 * address to NULL as well.
3978			 */
3979			regs[rd] = 0;
3980			mstate->dtms_strtok = 0;
3981			break;
3982		}
3983
3984		/*
3985		 * From here on, we're copying into the destination string.
3986		 */
3987		for (i = 0; addr < limit && i < size - 1; addr++) {
3988			if ((c = dtrace_load8(addr)) == '\0')
3989				break;
3990
3991			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3992				break;
3993
3994			ASSERT(i < size);
3995			dest[i++] = c;
3996		}
3997
3998		ASSERT(i < size);
3999		dest[i] = '\0';
4000		regs[rd] = (uintptr_t)dest;
4001		mstate->dtms_scratch_ptr += size;
4002		mstate->dtms_strtok = addr;
4003		break;
4004	}
4005
4006	case DIF_SUBR_SUBSTR: {
4007		uintptr_t s = tupregs[0].dttk_value;
4008		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4009		char *d = (char *)mstate->dtms_scratch_ptr;
4010		int64_t index = (int64_t)tupregs[1].dttk_value;
4011		int64_t remaining = (int64_t)tupregs[2].dttk_value;
4012		size_t len = dtrace_strlen((char *)s, size);
4013		int64_t i = 0;
4014
4015		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4016			regs[rd] = 0;
4017			break;
4018		}
4019
4020		if (!DTRACE_INSCRATCH(mstate, size)) {
4021			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4022			regs[rd] = 0;
4023			break;
4024		}
4025
4026		if (nargs <= 2)
4027			remaining = (int64_t)size;
4028
4029		if (index < 0) {
4030			index += len;
4031
4032			if (index < 0 && index + remaining > 0) {
4033				remaining += index;
4034				index = 0;
4035			}
4036		}
4037
4038		if (index >= len || index < 0) {
4039			remaining = 0;
4040		} else if (remaining < 0) {
4041			remaining += len - index;
4042		} else if (index + remaining > size) {
4043			remaining = size - index;
4044		}
4045
4046		for (i = 0; i < remaining; i++) {
4047			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4048				break;
4049		}
4050
4051		d[i] = '\0';
4052
4053		mstate->dtms_scratch_ptr += size;
4054		regs[rd] = (uintptr_t)d;
4055		break;
4056	}
4057
4058	case DIF_SUBR_TOUPPER:
4059	case DIF_SUBR_TOLOWER: {
4060		uintptr_t s = tupregs[0].dttk_value;
4061		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4062		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4063		size_t len = dtrace_strlen((char *)s, size);
4064		char lower, upper, convert;
4065		int64_t i;
4066
4067		if (subr == DIF_SUBR_TOUPPER) {
4068			lower = 'a';
4069			upper = 'z';
4070			convert = 'A';
4071		} else {
4072			lower = 'A';
4073			upper = 'Z';
4074			convert = 'a';
4075		}
4076
4077		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4078			regs[rd] = 0;
4079			break;
4080		}
4081
4082		if (!DTRACE_INSCRATCH(mstate, size)) {
4083			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4084			regs[rd] = 0;
4085			break;
4086		}
4087
4088		for (i = 0; i < size - 1; i++) {
4089			if ((c = dtrace_load8(s + i)) == '\0')
4090				break;
4091
4092			if (c >= lower && c <= upper)
4093				c = convert + (c - lower);
4094
4095			dest[i] = c;
4096		}
4097
4098		ASSERT(i < size);
4099		dest[i] = '\0';
4100		regs[rd] = (uintptr_t)dest;
4101		mstate->dtms_scratch_ptr += size;
4102		break;
4103	}
4104
4105#if defined(sun)
4106	case DIF_SUBR_GETMAJOR:
4107#ifdef _LP64
4108		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4109#else
4110		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4111#endif
4112		break;
4113
4114	case DIF_SUBR_GETMINOR:
4115#ifdef _LP64
4116		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4117#else
4118		regs[rd] = tupregs[0].dttk_value & MAXMIN;
4119#endif
4120		break;
4121
4122	case DIF_SUBR_DDI_PATHNAME: {
4123		/*
4124		 * This one is a galactic mess.  We are going to roughly
4125		 * emulate ddi_pathname(), but it's made more complicated
4126		 * by the fact that we (a) want to include the minor name and
4127		 * (b) must proceed iteratively instead of recursively.
4128		 */
4129		uintptr_t dest = mstate->dtms_scratch_ptr;
4130		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4131		char *start = (char *)dest, *end = start + size - 1;
4132		uintptr_t daddr = tupregs[0].dttk_value;
4133		int64_t minor = (int64_t)tupregs[1].dttk_value;
4134		char *s;
4135		int i, len, depth = 0;
4136
4137		/*
4138		 * Due to all the pointer jumping we do and context we must
4139		 * rely upon, we just mandate that the user must have kernel
4140		 * read privileges to use this routine.
4141		 */
4142		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4143			*flags |= CPU_DTRACE_KPRIV;
4144			*illval = daddr;
4145			regs[rd] = 0;
4146		}
4147
4148		if (!DTRACE_INSCRATCH(mstate, size)) {
4149			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4150			regs[rd] = 0;
4151			break;
4152		}
4153
4154		*end = '\0';
4155
4156		/*
4157		 * We want to have a name for the minor.  In order to do this,
4158		 * we need to walk the minor list from the devinfo.  We want
4159		 * to be sure that we don't infinitely walk a circular list,
4160		 * so we check for circularity by sending a scout pointer
4161		 * ahead two elements for every element that we iterate over;
4162		 * if the list is circular, these will ultimately point to the
4163		 * same element.  You may recognize this little trick as the
4164		 * answer to a stupid interview question -- one that always
4165		 * seems to be asked by those who had to have it laboriously
4166		 * explained to them, and who can't even concisely describe
4167		 * the conditions under which one would be forced to resort to
4168		 * this technique.  Needless to say, those conditions are
4169		 * found here -- and probably only here.  Is this the only use
4170		 * of this infamous trick in shipping, production code?  If it
4171		 * isn't, it probably should be...
4172		 */
4173		if (minor != -1) {
4174			uintptr_t maddr = dtrace_loadptr(daddr +
4175			    offsetof(struct dev_info, devi_minor));
4176
4177			uintptr_t next = offsetof(struct ddi_minor_data, next);
4178			uintptr_t name = offsetof(struct ddi_minor_data,
4179			    d_minor) + offsetof(struct ddi_minor, name);
4180			uintptr_t dev = offsetof(struct ddi_minor_data,
4181			    d_minor) + offsetof(struct ddi_minor, dev);
4182			uintptr_t scout;
4183
4184			if (maddr != NULL)
4185				scout = dtrace_loadptr(maddr + next);
4186
4187			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4188				uint64_t m;
4189#ifdef _LP64
4190				m = dtrace_load64(maddr + dev) & MAXMIN64;
4191#else
4192				m = dtrace_load32(maddr + dev) & MAXMIN;
4193#endif
4194				if (m != minor) {
4195					maddr = dtrace_loadptr(maddr + next);
4196
4197					if (scout == NULL)
4198						continue;
4199
4200					scout = dtrace_loadptr(scout + next);
4201
4202					if (scout == NULL)
4203						continue;
4204
4205					scout = dtrace_loadptr(scout + next);
4206
4207					if (scout == NULL)
4208						continue;
4209
4210					if (scout == maddr) {
4211						*flags |= CPU_DTRACE_ILLOP;
4212						break;
4213					}
4214
4215					continue;
4216				}
4217
4218				/*
4219				 * We have the minor data.  Now we need to
4220				 * copy the minor's name into the end of the
4221				 * pathname.
4222				 */
4223				s = (char *)dtrace_loadptr(maddr + name);
4224				len = dtrace_strlen(s, size);
4225
4226				if (*flags & CPU_DTRACE_FAULT)
4227					break;
4228
4229				if (len != 0) {
4230					if ((end -= (len + 1)) < start)
4231						break;
4232
4233					*end = ':';
4234				}
4235
4236				for (i = 1; i <= len; i++)
4237					end[i] = dtrace_load8((uintptr_t)s++);
4238				break;
4239			}
4240		}
4241
4242		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4243			ddi_node_state_t devi_state;
4244
4245			devi_state = dtrace_load32(daddr +
4246			    offsetof(struct dev_info, devi_node_state));
4247
4248			if (*flags & CPU_DTRACE_FAULT)
4249				break;
4250
4251			if (devi_state >= DS_INITIALIZED) {
4252				s = (char *)dtrace_loadptr(daddr +
4253				    offsetof(struct dev_info, devi_addr));
4254				len = dtrace_strlen(s, size);
4255
4256				if (*flags & CPU_DTRACE_FAULT)
4257					break;
4258
4259				if (len != 0) {
4260					if ((end -= (len + 1)) < start)
4261						break;
4262
4263					*end = '@';
4264				}
4265
4266				for (i = 1; i <= len; i++)
4267					end[i] = dtrace_load8((uintptr_t)s++);
4268			}
4269
4270			/*
4271			 * Now for the node name...
4272			 */
4273			s = (char *)dtrace_loadptr(daddr +
4274			    offsetof(struct dev_info, devi_node_name));
4275
4276			daddr = dtrace_loadptr(daddr +
4277			    offsetof(struct dev_info, devi_parent));
4278
4279			/*
4280			 * If our parent is NULL (that is, if we're the root
4281			 * node), we're going to use the special path
4282			 * "devices".
4283			 */
4284			if (daddr == 0)
4285				s = "devices";
4286
4287			len = dtrace_strlen(s, size);
4288			if (*flags & CPU_DTRACE_FAULT)
4289				break;
4290
4291			if ((end -= (len + 1)) < start)
4292				break;
4293
4294			for (i = 1; i <= len; i++)
4295				end[i] = dtrace_load8((uintptr_t)s++);
4296			*end = '/';
4297
4298			if (depth++ > dtrace_devdepth_max) {
4299				*flags |= CPU_DTRACE_ILLOP;
4300				break;
4301			}
4302		}
4303
4304		if (end < start)
4305			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4306
4307		if (daddr == 0) {
4308			regs[rd] = (uintptr_t)end;
4309			mstate->dtms_scratch_ptr += size;
4310		}
4311
4312		break;
4313	}
4314#endif
4315
4316	case DIF_SUBR_STRJOIN: {
4317		char *d = (char *)mstate->dtms_scratch_ptr;
4318		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4319		uintptr_t s1 = tupregs[0].dttk_value;
4320		uintptr_t s2 = tupregs[1].dttk_value;
4321		int i = 0;
4322
4323		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4324		    !dtrace_strcanload(s2, size, mstate, vstate)) {
4325			regs[rd] = 0;
4326			break;
4327		}
4328
4329		if (!DTRACE_INSCRATCH(mstate, size)) {
4330			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4331			regs[rd] = 0;
4332			break;
4333		}
4334
4335		for (;;) {
4336			if (i >= size) {
4337				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4338				regs[rd] = 0;
4339				break;
4340			}
4341
4342			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4343				i--;
4344				break;
4345			}
4346		}
4347
4348		for (;;) {
4349			if (i >= size) {
4350				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4351				regs[rd] = 0;
4352				break;
4353			}
4354
4355			if ((d[i++] = dtrace_load8(s2++)) == '\0')
4356				break;
4357		}
4358
4359		if (i < size) {
4360			mstate->dtms_scratch_ptr += i;
4361			regs[rd] = (uintptr_t)d;
4362		}
4363
4364		break;
4365	}
4366
4367	case DIF_SUBR_LLTOSTR: {
4368		int64_t i = (int64_t)tupregs[0].dttk_value;
4369		uint64_t val, digit;
4370		uint64_t size = 65;	/* enough room for 2^64 in binary */
4371		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4372		int base = 10;
4373
4374		if (nargs > 1) {
4375			if ((base = tupregs[1].dttk_value) <= 1 ||
4376			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4377				*flags |= CPU_DTRACE_ILLOP;
4378				break;
4379			}
4380		}
4381
4382		val = (base == 10 && i < 0) ? i * -1 : i;
4383
4384		if (!DTRACE_INSCRATCH(mstate, size)) {
4385			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4386			regs[rd] = 0;
4387			break;
4388		}
4389
4390		for (*end-- = '\0'; val; val /= base) {
4391			if ((digit = val % base) <= '9' - '0') {
4392				*end-- = '0' + digit;
4393			} else {
4394				*end-- = 'a' + (digit - ('9' - '0') - 1);
4395			}
4396		}
4397
4398		if (i == 0 && base == 16)
4399			*end-- = '0';
4400
4401		if (base == 16)
4402			*end-- = 'x';
4403
4404		if (i == 0 || base == 8 || base == 16)
4405			*end-- = '0';
4406
4407		if (i < 0 && base == 10)
4408			*end-- = '-';
4409
4410		regs[rd] = (uintptr_t)end + 1;
4411		mstate->dtms_scratch_ptr += size;
4412		break;
4413	}
4414
4415	case DIF_SUBR_HTONS:
4416	case DIF_SUBR_NTOHS:
4417#if BYTE_ORDER == BIG_ENDIAN
4418		regs[rd] = (uint16_t)tupregs[0].dttk_value;
4419#else
4420		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4421#endif
4422		break;
4423
4424
4425	case DIF_SUBR_HTONL:
4426	case DIF_SUBR_NTOHL:
4427#if BYTE_ORDER == BIG_ENDIAN
4428		regs[rd] = (uint32_t)tupregs[0].dttk_value;
4429#else
4430		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4431#endif
4432		break;
4433
4434
4435	case DIF_SUBR_HTONLL:
4436	case DIF_SUBR_NTOHLL:
4437#if BYTE_ORDER == BIG_ENDIAN
4438		regs[rd] = (uint64_t)tupregs[0].dttk_value;
4439#else
4440		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4441#endif
4442		break;
4443
4444
4445	case DIF_SUBR_DIRNAME:
4446	case DIF_SUBR_BASENAME: {
4447		char *dest = (char *)mstate->dtms_scratch_ptr;
4448		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4449		uintptr_t src = tupregs[0].dttk_value;
4450		int i, j, len = dtrace_strlen((char *)src, size);
4451		int lastbase = -1, firstbase = -1, lastdir = -1;
4452		int start, end;
4453
4454		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4455			regs[rd] = 0;
4456			break;
4457		}
4458
4459		if (!DTRACE_INSCRATCH(mstate, size)) {
4460			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4461			regs[rd] = 0;
4462			break;
4463		}
4464
4465		/*
4466		 * The basename and dirname for a zero-length string is
4467		 * defined to be "."
4468		 */
4469		if (len == 0) {
4470			len = 1;
4471			src = (uintptr_t)".";
4472		}
4473
4474		/*
4475		 * Start from the back of the string, moving back toward the
4476		 * front until we see a character that isn't a slash.  That
4477		 * character is the last character in the basename.
4478		 */
4479		for (i = len - 1; i >= 0; i--) {
4480			if (dtrace_load8(src + i) != '/')
4481				break;
4482		}
4483
4484		if (i >= 0)
4485			lastbase = i;
4486
4487		/*
4488		 * Starting from the last character in the basename, move
4489		 * towards the front until we find a slash.  The character
4490		 * that we processed immediately before that is the first
4491		 * character in the basename.
4492		 */
4493		for (; i >= 0; i--) {
4494			if (dtrace_load8(src + i) == '/')
4495				break;
4496		}
4497
4498		if (i >= 0)
4499			firstbase = i + 1;
4500
4501		/*
4502		 * Now keep going until we find a non-slash character.  That
4503		 * character is the last character in the dirname.
4504		 */
4505		for (; i >= 0; i--) {
4506			if (dtrace_load8(src + i) != '/')
4507				break;
4508		}
4509
4510		if (i >= 0)
4511			lastdir = i;
4512
4513		ASSERT(!(lastbase == -1 && firstbase != -1));
4514		ASSERT(!(firstbase == -1 && lastdir != -1));
4515
4516		if (lastbase == -1) {
4517			/*
4518			 * We didn't find a non-slash character.  We know that
4519			 * the length is non-zero, so the whole string must be
4520			 * slashes.  In either the dirname or the basename
4521			 * case, we return '/'.
4522			 */
4523			ASSERT(firstbase == -1);
4524			firstbase = lastbase = lastdir = 0;
4525		}
4526
4527		if (firstbase == -1) {
4528			/*
4529			 * The entire string consists only of a basename
4530			 * component.  If we're looking for dirname, we need
4531			 * to change our string to be just "."; if we're
4532			 * looking for a basename, we'll just set the first
4533			 * character of the basename to be 0.
4534			 */
4535			if (subr == DIF_SUBR_DIRNAME) {
4536				ASSERT(lastdir == -1);
4537				src = (uintptr_t)".";
4538				lastdir = 0;
4539			} else {
4540				firstbase = 0;
4541			}
4542		}
4543
4544		if (subr == DIF_SUBR_DIRNAME) {
4545			if (lastdir == -1) {
4546				/*
4547				 * We know that we have a slash in the name --
4548				 * or lastdir would be set to 0, above.  And
4549				 * because lastdir is -1, we know that this
4550				 * slash must be the first character.  (That
4551				 * is, the full string must be of the form
4552				 * "/basename".)  In this case, the last
4553				 * character of the directory name is 0.
4554				 */
4555				lastdir = 0;
4556			}
4557
4558			start = 0;
4559			end = lastdir;
4560		} else {
4561			ASSERT(subr == DIF_SUBR_BASENAME);
4562			ASSERT(firstbase != -1 && lastbase != -1);
4563			start = firstbase;
4564			end = lastbase;
4565		}
4566
4567		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4568			dest[j] = dtrace_load8(src + i);
4569
4570		dest[j] = '\0';
4571		regs[rd] = (uintptr_t)dest;
4572		mstate->dtms_scratch_ptr += size;
4573		break;
4574	}
4575
4576	case DIF_SUBR_CLEANPATH: {
4577		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4578		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4579		uintptr_t src = tupregs[0].dttk_value;
4580		int i = 0, j = 0;
4581
4582		if (!dtrace_strcanload(src, size, mstate, vstate)) {
4583			regs[rd] = 0;
4584			break;
4585		}
4586
4587		if (!DTRACE_INSCRATCH(mstate, size)) {
4588			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4589			regs[rd] = 0;
4590			break;
4591		}
4592
4593		/*
4594		 * Move forward, loading each character.
4595		 */
4596		do {
4597			c = dtrace_load8(src + i++);
4598next:
4599			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
4600				break;
4601
4602			if (c != '/') {
4603				dest[j++] = c;
4604				continue;
4605			}
4606
4607			c = dtrace_load8(src + i++);
4608
4609			if (c == '/') {
4610				/*
4611				 * We have two slashes -- we can just advance
4612				 * to the next character.
4613				 */
4614				goto next;
4615			}
4616
4617			if (c != '.') {
4618				/*
4619				 * This is not "." and it's not ".." -- we can
4620				 * just store the "/" and this character and
4621				 * drive on.
4622				 */
4623				dest[j++] = '/';
4624				dest[j++] = c;
4625				continue;
4626			}
4627
4628			c = dtrace_load8(src + i++);
4629
4630			if (c == '/') {
4631				/*
4632				 * This is a "/./" component.  We're not going
4633				 * to store anything in the destination buffer;
4634				 * we're just going to go to the next component.
4635				 */
4636				goto next;
4637			}
4638
4639			if (c != '.') {
4640				/*
4641				 * This is not ".." -- we can just store the
4642				 * "/." and this character and continue
4643				 * processing.
4644				 */
4645				dest[j++] = '/';
4646				dest[j++] = '.';
4647				dest[j++] = c;
4648				continue;
4649			}
4650
4651			c = dtrace_load8(src + i++);
4652
4653			if (c != '/' && c != '\0') {
4654				/*
4655				 * This is not ".." -- it's "..[mumble]".
4656				 * We'll store the "/.." and this character
4657				 * and continue processing.
4658				 */
4659				dest[j++] = '/';
4660				dest[j++] = '.';
4661				dest[j++] = '.';
4662				dest[j++] = c;
4663				continue;
4664			}
4665
4666			/*
4667			 * This is "/../" or "/..\0".  We need to back up
4668			 * our destination pointer until we find a "/".
4669			 */
4670			i--;
4671			while (j != 0 && dest[--j] != '/')
4672				continue;
4673
4674			if (c == '\0')
4675				dest[++j] = '/';
4676		} while (c != '\0');
4677
4678		dest[j] = '\0';
4679		regs[rd] = (uintptr_t)dest;
4680		mstate->dtms_scratch_ptr += size;
4681		break;
4682	}
4683
4684	case DIF_SUBR_INET_NTOA:
4685	case DIF_SUBR_INET_NTOA6:
4686	case DIF_SUBR_INET_NTOP: {
4687		size_t size;
4688		int af, argi, i;
4689		char *base, *end;
4690
4691		if (subr == DIF_SUBR_INET_NTOP) {
4692			af = (int)tupregs[0].dttk_value;
4693			argi = 1;
4694		} else {
4695			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4696			argi = 0;
4697		}
4698
4699		if (af == AF_INET) {
4700			ipaddr_t ip4;
4701			uint8_t *ptr8, val;
4702
4703			/*
4704			 * Safely load the IPv4 address.
4705			 */
4706			ip4 = dtrace_load32(tupregs[argi].dttk_value);
4707
4708			/*
4709			 * Check an IPv4 string will fit in scratch.
4710			 */
4711			size = INET_ADDRSTRLEN;
4712			if (!DTRACE_INSCRATCH(mstate, size)) {
4713				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4714				regs[rd] = 0;
4715				break;
4716			}
4717			base = (char *)mstate->dtms_scratch_ptr;
4718			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4719
4720			/*
4721			 * Stringify as a dotted decimal quad.
4722			 */
4723			*end-- = '\0';
4724			ptr8 = (uint8_t *)&ip4;
4725			for (i = 3; i >= 0; i--) {
4726				val = ptr8[i];
4727
4728				if (val == 0) {
4729					*end-- = '0';
4730				} else {
4731					for (; val; val /= 10) {
4732						*end-- = '0' + (val % 10);
4733					}
4734				}
4735
4736				if (i > 0)
4737					*end-- = '.';
4738			}
4739			ASSERT(end + 1 >= base);
4740
4741		} else if (af == AF_INET6) {
4742			struct in6_addr ip6;
4743			int firstzero, tryzero, numzero, v6end;
4744			uint16_t val;
4745			const char digits[] = "0123456789abcdef";
4746
4747			/*
4748			 * Stringify using RFC 1884 convention 2 - 16 bit
4749			 * hexadecimal values with a zero-run compression.
4750			 * Lower case hexadecimal digits are used.
4751			 * 	eg, fe80::214:4fff:fe0b:76c8.
4752			 * The IPv4 embedded form is returned for inet_ntop,
4753			 * just the IPv4 string is returned for inet_ntoa6.
4754			 */
4755
4756			/*
4757			 * Safely load the IPv6 address.
4758			 */
4759			dtrace_bcopy(
4760			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4761			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4762
4763			/*
4764			 * Check an IPv6 string will fit in scratch.
4765			 */
4766			size = INET6_ADDRSTRLEN;
4767			if (!DTRACE_INSCRATCH(mstate, size)) {
4768				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4769				regs[rd] = 0;
4770				break;
4771			}
4772			base = (char *)mstate->dtms_scratch_ptr;
4773			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4774			*end-- = '\0';
4775
4776			/*
4777			 * Find the longest run of 16 bit zero values
4778			 * for the single allowed zero compression - "::".
4779			 */
4780			firstzero = -1;
4781			tryzero = -1;
4782			numzero = 1;
4783			for (i = 0; i < sizeof (struct in6_addr); i++) {
4784#if defined(sun)
4785				if (ip6._S6_un._S6_u8[i] == 0 &&
4786#else
4787				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4788#endif
4789				    tryzero == -1 && i % 2 == 0) {
4790					tryzero = i;
4791					continue;
4792				}
4793
4794				if (tryzero != -1 &&
4795#if defined(sun)
4796				    (ip6._S6_un._S6_u8[i] != 0 ||
4797#else
4798				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
4799#endif
4800				    i == sizeof (struct in6_addr) - 1)) {
4801
4802					if (i - tryzero <= numzero) {
4803						tryzero = -1;
4804						continue;
4805					}
4806
4807					firstzero = tryzero;
4808					numzero = i - i % 2 - tryzero;
4809					tryzero = -1;
4810
4811#if defined(sun)
4812					if (ip6._S6_un._S6_u8[i] == 0 &&
4813#else
4814					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4815#endif
4816					    i == sizeof (struct in6_addr) - 1)
4817						numzero += 2;
4818				}
4819			}
4820			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4821
4822			/*
4823			 * Check for an IPv4 embedded address.
4824			 */
4825			v6end = sizeof (struct in6_addr) - 2;
4826			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4827			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
4828				for (i = sizeof (struct in6_addr) - 1;
4829				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
4830					ASSERT(end >= base);
4831
4832#if defined(sun)
4833					val = ip6._S6_un._S6_u8[i];
4834#else
4835					val = ip6.__u6_addr.__u6_addr8[i];
4836#endif
4837
4838					if (val == 0) {
4839						*end-- = '0';
4840					} else {
4841						for (; val; val /= 10) {
4842							*end-- = '0' + val % 10;
4843						}
4844					}
4845
4846					if (i > DTRACE_V4MAPPED_OFFSET)
4847						*end-- = '.';
4848				}
4849
4850				if (subr == DIF_SUBR_INET_NTOA6)
4851					goto inetout;
4852
4853				/*
4854				 * Set v6end to skip the IPv4 address that
4855				 * we have already stringified.
4856				 */
4857				v6end = 10;
4858			}
4859
4860			/*
4861			 * Build the IPv6 string by working through the
4862			 * address in reverse.
4863			 */
4864			for (i = v6end; i >= 0; i -= 2) {
4865				ASSERT(end >= base);
4866
4867				if (i == firstzero + numzero - 2) {
4868					*end-- = ':';
4869					*end-- = ':';
4870					i -= numzero - 2;
4871					continue;
4872				}
4873
4874				if (i < 14 && i != firstzero - 2)
4875					*end-- = ':';
4876
4877#if defined(sun)
4878				val = (ip6._S6_un._S6_u8[i] << 8) +
4879				    ip6._S6_un._S6_u8[i + 1];
4880#else
4881				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
4882				    ip6.__u6_addr.__u6_addr8[i + 1];
4883#endif
4884
4885				if (val == 0) {
4886					*end-- = '0';
4887				} else {
4888					for (; val; val /= 16) {
4889						*end-- = digits[val % 16];
4890					}
4891				}
4892			}
4893			ASSERT(end + 1 >= base);
4894
4895		} else {
4896			/*
4897			 * The user didn't use AH_INET or AH_INET6.
4898			 */
4899			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4900			regs[rd] = 0;
4901			break;
4902		}
4903
4904inetout:	regs[rd] = (uintptr_t)end + 1;
4905		mstate->dtms_scratch_ptr += size;
4906		break;
4907	}
4908
4909	case DIF_SUBR_MEMREF: {
4910		uintptr_t size = 2 * sizeof(uintptr_t);
4911		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4912		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
4913
4914		/* address and length */
4915		memref[0] = tupregs[0].dttk_value;
4916		memref[1] = tupregs[1].dttk_value;
4917
4918		regs[rd] = (uintptr_t) memref;
4919		mstate->dtms_scratch_ptr += scratch_size;
4920		break;
4921	}
4922
4923	case DIF_SUBR_TYPEREF: {
4924		uintptr_t size = 4 * sizeof(uintptr_t);
4925		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4926		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
4927
4928		/* address, num_elements, type_str, type_len */
4929		typeref[0] = tupregs[0].dttk_value;
4930		typeref[1] = tupregs[1].dttk_value;
4931		typeref[2] = tupregs[2].dttk_value;
4932		typeref[3] = tupregs[3].dttk_value;
4933
4934		regs[rd] = (uintptr_t) typeref;
4935		mstate->dtms_scratch_ptr += scratch_size;
4936		break;
4937	}
4938	}
4939}
4940
4941/*
4942 * Emulate the execution of DTrace IR instructions specified by the given
4943 * DIF object.  This function is deliberately void of assertions as all of
4944 * the necessary checks are handled by a call to dtrace_difo_validate().
4945 */
4946static uint64_t
4947dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4948    dtrace_vstate_t *vstate, dtrace_state_t *state)
4949{
4950	const dif_instr_t *text = difo->dtdo_buf;
4951	const uint_t textlen = difo->dtdo_len;
4952	const char *strtab = difo->dtdo_strtab;
4953	const uint64_t *inttab = difo->dtdo_inttab;
4954
4955	uint64_t rval = 0;
4956	dtrace_statvar_t *svar;
4957	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4958	dtrace_difv_t *v;
4959	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4960	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4961
4962	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4963	uint64_t regs[DIF_DIR_NREGS];
4964	uint64_t *tmp;
4965
4966	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4967	int64_t cc_r;
4968	uint_t pc = 0, id, opc = 0;
4969	uint8_t ttop = 0;
4970	dif_instr_t instr;
4971	uint_t r1, r2, rd;
4972
4973	/*
4974	 * We stash the current DIF object into the machine state: we need it
4975	 * for subsequent access checking.
4976	 */
4977	mstate->dtms_difo = difo;
4978
4979	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4980
4981	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4982		opc = pc;
4983
4984		instr = text[pc++];
4985		r1 = DIF_INSTR_R1(instr);
4986		r2 = DIF_INSTR_R2(instr);
4987		rd = DIF_INSTR_RD(instr);
4988
4989		switch (DIF_INSTR_OP(instr)) {
4990		case DIF_OP_OR:
4991			regs[rd] = regs[r1] | regs[r2];
4992			break;
4993		case DIF_OP_XOR:
4994			regs[rd] = regs[r1] ^ regs[r2];
4995			break;
4996		case DIF_OP_AND:
4997			regs[rd] = regs[r1] & regs[r2];
4998			break;
4999		case DIF_OP_SLL:
5000			regs[rd] = regs[r1] << regs[r2];
5001			break;
5002		case DIF_OP_SRL:
5003			regs[rd] = regs[r1] >> regs[r2];
5004			break;
5005		case DIF_OP_SUB:
5006			regs[rd] = regs[r1] - regs[r2];
5007			break;
5008		case DIF_OP_ADD:
5009			regs[rd] = regs[r1] + regs[r2];
5010			break;
5011		case DIF_OP_MUL:
5012			regs[rd] = regs[r1] * regs[r2];
5013			break;
5014		case DIF_OP_SDIV:
5015			if (regs[r2] == 0) {
5016				regs[rd] = 0;
5017				*flags |= CPU_DTRACE_DIVZERO;
5018			} else {
5019				regs[rd] = (int64_t)regs[r1] /
5020				    (int64_t)regs[r2];
5021			}
5022			break;
5023
5024		case DIF_OP_UDIV:
5025			if (regs[r2] == 0) {
5026				regs[rd] = 0;
5027				*flags |= CPU_DTRACE_DIVZERO;
5028			} else {
5029				regs[rd] = regs[r1] / regs[r2];
5030			}
5031			break;
5032
5033		case DIF_OP_SREM:
5034			if (regs[r2] == 0) {
5035				regs[rd] = 0;
5036				*flags |= CPU_DTRACE_DIVZERO;
5037			} else {
5038				regs[rd] = (int64_t)regs[r1] %
5039				    (int64_t)regs[r2];
5040			}
5041			break;
5042
5043		case DIF_OP_UREM:
5044			if (regs[r2] == 0) {
5045				regs[rd] = 0;
5046				*flags |= CPU_DTRACE_DIVZERO;
5047			} else {
5048				regs[rd] = regs[r1] % regs[r2];
5049			}
5050			break;
5051
5052		case DIF_OP_NOT:
5053			regs[rd] = ~regs[r1];
5054			break;
5055		case DIF_OP_MOV:
5056			regs[rd] = regs[r1];
5057			break;
5058		case DIF_OP_CMP:
5059			cc_r = regs[r1] - regs[r2];
5060			cc_n = cc_r < 0;
5061			cc_z = cc_r == 0;
5062			cc_v = 0;
5063			cc_c = regs[r1] < regs[r2];
5064			break;
5065		case DIF_OP_TST:
5066			cc_n = cc_v = cc_c = 0;
5067			cc_z = regs[r1] == 0;
5068			break;
5069		case DIF_OP_BA:
5070			pc = DIF_INSTR_LABEL(instr);
5071			break;
5072		case DIF_OP_BE:
5073			if (cc_z)
5074				pc = DIF_INSTR_LABEL(instr);
5075			break;
5076		case DIF_OP_BNE:
5077			if (cc_z == 0)
5078				pc = DIF_INSTR_LABEL(instr);
5079			break;
5080		case DIF_OP_BG:
5081			if ((cc_z | (cc_n ^ cc_v)) == 0)
5082				pc = DIF_INSTR_LABEL(instr);
5083			break;
5084		case DIF_OP_BGU:
5085			if ((cc_c | cc_z) == 0)
5086				pc = DIF_INSTR_LABEL(instr);
5087			break;
5088		case DIF_OP_BGE:
5089			if ((cc_n ^ cc_v) == 0)
5090				pc = DIF_INSTR_LABEL(instr);
5091			break;
5092		case DIF_OP_BGEU:
5093			if (cc_c == 0)
5094				pc = DIF_INSTR_LABEL(instr);
5095			break;
5096		case DIF_OP_BL:
5097			if (cc_n ^ cc_v)
5098				pc = DIF_INSTR_LABEL(instr);
5099			break;
5100		case DIF_OP_BLU:
5101			if (cc_c)
5102				pc = DIF_INSTR_LABEL(instr);
5103			break;
5104		case DIF_OP_BLE:
5105			if (cc_z | (cc_n ^ cc_v))
5106				pc = DIF_INSTR_LABEL(instr);
5107			break;
5108		case DIF_OP_BLEU:
5109			if (cc_c | cc_z)
5110				pc = DIF_INSTR_LABEL(instr);
5111			break;
5112		case DIF_OP_RLDSB:
5113			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5114				*flags |= CPU_DTRACE_KPRIV;
5115				*illval = regs[r1];
5116				break;
5117			}
5118			/*FALLTHROUGH*/
5119		case DIF_OP_LDSB:
5120			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5121			break;
5122		case DIF_OP_RLDSH:
5123			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5124				*flags |= CPU_DTRACE_KPRIV;
5125				*illval = regs[r1];
5126				break;
5127			}
5128			/*FALLTHROUGH*/
5129		case DIF_OP_LDSH:
5130			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5131			break;
5132		case DIF_OP_RLDSW:
5133			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5134				*flags |= CPU_DTRACE_KPRIV;
5135				*illval = regs[r1];
5136				break;
5137			}
5138			/*FALLTHROUGH*/
5139		case DIF_OP_LDSW:
5140			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5141			break;
5142		case DIF_OP_RLDUB:
5143			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5144				*flags |= CPU_DTRACE_KPRIV;
5145				*illval = regs[r1];
5146				break;
5147			}
5148			/*FALLTHROUGH*/
5149		case DIF_OP_LDUB:
5150			regs[rd] = dtrace_load8(regs[r1]);
5151			break;
5152		case DIF_OP_RLDUH:
5153			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5154				*flags |= CPU_DTRACE_KPRIV;
5155				*illval = regs[r1];
5156				break;
5157			}
5158			/*FALLTHROUGH*/
5159		case DIF_OP_LDUH:
5160			regs[rd] = dtrace_load16(regs[r1]);
5161			break;
5162		case DIF_OP_RLDUW:
5163			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5164				*flags |= CPU_DTRACE_KPRIV;
5165				*illval = regs[r1];
5166				break;
5167			}
5168			/*FALLTHROUGH*/
5169		case DIF_OP_LDUW:
5170			regs[rd] = dtrace_load32(regs[r1]);
5171			break;
5172		case DIF_OP_RLDX:
5173			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
5174				*flags |= CPU_DTRACE_KPRIV;
5175				*illval = regs[r1];
5176				break;
5177			}
5178			/*FALLTHROUGH*/
5179		case DIF_OP_LDX:
5180			regs[rd] = dtrace_load64(regs[r1]);
5181			break;
5182		case DIF_OP_ULDSB:
5183			regs[rd] = (int8_t)
5184			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5185			break;
5186		case DIF_OP_ULDSH:
5187			regs[rd] = (int16_t)
5188			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5189			break;
5190		case DIF_OP_ULDSW:
5191			regs[rd] = (int32_t)
5192			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5193			break;
5194		case DIF_OP_ULDUB:
5195			regs[rd] =
5196			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5197			break;
5198		case DIF_OP_ULDUH:
5199			regs[rd] =
5200			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5201			break;
5202		case DIF_OP_ULDUW:
5203			regs[rd] =
5204			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5205			break;
5206		case DIF_OP_ULDX:
5207			regs[rd] =
5208			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5209			break;
5210		case DIF_OP_RET:
5211			rval = regs[rd];
5212			pc = textlen;
5213			break;
5214		case DIF_OP_NOP:
5215			break;
5216		case DIF_OP_SETX:
5217			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5218			break;
5219		case DIF_OP_SETS:
5220			regs[rd] = (uint64_t)(uintptr_t)
5221			    (strtab + DIF_INSTR_STRING(instr));
5222			break;
5223		case DIF_OP_SCMP: {
5224			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5225			uintptr_t s1 = regs[r1];
5226			uintptr_t s2 = regs[r2];
5227
5228			if (s1 != 0 &&
5229			    !dtrace_strcanload(s1, sz, mstate, vstate))
5230				break;
5231			if (s2 != 0 &&
5232			    !dtrace_strcanload(s2, sz, mstate, vstate))
5233				break;
5234
5235			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5236
5237			cc_n = cc_r < 0;
5238			cc_z = cc_r == 0;
5239			cc_v = cc_c = 0;
5240			break;
5241		}
5242		case DIF_OP_LDGA:
5243			regs[rd] = dtrace_dif_variable(mstate, state,
5244			    r1, regs[r2]);
5245			break;
5246		case DIF_OP_LDGS:
5247			id = DIF_INSTR_VAR(instr);
5248
5249			if (id >= DIF_VAR_OTHER_UBASE) {
5250				uintptr_t a;
5251
5252				id -= DIF_VAR_OTHER_UBASE;
5253				svar = vstate->dtvs_globals[id];
5254				ASSERT(svar != NULL);
5255				v = &svar->dtsv_var;
5256
5257				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5258					regs[rd] = svar->dtsv_data;
5259					break;
5260				}
5261
5262				a = (uintptr_t)svar->dtsv_data;
5263
5264				if (*(uint8_t *)a == UINT8_MAX) {
5265					/*
5266					 * If the 0th byte is set to UINT8_MAX
5267					 * then this is to be treated as a
5268					 * reference to a NULL variable.
5269					 */
5270					regs[rd] = 0;
5271				} else {
5272					regs[rd] = a + sizeof (uint64_t);
5273				}
5274
5275				break;
5276			}
5277
5278			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5279			break;
5280
5281		case DIF_OP_STGS:
5282			id = DIF_INSTR_VAR(instr);
5283
5284			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5285			id -= DIF_VAR_OTHER_UBASE;
5286
5287			svar = vstate->dtvs_globals[id];
5288			ASSERT(svar != NULL);
5289			v = &svar->dtsv_var;
5290
5291			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5292				uintptr_t a = (uintptr_t)svar->dtsv_data;
5293
5294				ASSERT(a != 0);
5295				ASSERT(svar->dtsv_size != 0);
5296
5297				if (regs[rd] == 0) {
5298					*(uint8_t *)a = UINT8_MAX;
5299					break;
5300				} else {
5301					*(uint8_t *)a = 0;
5302					a += sizeof (uint64_t);
5303				}
5304				if (!dtrace_vcanload(
5305				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5306				    mstate, vstate))
5307					break;
5308
5309				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5310				    (void *)a, &v->dtdv_type);
5311				break;
5312			}
5313
5314			svar->dtsv_data = regs[rd];
5315			break;
5316
5317		case DIF_OP_LDTA:
5318			/*
5319			 * There are no DTrace built-in thread-local arrays at
5320			 * present.  This opcode is saved for future work.
5321			 */
5322			*flags |= CPU_DTRACE_ILLOP;
5323			regs[rd] = 0;
5324			break;
5325
5326		case DIF_OP_LDLS:
5327			id = DIF_INSTR_VAR(instr);
5328
5329			if (id < DIF_VAR_OTHER_UBASE) {
5330				/*
5331				 * For now, this has no meaning.
5332				 */
5333				regs[rd] = 0;
5334				break;
5335			}
5336
5337			id -= DIF_VAR_OTHER_UBASE;
5338
5339			ASSERT(id < vstate->dtvs_nlocals);
5340			ASSERT(vstate->dtvs_locals != NULL);
5341
5342			svar = vstate->dtvs_locals[id];
5343			ASSERT(svar != NULL);
5344			v = &svar->dtsv_var;
5345
5346			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5347				uintptr_t a = (uintptr_t)svar->dtsv_data;
5348				size_t sz = v->dtdv_type.dtdt_size;
5349
5350				sz += sizeof (uint64_t);
5351				ASSERT(svar->dtsv_size == NCPU * sz);
5352				a += curcpu * sz;
5353
5354				if (*(uint8_t *)a == UINT8_MAX) {
5355					/*
5356					 * If the 0th byte is set to UINT8_MAX
5357					 * then this is to be treated as a
5358					 * reference to a NULL variable.
5359					 */
5360					regs[rd] = 0;
5361				} else {
5362					regs[rd] = a + sizeof (uint64_t);
5363				}
5364
5365				break;
5366			}
5367
5368			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5369			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5370			regs[rd] = tmp[curcpu];
5371			break;
5372
5373		case DIF_OP_STLS:
5374			id = DIF_INSTR_VAR(instr);
5375
5376			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5377			id -= DIF_VAR_OTHER_UBASE;
5378			ASSERT(id < vstate->dtvs_nlocals);
5379
5380			ASSERT(vstate->dtvs_locals != NULL);
5381			svar = vstate->dtvs_locals[id];
5382			ASSERT(svar != NULL);
5383			v = &svar->dtsv_var;
5384
5385			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5386				uintptr_t a = (uintptr_t)svar->dtsv_data;
5387				size_t sz = v->dtdv_type.dtdt_size;
5388
5389				sz += sizeof (uint64_t);
5390				ASSERT(svar->dtsv_size == NCPU * sz);
5391				a += curcpu * sz;
5392
5393				if (regs[rd] == 0) {
5394					*(uint8_t *)a = UINT8_MAX;
5395					break;
5396				} else {
5397					*(uint8_t *)a = 0;
5398					a += sizeof (uint64_t);
5399				}
5400
5401				if (!dtrace_vcanload(
5402				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5403				    mstate, vstate))
5404					break;
5405
5406				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5407				    (void *)a, &v->dtdv_type);
5408				break;
5409			}
5410
5411			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5412			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5413			tmp[curcpu] = regs[rd];
5414			break;
5415
5416		case DIF_OP_LDTS: {
5417			dtrace_dynvar_t *dvar;
5418			dtrace_key_t *key;
5419
5420			id = DIF_INSTR_VAR(instr);
5421			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5422			id -= DIF_VAR_OTHER_UBASE;
5423			v = &vstate->dtvs_tlocals[id];
5424
5425			key = &tupregs[DIF_DTR_NREGS];
5426			key[0].dttk_value = (uint64_t)id;
5427			key[0].dttk_size = 0;
5428			DTRACE_TLS_THRKEY(key[1].dttk_value);
5429			key[1].dttk_size = 0;
5430
5431			dvar = dtrace_dynvar(dstate, 2, key,
5432			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5433			    mstate, vstate);
5434
5435			if (dvar == NULL) {
5436				regs[rd] = 0;
5437				break;
5438			}
5439
5440			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5441				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5442			} else {
5443				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5444			}
5445
5446			break;
5447		}
5448
5449		case DIF_OP_STTS: {
5450			dtrace_dynvar_t *dvar;
5451			dtrace_key_t *key;
5452
5453			id = DIF_INSTR_VAR(instr);
5454			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5455			id -= DIF_VAR_OTHER_UBASE;
5456
5457			key = &tupregs[DIF_DTR_NREGS];
5458			key[0].dttk_value = (uint64_t)id;
5459			key[0].dttk_size = 0;
5460			DTRACE_TLS_THRKEY(key[1].dttk_value);
5461			key[1].dttk_size = 0;
5462			v = &vstate->dtvs_tlocals[id];
5463
5464			dvar = dtrace_dynvar(dstate, 2, key,
5465			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5466			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5467			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5468			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5469
5470			/*
5471			 * Given that we're storing to thread-local data,
5472			 * we need to flush our predicate cache.
5473			 */
5474			curthread->t_predcache = 0;
5475
5476			if (dvar == NULL)
5477				break;
5478
5479			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5480				if (!dtrace_vcanload(
5481				    (void *)(uintptr_t)regs[rd],
5482				    &v->dtdv_type, mstate, vstate))
5483					break;
5484
5485				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5486				    dvar->dtdv_data, &v->dtdv_type);
5487			} else {
5488				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5489			}
5490
5491			break;
5492		}
5493
5494		case DIF_OP_SRA:
5495			regs[rd] = (int64_t)regs[r1] >> regs[r2];
5496			break;
5497
5498		case DIF_OP_CALL:
5499			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5500			    regs, tupregs, ttop, mstate, state);
5501			break;
5502
5503		case DIF_OP_PUSHTR:
5504			if (ttop == DIF_DTR_NREGS) {
5505				*flags |= CPU_DTRACE_TUPOFLOW;
5506				break;
5507			}
5508
5509			if (r1 == DIF_TYPE_STRING) {
5510				/*
5511				 * If this is a string type and the size is 0,
5512				 * we'll use the system-wide default string
5513				 * size.  Note that we are _not_ looking at
5514				 * the value of the DTRACEOPT_STRSIZE option;
5515				 * had this been set, we would expect to have
5516				 * a non-zero size value in the "pushtr".
5517				 */
5518				tupregs[ttop].dttk_size =
5519				    dtrace_strlen((char *)(uintptr_t)regs[rd],
5520				    regs[r2] ? regs[r2] :
5521				    dtrace_strsize_default) + 1;
5522			} else {
5523				tupregs[ttop].dttk_size = regs[r2];
5524			}
5525
5526			tupregs[ttop++].dttk_value = regs[rd];
5527			break;
5528
5529		case DIF_OP_PUSHTV:
5530			if (ttop == DIF_DTR_NREGS) {
5531				*flags |= CPU_DTRACE_TUPOFLOW;
5532				break;
5533			}
5534
5535			tupregs[ttop].dttk_value = regs[rd];
5536			tupregs[ttop++].dttk_size = 0;
5537			break;
5538
5539		case DIF_OP_POPTS:
5540			if (ttop != 0)
5541				ttop--;
5542			break;
5543
5544		case DIF_OP_FLUSHTS:
5545			ttop = 0;
5546			break;
5547
5548		case DIF_OP_LDGAA:
5549		case DIF_OP_LDTAA: {
5550			dtrace_dynvar_t *dvar;
5551			dtrace_key_t *key = tupregs;
5552			uint_t nkeys = ttop;
5553
5554			id = DIF_INSTR_VAR(instr);
5555			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5556			id -= DIF_VAR_OTHER_UBASE;
5557
5558			key[nkeys].dttk_value = (uint64_t)id;
5559			key[nkeys++].dttk_size = 0;
5560
5561			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5562				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5563				key[nkeys++].dttk_size = 0;
5564				v = &vstate->dtvs_tlocals[id];
5565			} else {
5566				v = &vstate->dtvs_globals[id]->dtsv_var;
5567			}
5568
5569			dvar = dtrace_dynvar(dstate, nkeys, key,
5570			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5571			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5572			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5573
5574			if (dvar == NULL) {
5575				regs[rd] = 0;
5576				break;
5577			}
5578
5579			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5580				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5581			} else {
5582				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5583			}
5584
5585			break;
5586		}
5587
5588		case DIF_OP_STGAA:
5589		case DIF_OP_STTAA: {
5590			dtrace_dynvar_t *dvar;
5591			dtrace_key_t *key = tupregs;
5592			uint_t nkeys = ttop;
5593
5594			id = DIF_INSTR_VAR(instr);
5595			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5596			id -= DIF_VAR_OTHER_UBASE;
5597
5598			key[nkeys].dttk_value = (uint64_t)id;
5599			key[nkeys++].dttk_size = 0;
5600
5601			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5602				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5603				key[nkeys++].dttk_size = 0;
5604				v = &vstate->dtvs_tlocals[id];
5605			} else {
5606				v = &vstate->dtvs_globals[id]->dtsv_var;
5607			}
5608
5609			dvar = dtrace_dynvar(dstate, nkeys, key,
5610			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5611			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5612			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5613			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5614
5615			if (dvar == NULL)
5616				break;
5617
5618			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5619				if (!dtrace_vcanload(
5620				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5621				    mstate, vstate))
5622					break;
5623
5624				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5625				    dvar->dtdv_data, &v->dtdv_type);
5626			} else {
5627				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5628			}
5629
5630			break;
5631		}
5632
5633		case DIF_OP_ALLOCS: {
5634			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5635			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5636
5637			/*
5638			 * Rounding up the user allocation size could have
5639			 * overflowed large, bogus allocations (like -1ULL) to
5640			 * 0.
5641			 */
5642			if (size < regs[r1] ||
5643			    !DTRACE_INSCRATCH(mstate, size)) {
5644				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5645				regs[rd] = 0;
5646				break;
5647			}
5648
5649			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5650			mstate->dtms_scratch_ptr += size;
5651			regs[rd] = ptr;
5652			break;
5653		}
5654
5655		case DIF_OP_COPYS:
5656			if (!dtrace_canstore(regs[rd], regs[r2],
5657			    mstate, vstate)) {
5658				*flags |= CPU_DTRACE_BADADDR;
5659				*illval = regs[rd];
5660				break;
5661			}
5662
5663			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5664				break;
5665
5666			dtrace_bcopy((void *)(uintptr_t)regs[r1],
5667			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5668			break;
5669
5670		case DIF_OP_STB:
5671			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5672				*flags |= CPU_DTRACE_BADADDR;
5673				*illval = regs[rd];
5674				break;
5675			}
5676			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5677			break;
5678
5679		case DIF_OP_STH:
5680			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5681				*flags |= CPU_DTRACE_BADADDR;
5682				*illval = regs[rd];
5683				break;
5684			}
5685			if (regs[rd] & 1) {
5686				*flags |= CPU_DTRACE_BADALIGN;
5687				*illval = regs[rd];
5688				break;
5689			}
5690			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5691			break;
5692
5693		case DIF_OP_STW:
5694			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5695				*flags |= CPU_DTRACE_BADADDR;
5696				*illval = regs[rd];
5697				break;
5698			}
5699			if (regs[rd] & 3) {
5700				*flags |= CPU_DTRACE_BADALIGN;
5701				*illval = regs[rd];
5702				break;
5703			}
5704			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5705			break;
5706
5707		case DIF_OP_STX:
5708			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5709				*flags |= CPU_DTRACE_BADADDR;
5710				*illval = regs[rd];
5711				break;
5712			}
5713			if (regs[rd] & 7) {
5714				*flags |= CPU_DTRACE_BADALIGN;
5715				*illval = regs[rd];
5716				break;
5717			}
5718			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5719			break;
5720		}
5721	}
5722
5723	if (!(*flags & CPU_DTRACE_FAULT))
5724		return (rval);
5725
5726	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5727	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5728
5729	return (0);
5730}
5731
5732static void
5733dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5734{
5735	dtrace_probe_t *probe = ecb->dte_probe;
5736	dtrace_provider_t *prov = probe->dtpr_provider;
5737	char c[DTRACE_FULLNAMELEN + 80], *str;
5738	char *msg = "dtrace: breakpoint action at probe ";
5739	char *ecbmsg = " (ecb ";
5740	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5741	uintptr_t val = (uintptr_t)ecb;
5742	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5743
5744	if (dtrace_destructive_disallow)
5745		return;
5746
5747	/*
5748	 * It's impossible to be taking action on the NULL probe.
5749	 */
5750	ASSERT(probe != NULL);
5751
5752	/*
5753	 * This is a poor man's (destitute man's?) sprintf():  we want to
5754	 * print the provider name, module name, function name and name of
5755	 * the probe, along with the hex address of the ECB with the breakpoint
5756	 * action -- all of which we must place in the character buffer by
5757	 * hand.
5758	 */
5759	while (*msg != '\0')
5760		c[i++] = *msg++;
5761
5762	for (str = prov->dtpv_name; *str != '\0'; str++)
5763		c[i++] = *str;
5764	c[i++] = ':';
5765
5766	for (str = probe->dtpr_mod; *str != '\0'; str++)
5767		c[i++] = *str;
5768	c[i++] = ':';
5769
5770	for (str = probe->dtpr_func; *str != '\0'; str++)
5771		c[i++] = *str;
5772	c[i++] = ':';
5773
5774	for (str = probe->dtpr_name; *str != '\0'; str++)
5775		c[i++] = *str;
5776
5777	while (*ecbmsg != '\0')
5778		c[i++] = *ecbmsg++;
5779
5780	while (shift >= 0) {
5781		mask = (uintptr_t)0xf << shift;
5782
5783		if (val >= ((uintptr_t)1 << shift))
5784			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5785		shift -= 4;
5786	}
5787
5788	c[i++] = ')';
5789	c[i] = '\0';
5790
5791#if defined(sun)
5792	debug_enter(c);
5793#else
5794	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
5795#endif
5796}
5797
5798static void
5799dtrace_action_panic(dtrace_ecb_t *ecb)
5800{
5801	dtrace_probe_t *probe = ecb->dte_probe;
5802
5803	/*
5804	 * It's impossible to be taking action on the NULL probe.
5805	 */
5806	ASSERT(probe != NULL);
5807
5808	if (dtrace_destructive_disallow)
5809		return;
5810
5811	if (dtrace_panicked != NULL)
5812		return;
5813
5814	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5815		return;
5816
5817	/*
5818	 * We won the right to panic.  (We want to be sure that only one
5819	 * thread calls panic() from dtrace_probe(), and that panic() is
5820	 * called exactly once.)
5821	 */
5822	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5823	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5824	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5825}
5826
5827static void
5828dtrace_action_raise(uint64_t sig)
5829{
5830	if (dtrace_destructive_disallow)
5831		return;
5832
5833	if (sig >= NSIG) {
5834		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5835		return;
5836	}
5837
5838#if defined(sun)
5839	/*
5840	 * raise() has a queue depth of 1 -- we ignore all subsequent
5841	 * invocations of the raise() action.
5842	 */
5843	if (curthread->t_dtrace_sig == 0)
5844		curthread->t_dtrace_sig = (uint8_t)sig;
5845
5846	curthread->t_sig_check = 1;
5847	aston(curthread);
5848#else
5849	struct proc *p = curproc;
5850	PROC_LOCK(p);
5851	kern_psignal(p, sig);
5852	PROC_UNLOCK(p);
5853#endif
5854}
5855
5856static void
5857dtrace_action_stop(void)
5858{
5859	if (dtrace_destructive_disallow)
5860		return;
5861
5862#if defined(sun)
5863	if (!curthread->t_dtrace_stop) {
5864		curthread->t_dtrace_stop = 1;
5865		curthread->t_sig_check = 1;
5866		aston(curthread);
5867	}
5868#else
5869	struct proc *p = curproc;
5870	PROC_LOCK(p);
5871	kern_psignal(p, SIGSTOP);
5872	PROC_UNLOCK(p);
5873#endif
5874}
5875
5876static void
5877dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5878{
5879	hrtime_t now;
5880	volatile uint16_t *flags;
5881#if defined(sun)
5882	cpu_t *cpu = CPU;
5883#else
5884	cpu_t *cpu = &solaris_cpu[curcpu];
5885#endif
5886
5887	if (dtrace_destructive_disallow)
5888		return;
5889
5890	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5891
5892	now = dtrace_gethrtime();
5893
5894	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5895		/*
5896		 * We need to advance the mark to the current time.
5897		 */
5898		cpu->cpu_dtrace_chillmark = now;
5899		cpu->cpu_dtrace_chilled = 0;
5900	}
5901
5902	/*
5903	 * Now check to see if the requested chill time would take us over
5904	 * the maximum amount of time allowed in the chill interval.  (Or
5905	 * worse, if the calculation itself induces overflow.)
5906	 */
5907	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5908	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5909		*flags |= CPU_DTRACE_ILLOP;
5910		return;
5911	}
5912
5913	while (dtrace_gethrtime() - now < val)
5914		continue;
5915
5916	/*
5917	 * Normally, we assure that the value of the variable "timestamp" does
5918	 * not change within an ECB.  The presence of chill() represents an
5919	 * exception to this rule, however.
5920	 */
5921	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5922	cpu->cpu_dtrace_chilled += val;
5923}
5924
5925static void
5926dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5927    uint64_t *buf, uint64_t arg)
5928{
5929	int nframes = DTRACE_USTACK_NFRAMES(arg);
5930	int strsize = DTRACE_USTACK_STRSIZE(arg);
5931	uint64_t *pcs = &buf[1], *fps;
5932	char *str = (char *)&pcs[nframes];
5933	int size, offs = 0, i, j;
5934	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5935	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5936	char *sym;
5937
5938	/*
5939	 * Should be taking a faster path if string space has not been
5940	 * allocated.
5941	 */
5942	ASSERT(strsize != 0);
5943
5944	/*
5945	 * We will first allocate some temporary space for the frame pointers.
5946	 */
5947	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5948	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5949	    (nframes * sizeof (uint64_t));
5950
5951	if (!DTRACE_INSCRATCH(mstate, size)) {
5952		/*
5953		 * Not enough room for our frame pointers -- need to indicate
5954		 * that we ran out of scratch space.
5955		 */
5956		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5957		return;
5958	}
5959
5960	mstate->dtms_scratch_ptr += size;
5961	saved = mstate->dtms_scratch_ptr;
5962
5963	/*
5964	 * Now get a stack with both program counters and frame pointers.
5965	 */
5966	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5967	dtrace_getufpstack(buf, fps, nframes + 1);
5968	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5969
5970	/*
5971	 * If that faulted, we're cooked.
5972	 */
5973	if (*flags & CPU_DTRACE_FAULT)
5974		goto out;
5975
5976	/*
5977	 * Now we want to walk up the stack, calling the USTACK helper.  For
5978	 * each iteration, we restore the scratch pointer.
5979	 */
5980	for (i = 0; i < nframes; i++) {
5981		mstate->dtms_scratch_ptr = saved;
5982
5983		if (offs >= strsize)
5984			break;
5985
5986		sym = (char *)(uintptr_t)dtrace_helper(
5987		    DTRACE_HELPER_ACTION_USTACK,
5988		    mstate, state, pcs[i], fps[i]);
5989
5990		/*
5991		 * If we faulted while running the helper, we're going to
5992		 * clear the fault and null out the corresponding string.
5993		 */
5994		if (*flags & CPU_DTRACE_FAULT) {
5995			*flags &= ~CPU_DTRACE_FAULT;
5996			str[offs++] = '\0';
5997			continue;
5998		}
5999
6000		if (sym == NULL) {
6001			str[offs++] = '\0';
6002			continue;
6003		}
6004
6005		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6006
6007		/*
6008		 * Now copy in the string that the helper returned to us.
6009		 */
6010		for (j = 0; offs + j < strsize; j++) {
6011			if ((str[offs + j] = sym[j]) == '\0')
6012				break;
6013		}
6014
6015		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6016
6017		offs += j + 1;
6018	}
6019
6020	if (offs >= strsize) {
6021		/*
6022		 * If we didn't have room for all of the strings, we don't
6023		 * abort processing -- this needn't be a fatal error -- but we
6024		 * still want to increment a counter (dts_stkstroverflows) to
6025		 * allow this condition to be warned about.  (If this is from
6026		 * a jstack() action, it is easily tuned via jstackstrsize.)
6027		 */
6028		dtrace_error(&state->dts_stkstroverflows);
6029	}
6030
6031	while (offs < strsize)
6032		str[offs++] = '\0';
6033
6034out:
6035	mstate->dtms_scratch_ptr = old;
6036}
6037
6038/*
6039 * If you're looking for the epicenter of DTrace, you just found it.  This
6040 * is the function called by the provider to fire a probe -- from which all
6041 * subsequent probe-context DTrace activity emanates.
6042 */
6043void
6044dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
6045    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6046{
6047	processorid_t cpuid;
6048	dtrace_icookie_t cookie;
6049	dtrace_probe_t *probe;
6050	dtrace_mstate_t mstate;
6051	dtrace_ecb_t *ecb;
6052	dtrace_action_t *act;
6053	intptr_t offs;
6054	size_t size;
6055	int vtime, onintr;
6056	volatile uint16_t *flags;
6057	hrtime_t now;
6058
6059	if (panicstr != NULL)
6060		return;
6061
6062#if defined(sun)
6063	/*
6064	 * Kick out immediately if this CPU is still being born (in which case
6065	 * curthread will be set to -1) or the current thread can't allow
6066	 * probes in its current context.
6067	 */
6068	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6069		return;
6070#endif
6071
6072	cookie = dtrace_interrupt_disable();
6073	probe = dtrace_probes[id - 1];
6074	cpuid = curcpu;
6075	onintr = CPU_ON_INTR(CPU);
6076
6077	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6078	    probe->dtpr_predcache == curthread->t_predcache) {
6079		/*
6080		 * We have hit in the predicate cache; we know that
6081		 * this predicate would evaluate to be false.
6082		 */
6083		dtrace_interrupt_enable(cookie);
6084		return;
6085	}
6086
6087#if defined(sun)
6088	if (panic_quiesce) {
6089#else
6090	if (panicstr != NULL) {
6091#endif
6092		/*
6093		 * We don't trace anything if we're panicking.
6094		 */
6095		dtrace_interrupt_enable(cookie);
6096		return;
6097	}
6098
6099	now = dtrace_gethrtime();
6100	vtime = dtrace_vtime_references != 0;
6101
6102	if (vtime && curthread->t_dtrace_start)
6103		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6104
6105	mstate.dtms_difo = NULL;
6106	mstate.dtms_probe = probe;
6107	mstate.dtms_strtok = 0;
6108	mstate.dtms_arg[0] = arg0;
6109	mstate.dtms_arg[1] = arg1;
6110	mstate.dtms_arg[2] = arg2;
6111	mstate.dtms_arg[3] = arg3;
6112	mstate.dtms_arg[4] = arg4;
6113
6114	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6115
6116	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6117		dtrace_predicate_t *pred = ecb->dte_predicate;
6118		dtrace_state_t *state = ecb->dte_state;
6119		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6120		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6121		dtrace_vstate_t *vstate = &state->dts_vstate;
6122		dtrace_provider_t *prov = probe->dtpr_provider;
6123		uint64_t tracememsize = 0;
6124		int committed = 0;
6125		caddr_t tomax;
6126
6127		/*
6128		 * A little subtlety with the following (seemingly innocuous)
6129		 * declaration of the automatic 'val':  by looking at the
6130		 * code, you might think that it could be declared in the
6131		 * action processing loop, below.  (That is, it's only used in
6132		 * the action processing loop.)  However, it must be declared
6133		 * out of that scope because in the case of DIF expression
6134		 * arguments to aggregating actions, one iteration of the
6135		 * action loop will use the last iteration's value.
6136		 */
6137		uint64_t val = 0;
6138
6139		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6140		*flags &= ~CPU_DTRACE_ERROR;
6141
6142		if (prov == dtrace_provider) {
6143			/*
6144			 * If dtrace itself is the provider of this probe,
6145			 * we're only going to continue processing the ECB if
6146			 * arg0 (the dtrace_state_t) is equal to the ECB's
6147			 * creating state.  (This prevents disjoint consumers
6148			 * from seeing one another's metaprobes.)
6149			 */
6150			if (arg0 != (uint64_t)(uintptr_t)state)
6151				continue;
6152		}
6153
6154		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6155			/*
6156			 * We're not currently active.  If our provider isn't
6157			 * the dtrace pseudo provider, we're not interested.
6158			 */
6159			if (prov != dtrace_provider)
6160				continue;
6161
6162			/*
6163			 * Now we must further check if we are in the BEGIN
6164			 * probe.  If we are, we will only continue processing
6165			 * if we're still in WARMUP -- if one BEGIN enabling
6166			 * has invoked the exit() action, we don't want to
6167			 * evaluate subsequent BEGIN enablings.
6168			 */
6169			if (probe->dtpr_id == dtrace_probeid_begin &&
6170			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6171				ASSERT(state->dts_activity ==
6172				    DTRACE_ACTIVITY_DRAINING);
6173				continue;
6174			}
6175		}
6176
6177		if (ecb->dte_cond) {
6178			/*
6179			 * If the dte_cond bits indicate that this
6180			 * consumer is only allowed to see user-mode firings
6181			 * of this probe, call the provider's dtps_usermode()
6182			 * entry point to check that the probe was fired
6183			 * while in a user context. Skip this ECB if that's
6184			 * not the case.
6185			 */
6186			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
6187			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
6188			    probe->dtpr_id, probe->dtpr_arg) == 0)
6189				continue;
6190
6191#if defined(sun)
6192			/*
6193			 * This is more subtle than it looks. We have to be
6194			 * absolutely certain that CRED() isn't going to
6195			 * change out from under us so it's only legit to
6196			 * examine that structure if we're in constrained
6197			 * situations. Currently, the only times we'll this
6198			 * check is if a non-super-user has enabled the
6199			 * profile or syscall providers -- providers that
6200			 * allow visibility of all processes. For the
6201			 * profile case, the check above will ensure that
6202			 * we're examining a user context.
6203			 */
6204			if (ecb->dte_cond & DTRACE_COND_OWNER) {
6205				cred_t *cr;
6206				cred_t *s_cr =
6207				    ecb->dte_state->dts_cred.dcr_cred;
6208				proc_t *proc;
6209
6210				ASSERT(s_cr != NULL);
6211
6212				if ((cr = CRED()) == NULL ||
6213				    s_cr->cr_uid != cr->cr_uid ||
6214				    s_cr->cr_uid != cr->cr_ruid ||
6215				    s_cr->cr_uid != cr->cr_suid ||
6216				    s_cr->cr_gid != cr->cr_gid ||
6217				    s_cr->cr_gid != cr->cr_rgid ||
6218				    s_cr->cr_gid != cr->cr_sgid ||
6219				    (proc = ttoproc(curthread)) == NULL ||
6220				    (proc->p_flag & SNOCD))
6221					continue;
6222			}
6223
6224			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6225				cred_t *cr;
6226				cred_t *s_cr =
6227				    ecb->dte_state->dts_cred.dcr_cred;
6228
6229				ASSERT(s_cr != NULL);
6230
6231				if ((cr = CRED()) == NULL ||
6232				    s_cr->cr_zone->zone_id !=
6233				    cr->cr_zone->zone_id)
6234					continue;
6235			}
6236#endif
6237		}
6238
6239		if (now - state->dts_alive > dtrace_deadman_timeout) {
6240			/*
6241			 * We seem to be dead.  Unless we (a) have kernel
6242			 * destructive permissions (b) have explicitly enabled
6243			 * destructive actions and (c) destructive actions have
6244			 * not been disabled, we're going to transition into
6245			 * the KILLED state, from which no further processing
6246			 * on this state will be performed.
6247			 */
6248			if (!dtrace_priv_kernel_destructive(state) ||
6249			    !state->dts_cred.dcr_destructive ||
6250			    dtrace_destructive_disallow) {
6251				void *activity = &state->dts_activity;
6252				dtrace_activity_t current;
6253
6254				do {
6255					current = state->dts_activity;
6256				} while (dtrace_cas32(activity, current,
6257				    DTRACE_ACTIVITY_KILLED) != current);
6258
6259				continue;
6260			}
6261		}
6262
6263		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6264		    ecb->dte_alignment, state, &mstate)) < 0)
6265			continue;
6266
6267		tomax = buf->dtb_tomax;
6268		ASSERT(tomax != NULL);
6269
6270		if (ecb->dte_size != 0) {
6271			dtrace_rechdr_t dtrh;
6272			if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
6273				mstate.dtms_timestamp = dtrace_gethrtime();
6274				mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
6275			}
6276			ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
6277			dtrh.dtrh_epid = ecb->dte_epid;
6278			DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
6279			    mstate.dtms_timestamp);
6280			*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
6281		}
6282
6283		mstate.dtms_epid = ecb->dte_epid;
6284		mstate.dtms_present |= DTRACE_MSTATE_EPID;
6285
6286		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6287			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6288		else
6289			mstate.dtms_access = 0;
6290
6291		if (pred != NULL) {
6292			dtrace_difo_t *dp = pred->dtp_difo;
6293			int rval;
6294
6295			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6296
6297			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6298				dtrace_cacheid_t cid = probe->dtpr_predcache;
6299
6300				if (cid != DTRACE_CACHEIDNONE && !onintr) {
6301					/*
6302					 * Update the predicate cache...
6303					 */
6304					ASSERT(cid == pred->dtp_cacheid);
6305					curthread->t_predcache = cid;
6306				}
6307
6308				continue;
6309			}
6310		}
6311
6312		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6313		    act != NULL; act = act->dta_next) {
6314			size_t valoffs;
6315			dtrace_difo_t *dp;
6316			dtrace_recdesc_t *rec = &act->dta_rec;
6317
6318			size = rec->dtrd_size;
6319			valoffs = offs + rec->dtrd_offset;
6320
6321			if (DTRACEACT_ISAGG(act->dta_kind)) {
6322				uint64_t v = 0xbad;
6323				dtrace_aggregation_t *agg;
6324
6325				agg = (dtrace_aggregation_t *)act;
6326
6327				if ((dp = act->dta_difo) != NULL)
6328					v = dtrace_dif_emulate(dp,
6329					    &mstate, vstate, state);
6330
6331				if (*flags & CPU_DTRACE_ERROR)
6332					continue;
6333
6334				/*
6335				 * Note that we always pass the expression
6336				 * value from the previous iteration of the
6337				 * action loop.  This value will only be used
6338				 * if there is an expression argument to the
6339				 * aggregating action, denoted by the
6340				 * dtag_hasarg field.
6341				 */
6342				dtrace_aggregate(agg, buf,
6343				    offs, aggbuf, v, val);
6344				continue;
6345			}
6346
6347			switch (act->dta_kind) {
6348			case DTRACEACT_STOP:
6349				if (dtrace_priv_proc_destructive(state))
6350					dtrace_action_stop();
6351				continue;
6352
6353			case DTRACEACT_BREAKPOINT:
6354				if (dtrace_priv_kernel_destructive(state))
6355					dtrace_action_breakpoint(ecb);
6356				continue;
6357
6358			case DTRACEACT_PANIC:
6359				if (dtrace_priv_kernel_destructive(state))
6360					dtrace_action_panic(ecb);
6361				continue;
6362
6363			case DTRACEACT_STACK:
6364				if (!dtrace_priv_kernel(state))
6365					continue;
6366
6367				dtrace_getpcstack((pc_t *)(tomax + valoffs),
6368				    size / sizeof (pc_t), probe->dtpr_aframes,
6369				    DTRACE_ANCHORED(probe) ? NULL :
6370				    (uint32_t *)arg0);
6371				continue;
6372
6373			case DTRACEACT_JSTACK:
6374			case DTRACEACT_USTACK:
6375				if (!dtrace_priv_proc(state))
6376					continue;
6377
6378				/*
6379				 * See comment in DIF_VAR_PID.
6380				 */
6381				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6382				    CPU_ON_INTR(CPU)) {
6383					int depth = DTRACE_USTACK_NFRAMES(
6384					    rec->dtrd_arg) + 1;
6385
6386					dtrace_bzero((void *)(tomax + valoffs),
6387					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6388					    + depth * sizeof (uint64_t));
6389
6390					continue;
6391				}
6392
6393				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6394				    curproc->p_dtrace_helpers != NULL) {
6395					/*
6396					 * This is the slow path -- we have
6397					 * allocated string space, and we're
6398					 * getting the stack of a process that
6399					 * has helpers.  Call into a separate
6400					 * routine to perform this processing.
6401					 */
6402					dtrace_action_ustack(&mstate, state,
6403					    (uint64_t *)(tomax + valoffs),
6404					    rec->dtrd_arg);
6405					continue;
6406				}
6407
6408				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6409				dtrace_getupcstack((uint64_t *)
6410				    (tomax + valoffs),
6411				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6412				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6413				continue;
6414
6415			default:
6416				break;
6417			}
6418
6419			dp = act->dta_difo;
6420			ASSERT(dp != NULL);
6421
6422			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6423
6424			if (*flags & CPU_DTRACE_ERROR)
6425				continue;
6426
6427			switch (act->dta_kind) {
6428			case DTRACEACT_SPECULATE: {
6429				dtrace_rechdr_t *dtrh;
6430
6431				ASSERT(buf == &state->dts_buffer[cpuid]);
6432				buf = dtrace_speculation_buffer(state,
6433				    cpuid, val);
6434
6435				if (buf == NULL) {
6436					*flags |= CPU_DTRACE_DROP;
6437					continue;
6438				}
6439
6440				offs = dtrace_buffer_reserve(buf,
6441				    ecb->dte_needed, ecb->dte_alignment,
6442				    state, NULL);
6443
6444				if (offs < 0) {
6445					*flags |= CPU_DTRACE_DROP;
6446					continue;
6447				}
6448
6449				tomax = buf->dtb_tomax;
6450				ASSERT(tomax != NULL);
6451
6452				if (ecb->dte_size == 0)
6453					continue;
6454
6455				ASSERT3U(ecb->dte_size, >=,
6456				    sizeof (dtrace_rechdr_t));
6457				dtrh = ((void *)(tomax + offs));
6458				dtrh->dtrh_epid = ecb->dte_epid;
6459				/*
6460				 * When the speculation is committed, all of
6461				 * the records in the speculative buffer will
6462				 * have their timestamps set to the commit
6463				 * time.  Until then, it is set to a sentinel
6464				 * value, for debugability.
6465				 */
6466				DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
6467				continue;
6468			}
6469
6470			case DTRACEACT_PRINTM: {
6471				/* The DIF returns a 'memref'. */
6472				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
6473
6474				/* Get the size from the memref. */
6475				size = memref[1];
6476
6477				/*
6478				 * Check if the size exceeds the allocated
6479				 * buffer size.
6480				 */
6481				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6482					/* Flag a drop! */
6483					*flags |= CPU_DTRACE_DROP;
6484					continue;
6485				}
6486
6487				/* Store the size in the buffer first. */
6488				DTRACE_STORE(uintptr_t, tomax,
6489				    valoffs, size);
6490
6491				/*
6492				 * Offset the buffer address to the start
6493				 * of the data.
6494				 */
6495				valoffs += sizeof(uintptr_t);
6496
6497				/*
6498				 * Reset to the memory address rather than
6499				 * the memref array, then let the BYREF
6500				 * code below do the work to store the
6501				 * memory data in the buffer.
6502				 */
6503				val = memref[0];
6504				break;
6505			}
6506
6507			case DTRACEACT_PRINTT: {
6508				/* The DIF returns a 'typeref'. */
6509				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
6510				char c = '\0' + 1;
6511				size_t s;
6512
6513				/*
6514				 * Get the type string length and round it
6515				 * up so that the data that follows is
6516				 * aligned for easy access.
6517				 */
6518				size_t typs = strlen((char *) typeref[2]) + 1;
6519				typs = roundup(typs,  sizeof(uintptr_t));
6520
6521				/*
6522				 *Get the size from the typeref using the
6523				 * number of elements and the type size.
6524				 */
6525				size = typeref[1] * typeref[3];
6526
6527				/*
6528				 * Check if the size exceeds the allocated
6529				 * buffer size.
6530				 */
6531				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6532					/* Flag a drop! */
6533					*flags |= CPU_DTRACE_DROP;
6534
6535				}
6536
6537				/* Store the size in the buffer first. */
6538				DTRACE_STORE(uintptr_t, tomax,
6539				    valoffs, size);
6540				valoffs += sizeof(uintptr_t);
6541
6542				/* Store the type size in the buffer. */
6543				DTRACE_STORE(uintptr_t, tomax,
6544				    valoffs, typeref[3]);
6545				valoffs += sizeof(uintptr_t);
6546
6547				val = typeref[2];
6548
6549				for (s = 0; s < typs; s++) {
6550					if (c != '\0')
6551						c = dtrace_load8(val++);
6552
6553					DTRACE_STORE(uint8_t, tomax,
6554					    valoffs++, c);
6555				}
6556
6557				/*
6558				 * Reset to the memory address rather than
6559				 * the typeref array, then let the BYREF
6560				 * code below do the work to store the
6561				 * memory data in the buffer.
6562				 */
6563				val = typeref[0];
6564				break;
6565			}
6566
6567			case DTRACEACT_CHILL:
6568				if (dtrace_priv_kernel_destructive(state))
6569					dtrace_action_chill(&mstate, val);
6570				continue;
6571
6572			case DTRACEACT_RAISE:
6573				if (dtrace_priv_proc_destructive(state))
6574					dtrace_action_raise(val);
6575				continue;
6576
6577			case DTRACEACT_COMMIT:
6578				ASSERT(!committed);
6579
6580				/*
6581				 * We need to commit our buffer state.
6582				 */
6583				if (ecb->dte_size)
6584					buf->dtb_offset = offs + ecb->dte_size;
6585				buf = &state->dts_buffer[cpuid];
6586				dtrace_speculation_commit(state, cpuid, val);
6587				committed = 1;
6588				continue;
6589
6590			case DTRACEACT_DISCARD:
6591				dtrace_speculation_discard(state, cpuid, val);
6592				continue;
6593
6594			case DTRACEACT_DIFEXPR:
6595			case DTRACEACT_LIBACT:
6596			case DTRACEACT_PRINTF:
6597			case DTRACEACT_PRINTA:
6598			case DTRACEACT_SYSTEM:
6599			case DTRACEACT_FREOPEN:
6600			case DTRACEACT_TRACEMEM:
6601				break;
6602
6603			case DTRACEACT_TRACEMEM_DYNSIZE:
6604				tracememsize = val;
6605				break;
6606
6607			case DTRACEACT_SYM:
6608			case DTRACEACT_MOD:
6609				if (!dtrace_priv_kernel(state))
6610					continue;
6611				break;
6612
6613			case DTRACEACT_USYM:
6614			case DTRACEACT_UMOD:
6615			case DTRACEACT_UADDR: {
6616#if defined(sun)
6617				struct pid *pid = curthread->t_procp->p_pidp;
6618#endif
6619
6620				if (!dtrace_priv_proc(state))
6621					continue;
6622
6623				DTRACE_STORE(uint64_t, tomax,
6624#if defined(sun)
6625				    valoffs, (uint64_t)pid->pid_id);
6626#else
6627				    valoffs, (uint64_t) curproc->p_pid);
6628#endif
6629				DTRACE_STORE(uint64_t, tomax,
6630				    valoffs + sizeof (uint64_t), val);
6631
6632				continue;
6633			}
6634
6635			case DTRACEACT_EXIT: {
6636				/*
6637				 * For the exit action, we are going to attempt
6638				 * to atomically set our activity to be
6639				 * draining.  If this fails (either because
6640				 * another CPU has beat us to the exit action,
6641				 * or because our current activity is something
6642				 * other than ACTIVE or WARMUP), we will
6643				 * continue.  This assures that the exit action
6644				 * can be successfully recorded at most once
6645				 * when we're in the ACTIVE state.  If we're
6646				 * encountering the exit() action while in
6647				 * COOLDOWN, however, we want to honor the new
6648				 * status code.  (We know that we're the only
6649				 * thread in COOLDOWN, so there is no race.)
6650				 */
6651				void *activity = &state->dts_activity;
6652				dtrace_activity_t current = state->dts_activity;
6653
6654				if (current == DTRACE_ACTIVITY_COOLDOWN)
6655					break;
6656
6657				if (current != DTRACE_ACTIVITY_WARMUP)
6658					current = DTRACE_ACTIVITY_ACTIVE;
6659
6660				if (dtrace_cas32(activity, current,
6661				    DTRACE_ACTIVITY_DRAINING) != current) {
6662					*flags |= CPU_DTRACE_DROP;
6663					continue;
6664				}
6665
6666				break;
6667			}
6668
6669			default:
6670				ASSERT(0);
6671			}
6672
6673			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6674				uintptr_t end = valoffs + size;
6675
6676				if (tracememsize != 0 &&
6677				    valoffs + tracememsize < end) {
6678					end = valoffs + tracememsize;
6679					tracememsize = 0;
6680				}
6681
6682				if (!dtrace_vcanload((void *)(uintptr_t)val,
6683				    &dp->dtdo_rtype, &mstate, vstate))
6684					continue;
6685
6686				/*
6687				 * If this is a string, we're going to only
6688				 * load until we find the zero byte -- after
6689				 * which we'll store zero bytes.
6690				 */
6691				if (dp->dtdo_rtype.dtdt_kind ==
6692				    DIF_TYPE_STRING) {
6693					char c = '\0' + 1;
6694					int intuple = act->dta_intuple;
6695					size_t s;
6696
6697					for (s = 0; s < size; s++) {
6698						if (c != '\0')
6699							c = dtrace_load8(val++);
6700
6701						DTRACE_STORE(uint8_t, tomax,
6702						    valoffs++, c);
6703
6704						if (c == '\0' && intuple)
6705							break;
6706					}
6707
6708					continue;
6709				}
6710
6711				while (valoffs < end) {
6712					DTRACE_STORE(uint8_t, tomax, valoffs++,
6713					    dtrace_load8(val++));
6714				}
6715
6716				continue;
6717			}
6718
6719			switch (size) {
6720			case 0:
6721				break;
6722
6723			case sizeof (uint8_t):
6724				DTRACE_STORE(uint8_t, tomax, valoffs, val);
6725				break;
6726			case sizeof (uint16_t):
6727				DTRACE_STORE(uint16_t, tomax, valoffs, val);
6728				break;
6729			case sizeof (uint32_t):
6730				DTRACE_STORE(uint32_t, tomax, valoffs, val);
6731				break;
6732			case sizeof (uint64_t):
6733				DTRACE_STORE(uint64_t, tomax, valoffs, val);
6734				break;
6735			default:
6736				/*
6737				 * Any other size should have been returned by
6738				 * reference, not by value.
6739				 */
6740				ASSERT(0);
6741				break;
6742			}
6743		}
6744
6745		if (*flags & CPU_DTRACE_DROP)
6746			continue;
6747
6748		if (*flags & CPU_DTRACE_FAULT) {
6749			int ndx;
6750			dtrace_action_t *err;
6751
6752			buf->dtb_errors++;
6753
6754			if (probe->dtpr_id == dtrace_probeid_error) {
6755				/*
6756				 * There's nothing we can do -- we had an
6757				 * error on the error probe.  We bump an
6758				 * error counter to at least indicate that
6759				 * this condition happened.
6760				 */
6761				dtrace_error(&state->dts_dblerrors);
6762				continue;
6763			}
6764
6765			if (vtime) {
6766				/*
6767				 * Before recursing on dtrace_probe(), we
6768				 * need to explicitly clear out our start
6769				 * time to prevent it from being accumulated
6770				 * into t_dtrace_vtime.
6771				 */
6772				curthread->t_dtrace_start = 0;
6773			}
6774
6775			/*
6776			 * Iterate over the actions to figure out which action
6777			 * we were processing when we experienced the error.
6778			 * Note that act points _past_ the faulting action; if
6779			 * act is ecb->dte_action, the fault was in the
6780			 * predicate, if it's ecb->dte_action->dta_next it's
6781			 * in action #1, and so on.
6782			 */
6783			for (err = ecb->dte_action, ndx = 0;
6784			    err != act; err = err->dta_next, ndx++)
6785				continue;
6786
6787			dtrace_probe_error(state, ecb->dte_epid, ndx,
6788			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6789			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6790			    cpu_core[cpuid].cpuc_dtrace_illval);
6791
6792			continue;
6793		}
6794
6795		if (!committed)
6796			buf->dtb_offset = offs + ecb->dte_size;
6797	}
6798
6799	if (vtime)
6800		curthread->t_dtrace_start = dtrace_gethrtime();
6801
6802	dtrace_interrupt_enable(cookie);
6803}
6804
6805/*
6806 * DTrace Probe Hashing Functions
6807 *
6808 * The functions in this section (and indeed, the functions in remaining
6809 * sections) are not _called_ from probe context.  (Any exceptions to this are
6810 * marked with a "Note:".)  Rather, they are called from elsewhere in the
6811 * DTrace framework to look-up probes in, add probes to and remove probes from
6812 * the DTrace probe hashes.  (Each probe is hashed by each element of the
6813 * probe tuple -- allowing for fast lookups, regardless of what was
6814 * specified.)
6815 */
6816static uint_t
6817dtrace_hash_str(const char *p)
6818{
6819	unsigned int g;
6820	uint_t hval = 0;
6821
6822	while (*p) {
6823		hval = (hval << 4) + *p++;
6824		if ((g = (hval & 0xf0000000)) != 0)
6825			hval ^= g >> 24;
6826		hval &= ~g;
6827	}
6828	return (hval);
6829}
6830
6831static dtrace_hash_t *
6832dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6833{
6834	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6835
6836	hash->dth_stroffs = stroffs;
6837	hash->dth_nextoffs = nextoffs;
6838	hash->dth_prevoffs = prevoffs;
6839
6840	hash->dth_size = 1;
6841	hash->dth_mask = hash->dth_size - 1;
6842
6843	hash->dth_tab = kmem_zalloc(hash->dth_size *
6844	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6845
6846	return (hash);
6847}
6848
6849static void
6850dtrace_hash_destroy(dtrace_hash_t *hash)
6851{
6852#ifdef DEBUG
6853	int i;
6854
6855	for (i = 0; i < hash->dth_size; i++)
6856		ASSERT(hash->dth_tab[i] == NULL);
6857#endif
6858
6859	kmem_free(hash->dth_tab,
6860	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
6861	kmem_free(hash, sizeof (dtrace_hash_t));
6862}
6863
6864static void
6865dtrace_hash_resize(dtrace_hash_t *hash)
6866{
6867	int size = hash->dth_size, i, ndx;
6868	int new_size = hash->dth_size << 1;
6869	int new_mask = new_size - 1;
6870	dtrace_hashbucket_t **new_tab, *bucket, *next;
6871
6872	ASSERT((new_size & new_mask) == 0);
6873
6874	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6875
6876	for (i = 0; i < size; i++) {
6877		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6878			dtrace_probe_t *probe = bucket->dthb_chain;
6879
6880			ASSERT(probe != NULL);
6881			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6882
6883			next = bucket->dthb_next;
6884			bucket->dthb_next = new_tab[ndx];
6885			new_tab[ndx] = bucket;
6886		}
6887	}
6888
6889	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6890	hash->dth_tab = new_tab;
6891	hash->dth_size = new_size;
6892	hash->dth_mask = new_mask;
6893}
6894
6895static void
6896dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6897{
6898	int hashval = DTRACE_HASHSTR(hash, new);
6899	int ndx = hashval & hash->dth_mask;
6900	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6901	dtrace_probe_t **nextp, **prevp;
6902
6903	for (; bucket != NULL; bucket = bucket->dthb_next) {
6904		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6905			goto add;
6906	}
6907
6908	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6909		dtrace_hash_resize(hash);
6910		dtrace_hash_add(hash, new);
6911		return;
6912	}
6913
6914	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6915	bucket->dthb_next = hash->dth_tab[ndx];
6916	hash->dth_tab[ndx] = bucket;
6917	hash->dth_nbuckets++;
6918
6919add:
6920	nextp = DTRACE_HASHNEXT(hash, new);
6921	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6922	*nextp = bucket->dthb_chain;
6923
6924	if (bucket->dthb_chain != NULL) {
6925		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6926		ASSERT(*prevp == NULL);
6927		*prevp = new;
6928	}
6929
6930	bucket->dthb_chain = new;
6931	bucket->dthb_len++;
6932}
6933
6934static dtrace_probe_t *
6935dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6936{
6937	int hashval = DTRACE_HASHSTR(hash, template);
6938	int ndx = hashval & hash->dth_mask;
6939	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6940
6941	for (; bucket != NULL; bucket = bucket->dthb_next) {
6942		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6943			return (bucket->dthb_chain);
6944	}
6945
6946	return (NULL);
6947}
6948
6949static int
6950dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6951{
6952	int hashval = DTRACE_HASHSTR(hash, template);
6953	int ndx = hashval & hash->dth_mask;
6954	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6955
6956	for (; bucket != NULL; bucket = bucket->dthb_next) {
6957		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6958			return (bucket->dthb_len);
6959	}
6960
6961	return (0);
6962}
6963
6964static void
6965dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6966{
6967	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6968	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6969
6970	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6971	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6972
6973	/*
6974	 * Find the bucket that we're removing this probe from.
6975	 */
6976	for (; bucket != NULL; bucket = bucket->dthb_next) {
6977		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6978			break;
6979	}
6980
6981	ASSERT(bucket != NULL);
6982
6983	if (*prevp == NULL) {
6984		if (*nextp == NULL) {
6985			/*
6986			 * The removed probe was the only probe on this
6987			 * bucket; we need to remove the bucket.
6988			 */
6989			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6990
6991			ASSERT(bucket->dthb_chain == probe);
6992			ASSERT(b != NULL);
6993
6994			if (b == bucket) {
6995				hash->dth_tab[ndx] = bucket->dthb_next;
6996			} else {
6997				while (b->dthb_next != bucket)
6998					b = b->dthb_next;
6999				b->dthb_next = bucket->dthb_next;
7000			}
7001
7002			ASSERT(hash->dth_nbuckets > 0);
7003			hash->dth_nbuckets--;
7004			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
7005			return;
7006		}
7007
7008		bucket->dthb_chain = *nextp;
7009	} else {
7010		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
7011	}
7012
7013	if (*nextp != NULL)
7014		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
7015}
7016
7017/*
7018 * DTrace Utility Functions
7019 *
7020 * These are random utility functions that are _not_ called from probe context.
7021 */
7022static int
7023dtrace_badattr(const dtrace_attribute_t *a)
7024{
7025	return (a->dtat_name > DTRACE_STABILITY_MAX ||
7026	    a->dtat_data > DTRACE_STABILITY_MAX ||
7027	    a->dtat_class > DTRACE_CLASS_MAX);
7028}
7029
7030/*
7031 * Return a duplicate copy of a string.  If the specified string is NULL,
7032 * this function returns a zero-length string.
7033 */
7034static char *
7035dtrace_strdup(const char *str)
7036{
7037	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
7038
7039	if (str != NULL)
7040		(void) strcpy(new, str);
7041
7042	return (new);
7043}
7044
7045#define	DTRACE_ISALPHA(c)	\
7046	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
7047
7048static int
7049dtrace_badname(const char *s)
7050{
7051	char c;
7052
7053	if (s == NULL || (c = *s++) == '\0')
7054		return (0);
7055
7056	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
7057		return (1);
7058
7059	while ((c = *s++) != '\0') {
7060		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
7061		    c != '-' && c != '_' && c != '.' && c != '`')
7062			return (1);
7063	}
7064
7065	return (0);
7066}
7067
7068static void
7069dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
7070{
7071	uint32_t priv;
7072
7073#if defined(sun)
7074	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
7075		/*
7076		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
7077		 */
7078		priv = DTRACE_PRIV_ALL;
7079	} else {
7080		*uidp = crgetuid(cr);
7081		*zoneidp = crgetzoneid(cr);
7082
7083		priv = 0;
7084		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
7085			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
7086		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
7087			priv |= DTRACE_PRIV_USER;
7088		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
7089			priv |= DTRACE_PRIV_PROC;
7090		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
7091			priv |= DTRACE_PRIV_OWNER;
7092		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
7093			priv |= DTRACE_PRIV_ZONEOWNER;
7094	}
7095#else
7096	priv = DTRACE_PRIV_ALL;
7097#endif
7098
7099	*privp = priv;
7100}
7101
7102#ifdef DTRACE_ERRDEBUG
7103static void
7104dtrace_errdebug(const char *str)
7105{
7106	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
7107	int occupied = 0;
7108
7109	mutex_enter(&dtrace_errlock);
7110	dtrace_errlast = str;
7111	dtrace_errthread = curthread;
7112
7113	while (occupied++ < DTRACE_ERRHASHSZ) {
7114		if (dtrace_errhash[hval].dter_msg == str) {
7115			dtrace_errhash[hval].dter_count++;
7116			goto out;
7117		}
7118
7119		if (dtrace_errhash[hval].dter_msg != NULL) {
7120			hval = (hval + 1) % DTRACE_ERRHASHSZ;
7121			continue;
7122		}
7123
7124		dtrace_errhash[hval].dter_msg = str;
7125		dtrace_errhash[hval].dter_count = 1;
7126		goto out;
7127	}
7128
7129	panic("dtrace: undersized error hash");
7130out:
7131	mutex_exit(&dtrace_errlock);
7132}
7133#endif
7134
7135/*
7136 * DTrace Matching Functions
7137 *
7138 * These functions are used to match groups of probes, given some elements of
7139 * a probe tuple, or some globbed expressions for elements of a probe tuple.
7140 */
7141static int
7142dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7143    zoneid_t zoneid)
7144{
7145	if (priv != DTRACE_PRIV_ALL) {
7146		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7147		uint32_t match = priv & ppriv;
7148
7149		/*
7150		 * No PRIV_DTRACE_* privileges...
7151		 */
7152		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7153		    DTRACE_PRIV_KERNEL)) == 0)
7154			return (0);
7155
7156		/*
7157		 * No matching bits, but there were bits to match...
7158		 */
7159		if (match == 0 && ppriv != 0)
7160			return (0);
7161
7162		/*
7163		 * Need to have permissions to the process, but don't...
7164		 */
7165		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7166		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7167			return (0);
7168		}
7169
7170		/*
7171		 * Need to be in the same zone unless we possess the
7172		 * privilege to examine all zones.
7173		 */
7174		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7175		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7176			return (0);
7177		}
7178	}
7179
7180	return (1);
7181}
7182
7183/*
7184 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7185 * consists of input pattern strings and an ops-vector to evaluate them.
7186 * This function returns >0 for match, 0 for no match, and <0 for error.
7187 */
7188static int
7189dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7190    uint32_t priv, uid_t uid, zoneid_t zoneid)
7191{
7192	dtrace_provider_t *pvp = prp->dtpr_provider;
7193	int rv;
7194
7195	if (pvp->dtpv_defunct)
7196		return (0);
7197
7198	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7199		return (rv);
7200
7201	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7202		return (rv);
7203
7204	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7205		return (rv);
7206
7207	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7208		return (rv);
7209
7210	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7211		return (0);
7212
7213	return (rv);
7214}
7215
7216/*
7217 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7218 * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7219 * libc's version, the kernel version only applies to 8-bit ASCII strings.
7220 * In addition, all of the recursion cases except for '*' matching have been
7221 * unwound.  For '*', we still implement recursive evaluation, but a depth
7222 * counter is maintained and matching is aborted if we recurse too deep.
7223 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7224 */
7225static int
7226dtrace_match_glob(const char *s, const char *p, int depth)
7227{
7228	const char *olds;
7229	char s1, c;
7230	int gs;
7231
7232	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7233		return (-1);
7234
7235	if (s == NULL)
7236		s = ""; /* treat NULL as empty string */
7237
7238top:
7239	olds = s;
7240	s1 = *s++;
7241
7242	if (p == NULL)
7243		return (0);
7244
7245	if ((c = *p++) == '\0')
7246		return (s1 == '\0');
7247
7248	switch (c) {
7249	case '[': {
7250		int ok = 0, notflag = 0;
7251		char lc = '\0';
7252
7253		if (s1 == '\0')
7254			return (0);
7255
7256		if (*p == '!') {
7257			notflag = 1;
7258			p++;
7259		}
7260
7261		if ((c = *p++) == '\0')
7262			return (0);
7263
7264		do {
7265			if (c == '-' && lc != '\0' && *p != ']') {
7266				if ((c = *p++) == '\0')
7267					return (0);
7268				if (c == '\\' && (c = *p++) == '\0')
7269					return (0);
7270
7271				if (notflag) {
7272					if (s1 < lc || s1 > c)
7273						ok++;
7274					else
7275						return (0);
7276				} else if (lc <= s1 && s1 <= c)
7277					ok++;
7278
7279			} else if (c == '\\' && (c = *p++) == '\0')
7280				return (0);
7281
7282			lc = c; /* save left-hand 'c' for next iteration */
7283
7284			if (notflag) {
7285				if (s1 != c)
7286					ok++;
7287				else
7288					return (0);
7289			} else if (s1 == c)
7290				ok++;
7291
7292			if ((c = *p++) == '\0')
7293				return (0);
7294
7295		} while (c != ']');
7296
7297		if (ok)
7298			goto top;
7299
7300		return (0);
7301	}
7302
7303	case '\\':
7304		if ((c = *p++) == '\0')
7305			return (0);
7306		/*FALLTHRU*/
7307
7308	default:
7309		if (c != s1)
7310			return (0);
7311		/*FALLTHRU*/
7312
7313	case '?':
7314		if (s1 != '\0')
7315			goto top;
7316		return (0);
7317
7318	case '*':
7319		while (*p == '*')
7320			p++; /* consecutive *'s are identical to a single one */
7321
7322		if (*p == '\0')
7323			return (1);
7324
7325		for (s = olds; *s != '\0'; s++) {
7326			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7327				return (gs);
7328		}
7329
7330		return (0);
7331	}
7332}
7333
7334/*ARGSUSED*/
7335static int
7336dtrace_match_string(const char *s, const char *p, int depth)
7337{
7338	return (s != NULL && strcmp(s, p) == 0);
7339}
7340
7341/*ARGSUSED*/
7342static int
7343dtrace_match_nul(const char *s, const char *p, int depth)
7344{
7345	return (1); /* always match the empty pattern */
7346}
7347
7348/*ARGSUSED*/
7349static int
7350dtrace_match_nonzero(const char *s, const char *p, int depth)
7351{
7352	return (s != NULL && s[0] != '\0');
7353}
7354
7355static int
7356dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7357    zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7358{
7359	dtrace_probe_t template, *probe;
7360	dtrace_hash_t *hash = NULL;
7361	int len, best = INT_MAX, nmatched = 0;
7362	dtrace_id_t i;
7363
7364	ASSERT(MUTEX_HELD(&dtrace_lock));
7365
7366	/*
7367	 * If the probe ID is specified in the key, just lookup by ID and
7368	 * invoke the match callback once if a matching probe is found.
7369	 */
7370	if (pkp->dtpk_id != DTRACE_IDNONE) {
7371		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7372		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7373			(void) (*matched)(probe, arg);
7374			nmatched++;
7375		}
7376		return (nmatched);
7377	}
7378
7379	template.dtpr_mod = (char *)pkp->dtpk_mod;
7380	template.dtpr_func = (char *)pkp->dtpk_func;
7381	template.dtpr_name = (char *)pkp->dtpk_name;
7382
7383	/*
7384	 * We want to find the most distinct of the module name, function
7385	 * name, and name.  So for each one that is not a glob pattern or
7386	 * empty string, we perform a lookup in the corresponding hash and
7387	 * use the hash table with the fewest collisions to do our search.
7388	 */
7389	if (pkp->dtpk_mmatch == &dtrace_match_string &&
7390	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7391		best = len;
7392		hash = dtrace_bymod;
7393	}
7394
7395	if (pkp->dtpk_fmatch == &dtrace_match_string &&
7396	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7397		best = len;
7398		hash = dtrace_byfunc;
7399	}
7400
7401	if (pkp->dtpk_nmatch == &dtrace_match_string &&
7402	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7403		best = len;
7404		hash = dtrace_byname;
7405	}
7406
7407	/*
7408	 * If we did not select a hash table, iterate over every probe and
7409	 * invoke our callback for each one that matches our input probe key.
7410	 */
7411	if (hash == NULL) {
7412		for (i = 0; i < dtrace_nprobes; i++) {
7413			if ((probe = dtrace_probes[i]) == NULL ||
7414			    dtrace_match_probe(probe, pkp, priv, uid,
7415			    zoneid) <= 0)
7416				continue;
7417
7418			nmatched++;
7419
7420			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7421				break;
7422		}
7423
7424		return (nmatched);
7425	}
7426
7427	/*
7428	 * If we selected a hash table, iterate over each probe of the same key
7429	 * name and invoke the callback for every probe that matches the other
7430	 * attributes of our input probe key.
7431	 */
7432	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7433	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
7434
7435		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7436			continue;
7437
7438		nmatched++;
7439
7440		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7441			break;
7442	}
7443
7444	return (nmatched);
7445}
7446
7447/*
7448 * Return the function pointer dtrace_probecmp() should use to compare the
7449 * specified pattern with a string.  For NULL or empty patterns, we select
7450 * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7451 * For non-empty non-glob strings, we use dtrace_match_string().
7452 */
7453static dtrace_probekey_f *
7454dtrace_probekey_func(const char *p)
7455{
7456	char c;
7457
7458	if (p == NULL || *p == '\0')
7459		return (&dtrace_match_nul);
7460
7461	while ((c = *p++) != '\0') {
7462		if (c == '[' || c == '?' || c == '*' || c == '\\')
7463			return (&dtrace_match_glob);
7464	}
7465
7466	return (&dtrace_match_string);
7467}
7468
7469/*
7470 * Build a probe comparison key for use with dtrace_match_probe() from the
7471 * given probe description.  By convention, a null key only matches anchored
7472 * probes: if each field is the empty string, reset dtpk_fmatch to
7473 * dtrace_match_nonzero().
7474 */
7475static void
7476dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7477{
7478	pkp->dtpk_prov = pdp->dtpd_provider;
7479	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7480
7481	pkp->dtpk_mod = pdp->dtpd_mod;
7482	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7483
7484	pkp->dtpk_func = pdp->dtpd_func;
7485	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7486
7487	pkp->dtpk_name = pdp->dtpd_name;
7488	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7489
7490	pkp->dtpk_id = pdp->dtpd_id;
7491
7492	if (pkp->dtpk_id == DTRACE_IDNONE &&
7493	    pkp->dtpk_pmatch == &dtrace_match_nul &&
7494	    pkp->dtpk_mmatch == &dtrace_match_nul &&
7495	    pkp->dtpk_fmatch == &dtrace_match_nul &&
7496	    pkp->dtpk_nmatch == &dtrace_match_nul)
7497		pkp->dtpk_fmatch = &dtrace_match_nonzero;
7498}
7499
7500/*
7501 * DTrace Provider-to-Framework API Functions
7502 *
7503 * These functions implement much of the Provider-to-Framework API, as
7504 * described in <sys/dtrace.h>.  The parts of the API not in this section are
7505 * the functions in the API for probe management (found below), and
7506 * dtrace_probe() itself (found above).
7507 */
7508
7509/*
7510 * Register the calling provider with the DTrace framework.  This should
7511 * generally be called by DTrace providers in their attach(9E) entry point.
7512 */
7513int
7514dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7515    cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7516{
7517	dtrace_provider_t *provider;
7518
7519	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7520		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7521		    "arguments", name ? name : "<NULL>");
7522		return (EINVAL);
7523	}
7524
7525	if (name[0] == '\0' || dtrace_badname(name)) {
7526		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7527		    "provider name", name);
7528		return (EINVAL);
7529	}
7530
7531	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7532	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7533	    pops->dtps_destroy == NULL ||
7534	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7535		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7536		    "provider ops", name);
7537		return (EINVAL);
7538	}
7539
7540	if (dtrace_badattr(&pap->dtpa_provider) ||
7541	    dtrace_badattr(&pap->dtpa_mod) ||
7542	    dtrace_badattr(&pap->dtpa_func) ||
7543	    dtrace_badattr(&pap->dtpa_name) ||
7544	    dtrace_badattr(&pap->dtpa_args)) {
7545		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7546		    "provider attributes", name);
7547		return (EINVAL);
7548	}
7549
7550	if (priv & ~DTRACE_PRIV_ALL) {
7551		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7552		    "privilege attributes", name);
7553		return (EINVAL);
7554	}
7555
7556	if ((priv & DTRACE_PRIV_KERNEL) &&
7557	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7558	    pops->dtps_usermode == NULL) {
7559		cmn_err(CE_WARN, "failed to register provider '%s': need "
7560		    "dtps_usermode() op for given privilege attributes", name);
7561		return (EINVAL);
7562	}
7563
7564	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7565	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7566	(void) strcpy(provider->dtpv_name, name);
7567
7568	provider->dtpv_attr = *pap;
7569	provider->dtpv_priv.dtpp_flags = priv;
7570	if (cr != NULL) {
7571		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7572		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7573	}
7574	provider->dtpv_pops = *pops;
7575
7576	if (pops->dtps_provide == NULL) {
7577		ASSERT(pops->dtps_provide_module != NULL);
7578		provider->dtpv_pops.dtps_provide =
7579		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
7580	}
7581
7582	if (pops->dtps_provide_module == NULL) {
7583		ASSERT(pops->dtps_provide != NULL);
7584		provider->dtpv_pops.dtps_provide_module =
7585		    (void (*)(void *, modctl_t *))dtrace_nullop;
7586	}
7587
7588	if (pops->dtps_suspend == NULL) {
7589		ASSERT(pops->dtps_resume == NULL);
7590		provider->dtpv_pops.dtps_suspend =
7591		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7592		provider->dtpv_pops.dtps_resume =
7593		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7594	}
7595
7596	provider->dtpv_arg = arg;
7597	*idp = (dtrace_provider_id_t)provider;
7598
7599	if (pops == &dtrace_provider_ops) {
7600		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7601		ASSERT(MUTEX_HELD(&dtrace_lock));
7602		ASSERT(dtrace_anon.dta_enabling == NULL);
7603
7604		/*
7605		 * We make sure that the DTrace provider is at the head of
7606		 * the provider chain.
7607		 */
7608		provider->dtpv_next = dtrace_provider;
7609		dtrace_provider = provider;
7610		return (0);
7611	}
7612
7613	mutex_enter(&dtrace_provider_lock);
7614	mutex_enter(&dtrace_lock);
7615
7616	/*
7617	 * If there is at least one provider registered, we'll add this
7618	 * provider after the first provider.
7619	 */
7620	if (dtrace_provider != NULL) {
7621		provider->dtpv_next = dtrace_provider->dtpv_next;
7622		dtrace_provider->dtpv_next = provider;
7623	} else {
7624		dtrace_provider = provider;
7625	}
7626
7627	if (dtrace_retained != NULL) {
7628		dtrace_enabling_provide(provider);
7629
7630		/*
7631		 * Now we need to call dtrace_enabling_matchall() -- which
7632		 * will acquire cpu_lock and dtrace_lock.  We therefore need
7633		 * to drop all of our locks before calling into it...
7634		 */
7635		mutex_exit(&dtrace_lock);
7636		mutex_exit(&dtrace_provider_lock);
7637		dtrace_enabling_matchall();
7638
7639		return (0);
7640	}
7641
7642	mutex_exit(&dtrace_lock);
7643	mutex_exit(&dtrace_provider_lock);
7644
7645	return (0);
7646}
7647
7648/*
7649 * Unregister the specified provider from the DTrace framework.  This should
7650 * generally be called by DTrace providers in their detach(9E) entry point.
7651 */
7652int
7653dtrace_unregister(dtrace_provider_id_t id)
7654{
7655	dtrace_provider_t *old = (dtrace_provider_t *)id;
7656	dtrace_provider_t *prev = NULL;
7657	int i, self = 0, noreap = 0;
7658	dtrace_probe_t *probe, *first = NULL;
7659
7660	if (old->dtpv_pops.dtps_enable ==
7661	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
7662		/*
7663		 * If DTrace itself is the provider, we're called with locks
7664		 * already held.
7665		 */
7666		ASSERT(old == dtrace_provider);
7667#if defined(sun)
7668		ASSERT(dtrace_devi != NULL);
7669#endif
7670		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7671		ASSERT(MUTEX_HELD(&dtrace_lock));
7672		self = 1;
7673
7674		if (dtrace_provider->dtpv_next != NULL) {
7675			/*
7676			 * There's another provider here; return failure.
7677			 */
7678			return (EBUSY);
7679		}
7680	} else {
7681		mutex_enter(&dtrace_provider_lock);
7682#if defined(sun)
7683		mutex_enter(&mod_lock);
7684#endif
7685		mutex_enter(&dtrace_lock);
7686	}
7687
7688	/*
7689	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7690	 * probes, we refuse to let providers slither away, unless this
7691	 * provider has already been explicitly invalidated.
7692	 */
7693	if (!old->dtpv_defunct &&
7694	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7695	    dtrace_anon.dta_state->dts_necbs > 0))) {
7696		if (!self) {
7697			mutex_exit(&dtrace_lock);
7698#if defined(sun)
7699			mutex_exit(&mod_lock);
7700#endif
7701			mutex_exit(&dtrace_provider_lock);
7702		}
7703		return (EBUSY);
7704	}
7705
7706	/*
7707	 * Attempt to destroy the probes associated with this provider.
7708	 */
7709	for (i = 0; i < dtrace_nprobes; i++) {
7710		if ((probe = dtrace_probes[i]) == NULL)
7711			continue;
7712
7713		if (probe->dtpr_provider != old)
7714			continue;
7715
7716		if (probe->dtpr_ecb == NULL)
7717			continue;
7718
7719		/*
7720		 * If we are trying to unregister a defunct provider, and the
7721		 * provider was made defunct within the interval dictated by
7722		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
7723		 * attempt to reap our enablings.  To denote that the provider
7724		 * should reattempt to unregister itself at some point in the
7725		 * future, we will return a differentiable error code (EAGAIN
7726		 * instead of EBUSY) in this case.
7727		 */
7728		if (dtrace_gethrtime() - old->dtpv_defunct >
7729		    dtrace_unregister_defunct_reap)
7730			noreap = 1;
7731
7732		if (!self) {
7733			mutex_exit(&dtrace_lock);
7734#if defined(sun)
7735			mutex_exit(&mod_lock);
7736#endif
7737			mutex_exit(&dtrace_provider_lock);
7738		}
7739
7740		if (noreap)
7741			return (EBUSY);
7742
7743		(void) taskq_dispatch(dtrace_taskq,
7744		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
7745
7746		return (EAGAIN);
7747	}
7748
7749	/*
7750	 * All of the probes for this provider are disabled; we can safely
7751	 * remove all of them from their hash chains and from the probe array.
7752	 */
7753	for (i = 0; i < dtrace_nprobes; i++) {
7754		if ((probe = dtrace_probes[i]) == NULL)
7755			continue;
7756
7757		if (probe->dtpr_provider != old)
7758			continue;
7759
7760		dtrace_probes[i] = NULL;
7761
7762		dtrace_hash_remove(dtrace_bymod, probe);
7763		dtrace_hash_remove(dtrace_byfunc, probe);
7764		dtrace_hash_remove(dtrace_byname, probe);
7765
7766		if (first == NULL) {
7767			first = probe;
7768			probe->dtpr_nextmod = NULL;
7769		} else {
7770			probe->dtpr_nextmod = first;
7771			first = probe;
7772		}
7773	}
7774
7775	/*
7776	 * The provider's probes have been removed from the hash chains and
7777	 * from the probe array.  Now issue a dtrace_sync() to be sure that
7778	 * everyone has cleared out from any probe array processing.
7779	 */
7780	dtrace_sync();
7781
7782	for (probe = first; probe != NULL; probe = first) {
7783		first = probe->dtpr_nextmod;
7784
7785		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7786		    probe->dtpr_arg);
7787		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7788		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7789		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7790#if defined(sun)
7791		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7792#else
7793		free_unr(dtrace_arena, probe->dtpr_id);
7794#endif
7795		kmem_free(probe, sizeof (dtrace_probe_t));
7796	}
7797
7798	if ((prev = dtrace_provider) == old) {
7799#if defined(sun)
7800		ASSERT(self || dtrace_devi == NULL);
7801		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7802#endif
7803		dtrace_provider = old->dtpv_next;
7804	} else {
7805		while (prev != NULL && prev->dtpv_next != old)
7806			prev = prev->dtpv_next;
7807
7808		if (prev == NULL) {
7809			panic("attempt to unregister non-existent "
7810			    "dtrace provider %p\n", (void *)id);
7811		}
7812
7813		prev->dtpv_next = old->dtpv_next;
7814	}
7815
7816	if (!self) {
7817		mutex_exit(&dtrace_lock);
7818#if defined(sun)
7819		mutex_exit(&mod_lock);
7820#endif
7821		mutex_exit(&dtrace_provider_lock);
7822	}
7823
7824	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7825	kmem_free(old, sizeof (dtrace_provider_t));
7826
7827	return (0);
7828}
7829
7830/*
7831 * Invalidate the specified provider.  All subsequent probe lookups for the
7832 * specified provider will fail, but its probes will not be removed.
7833 */
7834void
7835dtrace_invalidate(dtrace_provider_id_t id)
7836{
7837	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7838
7839	ASSERT(pvp->dtpv_pops.dtps_enable !=
7840	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7841
7842	mutex_enter(&dtrace_provider_lock);
7843	mutex_enter(&dtrace_lock);
7844
7845	pvp->dtpv_defunct = dtrace_gethrtime();
7846
7847	mutex_exit(&dtrace_lock);
7848	mutex_exit(&dtrace_provider_lock);
7849}
7850
7851/*
7852 * Indicate whether or not DTrace has attached.
7853 */
7854int
7855dtrace_attached(void)
7856{
7857	/*
7858	 * dtrace_provider will be non-NULL iff the DTrace driver has
7859	 * attached.  (It's non-NULL because DTrace is always itself a
7860	 * provider.)
7861	 */
7862	return (dtrace_provider != NULL);
7863}
7864
7865/*
7866 * Remove all the unenabled probes for the given provider.  This function is
7867 * not unlike dtrace_unregister(), except that it doesn't remove the provider
7868 * -- just as many of its associated probes as it can.
7869 */
7870int
7871dtrace_condense(dtrace_provider_id_t id)
7872{
7873	dtrace_provider_t *prov = (dtrace_provider_t *)id;
7874	int i;
7875	dtrace_probe_t *probe;
7876
7877	/*
7878	 * Make sure this isn't the dtrace provider itself.
7879	 */
7880	ASSERT(prov->dtpv_pops.dtps_enable !=
7881	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7882
7883	mutex_enter(&dtrace_provider_lock);
7884	mutex_enter(&dtrace_lock);
7885
7886	/*
7887	 * Attempt to destroy the probes associated with this provider.
7888	 */
7889	for (i = 0; i < dtrace_nprobes; i++) {
7890		if ((probe = dtrace_probes[i]) == NULL)
7891			continue;
7892
7893		if (probe->dtpr_provider != prov)
7894			continue;
7895
7896		if (probe->dtpr_ecb != NULL)
7897			continue;
7898
7899		dtrace_probes[i] = NULL;
7900
7901		dtrace_hash_remove(dtrace_bymod, probe);
7902		dtrace_hash_remove(dtrace_byfunc, probe);
7903		dtrace_hash_remove(dtrace_byname, probe);
7904
7905		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7906		    probe->dtpr_arg);
7907		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7908		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7909		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7910		kmem_free(probe, sizeof (dtrace_probe_t));
7911#if defined(sun)
7912		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7913#else
7914		free_unr(dtrace_arena, i + 1);
7915#endif
7916	}
7917
7918	mutex_exit(&dtrace_lock);
7919	mutex_exit(&dtrace_provider_lock);
7920
7921	return (0);
7922}
7923
7924/*
7925 * DTrace Probe Management Functions
7926 *
7927 * The functions in this section perform the DTrace probe management,
7928 * including functions to create probes, look-up probes, and call into the
7929 * providers to request that probes be provided.  Some of these functions are
7930 * in the Provider-to-Framework API; these functions can be identified by the
7931 * fact that they are not declared "static".
7932 */
7933
7934/*
7935 * Create a probe with the specified module name, function name, and name.
7936 */
7937dtrace_id_t
7938dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7939    const char *func, const char *name, int aframes, void *arg)
7940{
7941	dtrace_probe_t *probe, **probes;
7942	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7943	dtrace_id_t id;
7944
7945	if (provider == dtrace_provider) {
7946		ASSERT(MUTEX_HELD(&dtrace_lock));
7947	} else {
7948		mutex_enter(&dtrace_lock);
7949	}
7950
7951#if defined(sun)
7952	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7953	    VM_BESTFIT | VM_SLEEP);
7954#else
7955	id = alloc_unr(dtrace_arena);
7956#endif
7957	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7958
7959	probe->dtpr_id = id;
7960	probe->dtpr_gen = dtrace_probegen++;
7961	probe->dtpr_mod = dtrace_strdup(mod);
7962	probe->dtpr_func = dtrace_strdup(func);
7963	probe->dtpr_name = dtrace_strdup(name);
7964	probe->dtpr_arg = arg;
7965	probe->dtpr_aframes = aframes;
7966	probe->dtpr_provider = provider;
7967
7968	dtrace_hash_add(dtrace_bymod, probe);
7969	dtrace_hash_add(dtrace_byfunc, probe);
7970	dtrace_hash_add(dtrace_byname, probe);
7971
7972	if (id - 1 >= dtrace_nprobes) {
7973		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7974		size_t nsize = osize << 1;
7975
7976		if (nsize == 0) {
7977			ASSERT(osize == 0);
7978			ASSERT(dtrace_probes == NULL);
7979			nsize = sizeof (dtrace_probe_t *);
7980		}
7981
7982		probes = kmem_zalloc(nsize, KM_SLEEP);
7983
7984		if (dtrace_probes == NULL) {
7985			ASSERT(osize == 0);
7986			dtrace_probes = probes;
7987			dtrace_nprobes = 1;
7988		} else {
7989			dtrace_probe_t **oprobes = dtrace_probes;
7990
7991			bcopy(oprobes, probes, osize);
7992			dtrace_membar_producer();
7993			dtrace_probes = probes;
7994
7995			dtrace_sync();
7996
7997			/*
7998			 * All CPUs are now seeing the new probes array; we can
7999			 * safely free the old array.
8000			 */
8001			kmem_free(oprobes, osize);
8002			dtrace_nprobes <<= 1;
8003		}
8004
8005		ASSERT(id - 1 < dtrace_nprobes);
8006	}
8007
8008	ASSERT(dtrace_probes[id - 1] == NULL);
8009	dtrace_probes[id - 1] = probe;
8010
8011	if (provider != dtrace_provider)
8012		mutex_exit(&dtrace_lock);
8013
8014	return (id);
8015}
8016
8017static dtrace_probe_t *
8018dtrace_probe_lookup_id(dtrace_id_t id)
8019{
8020	ASSERT(MUTEX_HELD(&dtrace_lock));
8021
8022	if (id == 0 || id > dtrace_nprobes)
8023		return (NULL);
8024
8025	return (dtrace_probes[id - 1]);
8026}
8027
8028static int
8029dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
8030{
8031	*((dtrace_id_t *)arg) = probe->dtpr_id;
8032
8033	return (DTRACE_MATCH_DONE);
8034}
8035
8036/*
8037 * Look up a probe based on provider and one or more of module name, function
8038 * name and probe name.
8039 */
8040dtrace_id_t
8041dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
8042    char *func, char *name)
8043{
8044	dtrace_probekey_t pkey;
8045	dtrace_id_t id;
8046	int match;
8047
8048	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
8049	pkey.dtpk_pmatch = &dtrace_match_string;
8050	pkey.dtpk_mod = mod;
8051	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
8052	pkey.dtpk_func = func;
8053	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
8054	pkey.dtpk_name = name;
8055	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
8056	pkey.dtpk_id = DTRACE_IDNONE;
8057
8058	mutex_enter(&dtrace_lock);
8059	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
8060	    dtrace_probe_lookup_match, &id);
8061	mutex_exit(&dtrace_lock);
8062
8063	ASSERT(match == 1 || match == 0);
8064	return (match ? id : 0);
8065}
8066
8067/*
8068 * Returns the probe argument associated with the specified probe.
8069 */
8070void *
8071dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
8072{
8073	dtrace_probe_t *probe;
8074	void *rval = NULL;
8075
8076	mutex_enter(&dtrace_lock);
8077
8078	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
8079	    probe->dtpr_provider == (dtrace_provider_t *)id)
8080		rval = probe->dtpr_arg;
8081
8082	mutex_exit(&dtrace_lock);
8083
8084	return (rval);
8085}
8086
8087/*
8088 * Copy a probe into a probe description.
8089 */
8090static void
8091dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
8092{
8093	bzero(pdp, sizeof (dtrace_probedesc_t));
8094	pdp->dtpd_id = prp->dtpr_id;
8095
8096	(void) strncpy(pdp->dtpd_provider,
8097	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
8098
8099	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
8100	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
8101	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
8102}
8103
8104/*
8105 * Called to indicate that a probe -- or probes -- should be provided by a
8106 * specfied provider.  If the specified description is NULL, the provider will
8107 * be told to provide all of its probes.  (This is done whenever a new
8108 * consumer comes along, or whenever a retained enabling is to be matched.) If
8109 * the specified description is non-NULL, the provider is given the
8110 * opportunity to dynamically provide the specified probe, allowing providers
8111 * to support the creation of probes on-the-fly.  (So-called _autocreated_
8112 * probes.)  If the provider is NULL, the operations will be applied to all
8113 * providers; if the provider is non-NULL the operations will only be applied
8114 * to the specified provider.  The dtrace_provider_lock must be held, and the
8115 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8116 * will need to grab the dtrace_lock when it reenters the framework through
8117 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8118 */
8119static void
8120dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
8121{
8122#if defined(sun)
8123	modctl_t *ctl;
8124#endif
8125	int all = 0;
8126
8127	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8128
8129	if (prv == NULL) {
8130		all = 1;
8131		prv = dtrace_provider;
8132	}
8133
8134	do {
8135		/*
8136		 * First, call the blanket provide operation.
8137		 */
8138		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8139
8140#if defined(sun)
8141		/*
8142		 * Now call the per-module provide operation.  We will grab
8143		 * mod_lock to prevent the list from being modified.  Note
8144		 * that this also prevents the mod_busy bits from changing.
8145		 * (mod_busy can only be changed with mod_lock held.)
8146		 */
8147		mutex_enter(&mod_lock);
8148
8149		ctl = &modules;
8150		do {
8151			if (ctl->mod_busy || ctl->mod_mp == NULL)
8152				continue;
8153
8154			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8155
8156		} while ((ctl = ctl->mod_next) != &modules);
8157
8158		mutex_exit(&mod_lock);
8159#endif
8160	} while (all && (prv = prv->dtpv_next) != NULL);
8161}
8162
8163#if defined(sun)
8164/*
8165 * Iterate over each probe, and call the Framework-to-Provider API function
8166 * denoted by offs.
8167 */
8168static void
8169dtrace_probe_foreach(uintptr_t offs)
8170{
8171	dtrace_provider_t *prov;
8172	void (*func)(void *, dtrace_id_t, void *);
8173	dtrace_probe_t *probe;
8174	dtrace_icookie_t cookie;
8175	int i;
8176
8177	/*
8178	 * We disable interrupts to walk through the probe array.  This is
8179	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8180	 * won't see stale data.
8181	 */
8182	cookie = dtrace_interrupt_disable();
8183
8184	for (i = 0; i < dtrace_nprobes; i++) {
8185		if ((probe = dtrace_probes[i]) == NULL)
8186			continue;
8187
8188		if (probe->dtpr_ecb == NULL) {
8189			/*
8190			 * This probe isn't enabled -- don't call the function.
8191			 */
8192			continue;
8193		}
8194
8195		prov = probe->dtpr_provider;
8196		func = *((void(**)(void *, dtrace_id_t, void *))
8197		    ((uintptr_t)&prov->dtpv_pops + offs));
8198
8199		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8200	}
8201
8202	dtrace_interrupt_enable(cookie);
8203}
8204#endif
8205
8206static int
8207dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8208{
8209	dtrace_probekey_t pkey;
8210	uint32_t priv;
8211	uid_t uid;
8212	zoneid_t zoneid;
8213
8214	ASSERT(MUTEX_HELD(&dtrace_lock));
8215	dtrace_ecb_create_cache = NULL;
8216
8217	if (desc == NULL) {
8218		/*
8219		 * If we're passed a NULL description, we're being asked to
8220		 * create an ECB with a NULL probe.
8221		 */
8222		(void) dtrace_ecb_create_enable(NULL, enab);
8223		return (0);
8224	}
8225
8226	dtrace_probekey(desc, &pkey);
8227	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8228	    &priv, &uid, &zoneid);
8229
8230	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8231	    enab));
8232}
8233
8234/*
8235 * DTrace Helper Provider Functions
8236 */
8237static void
8238dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8239{
8240	attr->dtat_name = DOF_ATTR_NAME(dofattr);
8241	attr->dtat_data = DOF_ATTR_DATA(dofattr);
8242	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8243}
8244
8245static void
8246dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8247    const dof_provider_t *dofprov, char *strtab)
8248{
8249	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8250	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8251	    dofprov->dofpv_provattr);
8252	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8253	    dofprov->dofpv_modattr);
8254	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8255	    dofprov->dofpv_funcattr);
8256	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8257	    dofprov->dofpv_nameattr);
8258	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8259	    dofprov->dofpv_argsattr);
8260}
8261
8262static void
8263dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8264{
8265	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8266	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8267	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8268	dof_provider_t *provider;
8269	dof_probe_t *probe;
8270	uint32_t *off, *enoff;
8271	uint8_t *arg;
8272	char *strtab;
8273	uint_t i, nprobes;
8274	dtrace_helper_provdesc_t dhpv;
8275	dtrace_helper_probedesc_t dhpb;
8276	dtrace_meta_t *meta = dtrace_meta_pid;
8277	dtrace_mops_t *mops = &meta->dtm_mops;
8278	void *parg;
8279
8280	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8281	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8282	    provider->dofpv_strtab * dof->dofh_secsize);
8283	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8284	    provider->dofpv_probes * dof->dofh_secsize);
8285	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8286	    provider->dofpv_prargs * dof->dofh_secsize);
8287	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8288	    provider->dofpv_proffs * dof->dofh_secsize);
8289
8290	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8291	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8292	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8293	enoff = NULL;
8294
8295	/*
8296	 * See dtrace_helper_provider_validate().
8297	 */
8298	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8299	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
8300		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8301		    provider->dofpv_prenoffs * dof->dofh_secsize);
8302		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8303	}
8304
8305	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8306
8307	/*
8308	 * Create the provider.
8309	 */
8310	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8311
8312	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8313		return;
8314
8315	meta->dtm_count++;
8316
8317	/*
8318	 * Create the probes.
8319	 */
8320	for (i = 0; i < nprobes; i++) {
8321		probe = (dof_probe_t *)(uintptr_t)(daddr +
8322		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8323
8324		dhpb.dthpb_mod = dhp->dofhp_mod;
8325		dhpb.dthpb_func = strtab + probe->dofpr_func;
8326		dhpb.dthpb_name = strtab + probe->dofpr_name;
8327		dhpb.dthpb_base = probe->dofpr_addr;
8328		dhpb.dthpb_offs = off + probe->dofpr_offidx;
8329		dhpb.dthpb_noffs = probe->dofpr_noffs;
8330		if (enoff != NULL) {
8331			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8332			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8333		} else {
8334			dhpb.dthpb_enoffs = NULL;
8335			dhpb.dthpb_nenoffs = 0;
8336		}
8337		dhpb.dthpb_args = arg + probe->dofpr_argidx;
8338		dhpb.dthpb_nargc = probe->dofpr_nargc;
8339		dhpb.dthpb_xargc = probe->dofpr_xargc;
8340		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8341		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8342
8343		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8344	}
8345}
8346
8347static void
8348dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8349{
8350	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8351	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8352	int i;
8353
8354	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8355
8356	for (i = 0; i < dof->dofh_secnum; i++) {
8357		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8358		    dof->dofh_secoff + i * dof->dofh_secsize);
8359
8360		if (sec->dofs_type != DOF_SECT_PROVIDER)
8361			continue;
8362
8363		dtrace_helper_provide_one(dhp, sec, pid);
8364	}
8365
8366	/*
8367	 * We may have just created probes, so we must now rematch against
8368	 * any retained enablings.  Note that this call will acquire both
8369	 * cpu_lock and dtrace_lock; the fact that we are holding
8370	 * dtrace_meta_lock now is what defines the ordering with respect to
8371	 * these three locks.
8372	 */
8373	dtrace_enabling_matchall();
8374}
8375
8376static void
8377dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8378{
8379	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8380	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8381	dof_sec_t *str_sec;
8382	dof_provider_t *provider;
8383	char *strtab;
8384	dtrace_helper_provdesc_t dhpv;
8385	dtrace_meta_t *meta = dtrace_meta_pid;
8386	dtrace_mops_t *mops = &meta->dtm_mops;
8387
8388	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8389	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8390	    provider->dofpv_strtab * dof->dofh_secsize);
8391
8392	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8393
8394	/*
8395	 * Create the provider.
8396	 */
8397	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8398
8399	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8400
8401	meta->dtm_count--;
8402}
8403
8404static void
8405dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8406{
8407	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8408	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8409	int i;
8410
8411	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8412
8413	for (i = 0; i < dof->dofh_secnum; i++) {
8414		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8415		    dof->dofh_secoff + i * dof->dofh_secsize);
8416
8417		if (sec->dofs_type != DOF_SECT_PROVIDER)
8418			continue;
8419
8420		dtrace_helper_provider_remove_one(dhp, sec, pid);
8421	}
8422}
8423
8424/*
8425 * DTrace Meta Provider-to-Framework API Functions
8426 *
8427 * These functions implement the Meta Provider-to-Framework API, as described
8428 * in <sys/dtrace.h>.
8429 */
8430int
8431dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8432    dtrace_meta_provider_id_t *idp)
8433{
8434	dtrace_meta_t *meta;
8435	dtrace_helpers_t *help, *next;
8436	int i;
8437
8438	*idp = DTRACE_METAPROVNONE;
8439
8440	/*
8441	 * We strictly don't need the name, but we hold onto it for
8442	 * debuggability. All hail error queues!
8443	 */
8444	if (name == NULL) {
8445		cmn_err(CE_WARN, "failed to register meta-provider: "
8446		    "invalid name");
8447		return (EINVAL);
8448	}
8449
8450	if (mops == NULL ||
8451	    mops->dtms_create_probe == NULL ||
8452	    mops->dtms_provide_pid == NULL ||
8453	    mops->dtms_remove_pid == NULL) {
8454		cmn_err(CE_WARN, "failed to register meta-register %s: "
8455		    "invalid ops", name);
8456		return (EINVAL);
8457	}
8458
8459	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8460	meta->dtm_mops = *mops;
8461	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8462	(void) strcpy(meta->dtm_name, name);
8463	meta->dtm_arg = arg;
8464
8465	mutex_enter(&dtrace_meta_lock);
8466	mutex_enter(&dtrace_lock);
8467
8468	if (dtrace_meta_pid != NULL) {
8469		mutex_exit(&dtrace_lock);
8470		mutex_exit(&dtrace_meta_lock);
8471		cmn_err(CE_WARN, "failed to register meta-register %s: "
8472		    "user-land meta-provider exists", name);
8473		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8474		kmem_free(meta, sizeof (dtrace_meta_t));
8475		return (EINVAL);
8476	}
8477
8478	dtrace_meta_pid = meta;
8479	*idp = (dtrace_meta_provider_id_t)meta;
8480
8481	/*
8482	 * If there are providers and probes ready to go, pass them
8483	 * off to the new meta provider now.
8484	 */
8485
8486	help = dtrace_deferred_pid;
8487	dtrace_deferred_pid = NULL;
8488
8489	mutex_exit(&dtrace_lock);
8490
8491	while (help != NULL) {
8492		for (i = 0; i < help->dthps_nprovs; i++) {
8493			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8494			    help->dthps_pid);
8495		}
8496
8497		next = help->dthps_next;
8498		help->dthps_next = NULL;
8499		help->dthps_prev = NULL;
8500		help->dthps_deferred = 0;
8501		help = next;
8502	}
8503
8504	mutex_exit(&dtrace_meta_lock);
8505
8506	return (0);
8507}
8508
8509int
8510dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8511{
8512	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8513
8514	mutex_enter(&dtrace_meta_lock);
8515	mutex_enter(&dtrace_lock);
8516
8517	if (old == dtrace_meta_pid) {
8518		pp = &dtrace_meta_pid;
8519	} else {
8520		panic("attempt to unregister non-existent "
8521		    "dtrace meta-provider %p\n", (void *)old);
8522	}
8523
8524	if (old->dtm_count != 0) {
8525		mutex_exit(&dtrace_lock);
8526		mutex_exit(&dtrace_meta_lock);
8527		return (EBUSY);
8528	}
8529
8530	*pp = NULL;
8531
8532	mutex_exit(&dtrace_lock);
8533	mutex_exit(&dtrace_meta_lock);
8534
8535	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8536	kmem_free(old, sizeof (dtrace_meta_t));
8537
8538	return (0);
8539}
8540
8541
8542/*
8543 * DTrace DIF Object Functions
8544 */
8545static int
8546dtrace_difo_err(uint_t pc, const char *format, ...)
8547{
8548	if (dtrace_err_verbose) {
8549		va_list alist;
8550
8551		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
8552		va_start(alist, format);
8553		(void) vuprintf(format, alist);
8554		va_end(alist);
8555	}
8556
8557#ifdef DTRACE_ERRDEBUG
8558	dtrace_errdebug(format);
8559#endif
8560	return (1);
8561}
8562
8563/*
8564 * Validate a DTrace DIF object by checking the IR instructions.  The following
8565 * rules are currently enforced by dtrace_difo_validate():
8566 *
8567 * 1. Each instruction must have a valid opcode
8568 * 2. Each register, string, variable, or subroutine reference must be valid
8569 * 3. No instruction can modify register %r0 (must be zero)
8570 * 4. All instruction reserved bits must be set to zero
8571 * 5. The last instruction must be a "ret" instruction
8572 * 6. All branch targets must reference a valid instruction _after_ the branch
8573 */
8574static int
8575dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8576    cred_t *cr)
8577{
8578	int err = 0, i;
8579	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8580	int kcheckload;
8581	uint_t pc;
8582
8583	kcheckload = cr == NULL ||
8584	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8585
8586	dp->dtdo_destructive = 0;
8587
8588	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8589		dif_instr_t instr = dp->dtdo_buf[pc];
8590
8591		uint_t r1 = DIF_INSTR_R1(instr);
8592		uint_t r2 = DIF_INSTR_R2(instr);
8593		uint_t rd = DIF_INSTR_RD(instr);
8594		uint_t rs = DIF_INSTR_RS(instr);
8595		uint_t label = DIF_INSTR_LABEL(instr);
8596		uint_t v = DIF_INSTR_VAR(instr);
8597		uint_t subr = DIF_INSTR_SUBR(instr);
8598		uint_t type = DIF_INSTR_TYPE(instr);
8599		uint_t op = DIF_INSTR_OP(instr);
8600
8601		switch (op) {
8602		case DIF_OP_OR:
8603		case DIF_OP_XOR:
8604		case DIF_OP_AND:
8605		case DIF_OP_SLL:
8606		case DIF_OP_SRL:
8607		case DIF_OP_SRA:
8608		case DIF_OP_SUB:
8609		case DIF_OP_ADD:
8610		case DIF_OP_MUL:
8611		case DIF_OP_SDIV:
8612		case DIF_OP_UDIV:
8613		case DIF_OP_SREM:
8614		case DIF_OP_UREM:
8615		case DIF_OP_COPYS:
8616			if (r1 >= nregs)
8617				err += efunc(pc, "invalid register %u\n", r1);
8618			if (r2 >= nregs)
8619				err += efunc(pc, "invalid register %u\n", r2);
8620			if (rd >= nregs)
8621				err += efunc(pc, "invalid register %u\n", rd);
8622			if (rd == 0)
8623				err += efunc(pc, "cannot write to %r0\n");
8624			break;
8625		case DIF_OP_NOT:
8626		case DIF_OP_MOV:
8627		case DIF_OP_ALLOCS:
8628			if (r1 >= nregs)
8629				err += efunc(pc, "invalid register %u\n", r1);
8630			if (r2 != 0)
8631				err += efunc(pc, "non-zero reserved bits\n");
8632			if (rd >= nregs)
8633				err += efunc(pc, "invalid register %u\n", rd);
8634			if (rd == 0)
8635				err += efunc(pc, "cannot write to %r0\n");
8636			break;
8637		case DIF_OP_LDSB:
8638		case DIF_OP_LDSH:
8639		case DIF_OP_LDSW:
8640		case DIF_OP_LDUB:
8641		case DIF_OP_LDUH:
8642		case DIF_OP_LDUW:
8643		case DIF_OP_LDX:
8644			if (r1 >= nregs)
8645				err += efunc(pc, "invalid register %u\n", r1);
8646			if (r2 != 0)
8647				err += efunc(pc, "non-zero reserved bits\n");
8648			if (rd >= nregs)
8649				err += efunc(pc, "invalid register %u\n", rd);
8650			if (rd == 0)
8651				err += efunc(pc, "cannot write to %r0\n");
8652			if (kcheckload)
8653				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8654				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8655			break;
8656		case DIF_OP_RLDSB:
8657		case DIF_OP_RLDSH:
8658		case DIF_OP_RLDSW:
8659		case DIF_OP_RLDUB:
8660		case DIF_OP_RLDUH:
8661		case DIF_OP_RLDUW:
8662		case DIF_OP_RLDX:
8663			if (r1 >= nregs)
8664				err += efunc(pc, "invalid register %u\n", r1);
8665			if (r2 != 0)
8666				err += efunc(pc, "non-zero reserved bits\n");
8667			if (rd >= nregs)
8668				err += efunc(pc, "invalid register %u\n", rd);
8669			if (rd == 0)
8670				err += efunc(pc, "cannot write to %r0\n");
8671			break;
8672		case DIF_OP_ULDSB:
8673		case DIF_OP_ULDSH:
8674		case DIF_OP_ULDSW:
8675		case DIF_OP_ULDUB:
8676		case DIF_OP_ULDUH:
8677		case DIF_OP_ULDUW:
8678		case DIF_OP_ULDX:
8679			if (r1 >= nregs)
8680				err += efunc(pc, "invalid register %u\n", r1);
8681			if (r2 != 0)
8682				err += efunc(pc, "non-zero reserved bits\n");
8683			if (rd >= nregs)
8684				err += efunc(pc, "invalid register %u\n", rd);
8685			if (rd == 0)
8686				err += efunc(pc, "cannot write to %r0\n");
8687			break;
8688		case DIF_OP_STB:
8689		case DIF_OP_STH:
8690		case DIF_OP_STW:
8691		case DIF_OP_STX:
8692			if (r1 >= nregs)
8693				err += efunc(pc, "invalid register %u\n", r1);
8694			if (r2 != 0)
8695				err += efunc(pc, "non-zero reserved bits\n");
8696			if (rd >= nregs)
8697				err += efunc(pc, "invalid register %u\n", rd);
8698			if (rd == 0)
8699				err += efunc(pc, "cannot write to 0 address\n");
8700			break;
8701		case DIF_OP_CMP:
8702		case DIF_OP_SCMP:
8703			if (r1 >= nregs)
8704				err += efunc(pc, "invalid register %u\n", r1);
8705			if (r2 >= nregs)
8706				err += efunc(pc, "invalid register %u\n", r2);
8707			if (rd != 0)
8708				err += efunc(pc, "non-zero reserved bits\n");
8709			break;
8710		case DIF_OP_TST:
8711			if (r1 >= nregs)
8712				err += efunc(pc, "invalid register %u\n", r1);
8713			if (r2 != 0 || rd != 0)
8714				err += efunc(pc, "non-zero reserved bits\n");
8715			break;
8716		case DIF_OP_BA:
8717		case DIF_OP_BE:
8718		case DIF_OP_BNE:
8719		case DIF_OP_BG:
8720		case DIF_OP_BGU:
8721		case DIF_OP_BGE:
8722		case DIF_OP_BGEU:
8723		case DIF_OP_BL:
8724		case DIF_OP_BLU:
8725		case DIF_OP_BLE:
8726		case DIF_OP_BLEU:
8727			if (label >= dp->dtdo_len) {
8728				err += efunc(pc, "invalid branch target %u\n",
8729				    label);
8730			}
8731			if (label <= pc) {
8732				err += efunc(pc, "backward branch to %u\n",
8733				    label);
8734			}
8735			break;
8736		case DIF_OP_RET:
8737			if (r1 != 0 || r2 != 0)
8738				err += efunc(pc, "non-zero reserved bits\n");
8739			if (rd >= nregs)
8740				err += efunc(pc, "invalid register %u\n", rd);
8741			break;
8742		case DIF_OP_NOP:
8743		case DIF_OP_POPTS:
8744		case DIF_OP_FLUSHTS:
8745			if (r1 != 0 || r2 != 0 || rd != 0)
8746				err += efunc(pc, "non-zero reserved bits\n");
8747			break;
8748		case DIF_OP_SETX:
8749			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8750				err += efunc(pc, "invalid integer ref %u\n",
8751				    DIF_INSTR_INTEGER(instr));
8752			}
8753			if (rd >= nregs)
8754				err += efunc(pc, "invalid register %u\n", rd);
8755			if (rd == 0)
8756				err += efunc(pc, "cannot write to %r0\n");
8757			break;
8758		case DIF_OP_SETS:
8759			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8760				err += efunc(pc, "invalid string ref %u\n",
8761				    DIF_INSTR_STRING(instr));
8762			}
8763			if (rd >= nregs)
8764				err += efunc(pc, "invalid register %u\n", rd);
8765			if (rd == 0)
8766				err += efunc(pc, "cannot write to %r0\n");
8767			break;
8768		case DIF_OP_LDGA:
8769		case DIF_OP_LDTA:
8770			if (r1 > DIF_VAR_ARRAY_MAX)
8771				err += efunc(pc, "invalid array %u\n", r1);
8772			if (r2 >= nregs)
8773				err += efunc(pc, "invalid register %u\n", r2);
8774			if (rd >= nregs)
8775				err += efunc(pc, "invalid register %u\n", rd);
8776			if (rd == 0)
8777				err += efunc(pc, "cannot write to %r0\n");
8778			break;
8779		case DIF_OP_LDGS:
8780		case DIF_OP_LDTS:
8781		case DIF_OP_LDLS:
8782		case DIF_OP_LDGAA:
8783		case DIF_OP_LDTAA:
8784			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8785				err += efunc(pc, "invalid variable %u\n", v);
8786			if (rd >= nregs)
8787				err += efunc(pc, "invalid register %u\n", rd);
8788			if (rd == 0)
8789				err += efunc(pc, "cannot write to %r0\n");
8790			break;
8791		case DIF_OP_STGS:
8792		case DIF_OP_STTS:
8793		case DIF_OP_STLS:
8794		case DIF_OP_STGAA:
8795		case DIF_OP_STTAA:
8796			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8797				err += efunc(pc, "invalid variable %u\n", v);
8798			if (rs >= nregs)
8799				err += efunc(pc, "invalid register %u\n", rd);
8800			break;
8801		case DIF_OP_CALL:
8802			if (subr > DIF_SUBR_MAX)
8803				err += efunc(pc, "invalid subr %u\n", subr);
8804			if (rd >= nregs)
8805				err += efunc(pc, "invalid register %u\n", rd);
8806			if (rd == 0)
8807				err += efunc(pc, "cannot write to %r0\n");
8808
8809			if (subr == DIF_SUBR_COPYOUT ||
8810			    subr == DIF_SUBR_COPYOUTSTR) {
8811				dp->dtdo_destructive = 1;
8812			}
8813			break;
8814		case DIF_OP_PUSHTR:
8815			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8816				err += efunc(pc, "invalid ref type %u\n", type);
8817			if (r2 >= nregs)
8818				err += efunc(pc, "invalid register %u\n", r2);
8819			if (rs >= nregs)
8820				err += efunc(pc, "invalid register %u\n", rs);
8821			break;
8822		case DIF_OP_PUSHTV:
8823			if (type != DIF_TYPE_CTF)
8824				err += efunc(pc, "invalid val type %u\n", type);
8825			if (r2 >= nregs)
8826				err += efunc(pc, "invalid register %u\n", r2);
8827			if (rs >= nregs)
8828				err += efunc(pc, "invalid register %u\n", rs);
8829			break;
8830		default:
8831			err += efunc(pc, "invalid opcode %u\n",
8832			    DIF_INSTR_OP(instr));
8833		}
8834	}
8835
8836	if (dp->dtdo_len != 0 &&
8837	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8838		err += efunc(dp->dtdo_len - 1,
8839		    "expected 'ret' as last DIF instruction\n");
8840	}
8841
8842	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8843		/*
8844		 * If we're not returning by reference, the size must be either
8845		 * 0 or the size of one of the base types.
8846		 */
8847		switch (dp->dtdo_rtype.dtdt_size) {
8848		case 0:
8849		case sizeof (uint8_t):
8850		case sizeof (uint16_t):
8851		case sizeof (uint32_t):
8852		case sizeof (uint64_t):
8853			break;
8854
8855		default:
8856			err += efunc(dp->dtdo_len - 1, "bad return size\n");
8857		}
8858	}
8859
8860	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8861		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8862		dtrace_diftype_t *vt, *et;
8863		uint_t id, ndx;
8864
8865		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8866		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
8867		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8868			err += efunc(i, "unrecognized variable scope %d\n",
8869			    v->dtdv_scope);
8870			break;
8871		}
8872
8873		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8874		    v->dtdv_kind != DIFV_KIND_SCALAR) {
8875			err += efunc(i, "unrecognized variable type %d\n",
8876			    v->dtdv_kind);
8877			break;
8878		}
8879
8880		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8881			err += efunc(i, "%d exceeds variable id limit\n", id);
8882			break;
8883		}
8884
8885		if (id < DIF_VAR_OTHER_UBASE)
8886			continue;
8887
8888		/*
8889		 * For user-defined variables, we need to check that this
8890		 * definition is identical to any previous definition that we
8891		 * encountered.
8892		 */
8893		ndx = id - DIF_VAR_OTHER_UBASE;
8894
8895		switch (v->dtdv_scope) {
8896		case DIFV_SCOPE_GLOBAL:
8897			if (ndx < vstate->dtvs_nglobals) {
8898				dtrace_statvar_t *svar;
8899
8900				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8901					existing = &svar->dtsv_var;
8902			}
8903
8904			break;
8905
8906		case DIFV_SCOPE_THREAD:
8907			if (ndx < vstate->dtvs_ntlocals)
8908				existing = &vstate->dtvs_tlocals[ndx];
8909			break;
8910
8911		case DIFV_SCOPE_LOCAL:
8912			if (ndx < vstate->dtvs_nlocals) {
8913				dtrace_statvar_t *svar;
8914
8915				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8916					existing = &svar->dtsv_var;
8917			}
8918
8919			break;
8920		}
8921
8922		vt = &v->dtdv_type;
8923
8924		if (vt->dtdt_flags & DIF_TF_BYREF) {
8925			if (vt->dtdt_size == 0) {
8926				err += efunc(i, "zero-sized variable\n");
8927				break;
8928			}
8929
8930			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8931			    vt->dtdt_size > dtrace_global_maxsize) {
8932				err += efunc(i, "oversized by-ref global\n");
8933				break;
8934			}
8935		}
8936
8937		if (existing == NULL || existing->dtdv_id == 0)
8938			continue;
8939
8940		ASSERT(existing->dtdv_id == v->dtdv_id);
8941		ASSERT(existing->dtdv_scope == v->dtdv_scope);
8942
8943		if (existing->dtdv_kind != v->dtdv_kind)
8944			err += efunc(i, "%d changed variable kind\n", id);
8945
8946		et = &existing->dtdv_type;
8947
8948		if (vt->dtdt_flags != et->dtdt_flags) {
8949			err += efunc(i, "%d changed variable type flags\n", id);
8950			break;
8951		}
8952
8953		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8954			err += efunc(i, "%d changed variable type size\n", id);
8955			break;
8956		}
8957	}
8958
8959	return (err);
8960}
8961
8962/*
8963 * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8964 * are much more constrained than normal DIFOs.  Specifically, they may
8965 * not:
8966 *
8967 * 1. Make calls to subroutines other than copyin(), copyinstr() or
8968 *    miscellaneous string routines
8969 * 2. Access DTrace variables other than the args[] array, and the
8970 *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8971 * 3. Have thread-local variables.
8972 * 4. Have dynamic variables.
8973 */
8974static int
8975dtrace_difo_validate_helper(dtrace_difo_t *dp)
8976{
8977	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8978	int err = 0;
8979	uint_t pc;
8980
8981	for (pc = 0; pc < dp->dtdo_len; pc++) {
8982		dif_instr_t instr = dp->dtdo_buf[pc];
8983
8984		uint_t v = DIF_INSTR_VAR(instr);
8985		uint_t subr = DIF_INSTR_SUBR(instr);
8986		uint_t op = DIF_INSTR_OP(instr);
8987
8988		switch (op) {
8989		case DIF_OP_OR:
8990		case DIF_OP_XOR:
8991		case DIF_OP_AND:
8992		case DIF_OP_SLL:
8993		case DIF_OP_SRL:
8994		case DIF_OP_SRA:
8995		case DIF_OP_SUB:
8996		case DIF_OP_ADD:
8997		case DIF_OP_MUL:
8998		case DIF_OP_SDIV:
8999		case DIF_OP_UDIV:
9000		case DIF_OP_SREM:
9001		case DIF_OP_UREM:
9002		case DIF_OP_COPYS:
9003		case DIF_OP_NOT:
9004		case DIF_OP_MOV:
9005		case DIF_OP_RLDSB:
9006		case DIF_OP_RLDSH:
9007		case DIF_OP_RLDSW:
9008		case DIF_OP_RLDUB:
9009		case DIF_OP_RLDUH:
9010		case DIF_OP_RLDUW:
9011		case DIF_OP_RLDX:
9012		case DIF_OP_ULDSB:
9013		case DIF_OP_ULDSH:
9014		case DIF_OP_ULDSW:
9015		case DIF_OP_ULDUB:
9016		case DIF_OP_ULDUH:
9017		case DIF_OP_ULDUW:
9018		case DIF_OP_ULDX:
9019		case DIF_OP_STB:
9020		case DIF_OP_STH:
9021		case DIF_OP_STW:
9022		case DIF_OP_STX:
9023		case DIF_OP_ALLOCS:
9024		case DIF_OP_CMP:
9025		case DIF_OP_SCMP:
9026		case DIF_OP_TST:
9027		case DIF_OP_BA:
9028		case DIF_OP_BE:
9029		case DIF_OP_BNE:
9030		case DIF_OP_BG:
9031		case DIF_OP_BGU:
9032		case DIF_OP_BGE:
9033		case DIF_OP_BGEU:
9034		case DIF_OP_BL:
9035		case DIF_OP_BLU:
9036		case DIF_OP_BLE:
9037		case DIF_OP_BLEU:
9038		case DIF_OP_RET:
9039		case DIF_OP_NOP:
9040		case DIF_OP_POPTS:
9041		case DIF_OP_FLUSHTS:
9042		case DIF_OP_SETX:
9043		case DIF_OP_SETS:
9044		case DIF_OP_LDGA:
9045		case DIF_OP_LDLS:
9046		case DIF_OP_STGS:
9047		case DIF_OP_STLS:
9048		case DIF_OP_PUSHTR:
9049		case DIF_OP_PUSHTV:
9050			break;
9051
9052		case DIF_OP_LDGS:
9053			if (v >= DIF_VAR_OTHER_UBASE)
9054				break;
9055
9056			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
9057				break;
9058
9059			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
9060			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
9061			    v == DIF_VAR_EXECARGS ||
9062			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
9063			    v == DIF_VAR_UID || v == DIF_VAR_GID)
9064				break;
9065
9066			err += efunc(pc, "illegal variable %u\n", v);
9067			break;
9068
9069		case DIF_OP_LDTA:
9070		case DIF_OP_LDTS:
9071		case DIF_OP_LDGAA:
9072		case DIF_OP_LDTAA:
9073			err += efunc(pc, "illegal dynamic variable load\n");
9074			break;
9075
9076		case DIF_OP_STTS:
9077		case DIF_OP_STGAA:
9078		case DIF_OP_STTAA:
9079			err += efunc(pc, "illegal dynamic variable store\n");
9080			break;
9081
9082		case DIF_OP_CALL:
9083			if (subr == DIF_SUBR_ALLOCA ||
9084			    subr == DIF_SUBR_BCOPY ||
9085			    subr == DIF_SUBR_COPYIN ||
9086			    subr == DIF_SUBR_COPYINTO ||
9087			    subr == DIF_SUBR_COPYINSTR ||
9088			    subr == DIF_SUBR_INDEX ||
9089			    subr == DIF_SUBR_INET_NTOA ||
9090			    subr == DIF_SUBR_INET_NTOA6 ||
9091			    subr == DIF_SUBR_INET_NTOP ||
9092			    subr == DIF_SUBR_LLTOSTR ||
9093			    subr == DIF_SUBR_RINDEX ||
9094			    subr == DIF_SUBR_STRCHR ||
9095			    subr == DIF_SUBR_STRJOIN ||
9096			    subr == DIF_SUBR_STRRCHR ||
9097			    subr == DIF_SUBR_STRSTR ||
9098			    subr == DIF_SUBR_HTONS ||
9099			    subr == DIF_SUBR_HTONL ||
9100			    subr == DIF_SUBR_HTONLL ||
9101			    subr == DIF_SUBR_NTOHS ||
9102			    subr == DIF_SUBR_NTOHL ||
9103			    subr == DIF_SUBR_NTOHLL ||
9104			    subr == DIF_SUBR_MEMREF ||
9105			    subr == DIF_SUBR_TYPEREF)
9106				break;
9107
9108			err += efunc(pc, "invalid subr %u\n", subr);
9109			break;
9110
9111		default:
9112			err += efunc(pc, "invalid opcode %u\n",
9113			    DIF_INSTR_OP(instr));
9114		}
9115	}
9116
9117	return (err);
9118}
9119
9120/*
9121 * Returns 1 if the expression in the DIF object can be cached on a per-thread
9122 * basis; 0 if not.
9123 */
9124static int
9125dtrace_difo_cacheable(dtrace_difo_t *dp)
9126{
9127	int i;
9128
9129	if (dp == NULL)
9130		return (0);
9131
9132	for (i = 0; i < dp->dtdo_varlen; i++) {
9133		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9134
9135		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9136			continue;
9137
9138		switch (v->dtdv_id) {
9139		case DIF_VAR_CURTHREAD:
9140		case DIF_VAR_PID:
9141		case DIF_VAR_TID:
9142		case DIF_VAR_EXECARGS:
9143		case DIF_VAR_EXECNAME:
9144		case DIF_VAR_ZONENAME:
9145			break;
9146
9147		default:
9148			return (0);
9149		}
9150	}
9151
9152	/*
9153	 * This DIF object may be cacheable.  Now we need to look for any
9154	 * array loading instructions, any memory loading instructions, or
9155	 * any stores to thread-local variables.
9156	 */
9157	for (i = 0; i < dp->dtdo_len; i++) {
9158		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9159
9160		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9161		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9162		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9163		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
9164			return (0);
9165	}
9166
9167	return (1);
9168}
9169
9170static void
9171dtrace_difo_hold(dtrace_difo_t *dp)
9172{
9173	int i;
9174
9175	ASSERT(MUTEX_HELD(&dtrace_lock));
9176
9177	dp->dtdo_refcnt++;
9178	ASSERT(dp->dtdo_refcnt != 0);
9179
9180	/*
9181	 * We need to check this DIF object for references to the variable
9182	 * DIF_VAR_VTIMESTAMP.
9183	 */
9184	for (i = 0; i < dp->dtdo_varlen; i++) {
9185		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9186
9187		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9188			continue;
9189
9190		if (dtrace_vtime_references++ == 0)
9191			dtrace_vtime_enable();
9192	}
9193}
9194
9195/*
9196 * This routine calculates the dynamic variable chunksize for a given DIF
9197 * object.  The calculation is not fool-proof, and can probably be tricked by
9198 * malicious DIF -- but it works for all compiler-generated DIF.  Because this
9199 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9200 * if a dynamic variable size exceeds the chunksize.
9201 */
9202static void
9203dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9204{
9205	uint64_t sval = 0;
9206	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9207	const dif_instr_t *text = dp->dtdo_buf;
9208	uint_t pc, srd = 0;
9209	uint_t ttop = 0;
9210	size_t size, ksize;
9211	uint_t id, i;
9212
9213	for (pc = 0; pc < dp->dtdo_len; pc++) {
9214		dif_instr_t instr = text[pc];
9215		uint_t op = DIF_INSTR_OP(instr);
9216		uint_t rd = DIF_INSTR_RD(instr);
9217		uint_t r1 = DIF_INSTR_R1(instr);
9218		uint_t nkeys = 0;
9219		uchar_t scope = 0;
9220
9221		dtrace_key_t *key = tupregs;
9222
9223		switch (op) {
9224		case DIF_OP_SETX:
9225			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9226			srd = rd;
9227			continue;
9228
9229		case DIF_OP_STTS:
9230			key = &tupregs[DIF_DTR_NREGS];
9231			key[0].dttk_size = 0;
9232			key[1].dttk_size = 0;
9233			nkeys = 2;
9234			scope = DIFV_SCOPE_THREAD;
9235			break;
9236
9237		case DIF_OP_STGAA:
9238		case DIF_OP_STTAA:
9239			nkeys = ttop;
9240
9241			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9242				key[nkeys++].dttk_size = 0;
9243
9244			key[nkeys++].dttk_size = 0;
9245
9246			if (op == DIF_OP_STTAA) {
9247				scope = DIFV_SCOPE_THREAD;
9248			} else {
9249				scope = DIFV_SCOPE_GLOBAL;
9250			}
9251
9252			break;
9253
9254		case DIF_OP_PUSHTR:
9255			if (ttop == DIF_DTR_NREGS)
9256				return;
9257
9258			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9259				/*
9260				 * If the register for the size of the "pushtr"
9261				 * is %r0 (or the value is 0) and the type is
9262				 * a string, we'll use the system-wide default
9263				 * string size.
9264				 */
9265				tupregs[ttop++].dttk_size =
9266				    dtrace_strsize_default;
9267			} else {
9268				if (srd == 0)
9269					return;
9270
9271				tupregs[ttop++].dttk_size = sval;
9272			}
9273
9274			break;
9275
9276		case DIF_OP_PUSHTV:
9277			if (ttop == DIF_DTR_NREGS)
9278				return;
9279
9280			tupregs[ttop++].dttk_size = 0;
9281			break;
9282
9283		case DIF_OP_FLUSHTS:
9284			ttop = 0;
9285			break;
9286
9287		case DIF_OP_POPTS:
9288			if (ttop != 0)
9289				ttop--;
9290			break;
9291		}
9292
9293		sval = 0;
9294		srd = 0;
9295
9296		if (nkeys == 0)
9297			continue;
9298
9299		/*
9300		 * We have a dynamic variable allocation; calculate its size.
9301		 */
9302		for (ksize = 0, i = 0; i < nkeys; i++)
9303			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9304
9305		size = sizeof (dtrace_dynvar_t);
9306		size += sizeof (dtrace_key_t) * (nkeys - 1);
9307		size += ksize;
9308
9309		/*
9310		 * Now we need to determine the size of the stored data.
9311		 */
9312		id = DIF_INSTR_VAR(instr);
9313
9314		for (i = 0; i < dp->dtdo_varlen; i++) {
9315			dtrace_difv_t *v = &dp->dtdo_vartab[i];
9316
9317			if (v->dtdv_id == id && v->dtdv_scope == scope) {
9318				size += v->dtdv_type.dtdt_size;
9319				break;
9320			}
9321		}
9322
9323		if (i == dp->dtdo_varlen)
9324			return;
9325
9326		/*
9327		 * We have the size.  If this is larger than the chunk size
9328		 * for our dynamic variable state, reset the chunk size.
9329		 */
9330		size = P2ROUNDUP(size, sizeof (uint64_t));
9331
9332		if (size > vstate->dtvs_dynvars.dtds_chunksize)
9333			vstate->dtvs_dynvars.dtds_chunksize = size;
9334	}
9335}
9336
9337static void
9338dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9339{
9340	int i, oldsvars, osz, nsz, otlocals, ntlocals;
9341	uint_t id;
9342
9343	ASSERT(MUTEX_HELD(&dtrace_lock));
9344	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9345
9346	for (i = 0; i < dp->dtdo_varlen; i++) {
9347		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9348		dtrace_statvar_t *svar, ***svarp = NULL;
9349		size_t dsize = 0;
9350		uint8_t scope = v->dtdv_scope;
9351		int *np = NULL;
9352
9353		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9354			continue;
9355
9356		id -= DIF_VAR_OTHER_UBASE;
9357
9358		switch (scope) {
9359		case DIFV_SCOPE_THREAD:
9360			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9361				dtrace_difv_t *tlocals;
9362
9363				if ((ntlocals = (otlocals << 1)) == 0)
9364					ntlocals = 1;
9365
9366				osz = otlocals * sizeof (dtrace_difv_t);
9367				nsz = ntlocals * sizeof (dtrace_difv_t);
9368
9369				tlocals = kmem_zalloc(nsz, KM_SLEEP);
9370
9371				if (osz != 0) {
9372					bcopy(vstate->dtvs_tlocals,
9373					    tlocals, osz);
9374					kmem_free(vstate->dtvs_tlocals, osz);
9375				}
9376
9377				vstate->dtvs_tlocals = tlocals;
9378				vstate->dtvs_ntlocals = ntlocals;
9379			}
9380
9381			vstate->dtvs_tlocals[id] = *v;
9382			continue;
9383
9384		case DIFV_SCOPE_LOCAL:
9385			np = &vstate->dtvs_nlocals;
9386			svarp = &vstate->dtvs_locals;
9387
9388			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9389				dsize = NCPU * (v->dtdv_type.dtdt_size +
9390				    sizeof (uint64_t));
9391			else
9392				dsize = NCPU * sizeof (uint64_t);
9393
9394			break;
9395
9396		case DIFV_SCOPE_GLOBAL:
9397			np = &vstate->dtvs_nglobals;
9398			svarp = &vstate->dtvs_globals;
9399
9400			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9401				dsize = v->dtdv_type.dtdt_size +
9402				    sizeof (uint64_t);
9403
9404			break;
9405
9406		default:
9407			ASSERT(0);
9408		}
9409
9410		while (id >= (oldsvars = *np)) {
9411			dtrace_statvar_t **statics;
9412			int newsvars, oldsize, newsize;
9413
9414			if ((newsvars = (oldsvars << 1)) == 0)
9415				newsvars = 1;
9416
9417			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9418			newsize = newsvars * sizeof (dtrace_statvar_t *);
9419
9420			statics = kmem_zalloc(newsize, KM_SLEEP);
9421
9422			if (oldsize != 0) {
9423				bcopy(*svarp, statics, oldsize);
9424				kmem_free(*svarp, oldsize);
9425			}
9426
9427			*svarp = statics;
9428			*np = newsvars;
9429		}
9430
9431		if ((svar = (*svarp)[id]) == NULL) {
9432			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9433			svar->dtsv_var = *v;
9434
9435			if ((svar->dtsv_size = dsize) != 0) {
9436				svar->dtsv_data = (uint64_t)(uintptr_t)
9437				    kmem_zalloc(dsize, KM_SLEEP);
9438			}
9439
9440			(*svarp)[id] = svar;
9441		}
9442
9443		svar->dtsv_refcnt++;
9444	}
9445
9446	dtrace_difo_chunksize(dp, vstate);
9447	dtrace_difo_hold(dp);
9448}
9449
9450static dtrace_difo_t *
9451dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9452{
9453	dtrace_difo_t *new;
9454	size_t sz;
9455
9456	ASSERT(dp->dtdo_buf != NULL);
9457	ASSERT(dp->dtdo_refcnt != 0);
9458
9459	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9460
9461	ASSERT(dp->dtdo_buf != NULL);
9462	sz = dp->dtdo_len * sizeof (dif_instr_t);
9463	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9464	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9465	new->dtdo_len = dp->dtdo_len;
9466
9467	if (dp->dtdo_strtab != NULL) {
9468		ASSERT(dp->dtdo_strlen != 0);
9469		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9470		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9471		new->dtdo_strlen = dp->dtdo_strlen;
9472	}
9473
9474	if (dp->dtdo_inttab != NULL) {
9475		ASSERT(dp->dtdo_intlen != 0);
9476		sz = dp->dtdo_intlen * sizeof (uint64_t);
9477		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9478		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9479		new->dtdo_intlen = dp->dtdo_intlen;
9480	}
9481
9482	if (dp->dtdo_vartab != NULL) {
9483		ASSERT(dp->dtdo_varlen != 0);
9484		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9485		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9486		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9487		new->dtdo_varlen = dp->dtdo_varlen;
9488	}
9489
9490	dtrace_difo_init(new, vstate);
9491	return (new);
9492}
9493
9494static void
9495dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9496{
9497	int i;
9498
9499	ASSERT(dp->dtdo_refcnt == 0);
9500
9501	for (i = 0; i < dp->dtdo_varlen; i++) {
9502		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9503		dtrace_statvar_t *svar, **svarp = NULL;
9504		uint_t id;
9505		uint8_t scope = v->dtdv_scope;
9506		int *np = NULL;
9507
9508		switch (scope) {
9509		case DIFV_SCOPE_THREAD:
9510			continue;
9511
9512		case DIFV_SCOPE_LOCAL:
9513			np = &vstate->dtvs_nlocals;
9514			svarp = vstate->dtvs_locals;
9515			break;
9516
9517		case DIFV_SCOPE_GLOBAL:
9518			np = &vstate->dtvs_nglobals;
9519			svarp = vstate->dtvs_globals;
9520			break;
9521
9522		default:
9523			ASSERT(0);
9524		}
9525
9526		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9527			continue;
9528
9529		id -= DIF_VAR_OTHER_UBASE;
9530		ASSERT(id < *np);
9531
9532		svar = svarp[id];
9533		ASSERT(svar != NULL);
9534		ASSERT(svar->dtsv_refcnt > 0);
9535
9536		if (--svar->dtsv_refcnt > 0)
9537			continue;
9538
9539		if (svar->dtsv_size != 0) {
9540			ASSERT(svar->dtsv_data != 0);
9541			kmem_free((void *)(uintptr_t)svar->dtsv_data,
9542			    svar->dtsv_size);
9543		}
9544
9545		kmem_free(svar, sizeof (dtrace_statvar_t));
9546		svarp[id] = NULL;
9547	}
9548
9549	if (dp->dtdo_buf != NULL)
9550		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9551	if (dp->dtdo_inttab != NULL)
9552		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9553	if (dp->dtdo_strtab != NULL)
9554		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9555	if (dp->dtdo_vartab != NULL)
9556		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9557
9558	kmem_free(dp, sizeof (dtrace_difo_t));
9559}
9560
9561static void
9562dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9563{
9564	int i;
9565
9566	ASSERT(MUTEX_HELD(&dtrace_lock));
9567	ASSERT(dp->dtdo_refcnt != 0);
9568
9569	for (i = 0; i < dp->dtdo_varlen; i++) {
9570		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9571
9572		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9573			continue;
9574
9575		ASSERT(dtrace_vtime_references > 0);
9576		if (--dtrace_vtime_references == 0)
9577			dtrace_vtime_disable();
9578	}
9579
9580	if (--dp->dtdo_refcnt == 0)
9581		dtrace_difo_destroy(dp, vstate);
9582}
9583
9584/*
9585 * DTrace Format Functions
9586 */
9587static uint16_t
9588dtrace_format_add(dtrace_state_t *state, char *str)
9589{
9590	char *fmt, **new;
9591	uint16_t ndx, len = strlen(str) + 1;
9592
9593	fmt = kmem_zalloc(len, KM_SLEEP);
9594	bcopy(str, fmt, len);
9595
9596	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9597		if (state->dts_formats[ndx] == NULL) {
9598			state->dts_formats[ndx] = fmt;
9599			return (ndx + 1);
9600		}
9601	}
9602
9603	if (state->dts_nformats == USHRT_MAX) {
9604		/*
9605		 * This is only likely if a denial-of-service attack is being
9606		 * attempted.  As such, it's okay to fail silently here.
9607		 */
9608		kmem_free(fmt, len);
9609		return (0);
9610	}
9611
9612	/*
9613	 * For simplicity, we always resize the formats array to be exactly the
9614	 * number of formats.
9615	 */
9616	ndx = state->dts_nformats++;
9617	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9618
9619	if (state->dts_formats != NULL) {
9620		ASSERT(ndx != 0);
9621		bcopy(state->dts_formats, new, ndx * sizeof (char *));
9622		kmem_free(state->dts_formats, ndx * sizeof (char *));
9623	}
9624
9625	state->dts_formats = new;
9626	state->dts_formats[ndx] = fmt;
9627
9628	return (ndx + 1);
9629}
9630
9631static void
9632dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9633{
9634	char *fmt;
9635
9636	ASSERT(state->dts_formats != NULL);
9637	ASSERT(format <= state->dts_nformats);
9638	ASSERT(state->dts_formats[format - 1] != NULL);
9639
9640	fmt = state->dts_formats[format - 1];
9641	kmem_free(fmt, strlen(fmt) + 1);
9642	state->dts_formats[format - 1] = NULL;
9643}
9644
9645static void
9646dtrace_format_destroy(dtrace_state_t *state)
9647{
9648	int i;
9649
9650	if (state->dts_nformats == 0) {
9651		ASSERT(state->dts_formats == NULL);
9652		return;
9653	}
9654
9655	ASSERT(state->dts_formats != NULL);
9656
9657	for (i = 0; i < state->dts_nformats; i++) {
9658		char *fmt = state->dts_formats[i];
9659
9660		if (fmt == NULL)
9661			continue;
9662
9663		kmem_free(fmt, strlen(fmt) + 1);
9664	}
9665
9666	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9667	state->dts_nformats = 0;
9668	state->dts_formats = NULL;
9669}
9670
9671/*
9672 * DTrace Predicate Functions
9673 */
9674static dtrace_predicate_t *
9675dtrace_predicate_create(dtrace_difo_t *dp)
9676{
9677	dtrace_predicate_t *pred;
9678
9679	ASSERT(MUTEX_HELD(&dtrace_lock));
9680	ASSERT(dp->dtdo_refcnt != 0);
9681
9682	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9683	pred->dtp_difo = dp;
9684	pred->dtp_refcnt = 1;
9685
9686	if (!dtrace_difo_cacheable(dp))
9687		return (pred);
9688
9689	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9690		/*
9691		 * This is only theoretically possible -- we have had 2^32
9692		 * cacheable predicates on this machine.  We cannot allow any
9693		 * more predicates to become cacheable:  as unlikely as it is,
9694		 * there may be a thread caching a (now stale) predicate cache
9695		 * ID. (N.B.: the temptation is being successfully resisted to
9696		 * have this cmn_err() "Holy shit -- we executed this code!")
9697		 */
9698		return (pred);
9699	}
9700
9701	pred->dtp_cacheid = dtrace_predcache_id++;
9702
9703	return (pred);
9704}
9705
9706static void
9707dtrace_predicate_hold(dtrace_predicate_t *pred)
9708{
9709	ASSERT(MUTEX_HELD(&dtrace_lock));
9710	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9711	ASSERT(pred->dtp_refcnt > 0);
9712
9713	pred->dtp_refcnt++;
9714}
9715
9716static void
9717dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9718{
9719	dtrace_difo_t *dp = pred->dtp_difo;
9720
9721	ASSERT(MUTEX_HELD(&dtrace_lock));
9722	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9723	ASSERT(pred->dtp_refcnt > 0);
9724
9725	if (--pred->dtp_refcnt == 0) {
9726		dtrace_difo_release(pred->dtp_difo, vstate);
9727		kmem_free(pred, sizeof (dtrace_predicate_t));
9728	}
9729}
9730
9731/*
9732 * DTrace Action Description Functions
9733 */
9734static dtrace_actdesc_t *
9735dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9736    uint64_t uarg, uint64_t arg)
9737{
9738	dtrace_actdesc_t *act;
9739
9740#if defined(sun)
9741	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9742	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9743#endif
9744
9745	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9746	act->dtad_kind = kind;
9747	act->dtad_ntuple = ntuple;
9748	act->dtad_uarg = uarg;
9749	act->dtad_arg = arg;
9750	act->dtad_refcnt = 1;
9751
9752	return (act);
9753}
9754
9755static void
9756dtrace_actdesc_hold(dtrace_actdesc_t *act)
9757{
9758	ASSERT(act->dtad_refcnt >= 1);
9759	act->dtad_refcnt++;
9760}
9761
9762static void
9763dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9764{
9765	dtrace_actkind_t kind = act->dtad_kind;
9766	dtrace_difo_t *dp;
9767
9768	ASSERT(act->dtad_refcnt >= 1);
9769
9770	if (--act->dtad_refcnt != 0)
9771		return;
9772
9773	if ((dp = act->dtad_difo) != NULL)
9774		dtrace_difo_release(dp, vstate);
9775
9776	if (DTRACEACT_ISPRINTFLIKE(kind)) {
9777		char *str = (char *)(uintptr_t)act->dtad_arg;
9778
9779#if defined(sun)
9780		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9781		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9782#endif
9783
9784		if (str != NULL)
9785			kmem_free(str, strlen(str) + 1);
9786	}
9787
9788	kmem_free(act, sizeof (dtrace_actdesc_t));
9789}
9790
9791/*
9792 * DTrace ECB Functions
9793 */
9794static dtrace_ecb_t *
9795dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9796{
9797	dtrace_ecb_t *ecb;
9798	dtrace_epid_t epid;
9799
9800	ASSERT(MUTEX_HELD(&dtrace_lock));
9801
9802	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9803	ecb->dte_predicate = NULL;
9804	ecb->dte_probe = probe;
9805
9806	/*
9807	 * The default size is the size of the default action: recording
9808	 * the header.
9809	 */
9810	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
9811	ecb->dte_alignment = sizeof (dtrace_epid_t);
9812
9813	epid = state->dts_epid++;
9814
9815	if (epid - 1 >= state->dts_necbs) {
9816		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9817		int necbs = state->dts_necbs << 1;
9818
9819		ASSERT(epid == state->dts_necbs + 1);
9820
9821		if (necbs == 0) {
9822			ASSERT(oecbs == NULL);
9823			necbs = 1;
9824		}
9825
9826		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9827
9828		if (oecbs != NULL)
9829			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9830
9831		dtrace_membar_producer();
9832		state->dts_ecbs = ecbs;
9833
9834		if (oecbs != NULL) {
9835			/*
9836			 * If this state is active, we must dtrace_sync()
9837			 * before we can free the old dts_ecbs array:  we're
9838			 * coming in hot, and there may be active ring
9839			 * buffer processing (which indexes into the dts_ecbs
9840			 * array) on another CPU.
9841			 */
9842			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9843				dtrace_sync();
9844
9845			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9846		}
9847
9848		dtrace_membar_producer();
9849		state->dts_necbs = necbs;
9850	}
9851
9852	ecb->dte_state = state;
9853
9854	ASSERT(state->dts_ecbs[epid - 1] == NULL);
9855	dtrace_membar_producer();
9856	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9857
9858	return (ecb);
9859}
9860
9861static void
9862dtrace_ecb_enable(dtrace_ecb_t *ecb)
9863{
9864	dtrace_probe_t *probe = ecb->dte_probe;
9865
9866	ASSERT(MUTEX_HELD(&cpu_lock));
9867	ASSERT(MUTEX_HELD(&dtrace_lock));
9868	ASSERT(ecb->dte_next == NULL);
9869
9870	if (probe == NULL) {
9871		/*
9872		 * This is the NULL probe -- there's nothing to do.
9873		 */
9874		return;
9875	}
9876
9877	if (probe->dtpr_ecb == NULL) {
9878		dtrace_provider_t *prov = probe->dtpr_provider;
9879
9880		/*
9881		 * We're the first ECB on this probe.
9882		 */
9883		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9884
9885		if (ecb->dte_predicate != NULL)
9886			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9887
9888		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9889		    probe->dtpr_id, probe->dtpr_arg);
9890	} else {
9891		/*
9892		 * This probe is already active.  Swing the last pointer to
9893		 * point to the new ECB, and issue a dtrace_sync() to assure
9894		 * that all CPUs have seen the change.
9895		 */
9896		ASSERT(probe->dtpr_ecb_last != NULL);
9897		probe->dtpr_ecb_last->dte_next = ecb;
9898		probe->dtpr_ecb_last = ecb;
9899		probe->dtpr_predcache = 0;
9900
9901		dtrace_sync();
9902	}
9903}
9904
9905static void
9906dtrace_ecb_resize(dtrace_ecb_t *ecb)
9907{
9908	dtrace_action_t *act;
9909	uint32_t curneeded = UINT32_MAX;
9910	uint32_t aggbase = UINT32_MAX;
9911
9912	/*
9913	 * If we record anything, we always record the dtrace_rechdr_t.  (And
9914	 * we always record it first.)
9915	 */
9916	ecb->dte_size = sizeof (dtrace_rechdr_t);
9917	ecb->dte_alignment = sizeof (dtrace_epid_t);
9918
9919	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9920		dtrace_recdesc_t *rec = &act->dta_rec;
9921		ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
9922
9923		ecb->dte_alignment = MAX(ecb->dte_alignment,
9924		    rec->dtrd_alignment);
9925
9926		if (DTRACEACT_ISAGG(act->dta_kind)) {
9927			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9928
9929			ASSERT(rec->dtrd_size != 0);
9930			ASSERT(agg->dtag_first != NULL);
9931			ASSERT(act->dta_prev->dta_intuple);
9932			ASSERT(aggbase != UINT32_MAX);
9933			ASSERT(curneeded != UINT32_MAX);
9934
9935			agg->dtag_base = aggbase;
9936
9937			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
9938			rec->dtrd_offset = curneeded;
9939			curneeded += rec->dtrd_size;
9940			ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
9941
9942			aggbase = UINT32_MAX;
9943			curneeded = UINT32_MAX;
9944		} else if (act->dta_intuple) {
9945			if (curneeded == UINT32_MAX) {
9946				/*
9947				 * This is the first record in a tuple.  Align
9948				 * curneeded to be at offset 4 in an 8-byte
9949				 * aligned block.
9950				 */
9951				ASSERT(act->dta_prev == NULL ||
9952				    !act->dta_prev->dta_intuple);
9953				ASSERT3U(aggbase, ==, UINT32_MAX);
9954				curneeded = P2PHASEUP(ecb->dte_size,
9955				    sizeof (uint64_t), sizeof (dtrace_aggid_t));
9956
9957				aggbase = curneeded - sizeof (dtrace_aggid_t);
9958				ASSERT(IS_P2ALIGNED(aggbase,
9959				    sizeof (uint64_t)));
9960			}
9961			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
9962			rec->dtrd_offset = curneeded;
9963			curneeded += rec->dtrd_size;
9964		} else {
9965			/* tuples must be followed by an aggregation */
9966			ASSERT(act->dta_prev == NULL ||
9967			    !act->dta_prev->dta_intuple);
9968
9969			ecb->dte_size = P2ROUNDUP(ecb->dte_size,
9970			    rec->dtrd_alignment);
9971			rec->dtrd_offset = ecb->dte_size;
9972			ecb->dte_size += rec->dtrd_size;
9973			ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
9974		}
9975	}
9976
9977	if ((act = ecb->dte_action) != NULL &&
9978	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9979	    ecb->dte_size == sizeof (dtrace_rechdr_t)) {
9980		/*
9981		 * If the size is still sizeof (dtrace_rechdr_t), then all
9982		 * actions store no data; set the size to 0.
9983		 */
9984		ecb->dte_size = 0;
9985	}
9986
9987	ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
9988	ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
9989	ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
9990	    ecb->dte_needed);
9991}
9992
9993static dtrace_action_t *
9994dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9995{
9996	dtrace_aggregation_t *agg;
9997	size_t size = sizeof (uint64_t);
9998	int ntuple = desc->dtad_ntuple;
9999	dtrace_action_t *act;
10000	dtrace_recdesc_t *frec;
10001	dtrace_aggid_t aggid;
10002	dtrace_state_t *state = ecb->dte_state;
10003
10004	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
10005	agg->dtag_ecb = ecb;
10006
10007	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
10008
10009	switch (desc->dtad_kind) {
10010	case DTRACEAGG_MIN:
10011		agg->dtag_initial = INT64_MAX;
10012		agg->dtag_aggregate = dtrace_aggregate_min;
10013		break;
10014
10015	case DTRACEAGG_MAX:
10016		agg->dtag_initial = INT64_MIN;
10017		agg->dtag_aggregate = dtrace_aggregate_max;
10018		break;
10019
10020	case DTRACEAGG_COUNT:
10021		agg->dtag_aggregate = dtrace_aggregate_count;
10022		break;
10023
10024	case DTRACEAGG_QUANTIZE:
10025		agg->dtag_aggregate = dtrace_aggregate_quantize;
10026		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
10027		    sizeof (uint64_t);
10028		break;
10029
10030	case DTRACEAGG_LQUANTIZE: {
10031		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
10032		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
10033
10034		agg->dtag_initial = desc->dtad_arg;
10035		agg->dtag_aggregate = dtrace_aggregate_lquantize;
10036
10037		if (step == 0 || levels == 0)
10038			goto err;
10039
10040		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
10041		break;
10042	}
10043
10044	case DTRACEAGG_LLQUANTIZE: {
10045		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
10046		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
10047		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
10048		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
10049		int64_t v;
10050
10051		agg->dtag_initial = desc->dtad_arg;
10052		agg->dtag_aggregate = dtrace_aggregate_llquantize;
10053
10054		if (factor < 2 || low >= high || nsteps < factor)
10055			goto err;
10056
10057		/*
10058		 * Now check that the number of steps evenly divides a power
10059		 * of the factor.  (This assures both integer bucket size and
10060		 * linearity within each magnitude.)
10061		 */
10062		for (v = factor; v < nsteps; v *= factor)
10063			continue;
10064
10065		if ((v % nsteps) || (nsteps % factor))
10066			goto err;
10067
10068		size = (dtrace_aggregate_llquantize_bucket(factor,
10069		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
10070		break;
10071	}
10072
10073	case DTRACEAGG_AVG:
10074		agg->dtag_aggregate = dtrace_aggregate_avg;
10075		size = sizeof (uint64_t) * 2;
10076		break;
10077
10078	case DTRACEAGG_STDDEV:
10079		agg->dtag_aggregate = dtrace_aggregate_stddev;
10080		size = sizeof (uint64_t) * 4;
10081		break;
10082
10083	case DTRACEAGG_SUM:
10084		agg->dtag_aggregate = dtrace_aggregate_sum;
10085		break;
10086
10087	default:
10088		goto err;
10089	}
10090
10091	agg->dtag_action.dta_rec.dtrd_size = size;
10092
10093	if (ntuple == 0)
10094		goto err;
10095
10096	/*
10097	 * We must make sure that we have enough actions for the n-tuple.
10098	 */
10099	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
10100		if (DTRACEACT_ISAGG(act->dta_kind))
10101			break;
10102
10103		if (--ntuple == 0) {
10104			/*
10105			 * This is the action with which our n-tuple begins.
10106			 */
10107			agg->dtag_first = act;
10108			goto success;
10109		}
10110	}
10111
10112	/*
10113	 * This n-tuple is short by ntuple elements.  Return failure.
10114	 */
10115	ASSERT(ntuple != 0);
10116err:
10117	kmem_free(agg, sizeof (dtrace_aggregation_t));
10118	return (NULL);
10119
10120success:
10121	/*
10122	 * If the last action in the tuple has a size of zero, it's actually
10123	 * an expression argument for the aggregating action.
10124	 */
10125	ASSERT(ecb->dte_action_last != NULL);
10126	act = ecb->dte_action_last;
10127
10128	if (act->dta_kind == DTRACEACT_DIFEXPR) {
10129		ASSERT(act->dta_difo != NULL);
10130
10131		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10132			agg->dtag_hasarg = 1;
10133	}
10134
10135	/*
10136	 * We need to allocate an id for this aggregation.
10137	 */
10138#if defined(sun)
10139	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10140	    VM_BESTFIT | VM_SLEEP);
10141#else
10142	aggid = alloc_unr(state->dts_aggid_arena);
10143#endif
10144
10145	if (aggid - 1 >= state->dts_naggregations) {
10146		dtrace_aggregation_t **oaggs = state->dts_aggregations;
10147		dtrace_aggregation_t **aggs;
10148		int naggs = state->dts_naggregations << 1;
10149		int onaggs = state->dts_naggregations;
10150
10151		ASSERT(aggid == state->dts_naggregations + 1);
10152
10153		if (naggs == 0) {
10154			ASSERT(oaggs == NULL);
10155			naggs = 1;
10156		}
10157
10158		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10159
10160		if (oaggs != NULL) {
10161			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10162			kmem_free(oaggs, onaggs * sizeof (*aggs));
10163		}
10164
10165		state->dts_aggregations = aggs;
10166		state->dts_naggregations = naggs;
10167	}
10168
10169	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10170	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10171
10172	frec = &agg->dtag_first->dta_rec;
10173	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10174		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10175
10176	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10177		ASSERT(!act->dta_intuple);
10178		act->dta_intuple = 1;
10179	}
10180
10181	return (&agg->dtag_action);
10182}
10183
10184static void
10185dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10186{
10187	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10188	dtrace_state_t *state = ecb->dte_state;
10189	dtrace_aggid_t aggid = agg->dtag_id;
10190
10191	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10192#if defined(sun)
10193	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10194#else
10195	free_unr(state->dts_aggid_arena, aggid);
10196#endif
10197
10198	ASSERT(state->dts_aggregations[aggid - 1] == agg);
10199	state->dts_aggregations[aggid - 1] = NULL;
10200
10201	kmem_free(agg, sizeof (dtrace_aggregation_t));
10202}
10203
10204static int
10205dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10206{
10207	dtrace_action_t *action, *last;
10208	dtrace_difo_t *dp = desc->dtad_difo;
10209	uint32_t size = 0, align = sizeof (uint8_t), mask;
10210	uint16_t format = 0;
10211	dtrace_recdesc_t *rec;
10212	dtrace_state_t *state = ecb->dte_state;
10213	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
10214	uint64_t arg = desc->dtad_arg;
10215
10216	ASSERT(MUTEX_HELD(&dtrace_lock));
10217	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10218
10219	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10220		/*
10221		 * If this is an aggregating action, there must be neither
10222		 * a speculate nor a commit on the action chain.
10223		 */
10224		dtrace_action_t *act;
10225
10226		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10227			if (act->dta_kind == DTRACEACT_COMMIT)
10228				return (EINVAL);
10229
10230			if (act->dta_kind == DTRACEACT_SPECULATE)
10231				return (EINVAL);
10232		}
10233
10234		action = dtrace_ecb_aggregation_create(ecb, desc);
10235
10236		if (action == NULL)
10237			return (EINVAL);
10238	} else {
10239		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10240		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10241		    dp != NULL && dp->dtdo_destructive)) {
10242			state->dts_destructive = 1;
10243		}
10244
10245		switch (desc->dtad_kind) {
10246		case DTRACEACT_PRINTF:
10247		case DTRACEACT_PRINTA:
10248		case DTRACEACT_SYSTEM:
10249		case DTRACEACT_FREOPEN:
10250		case DTRACEACT_DIFEXPR:
10251			/*
10252			 * We know that our arg is a string -- turn it into a
10253			 * format.
10254			 */
10255			if (arg == 0) {
10256				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
10257				    desc->dtad_kind == DTRACEACT_DIFEXPR);
10258				format = 0;
10259			} else {
10260				ASSERT(arg != 0);
10261#if defined(sun)
10262				ASSERT(arg > KERNELBASE);
10263#endif
10264				format = dtrace_format_add(state,
10265				    (char *)(uintptr_t)arg);
10266			}
10267
10268			/*FALLTHROUGH*/
10269		case DTRACEACT_LIBACT:
10270		case DTRACEACT_TRACEMEM:
10271		case DTRACEACT_TRACEMEM_DYNSIZE:
10272			if (dp == NULL)
10273				return (EINVAL);
10274
10275			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10276				break;
10277
10278			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10279				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10280					return (EINVAL);
10281
10282				size = opt[DTRACEOPT_STRSIZE];
10283			}
10284
10285			break;
10286
10287		case DTRACEACT_STACK:
10288			if ((nframes = arg) == 0) {
10289				nframes = opt[DTRACEOPT_STACKFRAMES];
10290				ASSERT(nframes > 0);
10291				arg = nframes;
10292			}
10293
10294			size = nframes * sizeof (pc_t);
10295			break;
10296
10297		case DTRACEACT_JSTACK:
10298			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10299				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10300
10301			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10302				nframes = opt[DTRACEOPT_JSTACKFRAMES];
10303
10304			arg = DTRACE_USTACK_ARG(nframes, strsize);
10305
10306			/*FALLTHROUGH*/
10307		case DTRACEACT_USTACK:
10308			if (desc->dtad_kind != DTRACEACT_JSTACK &&
10309			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10310				strsize = DTRACE_USTACK_STRSIZE(arg);
10311				nframes = opt[DTRACEOPT_USTACKFRAMES];
10312				ASSERT(nframes > 0);
10313				arg = DTRACE_USTACK_ARG(nframes, strsize);
10314			}
10315
10316			/*
10317			 * Save a slot for the pid.
10318			 */
10319			size = (nframes + 1) * sizeof (uint64_t);
10320			size += DTRACE_USTACK_STRSIZE(arg);
10321			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10322
10323			break;
10324
10325		case DTRACEACT_SYM:
10326		case DTRACEACT_MOD:
10327			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10328			    sizeof (uint64_t)) ||
10329			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10330				return (EINVAL);
10331			break;
10332
10333		case DTRACEACT_USYM:
10334		case DTRACEACT_UMOD:
10335		case DTRACEACT_UADDR:
10336			if (dp == NULL ||
10337			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10338			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10339				return (EINVAL);
10340
10341			/*
10342			 * We have a slot for the pid, plus a slot for the
10343			 * argument.  To keep things simple (aligned with
10344			 * bitness-neutral sizing), we store each as a 64-bit
10345			 * quantity.
10346			 */
10347			size = 2 * sizeof (uint64_t);
10348			break;
10349
10350		case DTRACEACT_STOP:
10351		case DTRACEACT_BREAKPOINT:
10352		case DTRACEACT_PANIC:
10353			break;
10354
10355		case DTRACEACT_CHILL:
10356		case DTRACEACT_DISCARD:
10357		case DTRACEACT_RAISE:
10358			if (dp == NULL)
10359				return (EINVAL);
10360			break;
10361
10362		case DTRACEACT_EXIT:
10363			if (dp == NULL ||
10364			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10365			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10366				return (EINVAL);
10367			break;
10368
10369		case DTRACEACT_SPECULATE:
10370			if (ecb->dte_size > sizeof (dtrace_rechdr_t))
10371				return (EINVAL);
10372
10373			if (dp == NULL)
10374				return (EINVAL);
10375
10376			state->dts_speculates = 1;
10377			break;
10378
10379		case DTRACEACT_PRINTM:
10380		    	size = dp->dtdo_rtype.dtdt_size;
10381			break;
10382
10383		case DTRACEACT_PRINTT:
10384		    	size = dp->dtdo_rtype.dtdt_size;
10385			break;
10386
10387		case DTRACEACT_COMMIT: {
10388			dtrace_action_t *act = ecb->dte_action;
10389
10390			for (; act != NULL; act = act->dta_next) {
10391				if (act->dta_kind == DTRACEACT_COMMIT)
10392					return (EINVAL);
10393			}
10394
10395			if (dp == NULL)
10396				return (EINVAL);
10397			break;
10398		}
10399
10400		default:
10401			return (EINVAL);
10402		}
10403
10404		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10405			/*
10406			 * If this is a data-storing action or a speculate,
10407			 * we must be sure that there isn't a commit on the
10408			 * action chain.
10409			 */
10410			dtrace_action_t *act = ecb->dte_action;
10411
10412			for (; act != NULL; act = act->dta_next) {
10413				if (act->dta_kind == DTRACEACT_COMMIT)
10414					return (EINVAL);
10415			}
10416		}
10417
10418		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10419		action->dta_rec.dtrd_size = size;
10420	}
10421
10422	action->dta_refcnt = 1;
10423	rec = &action->dta_rec;
10424	size = rec->dtrd_size;
10425
10426	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10427		if (!(size & mask)) {
10428			align = mask + 1;
10429			break;
10430		}
10431	}
10432
10433	action->dta_kind = desc->dtad_kind;
10434
10435	if ((action->dta_difo = dp) != NULL)
10436		dtrace_difo_hold(dp);
10437
10438	rec->dtrd_action = action->dta_kind;
10439	rec->dtrd_arg = arg;
10440	rec->dtrd_uarg = desc->dtad_uarg;
10441	rec->dtrd_alignment = (uint16_t)align;
10442	rec->dtrd_format = format;
10443
10444	if ((last = ecb->dte_action_last) != NULL) {
10445		ASSERT(ecb->dte_action != NULL);
10446		action->dta_prev = last;
10447		last->dta_next = action;
10448	} else {
10449		ASSERT(ecb->dte_action == NULL);
10450		ecb->dte_action = action;
10451	}
10452
10453	ecb->dte_action_last = action;
10454
10455	return (0);
10456}
10457
10458static void
10459dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10460{
10461	dtrace_action_t *act = ecb->dte_action, *next;
10462	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10463	dtrace_difo_t *dp;
10464	uint16_t format;
10465
10466	if (act != NULL && act->dta_refcnt > 1) {
10467		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10468		act->dta_refcnt--;
10469	} else {
10470		for (; act != NULL; act = next) {
10471			next = act->dta_next;
10472			ASSERT(next != NULL || act == ecb->dte_action_last);
10473			ASSERT(act->dta_refcnt == 1);
10474
10475			if ((format = act->dta_rec.dtrd_format) != 0)
10476				dtrace_format_remove(ecb->dte_state, format);
10477
10478			if ((dp = act->dta_difo) != NULL)
10479				dtrace_difo_release(dp, vstate);
10480
10481			if (DTRACEACT_ISAGG(act->dta_kind)) {
10482				dtrace_ecb_aggregation_destroy(ecb, act);
10483			} else {
10484				kmem_free(act, sizeof (dtrace_action_t));
10485			}
10486		}
10487	}
10488
10489	ecb->dte_action = NULL;
10490	ecb->dte_action_last = NULL;
10491	ecb->dte_size = 0;
10492}
10493
10494static void
10495dtrace_ecb_disable(dtrace_ecb_t *ecb)
10496{
10497	/*
10498	 * We disable the ECB by removing it from its probe.
10499	 */
10500	dtrace_ecb_t *pecb, *prev = NULL;
10501	dtrace_probe_t *probe = ecb->dte_probe;
10502
10503	ASSERT(MUTEX_HELD(&dtrace_lock));
10504
10505	if (probe == NULL) {
10506		/*
10507		 * This is the NULL probe; there is nothing to disable.
10508		 */
10509		return;
10510	}
10511
10512	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10513		if (pecb == ecb)
10514			break;
10515		prev = pecb;
10516	}
10517
10518	ASSERT(pecb != NULL);
10519
10520	if (prev == NULL) {
10521		probe->dtpr_ecb = ecb->dte_next;
10522	} else {
10523		prev->dte_next = ecb->dte_next;
10524	}
10525
10526	if (ecb == probe->dtpr_ecb_last) {
10527		ASSERT(ecb->dte_next == NULL);
10528		probe->dtpr_ecb_last = prev;
10529	}
10530
10531	/*
10532	 * The ECB has been disconnected from the probe; now sync to assure
10533	 * that all CPUs have seen the change before returning.
10534	 */
10535	dtrace_sync();
10536
10537	if (probe->dtpr_ecb == NULL) {
10538		/*
10539		 * That was the last ECB on the probe; clear the predicate
10540		 * cache ID for the probe, disable it and sync one more time
10541		 * to assure that we'll never hit it again.
10542		 */
10543		dtrace_provider_t *prov = probe->dtpr_provider;
10544
10545		ASSERT(ecb->dte_next == NULL);
10546		ASSERT(probe->dtpr_ecb_last == NULL);
10547		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10548		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10549		    probe->dtpr_id, probe->dtpr_arg);
10550		dtrace_sync();
10551	} else {
10552		/*
10553		 * There is at least one ECB remaining on the probe.  If there
10554		 * is _exactly_ one, set the probe's predicate cache ID to be
10555		 * the predicate cache ID of the remaining ECB.
10556		 */
10557		ASSERT(probe->dtpr_ecb_last != NULL);
10558		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10559
10560		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10561			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10562
10563			ASSERT(probe->dtpr_ecb->dte_next == NULL);
10564
10565			if (p != NULL)
10566				probe->dtpr_predcache = p->dtp_cacheid;
10567		}
10568
10569		ecb->dte_next = NULL;
10570	}
10571}
10572
10573static void
10574dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10575{
10576	dtrace_state_t *state = ecb->dte_state;
10577	dtrace_vstate_t *vstate = &state->dts_vstate;
10578	dtrace_predicate_t *pred;
10579	dtrace_epid_t epid = ecb->dte_epid;
10580
10581	ASSERT(MUTEX_HELD(&dtrace_lock));
10582	ASSERT(ecb->dte_next == NULL);
10583	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10584
10585	if ((pred = ecb->dte_predicate) != NULL)
10586		dtrace_predicate_release(pred, vstate);
10587
10588	dtrace_ecb_action_remove(ecb);
10589
10590	ASSERT(state->dts_ecbs[epid - 1] == ecb);
10591	state->dts_ecbs[epid - 1] = NULL;
10592
10593	kmem_free(ecb, sizeof (dtrace_ecb_t));
10594}
10595
10596static dtrace_ecb_t *
10597dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10598    dtrace_enabling_t *enab)
10599{
10600	dtrace_ecb_t *ecb;
10601	dtrace_predicate_t *pred;
10602	dtrace_actdesc_t *act;
10603	dtrace_provider_t *prov;
10604	dtrace_ecbdesc_t *desc = enab->dten_current;
10605
10606	ASSERT(MUTEX_HELD(&dtrace_lock));
10607	ASSERT(state != NULL);
10608
10609	ecb = dtrace_ecb_add(state, probe);
10610	ecb->dte_uarg = desc->dted_uarg;
10611
10612	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10613		dtrace_predicate_hold(pred);
10614		ecb->dte_predicate = pred;
10615	}
10616
10617	if (probe != NULL) {
10618		/*
10619		 * If the provider shows more leg than the consumer is old
10620		 * enough to see, we need to enable the appropriate implicit
10621		 * predicate bits to prevent the ecb from activating at
10622		 * revealing times.
10623		 *
10624		 * Providers specifying DTRACE_PRIV_USER at register time
10625		 * are stating that they need the /proc-style privilege
10626		 * model to be enforced, and this is what DTRACE_COND_OWNER
10627		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10628		 */
10629		prov = probe->dtpr_provider;
10630		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10631		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10632			ecb->dte_cond |= DTRACE_COND_OWNER;
10633
10634		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10635		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10636			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10637
10638		/*
10639		 * If the provider shows us kernel innards and the user
10640		 * is lacking sufficient privilege, enable the
10641		 * DTRACE_COND_USERMODE implicit predicate.
10642		 */
10643		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10644		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10645			ecb->dte_cond |= DTRACE_COND_USERMODE;
10646	}
10647
10648	if (dtrace_ecb_create_cache != NULL) {
10649		/*
10650		 * If we have a cached ecb, we'll use its action list instead
10651		 * of creating our own (saving both time and space).
10652		 */
10653		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10654		dtrace_action_t *act = cached->dte_action;
10655
10656		if (act != NULL) {
10657			ASSERT(act->dta_refcnt > 0);
10658			act->dta_refcnt++;
10659			ecb->dte_action = act;
10660			ecb->dte_action_last = cached->dte_action_last;
10661			ecb->dte_needed = cached->dte_needed;
10662			ecb->dte_size = cached->dte_size;
10663			ecb->dte_alignment = cached->dte_alignment;
10664		}
10665
10666		return (ecb);
10667	}
10668
10669	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10670		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10671			dtrace_ecb_destroy(ecb);
10672			return (NULL);
10673		}
10674	}
10675
10676	dtrace_ecb_resize(ecb);
10677
10678	return (dtrace_ecb_create_cache = ecb);
10679}
10680
10681static int
10682dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10683{
10684	dtrace_ecb_t *ecb;
10685	dtrace_enabling_t *enab = arg;
10686	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10687
10688	ASSERT(state != NULL);
10689
10690	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10691		/*
10692		 * This probe was created in a generation for which this
10693		 * enabling has previously created ECBs; we don't want to
10694		 * enable it again, so just kick out.
10695		 */
10696		return (DTRACE_MATCH_NEXT);
10697	}
10698
10699	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10700		return (DTRACE_MATCH_DONE);
10701
10702	dtrace_ecb_enable(ecb);
10703	return (DTRACE_MATCH_NEXT);
10704}
10705
10706static dtrace_ecb_t *
10707dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10708{
10709	dtrace_ecb_t *ecb;
10710
10711	ASSERT(MUTEX_HELD(&dtrace_lock));
10712
10713	if (id == 0 || id > state->dts_necbs)
10714		return (NULL);
10715
10716	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10717	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10718
10719	return (state->dts_ecbs[id - 1]);
10720}
10721
10722static dtrace_aggregation_t *
10723dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10724{
10725	dtrace_aggregation_t *agg;
10726
10727	ASSERT(MUTEX_HELD(&dtrace_lock));
10728
10729	if (id == 0 || id > state->dts_naggregations)
10730		return (NULL);
10731
10732	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10733	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10734	    agg->dtag_id == id);
10735
10736	return (state->dts_aggregations[id - 1]);
10737}
10738
10739/*
10740 * DTrace Buffer Functions
10741 *
10742 * The following functions manipulate DTrace buffers.  Most of these functions
10743 * are called in the context of establishing or processing consumer state;
10744 * exceptions are explicitly noted.
10745 */
10746
10747/*
10748 * Note:  called from cross call context.  This function switches the two
10749 * buffers on a given CPU.  The atomicity of this operation is assured by
10750 * disabling interrupts while the actual switch takes place; the disabling of
10751 * interrupts serializes the execution with any execution of dtrace_probe() on
10752 * the same CPU.
10753 */
10754static void
10755dtrace_buffer_switch(dtrace_buffer_t *buf)
10756{
10757	caddr_t tomax = buf->dtb_tomax;
10758	caddr_t xamot = buf->dtb_xamot;
10759	dtrace_icookie_t cookie;
10760	hrtime_t now;
10761
10762	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10763	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10764
10765	cookie = dtrace_interrupt_disable();
10766	now = dtrace_gethrtime();
10767	buf->dtb_tomax = xamot;
10768	buf->dtb_xamot = tomax;
10769	buf->dtb_xamot_drops = buf->dtb_drops;
10770	buf->dtb_xamot_offset = buf->dtb_offset;
10771	buf->dtb_xamot_errors = buf->dtb_errors;
10772	buf->dtb_xamot_flags = buf->dtb_flags;
10773	buf->dtb_offset = 0;
10774	buf->dtb_drops = 0;
10775	buf->dtb_errors = 0;
10776	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10777	buf->dtb_interval = now - buf->dtb_switched;
10778	buf->dtb_switched = now;
10779	dtrace_interrupt_enable(cookie);
10780}
10781
10782/*
10783 * Note:  called from cross call context.  This function activates a buffer
10784 * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10785 * is guaranteed by the disabling of interrupts.
10786 */
10787static void
10788dtrace_buffer_activate(dtrace_state_t *state)
10789{
10790	dtrace_buffer_t *buf;
10791	dtrace_icookie_t cookie = dtrace_interrupt_disable();
10792
10793	buf = &state->dts_buffer[curcpu];
10794
10795	if (buf->dtb_tomax != NULL) {
10796		/*
10797		 * We might like to assert that the buffer is marked inactive,
10798		 * but this isn't necessarily true:  the buffer for the CPU
10799		 * that processes the BEGIN probe has its buffer activated
10800		 * manually.  In this case, we take the (harmless) action
10801		 * re-clearing the bit INACTIVE bit.
10802		 */
10803		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10804	}
10805
10806	dtrace_interrupt_enable(cookie);
10807}
10808
10809static int
10810dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10811    processorid_t cpu, int *factor)
10812{
10813#if defined(sun)
10814	cpu_t *cp;
10815#endif
10816	dtrace_buffer_t *buf;
10817	int allocated = 0, desired = 0;
10818
10819#if defined(sun)
10820	ASSERT(MUTEX_HELD(&cpu_lock));
10821	ASSERT(MUTEX_HELD(&dtrace_lock));
10822
10823	*factor = 1;
10824
10825	if (size > dtrace_nonroot_maxsize &&
10826	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10827		return (EFBIG);
10828
10829	cp = cpu_list;
10830
10831	do {
10832		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10833			continue;
10834
10835		buf = &bufs[cp->cpu_id];
10836
10837		/*
10838		 * If there is already a buffer allocated for this CPU, it
10839		 * is only possible that this is a DR event.  In this case,
10840		 */
10841		if (buf->dtb_tomax != NULL) {
10842			ASSERT(buf->dtb_size == size);
10843			continue;
10844		}
10845
10846		ASSERT(buf->dtb_xamot == NULL);
10847
10848		if ((buf->dtb_tomax = kmem_zalloc(size,
10849		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
10850			goto err;
10851
10852		buf->dtb_size = size;
10853		buf->dtb_flags = flags;
10854		buf->dtb_offset = 0;
10855		buf->dtb_drops = 0;
10856
10857		if (flags & DTRACEBUF_NOSWITCH)
10858			continue;
10859
10860		if ((buf->dtb_xamot = kmem_zalloc(size,
10861		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
10862			goto err;
10863	} while ((cp = cp->cpu_next) != cpu_list);
10864
10865	return (0);
10866
10867err:
10868	cp = cpu_list;
10869
10870	do {
10871		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10872			continue;
10873
10874		buf = &bufs[cp->cpu_id];
10875		desired += 2;
10876
10877		if (buf->dtb_xamot != NULL) {
10878			ASSERT(buf->dtb_tomax != NULL);
10879			ASSERT(buf->dtb_size == size);
10880			kmem_free(buf->dtb_xamot, size);
10881			allocated++;
10882		}
10883
10884		if (buf->dtb_tomax != NULL) {
10885			ASSERT(buf->dtb_size == size);
10886			kmem_free(buf->dtb_tomax, size);
10887			allocated++;
10888		}
10889
10890		buf->dtb_tomax = NULL;
10891		buf->dtb_xamot = NULL;
10892		buf->dtb_size = 0;
10893	} while ((cp = cp->cpu_next) != cpu_list);
10894#else
10895	int i;
10896
10897	*factor = 1;
10898#if defined(__amd64__) || defined(__mips__) || defined(__powerpc__)
10899	/*
10900	 * FreeBSD isn't good at limiting the amount of memory we
10901	 * ask to malloc, so let's place a limit here before trying
10902	 * to do something that might well end in tears at bedtime.
10903	 */
10904	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
10905		return (ENOMEM);
10906#endif
10907
10908	ASSERT(MUTEX_HELD(&dtrace_lock));
10909	CPU_FOREACH(i) {
10910		if (cpu != DTRACE_CPUALL && cpu != i)
10911			continue;
10912
10913		buf = &bufs[i];
10914
10915		/*
10916		 * If there is already a buffer allocated for this CPU, it
10917		 * is only possible that this is a DR event.  In this case,
10918		 * the buffer size must match our specified size.
10919		 */
10920		if (buf->dtb_tomax != NULL) {
10921			ASSERT(buf->dtb_size == size);
10922			continue;
10923		}
10924
10925		ASSERT(buf->dtb_xamot == NULL);
10926
10927		if ((buf->dtb_tomax = kmem_zalloc(size,
10928		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
10929			goto err;
10930
10931		buf->dtb_size = size;
10932		buf->dtb_flags = flags;
10933		buf->dtb_offset = 0;
10934		buf->dtb_drops = 0;
10935
10936		if (flags & DTRACEBUF_NOSWITCH)
10937			continue;
10938
10939		if ((buf->dtb_xamot = kmem_zalloc(size,
10940		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
10941			goto err;
10942	}
10943
10944	return (0);
10945
10946err:
10947	/*
10948	 * Error allocating memory, so free the buffers that were
10949	 * allocated before the failed allocation.
10950	 */
10951	CPU_FOREACH(i) {
10952		if (cpu != DTRACE_CPUALL && cpu != i)
10953			continue;
10954
10955		buf = &bufs[i];
10956		desired += 2;
10957
10958		if (buf->dtb_xamot != NULL) {
10959			ASSERT(buf->dtb_tomax != NULL);
10960			ASSERT(buf->dtb_size == size);
10961			kmem_free(buf->dtb_xamot, size);
10962			allocated++;
10963		}
10964
10965		if (buf->dtb_tomax != NULL) {
10966			ASSERT(buf->dtb_size == size);
10967			kmem_free(buf->dtb_tomax, size);
10968			allocated++;
10969		}
10970
10971		buf->dtb_tomax = NULL;
10972		buf->dtb_xamot = NULL;
10973		buf->dtb_size = 0;
10974
10975	}
10976#endif
10977	*factor = desired / (allocated > 0 ? allocated : 1);
10978
10979	return (ENOMEM);
10980}
10981
10982/*
10983 * Note:  called from probe context.  This function just increments the drop
10984 * count on a buffer.  It has been made a function to allow for the
10985 * possibility of understanding the source of mysterious drop counts.  (A
10986 * problem for which one may be particularly disappointed that DTrace cannot
10987 * be used to understand DTrace.)
10988 */
10989static void
10990dtrace_buffer_drop(dtrace_buffer_t *buf)
10991{
10992	buf->dtb_drops++;
10993}
10994
10995/*
10996 * Note:  called from probe context.  This function is called to reserve space
10997 * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10998 * mstate.  Returns the new offset in the buffer, or a negative value if an
10999 * error has occurred.
11000 */
11001static intptr_t
11002dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
11003    dtrace_state_t *state, dtrace_mstate_t *mstate)
11004{
11005	intptr_t offs = buf->dtb_offset, soffs;
11006	intptr_t woffs;
11007	caddr_t tomax;
11008	size_t total;
11009
11010	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
11011		return (-1);
11012
11013	if ((tomax = buf->dtb_tomax) == NULL) {
11014		dtrace_buffer_drop(buf);
11015		return (-1);
11016	}
11017
11018	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
11019		while (offs & (align - 1)) {
11020			/*
11021			 * Assert that our alignment is off by a number which
11022			 * is itself sizeof (uint32_t) aligned.
11023			 */
11024			ASSERT(!((align - (offs & (align - 1))) &
11025			    (sizeof (uint32_t) - 1)));
11026			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11027			offs += sizeof (uint32_t);
11028		}
11029
11030		if ((soffs = offs + needed) > buf->dtb_size) {
11031			dtrace_buffer_drop(buf);
11032			return (-1);
11033		}
11034
11035		if (mstate == NULL)
11036			return (offs);
11037
11038		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
11039		mstate->dtms_scratch_size = buf->dtb_size - soffs;
11040		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11041
11042		return (offs);
11043	}
11044
11045	if (buf->dtb_flags & DTRACEBUF_FILL) {
11046		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
11047		    (buf->dtb_flags & DTRACEBUF_FULL))
11048			return (-1);
11049		goto out;
11050	}
11051
11052	total = needed + (offs & (align - 1));
11053
11054	/*
11055	 * For a ring buffer, life is quite a bit more complicated.  Before
11056	 * we can store any padding, we need to adjust our wrapping offset.
11057	 * (If we've never before wrapped or we're not about to, no adjustment
11058	 * is required.)
11059	 */
11060	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
11061	    offs + total > buf->dtb_size) {
11062		woffs = buf->dtb_xamot_offset;
11063
11064		if (offs + total > buf->dtb_size) {
11065			/*
11066			 * We can't fit in the end of the buffer.  First, a
11067			 * sanity check that we can fit in the buffer at all.
11068			 */
11069			if (total > buf->dtb_size) {
11070				dtrace_buffer_drop(buf);
11071				return (-1);
11072			}
11073
11074			/*
11075			 * We're going to be storing at the top of the buffer,
11076			 * so now we need to deal with the wrapped offset.  We
11077			 * only reset our wrapped offset to 0 if it is
11078			 * currently greater than the current offset.  If it
11079			 * is less than the current offset, it is because a
11080			 * previous allocation induced a wrap -- but the
11081			 * allocation didn't subsequently take the space due
11082			 * to an error or false predicate evaluation.  In this
11083			 * case, we'll just leave the wrapped offset alone: if
11084			 * the wrapped offset hasn't been advanced far enough
11085			 * for this allocation, it will be adjusted in the
11086			 * lower loop.
11087			 */
11088			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
11089				if (woffs >= offs)
11090					woffs = 0;
11091			} else {
11092				woffs = 0;
11093			}
11094
11095			/*
11096			 * Now we know that we're going to be storing to the
11097			 * top of the buffer and that there is room for us
11098			 * there.  We need to clear the buffer from the current
11099			 * offset to the end (there may be old gunk there).
11100			 */
11101			while (offs < buf->dtb_size)
11102				tomax[offs++] = 0;
11103
11104			/*
11105			 * We need to set our offset to zero.  And because we
11106			 * are wrapping, we need to set the bit indicating as
11107			 * much.  We can also adjust our needed space back
11108			 * down to the space required by the ECB -- we know
11109			 * that the top of the buffer is aligned.
11110			 */
11111			offs = 0;
11112			total = needed;
11113			buf->dtb_flags |= DTRACEBUF_WRAPPED;
11114		} else {
11115			/*
11116			 * There is room for us in the buffer, so we simply
11117			 * need to check the wrapped offset.
11118			 */
11119			if (woffs < offs) {
11120				/*
11121				 * The wrapped offset is less than the offset.
11122				 * This can happen if we allocated buffer space
11123				 * that induced a wrap, but then we didn't
11124				 * subsequently take the space due to an error
11125				 * or false predicate evaluation.  This is
11126				 * okay; we know that _this_ allocation isn't
11127				 * going to induce a wrap.  We still can't
11128				 * reset the wrapped offset to be zero,
11129				 * however: the space may have been trashed in
11130				 * the previous failed probe attempt.  But at
11131				 * least the wrapped offset doesn't need to
11132				 * be adjusted at all...
11133				 */
11134				goto out;
11135			}
11136		}
11137
11138		while (offs + total > woffs) {
11139			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11140			size_t size;
11141
11142			if (epid == DTRACE_EPIDNONE) {
11143				size = sizeof (uint32_t);
11144			} else {
11145				ASSERT3U(epid, <=, state->dts_necbs);
11146				ASSERT(state->dts_ecbs[epid - 1] != NULL);
11147
11148				size = state->dts_ecbs[epid - 1]->dte_size;
11149			}
11150
11151			ASSERT(woffs + size <= buf->dtb_size);
11152			ASSERT(size != 0);
11153
11154			if (woffs + size == buf->dtb_size) {
11155				/*
11156				 * We've reached the end of the buffer; we want
11157				 * to set the wrapped offset to 0 and break
11158				 * out.  However, if the offs is 0, then we're
11159				 * in a strange edge-condition:  the amount of
11160				 * space that we want to reserve plus the size
11161				 * of the record that we're overwriting is
11162				 * greater than the size of the buffer.  This
11163				 * is problematic because if we reserve the
11164				 * space but subsequently don't consume it (due
11165				 * to a failed predicate or error) the wrapped
11166				 * offset will be 0 -- yet the EPID at offset 0
11167				 * will not be committed.  This situation is
11168				 * relatively easy to deal with:  if we're in
11169				 * this case, the buffer is indistinguishable
11170				 * from one that hasn't wrapped; we need only
11171				 * finish the job by clearing the wrapped bit,
11172				 * explicitly setting the offset to be 0, and
11173				 * zero'ing out the old data in the buffer.
11174				 */
11175				if (offs == 0) {
11176					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11177					buf->dtb_offset = 0;
11178					woffs = total;
11179
11180					while (woffs < buf->dtb_size)
11181						tomax[woffs++] = 0;
11182				}
11183
11184				woffs = 0;
11185				break;
11186			}
11187
11188			woffs += size;
11189		}
11190
11191		/*
11192		 * We have a wrapped offset.  It may be that the wrapped offset
11193		 * has become zero -- that's okay.
11194		 */
11195		buf->dtb_xamot_offset = woffs;
11196	}
11197
11198out:
11199	/*
11200	 * Now we can plow the buffer with any necessary padding.
11201	 */
11202	while (offs & (align - 1)) {
11203		/*
11204		 * Assert that our alignment is off by a number which
11205		 * is itself sizeof (uint32_t) aligned.
11206		 */
11207		ASSERT(!((align - (offs & (align - 1))) &
11208		    (sizeof (uint32_t) - 1)));
11209		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11210		offs += sizeof (uint32_t);
11211	}
11212
11213	if (buf->dtb_flags & DTRACEBUF_FILL) {
11214		if (offs + needed > buf->dtb_size - state->dts_reserve) {
11215			buf->dtb_flags |= DTRACEBUF_FULL;
11216			return (-1);
11217		}
11218	}
11219
11220	if (mstate == NULL)
11221		return (offs);
11222
11223	/*
11224	 * For ring buffers and fill buffers, the scratch space is always
11225	 * the inactive buffer.
11226	 */
11227	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11228	mstate->dtms_scratch_size = buf->dtb_size;
11229	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11230
11231	return (offs);
11232}
11233
11234static void
11235dtrace_buffer_polish(dtrace_buffer_t *buf)
11236{
11237	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11238	ASSERT(MUTEX_HELD(&dtrace_lock));
11239
11240	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11241		return;
11242
11243	/*
11244	 * We need to polish the ring buffer.  There are three cases:
11245	 *
11246	 * - The first (and presumably most common) is that there is no gap
11247	 *   between the buffer offset and the wrapped offset.  In this case,
11248	 *   there is nothing in the buffer that isn't valid data; we can
11249	 *   mark the buffer as polished and return.
11250	 *
11251	 * - The second (less common than the first but still more common
11252	 *   than the third) is that there is a gap between the buffer offset
11253	 *   and the wrapped offset, and the wrapped offset is larger than the
11254	 *   buffer offset.  This can happen because of an alignment issue, or
11255	 *   can happen because of a call to dtrace_buffer_reserve() that
11256	 *   didn't subsequently consume the buffer space.  In this case,
11257	 *   we need to zero the data from the buffer offset to the wrapped
11258	 *   offset.
11259	 *
11260	 * - The third (and least common) is that there is a gap between the
11261	 *   buffer offset and the wrapped offset, but the wrapped offset is
11262	 *   _less_ than the buffer offset.  This can only happen because a
11263	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
11264	 *   was not subsequently consumed.  In this case, we need to zero the
11265	 *   space from the offset to the end of the buffer _and_ from the
11266	 *   top of the buffer to the wrapped offset.
11267	 */
11268	if (buf->dtb_offset < buf->dtb_xamot_offset) {
11269		bzero(buf->dtb_tomax + buf->dtb_offset,
11270		    buf->dtb_xamot_offset - buf->dtb_offset);
11271	}
11272
11273	if (buf->dtb_offset > buf->dtb_xamot_offset) {
11274		bzero(buf->dtb_tomax + buf->dtb_offset,
11275		    buf->dtb_size - buf->dtb_offset);
11276		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11277	}
11278}
11279
11280/*
11281 * This routine determines if data generated at the specified time has likely
11282 * been entirely consumed at user-level.  This routine is called to determine
11283 * if an ECB on a defunct probe (but for an active enabling) can be safely
11284 * disabled and destroyed.
11285 */
11286static int
11287dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
11288{
11289	int i;
11290
11291	for (i = 0; i < NCPU; i++) {
11292		dtrace_buffer_t *buf = &bufs[i];
11293
11294		if (buf->dtb_size == 0)
11295			continue;
11296
11297		if (buf->dtb_flags & DTRACEBUF_RING)
11298			return (0);
11299
11300		if (!buf->dtb_switched && buf->dtb_offset != 0)
11301			return (0);
11302
11303		if (buf->dtb_switched - buf->dtb_interval < when)
11304			return (0);
11305	}
11306
11307	return (1);
11308}
11309
11310static void
11311dtrace_buffer_free(dtrace_buffer_t *bufs)
11312{
11313	int i;
11314
11315	for (i = 0; i < NCPU; i++) {
11316		dtrace_buffer_t *buf = &bufs[i];
11317
11318		if (buf->dtb_tomax == NULL) {
11319			ASSERT(buf->dtb_xamot == NULL);
11320			ASSERT(buf->dtb_size == 0);
11321			continue;
11322		}
11323
11324		if (buf->dtb_xamot != NULL) {
11325			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11326			kmem_free(buf->dtb_xamot, buf->dtb_size);
11327		}
11328
11329		kmem_free(buf->dtb_tomax, buf->dtb_size);
11330		buf->dtb_size = 0;
11331		buf->dtb_tomax = NULL;
11332		buf->dtb_xamot = NULL;
11333	}
11334}
11335
11336/*
11337 * DTrace Enabling Functions
11338 */
11339static dtrace_enabling_t *
11340dtrace_enabling_create(dtrace_vstate_t *vstate)
11341{
11342	dtrace_enabling_t *enab;
11343
11344	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11345	enab->dten_vstate = vstate;
11346
11347	return (enab);
11348}
11349
11350static void
11351dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11352{
11353	dtrace_ecbdesc_t **ndesc;
11354	size_t osize, nsize;
11355
11356	/*
11357	 * We can't add to enablings after we've enabled them, or after we've
11358	 * retained them.
11359	 */
11360	ASSERT(enab->dten_probegen == 0);
11361	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11362
11363	if (enab->dten_ndesc < enab->dten_maxdesc) {
11364		enab->dten_desc[enab->dten_ndesc++] = ecb;
11365		return;
11366	}
11367
11368	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11369
11370	if (enab->dten_maxdesc == 0) {
11371		enab->dten_maxdesc = 1;
11372	} else {
11373		enab->dten_maxdesc <<= 1;
11374	}
11375
11376	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11377
11378	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11379	ndesc = kmem_zalloc(nsize, KM_SLEEP);
11380	bcopy(enab->dten_desc, ndesc, osize);
11381	if (enab->dten_desc != NULL)
11382		kmem_free(enab->dten_desc, osize);
11383
11384	enab->dten_desc = ndesc;
11385	enab->dten_desc[enab->dten_ndesc++] = ecb;
11386}
11387
11388static void
11389dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11390    dtrace_probedesc_t *pd)
11391{
11392	dtrace_ecbdesc_t *new;
11393	dtrace_predicate_t *pred;
11394	dtrace_actdesc_t *act;
11395
11396	/*
11397	 * We're going to create a new ECB description that matches the
11398	 * specified ECB in every way, but has the specified probe description.
11399	 */
11400	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11401
11402	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11403		dtrace_predicate_hold(pred);
11404
11405	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11406		dtrace_actdesc_hold(act);
11407
11408	new->dted_action = ecb->dted_action;
11409	new->dted_pred = ecb->dted_pred;
11410	new->dted_probe = *pd;
11411	new->dted_uarg = ecb->dted_uarg;
11412
11413	dtrace_enabling_add(enab, new);
11414}
11415
11416static void
11417dtrace_enabling_dump(dtrace_enabling_t *enab)
11418{
11419	int i;
11420
11421	for (i = 0; i < enab->dten_ndesc; i++) {
11422		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11423
11424		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11425		    desc->dtpd_provider, desc->dtpd_mod,
11426		    desc->dtpd_func, desc->dtpd_name);
11427	}
11428}
11429
11430static void
11431dtrace_enabling_destroy(dtrace_enabling_t *enab)
11432{
11433	int i;
11434	dtrace_ecbdesc_t *ep;
11435	dtrace_vstate_t *vstate = enab->dten_vstate;
11436
11437	ASSERT(MUTEX_HELD(&dtrace_lock));
11438
11439	for (i = 0; i < enab->dten_ndesc; i++) {
11440		dtrace_actdesc_t *act, *next;
11441		dtrace_predicate_t *pred;
11442
11443		ep = enab->dten_desc[i];
11444
11445		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11446			dtrace_predicate_release(pred, vstate);
11447
11448		for (act = ep->dted_action; act != NULL; act = next) {
11449			next = act->dtad_next;
11450			dtrace_actdesc_release(act, vstate);
11451		}
11452
11453		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11454	}
11455
11456	if (enab->dten_desc != NULL)
11457		kmem_free(enab->dten_desc,
11458		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11459
11460	/*
11461	 * If this was a retained enabling, decrement the dts_nretained count
11462	 * and take it off of the dtrace_retained list.
11463	 */
11464	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11465	    dtrace_retained == enab) {
11466		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11467		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11468		enab->dten_vstate->dtvs_state->dts_nretained--;
11469		dtrace_retained_gen++;
11470	}
11471
11472	if (enab->dten_prev == NULL) {
11473		if (dtrace_retained == enab) {
11474			dtrace_retained = enab->dten_next;
11475
11476			if (dtrace_retained != NULL)
11477				dtrace_retained->dten_prev = NULL;
11478		}
11479	} else {
11480		ASSERT(enab != dtrace_retained);
11481		ASSERT(dtrace_retained != NULL);
11482		enab->dten_prev->dten_next = enab->dten_next;
11483	}
11484
11485	if (enab->dten_next != NULL) {
11486		ASSERT(dtrace_retained != NULL);
11487		enab->dten_next->dten_prev = enab->dten_prev;
11488	}
11489
11490	kmem_free(enab, sizeof (dtrace_enabling_t));
11491}
11492
11493static int
11494dtrace_enabling_retain(dtrace_enabling_t *enab)
11495{
11496	dtrace_state_t *state;
11497
11498	ASSERT(MUTEX_HELD(&dtrace_lock));
11499	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11500	ASSERT(enab->dten_vstate != NULL);
11501
11502	state = enab->dten_vstate->dtvs_state;
11503	ASSERT(state != NULL);
11504
11505	/*
11506	 * We only allow each state to retain dtrace_retain_max enablings.
11507	 */
11508	if (state->dts_nretained >= dtrace_retain_max)
11509		return (ENOSPC);
11510
11511	state->dts_nretained++;
11512	dtrace_retained_gen++;
11513
11514	if (dtrace_retained == NULL) {
11515		dtrace_retained = enab;
11516		return (0);
11517	}
11518
11519	enab->dten_next = dtrace_retained;
11520	dtrace_retained->dten_prev = enab;
11521	dtrace_retained = enab;
11522
11523	return (0);
11524}
11525
11526static int
11527dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11528    dtrace_probedesc_t *create)
11529{
11530	dtrace_enabling_t *new, *enab;
11531	int found = 0, err = ENOENT;
11532
11533	ASSERT(MUTEX_HELD(&dtrace_lock));
11534	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11535	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11536	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11537	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11538
11539	new = dtrace_enabling_create(&state->dts_vstate);
11540
11541	/*
11542	 * Iterate over all retained enablings, looking for enablings that
11543	 * match the specified state.
11544	 */
11545	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11546		int i;
11547
11548		/*
11549		 * dtvs_state can only be NULL for helper enablings -- and
11550		 * helper enablings can't be retained.
11551		 */
11552		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11553
11554		if (enab->dten_vstate->dtvs_state != state)
11555			continue;
11556
11557		/*
11558		 * Now iterate over each probe description; we're looking for
11559		 * an exact match to the specified probe description.
11560		 */
11561		for (i = 0; i < enab->dten_ndesc; i++) {
11562			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11563			dtrace_probedesc_t *pd = &ep->dted_probe;
11564
11565			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11566				continue;
11567
11568			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11569				continue;
11570
11571			if (strcmp(pd->dtpd_func, match->dtpd_func))
11572				continue;
11573
11574			if (strcmp(pd->dtpd_name, match->dtpd_name))
11575				continue;
11576
11577			/*
11578			 * We have a winning probe!  Add it to our growing
11579			 * enabling.
11580			 */
11581			found = 1;
11582			dtrace_enabling_addlike(new, ep, create);
11583		}
11584	}
11585
11586	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11587		dtrace_enabling_destroy(new);
11588		return (err);
11589	}
11590
11591	return (0);
11592}
11593
11594static void
11595dtrace_enabling_retract(dtrace_state_t *state)
11596{
11597	dtrace_enabling_t *enab, *next;
11598
11599	ASSERT(MUTEX_HELD(&dtrace_lock));
11600
11601	/*
11602	 * Iterate over all retained enablings, destroy the enablings retained
11603	 * for the specified state.
11604	 */
11605	for (enab = dtrace_retained; enab != NULL; enab = next) {
11606		next = enab->dten_next;
11607
11608		/*
11609		 * dtvs_state can only be NULL for helper enablings -- and
11610		 * helper enablings can't be retained.
11611		 */
11612		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11613
11614		if (enab->dten_vstate->dtvs_state == state) {
11615			ASSERT(state->dts_nretained > 0);
11616			dtrace_enabling_destroy(enab);
11617		}
11618	}
11619
11620	ASSERT(state->dts_nretained == 0);
11621}
11622
11623static int
11624dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11625{
11626	int i = 0;
11627	int matched = 0;
11628
11629	ASSERT(MUTEX_HELD(&cpu_lock));
11630	ASSERT(MUTEX_HELD(&dtrace_lock));
11631
11632	for (i = 0; i < enab->dten_ndesc; i++) {
11633		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11634
11635		enab->dten_current = ep;
11636		enab->dten_error = 0;
11637
11638		matched += dtrace_probe_enable(&ep->dted_probe, enab);
11639
11640		if (enab->dten_error != 0) {
11641			/*
11642			 * If we get an error half-way through enabling the
11643			 * probes, we kick out -- perhaps with some number of
11644			 * them enabled.  Leaving enabled probes enabled may
11645			 * be slightly confusing for user-level, but we expect
11646			 * that no one will attempt to actually drive on in
11647			 * the face of such errors.  If this is an anonymous
11648			 * enabling (indicated with a NULL nmatched pointer),
11649			 * we cmn_err() a message.  We aren't expecting to
11650			 * get such an error -- such as it can exist at all,
11651			 * it would be a result of corrupted DOF in the driver
11652			 * properties.
11653			 */
11654			if (nmatched == NULL) {
11655				cmn_err(CE_WARN, "dtrace_enabling_match() "
11656				    "error on %p: %d", (void *)ep,
11657				    enab->dten_error);
11658			}
11659
11660			return (enab->dten_error);
11661		}
11662	}
11663
11664	enab->dten_probegen = dtrace_probegen;
11665	if (nmatched != NULL)
11666		*nmatched = matched;
11667
11668	return (0);
11669}
11670
11671static void
11672dtrace_enabling_matchall(void)
11673{
11674	dtrace_enabling_t *enab;
11675
11676	mutex_enter(&cpu_lock);
11677	mutex_enter(&dtrace_lock);
11678
11679	/*
11680	 * Iterate over all retained enablings to see if any probes match
11681	 * against them.  We only perform this operation on enablings for which
11682	 * we have sufficient permissions by virtue of being in the global zone
11683	 * or in the same zone as the DTrace client.  Because we can be called
11684	 * after dtrace_detach() has been called, we cannot assert that there
11685	 * are retained enablings.  We can safely load from dtrace_retained,
11686	 * however:  the taskq_destroy() at the end of dtrace_detach() will
11687	 * block pending our completion.
11688	 */
11689	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11690#if defined(sun)
11691		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
11692
11693		if (INGLOBALZONE(curproc) ||
11694		    cr != NULL && getzoneid() == crgetzoneid(cr))
11695#endif
11696			(void) dtrace_enabling_match(enab, NULL);
11697	}
11698
11699	mutex_exit(&dtrace_lock);
11700	mutex_exit(&cpu_lock);
11701}
11702
11703/*
11704 * If an enabling is to be enabled without having matched probes (that is, if
11705 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11706 * enabling must be _primed_ by creating an ECB for every ECB description.
11707 * This must be done to assure that we know the number of speculations, the
11708 * number of aggregations, the minimum buffer size needed, etc. before we
11709 * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11710 * enabling any probes, we create ECBs for every ECB decription, but with a
11711 * NULL probe -- which is exactly what this function does.
11712 */
11713static void
11714dtrace_enabling_prime(dtrace_state_t *state)
11715{
11716	dtrace_enabling_t *enab;
11717	int i;
11718
11719	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11720		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11721
11722		if (enab->dten_vstate->dtvs_state != state)
11723			continue;
11724
11725		/*
11726		 * We don't want to prime an enabling more than once, lest
11727		 * we allow a malicious user to induce resource exhaustion.
11728		 * (The ECBs that result from priming an enabling aren't
11729		 * leaked -- but they also aren't deallocated until the
11730		 * consumer state is destroyed.)
11731		 */
11732		if (enab->dten_primed)
11733			continue;
11734
11735		for (i = 0; i < enab->dten_ndesc; i++) {
11736			enab->dten_current = enab->dten_desc[i];
11737			(void) dtrace_probe_enable(NULL, enab);
11738		}
11739
11740		enab->dten_primed = 1;
11741	}
11742}
11743
11744/*
11745 * Called to indicate that probes should be provided due to retained
11746 * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11747 * must take an initial lap through the enabling calling the dtps_provide()
11748 * entry point explicitly to allow for autocreated probes.
11749 */
11750static void
11751dtrace_enabling_provide(dtrace_provider_t *prv)
11752{
11753	int i, all = 0;
11754	dtrace_probedesc_t desc;
11755	dtrace_genid_t gen;
11756
11757	ASSERT(MUTEX_HELD(&dtrace_lock));
11758	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11759
11760	if (prv == NULL) {
11761		all = 1;
11762		prv = dtrace_provider;
11763	}
11764
11765	do {
11766		dtrace_enabling_t *enab;
11767		void *parg = prv->dtpv_arg;
11768
11769retry:
11770		gen = dtrace_retained_gen;
11771		for (enab = dtrace_retained; enab != NULL;
11772		    enab = enab->dten_next) {
11773			for (i = 0; i < enab->dten_ndesc; i++) {
11774				desc = enab->dten_desc[i]->dted_probe;
11775				mutex_exit(&dtrace_lock);
11776				prv->dtpv_pops.dtps_provide(parg, &desc);
11777				mutex_enter(&dtrace_lock);
11778				/*
11779				 * Process the retained enablings again if
11780				 * they have changed while we weren't holding
11781				 * dtrace_lock.
11782				 */
11783				if (gen != dtrace_retained_gen)
11784					goto retry;
11785			}
11786		}
11787	} while (all && (prv = prv->dtpv_next) != NULL);
11788
11789	mutex_exit(&dtrace_lock);
11790	dtrace_probe_provide(NULL, all ? NULL : prv);
11791	mutex_enter(&dtrace_lock);
11792}
11793
11794/*
11795 * Called to reap ECBs that are attached to probes from defunct providers.
11796 */
11797static void
11798dtrace_enabling_reap(void)
11799{
11800	dtrace_provider_t *prov;
11801	dtrace_probe_t *probe;
11802	dtrace_ecb_t *ecb;
11803	hrtime_t when;
11804	int i;
11805
11806	mutex_enter(&cpu_lock);
11807	mutex_enter(&dtrace_lock);
11808
11809	for (i = 0; i < dtrace_nprobes; i++) {
11810		if ((probe = dtrace_probes[i]) == NULL)
11811			continue;
11812
11813		if (probe->dtpr_ecb == NULL)
11814			continue;
11815
11816		prov = probe->dtpr_provider;
11817
11818		if ((when = prov->dtpv_defunct) == 0)
11819			continue;
11820
11821		/*
11822		 * We have ECBs on a defunct provider:  we want to reap these
11823		 * ECBs to allow the provider to unregister.  The destruction
11824		 * of these ECBs must be done carefully:  if we destroy the ECB
11825		 * and the consumer later wishes to consume an EPID that
11826		 * corresponds to the destroyed ECB (and if the EPID metadata
11827		 * has not been previously consumed), the consumer will abort
11828		 * processing on the unknown EPID.  To reduce (but not, sadly,
11829		 * eliminate) the possibility of this, we will only destroy an
11830		 * ECB for a defunct provider if, for the state that
11831		 * corresponds to the ECB:
11832		 *
11833		 *  (a)	There is no speculative tracing (which can effectively
11834		 *	cache an EPID for an arbitrary amount of time).
11835		 *
11836		 *  (b)	The principal buffers have been switched twice since the
11837		 *	provider became defunct.
11838		 *
11839		 *  (c)	The aggregation buffers are of zero size or have been
11840		 *	switched twice since the provider became defunct.
11841		 *
11842		 * We use dts_speculates to determine (a) and call a function
11843		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
11844		 * that as soon as we've been unable to destroy one of the ECBs
11845		 * associated with the probe, we quit trying -- reaping is only
11846		 * fruitful in as much as we can destroy all ECBs associated
11847		 * with the defunct provider's probes.
11848		 */
11849		while ((ecb = probe->dtpr_ecb) != NULL) {
11850			dtrace_state_t *state = ecb->dte_state;
11851			dtrace_buffer_t *buf = state->dts_buffer;
11852			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
11853
11854			if (state->dts_speculates)
11855				break;
11856
11857			if (!dtrace_buffer_consumed(buf, when))
11858				break;
11859
11860			if (!dtrace_buffer_consumed(aggbuf, when))
11861				break;
11862
11863			dtrace_ecb_disable(ecb);
11864			ASSERT(probe->dtpr_ecb != ecb);
11865			dtrace_ecb_destroy(ecb);
11866		}
11867	}
11868
11869	mutex_exit(&dtrace_lock);
11870	mutex_exit(&cpu_lock);
11871}
11872
11873/*
11874 * DTrace DOF Functions
11875 */
11876/*ARGSUSED*/
11877static void
11878dtrace_dof_error(dof_hdr_t *dof, const char *str)
11879{
11880	if (dtrace_err_verbose)
11881		cmn_err(CE_WARN, "failed to process DOF: %s", str);
11882
11883#ifdef DTRACE_ERRDEBUG
11884	dtrace_errdebug(str);
11885#endif
11886}
11887
11888/*
11889 * Create DOF out of a currently enabled state.  Right now, we only create
11890 * DOF containing the run-time options -- but this could be expanded to create
11891 * complete DOF representing the enabled state.
11892 */
11893static dof_hdr_t *
11894dtrace_dof_create(dtrace_state_t *state)
11895{
11896	dof_hdr_t *dof;
11897	dof_sec_t *sec;
11898	dof_optdesc_t *opt;
11899	int i, len = sizeof (dof_hdr_t) +
11900	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11901	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11902
11903	ASSERT(MUTEX_HELD(&dtrace_lock));
11904
11905	dof = kmem_zalloc(len, KM_SLEEP);
11906	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11907	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11908	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11909	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11910
11911	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11912	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11913	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11914	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11915	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11916	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11917
11918	dof->dofh_flags = 0;
11919	dof->dofh_hdrsize = sizeof (dof_hdr_t);
11920	dof->dofh_secsize = sizeof (dof_sec_t);
11921	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
11922	dof->dofh_secoff = sizeof (dof_hdr_t);
11923	dof->dofh_loadsz = len;
11924	dof->dofh_filesz = len;
11925	dof->dofh_pad = 0;
11926
11927	/*
11928	 * Fill in the option section header...
11929	 */
11930	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11931	sec->dofs_type = DOF_SECT_OPTDESC;
11932	sec->dofs_align = sizeof (uint64_t);
11933	sec->dofs_flags = DOF_SECF_LOAD;
11934	sec->dofs_entsize = sizeof (dof_optdesc_t);
11935
11936	opt = (dof_optdesc_t *)((uintptr_t)sec +
11937	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11938
11939	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11940	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11941
11942	for (i = 0; i < DTRACEOPT_MAX; i++) {
11943		opt[i].dofo_option = i;
11944		opt[i].dofo_strtab = DOF_SECIDX_NONE;
11945		opt[i].dofo_value = state->dts_options[i];
11946	}
11947
11948	return (dof);
11949}
11950
11951static dof_hdr_t *
11952dtrace_dof_copyin(uintptr_t uarg, int *errp)
11953{
11954	dof_hdr_t hdr, *dof;
11955
11956	ASSERT(!MUTEX_HELD(&dtrace_lock));
11957
11958	/*
11959	 * First, we're going to copyin() the sizeof (dof_hdr_t).
11960	 */
11961	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11962		dtrace_dof_error(NULL, "failed to copyin DOF header");
11963		*errp = EFAULT;
11964		return (NULL);
11965	}
11966
11967	/*
11968	 * Now we'll allocate the entire DOF and copy it in -- provided
11969	 * that the length isn't outrageous.
11970	 */
11971	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11972		dtrace_dof_error(&hdr, "load size exceeds maximum");
11973		*errp = E2BIG;
11974		return (NULL);
11975	}
11976
11977	if (hdr.dofh_loadsz < sizeof (hdr)) {
11978		dtrace_dof_error(&hdr, "invalid load size");
11979		*errp = EINVAL;
11980		return (NULL);
11981	}
11982
11983	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11984
11985	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
11986	    dof->dofh_loadsz != hdr.dofh_loadsz) {
11987		kmem_free(dof, hdr.dofh_loadsz);
11988		*errp = EFAULT;
11989		return (NULL);
11990	}
11991
11992	return (dof);
11993}
11994
11995#if !defined(sun)
11996static __inline uchar_t
11997dtrace_dof_char(char c) {
11998	switch (c) {
11999	case '0':
12000	case '1':
12001	case '2':
12002	case '3':
12003	case '4':
12004	case '5':
12005	case '6':
12006	case '7':
12007	case '8':
12008	case '9':
12009		return (c - '0');
12010	case 'A':
12011	case 'B':
12012	case 'C':
12013	case 'D':
12014	case 'E':
12015	case 'F':
12016		return (c - 'A' + 10);
12017	case 'a':
12018	case 'b':
12019	case 'c':
12020	case 'd':
12021	case 'e':
12022	case 'f':
12023		return (c - 'a' + 10);
12024	}
12025	/* Should not reach here. */
12026	return (0);
12027}
12028#endif
12029
12030static dof_hdr_t *
12031dtrace_dof_property(const char *name)
12032{
12033	uchar_t *buf;
12034	uint64_t loadsz;
12035	unsigned int len, i;
12036	dof_hdr_t *dof;
12037
12038#if defined(sun)
12039	/*
12040	 * Unfortunately, array of values in .conf files are always (and
12041	 * only) interpreted to be integer arrays.  We must read our DOF
12042	 * as an integer array, and then squeeze it into a byte array.
12043	 */
12044	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
12045	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
12046		return (NULL);
12047
12048	for (i = 0; i < len; i++)
12049		buf[i] = (uchar_t)(((int *)buf)[i]);
12050
12051	if (len < sizeof (dof_hdr_t)) {
12052		ddi_prop_free(buf);
12053		dtrace_dof_error(NULL, "truncated header");
12054		return (NULL);
12055	}
12056
12057	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
12058		ddi_prop_free(buf);
12059		dtrace_dof_error(NULL, "truncated DOF");
12060		return (NULL);
12061	}
12062
12063	if (loadsz >= dtrace_dof_maxsize) {
12064		ddi_prop_free(buf);
12065		dtrace_dof_error(NULL, "oversized DOF");
12066		return (NULL);
12067	}
12068
12069	dof = kmem_alloc(loadsz, KM_SLEEP);
12070	bcopy(buf, dof, loadsz);
12071	ddi_prop_free(buf);
12072#else
12073	char *p;
12074	char *p_env;
12075
12076	if ((p_env = getenv(name)) == NULL)
12077		return (NULL);
12078
12079	len = strlen(p_env) / 2;
12080
12081	buf = kmem_alloc(len, KM_SLEEP);
12082
12083	dof = (dof_hdr_t *) buf;
12084
12085	p = p_env;
12086
12087	for (i = 0; i < len; i++) {
12088		buf[i] = (dtrace_dof_char(p[0]) << 4) |
12089		     dtrace_dof_char(p[1]);
12090		p += 2;
12091	}
12092
12093	freeenv(p_env);
12094
12095	if (len < sizeof (dof_hdr_t)) {
12096		kmem_free(buf, 0);
12097		dtrace_dof_error(NULL, "truncated header");
12098		return (NULL);
12099	}
12100
12101	if (len < (loadsz = dof->dofh_loadsz)) {
12102		kmem_free(buf, 0);
12103		dtrace_dof_error(NULL, "truncated DOF");
12104		return (NULL);
12105	}
12106
12107	if (loadsz >= dtrace_dof_maxsize) {
12108		kmem_free(buf, 0);
12109		dtrace_dof_error(NULL, "oversized DOF");
12110		return (NULL);
12111	}
12112#endif
12113
12114	return (dof);
12115}
12116
12117static void
12118dtrace_dof_destroy(dof_hdr_t *dof)
12119{
12120	kmem_free(dof, dof->dofh_loadsz);
12121}
12122
12123/*
12124 * Return the dof_sec_t pointer corresponding to a given section index.  If the
12125 * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
12126 * a type other than DOF_SECT_NONE is specified, the header is checked against
12127 * this type and NULL is returned if the types do not match.
12128 */
12129static dof_sec_t *
12130dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
12131{
12132	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
12133	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
12134
12135	if (i >= dof->dofh_secnum) {
12136		dtrace_dof_error(dof, "referenced section index is invalid");
12137		return (NULL);
12138	}
12139
12140	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
12141		dtrace_dof_error(dof, "referenced section is not loadable");
12142		return (NULL);
12143	}
12144
12145	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
12146		dtrace_dof_error(dof, "referenced section is the wrong type");
12147		return (NULL);
12148	}
12149
12150	return (sec);
12151}
12152
12153static dtrace_probedesc_t *
12154dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
12155{
12156	dof_probedesc_t *probe;
12157	dof_sec_t *strtab;
12158	uintptr_t daddr = (uintptr_t)dof;
12159	uintptr_t str;
12160	size_t size;
12161
12162	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
12163		dtrace_dof_error(dof, "invalid probe section");
12164		return (NULL);
12165	}
12166
12167	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12168		dtrace_dof_error(dof, "bad alignment in probe description");
12169		return (NULL);
12170	}
12171
12172	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
12173		dtrace_dof_error(dof, "truncated probe description");
12174		return (NULL);
12175	}
12176
12177	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
12178	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
12179
12180	if (strtab == NULL)
12181		return (NULL);
12182
12183	str = daddr + strtab->dofs_offset;
12184	size = strtab->dofs_size;
12185
12186	if (probe->dofp_provider >= strtab->dofs_size) {
12187		dtrace_dof_error(dof, "corrupt probe provider");
12188		return (NULL);
12189	}
12190
12191	(void) strncpy(desc->dtpd_provider,
12192	    (char *)(str + probe->dofp_provider),
12193	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
12194
12195	if (probe->dofp_mod >= strtab->dofs_size) {
12196		dtrace_dof_error(dof, "corrupt probe module");
12197		return (NULL);
12198	}
12199
12200	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
12201	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
12202
12203	if (probe->dofp_func >= strtab->dofs_size) {
12204		dtrace_dof_error(dof, "corrupt probe function");
12205		return (NULL);
12206	}
12207
12208	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
12209	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
12210
12211	if (probe->dofp_name >= strtab->dofs_size) {
12212		dtrace_dof_error(dof, "corrupt probe name");
12213		return (NULL);
12214	}
12215
12216	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
12217	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
12218
12219	return (desc);
12220}
12221
12222static dtrace_difo_t *
12223dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12224    cred_t *cr)
12225{
12226	dtrace_difo_t *dp;
12227	size_t ttl = 0;
12228	dof_difohdr_t *dofd;
12229	uintptr_t daddr = (uintptr_t)dof;
12230	size_t max = dtrace_difo_maxsize;
12231	int i, l, n;
12232
12233	static const struct {
12234		int section;
12235		int bufoffs;
12236		int lenoffs;
12237		int entsize;
12238		int align;
12239		const char *msg;
12240	} difo[] = {
12241		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12242		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12243		sizeof (dif_instr_t), "multiple DIF sections" },
12244
12245		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12246		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12247		sizeof (uint64_t), "multiple integer tables" },
12248
12249		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12250		offsetof(dtrace_difo_t, dtdo_strlen), 0,
12251		sizeof (char), "multiple string tables" },
12252
12253		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12254		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12255		sizeof (uint_t), "multiple variable tables" },
12256
12257		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
12258	};
12259
12260	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12261		dtrace_dof_error(dof, "invalid DIFO header section");
12262		return (NULL);
12263	}
12264
12265	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12266		dtrace_dof_error(dof, "bad alignment in DIFO header");
12267		return (NULL);
12268	}
12269
12270	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12271	    sec->dofs_size % sizeof (dof_secidx_t)) {
12272		dtrace_dof_error(dof, "bad size in DIFO header");
12273		return (NULL);
12274	}
12275
12276	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12277	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12278
12279	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12280	dp->dtdo_rtype = dofd->dofd_rtype;
12281
12282	for (l = 0; l < n; l++) {
12283		dof_sec_t *subsec;
12284		void **bufp;
12285		uint32_t *lenp;
12286
12287		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12288		    dofd->dofd_links[l])) == NULL)
12289			goto err; /* invalid section link */
12290
12291		if (ttl + subsec->dofs_size > max) {
12292			dtrace_dof_error(dof, "exceeds maximum size");
12293			goto err;
12294		}
12295
12296		ttl += subsec->dofs_size;
12297
12298		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12299			if (subsec->dofs_type != difo[i].section)
12300				continue;
12301
12302			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12303				dtrace_dof_error(dof, "section not loaded");
12304				goto err;
12305			}
12306
12307			if (subsec->dofs_align != difo[i].align) {
12308				dtrace_dof_error(dof, "bad alignment");
12309				goto err;
12310			}
12311
12312			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12313			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12314
12315			if (*bufp != NULL) {
12316				dtrace_dof_error(dof, difo[i].msg);
12317				goto err;
12318			}
12319
12320			if (difo[i].entsize != subsec->dofs_entsize) {
12321				dtrace_dof_error(dof, "entry size mismatch");
12322				goto err;
12323			}
12324
12325			if (subsec->dofs_entsize != 0 &&
12326			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12327				dtrace_dof_error(dof, "corrupt entry size");
12328				goto err;
12329			}
12330
12331			*lenp = subsec->dofs_size;
12332			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12333			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12334			    *bufp, subsec->dofs_size);
12335
12336			if (subsec->dofs_entsize != 0)
12337				*lenp /= subsec->dofs_entsize;
12338
12339			break;
12340		}
12341
12342		/*
12343		 * If we encounter a loadable DIFO sub-section that is not
12344		 * known to us, assume this is a broken program and fail.
12345		 */
12346		if (difo[i].section == DOF_SECT_NONE &&
12347		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
12348			dtrace_dof_error(dof, "unrecognized DIFO subsection");
12349			goto err;
12350		}
12351	}
12352
12353	if (dp->dtdo_buf == NULL) {
12354		/*
12355		 * We can't have a DIF object without DIF text.
12356		 */
12357		dtrace_dof_error(dof, "missing DIF text");
12358		goto err;
12359	}
12360
12361	/*
12362	 * Before we validate the DIF object, run through the variable table
12363	 * looking for the strings -- if any of their size are under, we'll set
12364	 * their size to be the system-wide default string size.  Note that
12365	 * this should _not_ happen if the "strsize" option has been set --
12366	 * in this case, the compiler should have set the size to reflect the
12367	 * setting of the option.
12368	 */
12369	for (i = 0; i < dp->dtdo_varlen; i++) {
12370		dtrace_difv_t *v = &dp->dtdo_vartab[i];
12371		dtrace_diftype_t *t = &v->dtdv_type;
12372
12373		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12374			continue;
12375
12376		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12377			t->dtdt_size = dtrace_strsize_default;
12378	}
12379
12380	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12381		goto err;
12382
12383	dtrace_difo_init(dp, vstate);
12384	return (dp);
12385
12386err:
12387	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12388	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12389	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12390	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12391
12392	kmem_free(dp, sizeof (dtrace_difo_t));
12393	return (NULL);
12394}
12395
12396static dtrace_predicate_t *
12397dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12398    cred_t *cr)
12399{
12400	dtrace_difo_t *dp;
12401
12402	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12403		return (NULL);
12404
12405	return (dtrace_predicate_create(dp));
12406}
12407
12408static dtrace_actdesc_t *
12409dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12410    cred_t *cr)
12411{
12412	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12413	dof_actdesc_t *desc;
12414	dof_sec_t *difosec;
12415	size_t offs;
12416	uintptr_t daddr = (uintptr_t)dof;
12417	uint64_t arg;
12418	dtrace_actkind_t kind;
12419
12420	if (sec->dofs_type != DOF_SECT_ACTDESC) {
12421		dtrace_dof_error(dof, "invalid action section");
12422		return (NULL);
12423	}
12424
12425	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12426		dtrace_dof_error(dof, "truncated action description");
12427		return (NULL);
12428	}
12429
12430	if (sec->dofs_align != sizeof (uint64_t)) {
12431		dtrace_dof_error(dof, "bad alignment in action description");
12432		return (NULL);
12433	}
12434
12435	if (sec->dofs_size < sec->dofs_entsize) {
12436		dtrace_dof_error(dof, "section entry size exceeds total size");
12437		return (NULL);
12438	}
12439
12440	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12441		dtrace_dof_error(dof, "bad entry size in action description");
12442		return (NULL);
12443	}
12444
12445	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12446		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12447		return (NULL);
12448	}
12449
12450	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12451		desc = (dof_actdesc_t *)(daddr +
12452		    (uintptr_t)sec->dofs_offset + offs);
12453		kind = (dtrace_actkind_t)desc->dofa_kind;
12454
12455		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
12456		    (kind != DTRACEACT_PRINTA ||
12457		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
12458		    (kind == DTRACEACT_DIFEXPR &&
12459		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
12460			dof_sec_t *strtab;
12461			char *str, *fmt;
12462			uint64_t i;
12463
12464			/*
12465			 * The argument to these actions is an index into the
12466			 * DOF string table.  For printf()-like actions, this
12467			 * is the format string.  For print(), this is the
12468			 * CTF type of the expression result.
12469			 */
12470			if ((strtab = dtrace_dof_sect(dof,
12471			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12472				goto err;
12473
12474			str = (char *)((uintptr_t)dof +
12475			    (uintptr_t)strtab->dofs_offset);
12476
12477			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12478				if (str[i] == '\0')
12479					break;
12480			}
12481
12482			if (i >= strtab->dofs_size) {
12483				dtrace_dof_error(dof, "bogus format string");
12484				goto err;
12485			}
12486
12487			if (i == desc->dofa_arg) {
12488				dtrace_dof_error(dof, "empty format string");
12489				goto err;
12490			}
12491
12492			i -= desc->dofa_arg;
12493			fmt = kmem_alloc(i + 1, KM_SLEEP);
12494			bcopy(&str[desc->dofa_arg], fmt, i + 1);
12495			arg = (uint64_t)(uintptr_t)fmt;
12496		} else {
12497			if (kind == DTRACEACT_PRINTA) {
12498				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12499				arg = 0;
12500			} else {
12501				arg = desc->dofa_arg;
12502			}
12503		}
12504
12505		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12506		    desc->dofa_uarg, arg);
12507
12508		if (last != NULL) {
12509			last->dtad_next = act;
12510		} else {
12511			first = act;
12512		}
12513
12514		last = act;
12515
12516		if (desc->dofa_difo == DOF_SECIDX_NONE)
12517			continue;
12518
12519		if ((difosec = dtrace_dof_sect(dof,
12520		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12521			goto err;
12522
12523		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12524
12525		if (act->dtad_difo == NULL)
12526			goto err;
12527	}
12528
12529	ASSERT(first != NULL);
12530	return (first);
12531
12532err:
12533	for (act = first; act != NULL; act = next) {
12534		next = act->dtad_next;
12535		dtrace_actdesc_release(act, vstate);
12536	}
12537
12538	return (NULL);
12539}
12540
12541static dtrace_ecbdesc_t *
12542dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12543    cred_t *cr)
12544{
12545	dtrace_ecbdesc_t *ep;
12546	dof_ecbdesc_t *ecb;
12547	dtrace_probedesc_t *desc;
12548	dtrace_predicate_t *pred = NULL;
12549
12550	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12551		dtrace_dof_error(dof, "truncated ECB description");
12552		return (NULL);
12553	}
12554
12555	if (sec->dofs_align != sizeof (uint64_t)) {
12556		dtrace_dof_error(dof, "bad alignment in ECB description");
12557		return (NULL);
12558	}
12559
12560	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12561	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12562
12563	if (sec == NULL)
12564		return (NULL);
12565
12566	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12567	ep->dted_uarg = ecb->dofe_uarg;
12568	desc = &ep->dted_probe;
12569
12570	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12571		goto err;
12572
12573	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12574		if ((sec = dtrace_dof_sect(dof,
12575		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12576			goto err;
12577
12578		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12579			goto err;
12580
12581		ep->dted_pred.dtpdd_predicate = pred;
12582	}
12583
12584	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12585		if ((sec = dtrace_dof_sect(dof,
12586		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12587			goto err;
12588
12589		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12590
12591		if (ep->dted_action == NULL)
12592			goto err;
12593	}
12594
12595	return (ep);
12596
12597err:
12598	if (pred != NULL)
12599		dtrace_predicate_release(pred, vstate);
12600	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12601	return (NULL);
12602}
12603
12604/*
12605 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12606 * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12607 * site of any user SETX relocations to account for load object base address.
12608 * In the future, if we need other relocations, this function can be extended.
12609 */
12610static int
12611dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12612{
12613	uintptr_t daddr = (uintptr_t)dof;
12614	dof_relohdr_t *dofr =
12615	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12616	dof_sec_t *ss, *rs, *ts;
12617	dof_relodesc_t *r;
12618	uint_t i, n;
12619
12620	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12621	    sec->dofs_align != sizeof (dof_secidx_t)) {
12622		dtrace_dof_error(dof, "invalid relocation header");
12623		return (-1);
12624	}
12625
12626	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12627	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12628	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12629
12630	if (ss == NULL || rs == NULL || ts == NULL)
12631		return (-1); /* dtrace_dof_error() has been called already */
12632
12633	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12634	    rs->dofs_align != sizeof (uint64_t)) {
12635		dtrace_dof_error(dof, "invalid relocation section");
12636		return (-1);
12637	}
12638
12639	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12640	n = rs->dofs_size / rs->dofs_entsize;
12641
12642	for (i = 0; i < n; i++) {
12643		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12644
12645		switch (r->dofr_type) {
12646		case DOF_RELO_NONE:
12647			break;
12648		case DOF_RELO_SETX:
12649			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12650			    sizeof (uint64_t) > ts->dofs_size) {
12651				dtrace_dof_error(dof, "bad relocation offset");
12652				return (-1);
12653			}
12654
12655			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12656				dtrace_dof_error(dof, "misaligned setx relo");
12657				return (-1);
12658			}
12659
12660			*(uint64_t *)taddr += ubase;
12661			break;
12662		default:
12663			dtrace_dof_error(dof, "invalid relocation type");
12664			return (-1);
12665		}
12666
12667		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12668	}
12669
12670	return (0);
12671}
12672
12673/*
12674 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12675 * header:  it should be at the front of a memory region that is at least
12676 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12677 * size.  It need not be validated in any other way.
12678 */
12679static int
12680dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12681    dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12682{
12683	uint64_t len = dof->dofh_loadsz, seclen;
12684	uintptr_t daddr = (uintptr_t)dof;
12685	dtrace_ecbdesc_t *ep;
12686	dtrace_enabling_t *enab;
12687	uint_t i;
12688
12689	ASSERT(MUTEX_HELD(&dtrace_lock));
12690	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12691
12692	/*
12693	 * Check the DOF header identification bytes.  In addition to checking
12694	 * valid settings, we also verify that unused bits/bytes are zeroed so
12695	 * we can use them later without fear of regressing existing binaries.
12696	 */
12697	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12698	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12699		dtrace_dof_error(dof, "DOF magic string mismatch");
12700		return (-1);
12701	}
12702
12703	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12704	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12705		dtrace_dof_error(dof, "DOF has invalid data model");
12706		return (-1);
12707	}
12708
12709	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12710		dtrace_dof_error(dof, "DOF encoding mismatch");
12711		return (-1);
12712	}
12713
12714	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12715	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12716		dtrace_dof_error(dof, "DOF version mismatch");
12717		return (-1);
12718	}
12719
12720	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12721		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12722		return (-1);
12723	}
12724
12725	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12726		dtrace_dof_error(dof, "DOF uses too many integer registers");
12727		return (-1);
12728	}
12729
12730	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12731		dtrace_dof_error(dof, "DOF uses too many tuple registers");
12732		return (-1);
12733	}
12734
12735	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12736		if (dof->dofh_ident[i] != 0) {
12737			dtrace_dof_error(dof, "DOF has invalid ident byte set");
12738			return (-1);
12739		}
12740	}
12741
12742	if (dof->dofh_flags & ~DOF_FL_VALID) {
12743		dtrace_dof_error(dof, "DOF has invalid flag bits set");
12744		return (-1);
12745	}
12746
12747	if (dof->dofh_secsize == 0) {
12748		dtrace_dof_error(dof, "zero section header size");
12749		return (-1);
12750	}
12751
12752	/*
12753	 * Check that the section headers don't exceed the amount of DOF
12754	 * data.  Note that we cast the section size and number of sections
12755	 * to uint64_t's to prevent possible overflow in the multiplication.
12756	 */
12757	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12758
12759	if (dof->dofh_secoff > len || seclen > len ||
12760	    dof->dofh_secoff + seclen > len) {
12761		dtrace_dof_error(dof, "truncated section headers");
12762		return (-1);
12763	}
12764
12765	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12766		dtrace_dof_error(dof, "misaligned section headers");
12767		return (-1);
12768	}
12769
12770	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12771		dtrace_dof_error(dof, "misaligned section size");
12772		return (-1);
12773	}
12774
12775	/*
12776	 * Take an initial pass through the section headers to be sure that
12777	 * the headers don't have stray offsets.  If the 'noprobes' flag is
12778	 * set, do not permit sections relating to providers, probes, or args.
12779	 */
12780	for (i = 0; i < dof->dofh_secnum; i++) {
12781		dof_sec_t *sec = (dof_sec_t *)(daddr +
12782		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12783
12784		if (noprobes) {
12785			switch (sec->dofs_type) {
12786			case DOF_SECT_PROVIDER:
12787			case DOF_SECT_PROBES:
12788			case DOF_SECT_PRARGS:
12789			case DOF_SECT_PROFFS:
12790				dtrace_dof_error(dof, "illegal sections "
12791				    "for enabling");
12792				return (-1);
12793			}
12794		}
12795
12796		if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
12797		    !(sec->dofs_flags & DOF_SECF_LOAD)) {
12798			dtrace_dof_error(dof, "loadable section with load "
12799			    "flag unset");
12800			return (-1);
12801		}
12802
12803		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12804			continue; /* just ignore non-loadable sections */
12805
12806		if (sec->dofs_align & (sec->dofs_align - 1)) {
12807			dtrace_dof_error(dof, "bad section alignment");
12808			return (-1);
12809		}
12810
12811		if (sec->dofs_offset & (sec->dofs_align - 1)) {
12812			dtrace_dof_error(dof, "misaligned section");
12813			return (-1);
12814		}
12815
12816		if (sec->dofs_offset > len || sec->dofs_size > len ||
12817		    sec->dofs_offset + sec->dofs_size > len) {
12818			dtrace_dof_error(dof, "corrupt section header");
12819			return (-1);
12820		}
12821
12822		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12823		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12824			dtrace_dof_error(dof, "non-terminating string table");
12825			return (-1);
12826		}
12827	}
12828
12829	/*
12830	 * Take a second pass through the sections and locate and perform any
12831	 * relocations that are present.  We do this after the first pass to
12832	 * be sure that all sections have had their headers validated.
12833	 */
12834	for (i = 0; i < dof->dofh_secnum; i++) {
12835		dof_sec_t *sec = (dof_sec_t *)(daddr +
12836		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12837
12838		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12839			continue; /* skip sections that are not loadable */
12840
12841		switch (sec->dofs_type) {
12842		case DOF_SECT_URELHDR:
12843			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12844				return (-1);
12845			break;
12846		}
12847	}
12848
12849	if ((enab = *enabp) == NULL)
12850		enab = *enabp = dtrace_enabling_create(vstate);
12851
12852	for (i = 0; i < dof->dofh_secnum; i++) {
12853		dof_sec_t *sec = (dof_sec_t *)(daddr +
12854		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12855
12856		if (sec->dofs_type != DOF_SECT_ECBDESC)
12857			continue;
12858
12859		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12860			dtrace_enabling_destroy(enab);
12861			*enabp = NULL;
12862			return (-1);
12863		}
12864
12865		dtrace_enabling_add(enab, ep);
12866	}
12867
12868	return (0);
12869}
12870
12871/*
12872 * Process DOF for any options.  This routine assumes that the DOF has been
12873 * at least processed by dtrace_dof_slurp().
12874 */
12875static int
12876dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12877{
12878	int i, rval;
12879	uint32_t entsize;
12880	size_t offs;
12881	dof_optdesc_t *desc;
12882
12883	for (i = 0; i < dof->dofh_secnum; i++) {
12884		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12885		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12886
12887		if (sec->dofs_type != DOF_SECT_OPTDESC)
12888			continue;
12889
12890		if (sec->dofs_align != sizeof (uint64_t)) {
12891			dtrace_dof_error(dof, "bad alignment in "
12892			    "option description");
12893			return (EINVAL);
12894		}
12895
12896		if ((entsize = sec->dofs_entsize) == 0) {
12897			dtrace_dof_error(dof, "zeroed option entry size");
12898			return (EINVAL);
12899		}
12900
12901		if (entsize < sizeof (dof_optdesc_t)) {
12902			dtrace_dof_error(dof, "bad option entry size");
12903			return (EINVAL);
12904		}
12905
12906		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12907			desc = (dof_optdesc_t *)((uintptr_t)dof +
12908			    (uintptr_t)sec->dofs_offset + offs);
12909
12910			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12911				dtrace_dof_error(dof, "non-zero option string");
12912				return (EINVAL);
12913			}
12914
12915			if (desc->dofo_value == DTRACEOPT_UNSET) {
12916				dtrace_dof_error(dof, "unset option");
12917				return (EINVAL);
12918			}
12919
12920			if ((rval = dtrace_state_option(state,
12921			    desc->dofo_option, desc->dofo_value)) != 0) {
12922				dtrace_dof_error(dof, "rejected option");
12923				return (rval);
12924			}
12925		}
12926	}
12927
12928	return (0);
12929}
12930
12931/*
12932 * DTrace Consumer State Functions
12933 */
12934static int
12935dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12936{
12937	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12938	void *base;
12939	uintptr_t limit;
12940	dtrace_dynvar_t *dvar, *next, *start;
12941	int i;
12942
12943	ASSERT(MUTEX_HELD(&dtrace_lock));
12944	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12945
12946	bzero(dstate, sizeof (dtrace_dstate_t));
12947
12948	if ((dstate->dtds_chunksize = chunksize) == 0)
12949		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12950
12951	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12952		size = min;
12953
12954	if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12955		return (ENOMEM);
12956
12957	dstate->dtds_size = size;
12958	dstate->dtds_base = base;
12959	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12960	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12961
12962	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12963
12964	if (hashsize != 1 && (hashsize & 1))
12965		hashsize--;
12966
12967	dstate->dtds_hashsize = hashsize;
12968	dstate->dtds_hash = dstate->dtds_base;
12969
12970	/*
12971	 * Set all of our hash buckets to point to the single sink, and (if
12972	 * it hasn't already been set), set the sink's hash value to be the
12973	 * sink sentinel value.  The sink is needed for dynamic variable
12974	 * lookups to know that they have iterated over an entire, valid hash
12975	 * chain.
12976	 */
12977	for (i = 0; i < hashsize; i++)
12978		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12979
12980	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12981		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12982
12983	/*
12984	 * Determine number of active CPUs.  Divide free list evenly among
12985	 * active CPUs.
12986	 */
12987	start = (dtrace_dynvar_t *)
12988	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12989	limit = (uintptr_t)base + size;
12990
12991	maxper = (limit - (uintptr_t)start) / NCPU;
12992	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12993
12994#if !defined(sun)
12995	CPU_FOREACH(i) {
12996#else
12997	for (i = 0; i < NCPU; i++) {
12998#endif
12999		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
13000
13001		/*
13002		 * If we don't even have enough chunks to make it once through
13003		 * NCPUs, we're just going to allocate everything to the first
13004		 * CPU.  And if we're on the last CPU, we're going to allocate
13005		 * whatever is left over.  In either case, we set the limit to
13006		 * be the limit of the dynamic variable space.
13007		 */
13008		if (maxper == 0 || i == NCPU - 1) {
13009			limit = (uintptr_t)base + size;
13010			start = NULL;
13011		} else {
13012			limit = (uintptr_t)start + maxper;
13013			start = (dtrace_dynvar_t *)limit;
13014		}
13015
13016		ASSERT(limit <= (uintptr_t)base + size);
13017
13018		for (;;) {
13019			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
13020			    dstate->dtds_chunksize);
13021
13022			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
13023				break;
13024
13025			dvar->dtdv_next = next;
13026			dvar = next;
13027		}
13028
13029		if (maxper == 0)
13030			break;
13031	}
13032
13033	return (0);
13034}
13035
13036static void
13037dtrace_dstate_fini(dtrace_dstate_t *dstate)
13038{
13039	ASSERT(MUTEX_HELD(&cpu_lock));
13040
13041	if (dstate->dtds_base == NULL)
13042		return;
13043
13044	kmem_free(dstate->dtds_base, dstate->dtds_size);
13045	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
13046}
13047
13048static void
13049dtrace_vstate_fini(dtrace_vstate_t *vstate)
13050{
13051	/*
13052	 * Logical XOR, where are you?
13053	 */
13054	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
13055
13056	if (vstate->dtvs_nglobals > 0) {
13057		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
13058		    sizeof (dtrace_statvar_t *));
13059	}
13060
13061	if (vstate->dtvs_ntlocals > 0) {
13062		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
13063		    sizeof (dtrace_difv_t));
13064	}
13065
13066	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
13067
13068	if (vstate->dtvs_nlocals > 0) {
13069		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
13070		    sizeof (dtrace_statvar_t *));
13071	}
13072}
13073
13074#if defined(sun)
13075static void
13076dtrace_state_clean(dtrace_state_t *state)
13077{
13078	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13079		return;
13080
13081	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13082	dtrace_speculation_clean(state);
13083}
13084
13085static void
13086dtrace_state_deadman(dtrace_state_t *state)
13087{
13088	hrtime_t now;
13089
13090	dtrace_sync();
13091
13092	now = dtrace_gethrtime();
13093
13094	if (state != dtrace_anon.dta_state &&
13095	    now - state->dts_laststatus >= dtrace_deadman_user)
13096		return;
13097
13098	/*
13099	 * We must be sure that dts_alive never appears to be less than the
13100	 * value upon entry to dtrace_state_deadman(), and because we lack a
13101	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13102	 * store INT64_MAX to it, followed by a memory barrier, followed by
13103	 * the new value.  This assures that dts_alive never appears to be
13104	 * less than its true value, regardless of the order in which the
13105	 * stores to the underlying storage are issued.
13106	 */
13107	state->dts_alive = INT64_MAX;
13108	dtrace_membar_producer();
13109	state->dts_alive = now;
13110}
13111#else
13112static void
13113dtrace_state_clean(void *arg)
13114{
13115	dtrace_state_t *state = arg;
13116	dtrace_optval_t *opt = state->dts_options;
13117
13118	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13119		return;
13120
13121	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13122	dtrace_speculation_clean(state);
13123
13124	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13125	    dtrace_state_clean, state);
13126}
13127
13128static void
13129dtrace_state_deadman(void *arg)
13130{
13131	dtrace_state_t *state = arg;
13132	hrtime_t now;
13133
13134	dtrace_sync();
13135
13136	dtrace_debug_output();
13137
13138	now = dtrace_gethrtime();
13139
13140	if (state != dtrace_anon.dta_state &&
13141	    now - state->dts_laststatus >= dtrace_deadman_user)
13142		return;
13143
13144	/*
13145	 * We must be sure that dts_alive never appears to be less than the
13146	 * value upon entry to dtrace_state_deadman(), and because we lack a
13147	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13148	 * store INT64_MAX to it, followed by a memory barrier, followed by
13149	 * the new value.  This assures that dts_alive never appears to be
13150	 * less than its true value, regardless of the order in which the
13151	 * stores to the underlying storage are issued.
13152	 */
13153	state->dts_alive = INT64_MAX;
13154	dtrace_membar_producer();
13155	state->dts_alive = now;
13156
13157	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13158	    dtrace_state_deadman, state);
13159}
13160#endif
13161
13162static dtrace_state_t *
13163#if defined(sun)
13164dtrace_state_create(dev_t *devp, cred_t *cr)
13165#else
13166dtrace_state_create(struct cdev *dev)
13167#endif
13168{
13169#if defined(sun)
13170	minor_t minor;
13171	major_t major;
13172#else
13173	cred_t *cr = NULL;
13174	int m = 0;
13175#endif
13176	char c[30];
13177	dtrace_state_t *state;
13178	dtrace_optval_t *opt;
13179	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
13180
13181	ASSERT(MUTEX_HELD(&dtrace_lock));
13182	ASSERT(MUTEX_HELD(&cpu_lock));
13183
13184#if defined(sun)
13185	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
13186	    VM_BESTFIT | VM_SLEEP);
13187
13188	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
13189		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13190		return (NULL);
13191	}
13192
13193	state = ddi_get_soft_state(dtrace_softstate, minor);
13194#else
13195	if (dev != NULL) {
13196		cr = dev->si_cred;
13197		m = dev2unit(dev);
13198		}
13199
13200	/* Allocate memory for the state. */
13201	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
13202#endif
13203
13204	state->dts_epid = DTRACE_EPIDNONE + 1;
13205
13206	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
13207#if defined(sun)
13208	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
13209	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13210
13211	if (devp != NULL) {
13212		major = getemajor(*devp);
13213	} else {
13214		major = ddi_driver_major(dtrace_devi);
13215	}
13216
13217	state->dts_dev = makedevice(major, minor);
13218
13219	if (devp != NULL)
13220		*devp = state->dts_dev;
13221#else
13222	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
13223	state->dts_dev = dev;
13224#endif
13225
13226	/*
13227	 * We allocate NCPU buffers.  On the one hand, this can be quite
13228	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
13229	 * other hand, it saves an additional memory reference in the probe
13230	 * path.
13231	 */
13232	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
13233	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
13234
13235#if defined(sun)
13236	state->dts_cleaner = CYCLIC_NONE;
13237	state->dts_deadman = CYCLIC_NONE;
13238#else
13239	callout_init(&state->dts_cleaner, CALLOUT_MPSAFE);
13240	callout_init(&state->dts_deadman, CALLOUT_MPSAFE);
13241#endif
13242	state->dts_vstate.dtvs_state = state;
13243
13244	for (i = 0; i < DTRACEOPT_MAX; i++)
13245		state->dts_options[i] = DTRACEOPT_UNSET;
13246
13247	/*
13248	 * Set the default options.
13249	 */
13250	opt = state->dts_options;
13251	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
13252	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
13253	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
13254	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
13255	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
13256	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
13257	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
13258	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
13259	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
13260	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
13261	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
13262	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
13263	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
13264	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
13265
13266	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
13267
13268	/*
13269	 * Depending on the user credentials, we set flag bits which alter probe
13270	 * visibility or the amount of destructiveness allowed.  In the case of
13271	 * actual anonymous tracing, or the possession of all privileges, all of
13272	 * the normal checks are bypassed.
13273	 */
13274	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13275		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13276		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13277	} else {
13278		/*
13279		 * Set up the credentials for this instantiation.  We take a
13280		 * hold on the credential to prevent it from disappearing on
13281		 * us; this in turn prevents the zone_t referenced by this
13282		 * credential from disappearing.  This means that we can
13283		 * examine the credential and the zone from probe context.
13284		 */
13285		crhold(cr);
13286		state->dts_cred.dcr_cred = cr;
13287
13288		/*
13289		 * CRA_PROC means "we have *some* privilege for dtrace" and
13290		 * unlocks the use of variables like pid, zonename, etc.
13291		 */
13292		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13293		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13294			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13295		}
13296
13297		/*
13298		 * dtrace_user allows use of syscall and profile providers.
13299		 * If the user also has proc_owner and/or proc_zone, we
13300		 * extend the scope to include additional visibility and
13301		 * destructive power.
13302		 */
13303		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13304			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13305				state->dts_cred.dcr_visible |=
13306				    DTRACE_CRV_ALLPROC;
13307
13308				state->dts_cred.dcr_action |=
13309				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13310			}
13311
13312			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13313				state->dts_cred.dcr_visible |=
13314				    DTRACE_CRV_ALLZONE;
13315
13316				state->dts_cred.dcr_action |=
13317				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13318			}
13319
13320			/*
13321			 * If we have all privs in whatever zone this is,
13322			 * we can do destructive things to processes which
13323			 * have altered credentials.
13324			 */
13325#if defined(sun)
13326			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13327			    cr->cr_zone->zone_privset)) {
13328				state->dts_cred.dcr_action |=
13329				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13330			}
13331#endif
13332		}
13333
13334		/*
13335		 * Holding the dtrace_kernel privilege also implies that
13336		 * the user has the dtrace_user privilege from a visibility
13337		 * perspective.  But without further privileges, some
13338		 * destructive actions are not available.
13339		 */
13340		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13341			/*
13342			 * Make all probes in all zones visible.  However,
13343			 * this doesn't mean that all actions become available
13344			 * to all zones.
13345			 */
13346			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13347			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13348
13349			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13350			    DTRACE_CRA_PROC;
13351			/*
13352			 * Holding proc_owner means that destructive actions
13353			 * for *this* zone are allowed.
13354			 */
13355			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13356				state->dts_cred.dcr_action |=
13357				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13358
13359			/*
13360			 * Holding proc_zone means that destructive actions
13361			 * for this user/group ID in all zones is allowed.
13362			 */
13363			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13364				state->dts_cred.dcr_action |=
13365				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13366
13367#if defined(sun)
13368			/*
13369			 * If we have all privs in whatever zone this is,
13370			 * we can do destructive things to processes which
13371			 * have altered credentials.
13372			 */
13373			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13374			    cr->cr_zone->zone_privset)) {
13375				state->dts_cred.dcr_action |=
13376				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13377			}
13378#endif
13379		}
13380
13381		/*
13382		 * Holding the dtrace_proc privilege gives control over fasttrap
13383		 * and pid providers.  We need to grant wider destructive
13384		 * privileges in the event that the user has proc_owner and/or
13385		 * proc_zone.
13386		 */
13387		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13388			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13389				state->dts_cred.dcr_action |=
13390				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13391
13392			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13393				state->dts_cred.dcr_action |=
13394				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13395		}
13396	}
13397
13398	return (state);
13399}
13400
13401static int
13402dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13403{
13404	dtrace_optval_t *opt = state->dts_options, size;
13405	processorid_t cpu = 0;;
13406	int flags = 0, rval, factor, divisor = 1;
13407
13408	ASSERT(MUTEX_HELD(&dtrace_lock));
13409	ASSERT(MUTEX_HELD(&cpu_lock));
13410	ASSERT(which < DTRACEOPT_MAX);
13411	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13412	    (state == dtrace_anon.dta_state &&
13413	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13414
13415	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13416		return (0);
13417
13418	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13419		cpu = opt[DTRACEOPT_CPU];
13420
13421	if (which == DTRACEOPT_SPECSIZE)
13422		flags |= DTRACEBUF_NOSWITCH;
13423
13424	if (which == DTRACEOPT_BUFSIZE) {
13425		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13426			flags |= DTRACEBUF_RING;
13427
13428		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13429			flags |= DTRACEBUF_FILL;
13430
13431		if (state != dtrace_anon.dta_state ||
13432		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13433			flags |= DTRACEBUF_INACTIVE;
13434	}
13435
13436	for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
13437		/*
13438		 * The size must be 8-byte aligned.  If the size is not 8-byte
13439		 * aligned, drop it down by the difference.
13440		 */
13441		if (size & (sizeof (uint64_t) - 1))
13442			size -= size & (sizeof (uint64_t) - 1);
13443
13444		if (size < state->dts_reserve) {
13445			/*
13446			 * Buffers always must be large enough to accommodate
13447			 * their prereserved space.  We return E2BIG instead
13448			 * of ENOMEM in this case to allow for user-level
13449			 * software to differentiate the cases.
13450			 */
13451			return (E2BIG);
13452		}
13453
13454		rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
13455
13456		if (rval != ENOMEM) {
13457			opt[which] = size;
13458			return (rval);
13459		}
13460
13461		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13462			return (rval);
13463
13464		for (divisor = 2; divisor < factor; divisor <<= 1)
13465			continue;
13466	}
13467
13468	return (ENOMEM);
13469}
13470
13471static int
13472dtrace_state_buffers(dtrace_state_t *state)
13473{
13474	dtrace_speculation_t *spec = state->dts_speculations;
13475	int rval, i;
13476
13477	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13478	    DTRACEOPT_BUFSIZE)) != 0)
13479		return (rval);
13480
13481	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13482	    DTRACEOPT_AGGSIZE)) != 0)
13483		return (rval);
13484
13485	for (i = 0; i < state->dts_nspeculations; i++) {
13486		if ((rval = dtrace_state_buffer(state,
13487		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13488			return (rval);
13489	}
13490
13491	return (0);
13492}
13493
13494static void
13495dtrace_state_prereserve(dtrace_state_t *state)
13496{
13497	dtrace_ecb_t *ecb;
13498	dtrace_probe_t *probe;
13499
13500	state->dts_reserve = 0;
13501
13502	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13503		return;
13504
13505	/*
13506	 * If our buffer policy is a "fill" buffer policy, we need to set the
13507	 * prereserved space to be the space required by the END probes.
13508	 */
13509	probe = dtrace_probes[dtrace_probeid_end - 1];
13510	ASSERT(probe != NULL);
13511
13512	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13513		if (ecb->dte_state != state)
13514			continue;
13515
13516		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13517	}
13518}
13519
13520static int
13521dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13522{
13523	dtrace_optval_t *opt = state->dts_options, sz, nspec;
13524	dtrace_speculation_t *spec;
13525	dtrace_buffer_t *buf;
13526#if defined(sun)
13527	cyc_handler_t hdlr;
13528	cyc_time_t when;
13529#endif
13530	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13531	dtrace_icookie_t cookie;
13532
13533	mutex_enter(&cpu_lock);
13534	mutex_enter(&dtrace_lock);
13535
13536	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13537		rval = EBUSY;
13538		goto out;
13539	}
13540
13541	/*
13542	 * Before we can perform any checks, we must prime all of the
13543	 * retained enablings that correspond to this state.
13544	 */
13545	dtrace_enabling_prime(state);
13546
13547	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13548		rval = EACCES;
13549		goto out;
13550	}
13551
13552	dtrace_state_prereserve(state);
13553
13554	/*
13555	 * Now we want to do is try to allocate our speculations.
13556	 * We do not automatically resize the number of speculations; if
13557	 * this fails, we will fail the operation.
13558	 */
13559	nspec = opt[DTRACEOPT_NSPEC];
13560	ASSERT(nspec != DTRACEOPT_UNSET);
13561
13562	if (nspec > INT_MAX) {
13563		rval = ENOMEM;
13564		goto out;
13565	}
13566
13567	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
13568	    KM_NOSLEEP | KM_NORMALPRI);
13569
13570	if (spec == NULL) {
13571		rval = ENOMEM;
13572		goto out;
13573	}
13574
13575	state->dts_speculations = spec;
13576	state->dts_nspeculations = (int)nspec;
13577
13578	for (i = 0; i < nspec; i++) {
13579		if ((buf = kmem_zalloc(bufsize,
13580		    KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
13581			rval = ENOMEM;
13582			goto err;
13583		}
13584
13585		spec[i].dtsp_buffer = buf;
13586	}
13587
13588	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13589		if (dtrace_anon.dta_state == NULL) {
13590			rval = ENOENT;
13591			goto out;
13592		}
13593
13594		if (state->dts_necbs != 0) {
13595			rval = EALREADY;
13596			goto out;
13597		}
13598
13599		state->dts_anon = dtrace_anon_grab();
13600		ASSERT(state->dts_anon != NULL);
13601		state = state->dts_anon;
13602
13603		/*
13604		 * We want "grabanon" to be set in the grabbed state, so we'll
13605		 * copy that option value from the grabbing state into the
13606		 * grabbed state.
13607		 */
13608		state->dts_options[DTRACEOPT_GRABANON] =
13609		    opt[DTRACEOPT_GRABANON];
13610
13611		*cpu = dtrace_anon.dta_beganon;
13612
13613		/*
13614		 * If the anonymous state is active (as it almost certainly
13615		 * is if the anonymous enabling ultimately matched anything),
13616		 * we don't allow any further option processing -- but we
13617		 * don't return failure.
13618		 */
13619		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13620			goto out;
13621	}
13622
13623	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13624	    opt[DTRACEOPT_AGGSIZE] != 0) {
13625		if (state->dts_aggregations == NULL) {
13626			/*
13627			 * We're not going to create an aggregation buffer
13628			 * because we don't have any ECBs that contain
13629			 * aggregations -- set this option to 0.
13630			 */
13631			opt[DTRACEOPT_AGGSIZE] = 0;
13632		} else {
13633			/*
13634			 * If we have an aggregation buffer, we must also have
13635			 * a buffer to use as scratch.
13636			 */
13637			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13638			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13639				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13640			}
13641		}
13642	}
13643
13644	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13645	    opt[DTRACEOPT_SPECSIZE] != 0) {
13646		if (!state->dts_speculates) {
13647			/*
13648			 * We're not going to create speculation buffers
13649			 * because we don't have any ECBs that actually
13650			 * speculate -- set the speculation size to 0.
13651			 */
13652			opt[DTRACEOPT_SPECSIZE] = 0;
13653		}
13654	}
13655
13656	/*
13657	 * The bare minimum size for any buffer that we're actually going to
13658	 * do anything to is sizeof (uint64_t).
13659	 */
13660	sz = sizeof (uint64_t);
13661
13662	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13663	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13664	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13665		/*
13666		 * A buffer size has been explicitly set to 0 (or to a size
13667		 * that will be adjusted to 0) and we need the space -- we
13668		 * need to return failure.  We return ENOSPC to differentiate
13669		 * it from failing to allocate a buffer due to failure to meet
13670		 * the reserve (for which we return E2BIG).
13671		 */
13672		rval = ENOSPC;
13673		goto out;
13674	}
13675
13676	if ((rval = dtrace_state_buffers(state)) != 0)
13677		goto err;
13678
13679	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13680		sz = dtrace_dstate_defsize;
13681
13682	do {
13683		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13684
13685		if (rval == 0)
13686			break;
13687
13688		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13689			goto err;
13690	} while (sz >>= 1);
13691
13692	opt[DTRACEOPT_DYNVARSIZE] = sz;
13693
13694	if (rval != 0)
13695		goto err;
13696
13697	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13698		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13699
13700	if (opt[DTRACEOPT_CLEANRATE] == 0)
13701		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13702
13703	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13704		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13705
13706	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13707		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13708
13709	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13710#if defined(sun)
13711	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13712	hdlr.cyh_arg = state;
13713	hdlr.cyh_level = CY_LOW_LEVEL;
13714
13715	when.cyt_when = 0;
13716	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13717
13718	state->dts_cleaner = cyclic_add(&hdlr, &when);
13719
13720	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13721	hdlr.cyh_arg = state;
13722	hdlr.cyh_level = CY_LOW_LEVEL;
13723
13724	when.cyt_when = 0;
13725	when.cyt_interval = dtrace_deadman_interval;
13726
13727	state->dts_deadman = cyclic_add(&hdlr, &when);
13728#else
13729	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13730	    dtrace_state_clean, state);
13731	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13732	    dtrace_state_deadman, state);
13733#endif
13734
13735	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13736
13737	/*
13738	 * Now it's time to actually fire the BEGIN probe.  We need to disable
13739	 * interrupts here both to record the CPU on which we fired the BEGIN
13740	 * probe (the data from this CPU will be processed first at user
13741	 * level) and to manually activate the buffer for this CPU.
13742	 */
13743	cookie = dtrace_interrupt_disable();
13744	*cpu = curcpu;
13745	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13746	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13747
13748	dtrace_probe(dtrace_probeid_begin,
13749	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13750	dtrace_interrupt_enable(cookie);
13751	/*
13752	 * We may have had an exit action from a BEGIN probe; only change our
13753	 * state to ACTIVE if we're still in WARMUP.
13754	 */
13755	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13756	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13757
13758	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13759		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13760
13761	/*
13762	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13763	 * want each CPU to transition its principal buffer out of the
13764	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13765	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13766	 * atomically transition from processing none of a state's ECBs to
13767	 * processing all of them.
13768	 */
13769	dtrace_xcall(DTRACE_CPUALL,
13770	    (dtrace_xcall_t)dtrace_buffer_activate, state);
13771	goto out;
13772
13773err:
13774	dtrace_buffer_free(state->dts_buffer);
13775	dtrace_buffer_free(state->dts_aggbuffer);
13776
13777	if ((nspec = state->dts_nspeculations) == 0) {
13778		ASSERT(state->dts_speculations == NULL);
13779		goto out;
13780	}
13781
13782	spec = state->dts_speculations;
13783	ASSERT(spec != NULL);
13784
13785	for (i = 0; i < state->dts_nspeculations; i++) {
13786		if ((buf = spec[i].dtsp_buffer) == NULL)
13787			break;
13788
13789		dtrace_buffer_free(buf);
13790		kmem_free(buf, bufsize);
13791	}
13792
13793	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13794	state->dts_nspeculations = 0;
13795	state->dts_speculations = NULL;
13796
13797out:
13798	mutex_exit(&dtrace_lock);
13799	mutex_exit(&cpu_lock);
13800
13801	return (rval);
13802}
13803
13804static int
13805dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13806{
13807	dtrace_icookie_t cookie;
13808
13809	ASSERT(MUTEX_HELD(&dtrace_lock));
13810
13811	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13812	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13813		return (EINVAL);
13814
13815	/*
13816	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13817	 * to be sure that every CPU has seen it.  See below for the details
13818	 * on why this is done.
13819	 */
13820	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13821	dtrace_sync();
13822
13823	/*
13824	 * By this point, it is impossible for any CPU to be still processing
13825	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13826	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13827	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13828	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13829	 * iff we're in the END probe.
13830	 */
13831	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13832	dtrace_sync();
13833	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13834
13835	/*
13836	 * Finally, we can release the reserve and call the END probe.  We
13837	 * disable interrupts across calling the END probe to allow us to
13838	 * return the CPU on which we actually called the END probe.  This
13839	 * allows user-land to be sure that this CPU's principal buffer is
13840	 * processed last.
13841	 */
13842	state->dts_reserve = 0;
13843
13844	cookie = dtrace_interrupt_disable();
13845	*cpu = curcpu;
13846	dtrace_probe(dtrace_probeid_end,
13847	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13848	dtrace_interrupt_enable(cookie);
13849
13850	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13851	dtrace_sync();
13852
13853	return (0);
13854}
13855
13856static int
13857dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13858    dtrace_optval_t val)
13859{
13860	ASSERT(MUTEX_HELD(&dtrace_lock));
13861
13862	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13863		return (EBUSY);
13864
13865	if (option >= DTRACEOPT_MAX)
13866		return (EINVAL);
13867
13868	if (option != DTRACEOPT_CPU && val < 0)
13869		return (EINVAL);
13870
13871	switch (option) {
13872	case DTRACEOPT_DESTRUCTIVE:
13873		if (dtrace_destructive_disallow)
13874			return (EACCES);
13875
13876		state->dts_cred.dcr_destructive = 1;
13877		break;
13878
13879	case DTRACEOPT_BUFSIZE:
13880	case DTRACEOPT_DYNVARSIZE:
13881	case DTRACEOPT_AGGSIZE:
13882	case DTRACEOPT_SPECSIZE:
13883	case DTRACEOPT_STRSIZE:
13884		if (val < 0)
13885			return (EINVAL);
13886
13887		if (val >= LONG_MAX) {
13888			/*
13889			 * If this is an otherwise negative value, set it to
13890			 * the highest multiple of 128m less than LONG_MAX.
13891			 * Technically, we're adjusting the size without
13892			 * regard to the buffer resizing policy, but in fact,
13893			 * this has no effect -- if we set the buffer size to
13894			 * ~LONG_MAX and the buffer policy is ultimately set to
13895			 * be "manual", the buffer allocation is guaranteed to
13896			 * fail, if only because the allocation requires two
13897			 * buffers.  (We set the the size to the highest
13898			 * multiple of 128m because it ensures that the size
13899			 * will remain a multiple of a megabyte when
13900			 * repeatedly halved -- all the way down to 15m.)
13901			 */
13902			val = LONG_MAX - (1 << 27) + 1;
13903		}
13904	}
13905
13906	state->dts_options[option] = val;
13907
13908	return (0);
13909}
13910
13911static void
13912dtrace_state_destroy(dtrace_state_t *state)
13913{
13914	dtrace_ecb_t *ecb;
13915	dtrace_vstate_t *vstate = &state->dts_vstate;
13916#if defined(sun)
13917	minor_t minor = getminor(state->dts_dev);
13918#endif
13919	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13920	dtrace_speculation_t *spec = state->dts_speculations;
13921	int nspec = state->dts_nspeculations;
13922	uint32_t match;
13923
13924	ASSERT(MUTEX_HELD(&dtrace_lock));
13925	ASSERT(MUTEX_HELD(&cpu_lock));
13926
13927	/*
13928	 * First, retract any retained enablings for this state.
13929	 */
13930	dtrace_enabling_retract(state);
13931	ASSERT(state->dts_nretained == 0);
13932
13933	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13934	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13935		/*
13936		 * We have managed to come into dtrace_state_destroy() on a
13937		 * hot enabling -- almost certainly because of a disorderly
13938		 * shutdown of a consumer.  (That is, a consumer that is
13939		 * exiting without having called dtrace_stop().) In this case,
13940		 * we're going to set our activity to be KILLED, and then
13941		 * issue a sync to be sure that everyone is out of probe
13942		 * context before we start blowing away ECBs.
13943		 */
13944		state->dts_activity = DTRACE_ACTIVITY_KILLED;
13945		dtrace_sync();
13946	}
13947
13948	/*
13949	 * Release the credential hold we took in dtrace_state_create().
13950	 */
13951	if (state->dts_cred.dcr_cred != NULL)
13952		crfree(state->dts_cred.dcr_cred);
13953
13954	/*
13955	 * Now we can safely disable and destroy any enabled probes.  Because
13956	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13957	 * (especially if they're all enabled), we take two passes through the
13958	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13959	 * in the second we disable whatever is left over.
13960	 */
13961	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13962		for (i = 0; i < state->dts_necbs; i++) {
13963			if ((ecb = state->dts_ecbs[i]) == NULL)
13964				continue;
13965
13966			if (match && ecb->dte_probe != NULL) {
13967				dtrace_probe_t *probe = ecb->dte_probe;
13968				dtrace_provider_t *prov = probe->dtpr_provider;
13969
13970				if (!(prov->dtpv_priv.dtpp_flags & match))
13971					continue;
13972			}
13973
13974			dtrace_ecb_disable(ecb);
13975			dtrace_ecb_destroy(ecb);
13976		}
13977
13978		if (!match)
13979			break;
13980	}
13981
13982	/*
13983	 * Before we free the buffers, perform one more sync to assure that
13984	 * every CPU is out of probe context.
13985	 */
13986	dtrace_sync();
13987
13988	dtrace_buffer_free(state->dts_buffer);
13989	dtrace_buffer_free(state->dts_aggbuffer);
13990
13991	for (i = 0; i < nspec; i++)
13992		dtrace_buffer_free(spec[i].dtsp_buffer);
13993
13994#if defined(sun)
13995	if (state->dts_cleaner != CYCLIC_NONE)
13996		cyclic_remove(state->dts_cleaner);
13997
13998	if (state->dts_deadman != CYCLIC_NONE)
13999		cyclic_remove(state->dts_deadman);
14000#else
14001	callout_stop(&state->dts_cleaner);
14002	callout_drain(&state->dts_cleaner);
14003	callout_stop(&state->dts_deadman);
14004	callout_drain(&state->dts_deadman);
14005#endif
14006
14007	dtrace_dstate_fini(&vstate->dtvs_dynvars);
14008	dtrace_vstate_fini(vstate);
14009	if (state->dts_ecbs != NULL)
14010		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
14011
14012	if (state->dts_aggregations != NULL) {
14013#ifdef DEBUG
14014		for (i = 0; i < state->dts_naggregations; i++)
14015			ASSERT(state->dts_aggregations[i] == NULL);
14016#endif
14017		ASSERT(state->dts_naggregations > 0);
14018		kmem_free(state->dts_aggregations,
14019		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
14020	}
14021
14022	kmem_free(state->dts_buffer, bufsize);
14023	kmem_free(state->dts_aggbuffer, bufsize);
14024
14025	for (i = 0; i < nspec; i++)
14026		kmem_free(spec[i].dtsp_buffer, bufsize);
14027
14028	if (spec != NULL)
14029		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14030
14031	dtrace_format_destroy(state);
14032
14033	if (state->dts_aggid_arena != NULL) {
14034#if defined(sun)
14035		vmem_destroy(state->dts_aggid_arena);
14036#else
14037		delete_unrhdr(state->dts_aggid_arena);
14038#endif
14039		state->dts_aggid_arena = NULL;
14040	}
14041#if defined(sun)
14042	ddi_soft_state_free(dtrace_softstate, minor);
14043	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14044#endif
14045}
14046
14047/*
14048 * DTrace Anonymous Enabling Functions
14049 */
14050static dtrace_state_t *
14051dtrace_anon_grab(void)
14052{
14053	dtrace_state_t *state;
14054
14055	ASSERT(MUTEX_HELD(&dtrace_lock));
14056
14057	if ((state = dtrace_anon.dta_state) == NULL) {
14058		ASSERT(dtrace_anon.dta_enabling == NULL);
14059		return (NULL);
14060	}
14061
14062	ASSERT(dtrace_anon.dta_enabling != NULL);
14063	ASSERT(dtrace_retained != NULL);
14064
14065	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
14066	dtrace_anon.dta_enabling = NULL;
14067	dtrace_anon.dta_state = NULL;
14068
14069	return (state);
14070}
14071
14072static void
14073dtrace_anon_property(void)
14074{
14075	int i, rv;
14076	dtrace_state_t *state;
14077	dof_hdr_t *dof;
14078	char c[32];		/* enough for "dof-data-" + digits */
14079
14080	ASSERT(MUTEX_HELD(&dtrace_lock));
14081	ASSERT(MUTEX_HELD(&cpu_lock));
14082
14083	for (i = 0; ; i++) {
14084		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
14085
14086		dtrace_err_verbose = 1;
14087
14088		if ((dof = dtrace_dof_property(c)) == NULL) {
14089			dtrace_err_verbose = 0;
14090			break;
14091		}
14092
14093#if defined(sun)
14094		/*
14095		 * We want to create anonymous state, so we need to transition
14096		 * the kernel debugger to indicate that DTrace is active.  If
14097		 * this fails (e.g. because the debugger has modified text in
14098		 * some way), we won't continue with the processing.
14099		 */
14100		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14101			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
14102			    "enabling ignored.");
14103			dtrace_dof_destroy(dof);
14104			break;
14105		}
14106#endif
14107
14108		/*
14109		 * If we haven't allocated an anonymous state, we'll do so now.
14110		 */
14111		if ((state = dtrace_anon.dta_state) == NULL) {
14112#if defined(sun)
14113			state = dtrace_state_create(NULL, NULL);
14114#else
14115			state = dtrace_state_create(NULL);
14116#endif
14117			dtrace_anon.dta_state = state;
14118
14119			if (state == NULL) {
14120				/*
14121				 * This basically shouldn't happen:  the only
14122				 * failure mode from dtrace_state_create() is a
14123				 * failure of ddi_soft_state_zalloc() that
14124				 * itself should never happen.  Still, the
14125				 * interface allows for a failure mode, and
14126				 * we want to fail as gracefully as possible:
14127				 * we'll emit an error message and cease
14128				 * processing anonymous state in this case.
14129				 */
14130				cmn_err(CE_WARN, "failed to create "
14131				    "anonymous state");
14132				dtrace_dof_destroy(dof);
14133				break;
14134			}
14135		}
14136
14137		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
14138		    &dtrace_anon.dta_enabling, 0, B_TRUE);
14139
14140		if (rv == 0)
14141			rv = dtrace_dof_options(dof, state);
14142
14143		dtrace_err_verbose = 0;
14144		dtrace_dof_destroy(dof);
14145
14146		if (rv != 0) {
14147			/*
14148			 * This is malformed DOF; chuck any anonymous state
14149			 * that we created.
14150			 */
14151			ASSERT(dtrace_anon.dta_enabling == NULL);
14152			dtrace_state_destroy(state);
14153			dtrace_anon.dta_state = NULL;
14154			break;
14155		}
14156
14157		ASSERT(dtrace_anon.dta_enabling != NULL);
14158	}
14159
14160	if (dtrace_anon.dta_enabling != NULL) {
14161		int rval;
14162
14163		/*
14164		 * dtrace_enabling_retain() can only fail because we are
14165		 * trying to retain more enablings than are allowed -- but
14166		 * we only have one anonymous enabling, and we are guaranteed
14167		 * to be allowed at least one retained enabling; we assert
14168		 * that dtrace_enabling_retain() returns success.
14169		 */
14170		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
14171		ASSERT(rval == 0);
14172
14173		dtrace_enabling_dump(dtrace_anon.dta_enabling);
14174	}
14175}
14176
14177/*
14178 * DTrace Helper Functions
14179 */
14180static void
14181dtrace_helper_trace(dtrace_helper_action_t *helper,
14182    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
14183{
14184	uint32_t size, next, nnext, i;
14185	dtrace_helptrace_t *ent;
14186	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
14187
14188	if (!dtrace_helptrace_enabled)
14189		return;
14190
14191	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
14192
14193	/*
14194	 * What would a tracing framework be without its own tracing
14195	 * framework?  (Well, a hell of a lot simpler, for starters...)
14196	 */
14197	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
14198	    sizeof (uint64_t) - sizeof (uint64_t);
14199
14200	/*
14201	 * Iterate until we can allocate a slot in the trace buffer.
14202	 */
14203	do {
14204		next = dtrace_helptrace_next;
14205
14206		if (next + size < dtrace_helptrace_bufsize) {
14207			nnext = next + size;
14208		} else {
14209			nnext = size;
14210		}
14211	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
14212
14213	/*
14214	 * We have our slot; fill it in.
14215	 */
14216	if (nnext == size)
14217		next = 0;
14218
14219	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
14220	ent->dtht_helper = helper;
14221	ent->dtht_where = where;
14222	ent->dtht_nlocals = vstate->dtvs_nlocals;
14223
14224	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
14225	    mstate->dtms_fltoffs : -1;
14226	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
14227	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
14228
14229	for (i = 0; i < vstate->dtvs_nlocals; i++) {
14230		dtrace_statvar_t *svar;
14231
14232		if ((svar = vstate->dtvs_locals[i]) == NULL)
14233			continue;
14234
14235		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
14236		ent->dtht_locals[i] =
14237		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
14238	}
14239}
14240
14241static uint64_t
14242dtrace_helper(int which, dtrace_mstate_t *mstate,
14243    dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
14244{
14245	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
14246	uint64_t sarg0 = mstate->dtms_arg[0];
14247	uint64_t sarg1 = mstate->dtms_arg[1];
14248	uint64_t rval = 0;
14249	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
14250	dtrace_helper_action_t *helper;
14251	dtrace_vstate_t *vstate;
14252	dtrace_difo_t *pred;
14253	int i, trace = dtrace_helptrace_enabled;
14254
14255	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
14256
14257	if (helpers == NULL)
14258		return (0);
14259
14260	if ((helper = helpers->dthps_actions[which]) == NULL)
14261		return (0);
14262
14263	vstate = &helpers->dthps_vstate;
14264	mstate->dtms_arg[0] = arg0;
14265	mstate->dtms_arg[1] = arg1;
14266
14267	/*
14268	 * Now iterate over each helper.  If its predicate evaluates to 'true',
14269	 * we'll call the corresponding actions.  Note that the below calls
14270	 * to dtrace_dif_emulate() may set faults in machine state.  This is
14271	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
14272	 * the stored DIF offset with its own (which is the desired behavior).
14273	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14274	 * from machine state; this is okay, too.
14275	 */
14276	for (; helper != NULL; helper = helper->dtha_next) {
14277		if ((pred = helper->dtha_predicate) != NULL) {
14278			if (trace)
14279				dtrace_helper_trace(helper, mstate, vstate, 0);
14280
14281			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14282				goto next;
14283
14284			if (*flags & CPU_DTRACE_FAULT)
14285				goto err;
14286		}
14287
14288		for (i = 0; i < helper->dtha_nactions; i++) {
14289			if (trace)
14290				dtrace_helper_trace(helper,
14291				    mstate, vstate, i + 1);
14292
14293			rval = dtrace_dif_emulate(helper->dtha_actions[i],
14294			    mstate, vstate, state);
14295
14296			if (*flags & CPU_DTRACE_FAULT)
14297				goto err;
14298		}
14299
14300next:
14301		if (trace)
14302			dtrace_helper_trace(helper, mstate, vstate,
14303			    DTRACE_HELPTRACE_NEXT);
14304	}
14305
14306	if (trace)
14307		dtrace_helper_trace(helper, mstate, vstate,
14308		    DTRACE_HELPTRACE_DONE);
14309
14310	/*
14311	 * Restore the arg0 that we saved upon entry.
14312	 */
14313	mstate->dtms_arg[0] = sarg0;
14314	mstate->dtms_arg[1] = sarg1;
14315
14316	return (rval);
14317
14318err:
14319	if (trace)
14320		dtrace_helper_trace(helper, mstate, vstate,
14321		    DTRACE_HELPTRACE_ERR);
14322
14323	/*
14324	 * Restore the arg0 that we saved upon entry.
14325	 */
14326	mstate->dtms_arg[0] = sarg0;
14327	mstate->dtms_arg[1] = sarg1;
14328
14329	return (0);
14330}
14331
14332static void
14333dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14334    dtrace_vstate_t *vstate)
14335{
14336	int i;
14337
14338	if (helper->dtha_predicate != NULL)
14339		dtrace_difo_release(helper->dtha_predicate, vstate);
14340
14341	for (i = 0; i < helper->dtha_nactions; i++) {
14342		ASSERT(helper->dtha_actions[i] != NULL);
14343		dtrace_difo_release(helper->dtha_actions[i], vstate);
14344	}
14345
14346	kmem_free(helper->dtha_actions,
14347	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
14348	kmem_free(helper, sizeof (dtrace_helper_action_t));
14349}
14350
14351static int
14352dtrace_helper_destroygen(int gen)
14353{
14354	proc_t *p = curproc;
14355	dtrace_helpers_t *help = p->p_dtrace_helpers;
14356	dtrace_vstate_t *vstate;
14357	int i;
14358
14359	ASSERT(MUTEX_HELD(&dtrace_lock));
14360
14361	if (help == NULL || gen > help->dthps_generation)
14362		return (EINVAL);
14363
14364	vstate = &help->dthps_vstate;
14365
14366	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14367		dtrace_helper_action_t *last = NULL, *h, *next;
14368
14369		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14370			next = h->dtha_next;
14371
14372			if (h->dtha_generation == gen) {
14373				if (last != NULL) {
14374					last->dtha_next = next;
14375				} else {
14376					help->dthps_actions[i] = next;
14377				}
14378
14379				dtrace_helper_action_destroy(h, vstate);
14380			} else {
14381				last = h;
14382			}
14383		}
14384	}
14385
14386	/*
14387	 * Interate until we've cleared out all helper providers with the
14388	 * given generation number.
14389	 */
14390	for (;;) {
14391		dtrace_helper_provider_t *prov;
14392
14393		/*
14394		 * Look for a helper provider with the right generation. We
14395		 * have to start back at the beginning of the list each time
14396		 * because we drop dtrace_lock. It's unlikely that we'll make
14397		 * more than two passes.
14398		 */
14399		for (i = 0; i < help->dthps_nprovs; i++) {
14400			prov = help->dthps_provs[i];
14401
14402			if (prov->dthp_generation == gen)
14403				break;
14404		}
14405
14406		/*
14407		 * If there were no matches, we're done.
14408		 */
14409		if (i == help->dthps_nprovs)
14410			break;
14411
14412		/*
14413		 * Move the last helper provider into this slot.
14414		 */
14415		help->dthps_nprovs--;
14416		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14417		help->dthps_provs[help->dthps_nprovs] = NULL;
14418
14419		mutex_exit(&dtrace_lock);
14420
14421		/*
14422		 * If we have a meta provider, remove this helper provider.
14423		 */
14424		mutex_enter(&dtrace_meta_lock);
14425		if (dtrace_meta_pid != NULL) {
14426			ASSERT(dtrace_deferred_pid == NULL);
14427			dtrace_helper_provider_remove(&prov->dthp_prov,
14428			    p->p_pid);
14429		}
14430		mutex_exit(&dtrace_meta_lock);
14431
14432		dtrace_helper_provider_destroy(prov);
14433
14434		mutex_enter(&dtrace_lock);
14435	}
14436
14437	return (0);
14438}
14439
14440static int
14441dtrace_helper_validate(dtrace_helper_action_t *helper)
14442{
14443	int err = 0, i;
14444	dtrace_difo_t *dp;
14445
14446	if ((dp = helper->dtha_predicate) != NULL)
14447		err += dtrace_difo_validate_helper(dp);
14448
14449	for (i = 0; i < helper->dtha_nactions; i++)
14450		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14451
14452	return (err == 0);
14453}
14454
14455static int
14456dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14457{
14458	dtrace_helpers_t *help;
14459	dtrace_helper_action_t *helper, *last;
14460	dtrace_actdesc_t *act;
14461	dtrace_vstate_t *vstate;
14462	dtrace_predicate_t *pred;
14463	int count = 0, nactions = 0, i;
14464
14465	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14466		return (EINVAL);
14467
14468	help = curproc->p_dtrace_helpers;
14469	last = help->dthps_actions[which];
14470	vstate = &help->dthps_vstate;
14471
14472	for (count = 0; last != NULL; last = last->dtha_next) {
14473		count++;
14474		if (last->dtha_next == NULL)
14475			break;
14476	}
14477
14478	/*
14479	 * If we already have dtrace_helper_actions_max helper actions for this
14480	 * helper action type, we'll refuse to add a new one.
14481	 */
14482	if (count >= dtrace_helper_actions_max)
14483		return (ENOSPC);
14484
14485	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14486	helper->dtha_generation = help->dthps_generation;
14487
14488	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14489		ASSERT(pred->dtp_difo != NULL);
14490		dtrace_difo_hold(pred->dtp_difo);
14491		helper->dtha_predicate = pred->dtp_difo;
14492	}
14493
14494	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14495		if (act->dtad_kind != DTRACEACT_DIFEXPR)
14496			goto err;
14497
14498		if (act->dtad_difo == NULL)
14499			goto err;
14500
14501		nactions++;
14502	}
14503
14504	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14505	    (helper->dtha_nactions = nactions), KM_SLEEP);
14506
14507	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14508		dtrace_difo_hold(act->dtad_difo);
14509		helper->dtha_actions[i++] = act->dtad_difo;
14510	}
14511
14512	if (!dtrace_helper_validate(helper))
14513		goto err;
14514
14515	if (last == NULL) {
14516		help->dthps_actions[which] = helper;
14517	} else {
14518		last->dtha_next = helper;
14519	}
14520
14521	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14522		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14523		dtrace_helptrace_next = 0;
14524	}
14525
14526	return (0);
14527err:
14528	dtrace_helper_action_destroy(helper, vstate);
14529	return (EINVAL);
14530}
14531
14532static void
14533dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14534    dof_helper_t *dofhp)
14535{
14536	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14537
14538	mutex_enter(&dtrace_meta_lock);
14539	mutex_enter(&dtrace_lock);
14540
14541	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14542		/*
14543		 * If the dtrace module is loaded but not attached, or if
14544		 * there aren't isn't a meta provider registered to deal with
14545		 * these provider descriptions, we need to postpone creating
14546		 * the actual providers until later.
14547		 */
14548
14549		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14550		    dtrace_deferred_pid != help) {
14551			help->dthps_deferred = 1;
14552			help->dthps_pid = p->p_pid;
14553			help->dthps_next = dtrace_deferred_pid;
14554			help->dthps_prev = NULL;
14555			if (dtrace_deferred_pid != NULL)
14556				dtrace_deferred_pid->dthps_prev = help;
14557			dtrace_deferred_pid = help;
14558		}
14559
14560		mutex_exit(&dtrace_lock);
14561
14562	} else if (dofhp != NULL) {
14563		/*
14564		 * If the dtrace module is loaded and we have a particular
14565		 * helper provider description, pass that off to the
14566		 * meta provider.
14567		 */
14568
14569		mutex_exit(&dtrace_lock);
14570
14571		dtrace_helper_provide(dofhp, p->p_pid);
14572
14573	} else {
14574		/*
14575		 * Otherwise, just pass all the helper provider descriptions
14576		 * off to the meta provider.
14577		 */
14578
14579		int i;
14580		mutex_exit(&dtrace_lock);
14581
14582		for (i = 0; i < help->dthps_nprovs; i++) {
14583			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14584			    p->p_pid);
14585		}
14586	}
14587
14588	mutex_exit(&dtrace_meta_lock);
14589}
14590
14591static int
14592dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14593{
14594	dtrace_helpers_t *help;
14595	dtrace_helper_provider_t *hprov, **tmp_provs;
14596	uint_t tmp_maxprovs, i;
14597
14598	ASSERT(MUTEX_HELD(&dtrace_lock));
14599
14600	help = curproc->p_dtrace_helpers;
14601	ASSERT(help != NULL);
14602
14603	/*
14604	 * If we already have dtrace_helper_providers_max helper providers,
14605	 * we're refuse to add a new one.
14606	 */
14607	if (help->dthps_nprovs >= dtrace_helper_providers_max)
14608		return (ENOSPC);
14609
14610	/*
14611	 * Check to make sure this isn't a duplicate.
14612	 */
14613	for (i = 0; i < help->dthps_nprovs; i++) {
14614		if (dofhp->dofhp_dof ==
14615		    help->dthps_provs[i]->dthp_prov.dofhp_dof)
14616			return (EALREADY);
14617	}
14618
14619	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14620	hprov->dthp_prov = *dofhp;
14621	hprov->dthp_ref = 1;
14622	hprov->dthp_generation = gen;
14623
14624	/*
14625	 * Allocate a bigger table for helper providers if it's already full.
14626	 */
14627	if (help->dthps_maxprovs == help->dthps_nprovs) {
14628		tmp_maxprovs = help->dthps_maxprovs;
14629		tmp_provs = help->dthps_provs;
14630
14631		if (help->dthps_maxprovs == 0)
14632			help->dthps_maxprovs = 2;
14633		else
14634			help->dthps_maxprovs *= 2;
14635		if (help->dthps_maxprovs > dtrace_helper_providers_max)
14636			help->dthps_maxprovs = dtrace_helper_providers_max;
14637
14638		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14639
14640		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14641		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14642
14643		if (tmp_provs != NULL) {
14644			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14645			    sizeof (dtrace_helper_provider_t *));
14646			kmem_free(tmp_provs, tmp_maxprovs *
14647			    sizeof (dtrace_helper_provider_t *));
14648		}
14649	}
14650
14651	help->dthps_provs[help->dthps_nprovs] = hprov;
14652	help->dthps_nprovs++;
14653
14654	return (0);
14655}
14656
14657static void
14658dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14659{
14660	mutex_enter(&dtrace_lock);
14661
14662	if (--hprov->dthp_ref == 0) {
14663		dof_hdr_t *dof;
14664		mutex_exit(&dtrace_lock);
14665		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14666		dtrace_dof_destroy(dof);
14667		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14668	} else {
14669		mutex_exit(&dtrace_lock);
14670	}
14671}
14672
14673static int
14674dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14675{
14676	uintptr_t daddr = (uintptr_t)dof;
14677	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14678	dof_provider_t *provider;
14679	dof_probe_t *probe;
14680	uint8_t *arg;
14681	char *strtab, *typestr;
14682	dof_stridx_t typeidx;
14683	size_t typesz;
14684	uint_t nprobes, j, k;
14685
14686	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14687
14688	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14689		dtrace_dof_error(dof, "misaligned section offset");
14690		return (-1);
14691	}
14692
14693	/*
14694	 * The section needs to be large enough to contain the DOF provider
14695	 * structure appropriate for the given version.
14696	 */
14697	if (sec->dofs_size <
14698	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14699	    offsetof(dof_provider_t, dofpv_prenoffs) :
14700	    sizeof (dof_provider_t))) {
14701		dtrace_dof_error(dof, "provider section too small");
14702		return (-1);
14703	}
14704
14705	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14706	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14707	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14708	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14709	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14710
14711	if (str_sec == NULL || prb_sec == NULL ||
14712	    arg_sec == NULL || off_sec == NULL)
14713		return (-1);
14714
14715	enoff_sec = NULL;
14716
14717	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14718	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
14719	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14720	    provider->dofpv_prenoffs)) == NULL)
14721		return (-1);
14722
14723	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14724
14725	if (provider->dofpv_name >= str_sec->dofs_size ||
14726	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14727		dtrace_dof_error(dof, "invalid provider name");
14728		return (-1);
14729	}
14730
14731	if (prb_sec->dofs_entsize == 0 ||
14732	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
14733		dtrace_dof_error(dof, "invalid entry size");
14734		return (-1);
14735	}
14736
14737	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14738		dtrace_dof_error(dof, "misaligned entry size");
14739		return (-1);
14740	}
14741
14742	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14743		dtrace_dof_error(dof, "invalid entry size");
14744		return (-1);
14745	}
14746
14747	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14748		dtrace_dof_error(dof, "misaligned section offset");
14749		return (-1);
14750	}
14751
14752	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14753		dtrace_dof_error(dof, "invalid entry size");
14754		return (-1);
14755	}
14756
14757	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14758
14759	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14760
14761	/*
14762	 * Take a pass through the probes to check for errors.
14763	 */
14764	for (j = 0; j < nprobes; j++) {
14765		probe = (dof_probe_t *)(uintptr_t)(daddr +
14766		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14767
14768		if (probe->dofpr_func >= str_sec->dofs_size) {
14769			dtrace_dof_error(dof, "invalid function name");
14770			return (-1);
14771		}
14772
14773		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14774			dtrace_dof_error(dof, "function name too long");
14775			return (-1);
14776		}
14777
14778		if (probe->dofpr_name >= str_sec->dofs_size ||
14779		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14780			dtrace_dof_error(dof, "invalid probe name");
14781			return (-1);
14782		}
14783
14784		/*
14785		 * The offset count must not wrap the index, and the offsets
14786		 * must also not overflow the section's data.
14787		 */
14788		if (probe->dofpr_offidx + probe->dofpr_noffs <
14789		    probe->dofpr_offidx ||
14790		    (probe->dofpr_offidx + probe->dofpr_noffs) *
14791		    off_sec->dofs_entsize > off_sec->dofs_size) {
14792			dtrace_dof_error(dof, "invalid probe offset");
14793			return (-1);
14794		}
14795
14796		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14797			/*
14798			 * If there's no is-enabled offset section, make sure
14799			 * there aren't any is-enabled offsets. Otherwise
14800			 * perform the same checks as for probe offsets
14801			 * (immediately above).
14802			 */
14803			if (enoff_sec == NULL) {
14804				if (probe->dofpr_enoffidx != 0 ||
14805				    probe->dofpr_nenoffs != 0) {
14806					dtrace_dof_error(dof, "is-enabled "
14807					    "offsets with null section");
14808					return (-1);
14809				}
14810			} else if (probe->dofpr_enoffidx +
14811			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14812			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14813			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14814				dtrace_dof_error(dof, "invalid is-enabled "
14815				    "offset");
14816				return (-1);
14817			}
14818
14819			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14820				dtrace_dof_error(dof, "zero probe and "
14821				    "is-enabled offsets");
14822				return (-1);
14823			}
14824		} else if (probe->dofpr_noffs == 0) {
14825			dtrace_dof_error(dof, "zero probe offsets");
14826			return (-1);
14827		}
14828
14829		if (probe->dofpr_argidx + probe->dofpr_xargc <
14830		    probe->dofpr_argidx ||
14831		    (probe->dofpr_argidx + probe->dofpr_xargc) *
14832		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
14833			dtrace_dof_error(dof, "invalid args");
14834			return (-1);
14835		}
14836
14837		typeidx = probe->dofpr_nargv;
14838		typestr = strtab + probe->dofpr_nargv;
14839		for (k = 0; k < probe->dofpr_nargc; k++) {
14840			if (typeidx >= str_sec->dofs_size) {
14841				dtrace_dof_error(dof, "bad "
14842				    "native argument type");
14843				return (-1);
14844			}
14845
14846			typesz = strlen(typestr) + 1;
14847			if (typesz > DTRACE_ARGTYPELEN) {
14848				dtrace_dof_error(dof, "native "
14849				    "argument type too long");
14850				return (-1);
14851			}
14852			typeidx += typesz;
14853			typestr += typesz;
14854		}
14855
14856		typeidx = probe->dofpr_xargv;
14857		typestr = strtab + probe->dofpr_xargv;
14858		for (k = 0; k < probe->dofpr_xargc; k++) {
14859			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14860				dtrace_dof_error(dof, "bad "
14861				    "native argument index");
14862				return (-1);
14863			}
14864
14865			if (typeidx >= str_sec->dofs_size) {
14866				dtrace_dof_error(dof, "bad "
14867				    "translated argument type");
14868				return (-1);
14869			}
14870
14871			typesz = strlen(typestr) + 1;
14872			if (typesz > DTRACE_ARGTYPELEN) {
14873				dtrace_dof_error(dof, "translated argument "
14874				    "type too long");
14875				return (-1);
14876			}
14877
14878			typeidx += typesz;
14879			typestr += typesz;
14880		}
14881	}
14882
14883	return (0);
14884}
14885
14886static int
14887dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14888{
14889	dtrace_helpers_t *help;
14890	dtrace_vstate_t *vstate;
14891	dtrace_enabling_t *enab = NULL;
14892	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14893	uintptr_t daddr = (uintptr_t)dof;
14894
14895	ASSERT(MUTEX_HELD(&dtrace_lock));
14896
14897	if ((help = curproc->p_dtrace_helpers) == NULL)
14898		help = dtrace_helpers_create(curproc);
14899
14900	vstate = &help->dthps_vstate;
14901
14902	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14903	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14904		dtrace_dof_destroy(dof);
14905		return (rv);
14906	}
14907
14908	/*
14909	 * Look for helper providers and validate their descriptions.
14910	 */
14911	if (dhp != NULL) {
14912		for (i = 0; i < dof->dofh_secnum; i++) {
14913			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14914			    dof->dofh_secoff + i * dof->dofh_secsize);
14915
14916			if (sec->dofs_type != DOF_SECT_PROVIDER)
14917				continue;
14918
14919			if (dtrace_helper_provider_validate(dof, sec) != 0) {
14920				dtrace_enabling_destroy(enab);
14921				dtrace_dof_destroy(dof);
14922				return (-1);
14923			}
14924
14925			nprovs++;
14926		}
14927	}
14928
14929	/*
14930	 * Now we need to walk through the ECB descriptions in the enabling.
14931	 */
14932	for (i = 0; i < enab->dten_ndesc; i++) {
14933		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14934		dtrace_probedesc_t *desc = &ep->dted_probe;
14935
14936		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14937			continue;
14938
14939		if (strcmp(desc->dtpd_mod, "helper") != 0)
14940			continue;
14941
14942		if (strcmp(desc->dtpd_func, "ustack") != 0)
14943			continue;
14944
14945		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14946		    ep)) != 0) {
14947			/*
14948			 * Adding this helper action failed -- we are now going
14949			 * to rip out the entire generation and return failure.
14950			 */
14951			(void) dtrace_helper_destroygen(help->dthps_generation);
14952			dtrace_enabling_destroy(enab);
14953			dtrace_dof_destroy(dof);
14954			return (-1);
14955		}
14956
14957		nhelpers++;
14958	}
14959
14960	if (nhelpers < enab->dten_ndesc)
14961		dtrace_dof_error(dof, "unmatched helpers");
14962
14963	gen = help->dthps_generation++;
14964	dtrace_enabling_destroy(enab);
14965
14966	if (dhp != NULL && nprovs > 0) {
14967		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14968		if (dtrace_helper_provider_add(dhp, gen) == 0) {
14969			mutex_exit(&dtrace_lock);
14970			dtrace_helper_provider_register(curproc, help, dhp);
14971			mutex_enter(&dtrace_lock);
14972
14973			destroy = 0;
14974		}
14975	}
14976
14977	if (destroy)
14978		dtrace_dof_destroy(dof);
14979
14980	return (gen);
14981}
14982
14983static dtrace_helpers_t *
14984dtrace_helpers_create(proc_t *p)
14985{
14986	dtrace_helpers_t *help;
14987
14988	ASSERT(MUTEX_HELD(&dtrace_lock));
14989	ASSERT(p->p_dtrace_helpers == NULL);
14990
14991	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14992	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14993	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14994
14995	p->p_dtrace_helpers = help;
14996	dtrace_helpers++;
14997
14998	return (help);
14999}
15000
15001#if defined(sun)
15002static
15003#endif
15004void
15005dtrace_helpers_destroy(proc_t *p)
15006{
15007	dtrace_helpers_t *help;
15008	dtrace_vstate_t *vstate;
15009#if defined(sun)
15010	proc_t *p = curproc;
15011#endif
15012	int i;
15013
15014	mutex_enter(&dtrace_lock);
15015
15016	ASSERT(p->p_dtrace_helpers != NULL);
15017	ASSERT(dtrace_helpers > 0);
15018
15019	help = p->p_dtrace_helpers;
15020	vstate = &help->dthps_vstate;
15021
15022	/*
15023	 * We're now going to lose the help from this process.
15024	 */
15025	p->p_dtrace_helpers = NULL;
15026	dtrace_sync();
15027
15028	/*
15029	 * Destory the helper actions.
15030	 */
15031	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15032		dtrace_helper_action_t *h, *next;
15033
15034		for (h = help->dthps_actions[i]; h != NULL; h = next) {
15035			next = h->dtha_next;
15036			dtrace_helper_action_destroy(h, vstate);
15037			h = next;
15038		}
15039	}
15040
15041	mutex_exit(&dtrace_lock);
15042
15043	/*
15044	 * Destroy the helper providers.
15045	 */
15046	if (help->dthps_maxprovs > 0) {
15047		mutex_enter(&dtrace_meta_lock);
15048		if (dtrace_meta_pid != NULL) {
15049			ASSERT(dtrace_deferred_pid == NULL);
15050
15051			for (i = 0; i < help->dthps_nprovs; i++) {
15052				dtrace_helper_provider_remove(
15053				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
15054			}
15055		} else {
15056			mutex_enter(&dtrace_lock);
15057			ASSERT(help->dthps_deferred == 0 ||
15058			    help->dthps_next != NULL ||
15059			    help->dthps_prev != NULL ||
15060			    help == dtrace_deferred_pid);
15061
15062			/*
15063			 * Remove the helper from the deferred list.
15064			 */
15065			if (help->dthps_next != NULL)
15066				help->dthps_next->dthps_prev = help->dthps_prev;
15067			if (help->dthps_prev != NULL)
15068				help->dthps_prev->dthps_next = help->dthps_next;
15069			if (dtrace_deferred_pid == help) {
15070				dtrace_deferred_pid = help->dthps_next;
15071				ASSERT(help->dthps_prev == NULL);
15072			}
15073
15074			mutex_exit(&dtrace_lock);
15075		}
15076
15077		mutex_exit(&dtrace_meta_lock);
15078
15079		for (i = 0; i < help->dthps_nprovs; i++) {
15080			dtrace_helper_provider_destroy(help->dthps_provs[i]);
15081		}
15082
15083		kmem_free(help->dthps_provs, help->dthps_maxprovs *
15084		    sizeof (dtrace_helper_provider_t *));
15085	}
15086
15087	mutex_enter(&dtrace_lock);
15088
15089	dtrace_vstate_fini(&help->dthps_vstate);
15090	kmem_free(help->dthps_actions,
15091	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
15092	kmem_free(help, sizeof (dtrace_helpers_t));
15093
15094	--dtrace_helpers;
15095	mutex_exit(&dtrace_lock);
15096}
15097
15098#if defined(sun)
15099static
15100#endif
15101void
15102dtrace_helpers_duplicate(proc_t *from, proc_t *to)
15103{
15104	dtrace_helpers_t *help, *newhelp;
15105	dtrace_helper_action_t *helper, *new, *last;
15106	dtrace_difo_t *dp;
15107	dtrace_vstate_t *vstate;
15108	int i, j, sz, hasprovs = 0;
15109
15110	mutex_enter(&dtrace_lock);
15111	ASSERT(from->p_dtrace_helpers != NULL);
15112	ASSERT(dtrace_helpers > 0);
15113
15114	help = from->p_dtrace_helpers;
15115	newhelp = dtrace_helpers_create(to);
15116	ASSERT(to->p_dtrace_helpers != NULL);
15117
15118	newhelp->dthps_generation = help->dthps_generation;
15119	vstate = &newhelp->dthps_vstate;
15120
15121	/*
15122	 * Duplicate the helper actions.
15123	 */
15124	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15125		if ((helper = help->dthps_actions[i]) == NULL)
15126			continue;
15127
15128		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
15129			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
15130			    KM_SLEEP);
15131			new->dtha_generation = helper->dtha_generation;
15132
15133			if ((dp = helper->dtha_predicate) != NULL) {
15134				dp = dtrace_difo_duplicate(dp, vstate);
15135				new->dtha_predicate = dp;
15136			}
15137
15138			new->dtha_nactions = helper->dtha_nactions;
15139			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
15140			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
15141
15142			for (j = 0; j < new->dtha_nactions; j++) {
15143				dtrace_difo_t *dp = helper->dtha_actions[j];
15144
15145				ASSERT(dp != NULL);
15146				dp = dtrace_difo_duplicate(dp, vstate);
15147				new->dtha_actions[j] = dp;
15148			}
15149
15150			if (last != NULL) {
15151				last->dtha_next = new;
15152			} else {
15153				newhelp->dthps_actions[i] = new;
15154			}
15155
15156			last = new;
15157		}
15158	}
15159
15160	/*
15161	 * Duplicate the helper providers and register them with the
15162	 * DTrace framework.
15163	 */
15164	if (help->dthps_nprovs > 0) {
15165		newhelp->dthps_nprovs = help->dthps_nprovs;
15166		newhelp->dthps_maxprovs = help->dthps_nprovs;
15167		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
15168		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15169		for (i = 0; i < newhelp->dthps_nprovs; i++) {
15170			newhelp->dthps_provs[i] = help->dthps_provs[i];
15171			newhelp->dthps_provs[i]->dthp_ref++;
15172		}
15173
15174		hasprovs = 1;
15175	}
15176
15177	mutex_exit(&dtrace_lock);
15178
15179	if (hasprovs)
15180		dtrace_helper_provider_register(to, newhelp, NULL);
15181}
15182
15183/*
15184 * DTrace Hook Functions
15185 */
15186static void
15187dtrace_module_loaded(modctl_t *ctl)
15188{
15189	dtrace_provider_t *prv;
15190
15191	mutex_enter(&dtrace_provider_lock);
15192#if defined(sun)
15193	mutex_enter(&mod_lock);
15194#endif
15195
15196#if defined(sun)
15197	ASSERT(ctl->mod_busy);
15198#endif
15199
15200	/*
15201	 * We're going to call each providers per-module provide operation
15202	 * specifying only this module.
15203	 */
15204	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15205		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
15206
15207#if defined(sun)
15208	mutex_exit(&mod_lock);
15209#endif
15210	mutex_exit(&dtrace_provider_lock);
15211
15212	/*
15213	 * If we have any retained enablings, we need to match against them.
15214	 * Enabling probes requires that cpu_lock be held, and we cannot hold
15215	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15216	 * module.  (In particular, this happens when loading scheduling
15217	 * classes.)  So if we have any retained enablings, we need to dispatch
15218	 * our task queue to do the match for us.
15219	 */
15220	mutex_enter(&dtrace_lock);
15221
15222	if (dtrace_retained == NULL) {
15223		mutex_exit(&dtrace_lock);
15224		return;
15225	}
15226
15227	(void) taskq_dispatch(dtrace_taskq,
15228	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
15229
15230	mutex_exit(&dtrace_lock);
15231
15232	/*
15233	 * And now, for a little heuristic sleaze:  in general, we want to
15234	 * match modules as soon as they load.  However, we cannot guarantee
15235	 * this, because it would lead us to the lock ordering violation
15236	 * outlined above.  The common case, of course, is that cpu_lock is
15237	 * _not_ held -- so we delay here for a clock tick, hoping that that's
15238	 * long enough for the task queue to do its work.  If it's not, it's
15239	 * not a serious problem -- it just means that the module that we
15240	 * just loaded may not be immediately instrumentable.
15241	 */
15242	delay(1);
15243}
15244
15245static void
15246#if defined(sun)
15247dtrace_module_unloaded(modctl_t *ctl)
15248#else
15249dtrace_module_unloaded(modctl_t *ctl, int *error)
15250#endif
15251{
15252	dtrace_probe_t template, *probe, *first, *next;
15253	dtrace_provider_t *prov;
15254#if !defined(sun)
15255	char modname[DTRACE_MODNAMELEN];
15256	size_t len;
15257#endif
15258
15259#if defined(sun)
15260	template.dtpr_mod = ctl->mod_modname;
15261#else
15262	/* Handle the fact that ctl->filename may end in ".ko". */
15263	strlcpy(modname, ctl->filename, sizeof(modname));
15264	len = strlen(ctl->filename);
15265	if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
15266		modname[len - 3] = '\0';
15267	template.dtpr_mod = modname;
15268#endif
15269
15270	mutex_enter(&dtrace_provider_lock);
15271#if defined(sun)
15272	mutex_enter(&mod_lock);
15273#endif
15274	mutex_enter(&dtrace_lock);
15275
15276#if !defined(sun)
15277	if (ctl->nenabled > 0) {
15278		/* Don't allow unloads if a probe is enabled. */
15279		mutex_exit(&dtrace_provider_lock);
15280		mutex_exit(&dtrace_lock);
15281		*error = -1;
15282		printf(
15283	"kldunload: attempt to unload module that has DTrace probes enabled\n");
15284		return;
15285	}
15286#endif
15287
15288	if (dtrace_bymod == NULL) {
15289		/*
15290		 * The DTrace module is loaded (obviously) but not attached;
15291		 * we don't have any work to do.
15292		 */
15293		mutex_exit(&dtrace_provider_lock);
15294#if defined(sun)
15295		mutex_exit(&mod_lock);
15296#endif
15297		mutex_exit(&dtrace_lock);
15298		return;
15299	}
15300
15301	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
15302	    probe != NULL; probe = probe->dtpr_nextmod) {
15303		if (probe->dtpr_ecb != NULL) {
15304			mutex_exit(&dtrace_provider_lock);
15305#if defined(sun)
15306			mutex_exit(&mod_lock);
15307#endif
15308			mutex_exit(&dtrace_lock);
15309
15310			/*
15311			 * This shouldn't _actually_ be possible -- we're
15312			 * unloading a module that has an enabled probe in it.
15313			 * (It's normally up to the provider to make sure that
15314			 * this can't happen.)  However, because dtps_enable()
15315			 * doesn't have a failure mode, there can be an
15316			 * enable/unload race.  Upshot:  we don't want to
15317			 * assert, but we're not going to disable the
15318			 * probe, either.
15319			 */
15320			if (dtrace_err_verbose) {
15321#if defined(sun)
15322				cmn_err(CE_WARN, "unloaded module '%s' had "
15323				    "enabled probes", ctl->mod_modname);
15324#else
15325				cmn_err(CE_WARN, "unloaded module '%s' had "
15326				    "enabled probes", modname);
15327#endif
15328			}
15329
15330			return;
15331		}
15332	}
15333
15334	probe = first;
15335
15336	for (first = NULL; probe != NULL; probe = next) {
15337		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15338
15339		dtrace_probes[probe->dtpr_id - 1] = NULL;
15340
15341		next = probe->dtpr_nextmod;
15342		dtrace_hash_remove(dtrace_bymod, probe);
15343		dtrace_hash_remove(dtrace_byfunc, probe);
15344		dtrace_hash_remove(dtrace_byname, probe);
15345
15346		if (first == NULL) {
15347			first = probe;
15348			probe->dtpr_nextmod = NULL;
15349		} else {
15350			probe->dtpr_nextmod = first;
15351			first = probe;
15352		}
15353	}
15354
15355	/*
15356	 * We've removed all of the module's probes from the hash chains and
15357	 * from the probe array.  Now issue a dtrace_sync() to be sure that
15358	 * everyone has cleared out from any probe array processing.
15359	 */
15360	dtrace_sync();
15361
15362	for (probe = first; probe != NULL; probe = first) {
15363		first = probe->dtpr_nextmod;
15364		prov = probe->dtpr_provider;
15365		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15366		    probe->dtpr_arg);
15367		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15368		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15369		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15370#if defined(sun)
15371		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15372#else
15373		free_unr(dtrace_arena, probe->dtpr_id);
15374#endif
15375		kmem_free(probe, sizeof (dtrace_probe_t));
15376	}
15377
15378	mutex_exit(&dtrace_lock);
15379#if defined(sun)
15380	mutex_exit(&mod_lock);
15381#endif
15382	mutex_exit(&dtrace_provider_lock);
15383}
15384
15385#if !defined(sun)
15386static void
15387dtrace_kld_load(void *arg __unused, linker_file_t lf)
15388{
15389
15390	dtrace_module_loaded(lf);
15391}
15392
15393static void
15394dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error)
15395{
15396
15397	if (*error != 0)
15398		/* We already have an error, so don't do anything. */
15399		return;
15400	dtrace_module_unloaded(lf, error);
15401}
15402#endif
15403
15404#if defined(sun)
15405static void
15406dtrace_suspend(void)
15407{
15408	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15409}
15410
15411static void
15412dtrace_resume(void)
15413{
15414	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15415}
15416#endif
15417
15418static int
15419dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15420{
15421	ASSERT(MUTEX_HELD(&cpu_lock));
15422	mutex_enter(&dtrace_lock);
15423
15424	switch (what) {
15425	case CPU_CONFIG: {
15426		dtrace_state_t *state;
15427		dtrace_optval_t *opt, rs, c;
15428
15429		/*
15430		 * For now, we only allocate a new buffer for anonymous state.
15431		 */
15432		if ((state = dtrace_anon.dta_state) == NULL)
15433			break;
15434
15435		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15436			break;
15437
15438		opt = state->dts_options;
15439		c = opt[DTRACEOPT_CPU];
15440
15441		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15442			break;
15443
15444		/*
15445		 * Regardless of what the actual policy is, we're going to
15446		 * temporarily set our resize policy to be manual.  We're
15447		 * also going to temporarily set our CPU option to denote
15448		 * the newly configured CPU.
15449		 */
15450		rs = opt[DTRACEOPT_BUFRESIZE];
15451		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15452		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15453
15454		(void) dtrace_state_buffers(state);
15455
15456		opt[DTRACEOPT_BUFRESIZE] = rs;
15457		opt[DTRACEOPT_CPU] = c;
15458
15459		break;
15460	}
15461
15462	case CPU_UNCONFIG:
15463		/*
15464		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
15465		 * buffer will be freed when the consumer exits.)
15466		 */
15467		break;
15468
15469	default:
15470		break;
15471	}
15472
15473	mutex_exit(&dtrace_lock);
15474	return (0);
15475}
15476
15477#if defined(sun)
15478static void
15479dtrace_cpu_setup_initial(processorid_t cpu)
15480{
15481	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15482}
15483#endif
15484
15485static void
15486dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15487{
15488	if (dtrace_toxranges >= dtrace_toxranges_max) {
15489		int osize, nsize;
15490		dtrace_toxrange_t *range;
15491
15492		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15493
15494		if (osize == 0) {
15495			ASSERT(dtrace_toxrange == NULL);
15496			ASSERT(dtrace_toxranges_max == 0);
15497			dtrace_toxranges_max = 1;
15498		} else {
15499			dtrace_toxranges_max <<= 1;
15500		}
15501
15502		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15503		range = kmem_zalloc(nsize, KM_SLEEP);
15504
15505		if (dtrace_toxrange != NULL) {
15506			ASSERT(osize != 0);
15507			bcopy(dtrace_toxrange, range, osize);
15508			kmem_free(dtrace_toxrange, osize);
15509		}
15510
15511		dtrace_toxrange = range;
15512	}
15513
15514	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
15515	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
15516
15517	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15518	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15519	dtrace_toxranges++;
15520}
15521
15522/*
15523 * DTrace Driver Cookbook Functions
15524 */
15525#if defined(sun)
15526/*ARGSUSED*/
15527static int
15528dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15529{
15530	dtrace_provider_id_t id;
15531	dtrace_state_t *state = NULL;
15532	dtrace_enabling_t *enab;
15533
15534	mutex_enter(&cpu_lock);
15535	mutex_enter(&dtrace_provider_lock);
15536	mutex_enter(&dtrace_lock);
15537
15538	if (ddi_soft_state_init(&dtrace_softstate,
15539	    sizeof (dtrace_state_t), 0) != 0) {
15540		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15541		mutex_exit(&cpu_lock);
15542		mutex_exit(&dtrace_provider_lock);
15543		mutex_exit(&dtrace_lock);
15544		return (DDI_FAILURE);
15545	}
15546
15547	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15548	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15549	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15550	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15551		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15552		ddi_remove_minor_node(devi, NULL);
15553		ddi_soft_state_fini(&dtrace_softstate);
15554		mutex_exit(&cpu_lock);
15555		mutex_exit(&dtrace_provider_lock);
15556		mutex_exit(&dtrace_lock);
15557		return (DDI_FAILURE);
15558	}
15559
15560	ddi_report_dev(devi);
15561	dtrace_devi = devi;
15562
15563	dtrace_modload = dtrace_module_loaded;
15564	dtrace_modunload = dtrace_module_unloaded;
15565	dtrace_cpu_init = dtrace_cpu_setup_initial;
15566	dtrace_helpers_cleanup = dtrace_helpers_destroy;
15567	dtrace_helpers_fork = dtrace_helpers_duplicate;
15568	dtrace_cpustart_init = dtrace_suspend;
15569	dtrace_cpustart_fini = dtrace_resume;
15570	dtrace_debugger_init = dtrace_suspend;
15571	dtrace_debugger_fini = dtrace_resume;
15572
15573	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15574
15575	ASSERT(MUTEX_HELD(&cpu_lock));
15576
15577	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15578	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15579	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15580	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15581	    VM_SLEEP | VMC_IDENTIFIER);
15582	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15583	    1, INT_MAX, 0);
15584
15585	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15586	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15587	    NULL, NULL, NULL, NULL, NULL, 0);
15588
15589	ASSERT(MUTEX_HELD(&cpu_lock));
15590	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15591	    offsetof(dtrace_probe_t, dtpr_nextmod),
15592	    offsetof(dtrace_probe_t, dtpr_prevmod));
15593
15594	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15595	    offsetof(dtrace_probe_t, dtpr_nextfunc),
15596	    offsetof(dtrace_probe_t, dtpr_prevfunc));
15597
15598	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15599	    offsetof(dtrace_probe_t, dtpr_nextname),
15600	    offsetof(dtrace_probe_t, dtpr_prevname));
15601
15602	if (dtrace_retain_max < 1) {
15603		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15604		    "setting to 1", dtrace_retain_max);
15605		dtrace_retain_max = 1;
15606	}
15607
15608	/*
15609	 * Now discover our toxic ranges.
15610	 */
15611	dtrace_toxic_ranges(dtrace_toxrange_add);
15612
15613	/*
15614	 * Before we register ourselves as a provider to our own framework,
15615	 * we would like to assert that dtrace_provider is NULL -- but that's
15616	 * not true if we were loaded as a dependency of a DTrace provider.
15617	 * Once we've registered, we can assert that dtrace_provider is our
15618	 * pseudo provider.
15619	 */
15620	(void) dtrace_register("dtrace", &dtrace_provider_attr,
15621	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15622
15623	ASSERT(dtrace_provider != NULL);
15624	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15625
15626	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15627	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15628	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15629	    dtrace_provider, NULL, NULL, "END", 0, NULL);
15630	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15631	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15632
15633	dtrace_anon_property();
15634	mutex_exit(&cpu_lock);
15635
15636	/*
15637	 * If DTrace helper tracing is enabled, we need to allocate the
15638	 * trace buffer and initialize the values.
15639	 */
15640	if (dtrace_helptrace_enabled) {
15641		ASSERT(dtrace_helptrace_buffer == NULL);
15642		dtrace_helptrace_buffer =
15643		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15644		dtrace_helptrace_next = 0;
15645	}
15646
15647	/*
15648	 * If there are already providers, we must ask them to provide their
15649	 * probes, and then match any anonymous enabling against them.  Note
15650	 * that there should be no other retained enablings at this time:
15651	 * the only retained enablings at this time should be the anonymous
15652	 * enabling.
15653	 */
15654	if (dtrace_anon.dta_enabling != NULL) {
15655		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15656
15657		dtrace_enabling_provide(NULL);
15658		state = dtrace_anon.dta_state;
15659
15660		/*
15661		 * We couldn't hold cpu_lock across the above call to
15662		 * dtrace_enabling_provide(), but we must hold it to actually
15663		 * enable the probes.  We have to drop all of our locks, pick
15664		 * up cpu_lock, and regain our locks before matching the
15665		 * retained anonymous enabling.
15666		 */
15667		mutex_exit(&dtrace_lock);
15668		mutex_exit(&dtrace_provider_lock);
15669
15670		mutex_enter(&cpu_lock);
15671		mutex_enter(&dtrace_provider_lock);
15672		mutex_enter(&dtrace_lock);
15673
15674		if ((enab = dtrace_anon.dta_enabling) != NULL)
15675			(void) dtrace_enabling_match(enab, NULL);
15676
15677		mutex_exit(&cpu_lock);
15678	}
15679
15680	mutex_exit(&dtrace_lock);
15681	mutex_exit(&dtrace_provider_lock);
15682
15683	if (state != NULL) {
15684		/*
15685		 * If we created any anonymous state, set it going now.
15686		 */
15687		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15688	}
15689
15690	return (DDI_SUCCESS);
15691}
15692#endif
15693
15694#if !defined(sun)
15695#if __FreeBSD_version >= 800039
15696static void dtrace_dtr(void *);
15697#endif
15698#endif
15699
15700/*ARGSUSED*/
15701static int
15702#if defined(sun)
15703dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15704#else
15705dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
15706#endif
15707{
15708	dtrace_state_t *state;
15709	uint32_t priv;
15710	uid_t uid;
15711	zoneid_t zoneid;
15712
15713#if defined(sun)
15714	if (getminor(*devp) == DTRACEMNRN_HELPER)
15715		return (0);
15716
15717	/*
15718	 * If this wasn't an open with the "helper" minor, then it must be
15719	 * the "dtrace" minor.
15720	 */
15721	if (getminor(*devp) == DTRACEMNRN_DTRACE)
15722		return (ENXIO);
15723#else
15724	cred_t *cred_p = NULL;
15725
15726#if __FreeBSD_version < 800039
15727	/*
15728	 * The first minor device is the one that is cloned so there is
15729	 * nothing more to do here.
15730	 */
15731	if (dev2unit(dev) == 0)
15732		return 0;
15733
15734	/*
15735	 * Devices are cloned, so if the DTrace state has already
15736	 * been allocated, that means this device belongs to a
15737	 * different client. Each client should open '/dev/dtrace'
15738	 * to get a cloned device.
15739	 */
15740	if (dev->si_drv1 != NULL)
15741		return (EBUSY);
15742#endif
15743
15744	cred_p = dev->si_cred;
15745#endif
15746
15747	/*
15748	 * If no DTRACE_PRIV_* bits are set in the credential, then the
15749	 * caller lacks sufficient permission to do anything with DTrace.
15750	 */
15751	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15752	if (priv == DTRACE_PRIV_NONE) {
15753#if !defined(sun)
15754#if __FreeBSD_version < 800039
15755		/* Destroy the cloned device. */
15756                destroy_dev(dev);
15757#endif
15758#endif
15759
15760		return (EACCES);
15761	}
15762
15763	/*
15764	 * Ask all providers to provide all their probes.
15765	 */
15766	mutex_enter(&dtrace_provider_lock);
15767	dtrace_probe_provide(NULL, NULL);
15768	mutex_exit(&dtrace_provider_lock);
15769
15770	mutex_enter(&cpu_lock);
15771	mutex_enter(&dtrace_lock);
15772	dtrace_opens++;
15773	dtrace_membar_producer();
15774
15775#if defined(sun)
15776	/*
15777	 * If the kernel debugger is active (that is, if the kernel debugger
15778	 * modified text in some way), we won't allow the open.
15779	 */
15780	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15781		dtrace_opens--;
15782		mutex_exit(&cpu_lock);
15783		mutex_exit(&dtrace_lock);
15784		return (EBUSY);
15785	}
15786
15787	state = dtrace_state_create(devp, cred_p);
15788#else
15789	state = dtrace_state_create(dev);
15790#if __FreeBSD_version < 800039
15791	dev->si_drv1 = state;
15792#else
15793	devfs_set_cdevpriv(state, dtrace_dtr);
15794#endif
15795#endif
15796
15797	mutex_exit(&cpu_lock);
15798
15799	if (state == NULL) {
15800#if defined(sun)
15801		if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15802			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15803#else
15804		--dtrace_opens;
15805#endif
15806		mutex_exit(&dtrace_lock);
15807#if !defined(sun)
15808#if __FreeBSD_version < 800039
15809		/* Destroy the cloned device. */
15810                destroy_dev(dev);
15811#endif
15812#endif
15813		return (EAGAIN);
15814	}
15815
15816	mutex_exit(&dtrace_lock);
15817
15818	return (0);
15819}
15820
15821/*ARGSUSED*/
15822#if defined(sun)
15823static int
15824dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15825#elif __FreeBSD_version < 800039
15826static int
15827dtrace_close(struct cdev *dev, int flags, int fmt __unused, struct thread *td)
15828#else
15829static void
15830dtrace_dtr(void *data)
15831#endif
15832{
15833#if defined(sun)
15834	minor_t minor = getminor(dev);
15835	dtrace_state_t *state;
15836
15837	if (minor == DTRACEMNRN_HELPER)
15838		return (0);
15839
15840	state = ddi_get_soft_state(dtrace_softstate, minor);
15841#else
15842#if __FreeBSD_version < 800039
15843	dtrace_state_t *state = dev->si_drv1;
15844
15845	/* Check if this is not a cloned device. */
15846	if (dev2unit(dev) == 0)
15847		return (0);
15848#else
15849	dtrace_state_t *state = data;
15850#endif
15851
15852#endif
15853
15854	mutex_enter(&cpu_lock);
15855	mutex_enter(&dtrace_lock);
15856
15857	if (state != NULL) {
15858		if (state->dts_anon) {
15859			/*
15860			 * There is anonymous state. Destroy that first.
15861			 */
15862			ASSERT(dtrace_anon.dta_state == NULL);
15863			dtrace_state_destroy(state->dts_anon);
15864		}
15865
15866		dtrace_state_destroy(state);
15867
15868#if !defined(sun)
15869		kmem_free(state, 0);
15870#if __FreeBSD_version < 800039
15871		dev->si_drv1 = NULL;
15872#endif
15873#endif
15874	}
15875
15876	ASSERT(dtrace_opens > 0);
15877#if defined(sun)
15878	/*
15879	 * Only relinquish control of the kernel debugger interface when there
15880	 * are no consumers and no anonymous enablings.
15881	 */
15882	if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15883		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15884#else
15885	--dtrace_opens;
15886#endif
15887
15888	mutex_exit(&dtrace_lock);
15889	mutex_exit(&cpu_lock);
15890
15891#if __FreeBSD_version < 800039
15892	/* Schedule this cloned device to be destroyed. */
15893	destroy_dev_sched(dev);
15894#endif
15895
15896#if defined(sun) || __FreeBSD_version < 800039
15897	return (0);
15898#endif
15899}
15900
15901#if defined(sun)
15902/*ARGSUSED*/
15903static int
15904dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15905{
15906	int rval;
15907	dof_helper_t help, *dhp = NULL;
15908
15909	switch (cmd) {
15910	case DTRACEHIOC_ADDDOF:
15911		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15912			dtrace_dof_error(NULL, "failed to copyin DOF helper");
15913			return (EFAULT);
15914		}
15915
15916		dhp = &help;
15917		arg = (intptr_t)help.dofhp_dof;
15918		/*FALLTHROUGH*/
15919
15920	case DTRACEHIOC_ADD: {
15921		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15922
15923		if (dof == NULL)
15924			return (rval);
15925
15926		mutex_enter(&dtrace_lock);
15927
15928		/*
15929		 * dtrace_helper_slurp() takes responsibility for the dof --
15930		 * it may free it now or it may save it and free it later.
15931		 */
15932		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15933			*rv = rval;
15934			rval = 0;
15935		} else {
15936			rval = EINVAL;
15937		}
15938
15939		mutex_exit(&dtrace_lock);
15940		return (rval);
15941	}
15942
15943	case DTRACEHIOC_REMOVE: {
15944		mutex_enter(&dtrace_lock);
15945		rval = dtrace_helper_destroygen(arg);
15946		mutex_exit(&dtrace_lock);
15947
15948		return (rval);
15949	}
15950
15951	default:
15952		break;
15953	}
15954
15955	return (ENOTTY);
15956}
15957
15958/*ARGSUSED*/
15959static int
15960dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15961{
15962	minor_t minor = getminor(dev);
15963	dtrace_state_t *state;
15964	int rval;
15965
15966	if (minor == DTRACEMNRN_HELPER)
15967		return (dtrace_ioctl_helper(cmd, arg, rv));
15968
15969	state = ddi_get_soft_state(dtrace_softstate, minor);
15970
15971	if (state->dts_anon) {
15972		ASSERT(dtrace_anon.dta_state == NULL);
15973		state = state->dts_anon;
15974	}
15975
15976	switch (cmd) {
15977	case DTRACEIOC_PROVIDER: {
15978		dtrace_providerdesc_t pvd;
15979		dtrace_provider_t *pvp;
15980
15981		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15982			return (EFAULT);
15983
15984		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15985		mutex_enter(&dtrace_provider_lock);
15986
15987		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15988			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15989				break;
15990		}
15991
15992		mutex_exit(&dtrace_provider_lock);
15993
15994		if (pvp == NULL)
15995			return (ESRCH);
15996
15997		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15998		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15999
16000		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
16001			return (EFAULT);
16002
16003		return (0);
16004	}
16005
16006	case DTRACEIOC_EPROBE: {
16007		dtrace_eprobedesc_t epdesc;
16008		dtrace_ecb_t *ecb;
16009		dtrace_action_t *act;
16010		void *buf;
16011		size_t size;
16012		uintptr_t dest;
16013		int nrecs;
16014
16015		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
16016			return (EFAULT);
16017
16018		mutex_enter(&dtrace_lock);
16019
16020		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
16021			mutex_exit(&dtrace_lock);
16022			return (EINVAL);
16023		}
16024
16025		if (ecb->dte_probe == NULL) {
16026			mutex_exit(&dtrace_lock);
16027			return (EINVAL);
16028		}
16029
16030		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
16031		epdesc.dtepd_uarg = ecb->dte_uarg;
16032		epdesc.dtepd_size = ecb->dte_size;
16033
16034		nrecs = epdesc.dtepd_nrecs;
16035		epdesc.dtepd_nrecs = 0;
16036		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16037			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16038				continue;
16039
16040			epdesc.dtepd_nrecs++;
16041		}
16042
16043		/*
16044		 * Now that we have the size, we need to allocate a temporary
16045		 * buffer in which to store the complete description.  We need
16046		 * the temporary buffer to be able to drop dtrace_lock()
16047		 * across the copyout(), below.
16048		 */
16049		size = sizeof (dtrace_eprobedesc_t) +
16050		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
16051
16052		buf = kmem_alloc(size, KM_SLEEP);
16053		dest = (uintptr_t)buf;
16054
16055		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
16056		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
16057
16058		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16059			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16060				continue;
16061
16062			if (nrecs-- == 0)
16063				break;
16064
16065			bcopy(&act->dta_rec, (void *)dest,
16066			    sizeof (dtrace_recdesc_t));
16067			dest += sizeof (dtrace_recdesc_t);
16068		}
16069
16070		mutex_exit(&dtrace_lock);
16071
16072		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16073			kmem_free(buf, size);
16074			return (EFAULT);
16075		}
16076
16077		kmem_free(buf, size);
16078		return (0);
16079	}
16080
16081	case DTRACEIOC_AGGDESC: {
16082		dtrace_aggdesc_t aggdesc;
16083		dtrace_action_t *act;
16084		dtrace_aggregation_t *agg;
16085		int nrecs;
16086		uint32_t offs;
16087		dtrace_recdesc_t *lrec;
16088		void *buf;
16089		size_t size;
16090		uintptr_t dest;
16091
16092		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
16093			return (EFAULT);
16094
16095		mutex_enter(&dtrace_lock);
16096
16097		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
16098			mutex_exit(&dtrace_lock);
16099			return (EINVAL);
16100		}
16101
16102		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
16103
16104		nrecs = aggdesc.dtagd_nrecs;
16105		aggdesc.dtagd_nrecs = 0;
16106
16107		offs = agg->dtag_base;
16108		lrec = &agg->dtag_action.dta_rec;
16109		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
16110
16111		for (act = agg->dtag_first; ; act = act->dta_next) {
16112			ASSERT(act->dta_intuple ||
16113			    DTRACEACT_ISAGG(act->dta_kind));
16114
16115			/*
16116			 * If this action has a record size of zero, it
16117			 * denotes an argument to the aggregating action.
16118			 * Because the presence of this record doesn't (or
16119			 * shouldn't) affect the way the data is interpreted,
16120			 * we don't copy it out to save user-level the
16121			 * confusion of dealing with a zero-length record.
16122			 */
16123			if (act->dta_rec.dtrd_size == 0) {
16124				ASSERT(agg->dtag_hasarg);
16125				continue;
16126			}
16127
16128			aggdesc.dtagd_nrecs++;
16129
16130			if (act == &agg->dtag_action)
16131				break;
16132		}
16133
16134		/*
16135		 * Now that we have the size, we need to allocate a temporary
16136		 * buffer in which to store the complete description.  We need
16137		 * the temporary buffer to be able to drop dtrace_lock()
16138		 * across the copyout(), below.
16139		 */
16140		size = sizeof (dtrace_aggdesc_t) +
16141		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
16142
16143		buf = kmem_alloc(size, KM_SLEEP);
16144		dest = (uintptr_t)buf;
16145
16146		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
16147		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
16148
16149		for (act = agg->dtag_first; ; act = act->dta_next) {
16150			dtrace_recdesc_t rec = act->dta_rec;
16151
16152			/*
16153			 * See the comment in the above loop for why we pass
16154			 * over zero-length records.
16155			 */
16156			if (rec.dtrd_size == 0) {
16157				ASSERT(agg->dtag_hasarg);
16158				continue;
16159			}
16160
16161			if (nrecs-- == 0)
16162				break;
16163
16164			rec.dtrd_offset -= offs;
16165			bcopy(&rec, (void *)dest, sizeof (rec));
16166			dest += sizeof (dtrace_recdesc_t);
16167
16168			if (act == &agg->dtag_action)
16169				break;
16170		}
16171
16172		mutex_exit(&dtrace_lock);
16173
16174		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16175			kmem_free(buf, size);
16176			return (EFAULT);
16177		}
16178
16179		kmem_free(buf, size);
16180		return (0);
16181	}
16182
16183	case DTRACEIOC_ENABLE: {
16184		dof_hdr_t *dof;
16185		dtrace_enabling_t *enab = NULL;
16186		dtrace_vstate_t *vstate;
16187		int err = 0;
16188
16189		*rv = 0;
16190
16191		/*
16192		 * If a NULL argument has been passed, we take this as our
16193		 * cue to reevaluate our enablings.
16194		 */
16195		if (arg == NULL) {
16196			dtrace_enabling_matchall();
16197
16198			return (0);
16199		}
16200
16201		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
16202			return (rval);
16203
16204		mutex_enter(&cpu_lock);
16205		mutex_enter(&dtrace_lock);
16206		vstate = &state->dts_vstate;
16207
16208		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
16209			mutex_exit(&dtrace_lock);
16210			mutex_exit(&cpu_lock);
16211			dtrace_dof_destroy(dof);
16212			return (EBUSY);
16213		}
16214
16215		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
16216			mutex_exit(&dtrace_lock);
16217			mutex_exit(&cpu_lock);
16218			dtrace_dof_destroy(dof);
16219			return (EINVAL);
16220		}
16221
16222		if ((rval = dtrace_dof_options(dof, state)) != 0) {
16223			dtrace_enabling_destroy(enab);
16224			mutex_exit(&dtrace_lock);
16225			mutex_exit(&cpu_lock);
16226			dtrace_dof_destroy(dof);
16227			return (rval);
16228		}
16229
16230		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
16231			err = dtrace_enabling_retain(enab);
16232		} else {
16233			dtrace_enabling_destroy(enab);
16234		}
16235
16236		mutex_exit(&cpu_lock);
16237		mutex_exit(&dtrace_lock);
16238		dtrace_dof_destroy(dof);
16239
16240		return (err);
16241	}
16242
16243	case DTRACEIOC_REPLICATE: {
16244		dtrace_repldesc_t desc;
16245		dtrace_probedesc_t *match = &desc.dtrpd_match;
16246		dtrace_probedesc_t *create = &desc.dtrpd_create;
16247		int err;
16248
16249		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16250			return (EFAULT);
16251
16252		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16253		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16254		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16255		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16256
16257		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16258		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16259		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16260		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16261
16262		mutex_enter(&dtrace_lock);
16263		err = dtrace_enabling_replicate(state, match, create);
16264		mutex_exit(&dtrace_lock);
16265
16266		return (err);
16267	}
16268
16269	case DTRACEIOC_PROBEMATCH:
16270	case DTRACEIOC_PROBES: {
16271		dtrace_probe_t *probe = NULL;
16272		dtrace_probedesc_t desc;
16273		dtrace_probekey_t pkey;
16274		dtrace_id_t i;
16275		int m = 0;
16276		uint32_t priv;
16277		uid_t uid;
16278		zoneid_t zoneid;
16279
16280		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16281			return (EFAULT);
16282
16283		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16284		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16285		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16286		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16287
16288		/*
16289		 * Before we attempt to match this probe, we want to give
16290		 * all providers the opportunity to provide it.
16291		 */
16292		if (desc.dtpd_id == DTRACE_IDNONE) {
16293			mutex_enter(&dtrace_provider_lock);
16294			dtrace_probe_provide(&desc, NULL);
16295			mutex_exit(&dtrace_provider_lock);
16296			desc.dtpd_id++;
16297		}
16298
16299		if (cmd == DTRACEIOC_PROBEMATCH)  {
16300			dtrace_probekey(&desc, &pkey);
16301			pkey.dtpk_id = DTRACE_IDNONE;
16302		}
16303
16304		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
16305
16306		mutex_enter(&dtrace_lock);
16307
16308		if (cmd == DTRACEIOC_PROBEMATCH) {
16309			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16310				if ((probe = dtrace_probes[i - 1]) != NULL &&
16311				    (m = dtrace_match_probe(probe, &pkey,
16312				    priv, uid, zoneid)) != 0)
16313					break;
16314			}
16315
16316			if (m < 0) {
16317				mutex_exit(&dtrace_lock);
16318				return (EINVAL);
16319			}
16320
16321		} else {
16322			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16323				if ((probe = dtrace_probes[i - 1]) != NULL &&
16324				    dtrace_match_priv(probe, priv, uid, zoneid))
16325					break;
16326			}
16327		}
16328
16329		if (probe == NULL) {
16330			mutex_exit(&dtrace_lock);
16331			return (ESRCH);
16332		}
16333
16334		dtrace_probe_description(probe, &desc);
16335		mutex_exit(&dtrace_lock);
16336
16337		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16338			return (EFAULT);
16339
16340		return (0);
16341	}
16342
16343	case DTRACEIOC_PROBEARG: {
16344		dtrace_argdesc_t desc;
16345		dtrace_probe_t *probe;
16346		dtrace_provider_t *prov;
16347
16348		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16349			return (EFAULT);
16350
16351		if (desc.dtargd_id == DTRACE_IDNONE)
16352			return (EINVAL);
16353
16354		if (desc.dtargd_ndx == DTRACE_ARGNONE)
16355			return (EINVAL);
16356
16357		mutex_enter(&dtrace_provider_lock);
16358		mutex_enter(&mod_lock);
16359		mutex_enter(&dtrace_lock);
16360
16361		if (desc.dtargd_id > dtrace_nprobes) {
16362			mutex_exit(&dtrace_lock);
16363			mutex_exit(&mod_lock);
16364			mutex_exit(&dtrace_provider_lock);
16365			return (EINVAL);
16366		}
16367
16368		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16369			mutex_exit(&dtrace_lock);
16370			mutex_exit(&mod_lock);
16371			mutex_exit(&dtrace_provider_lock);
16372			return (EINVAL);
16373		}
16374
16375		mutex_exit(&dtrace_lock);
16376
16377		prov = probe->dtpr_provider;
16378
16379		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16380			/*
16381			 * There isn't any typed information for this probe.
16382			 * Set the argument number to DTRACE_ARGNONE.
16383			 */
16384			desc.dtargd_ndx = DTRACE_ARGNONE;
16385		} else {
16386			desc.dtargd_native[0] = '\0';
16387			desc.dtargd_xlate[0] = '\0';
16388			desc.dtargd_mapping = desc.dtargd_ndx;
16389
16390			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16391			    probe->dtpr_id, probe->dtpr_arg, &desc);
16392		}
16393
16394		mutex_exit(&mod_lock);
16395		mutex_exit(&dtrace_provider_lock);
16396
16397		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16398			return (EFAULT);
16399
16400		return (0);
16401	}
16402
16403	case DTRACEIOC_GO: {
16404		processorid_t cpuid;
16405		rval = dtrace_state_go(state, &cpuid);
16406
16407		if (rval != 0)
16408			return (rval);
16409
16410		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16411			return (EFAULT);
16412
16413		return (0);
16414	}
16415
16416	case DTRACEIOC_STOP: {
16417		processorid_t cpuid;
16418
16419		mutex_enter(&dtrace_lock);
16420		rval = dtrace_state_stop(state, &cpuid);
16421		mutex_exit(&dtrace_lock);
16422
16423		if (rval != 0)
16424			return (rval);
16425
16426		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16427			return (EFAULT);
16428
16429		return (0);
16430	}
16431
16432	case DTRACEIOC_DOFGET: {
16433		dof_hdr_t hdr, *dof;
16434		uint64_t len;
16435
16436		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16437			return (EFAULT);
16438
16439		mutex_enter(&dtrace_lock);
16440		dof = dtrace_dof_create(state);
16441		mutex_exit(&dtrace_lock);
16442
16443		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16444		rval = copyout(dof, (void *)arg, len);
16445		dtrace_dof_destroy(dof);
16446
16447		return (rval == 0 ? 0 : EFAULT);
16448	}
16449
16450	case DTRACEIOC_AGGSNAP:
16451	case DTRACEIOC_BUFSNAP: {
16452		dtrace_bufdesc_t desc;
16453		caddr_t cached;
16454		dtrace_buffer_t *buf;
16455
16456		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16457			return (EFAULT);
16458
16459		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16460			return (EINVAL);
16461
16462		mutex_enter(&dtrace_lock);
16463
16464		if (cmd == DTRACEIOC_BUFSNAP) {
16465			buf = &state->dts_buffer[desc.dtbd_cpu];
16466		} else {
16467			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16468		}
16469
16470		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16471			size_t sz = buf->dtb_offset;
16472
16473			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16474				mutex_exit(&dtrace_lock);
16475				return (EBUSY);
16476			}
16477
16478			/*
16479			 * If this buffer has already been consumed, we're
16480			 * going to indicate that there's nothing left here
16481			 * to consume.
16482			 */
16483			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16484				mutex_exit(&dtrace_lock);
16485
16486				desc.dtbd_size = 0;
16487				desc.dtbd_drops = 0;
16488				desc.dtbd_errors = 0;
16489				desc.dtbd_oldest = 0;
16490				sz = sizeof (desc);
16491
16492				if (copyout(&desc, (void *)arg, sz) != 0)
16493					return (EFAULT);
16494
16495				return (0);
16496			}
16497
16498			/*
16499			 * If this is a ring buffer that has wrapped, we want
16500			 * to copy the whole thing out.
16501			 */
16502			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16503				dtrace_buffer_polish(buf);
16504				sz = buf->dtb_size;
16505			}
16506
16507			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16508				mutex_exit(&dtrace_lock);
16509				return (EFAULT);
16510			}
16511
16512			desc.dtbd_size = sz;
16513			desc.dtbd_drops = buf->dtb_drops;
16514			desc.dtbd_errors = buf->dtb_errors;
16515			desc.dtbd_oldest = buf->dtb_xamot_offset;
16516			desc.dtbd_timestamp = dtrace_gethrtime();
16517
16518			mutex_exit(&dtrace_lock);
16519
16520			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16521				return (EFAULT);
16522
16523			buf->dtb_flags |= DTRACEBUF_CONSUMED;
16524
16525			return (0);
16526		}
16527
16528		if (buf->dtb_tomax == NULL) {
16529			ASSERT(buf->dtb_xamot == NULL);
16530			mutex_exit(&dtrace_lock);
16531			return (ENOENT);
16532		}
16533
16534		cached = buf->dtb_tomax;
16535		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16536
16537		dtrace_xcall(desc.dtbd_cpu,
16538		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
16539
16540		state->dts_errors += buf->dtb_xamot_errors;
16541
16542		/*
16543		 * If the buffers did not actually switch, then the cross call
16544		 * did not take place -- presumably because the given CPU is
16545		 * not in the ready set.  If this is the case, we'll return
16546		 * ENOENT.
16547		 */
16548		if (buf->dtb_tomax == cached) {
16549			ASSERT(buf->dtb_xamot != cached);
16550			mutex_exit(&dtrace_lock);
16551			return (ENOENT);
16552		}
16553
16554		ASSERT(cached == buf->dtb_xamot);
16555
16556		/*
16557		 * We have our snapshot; now copy it out.
16558		 */
16559		if (copyout(buf->dtb_xamot, desc.dtbd_data,
16560		    buf->dtb_xamot_offset) != 0) {
16561			mutex_exit(&dtrace_lock);
16562			return (EFAULT);
16563		}
16564
16565		desc.dtbd_size = buf->dtb_xamot_offset;
16566		desc.dtbd_drops = buf->dtb_xamot_drops;
16567		desc.dtbd_errors = buf->dtb_xamot_errors;
16568		desc.dtbd_oldest = 0;
16569		desc.dtbd_timestamp = buf->dtb_switched;
16570
16571		mutex_exit(&dtrace_lock);
16572
16573		/*
16574		 * Finally, copy out the buffer description.
16575		 */
16576		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16577			return (EFAULT);
16578
16579		return (0);
16580	}
16581
16582	case DTRACEIOC_CONF: {
16583		dtrace_conf_t conf;
16584
16585		bzero(&conf, sizeof (conf));
16586		conf.dtc_difversion = DIF_VERSION;
16587		conf.dtc_difintregs = DIF_DIR_NREGS;
16588		conf.dtc_diftupregs = DIF_DTR_NREGS;
16589		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16590
16591		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16592			return (EFAULT);
16593
16594		return (0);
16595	}
16596
16597	case DTRACEIOC_STATUS: {
16598		dtrace_status_t stat;
16599		dtrace_dstate_t *dstate;
16600		int i, j;
16601		uint64_t nerrs;
16602
16603		/*
16604		 * See the comment in dtrace_state_deadman() for the reason
16605		 * for setting dts_laststatus to INT64_MAX before setting
16606		 * it to the correct value.
16607		 */
16608		state->dts_laststatus = INT64_MAX;
16609		dtrace_membar_producer();
16610		state->dts_laststatus = dtrace_gethrtime();
16611
16612		bzero(&stat, sizeof (stat));
16613
16614		mutex_enter(&dtrace_lock);
16615
16616		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16617			mutex_exit(&dtrace_lock);
16618			return (ENOENT);
16619		}
16620
16621		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16622			stat.dtst_exiting = 1;
16623
16624		nerrs = state->dts_errors;
16625		dstate = &state->dts_vstate.dtvs_dynvars;
16626
16627		for (i = 0; i < NCPU; i++) {
16628			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16629
16630			stat.dtst_dyndrops += dcpu->dtdsc_drops;
16631			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16632			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16633
16634			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16635				stat.dtst_filled++;
16636
16637			nerrs += state->dts_buffer[i].dtb_errors;
16638
16639			for (j = 0; j < state->dts_nspeculations; j++) {
16640				dtrace_speculation_t *spec;
16641				dtrace_buffer_t *buf;
16642
16643				spec = &state->dts_speculations[j];
16644				buf = &spec->dtsp_buffer[i];
16645				stat.dtst_specdrops += buf->dtb_xamot_drops;
16646			}
16647		}
16648
16649		stat.dtst_specdrops_busy = state->dts_speculations_busy;
16650		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16651		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16652		stat.dtst_dblerrors = state->dts_dblerrors;
16653		stat.dtst_killed =
16654		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16655		stat.dtst_errors = nerrs;
16656
16657		mutex_exit(&dtrace_lock);
16658
16659		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16660			return (EFAULT);
16661
16662		return (0);
16663	}
16664
16665	case DTRACEIOC_FORMAT: {
16666		dtrace_fmtdesc_t fmt;
16667		char *str;
16668		int len;
16669
16670		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16671			return (EFAULT);
16672
16673		mutex_enter(&dtrace_lock);
16674
16675		if (fmt.dtfd_format == 0 ||
16676		    fmt.dtfd_format > state->dts_nformats) {
16677			mutex_exit(&dtrace_lock);
16678			return (EINVAL);
16679		}
16680
16681		/*
16682		 * Format strings are allocated contiguously and they are
16683		 * never freed; if a format index is less than the number
16684		 * of formats, we can assert that the format map is non-NULL
16685		 * and that the format for the specified index is non-NULL.
16686		 */
16687		ASSERT(state->dts_formats != NULL);
16688		str = state->dts_formats[fmt.dtfd_format - 1];
16689		ASSERT(str != NULL);
16690
16691		len = strlen(str) + 1;
16692
16693		if (len > fmt.dtfd_length) {
16694			fmt.dtfd_length = len;
16695
16696			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16697				mutex_exit(&dtrace_lock);
16698				return (EINVAL);
16699			}
16700		} else {
16701			if (copyout(str, fmt.dtfd_string, len) != 0) {
16702				mutex_exit(&dtrace_lock);
16703				return (EINVAL);
16704			}
16705		}
16706
16707		mutex_exit(&dtrace_lock);
16708		return (0);
16709	}
16710
16711	default:
16712		break;
16713	}
16714
16715	return (ENOTTY);
16716}
16717
16718/*ARGSUSED*/
16719static int
16720dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16721{
16722	dtrace_state_t *state;
16723
16724	switch (cmd) {
16725	case DDI_DETACH:
16726		break;
16727
16728	case DDI_SUSPEND:
16729		return (DDI_SUCCESS);
16730
16731	default:
16732		return (DDI_FAILURE);
16733	}
16734
16735	mutex_enter(&cpu_lock);
16736	mutex_enter(&dtrace_provider_lock);
16737	mutex_enter(&dtrace_lock);
16738
16739	ASSERT(dtrace_opens == 0);
16740
16741	if (dtrace_helpers > 0) {
16742		mutex_exit(&dtrace_provider_lock);
16743		mutex_exit(&dtrace_lock);
16744		mutex_exit(&cpu_lock);
16745		return (DDI_FAILURE);
16746	}
16747
16748	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16749		mutex_exit(&dtrace_provider_lock);
16750		mutex_exit(&dtrace_lock);
16751		mutex_exit(&cpu_lock);
16752		return (DDI_FAILURE);
16753	}
16754
16755	dtrace_provider = NULL;
16756
16757	if ((state = dtrace_anon_grab()) != NULL) {
16758		/*
16759		 * If there were ECBs on this state, the provider should
16760		 * have not been allowed to detach; assert that there is
16761		 * none.
16762		 */
16763		ASSERT(state->dts_necbs == 0);
16764		dtrace_state_destroy(state);
16765
16766		/*
16767		 * If we're being detached with anonymous state, we need to
16768		 * indicate to the kernel debugger that DTrace is now inactive.
16769		 */
16770		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16771	}
16772
16773	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16774	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16775	dtrace_cpu_init = NULL;
16776	dtrace_helpers_cleanup = NULL;
16777	dtrace_helpers_fork = NULL;
16778	dtrace_cpustart_init = NULL;
16779	dtrace_cpustart_fini = NULL;
16780	dtrace_debugger_init = NULL;
16781	dtrace_debugger_fini = NULL;
16782	dtrace_modload = NULL;
16783	dtrace_modunload = NULL;
16784
16785	mutex_exit(&cpu_lock);
16786
16787	if (dtrace_helptrace_enabled) {
16788		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16789		dtrace_helptrace_buffer = NULL;
16790	}
16791
16792	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16793	dtrace_probes = NULL;
16794	dtrace_nprobes = 0;
16795
16796	dtrace_hash_destroy(dtrace_bymod);
16797	dtrace_hash_destroy(dtrace_byfunc);
16798	dtrace_hash_destroy(dtrace_byname);
16799	dtrace_bymod = NULL;
16800	dtrace_byfunc = NULL;
16801	dtrace_byname = NULL;
16802
16803	kmem_cache_destroy(dtrace_state_cache);
16804	vmem_destroy(dtrace_minor);
16805	vmem_destroy(dtrace_arena);
16806
16807	if (dtrace_toxrange != NULL) {
16808		kmem_free(dtrace_toxrange,
16809		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16810		dtrace_toxrange = NULL;
16811		dtrace_toxranges = 0;
16812		dtrace_toxranges_max = 0;
16813	}
16814
16815	ddi_remove_minor_node(dtrace_devi, NULL);
16816	dtrace_devi = NULL;
16817
16818	ddi_soft_state_fini(&dtrace_softstate);
16819
16820	ASSERT(dtrace_vtime_references == 0);
16821	ASSERT(dtrace_opens == 0);
16822	ASSERT(dtrace_retained == NULL);
16823
16824	mutex_exit(&dtrace_lock);
16825	mutex_exit(&dtrace_provider_lock);
16826
16827	/*
16828	 * We don't destroy the task queue until after we have dropped our
16829	 * locks (taskq_destroy() may block on running tasks).  To prevent
16830	 * attempting to do work after we have effectively detached but before
16831	 * the task queue has been destroyed, all tasks dispatched via the
16832	 * task queue must check that DTrace is still attached before
16833	 * performing any operation.
16834	 */
16835	taskq_destroy(dtrace_taskq);
16836	dtrace_taskq = NULL;
16837
16838	return (DDI_SUCCESS);
16839}
16840#endif
16841
16842#if defined(sun)
16843/*ARGSUSED*/
16844static int
16845dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16846{
16847	int error;
16848
16849	switch (infocmd) {
16850	case DDI_INFO_DEVT2DEVINFO:
16851		*result = (void *)dtrace_devi;
16852		error = DDI_SUCCESS;
16853		break;
16854	case DDI_INFO_DEVT2INSTANCE:
16855		*result = (void *)0;
16856		error = DDI_SUCCESS;
16857		break;
16858	default:
16859		error = DDI_FAILURE;
16860	}
16861	return (error);
16862}
16863#endif
16864
16865#if defined(sun)
16866static struct cb_ops dtrace_cb_ops = {
16867	dtrace_open,		/* open */
16868	dtrace_close,		/* close */
16869	nulldev,		/* strategy */
16870	nulldev,		/* print */
16871	nodev,			/* dump */
16872	nodev,			/* read */
16873	nodev,			/* write */
16874	dtrace_ioctl,		/* ioctl */
16875	nodev,			/* devmap */
16876	nodev,			/* mmap */
16877	nodev,			/* segmap */
16878	nochpoll,		/* poll */
16879	ddi_prop_op,		/* cb_prop_op */
16880	0,			/* streamtab  */
16881	D_NEW | D_MP		/* Driver compatibility flag */
16882};
16883
16884static struct dev_ops dtrace_ops = {
16885	DEVO_REV,		/* devo_rev */
16886	0,			/* refcnt */
16887	dtrace_info,		/* get_dev_info */
16888	nulldev,		/* identify */
16889	nulldev,		/* probe */
16890	dtrace_attach,		/* attach */
16891	dtrace_detach,		/* detach */
16892	nodev,			/* reset */
16893	&dtrace_cb_ops,		/* driver operations */
16894	NULL,			/* bus operations */
16895	nodev			/* dev power */
16896};
16897
16898static struct modldrv modldrv = {
16899	&mod_driverops,		/* module type (this is a pseudo driver) */
16900	"Dynamic Tracing",	/* name of module */
16901	&dtrace_ops,		/* driver ops */
16902};
16903
16904static struct modlinkage modlinkage = {
16905	MODREV_1,
16906	(void *)&modldrv,
16907	NULL
16908};
16909
16910int
16911_init(void)
16912{
16913	return (mod_install(&modlinkage));
16914}
16915
16916int
16917_info(struct modinfo *modinfop)
16918{
16919	return (mod_info(&modlinkage, modinfop));
16920}
16921
16922int
16923_fini(void)
16924{
16925	return (mod_remove(&modlinkage));
16926}
16927#else
16928
16929static d_ioctl_t	dtrace_ioctl;
16930static d_ioctl_t	dtrace_ioctl_helper;
16931static void		dtrace_load(void *);
16932static int		dtrace_unload(void);
16933#if __FreeBSD_version < 800039
16934static void		dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
16935static struct clonedevs	*dtrace_clones;		/* Ptr to the array of cloned devices. */
16936static eventhandler_tag	eh_tag;			/* Event handler tag. */
16937#else
16938static struct cdev	*dtrace_dev;
16939static struct cdev	*helper_dev;
16940#endif
16941
16942void dtrace_invop_init(void);
16943void dtrace_invop_uninit(void);
16944
16945static struct cdevsw dtrace_cdevsw = {
16946	.d_version	= D_VERSION,
16947#if __FreeBSD_version < 800039
16948	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
16949	.d_close	= dtrace_close,
16950#endif
16951	.d_ioctl	= dtrace_ioctl,
16952	.d_open		= dtrace_open,
16953	.d_name		= "dtrace",
16954};
16955
16956static struct cdevsw helper_cdevsw = {
16957	.d_version	= D_VERSION,
16958	.d_ioctl	= dtrace_ioctl_helper,
16959	.d_name		= "helper",
16960};
16961
16962#include <dtrace_anon.c>
16963#if __FreeBSD_version < 800039
16964#include <dtrace_clone.c>
16965#endif
16966#include <dtrace_ioctl.c>
16967#include <dtrace_load.c>
16968#include <dtrace_modevent.c>
16969#include <dtrace_sysctl.c>
16970#include <dtrace_unload.c>
16971#include <dtrace_vtime.c>
16972#include <dtrace_hacks.c>
16973#include <dtrace_isa.c>
16974
16975SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
16976SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
16977SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
16978
16979DEV_MODULE(dtrace, dtrace_modevent, NULL);
16980MODULE_VERSION(dtrace, 1);
16981MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
16982MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
16983#endif
16984