at91_machdep.c revision 266386
1/*-
2 * Copyright (c) 1994-1998 Mark Brinicombe.
3 * Copyright (c) 1994 Brini.
4 * All rights reserved.
5 *
6 * This code is derived from software written for Brini by Mark Brinicombe
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *      This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 *    endorse or promote products derived from this software without specific
21 *    prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * machdep.c
38 *
39 * Machine dependant functions for kernel setup
40 *
41 * This file needs a lot of work.
42 *
43 * Created      : 17/09/94
44 */
45
46#include <sys/cdefs.h>
47__FBSDID("$FreeBSD: stable/10/sys/arm/at91/at91_machdep.c 266386 2014-05-18 00:32:35Z ian $");
48
49#define _ARM32_BUS_DMA_PRIVATE
50#include <sys/param.h>
51#include <sys/systm.h>
52#include <sys/sysproto.h>
53#include <sys/signalvar.h>
54#include <sys/imgact.h>
55#include <sys/kernel.h>
56#include <sys/ktr.h>
57#include <sys/linker.h>
58#include <sys/lock.h>
59#include <sys/malloc.h>
60#include <sys/mutex.h>
61#include <sys/pcpu.h>
62#include <sys/proc.h>
63#include <sys/ptrace.h>
64#include <sys/cons.h>
65#include <sys/bio.h>
66#include <sys/bus.h>
67#include <sys/buf.h>
68#include <sys/exec.h>
69#include <sys/kdb.h>
70#include <sys/msgbuf.h>
71#include <machine/physmem.h>
72#include <machine/reg.h>
73#include <machine/cpu.h>
74#include <machine/board.h>
75
76#include <vm/vm.h>
77#include <vm/pmap.h>
78#include <vm/vm_object.h>
79#include <vm/vm_page.h>
80#include <vm/vm_map.h>
81#include <machine/devmap.h>
82#include <machine/vmparam.h>
83#include <machine/pcb.h>
84#include <machine/undefined.h>
85#include <machine/machdep.h>
86#include <machine/metadata.h>
87#include <machine/armreg.h>
88#include <machine/bus.h>
89#include <sys/reboot.h>
90
91#include <arm/at91/at91board.h>
92#include <arm/at91/at91var.h>
93#include <arm/at91/at91soc.h>
94#include <arm/at91/at91_usartreg.h>
95#include <arm/at91/at91rm92reg.h>
96#include <arm/at91/at91sam9g20reg.h>
97#include <arm/at91/at91sam9g45reg.h>
98
99#ifndef MAXCPU
100#define MAXCPU 1
101#endif
102
103/* Page table for mapping proc0 zero page */
104#define KERNEL_PT_SYS		0
105#define KERNEL_PT_KERN		1
106#define KERNEL_PT_KERN_NUM	22
107/* L2 table for mapping after kernel */
108#define KERNEL_PT_AFKERNEL	KERNEL_PT_KERN + KERNEL_PT_KERN_NUM
109#define	KERNEL_PT_AFKERNEL_NUM	5
110
111/* this should be evenly divisable by PAGE_SIZE / L2_TABLE_SIZE_REAL (or 4) */
112#define NUM_KERNEL_PTS		(KERNEL_PT_AFKERNEL + KERNEL_PT_AFKERNEL_NUM)
113
114struct pv_addr kernel_pt_table[NUM_KERNEL_PTS];
115
116/* Static device mappings. */
117const struct arm_devmap_entry at91_devmap[] = {
118	/*
119	 * Map the critical on-board devices. The interrupt vector at
120	 * 0xffff0000 makes it impossible to map them PA == VA, so we map all
121	 * 0xfffxxxxx addresses to 0xdffxxxxx. This covers all critical devices
122	 * on all members of the AT91SAM9 and AT91RM9200 families.
123	 */
124	{
125		0xdff00000,
126		0xfff00000,
127		0x00100000,
128		VM_PROT_READ|VM_PROT_WRITE,
129		PTE_DEVICE,
130	},
131	/* There's a notion that we should do the rest of these lazily. */
132	/*
133	 * We can't just map the OHCI registers VA == PA, because
134	 * AT91xx_xxx_BASE belongs to the userland address space.
135	 * We could just choose a different virtual address, but a better
136	 * solution would probably be to just use pmap_mapdev() to allocate
137	 * KVA, as we don't need the OHCI controller before the vm
138	 * initialization is done. However, the AT91 resource allocation
139	 * system doesn't know how to use pmap_mapdev() yet.
140	 * Care must be taken to ensure PA and VM address do not overlap
141	 * between entries.
142	 */
143	{
144		/*
145		 * Add the ohci controller, and anything else that might be
146		 * on this chip select for a VA/PA mapping.
147		 */
148		/* Internal Memory 1MB  */
149		AT91RM92_OHCI_VA_BASE,
150		AT91RM92_OHCI_BASE,
151		0x00100000,
152		VM_PROT_READ|VM_PROT_WRITE,
153		PTE_DEVICE,
154	},
155	{
156		/* CompactFlash controller. Portion of EBI CS4 1MB */
157		AT91RM92_CF_VA_BASE,
158		AT91RM92_CF_BASE,
159		0x00100000,
160		VM_PROT_READ|VM_PROT_WRITE,
161		PTE_DEVICE,
162	},
163	/*
164	 * The next two should be good for the 9260, 9261 and 9G20 since
165	 * addresses mapping is the same.
166	 */
167	{
168		/* Internal Memory 1MB  */
169		AT91SAM9G20_OHCI_VA_BASE,
170		AT91SAM9G20_OHCI_BASE,
171		0x00100000,
172		VM_PROT_READ|VM_PROT_WRITE,
173		PTE_DEVICE,
174	},
175	{
176		/* EBI CS3 256MB */
177		AT91SAM9G20_NAND_VA_BASE,
178		AT91SAM9G20_NAND_BASE,
179		AT91SAM9G20_NAND_SIZE,
180		VM_PROT_READ|VM_PROT_WRITE,
181		PTE_DEVICE,
182	},
183	/*
184	 * The next should be good for the 9G45.
185	 */
186	{
187		/* Internal Memory 1MB  */
188		AT91SAM9G45_OHCI_VA_BASE,
189		AT91SAM9G45_OHCI_BASE,
190		0x00100000,
191		VM_PROT_READ|VM_PROT_WRITE,
192		PTE_DEVICE,
193	},
194	{ 0, 0, 0, 0, 0, }
195};
196
197/* Physical and virtual addresses for some global pages */
198
199struct pv_addr systempage;
200struct pv_addr msgbufpv;
201struct pv_addr irqstack;
202struct pv_addr undstack;
203struct pv_addr abtstack;
204struct pv_addr kernelstack;
205
206#ifdef LINUX_BOOT_ABI
207extern int membanks;
208extern int memstart[];
209extern int memsize[];
210#endif
211
212long
213at91_ramsize(void)
214{
215	uint32_t cr, mdr, mr, *SDRAMC;
216	int banks, rows, cols, bw;
217#ifdef LINUX_BOOT_ABI
218	/*
219	 * If we found any ATAGs that were for memory, return the first bank.
220	 */
221	if (membanks > 0)
222		return (memsize[0]);
223#endif
224
225	if (at91_is_rm92()) {
226		SDRAMC = (uint32_t *)(AT91_BASE + AT91RM92_SDRAMC_BASE);
227		cr = SDRAMC[AT91RM92_SDRAMC_CR / 4];
228		mr = SDRAMC[AT91RM92_SDRAMC_MR / 4];
229		banks = (cr & AT91RM92_SDRAMC_CR_NB_4) ? 2 : 1;
230		rows = ((cr & AT91RM92_SDRAMC_CR_NR_MASK) >> 2) + 11;
231		cols = (cr & AT91RM92_SDRAMC_CR_NC_MASK) + 8;
232		bw = (mr & AT91RM92_SDRAMC_MR_DBW_16) ? 1 : 2;
233	} else if (at91_cpu_is(AT91_T_SAM9G45)) {
234		SDRAMC = (uint32_t *)(AT91_BASE + AT91SAM9G45_DDRSDRC0_BASE);
235		cr = SDRAMC[AT91SAM9G45_DDRSDRC_CR / 4];
236		mdr = SDRAMC[AT91SAM9G45_DDRSDRC_MDR / 4];
237		banks = 0;
238		rows = ((cr & AT91SAM9G45_DDRSDRC_CR_NR_MASK) >> 2) + 11;
239		cols = (cr & AT91SAM9G45_DDRSDRC_CR_NC_MASK) + 8;
240		bw = (mdr & AT91SAM9G45_DDRSDRC_MDR_DBW_16) ? 1 : 2;
241
242		/* Fix the calculation for DDR memory */
243		mdr &= AT91SAM9G45_DDRSDRC_MDR_MASK;
244		if (mdr & AT91SAM9G45_DDRSDRC_MDR_LPDDR1 ||
245		    mdr & AT91SAM9G45_DDRSDRC_MDR_DDR2) {
246			/* The cols value is 1 higher for DDR */
247			cols += 1;
248			/* DDR has 4 internal banks. */
249			banks = 2;
250		}
251	} else {
252		/*
253		 * This should be good for the 9260, 9261, 9G20, 9G35 and 9X25
254		 * as addresses and registers are the same.
255		 */
256		SDRAMC = (uint32_t *)(AT91_BASE + AT91SAM9G20_SDRAMC_BASE);
257		cr = SDRAMC[AT91SAM9G20_SDRAMC_CR / 4];
258		mr = SDRAMC[AT91SAM9G20_SDRAMC_MR / 4];
259		banks = (cr & AT91SAM9G20_SDRAMC_CR_NB_4) ? 2 : 1;
260		rows = ((cr & AT91SAM9G20_SDRAMC_CR_NR_MASK) >> 2) + 11;
261		cols = (cr & AT91SAM9G20_SDRAMC_CR_NC_MASK) + 8;
262		bw = (cr & AT91SAM9G20_SDRAMC_CR_DBW_16) ? 1 : 2;
263	}
264
265	return (1 << (cols + rows + banks + bw));
266}
267
268static const char *soc_type_name[] = {
269	[AT91_T_CAP9] = "at91cap9",
270	[AT91_T_RM9200] = "at91rm9200",
271	[AT91_T_SAM9260] = "at91sam9260",
272	[AT91_T_SAM9261] = "at91sam9261",
273	[AT91_T_SAM9263] = "at91sam9263",
274	[AT91_T_SAM9G10] = "at91sam9g10",
275	[AT91_T_SAM9G20] = "at91sam9g20",
276	[AT91_T_SAM9G45] = "at91sam9g45",
277	[AT91_T_SAM9N12] = "at91sam9n12",
278	[AT91_T_SAM9RL] = "at91sam9rl",
279	[AT91_T_SAM9X5] = "at91sam9x5",
280	[AT91_T_NONE] = "UNKNOWN"
281};
282
283static const char *soc_subtype_name[] = {
284	[AT91_ST_NONE] = "UNKNOWN",
285	[AT91_ST_RM9200_BGA] = "at91rm9200_bga",
286	[AT91_ST_RM9200_PQFP] = "at91rm9200_pqfp",
287	[AT91_ST_SAM9XE] = "at91sam9xe",
288	[AT91_ST_SAM9G45] = "at91sam9g45",
289	[AT91_ST_SAM9M10] = "at91sam9m10",
290	[AT91_ST_SAM9G46] = "at91sam9g46",
291	[AT91_ST_SAM9M11] = "at91sam9m11",
292	[AT91_ST_SAM9G15] = "at91sam9g15",
293	[AT91_ST_SAM9G25] = "at91sam9g25",
294	[AT91_ST_SAM9G35] = "at91sam9g35",
295	[AT91_ST_SAM9X25] = "at91sam9x25",
296	[AT91_ST_SAM9X35] = "at91sam9x35",
297};
298
299struct at91_soc_info soc_info;
300
301/*
302 * Read the SoC ID from the CIDR register and try to match it against the
303 * values we know.  If we find a good one, we return true.  If not, we
304 * return false.  When we find a good one, we also find the subtype
305 * and CPU family.
306 */
307static int
308at91_try_id(uint32_t dbgu_base)
309{
310	uint32_t socid;
311
312	soc_info.cidr = *(volatile uint32_t *)(AT91_BASE + dbgu_base +
313	    DBGU_C1R);
314	socid = soc_info.cidr & ~AT91_CPU_VERSION_MASK;
315
316	soc_info.type = AT91_T_NONE;
317	soc_info.subtype = AT91_ST_NONE;
318	soc_info.family = (soc_info.cidr & AT91_CPU_FAMILY_MASK) >> 20;
319	soc_info.exid = *(volatile uint32_t *)(AT91_BASE + dbgu_base +
320	    DBGU_C2R);
321
322	switch (socid) {
323	case AT91_CPU_CAP9:
324		soc_info.type = AT91_T_CAP9;
325		break;
326	case AT91_CPU_RM9200:
327		soc_info.type = AT91_T_RM9200;
328		break;
329	case AT91_CPU_SAM9XE128:
330	case AT91_CPU_SAM9XE256:
331	case AT91_CPU_SAM9XE512:
332	case AT91_CPU_SAM9260:
333		soc_info.type = AT91_T_SAM9260;
334		if (soc_info.family == AT91_FAMILY_SAM9XE)
335			soc_info.subtype = AT91_ST_SAM9XE;
336		break;
337	case AT91_CPU_SAM9261:
338		soc_info.type = AT91_T_SAM9261;
339		break;
340	case AT91_CPU_SAM9263:
341		soc_info.type = AT91_T_SAM9263;
342		break;
343	case AT91_CPU_SAM9G10:
344		soc_info.type = AT91_T_SAM9G10;
345		break;
346	case AT91_CPU_SAM9G20:
347		soc_info.type = AT91_T_SAM9G20;
348		break;
349	case AT91_CPU_SAM9G45:
350		soc_info.type = AT91_T_SAM9G45;
351		break;
352	case AT91_CPU_SAM9N12:
353		soc_info.type = AT91_T_SAM9N12;
354		break;
355	case AT91_CPU_SAM9RL64:
356		soc_info.type = AT91_T_SAM9RL;
357		break;
358	case AT91_CPU_SAM9X5:
359		soc_info.type = AT91_T_SAM9X5;
360		break;
361	default:
362		return (0);
363	}
364
365	switch (soc_info.type) {
366	case AT91_T_SAM9G45:
367		switch (soc_info.exid) {
368		case AT91_EXID_SAM9G45:
369			soc_info.subtype = AT91_ST_SAM9G45;
370			break;
371		case AT91_EXID_SAM9G46:
372			soc_info.subtype = AT91_ST_SAM9G46;
373			break;
374		case AT91_EXID_SAM9M10:
375			soc_info.subtype = AT91_ST_SAM9M10;
376			break;
377		case AT91_EXID_SAM9M11:
378			soc_info.subtype = AT91_ST_SAM9M11;
379			break;
380		}
381		break;
382	case AT91_T_SAM9X5:
383		switch (soc_info.exid) {
384		case AT91_EXID_SAM9G15:
385			soc_info.subtype = AT91_ST_SAM9G15;
386			break;
387		case AT91_EXID_SAM9G25:
388			soc_info.subtype = AT91_ST_SAM9G25;
389			break;
390		case AT91_EXID_SAM9G35:
391			soc_info.subtype = AT91_ST_SAM9G35;
392			break;
393		case AT91_EXID_SAM9X25:
394			soc_info.subtype = AT91_ST_SAM9X25;
395			break;
396		case AT91_EXID_SAM9X35:
397			soc_info.subtype = AT91_ST_SAM9X35;
398			break;
399		}
400		break;
401	default:
402		break;
403	}
404	/*
405	 * Disable interrupts in the DBGU unit...
406	 */
407	*(volatile uint32_t *)(AT91_BASE + dbgu_base + USART_IDR) = 0xffffffff;
408
409	/*
410	 * Save the name for later...
411	 */
412	snprintf(soc_info.name, sizeof(soc_info.name), "%s%s%s",
413	    soc_type_name[soc_info.type],
414	    soc_info.subtype == AT91_ST_NONE ? "" : " subtype ",
415	    soc_info.subtype == AT91_ST_NONE ? "" :
416	    soc_subtype_name[soc_info.subtype]);
417
418        /*
419         * try to get the matching CPU support.
420         */
421        soc_info.soc_data = at91_match_soc(soc_info.type, soc_info.subtype);
422        soc_info.dbgu_base = AT91_BASE + dbgu_base;
423
424	return (1);
425}
426
427static void
428at91_soc_id(void)
429{
430
431	if (!at91_try_id(AT91_DBGU0))
432		at91_try_id(AT91_DBGU1);
433}
434
435#ifdef ARM_MANY_BOARD
436/* likely belongs in arm/arm/machdep.c, but since board_init is still at91 only... */
437SET_DECLARE(arm_board_set, const struct arm_board);
438
439/* Not yet fully functional, but enough to build ATMEL config */
440static long
441board_init(void)
442{
443	return -1;
444}
445#endif
446
447void *
448initarm(struct arm_boot_params *abp)
449{
450	struct pv_addr  kernel_l1pt;
451	struct pv_addr  dpcpu;
452	int i;
453	u_int l1pagetable;
454	vm_offset_t freemempos;
455	vm_offset_t afterkern;
456	uint32_t memsize;
457	vm_offset_t lastaddr;
458
459	lastaddr = parse_boot_param(abp);
460	arm_physmem_kernaddr = abp->abp_physaddr;
461	set_cpufuncs();
462	pcpu0_init();
463
464	/* Do basic tuning, hz etc */
465	init_param1();
466
467	freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
468	/* Define a macro to simplify memory allocation */
469#define valloc_pages(var, np)						\
470	alloc_pages((var).pv_va, (np));					\
471	(var).pv_pa = (var).pv_va + (abp->abp_physaddr - KERNVIRTADDR);
472
473#define alloc_pages(var, np)						\
474	(var) = freemempos;						\
475	freemempos += (np * PAGE_SIZE);					\
476	memset((char *)(var), 0, ((np) * PAGE_SIZE));
477
478	while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
479		freemempos += PAGE_SIZE;
480	valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
481	for (i = 0; i < NUM_KERNEL_PTS; ++i) {
482		if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
483			valloc_pages(kernel_pt_table[i],
484			    L2_TABLE_SIZE / PAGE_SIZE);
485		} else {
486			kernel_pt_table[i].pv_va = freemempos -
487			    (i % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
488			    L2_TABLE_SIZE_REAL;
489			kernel_pt_table[i].pv_pa =
490			    kernel_pt_table[i].pv_va - KERNVIRTADDR +
491			    abp->abp_physaddr;
492		}
493	}
494	/*
495	 * Allocate a page for the system page mapped to 0x00000000
496	 * or 0xffff0000. This page will just contain the system vectors
497	 * and can be shared by all processes.
498	 */
499	valloc_pages(systempage, 1);
500
501	/* Allocate dynamic per-cpu area. */
502	valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
503	dpcpu_init((void *)dpcpu.pv_va, 0);
504
505	/* Allocate stacks for all modes */
506	valloc_pages(irqstack, IRQ_STACK_SIZE * MAXCPU);
507	valloc_pages(abtstack, ABT_STACK_SIZE * MAXCPU);
508	valloc_pages(undstack, UND_STACK_SIZE * MAXCPU);
509	valloc_pages(kernelstack, KSTACK_PAGES * MAXCPU);
510	valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
511
512	/*
513	 * Now we start construction of the L1 page table
514	 * We start by mapping the L2 page tables into the L1.
515	 * This means that we can replace L1 mappings later on if necessary
516	 */
517	l1pagetable = kernel_l1pt.pv_va;
518
519	/* Map the L2 pages tables in the L1 page table */
520	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
521	    &kernel_pt_table[KERNEL_PT_SYS]);
522	for (i = 0; i < KERNEL_PT_KERN_NUM; i++)
523		pmap_link_l2pt(l1pagetable, KERNBASE + i * L1_S_SIZE,
524		    &kernel_pt_table[KERNEL_PT_KERN + i]);
525	pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR,
526	   (((uint32_t)lastaddr - KERNBASE) + PAGE_SIZE) & ~(PAGE_SIZE - 1),
527	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
528	afterkern = round_page((lastaddr + L1_S_SIZE) & ~(L1_S_SIZE - 1));
529	for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) {
530		pmap_link_l2pt(l1pagetable, afterkern + i * L1_S_SIZE,
531		    &kernel_pt_table[KERNEL_PT_AFKERNEL + i]);
532	}
533
534	/* Map the vector page. */
535	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
536	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
537
538	/* Map the DPCPU pages */
539	pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa, DPCPU_SIZE,
540	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
541
542	/* Map the stack pages */
543	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
544	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
545	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
546	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
547	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
548	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
549	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
550	    KSTACK_PAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
551
552	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
553	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
554	pmap_map_chunk(l1pagetable, msgbufpv.pv_va, msgbufpv.pv_pa,
555	    msgbufsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
556
557	for (i = 0; i < NUM_KERNEL_PTS; ++i) {
558		pmap_map_chunk(l1pagetable, kernel_pt_table[i].pv_va,
559		    kernel_pt_table[i].pv_pa, L2_TABLE_SIZE,
560		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
561	}
562
563	arm_devmap_bootstrap(l1pagetable, at91_devmap);
564	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) | DOMAIN_CLIENT);
565	setttb(kernel_l1pt.pv_pa);
566	cpu_tlb_flushID();
567	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2));
568
569	at91_soc_id();
570
571	/*
572	 * Initialize all the clocks, so that the console can work.  We can only
573	 * do this if at91_soc_id() was able to fill in the support data.  Even
574	 * if we can't init the clocks, still try to do a console init so we can
575	 * try to print the error message about missing soc support.  There's a
576	 * chance the printf will work if the bootloader set up the DBGU.
577	 */
578	if (soc_info.soc_data != NULL) {
579		soc_info.soc_data->soc_clock_init();
580		at91_pmc_init_clock();
581	}
582
583	cninit();
584
585	if (soc_info.soc_data == NULL)
586		printf("Warning: No soc support for %s found.\n", soc_info.name);
587
588	memsize = board_init();
589	if (memsize == -1) {
590		printf("board_init() failed, cannot determine ram size; "
591		    "assuming 16MB\n");
592		memsize = 16 * 1024 * 1024;
593	}
594
595	/*
596	 * Pages were allocated during the secondary bootstrap for the
597	 * stacks for different CPU modes.
598	 * We must now set the r13 registers in the different CPU modes to
599	 * point to these stacks.
600	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
601	 * of the stack memory.
602	 */
603	cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
604	cpu_setup("");
605
606	set_stackptrs(0);
607
608	/*
609	 * We must now clean the cache again....
610	 * Cleaning may be done by reading new data to displace any
611	 * dirty data in the cache. This will have happened in setttb()
612	 * but since we are boot strapping the addresses used for the read
613	 * may have just been remapped and thus the cache could be out
614	 * of sync. A re-clean after the switch will cure this.
615	 * After booting there are no gross relocations of the kernel thus
616	 * this problem will not occur after initarm().
617	 */
618	cpu_idcache_wbinv_all();
619
620	undefined_init();
621
622	init_proc0(kernelstack.pv_va);
623
624	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
625
626	pmap_curmaxkvaddr = afterkern + L1_S_SIZE * (KERNEL_PT_KERN_NUM - 1);
627	/* Always use the 256MB of KVA we have available between the kernel and devices */
628	vm_max_kernel_address = KERNVIRTADDR + (256 << 20);
629	pmap_bootstrap(freemempos, &kernel_l1pt);
630	msgbufp = (void*)msgbufpv.pv_va;
631	msgbufinit(msgbufp, msgbufsize);
632	mutex_init();
633
634	/*
635	 * Add the physical ram we have available.
636	 *
637	 * Exclude the kernel, and all the things we allocated which immediately
638	 * follow the kernel, from the VM allocation pool but not from crash
639	 * dumps.  virtual_avail is a global variable which tracks the kva we've
640	 * "allocated" while setting up pmaps.
641	 *
642	 * Prepare the list of physical memory available to the vm subsystem.
643	 */
644	arm_physmem_hardware_region(PHYSADDR, memsize);
645	arm_physmem_exclude_region(abp->abp_physaddr,
646	    virtual_avail - KERNVIRTADDR, EXFLAG_NOALLOC);
647	arm_physmem_init_kernel_globals();
648
649	init_param2(physmem);
650	kdb_init();
651	return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
652	    sizeof(struct pcb)));
653}
654
655/*
656 * These functions are handled elsewhere, so make them nops here.
657 */
658void
659cpu_startprofclock(void)
660{
661
662}
663
664void
665cpu_stopprofclock(void)
666{
667
668}
669
670void
671cpu_initclocks(void)
672{
673
674}
675
676void
677DELAY(int n)
678{
679
680	if (soc_info.soc_data)
681		soc_info.soc_data->soc_delay(n);
682}
683
684void
685cpu_reset(void)
686{
687
688	if (soc_info.soc_data)
689		soc_info.soc_data->soc_reset();
690	while (1)
691		continue;
692}
693