pmap.c revision 283931
1/* From: $NetBSD: pmap.c,v 1.148 2004/04/03 04:35:48 bsh Exp $ */
2/*-
3 * Copyright 2004 Olivier Houchard.
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *      This product includes software developed for the NetBSD Project by
20 *      Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 *    or promote products derived from this software without specific prior
23 *    written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38/*-
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 *    endorse or promote products derived from this software without specific
51 *    prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65/*-
66 * Copyright (c) 1999 The NetBSD Foundation, Inc.
67 * All rights reserved.
68 *
69 * This code is derived from software contributed to The NetBSD Foundation
70 * by Charles M. Hannum.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 *    notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 *    notice, this list of conditions and the following disclaimer in the
79 *    documentation and/or other materials provided with the distribution.
80 *
81 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
82 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
83 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
84 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
85 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
86 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
87 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
88 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
89 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
90 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
91 * POSSIBILITY OF SUCH DAMAGE.
92 */
93
94/*-
95 * Copyright (c) 1994-1998 Mark Brinicombe.
96 * Copyright (c) 1994 Brini.
97 * All rights reserved.
98 *
99 * This code is derived from software written for Brini by Mark Brinicombe
100 *
101 * Redistribution and use in source and binary forms, with or without
102 * modification, are permitted provided that the following conditions
103 * are met:
104 * 1. Redistributions of source code must retain the above copyright
105 *    notice, this list of conditions and the following disclaimer.
106 * 2. Redistributions in binary form must reproduce the above copyright
107 *    notice, this list of conditions and the following disclaimer in the
108 *    documentation and/or other materials provided with the distribution.
109 * 3. All advertising materials mentioning features or use of this software
110 *    must display the following acknowledgement:
111 *      This product includes software developed by Mark Brinicombe.
112 * 4. The name of the author may not be used to endorse or promote products
113 *    derived from this software without specific prior written permission.
114 *
115 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
116 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
117 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
118 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
119 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
120 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
121 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
122 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
123 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
124 *
125 * RiscBSD kernel project
126 *
127 * pmap.c
128 *
129 * Machine dependant vm stuff
130 *
131 * Created      : 20/09/94
132 */
133
134/*
135 * Special compilation symbols
136 * PMAP_DEBUG           - Build in pmap_debug_level code
137 *
138 * Note that pmap_mapdev() and pmap_unmapdev() are implemented in arm/devmap.c
139 */
140/* Include header files */
141
142#include "opt_vm.h"
143
144#include <sys/cdefs.h>
145__FBSDID("$FreeBSD: stable/10/sys/arm/arm/pmap.c 283931 2015-06-02 21:36:45Z imp $");
146#include <sys/param.h>
147#include <sys/systm.h>
148#include <sys/kernel.h>
149#include <sys/ktr.h>
150#include <sys/lock.h>
151#include <sys/proc.h>
152#include <sys/malloc.h>
153#include <sys/msgbuf.h>
154#include <sys/mutex.h>
155#include <sys/vmmeter.h>
156#include <sys/mman.h>
157#include <sys/rwlock.h>
158#include <sys/smp.h>
159#include <sys/sched.h>
160
161#include <vm/vm.h>
162#include <vm/vm_param.h>
163#include <vm/uma.h>
164#include <vm/pmap.h>
165#include <vm/vm_kern.h>
166#include <vm/vm_object.h>
167#include <vm/vm_map.h>
168#include <vm/vm_page.h>
169#include <vm/vm_pageout.h>
170#include <vm/vm_phys.h>
171#include <vm/vm_extern.h>
172
173#include <machine/md_var.h>
174#include <machine/cpu.h>
175#include <machine/cpufunc.h>
176#include <machine/pcb.h>
177
178#ifdef PMAP_DEBUG
179#define PDEBUG(_lev_,_stat_) \
180        if (pmap_debug_level >= (_lev_)) \
181                ((_stat_))
182#define dprintf printf
183
184int pmap_debug_level = 0;
185#define PMAP_INLINE
186#else   /* PMAP_DEBUG */
187#define PDEBUG(_lev_,_stat_) /* Nothing */
188#define dprintf(x, arg...)
189#define PMAP_INLINE __inline
190#endif  /* PMAP_DEBUG */
191
192extern struct pv_addr systempage;
193
194extern int last_fault_code;
195
196/*
197 * Internal function prototypes
198 */
199static void pmap_free_pv_entry (pv_entry_t);
200static pv_entry_t pmap_get_pv_entry(void);
201
202static int		pmap_enter_locked(pmap_t, vm_offset_t, vm_page_t,
203    vm_prot_t, u_int);
204static vm_paddr_t	pmap_extract_locked(pmap_t pmap, vm_offset_t va);
205static void		pmap_fix_cache(struct vm_page *, pmap_t, vm_offset_t);
206static void		pmap_alloc_l1(pmap_t);
207static void		pmap_free_l1(pmap_t);
208
209static int		pmap_clearbit(struct vm_page *, u_int);
210
211static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vm_offset_t);
212static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vm_offset_t);
213static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
214static vm_offset_t	kernel_pt_lookup(vm_paddr_t);
215
216static MALLOC_DEFINE(M_VMPMAP, "pmap", "PMAP L1");
217
218vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
219vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
220vm_offset_t pmap_curmaxkvaddr;
221vm_paddr_t kernel_l1pa;
222
223vm_offset_t kernel_vm_end = 0;
224
225vm_offset_t vm_max_kernel_address;
226
227struct pmap kernel_pmap_store;
228
229static pt_entry_t *csrc_pte, *cdst_pte;
230static vm_offset_t csrcp, cdstp;
231static struct mtx cmtx;
232
233static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
234/*
235 * These routines are called when the CPU type is identified to set up
236 * the PTE prototypes, cache modes, etc.
237 *
238 * The variables are always here, just in case LKMs need to reference
239 * them (though, they shouldn't).
240 */
241
242pt_entry_t	pte_l1_s_cache_mode;
243pt_entry_t	pte_l1_s_cache_mode_pt;
244pt_entry_t	pte_l1_s_cache_mask;
245
246pt_entry_t	pte_l2_l_cache_mode;
247pt_entry_t	pte_l2_l_cache_mode_pt;
248pt_entry_t	pte_l2_l_cache_mask;
249
250pt_entry_t	pte_l2_s_cache_mode;
251pt_entry_t	pte_l2_s_cache_mode_pt;
252pt_entry_t	pte_l2_s_cache_mask;
253
254pt_entry_t	pte_l2_s_prot_u;
255pt_entry_t	pte_l2_s_prot_w;
256pt_entry_t	pte_l2_s_prot_mask;
257
258pt_entry_t	pte_l1_s_proto;
259pt_entry_t	pte_l1_c_proto;
260pt_entry_t	pte_l2_s_proto;
261
262void		(*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
263void		(*pmap_copy_page_offs_func)(vm_paddr_t a_phys,
264		    vm_offset_t a_offs, vm_paddr_t b_phys, vm_offset_t b_offs,
265		    int cnt);
266void		(*pmap_zero_page_func)(vm_paddr_t, int, int);
267
268struct msgbuf *msgbufp = 0;
269
270/*
271 * Crashdump maps.
272 */
273static caddr_t crashdumpmap;
274
275extern void bcopy_page(vm_offset_t, vm_offset_t);
276extern void bzero_page(vm_offset_t);
277
278extern vm_offset_t alloc_firstaddr;
279
280char *_tmppt;
281
282/*
283 * Metadata for L1 translation tables.
284 */
285struct l1_ttable {
286	/* Entry on the L1 Table list */
287	SLIST_ENTRY(l1_ttable) l1_link;
288
289	/* Entry on the L1 Least Recently Used list */
290	TAILQ_ENTRY(l1_ttable) l1_lru;
291
292	/* Track how many domains are allocated from this L1 */
293	volatile u_int l1_domain_use_count;
294
295	/*
296	 * A free-list of domain numbers for this L1.
297	 * We avoid using ffs() and a bitmap to track domains since ffs()
298	 * is slow on ARM.
299	 */
300	u_int8_t l1_domain_first;
301	u_int8_t l1_domain_free[PMAP_DOMAINS];
302
303	/* Physical address of this L1 page table */
304	vm_paddr_t l1_physaddr;
305
306	/* KVA of this L1 page table */
307	pd_entry_t *l1_kva;
308};
309
310/*
311 * Convert a virtual address into its L1 table index. That is, the
312 * index used to locate the L2 descriptor table pointer in an L1 table.
313 * This is basically used to index l1->l1_kva[].
314 *
315 * Each L2 descriptor table represents 1MB of VA space.
316 */
317#define	L1_IDX(va)		(((vm_offset_t)(va)) >> L1_S_SHIFT)
318
319/*
320 * L1 Page Tables are tracked using a Least Recently Used list.
321 *  - New L1s are allocated from the HEAD.
322 *  - Freed L1s are added to the TAIl.
323 *  - Recently accessed L1s (where an 'access' is some change to one of
324 *    the userland pmaps which owns this L1) are moved to the TAIL.
325 */
326static TAILQ_HEAD(, l1_ttable) l1_lru_list;
327/*
328 * A list of all L1 tables
329 */
330static SLIST_HEAD(, l1_ttable) l1_list;
331static struct mtx l1_lru_lock;
332
333/*
334 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
335 *
336 * This is normally 16MB worth L2 page descriptors for any given pmap.
337 * Reference counts are maintained for L2 descriptors so they can be
338 * freed when empty.
339 */
340struct l2_dtable {
341	/* The number of L2 page descriptors allocated to this l2_dtable */
342	u_int l2_occupancy;
343
344	/* List of L2 page descriptors */
345	struct l2_bucket {
346		pt_entry_t *l2b_kva;	/* KVA of L2 Descriptor Table */
347		vm_paddr_t l2b_phys;	/* Physical address of same */
348		u_short l2b_l1idx;	/* This L2 table's L1 index */
349		u_short l2b_occupancy;	/* How many active descriptors */
350	} l2_bucket[L2_BUCKET_SIZE];
351};
352
353/* pmap_kenter_internal flags */
354#define KENTER_CACHE	0x1
355#define KENTER_USER	0x2
356
357/*
358 * Given an L1 table index, calculate the corresponding l2_dtable index
359 * and bucket index within the l2_dtable.
360 */
361#define	L2_IDX(l1idx)		(((l1idx) >> L2_BUCKET_LOG2) & \
362				 (L2_SIZE - 1))
363#define	L2_BUCKET(l1idx)	((l1idx) & (L2_BUCKET_SIZE - 1))
364
365/*
366 * Given a virtual address, this macro returns the
367 * virtual address required to drop into the next L2 bucket.
368 */
369#define	L2_NEXT_BUCKET(va)	(((va) & L1_S_FRAME) + L1_S_SIZE)
370
371/*
372 * We try to map the page tables write-through, if possible.  However, not
373 * all CPUs have a write-through cache mode, so on those we have to sync
374 * the cache when we frob page tables.
375 *
376 * We try to evaluate this at compile time, if possible.  However, it's
377 * not always possible to do that, hence this run-time var.
378 */
379int	pmap_needs_pte_sync;
380
381/*
382 * Macro to determine if a mapping might be resident in the
383 * instruction cache and/or TLB
384 */
385#define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
386
387/*
388 * Macro to determine if a mapping might be resident in the
389 * data cache and/or TLB
390 */
391#define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
392
393#ifndef PMAP_SHPGPERPROC
394#define PMAP_SHPGPERPROC 200
395#endif
396
397#define pmap_is_current(pm)	((pm) == pmap_kernel() || \
398            curproc->p_vmspace->vm_map.pmap == (pm))
399static uma_zone_t pvzone = NULL;
400uma_zone_t l2zone;
401static uma_zone_t l2table_zone;
402static vm_offset_t pmap_kernel_l2dtable_kva;
403static vm_offset_t pmap_kernel_l2ptp_kva;
404static vm_paddr_t pmap_kernel_l2ptp_phys;
405static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
406static struct rwlock pvh_global_lock;
407
408void pmap_copy_page_offs_generic(vm_paddr_t a_phys, vm_offset_t a_offs,
409    vm_paddr_t b_phys, vm_offset_t b_offs, int cnt);
410#if ARM_MMU_XSCALE == 1
411void pmap_copy_page_offs_xscale(vm_paddr_t a_phys, vm_offset_t a_offs,
412    vm_paddr_t b_phys, vm_offset_t b_offs, int cnt);
413#endif
414
415/*
416 * This list exists for the benefit of pmap_map_chunk().  It keeps track
417 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
418 * find them as necessary.
419 *
420 * Note that the data on this list MUST remain valid after initarm() returns,
421 * as pmap_bootstrap() uses it to contruct L2 table metadata.
422 */
423SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
424
425static void
426pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
427{
428	int i;
429
430	l1->l1_kva = l1pt;
431	l1->l1_domain_use_count = 0;
432	l1->l1_domain_first = 0;
433
434	for (i = 0; i < PMAP_DOMAINS; i++)
435		l1->l1_domain_free[i] = i + 1;
436
437	/*
438	 * Copy the kernel's L1 entries to each new L1.
439	 */
440	if (l1pt != pmap_kernel()->pm_l1->l1_kva)
441		memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
442
443	if ((l1->l1_physaddr = pmap_extract(pmap_kernel(), (vm_offset_t)l1pt)) == 0)
444		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
445	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
446	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
447}
448
449static vm_offset_t
450kernel_pt_lookup(vm_paddr_t pa)
451{
452	struct pv_addr *pv;
453
454	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
455		if (pv->pv_pa == pa)
456			return (pv->pv_va);
457	}
458	return (0);
459}
460
461#if ARM_MMU_GENERIC != 0
462void
463pmap_pte_init_generic(void)
464{
465
466	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
467	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
468
469	pte_l2_l_cache_mode = L2_B|L2_C;
470	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
471
472	pte_l2_s_cache_mode = L2_B|L2_C;
473	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
474
475	/*
476	 * If we have a write-through cache, set B and C.  If
477	 * we have a write-back cache, then we assume setting
478	 * only C will make those pages write-through.
479	 */
480	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
481		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
482		pte_l2_l_cache_mode_pt = L2_B|L2_C;
483		pte_l2_s_cache_mode_pt = L2_B|L2_C;
484	} else {
485		pte_l1_s_cache_mode_pt = L1_S_C;
486		pte_l2_l_cache_mode_pt = L2_C;
487		pte_l2_s_cache_mode_pt = L2_C;
488	}
489
490	pte_l2_s_prot_u = L2_S_PROT_U_generic;
491	pte_l2_s_prot_w = L2_S_PROT_W_generic;
492	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
493
494	pte_l1_s_proto = L1_S_PROTO_generic;
495	pte_l1_c_proto = L1_C_PROTO_generic;
496	pte_l2_s_proto = L2_S_PROTO_generic;
497
498	pmap_copy_page_func = pmap_copy_page_generic;
499	pmap_copy_page_offs_func = pmap_copy_page_offs_generic;
500	pmap_zero_page_func = pmap_zero_page_generic;
501}
502
503#if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
504void
505pmap_pte_init_arm9(void)
506{
507
508	/*
509	 * ARM9 is compatible with generic, but we want to use
510	 * write-through caching for now.
511	 */
512	pmap_pte_init_generic();
513
514	pte_l1_s_cache_mode = L1_S_C;
515	pte_l2_l_cache_mode = L2_C;
516	pte_l2_s_cache_mode = L2_C;
517
518	pte_l1_s_cache_mode_pt = L1_S_C;
519	pte_l2_l_cache_mode_pt = L2_C;
520	pte_l2_s_cache_mode_pt = L2_C;
521}
522#endif /* CPU_ARM9 */
523#endif /* ARM_MMU_GENERIC != 0 */
524
525#if defined(CPU_ARM10)
526void
527pmap_pte_init_arm10(void)
528{
529
530	/*
531	 * ARM10 is compatible with generic, but we want to use
532	 * write-through caching for now.
533	 */
534	pmap_pte_init_generic();
535
536	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
537	pte_l2_l_cache_mode = L2_B | L2_C;
538	pte_l2_s_cache_mode = L2_B | L2_C;
539
540	pte_l1_s_cache_mode_pt = L1_S_C;
541	pte_l2_l_cache_mode_pt = L2_C;
542	pte_l2_s_cache_mode_pt = L2_C;
543
544}
545#endif /* CPU_ARM10 */
546
547#if ARM_MMU_XSCALE == 1
548#if (ARM_NMMUS > 1) || defined (CPU_XSCALE_CORE3)
549static u_int xscale_use_minidata;
550#endif
551
552void
553pmap_pte_init_xscale(void)
554{
555	uint32_t auxctl;
556	int write_through = 0;
557
558	pte_l1_s_cache_mode = L1_S_B|L1_S_C|L1_S_XSCALE_P;
559	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
560
561	pte_l2_l_cache_mode = L2_B|L2_C;
562	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
563
564	pte_l2_s_cache_mode = L2_B|L2_C;
565	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
566
567	pte_l1_s_cache_mode_pt = L1_S_C;
568	pte_l2_l_cache_mode_pt = L2_C;
569	pte_l2_s_cache_mode_pt = L2_C;
570#ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
571	/*
572	 * The XScale core has an enhanced mode where writes that
573	 * miss the cache cause a cache line to be allocated.  This
574	 * is significantly faster than the traditional, write-through
575	 * behavior of this case.
576	 */
577	pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
578	pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
579	pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
580#endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
581#ifdef XSCALE_CACHE_WRITE_THROUGH
582	/*
583	 * Some versions of the XScale core have various bugs in
584	 * their cache units, the work-around for which is to run
585	 * the cache in write-through mode.  Unfortunately, this
586	 * has a major (negative) impact on performance.  So, we
587	 * go ahead and run fast-and-loose, in the hopes that we
588	 * don't line up the planets in a way that will trip the
589	 * bugs.
590	 *
591	 * However, we give you the option to be slow-but-correct.
592	 */
593	write_through = 1;
594#elif defined(XSCALE_CACHE_WRITE_BACK)
595	/* force write back cache mode */
596	write_through = 0;
597#elif defined(CPU_XSCALE_PXA2X0)
598	/*
599	 * Intel PXA2[15]0 processors are known to have a bug in
600	 * write-back cache on revision 4 and earlier (stepping
601	 * A[01] and B[012]).  Fixed for C0 and later.
602	 */
603	{
604		uint32_t id, type;
605
606		id = cpufunc_id();
607		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
608
609		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
610			if ((id & CPU_ID_REVISION_MASK) < 5) {
611				/* write through for stepping A0-1 and B0-2 */
612				write_through = 1;
613			}
614		}
615	}
616#endif /* XSCALE_CACHE_WRITE_THROUGH */
617
618	if (write_through) {
619		pte_l1_s_cache_mode = L1_S_C;
620		pte_l2_l_cache_mode = L2_C;
621		pte_l2_s_cache_mode = L2_C;
622	}
623
624#if (ARM_NMMUS > 1)
625	xscale_use_minidata = 1;
626#endif
627
628	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
629	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
630	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
631
632	pte_l1_s_proto = L1_S_PROTO_xscale;
633	pte_l1_c_proto = L1_C_PROTO_xscale;
634	pte_l2_s_proto = L2_S_PROTO_xscale;
635
636#ifdef CPU_XSCALE_CORE3
637	pmap_copy_page_func = pmap_copy_page_generic;
638	pmap_copy_page_offs_func = pmap_copy_page_offs_generic;
639	pmap_zero_page_func = pmap_zero_page_generic;
640	xscale_use_minidata = 0;
641	/* Make sure it is L2-cachable */
642    	pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_T);
643	pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode &~ L1_S_XSCALE_P;
644	pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_T) ;
645	pte_l2_l_cache_mode_pt = pte_l1_s_cache_mode;
646	pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_T);
647	pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
648
649#else
650	pmap_copy_page_func = pmap_copy_page_xscale;
651	pmap_copy_page_offs_func = pmap_copy_page_offs_xscale;
652	pmap_zero_page_func = pmap_zero_page_xscale;
653#endif
654
655	/*
656	 * Disable ECC protection of page table access, for now.
657	 */
658	__asm __volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
659	auxctl &= ~XSCALE_AUXCTL_P;
660	__asm __volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
661}
662
663/*
664 * xscale_setup_minidata:
665 *
666 *	Set up the mini-data cache clean area.  We require the
667 *	caller to allocate the right amount of physically and
668 *	virtually contiguous space.
669 */
670extern vm_offset_t xscale_minidata_clean_addr;
671extern vm_size_t xscale_minidata_clean_size; /* already initialized */
672void
673xscale_setup_minidata(vm_offset_t l1pt, vm_offset_t va, vm_paddr_t pa)
674{
675	pd_entry_t *pde = (pd_entry_t *) l1pt;
676	pt_entry_t *pte;
677	vm_size_t size;
678	uint32_t auxctl;
679
680	xscale_minidata_clean_addr = va;
681
682	/* Round it to page size. */
683	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
684
685	for (; size != 0;
686	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
687		pte = (pt_entry_t *) kernel_pt_lookup(
688		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
689		if (pte == NULL)
690			panic("xscale_setup_minidata: can't find L2 table for "
691			    "VA 0x%08x", (u_int32_t) va);
692		pte[l2pte_index(va)] =
693		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
694		    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
695	}
696
697	/*
698	 * Configure the mini-data cache for write-back with
699	 * read/write-allocate.
700	 *
701	 * NOTE: In order to reconfigure the mini-data cache, we must
702	 * make sure it contains no valid data!  In order to do that,
703	 * we must issue a global data cache invalidate command!
704	 *
705	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
706	 * THIS IS VERY IMPORTANT!
707	 */
708
709	/* Invalidate data and mini-data. */
710	__asm __volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
711	__asm __volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
712	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
713	__asm __volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
714}
715#endif
716
717/*
718 * Allocate an L1 translation table for the specified pmap.
719 * This is called at pmap creation time.
720 */
721static void
722pmap_alloc_l1(pmap_t pm)
723{
724	struct l1_ttable *l1;
725	u_int8_t domain;
726
727	/*
728	 * Remove the L1 at the head of the LRU list
729	 */
730	mtx_lock(&l1_lru_lock);
731	l1 = TAILQ_FIRST(&l1_lru_list);
732	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
733
734	/*
735	 * Pick the first available domain number, and update
736	 * the link to the next number.
737	 */
738	domain = l1->l1_domain_first;
739	l1->l1_domain_first = l1->l1_domain_free[domain];
740
741	/*
742	 * If there are still free domain numbers in this L1,
743	 * put it back on the TAIL of the LRU list.
744	 */
745	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
746		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
747
748	mtx_unlock(&l1_lru_lock);
749
750	/*
751	 * Fix up the relevant bits in the pmap structure
752	 */
753	pm->pm_l1 = l1;
754	pm->pm_domain = domain + 1;
755}
756
757/*
758 * Free an L1 translation table.
759 * This is called at pmap destruction time.
760 */
761static void
762pmap_free_l1(pmap_t pm)
763{
764	struct l1_ttable *l1 = pm->pm_l1;
765
766	mtx_lock(&l1_lru_lock);
767
768	/*
769	 * If this L1 is currently on the LRU list, remove it.
770	 */
771	if (l1->l1_domain_use_count < PMAP_DOMAINS)
772		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
773
774	/*
775	 * Free up the domain number which was allocated to the pmap
776	 */
777	l1->l1_domain_free[pm->pm_domain - 1] = l1->l1_domain_first;
778	l1->l1_domain_first = pm->pm_domain - 1;
779	l1->l1_domain_use_count--;
780
781	/*
782	 * The L1 now must have at least 1 free domain, so add
783	 * it back to the LRU list. If the use count is zero,
784	 * put it at the head of the list, otherwise it goes
785	 * to the tail.
786	 */
787	if (l1->l1_domain_use_count == 0) {
788		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
789	}	else
790		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
791
792	mtx_unlock(&l1_lru_lock);
793}
794
795/*
796 * Returns a pointer to the L2 bucket associated with the specified pmap
797 * and VA, or NULL if no L2 bucket exists for the address.
798 */
799static PMAP_INLINE struct l2_bucket *
800pmap_get_l2_bucket(pmap_t pm, vm_offset_t va)
801{
802	struct l2_dtable *l2;
803	struct l2_bucket *l2b;
804	u_short l1idx;
805
806	l1idx = L1_IDX(va);
807
808	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
809	    (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
810		return (NULL);
811
812	return (l2b);
813}
814
815/*
816 * Returns a pointer to the L2 bucket associated with the specified pmap
817 * and VA.
818 *
819 * If no L2 bucket exists, perform the necessary allocations to put an L2
820 * bucket/page table in place.
821 *
822 * Note that if a new L2 bucket/page was allocated, the caller *must*
823 * increment the bucket occupancy counter appropriately *before*
824 * releasing the pmap's lock to ensure no other thread or cpu deallocates
825 * the bucket/page in the meantime.
826 */
827static struct l2_bucket *
828pmap_alloc_l2_bucket(pmap_t pm, vm_offset_t va)
829{
830	struct l2_dtable *l2;
831	struct l2_bucket *l2b;
832	u_short l1idx;
833
834	l1idx = L1_IDX(va);
835
836	PMAP_ASSERT_LOCKED(pm);
837	rw_assert(&pvh_global_lock, RA_WLOCKED);
838	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
839		/*
840		 * No mapping at this address, as there is
841		 * no entry in the L1 table.
842		 * Need to allocate a new l2_dtable.
843		 */
844		PMAP_UNLOCK(pm);
845		rw_wunlock(&pvh_global_lock);
846		if ((l2 = uma_zalloc(l2table_zone, M_NOWAIT)) == NULL) {
847			rw_wlock(&pvh_global_lock);
848			PMAP_LOCK(pm);
849			return (NULL);
850		}
851		rw_wlock(&pvh_global_lock);
852		PMAP_LOCK(pm);
853		if (pm->pm_l2[L2_IDX(l1idx)] != NULL) {
854			/*
855			 * Someone already allocated the l2_dtable while
856			 * we were doing the same.
857			 */
858			uma_zfree(l2table_zone, l2);
859			l2 = pm->pm_l2[L2_IDX(l1idx)];
860		} else {
861			bzero(l2, sizeof(*l2));
862			/*
863			 * Link it into the parent pmap
864			 */
865			pm->pm_l2[L2_IDX(l1idx)] = l2;
866		}
867	}
868
869	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
870
871	/*
872	 * Fetch pointer to the L2 page table associated with the address.
873	 */
874	if (l2b->l2b_kva == NULL) {
875		pt_entry_t *ptep;
876
877		/*
878		 * No L2 page table has been allocated. Chances are, this
879		 * is because we just allocated the l2_dtable, above.
880		 */
881		PMAP_UNLOCK(pm);
882		rw_wunlock(&pvh_global_lock);
883		ptep = uma_zalloc(l2zone, M_NOWAIT);
884		rw_wlock(&pvh_global_lock);
885		PMAP_LOCK(pm);
886		if (l2b->l2b_kva != 0) {
887			/* We lost the race. */
888			uma_zfree(l2zone, ptep);
889			return (l2b);
890		}
891		l2b->l2b_phys = vtophys(ptep);
892		if (ptep == NULL) {
893			/*
894			 * Oops, no more L2 page tables available at this
895			 * time. We may need to deallocate the l2_dtable
896			 * if we allocated a new one above.
897			 */
898			if (l2->l2_occupancy == 0) {
899				pm->pm_l2[L2_IDX(l1idx)] = NULL;
900				uma_zfree(l2table_zone, l2);
901			}
902			return (NULL);
903		}
904
905		l2->l2_occupancy++;
906		l2b->l2b_kva = ptep;
907		l2b->l2b_l1idx = l1idx;
908	}
909
910	return (l2b);
911}
912
913static PMAP_INLINE void
914#ifndef PMAP_INCLUDE_PTE_SYNC
915pmap_free_l2_ptp(pt_entry_t *l2)
916#else
917pmap_free_l2_ptp(boolean_t need_sync, pt_entry_t *l2)
918#endif
919{
920#ifdef PMAP_INCLUDE_PTE_SYNC
921	/*
922	 * Note: With a write-back cache, we may need to sync this
923	 * L2 table before re-using it.
924	 * This is because it may have belonged to a non-current
925	 * pmap, in which case the cache syncs would have been
926	 * skipped when the pages were being unmapped. If the
927	 * L2 table were then to be immediately re-allocated to
928	 * the *current* pmap, it may well contain stale mappings
929	 * which have not yet been cleared by a cache write-back
930	 * and so would still be visible to the mmu.
931	 */
932	if (need_sync)
933		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
934#endif
935	uma_zfree(l2zone, l2);
936}
937/*
938 * One or more mappings in the specified L2 descriptor table have just been
939 * invalidated.
940 *
941 * Garbage collect the metadata and descriptor table itself if necessary.
942 *
943 * The pmap lock must be acquired when this is called (not necessary
944 * for the kernel pmap).
945 */
946static void
947pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
948{
949	struct l2_dtable *l2;
950	pd_entry_t *pl1pd, l1pd;
951	pt_entry_t *ptep;
952	u_short l1idx;
953
954
955	/*
956	 * Update the bucket's reference count according to how many
957	 * PTEs the caller has just invalidated.
958	 */
959	l2b->l2b_occupancy -= count;
960
961	/*
962	 * Note:
963	 *
964	 * Level 2 page tables allocated to the kernel pmap are never freed
965	 * as that would require checking all Level 1 page tables and
966	 * removing any references to the Level 2 page table. See also the
967	 * comment elsewhere about never freeing bootstrap L2 descriptors.
968	 *
969	 * We make do with just invalidating the mapping in the L2 table.
970	 *
971	 * This isn't really a big deal in practice and, in fact, leads
972	 * to a performance win over time as we don't need to continually
973	 * alloc/free.
974	 */
975	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
976		return;
977
978	/*
979	 * There are no more valid mappings in this level 2 page table.
980	 * Go ahead and NULL-out the pointer in the bucket, then
981	 * free the page table.
982	 */
983	l1idx = l2b->l2b_l1idx;
984	ptep = l2b->l2b_kva;
985	l2b->l2b_kva = NULL;
986
987	pl1pd = &pm->pm_l1->l1_kva[l1idx];
988
989	/*
990	 * If the L1 slot matches the pmap's domain
991	 * number, then invalidate it.
992	 */
993	l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
994	if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
995		*pl1pd = 0;
996		PTE_SYNC(pl1pd);
997	}
998
999	/*
1000	 * Release the L2 descriptor table back to the pool cache.
1001	 */
1002#ifndef PMAP_INCLUDE_PTE_SYNC
1003	pmap_free_l2_ptp(ptep);
1004#else
1005	pmap_free_l2_ptp(!pmap_is_current(pm), ptep);
1006#endif
1007
1008	/*
1009	 * Update the reference count in the associated l2_dtable
1010	 */
1011	l2 = pm->pm_l2[L2_IDX(l1idx)];
1012	if (--l2->l2_occupancy > 0)
1013		return;
1014
1015	/*
1016	 * There are no more valid mappings in any of the Level 1
1017	 * slots managed by this l2_dtable. Go ahead and NULL-out
1018	 * the pointer in the parent pmap and free the l2_dtable.
1019	 */
1020	pm->pm_l2[L2_IDX(l1idx)] = NULL;
1021	uma_zfree(l2table_zone, l2);
1022}
1023
1024/*
1025 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1026 * structures.
1027 */
1028static int
1029pmap_l2ptp_ctor(void *mem, int size, void *arg, int flags)
1030{
1031#ifndef PMAP_INCLUDE_PTE_SYNC
1032	struct l2_bucket *l2b;
1033	pt_entry_t *ptep, pte;
1034
1035	vm_offset_t va = (vm_offset_t)mem & ~PAGE_MASK;
1036
1037	/*
1038	 * The mappings for these page tables were initially made using
1039	 * pmap_kenter() by the pool subsystem. Therefore, the cache-
1040	 * mode will not be right for page table mappings. To avoid
1041	 * polluting the pmap_kenter() code with a special case for
1042	 * page tables, we simply fix up the cache-mode here if it's not
1043	 * correct.
1044	 */
1045		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1046		ptep = &l2b->l2b_kva[l2pte_index(va)];
1047		pte = *ptep;
1048
1049		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1050			/*
1051			 * Page tables must have the cache-mode set to
1052			 * Write-Thru.
1053			 */
1054			*ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1055			PTE_SYNC(ptep);
1056			cpu_tlb_flushD_SE(va);
1057			cpu_cpwait();
1058		}
1059#endif
1060	memset(mem, 0, L2_TABLE_SIZE_REAL);
1061	PTE_SYNC_RANGE(mem, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1062	return (0);
1063}
1064
1065/*
1066 * A bunch of routines to conditionally flush the caches/TLB depending
1067 * on whether the specified pmap actually needs to be flushed at any
1068 * given time.
1069 */
1070static PMAP_INLINE void
1071pmap_tlb_flushID_SE(pmap_t pm, vm_offset_t va)
1072{
1073
1074	if (pmap_is_current(pm))
1075		cpu_tlb_flushID_SE(va);
1076}
1077
1078static PMAP_INLINE void
1079pmap_tlb_flushD_SE(pmap_t pm, vm_offset_t va)
1080{
1081
1082	if (pmap_is_current(pm))
1083		cpu_tlb_flushD_SE(va);
1084}
1085
1086static PMAP_INLINE void
1087pmap_tlb_flushID(pmap_t pm)
1088{
1089
1090	if (pmap_is_current(pm))
1091		cpu_tlb_flushID();
1092}
1093static PMAP_INLINE void
1094pmap_tlb_flushD(pmap_t pm)
1095{
1096
1097	if (pmap_is_current(pm))
1098		cpu_tlb_flushD();
1099}
1100
1101static int
1102pmap_has_valid_mapping(pmap_t pm, vm_offset_t va)
1103{
1104	pd_entry_t *pde;
1105	pt_entry_t *ptep;
1106
1107	if (pmap_get_pde_pte(pm, va, &pde, &ptep) &&
1108	    ptep && ((*ptep & L2_TYPE_MASK) != L2_TYPE_INV))
1109		return (1);
1110
1111	return (0);
1112}
1113
1114static PMAP_INLINE void
1115pmap_idcache_wbinv_range(pmap_t pm, vm_offset_t va, vm_size_t len)
1116{
1117	vm_size_t rest;
1118
1119	CTR4(KTR_PMAP, "pmap_dcache_wbinv_range: pmap %p is_kernel %d va 0x%08x"
1120	    " len 0x%x ", pm, pm == pmap_kernel(), va, len);
1121
1122	if (pmap_is_current(pm) || pm == pmap_kernel()) {
1123		rest = MIN(PAGE_SIZE - (va & PAGE_MASK), len);
1124		while (len > 0) {
1125			if (pmap_has_valid_mapping(pm, va)) {
1126				cpu_idcache_wbinv_range(va, rest);
1127				cpu_l2cache_wbinv_range(va, rest);
1128			}
1129			len -= rest;
1130			va += rest;
1131			rest = MIN(PAGE_SIZE, len);
1132		}
1133	}
1134}
1135
1136static PMAP_INLINE void
1137pmap_dcache_wb_range(pmap_t pm, vm_offset_t va, vm_size_t len, boolean_t do_inv,
1138    boolean_t rd_only)
1139{
1140	vm_size_t rest;
1141
1142	CTR4(KTR_PMAP, "pmap_dcache_wb_range: pmap %p is_kernel %d va 0x%08x "
1143	    "len 0x%x ", pm, pm == pmap_kernel(), va, len);
1144	CTR2(KTR_PMAP, " do_inv %d rd_only %d", do_inv, rd_only);
1145
1146	if (pmap_is_current(pm)) {
1147		rest = MIN(PAGE_SIZE - (va & PAGE_MASK), len);
1148		while (len > 0) {
1149			if (pmap_has_valid_mapping(pm, va)) {
1150				if (do_inv && rd_only) {
1151					cpu_dcache_inv_range(va, rest);
1152					cpu_l2cache_inv_range(va, rest);
1153				} else if (do_inv) {
1154					cpu_dcache_wbinv_range(va, rest);
1155					cpu_l2cache_wbinv_range(va, rest);
1156				} else if (!rd_only) {
1157					cpu_dcache_wb_range(va, rest);
1158					cpu_l2cache_wb_range(va, rest);
1159				}
1160			}
1161			len -= rest;
1162			va += rest;
1163
1164			rest = MIN(PAGE_SIZE, len);
1165		}
1166	}
1167}
1168
1169static PMAP_INLINE void
1170pmap_idcache_wbinv_all(pmap_t pm)
1171{
1172
1173	if (pmap_is_current(pm)) {
1174		cpu_idcache_wbinv_all();
1175		cpu_l2cache_wbinv_all();
1176	}
1177}
1178
1179#ifdef notyet
1180static PMAP_INLINE void
1181pmap_dcache_wbinv_all(pmap_t pm)
1182{
1183
1184	if (pmap_is_current(pm)) {
1185		cpu_dcache_wbinv_all();
1186		cpu_l2cache_wbinv_all();
1187	}
1188}
1189#endif
1190
1191/*
1192 * PTE_SYNC_CURRENT:
1193 *
1194 *     Make sure the pte is written out to RAM.
1195 *     We need to do this for one of two cases:
1196 *       - We're dealing with the kernel pmap
1197 *       - There is no pmap active in the cache/tlb.
1198 *       - The specified pmap is 'active' in the cache/tlb.
1199 */
1200#ifdef PMAP_INCLUDE_PTE_SYNC
1201#define	PTE_SYNC_CURRENT(pm, ptep)	\
1202do {					\
1203	if (PMAP_NEEDS_PTE_SYNC && 	\
1204	    pmap_is_current(pm))	\
1205		PTE_SYNC(ptep);		\
1206} while (/*CONSTCOND*/0)
1207#else
1208#define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
1209#endif
1210
1211/*
1212 * cacheable == -1 means we must make the entry uncacheable, 1 means
1213 * cacheable;
1214 */
1215static __inline void
1216pmap_set_cache_entry(pv_entry_t pv, pmap_t pm, vm_offset_t va, int cacheable)
1217{
1218	struct l2_bucket *l2b;
1219	pt_entry_t *ptep, pte;
1220
1221	l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1222	ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1223
1224	if (cacheable == 1) {
1225		pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1226		if (l2pte_valid(pte)) {
1227			if (PV_BEEN_EXECD(pv->pv_flags)) {
1228				pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
1229			} else if (PV_BEEN_REFD(pv->pv_flags)) {
1230				pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
1231			}
1232		}
1233	} else {
1234		pte = *ptep &~ L2_S_CACHE_MASK;
1235		if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1236			    l2pte_valid(pte)) {
1237			if (PV_BEEN_EXECD(pv->pv_flags)) {
1238				pmap_idcache_wbinv_range(pv->pv_pmap,
1239					    pv->pv_va, PAGE_SIZE);
1240				pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
1241			} else if (PV_BEEN_REFD(pv->pv_flags)) {
1242				pmap_dcache_wb_range(pv->pv_pmap,
1243					    pv->pv_va, PAGE_SIZE, TRUE,
1244					    (pv->pv_flags & PVF_WRITE) == 0);
1245				pmap_tlb_flushD_SE(pv->pv_pmap,
1246					    pv->pv_va);
1247			}
1248		}
1249	}
1250	*ptep = pte;
1251	PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1252}
1253
1254static void
1255pmap_fix_cache(struct vm_page *pg, pmap_t pm, vm_offset_t va)
1256{
1257	int pmwc = 0;
1258	int writable = 0, kwritable = 0, uwritable = 0;
1259	int entries = 0, kentries = 0, uentries = 0;
1260	struct pv_entry *pv;
1261
1262	rw_assert(&pvh_global_lock, RA_WLOCKED);
1263
1264	/* the cache gets written back/invalidated on context switch.
1265	 * therefore, if a user page shares an entry in the same page or
1266	 * with the kernel map and at least one is writable, then the
1267	 * cache entry must be set write-through.
1268	 */
1269
1270	TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) {
1271			/* generate a count of the pv_entry uses */
1272		if (pv->pv_flags & PVF_WRITE) {
1273			if (pv->pv_pmap == pmap_kernel())
1274				kwritable++;
1275			else if (pv->pv_pmap == pm)
1276				uwritable++;
1277			writable++;
1278		}
1279		if (pv->pv_pmap == pmap_kernel())
1280			kentries++;
1281		else {
1282			if (pv->pv_pmap == pm)
1283				uentries++;
1284			entries++;
1285		}
1286	}
1287		/*
1288		 * check if the user duplicate mapping has
1289		 * been removed.
1290		 */
1291	if ((pm != pmap_kernel()) && (((uentries > 1) && uwritable) ||
1292	    (uwritable > 1)))
1293			pmwc = 1;
1294
1295	TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) {
1296		/* check for user uncachable conditions - order is important */
1297		if (pm != pmap_kernel() &&
1298		    (pv->pv_pmap == pm || pv->pv_pmap == pmap_kernel())) {
1299
1300			if ((uentries > 1 && uwritable) || uwritable > 1) {
1301
1302				/* user duplicate mapping */
1303				if (pv->pv_pmap != pmap_kernel())
1304					pv->pv_flags |= PVF_MWC;
1305
1306				if (!(pv->pv_flags & PVF_NC)) {
1307					pv->pv_flags |= PVF_NC;
1308					pmap_set_cache_entry(pv, pm, va, -1);
1309				}
1310				continue;
1311			} else	/* no longer a duplicate user */
1312				pv->pv_flags &= ~PVF_MWC;
1313		}
1314
1315		/*
1316		 * check for kernel uncachable conditions
1317		 * kernel writable or kernel readable with writable user entry
1318		 */
1319		if ((kwritable && (entries || kentries > 1)) ||
1320		    (kwritable > 1) ||
1321		    ((kwritable != writable) && kentries &&
1322		     (pv->pv_pmap == pmap_kernel() ||
1323		      (pv->pv_flags & PVF_WRITE) ||
1324		      (pv->pv_flags & PVF_MWC)))) {
1325
1326			if (!(pv->pv_flags & PVF_NC)) {
1327				pv->pv_flags |= PVF_NC;
1328				pmap_set_cache_entry(pv, pm, va, -1);
1329			}
1330			continue;
1331		}
1332
1333			/* kernel and user are cachable */
1334		if ((pm == pmap_kernel()) && !(pv->pv_flags & PVF_MWC) &&
1335		    (pv->pv_flags & PVF_NC)) {
1336
1337			pv->pv_flags &= ~PVF_NC;
1338			if (pg->md.pv_memattr != VM_MEMATTR_UNCACHEABLE)
1339				pmap_set_cache_entry(pv, pm, va, 1);
1340			continue;
1341		}
1342			/* user is no longer sharable and writable */
1343		if (pm != pmap_kernel() &&
1344		    (pv->pv_pmap == pm || pv->pv_pmap == pmap_kernel()) &&
1345		    !pmwc && (pv->pv_flags & PVF_NC)) {
1346
1347			pv->pv_flags &= ~(PVF_NC | PVF_MWC);
1348			if (pg->md.pv_memattr != VM_MEMATTR_UNCACHEABLE)
1349				pmap_set_cache_entry(pv, pm, va, 1);
1350		}
1351	}
1352
1353	if ((kwritable == 0) && (writable == 0)) {
1354		pg->md.pvh_attrs &= ~PVF_MOD;
1355		vm_page_aflag_clear(pg, PGA_WRITEABLE);
1356		return;
1357	}
1358}
1359
1360/*
1361 * Modify pte bits for all ptes corresponding to the given physical address.
1362 * We use `maskbits' rather than `clearbits' because we're always passing
1363 * constants and the latter would require an extra inversion at run-time.
1364 */
1365static int
1366pmap_clearbit(struct vm_page *pg, u_int maskbits)
1367{
1368	struct l2_bucket *l2b;
1369	struct pv_entry *pv;
1370	pt_entry_t *ptep, npte, opte;
1371	pmap_t pm;
1372	vm_offset_t va;
1373	u_int oflags;
1374	int count = 0;
1375
1376	rw_wlock(&pvh_global_lock);
1377
1378	if (maskbits & PVF_WRITE)
1379		maskbits |= PVF_MOD;
1380	/*
1381	 * Clear saved attributes (modify, reference)
1382	 */
1383	pg->md.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
1384
1385	if (TAILQ_EMPTY(&pg->md.pv_list)) {
1386		rw_wunlock(&pvh_global_lock);
1387		return (0);
1388	}
1389
1390	/*
1391	 * Loop over all current mappings setting/clearing as appropos
1392	 */
1393	TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) {
1394		va = pv->pv_va;
1395		pm = pv->pv_pmap;
1396		oflags = pv->pv_flags;
1397
1398		if (!(oflags & maskbits)) {
1399			if ((maskbits & PVF_WRITE) && (pv->pv_flags & PVF_NC)) {
1400				if (pg->md.pv_memattr !=
1401				    VM_MEMATTR_UNCACHEABLE) {
1402					PMAP_LOCK(pm);
1403					l2b = pmap_get_l2_bucket(pm, va);
1404					ptep = &l2b->l2b_kva[l2pte_index(va)];
1405					*ptep |= pte_l2_s_cache_mode;
1406					PTE_SYNC(ptep);
1407					PMAP_UNLOCK(pm);
1408				}
1409				pv->pv_flags &= ~(PVF_NC | PVF_MWC);
1410			}
1411			continue;
1412		}
1413		pv->pv_flags &= ~maskbits;
1414
1415		PMAP_LOCK(pm);
1416
1417		l2b = pmap_get_l2_bucket(pm, va);
1418
1419		ptep = &l2b->l2b_kva[l2pte_index(va)];
1420		npte = opte = *ptep;
1421
1422		if (maskbits & (PVF_WRITE|PVF_MOD)) {
1423			if ((pv->pv_flags & PVF_NC)) {
1424				/*
1425				 * Entry is not cacheable:
1426				 *
1427				 * Don't turn caching on again if this is a
1428				 * modified emulation. This would be
1429				 * inconsitent with the settings created by
1430				 * pmap_fix_cache(). Otherwise, it's safe
1431				 * to re-enable cacheing.
1432				 *
1433				 * There's no need to call pmap_fix_cache()
1434				 * here: all pages are losing their write
1435				 * permission.
1436				 */
1437				if (maskbits & PVF_WRITE) {
1438					if (pg->md.pv_memattr !=
1439					    VM_MEMATTR_UNCACHEABLE)
1440						npte |= pte_l2_s_cache_mode;
1441					pv->pv_flags &= ~(PVF_NC | PVF_MWC);
1442				}
1443			} else
1444			if (opte & L2_S_PROT_W) {
1445				vm_page_dirty(pg);
1446				/*
1447				 * Entry is writable/cacheable: check if pmap
1448				 * is current if it is flush it, otherwise it
1449				 * won't be in the cache
1450				 */
1451				if (PV_BEEN_EXECD(oflags))
1452					pmap_idcache_wbinv_range(pm, pv->pv_va,
1453					    PAGE_SIZE);
1454				else
1455				if (PV_BEEN_REFD(oflags))
1456					pmap_dcache_wb_range(pm, pv->pv_va,
1457					    PAGE_SIZE,
1458					    (maskbits & PVF_REF) ? TRUE : FALSE,
1459					    FALSE);
1460			}
1461
1462			/* make the pte read only */
1463			npte &= ~L2_S_PROT_W;
1464		}
1465
1466		if (maskbits & PVF_REF) {
1467			if ((pv->pv_flags & PVF_NC) == 0 &&
1468			    (maskbits & (PVF_WRITE|PVF_MOD)) == 0) {
1469				/*
1470				 * Check npte here; we may have already
1471				 * done the wbinv above, and the validity
1472				 * of the PTE is the same for opte and
1473				 * npte.
1474				 */
1475				if (npte & L2_S_PROT_W) {
1476					if (PV_BEEN_EXECD(oflags))
1477						pmap_idcache_wbinv_range(pm,
1478						    pv->pv_va, PAGE_SIZE);
1479					else
1480					if (PV_BEEN_REFD(oflags))
1481						pmap_dcache_wb_range(pm,
1482						    pv->pv_va, PAGE_SIZE,
1483						    TRUE, FALSE);
1484				} else
1485				if ((npte & L2_TYPE_MASK) != L2_TYPE_INV) {
1486					/* XXXJRT need idcache_inv_range */
1487					if (PV_BEEN_EXECD(oflags))
1488						pmap_idcache_wbinv_range(pm,
1489						    pv->pv_va, PAGE_SIZE);
1490					else
1491					if (PV_BEEN_REFD(oflags))
1492						pmap_dcache_wb_range(pm,
1493						    pv->pv_va, PAGE_SIZE,
1494						    TRUE, TRUE);
1495				}
1496			}
1497
1498			/*
1499			 * Make the PTE invalid so that we will take a
1500			 * page fault the next time the mapping is
1501			 * referenced.
1502			 */
1503			npte &= ~L2_TYPE_MASK;
1504			npte |= L2_TYPE_INV;
1505		}
1506
1507		if (npte != opte) {
1508			count++;
1509			*ptep = npte;
1510			PTE_SYNC(ptep);
1511			/* Flush the TLB entry if a current pmap. */
1512			if (PV_BEEN_EXECD(oflags))
1513				pmap_tlb_flushID_SE(pm, pv->pv_va);
1514			else
1515			if (PV_BEEN_REFD(oflags))
1516				pmap_tlb_flushD_SE(pm, pv->pv_va);
1517		}
1518
1519		PMAP_UNLOCK(pm);
1520
1521	}
1522
1523	if (maskbits & PVF_WRITE)
1524		vm_page_aflag_clear(pg, PGA_WRITEABLE);
1525	rw_wunlock(&pvh_global_lock);
1526	return (count);
1527}
1528
1529/*
1530 * main pv_entry manipulation functions:
1531 *   pmap_enter_pv: enter a mapping onto a vm_page list
1532 *   pmap_remove_pv: remove a mappiing from a vm_page list
1533 *
1534 * NOTE: pmap_enter_pv expects to lock the pvh itself
1535 *       pmap_remove_pv expects the caller to lock the pvh before calling
1536 */
1537
1538/*
1539 * pmap_enter_pv: enter a mapping onto a vm_page's PV list
1540 *
1541 * => caller should hold the proper lock on pvh_global_lock
1542 * => caller should have pmap locked
1543 * => we will (someday) gain the lock on the vm_page's PV list
1544 * => caller should adjust ptp's wire_count before calling
1545 * => caller should not adjust pmap's wire_count
1546 */
1547static void
1548pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
1549    vm_offset_t va, u_int flags)
1550{
1551
1552	rw_assert(&pvh_global_lock, RA_WLOCKED);
1553	PMAP_ASSERT_LOCKED(pm);
1554	if (pg->md.pv_kva != 0) {
1555		pve->pv_pmap = kernel_pmap;
1556		pve->pv_va = pg->md.pv_kva;
1557		pve->pv_flags = PVF_WRITE | PVF_UNMAN;
1558		if (pm != kernel_pmap)
1559			PMAP_LOCK(kernel_pmap);
1560		TAILQ_INSERT_HEAD(&pg->md.pv_list, pve, pv_list);
1561		TAILQ_INSERT_HEAD(&kernel_pmap->pm_pvlist, pve, pv_plist);
1562		if (pm != kernel_pmap)
1563			PMAP_UNLOCK(kernel_pmap);
1564		pg->md.pv_kva = 0;
1565		if ((pve = pmap_get_pv_entry()) == NULL)
1566			panic("pmap_kenter_pv: no pv entries");
1567	}
1568	pve->pv_pmap = pm;
1569	pve->pv_va = va;
1570	pve->pv_flags = flags;
1571	TAILQ_INSERT_HEAD(&pg->md.pv_list, pve, pv_list);
1572	TAILQ_INSERT_HEAD(&pm->pm_pvlist, pve, pv_plist);
1573	pg->md.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
1574	if (pve->pv_flags & PVF_WIRED)
1575		++pm->pm_stats.wired_count;
1576	vm_page_aflag_set(pg, PGA_REFERENCED);
1577}
1578
1579/*
1580 *
1581 * pmap_find_pv: Find a pv entry
1582 *
1583 * => caller should hold lock on vm_page
1584 */
1585static PMAP_INLINE struct pv_entry *
1586pmap_find_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va)
1587{
1588	struct pv_entry *pv;
1589
1590	rw_assert(&pvh_global_lock, RA_WLOCKED);
1591	TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list)
1592	    if (pm == pv->pv_pmap && va == pv->pv_va)
1593		    break;
1594	return (pv);
1595}
1596
1597/*
1598 * vector_page_setprot:
1599 *
1600 *	Manipulate the protection of the vector page.
1601 */
1602void
1603vector_page_setprot(int prot)
1604{
1605	struct l2_bucket *l2b;
1606	pt_entry_t *ptep;
1607
1608	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
1609
1610	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
1611
1612	*ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
1613	PTE_SYNC(ptep);
1614	cpu_tlb_flushD_SE(vector_page);
1615	cpu_cpwait();
1616}
1617
1618/*
1619 * pmap_remove_pv: try to remove a mapping from a pv_list
1620 *
1621 * => caller should hold proper lock on pmap_main_lock
1622 * => pmap should be locked
1623 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1624 * => caller should adjust ptp's wire_count and free PTP if needed
1625 * => caller should NOT adjust pmap's wire_count
1626 * => we return the removed pve
1627 */
1628
1629static void
1630pmap_nuke_pv(struct vm_page *pg, pmap_t pm, struct pv_entry *pve)
1631{
1632
1633	struct pv_entry *pv;
1634	rw_assert(&pvh_global_lock, RA_WLOCKED);
1635	PMAP_ASSERT_LOCKED(pm);
1636	TAILQ_REMOVE(&pg->md.pv_list, pve, pv_list);
1637	TAILQ_REMOVE(&pm->pm_pvlist, pve, pv_plist);
1638	if (pve->pv_flags & PVF_WIRED)
1639		--pm->pm_stats.wired_count;
1640	if (pg->md.pvh_attrs & PVF_MOD)
1641		vm_page_dirty(pg);
1642	if (TAILQ_FIRST(&pg->md.pv_list) == NULL)
1643		pg->md.pvh_attrs &= ~PVF_REF;
1644       	else
1645		vm_page_aflag_set(pg, PGA_REFERENCED);
1646	if ((pve->pv_flags & PVF_NC) && ((pm == pmap_kernel()) ||
1647	     (pve->pv_flags & PVF_WRITE) || !(pve->pv_flags & PVF_MWC)))
1648		pmap_fix_cache(pg, pm, 0);
1649	else if (pve->pv_flags & PVF_WRITE) {
1650		TAILQ_FOREACH(pve, &pg->md.pv_list, pv_list)
1651		    if (pve->pv_flags & PVF_WRITE)
1652			    break;
1653		if (!pve) {
1654			pg->md.pvh_attrs &= ~PVF_MOD;
1655			vm_page_aflag_clear(pg, PGA_WRITEABLE);
1656		}
1657	}
1658	pv = TAILQ_FIRST(&pg->md.pv_list);
1659	if (pv != NULL && (pv->pv_flags & PVF_UNMAN) &&
1660	    TAILQ_NEXT(pv, pv_list) == NULL) {
1661		pm = kernel_pmap;
1662		pg->md.pv_kva = pv->pv_va;
1663			/* a recursive pmap_nuke_pv */
1664		TAILQ_REMOVE(&pg->md.pv_list, pv, pv_list);
1665		TAILQ_REMOVE(&pm->pm_pvlist, pv, pv_plist);
1666		if (pv->pv_flags & PVF_WIRED)
1667			--pm->pm_stats.wired_count;
1668		pg->md.pvh_attrs &= ~PVF_REF;
1669		pg->md.pvh_attrs &= ~PVF_MOD;
1670		vm_page_aflag_clear(pg, PGA_WRITEABLE);
1671		pmap_free_pv_entry(pv);
1672	}
1673}
1674
1675static struct pv_entry *
1676pmap_remove_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va)
1677{
1678	struct pv_entry *pve;
1679
1680	rw_assert(&pvh_global_lock, RA_WLOCKED);
1681	pve = TAILQ_FIRST(&pg->md.pv_list);
1682
1683	while (pve) {
1684		if (pve->pv_pmap == pm && pve->pv_va == va) {	/* match? */
1685			pmap_nuke_pv(pg, pm, pve);
1686			break;
1687		}
1688		pve = TAILQ_NEXT(pve, pv_list);
1689	}
1690
1691	if (pve == NULL && pg->md.pv_kva == va)
1692		pg->md.pv_kva = 0;
1693
1694	return(pve);				/* return removed pve */
1695}
1696/*
1697 *
1698 * pmap_modify_pv: Update pv flags
1699 *
1700 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1701 * => caller should NOT adjust pmap's wire_count
1702 * => we return the old flags
1703 *
1704 * Modify a physical-virtual mapping in the pv table
1705 */
1706static u_int
1707pmap_modify_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va,
1708    u_int clr_mask, u_int set_mask)
1709{
1710	struct pv_entry *npv;
1711	u_int flags, oflags;
1712
1713	PMAP_ASSERT_LOCKED(pm);
1714	rw_assert(&pvh_global_lock, RA_WLOCKED);
1715	if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
1716		return (0);
1717
1718	/*
1719	 * There is at least one VA mapping this page.
1720	 */
1721
1722	if (clr_mask & (PVF_REF | PVF_MOD))
1723		pg->md.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1724
1725	oflags = npv->pv_flags;
1726	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1727
1728	if ((flags ^ oflags) & PVF_WIRED) {
1729		if (flags & PVF_WIRED)
1730			++pm->pm_stats.wired_count;
1731		else
1732			--pm->pm_stats.wired_count;
1733	}
1734
1735	if ((flags ^ oflags) & PVF_WRITE)
1736		pmap_fix_cache(pg, pm, 0);
1737
1738	return (oflags);
1739}
1740
1741/* Function to set the debug level of the pmap code */
1742#ifdef PMAP_DEBUG
1743void
1744pmap_debug(int level)
1745{
1746	pmap_debug_level = level;
1747	dprintf("pmap_debug: level=%d\n", pmap_debug_level);
1748}
1749#endif  /* PMAP_DEBUG */
1750
1751void
1752pmap_pinit0(struct pmap *pmap)
1753{
1754	PDEBUG(1, printf("pmap_pinit0: pmap = %08x\n", (u_int32_t) pmap));
1755
1756	bcopy(kernel_pmap, pmap, sizeof(*pmap));
1757	bzero(&pmap->pm_mtx, sizeof(pmap->pm_mtx));
1758	PMAP_LOCK_INIT(pmap);
1759}
1760
1761/*
1762 *	Initialize a vm_page's machine-dependent fields.
1763 */
1764void
1765pmap_page_init(vm_page_t m)
1766{
1767
1768	TAILQ_INIT(&m->md.pv_list);
1769	m->md.pv_memattr = VM_MEMATTR_DEFAULT;
1770}
1771
1772/*
1773 *      Initialize the pmap module.
1774 *      Called by vm_init, to initialize any structures that the pmap
1775 *      system needs to map virtual memory.
1776 */
1777void
1778pmap_init(void)
1779{
1780	int shpgperproc = PMAP_SHPGPERPROC;
1781
1782	l2zone = uma_zcreate("L2 Table", L2_TABLE_SIZE_REAL, pmap_l2ptp_ctor,
1783	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1784	l2table_zone = uma_zcreate("L2 Table", sizeof(struct l2_dtable), NULL,
1785	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1786
1787	/*
1788	 * Initialize the PV entry allocator.
1789	 */
1790	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
1791	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1792	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1793	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1794	uma_zone_reserve_kva(pvzone, pv_entry_max);
1795	pv_entry_high_water = 9 * (pv_entry_max / 10);
1796
1797	/*
1798	 * Now it is safe to enable pv_table recording.
1799	 */
1800	PDEBUG(1, printf("pmap_init: done!\n"));
1801}
1802
1803int
1804pmap_fault_fixup(pmap_t pm, vm_offset_t va, vm_prot_t ftype, int user)
1805{
1806	struct l2_dtable *l2;
1807	struct l2_bucket *l2b;
1808	pd_entry_t *pl1pd, l1pd;
1809	pt_entry_t *ptep, pte;
1810	vm_paddr_t pa;
1811	u_int l1idx;
1812	int rv = 0;
1813
1814	l1idx = L1_IDX(va);
1815	rw_wlock(&pvh_global_lock);
1816	PMAP_LOCK(pm);
1817
1818	/*
1819	 * If there is no l2_dtable for this address, then the process
1820	 * has no business accessing it.
1821	 *
1822	 * Note: This will catch userland processes trying to access
1823	 * kernel addresses.
1824	 */
1825	l2 = pm->pm_l2[L2_IDX(l1idx)];
1826	if (l2 == NULL)
1827		goto out;
1828
1829	/*
1830	 * Likewise if there is no L2 descriptor table
1831	 */
1832	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1833	if (l2b->l2b_kva == NULL)
1834		goto out;
1835
1836	/*
1837	 * Check the PTE itself.
1838	 */
1839	ptep = &l2b->l2b_kva[l2pte_index(va)];
1840	pte = *ptep;
1841	if (pte == 0)
1842		goto out;
1843
1844	/*
1845	 * Catch a userland access to the vector page mapped at 0x0
1846	 */
1847	if (user && (pte & L2_S_PROT_U) == 0)
1848		goto out;
1849	if (va == vector_page)
1850		goto out;
1851
1852	pa = l2pte_pa(pte);
1853
1854	if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
1855		/*
1856		 * This looks like a good candidate for "page modified"
1857		 * emulation...
1858		 */
1859		struct pv_entry *pv;
1860		struct vm_page *pg;
1861
1862		/* Extract the physical address of the page */
1863		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
1864			goto out;
1865		}
1866		/* Get the current flags for this page. */
1867
1868		pv = pmap_find_pv(pg, pm, va);
1869		if (pv == NULL) {
1870			goto out;
1871		}
1872
1873		/*
1874		 * Do the flags say this page is writable? If not then it
1875		 * is a genuine write fault. If yes then the write fault is
1876		 * our fault as we did not reflect the write access in the
1877		 * PTE. Now we know a write has occurred we can correct this
1878		 * and also set the modified bit
1879		 */
1880		if ((pv->pv_flags & PVF_WRITE) == 0) {
1881			goto out;
1882		}
1883
1884		pg->md.pvh_attrs |= PVF_REF | PVF_MOD;
1885		vm_page_dirty(pg);
1886		pv->pv_flags |= PVF_REF | PVF_MOD;
1887
1888		/*
1889		 * Re-enable write permissions for the page.  No need to call
1890		 * pmap_fix_cache(), since this is just a
1891		 * modified-emulation fault, and the PVF_WRITE bit isn't
1892		 * changing. We've already set the cacheable bits based on
1893		 * the assumption that we can write to this page.
1894		 */
1895		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
1896		PTE_SYNC(ptep);
1897		rv = 1;
1898	} else
1899	if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
1900		/*
1901		 * This looks like a good candidate for "page referenced"
1902		 * emulation.
1903		 */
1904		struct pv_entry *pv;
1905		struct vm_page *pg;
1906
1907		/* Extract the physical address of the page */
1908		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
1909			goto out;
1910		/* Get the current flags for this page. */
1911
1912		pv = pmap_find_pv(pg, pm, va);
1913		if (pv == NULL)
1914			goto out;
1915
1916		pg->md.pvh_attrs |= PVF_REF;
1917		pv->pv_flags |= PVF_REF;
1918
1919
1920		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
1921		PTE_SYNC(ptep);
1922		rv = 1;
1923	}
1924
1925	/*
1926	 * We know there is a valid mapping here, so simply
1927	 * fix up the L1 if necessary.
1928	 */
1929	pl1pd = &pm->pm_l1->l1_kva[l1idx];
1930	l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
1931	if (*pl1pd != l1pd) {
1932		*pl1pd = l1pd;
1933		PTE_SYNC(pl1pd);
1934		rv = 1;
1935	}
1936
1937#ifdef DEBUG
1938	/*
1939	 * If 'rv == 0' at this point, it generally indicates that there is a
1940	 * stale TLB entry for the faulting address. This happens when two or
1941	 * more processes are sharing an L1. Since we don't flush the TLB on
1942	 * a context switch between such processes, we can take domain faults
1943	 * for mappings which exist at the same VA in both processes. EVEN IF
1944	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
1945	 * example.
1946	 *
1947	 * This is extremely likely to happen if pmap_enter() updated the L1
1948	 * entry for a recently entered mapping. In this case, the TLB is
1949	 * flushed for the new mapping, but there may still be TLB entries for
1950	 * other mappings belonging to other processes in the 1MB range
1951	 * covered by the L1 entry.
1952	 *
1953	 * Since 'rv == 0', we know that the L1 already contains the correct
1954	 * value, so the fault must be due to a stale TLB entry.
1955	 *
1956	 * Since we always need to flush the TLB anyway in the case where we
1957	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
1958	 * stale TLB entries dynamically.
1959	 *
1960	 * However, the above condition can ONLY happen if the current L1 is
1961	 * being shared. If it happens when the L1 is unshared, it indicates
1962	 * that other parts of the pmap are not doing their job WRT managing
1963	 * the TLB.
1964	 */
1965	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
1966		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
1967		    pm, (u_long)va, ftype);
1968		printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
1969		    l2, l2b, ptep, pl1pd);
1970		printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
1971		    pte, l1pd, last_fault_code);
1972#ifdef DDB
1973		Debugger();
1974#endif
1975	}
1976#endif
1977
1978	cpu_tlb_flushID_SE(va);
1979	cpu_cpwait();
1980
1981	rv = 1;
1982
1983out:
1984	rw_wunlock(&pvh_global_lock);
1985	PMAP_UNLOCK(pm);
1986	return (rv);
1987}
1988
1989void
1990pmap_postinit(void)
1991{
1992	struct l2_bucket *l2b;
1993	struct l1_ttable *l1;
1994	pd_entry_t *pl1pt;
1995	pt_entry_t *ptep, pte;
1996	vm_offset_t va, eva;
1997	u_int loop, needed;
1998
1999	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
2000	needed -= 1;
2001	l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
2002
2003	for (loop = 0; loop < needed; loop++, l1++) {
2004		/* Allocate a L1 page table */
2005		va = (vm_offset_t)contigmalloc(L1_TABLE_SIZE, M_VMPMAP, 0, 0x0,
2006		    0xffffffff, L1_TABLE_SIZE, 0);
2007
2008		if (va == 0)
2009			panic("Cannot allocate L1 KVM");
2010
2011		eva = va + L1_TABLE_SIZE;
2012		pl1pt = (pd_entry_t *)va;
2013
2014		while (va < eva) {
2015				l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2016				ptep = &l2b->l2b_kva[l2pte_index(va)];
2017				pte = *ptep;
2018				pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
2019				*ptep = pte;
2020				PTE_SYNC(ptep);
2021				cpu_tlb_flushD_SE(va);
2022
2023				va += PAGE_SIZE;
2024		}
2025		pmap_init_l1(l1, pl1pt);
2026	}
2027
2028
2029#ifdef DEBUG
2030	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
2031	    needed);
2032#endif
2033}
2034
2035/*
2036 * This is used to stuff certain critical values into the PCB where they
2037 * can be accessed quickly from cpu_switch() et al.
2038 */
2039void
2040pmap_set_pcb_pagedir(pmap_t pm, struct pcb *pcb)
2041{
2042	struct l2_bucket *l2b;
2043
2044	pcb->pcb_pagedir = pm->pm_l1->l1_physaddr;
2045	pcb->pcb_dacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
2046	    (DOMAIN_CLIENT << (pm->pm_domain * 2));
2047
2048	if (vector_page < KERNBASE) {
2049		pcb->pcb_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
2050		l2b = pmap_get_l2_bucket(pm, vector_page);
2051		pcb->pcb_l1vec = l2b->l2b_phys | L1_C_PROTO |
2052	 	    L1_C_DOM(pm->pm_domain) | L1_C_DOM(PMAP_DOMAIN_KERNEL);
2053	} else
2054		pcb->pcb_pl1vec = NULL;
2055}
2056
2057void
2058pmap_activate(struct thread *td)
2059{
2060	pmap_t pm;
2061	struct pcb *pcb;
2062
2063	pm = vmspace_pmap(td->td_proc->p_vmspace);
2064	pcb = td->td_pcb;
2065
2066	critical_enter();
2067	pmap_set_pcb_pagedir(pm, pcb);
2068
2069	if (td == curthread) {
2070		u_int cur_dacr, cur_ttb;
2071
2072		__asm __volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(cur_ttb));
2073		__asm __volatile("mrc p15, 0, %0, c3, c0, 0" : "=r"(cur_dacr));
2074
2075		cur_ttb &= ~(L1_TABLE_SIZE - 1);
2076
2077		if (cur_ttb == (u_int)pcb->pcb_pagedir &&
2078		    cur_dacr == pcb->pcb_dacr) {
2079			/*
2080			 * No need to switch address spaces.
2081			 */
2082			critical_exit();
2083			return;
2084		}
2085
2086
2087		/*
2088		 * We MUST, I repeat, MUST fix up the L1 entry corresponding
2089		 * to 'vector_page' in the incoming L1 table before switching
2090		 * to it otherwise subsequent interrupts/exceptions (including
2091		 * domain faults!) will jump into hyperspace.
2092		 */
2093		if (pcb->pcb_pl1vec) {
2094
2095			*pcb->pcb_pl1vec = pcb->pcb_l1vec;
2096			/*
2097			 * Don't need to PTE_SYNC() at this point since
2098			 * cpu_setttb() is about to flush both the cache
2099			 * and the TLB.
2100			 */
2101		}
2102
2103		cpu_domains(pcb->pcb_dacr);
2104		cpu_setttb(pcb->pcb_pagedir);
2105	}
2106	critical_exit();
2107}
2108
2109static int
2110pmap_set_pt_cache_mode(pd_entry_t *kl1, vm_offset_t va)
2111{
2112	pd_entry_t *pdep, pde;
2113	pt_entry_t *ptep, pte;
2114	vm_offset_t pa;
2115	int rv = 0;
2116
2117	/*
2118	 * Make sure the descriptor itself has the correct cache mode
2119	 */
2120	pdep = &kl1[L1_IDX(va)];
2121	pde = *pdep;
2122
2123	if (l1pte_section_p(pde)) {
2124		if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
2125			*pdep = (pde & ~L1_S_CACHE_MASK) |
2126			    pte_l1_s_cache_mode_pt;
2127			PTE_SYNC(pdep);
2128			cpu_dcache_wbinv_range((vm_offset_t)pdep,
2129			    sizeof(*pdep));
2130			cpu_l2cache_wbinv_range((vm_offset_t)pdep,
2131			    sizeof(*pdep));
2132			rv = 1;
2133		}
2134	} else {
2135		pa = (vm_paddr_t)(pde & L1_C_ADDR_MASK);
2136		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
2137		if (ptep == NULL)
2138			panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
2139
2140		ptep = &ptep[l2pte_index(va)];
2141		pte = *ptep;
2142		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
2143			*ptep = (pte & ~L2_S_CACHE_MASK) |
2144			    pte_l2_s_cache_mode_pt;
2145			PTE_SYNC(ptep);
2146			cpu_dcache_wbinv_range((vm_offset_t)ptep,
2147			    sizeof(*ptep));
2148			cpu_l2cache_wbinv_range((vm_offset_t)ptep,
2149			    sizeof(*ptep));
2150			rv = 1;
2151		}
2152	}
2153
2154	return (rv);
2155}
2156
2157static void
2158pmap_alloc_specials(vm_offset_t *availp, int pages, vm_offset_t *vap,
2159    pt_entry_t **ptep)
2160{
2161	vm_offset_t va = *availp;
2162	struct l2_bucket *l2b;
2163
2164	if (ptep) {
2165		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2166		if (l2b == NULL)
2167			panic("pmap_alloc_specials: no l2b for 0x%x", va);
2168
2169		*ptep = &l2b->l2b_kva[l2pte_index(va)];
2170	}
2171
2172	*vap = va;
2173	*availp = va + (PAGE_SIZE * pages);
2174}
2175
2176/*
2177 *	Bootstrap the system enough to run with virtual memory.
2178 *
2179 *	On the arm this is called after mapping has already been enabled
2180 *	and just syncs the pmap module with what has already been done.
2181 *	[We can't call it easily with mapping off since the kernel is not
2182 *	mapped with PA == VA, hence we would have to relocate every address
2183 *	from the linked base (virtual) address "KERNBASE" to the actual
2184 *	(physical) address starting relative to 0]
2185 */
2186#define PMAP_STATIC_L2_SIZE 16
2187void
2188pmap_bootstrap(vm_offset_t firstaddr, struct pv_addr *l1pt)
2189{
2190	static struct l1_ttable static_l1;
2191	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
2192	struct l1_ttable *l1 = &static_l1;
2193	struct l2_dtable *l2;
2194	struct l2_bucket *l2b;
2195	pd_entry_t pde;
2196	pd_entry_t *kernel_l1pt = (pd_entry_t *)l1pt->pv_va;
2197	pt_entry_t *ptep;
2198	vm_paddr_t pa;
2199	vm_offset_t va;
2200	vm_size_t size;
2201	int l1idx, l2idx, l2next = 0;
2202
2203	PDEBUG(1, printf("firstaddr = %08x, lastaddr = %08x\n",
2204	    firstaddr, vm_max_kernel_address));
2205
2206	virtual_avail = firstaddr;
2207	kernel_pmap->pm_l1 = l1;
2208	kernel_l1pa = l1pt->pv_pa;
2209
2210	/*
2211	 * Scan the L1 translation table created by initarm() and create
2212	 * the required metadata for all valid mappings found in it.
2213	 */
2214	for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
2215		pde = kernel_l1pt[l1idx];
2216
2217		/*
2218		 * We're only interested in Coarse mappings.
2219		 * pmap_extract() can deal with section mappings without
2220		 * recourse to checking L2 metadata.
2221		 */
2222		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
2223			continue;
2224
2225		/*
2226		 * Lookup the KVA of this L2 descriptor table
2227		 */
2228		pa = (vm_paddr_t)(pde & L1_C_ADDR_MASK);
2229		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
2230
2231		if (ptep == NULL) {
2232			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
2233			    (u_int)l1idx << L1_S_SHIFT, (long unsigned int)pa);
2234		}
2235
2236		/*
2237		 * Fetch the associated L2 metadata structure.
2238		 * Allocate a new one if necessary.
2239		 */
2240		if ((l2 = kernel_pmap->pm_l2[L2_IDX(l1idx)]) == NULL) {
2241			if (l2next == PMAP_STATIC_L2_SIZE)
2242				panic("pmap_bootstrap: out of static L2s");
2243			kernel_pmap->pm_l2[L2_IDX(l1idx)] = l2 =
2244			    &static_l2[l2next++];
2245		}
2246
2247		/*
2248		 * One more L1 slot tracked...
2249		 */
2250		l2->l2_occupancy++;
2251
2252		/*
2253		 * Fill in the details of the L2 descriptor in the
2254		 * appropriate bucket.
2255		 */
2256		l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
2257		l2b->l2b_kva = ptep;
2258		l2b->l2b_phys = pa;
2259		l2b->l2b_l1idx = l1idx;
2260
2261		/*
2262		 * Establish an initial occupancy count for this descriptor
2263		 */
2264		for (l2idx = 0;
2265		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
2266		    l2idx++) {
2267			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
2268				l2b->l2b_occupancy++;
2269			}
2270		}
2271
2272		/*
2273		 * Make sure the descriptor itself has the correct cache mode.
2274		 * If not, fix it, but whine about the problem. Port-meisters
2275		 * should consider this a clue to fix up their initarm()
2276		 * function. :)
2277		 */
2278		if (pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)ptep)) {
2279			printf("pmap_bootstrap: WARNING! wrong cache mode for "
2280			    "L2 pte @ %p\n", ptep);
2281		}
2282	}
2283
2284
2285	/*
2286	 * Ensure the primary (kernel) L1 has the correct cache mode for
2287	 * a page table. Bitch if it is not correctly set.
2288	 */
2289	for (va = (vm_offset_t)kernel_l1pt;
2290	    va < ((vm_offset_t)kernel_l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
2291		if (pmap_set_pt_cache_mode(kernel_l1pt, va))
2292			printf("pmap_bootstrap: WARNING! wrong cache mode for "
2293			    "primary L1 @ 0x%x\n", va);
2294	}
2295
2296	cpu_dcache_wbinv_all();
2297	cpu_l2cache_wbinv_all();
2298	cpu_tlb_flushID();
2299	cpu_cpwait();
2300
2301	PMAP_LOCK_INIT(kernel_pmap);
2302	CPU_FILL(&kernel_pmap->pm_active);
2303	kernel_pmap->pm_domain = PMAP_DOMAIN_KERNEL;
2304	TAILQ_INIT(&kernel_pmap->pm_pvlist);
2305
2306 	/*
2307	 * Initialize the global pv list lock.
2308	 */
2309	rw_init_flags(&pvh_global_lock, "pmap pv global", RW_RECURSE);
2310
2311	/*
2312	 * Reserve some special page table entries/VA space for temporary
2313	 * mapping of pages.
2314	 */
2315#define SYSMAP(c, p, v, n)						\
2316    v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
2317
2318	pmap_alloc_specials(&virtual_avail, 1, &csrcp, &csrc_pte);
2319	pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)csrc_pte);
2320	pmap_alloc_specials(&virtual_avail, 1, &cdstp, &cdst_pte);
2321	pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)cdst_pte);
2322	size = ((vm_max_kernel_address - pmap_curmaxkvaddr) + L1_S_OFFSET) /
2323	    L1_S_SIZE;
2324	pmap_alloc_specials(&virtual_avail,
2325	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
2326	    &pmap_kernel_l2ptp_kva, NULL);
2327
2328	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
2329	pmap_alloc_specials(&virtual_avail,
2330	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
2331	    &pmap_kernel_l2dtable_kva, NULL);
2332
2333	pmap_alloc_specials(&virtual_avail,
2334	    1, (vm_offset_t*)&_tmppt, NULL);
2335	pmap_alloc_specials(&virtual_avail,
2336	    MAXDUMPPGS, (vm_offset_t *)&crashdumpmap, NULL);
2337	SLIST_INIT(&l1_list);
2338	TAILQ_INIT(&l1_lru_list);
2339	mtx_init(&l1_lru_lock, "l1 list lock", NULL, MTX_DEF);
2340	pmap_init_l1(l1, kernel_l1pt);
2341	cpu_dcache_wbinv_all();
2342	cpu_l2cache_wbinv_all();
2343
2344	virtual_avail = round_page(virtual_avail);
2345	virtual_end = vm_max_kernel_address;
2346	kernel_vm_end = pmap_curmaxkvaddr;
2347	mtx_init(&cmtx, "TMP mappings mtx", NULL, MTX_DEF);
2348
2349	pmap_set_pcb_pagedir(kernel_pmap, thread0.td_pcb);
2350}
2351
2352/***************************************************
2353 * Pmap allocation/deallocation routines.
2354 ***************************************************/
2355
2356/*
2357 * Release any resources held by the given physical map.
2358 * Called when a pmap initialized by pmap_pinit is being released.
2359 * Should only be called if the map contains no valid mappings.
2360 */
2361void
2362pmap_release(pmap_t pmap)
2363{
2364	struct pcb *pcb;
2365
2366	pmap_idcache_wbinv_all(pmap);
2367	cpu_l2cache_wbinv_all();
2368	pmap_tlb_flushID(pmap);
2369	cpu_cpwait();
2370	if (vector_page < KERNBASE) {
2371		struct pcb *curpcb = PCPU_GET(curpcb);
2372		pcb = thread0.td_pcb;
2373		if (pmap_is_current(pmap)) {
2374			/*
2375 			 * Frob the L1 entry corresponding to the vector
2376			 * page so that it contains the kernel pmap's domain
2377			 * number. This will ensure pmap_remove() does not
2378			 * pull the current vector page out from under us.
2379			 */
2380			critical_enter();
2381			*pcb->pcb_pl1vec = pcb->pcb_l1vec;
2382			cpu_domains(pcb->pcb_dacr);
2383			cpu_setttb(pcb->pcb_pagedir);
2384			critical_exit();
2385		}
2386		pmap_remove(pmap, vector_page, vector_page + PAGE_SIZE);
2387		/*
2388		 * Make sure cpu_switch(), et al, DTRT. This is safe to do
2389		 * since this process has no remaining mappings of its own.
2390		 */
2391		curpcb->pcb_pl1vec = pcb->pcb_pl1vec;
2392		curpcb->pcb_l1vec = pcb->pcb_l1vec;
2393		curpcb->pcb_dacr = pcb->pcb_dacr;
2394		curpcb->pcb_pagedir = pcb->pcb_pagedir;
2395
2396	}
2397	pmap_free_l1(pmap);
2398
2399	dprintf("pmap_release()\n");
2400}
2401
2402
2403
2404/*
2405 * Helper function for pmap_grow_l2_bucket()
2406 */
2407static __inline int
2408pmap_grow_map(vm_offset_t va, pt_entry_t cache_mode, vm_paddr_t *pap)
2409{
2410	struct l2_bucket *l2b;
2411	pt_entry_t *ptep;
2412	vm_paddr_t pa;
2413	struct vm_page *pg;
2414
2415	pg = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
2416	if (pg == NULL)
2417		return (1);
2418	pa = VM_PAGE_TO_PHYS(pg);
2419
2420	if (pap)
2421		*pap = pa;
2422
2423	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2424
2425	ptep = &l2b->l2b_kva[l2pte_index(va)];
2426	*ptep = L2_S_PROTO | pa | cache_mode |
2427	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
2428	PTE_SYNC(ptep);
2429	return (0);
2430}
2431
2432/*
2433 * This is the same as pmap_alloc_l2_bucket(), except that it is only
2434 * used by pmap_growkernel().
2435 */
2436static __inline struct l2_bucket *
2437pmap_grow_l2_bucket(pmap_t pm, vm_offset_t va)
2438{
2439	struct l2_dtable *l2;
2440	struct l2_bucket *l2b;
2441	struct l1_ttable *l1;
2442	pd_entry_t *pl1pd;
2443	u_short l1idx;
2444	vm_offset_t nva;
2445
2446	l1idx = L1_IDX(va);
2447
2448	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
2449		/*
2450		 * No mapping at this address, as there is
2451		 * no entry in the L1 table.
2452		 * Need to allocate a new l2_dtable.
2453		 */
2454		nva = pmap_kernel_l2dtable_kva;
2455		if ((nva & PAGE_MASK) == 0) {
2456			/*
2457			 * Need to allocate a backing page
2458			 */
2459			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
2460				return (NULL);
2461		}
2462
2463		l2 = (struct l2_dtable *)nva;
2464		nva += sizeof(struct l2_dtable);
2465
2466		if ((nva & PAGE_MASK) < (pmap_kernel_l2dtable_kva &
2467		    PAGE_MASK)) {
2468			/*
2469			 * The new l2_dtable straddles a page boundary.
2470			 * Map in another page to cover it.
2471			 */
2472			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
2473				return (NULL);
2474		}
2475
2476		pmap_kernel_l2dtable_kva = nva;
2477
2478		/*
2479		 * Link it into the parent pmap
2480		 */
2481		pm->pm_l2[L2_IDX(l1idx)] = l2;
2482		memset(l2, 0, sizeof(*l2));
2483	}
2484
2485	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
2486
2487	/*
2488	 * Fetch pointer to the L2 page table associated with the address.
2489	 */
2490	if (l2b->l2b_kva == NULL) {
2491		pt_entry_t *ptep;
2492
2493		/*
2494		 * No L2 page table has been allocated. Chances are, this
2495		 * is because we just allocated the l2_dtable, above.
2496		 */
2497		nva = pmap_kernel_l2ptp_kva;
2498		ptep = (pt_entry_t *)nva;
2499		if ((nva & PAGE_MASK) == 0) {
2500			/*
2501			 * Need to allocate a backing page
2502			 */
2503			if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
2504			    &pmap_kernel_l2ptp_phys))
2505				return (NULL);
2506			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
2507		}
2508		memset(ptep, 0, L2_TABLE_SIZE_REAL);
2509		l2->l2_occupancy++;
2510		l2b->l2b_kva = ptep;
2511		l2b->l2b_l1idx = l1idx;
2512		l2b->l2b_phys = pmap_kernel_l2ptp_phys;
2513
2514		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
2515		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
2516	}
2517
2518	/* Distribute new L1 entry to all other L1s */
2519	SLIST_FOREACH(l1, &l1_list, l1_link) {
2520			pl1pd = &l1->l1_kva[L1_IDX(va)];
2521			*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
2522			    L1_C_PROTO;
2523			PTE_SYNC(pl1pd);
2524	}
2525
2526	return (l2b);
2527}
2528
2529
2530/*
2531 * grow the number of kernel page table entries, if needed
2532 */
2533void
2534pmap_growkernel(vm_offset_t addr)
2535{
2536	pmap_t kpm = pmap_kernel();
2537
2538	if (addr <= pmap_curmaxkvaddr)
2539		return;		/* we are OK */
2540
2541	/*
2542	 * whoops!   we need to add kernel PTPs
2543	 */
2544
2545	/* Map 1MB at a time */
2546	for (; pmap_curmaxkvaddr < addr; pmap_curmaxkvaddr += L1_S_SIZE)
2547		pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
2548
2549	/*
2550	 * flush out the cache, expensive but growkernel will happen so
2551	 * rarely
2552	 */
2553	cpu_dcache_wbinv_all();
2554	cpu_l2cache_wbinv_all();
2555	cpu_tlb_flushD();
2556	cpu_cpwait();
2557	kernel_vm_end = pmap_curmaxkvaddr;
2558}
2559
2560
2561/*
2562 * Remove all pages from specified address space
2563 * this aids process exit speeds.  Also, this code
2564 * is special cased for current process only, but
2565 * can have the more generic (and slightly slower)
2566 * mode enabled.  This is much faster than pmap_remove
2567 * in the case of running down an entire address space.
2568 */
2569void
2570pmap_remove_pages(pmap_t pmap)
2571{
2572	struct pv_entry *pv, *npv;
2573	struct l2_bucket *l2b = NULL;
2574	vm_page_t m;
2575	pt_entry_t *pt;
2576
2577	rw_wlock(&pvh_global_lock);
2578	PMAP_LOCK(pmap);
2579	cpu_idcache_wbinv_all();
2580	cpu_l2cache_wbinv_all();
2581	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2582		if (pv->pv_flags & PVF_WIRED || pv->pv_flags & PVF_UNMAN) {
2583			/* Cannot remove wired or unmanaged pages now. */
2584			npv = TAILQ_NEXT(pv, pv_plist);
2585			continue;
2586		}
2587		pmap->pm_stats.resident_count--;
2588		l2b = pmap_get_l2_bucket(pmap, pv->pv_va);
2589		KASSERT(l2b != NULL, ("No L2 bucket in pmap_remove_pages"));
2590		pt = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2591		m = PHYS_TO_VM_PAGE(*pt & L2_ADDR_MASK);
2592		KASSERT((vm_offset_t)m >= KERNBASE, ("Trying to access non-existent page va %x pte %x", pv->pv_va, *pt));
2593		*pt = 0;
2594		PTE_SYNC(pt);
2595		npv = TAILQ_NEXT(pv, pv_plist);
2596		pmap_nuke_pv(m, pmap, pv);
2597		if (TAILQ_EMPTY(&m->md.pv_list))
2598			vm_page_aflag_clear(m, PGA_WRITEABLE);
2599		pmap_free_pv_entry(pv);
2600		pmap_free_l2_bucket(pmap, l2b, 1);
2601	}
2602	rw_wunlock(&pvh_global_lock);
2603	cpu_tlb_flushID();
2604	cpu_cpwait();
2605	PMAP_UNLOCK(pmap);
2606}
2607
2608
2609/***************************************************
2610 * Low level mapping routines.....
2611 ***************************************************/
2612
2613#ifdef ARM_HAVE_SUPERSECTIONS
2614/* Map a super section into the KVA. */
2615
2616void
2617pmap_kenter_supersection(vm_offset_t va, uint64_t pa, int flags)
2618{
2619	pd_entry_t pd = L1_S_PROTO | L1_S_SUPERSEC | (pa & L1_SUP_FRAME) |
2620	    (((pa >> 32) & 0xf) << 20) | L1_S_PROT(PTE_KERNEL,
2621	    VM_PROT_READ|VM_PROT_WRITE) | L1_S_DOM(PMAP_DOMAIN_KERNEL);
2622	struct l1_ttable *l1;
2623	vm_offset_t va0, va_end;
2624
2625	KASSERT(((va | pa) & L1_SUP_OFFSET) == 0,
2626	    ("Not a valid super section mapping"));
2627	if (flags & SECTION_CACHE)
2628		pd |= pte_l1_s_cache_mode;
2629	else if (flags & SECTION_PT)
2630		pd |= pte_l1_s_cache_mode_pt;
2631	va0 = va & L1_SUP_FRAME;
2632	va_end = va + L1_SUP_SIZE;
2633	SLIST_FOREACH(l1, &l1_list, l1_link) {
2634		va = va0;
2635		for (; va < va_end; va += L1_S_SIZE) {
2636			l1->l1_kva[L1_IDX(va)] = pd;
2637			PTE_SYNC(&l1->l1_kva[L1_IDX(va)]);
2638		}
2639	}
2640}
2641#endif
2642
2643/* Map a section into the KVA. */
2644
2645void
2646pmap_kenter_section(vm_offset_t va, vm_offset_t pa, int flags)
2647{
2648	pd_entry_t pd = L1_S_PROTO | pa | L1_S_PROT(PTE_KERNEL,
2649	    VM_PROT_READ|VM_PROT_WRITE) | L1_S_DOM(PMAP_DOMAIN_KERNEL);
2650	struct l1_ttable *l1;
2651
2652	KASSERT(((va | pa) & L1_S_OFFSET) == 0,
2653	    ("Not a valid section mapping"));
2654	if (flags & SECTION_CACHE)
2655		pd |= pte_l1_s_cache_mode;
2656	else if (flags & SECTION_PT)
2657		pd |= pte_l1_s_cache_mode_pt;
2658	SLIST_FOREACH(l1, &l1_list, l1_link) {
2659		l1->l1_kva[L1_IDX(va)] = pd;
2660		PTE_SYNC(&l1->l1_kva[L1_IDX(va)]);
2661	}
2662}
2663
2664/*
2665 * Make a temporary mapping for a physical address.  This is only intended
2666 * to be used for panic dumps.
2667 */
2668void *
2669pmap_kenter_temporary(vm_paddr_t pa, int i)
2670{
2671	vm_offset_t va;
2672
2673	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2674	pmap_kenter(va, pa);
2675	return ((void *)crashdumpmap);
2676}
2677
2678/*
2679 * add a wired page to the kva
2680 * note that in order for the mapping to take effect -- you
2681 * should do a invltlb after doing the pmap_kenter...
2682 */
2683static PMAP_INLINE void
2684pmap_kenter_internal(vm_offset_t va, vm_offset_t pa, int flags)
2685{
2686	struct l2_bucket *l2b;
2687	pt_entry_t *pte;
2688	pt_entry_t opte;
2689	struct pv_entry *pve;
2690	vm_page_t m;
2691
2692	PDEBUG(1, printf("pmap_kenter: va = %08x, pa = %08x\n",
2693	    (uint32_t) va, (uint32_t) pa));
2694
2695
2696	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2697	if (l2b == NULL)
2698		l2b = pmap_grow_l2_bucket(pmap_kernel(), va);
2699	KASSERT(l2b != NULL, ("No L2 Bucket"));
2700	pte = &l2b->l2b_kva[l2pte_index(va)];
2701	opte = *pte;
2702	PDEBUG(1, printf("pmap_kenter: pte = %08x, opte = %08x, npte = %08x\n",
2703	    (uint32_t) pte, opte, *pte));
2704	if (l2pte_valid(opte)) {
2705		pmap_kremove(va);
2706	} else {
2707		if (opte == 0)
2708			l2b->l2b_occupancy++;
2709	}
2710	*pte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL,
2711	    VM_PROT_READ | VM_PROT_WRITE);
2712	if (flags & KENTER_CACHE)
2713		*pte |= pte_l2_s_cache_mode;
2714	if (flags & KENTER_USER)
2715		*pte |= L2_S_PROT_U;
2716	PTE_SYNC(pte);
2717
2718	/*
2719	 * A kernel mapping may not be the page's only mapping, so create a PV
2720	 * entry to ensure proper caching.
2721 	 *
2722	 * The existence test for the pvzone is used to delay the recording of
2723	 * kernel mappings until the VM system is fully initialized.
2724	 *
2725	 * This expects the physical memory to have a vm_page_array entry.
2726	 */
2727	if (pvzone != NULL && (m = vm_phys_paddr_to_vm_page(pa)) != NULL) {
2728		rw_wlock(&pvh_global_lock);
2729		if (!TAILQ_EMPTY(&m->md.pv_list) || m->md.pv_kva != 0) {
2730			if ((pve = pmap_get_pv_entry()) == NULL)
2731				panic("pmap_kenter_internal: no pv entries");
2732			PMAP_LOCK(pmap_kernel());
2733			pmap_enter_pv(m, pve, pmap_kernel(), va,
2734			    PVF_WRITE | PVF_UNMAN);
2735			pmap_fix_cache(m, pmap_kernel(), va);
2736			PMAP_UNLOCK(pmap_kernel());
2737		} else {
2738			m->md.pv_kva = va;
2739		}
2740		rw_wunlock(&pvh_global_lock);
2741	}
2742}
2743
2744void
2745pmap_kenter(vm_offset_t va, vm_paddr_t pa)
2746{
2747	pmap_kenter_internal(va, pa, KENTER_CACHE);
2748}
2749
2750void
2751pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa)
2752{
2753
2754	pmap_kenter_internal(va, pa, 0);
2755}
2756
2757void
2758pmap_kenter_device(vm_offset_t va, vm_paddr_t pa)
2759{
2760
2761	/*
2762	 * XXX - Need a way for kenter_internal to handle PTE_DEVICE mapping as
2763	 * a potentially different thing than PTE_NOCACHE.
2764	 */
2765	pmap_kenter_internal(va, pa, 0);
2766}
2767
2768void
2769pmap_kenter_user(vm_offset_t va, vm_paddr_t pa)
2770{
2771
2772	pmap_kenter_internal(va, pa, KENTER_CACHE|KENTER_USER);
2773	/*
2774	 * Call pmap_fault_fixup now, to make sure we'll have no exception
2775	 * at the first use of the new address, or bad things will happen,
2776	 * as we use one of these addresses in the exception handlers.
2777	 */
2778	pmap_fault_fixup(pmap_kernel(), va, VM_PROT_READ|VM_PROT_WRITE, 1);
2779}
2780
2781vm_paddr_t
2782pmap_kextract(vm_offset_t va)
2783{
2784
2785	return (pmap_extract_locked(kernel_pmap, va));
2786}
2787
2788/*
2789 * remove a page from the kernel pagetables
2790 */
2791void
2792pmap_kremove(vm_offset_t va)
2793{
2794	struct l2_bucket *l2b;
2795	pt_entry_t *pte, opte;
2796	struct pv_entry *pve;
2797	vm_page_t m;
2798	vm_offset_t pa;
2799
2800	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2801	if (!l2b)
2802		return;
2803	KASSERT(l2b != NULL, ("No L2 Bucket"));
2804	pte = &l2b->l2b_kva[l2pte_index(va)];
2805	opte = *pte;
2806	if (l2pte_valid(opte)) {
2807			/* pa = vtophs(va) taken from pmap_extract() */
2808		switch (opte & L2_TYPE_MASK) {
2809		case L2_TYPE_L:
2810			pa = (opte & L2_L_FRAME) | (va & L2_L_OFFSET);
2811			break;
2812		default:
2813			pa = (opte & L2_S_FRAME) | (va & L2_S_OFFSET);
2814			break;
2815		}
2816			/* note: should never have to remove an allocation
2817			 * before the pvzone is initialized.
2818			 */
2819		rw_wlock(&pvh_global_lock);
2820		PMAP_LOCK(pmap_kernel());
2821		if (pvzone != NULL && (m = vm_phys_paddr_to_vm_page(pa)) &&
2822		    (pve = pmap_remove_pv(m, pmap_kernel(), va)))
2823			pmap_free_pv_entry(pve);
2824		PMAP_UNLOCK(pmap_kernel());
2825		rw_wunlock(&pvh_global_lock);
2826		va = va & ~PAGE_MASK;
2827		cpu_dcache_wbinv_range(va, PAGE_SIZE);
2828		cpu_l2cache_wbinv_range(va, PAGE_SIZE);
2829		cpu_tlb_flushD_SE(va);
2830		cpu_cpwait();
2831		*pte = 0;
2832	}
2833}
2834
2835
2836/*
2837 *	Used to map a range of physical addresses into kernel
2838 *	virtual address space.
2839 *
2840 *	The value passed in '*virt' is a suggested virtual address for
2841 *	the mapping. Architectures which can support a direct-mapped
2842 *	physical to virtual region can return the appropriate address
2843 *	within that region, leaving '*virt' unchanged. Other
2844 *	architectures should map the pages starting at '*virt' and
2845 *	update '*virt' with the first usable address after the mapped
2846 *	region.
2847 */
2848vm_offset_t
2849pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
2850{
2851	vm_offset_t sva = *virt;
2852	vm_offset_t va = sva;
2853
2854	PDEBUG(1, printf("pmap_map: virt = %08x, start = %08x, end = %08x, "
2855	    "prot = %d\n", (uint32_t) *virt, (uint32_t) start, (uint32_t) end,
2856	    prot));
2857
2858	while (start < end) {
2859		pmap_kenter(va, start);
2860		va += PAGE_SIZE;
2861		start += PAGE_SIZE;
2862	}
2863	*virt = va;
2864	return (sva);
2865}
2866
2867static void
2868pmap_wb_page(vm_page_t m)
2869{
2870	struct pv_entry *pv;
2871
2872	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
2873	    pmap_dcache_wb_range(pv->pv_pmap, pv->pv_va, PAGE_SIZE, FALSE,
2874		(pv->pv_flags & PVF_WRITE) == 0);
2875}
2876
2877static void
2878pmap_inv_page(vm_page_t m)
2879{
2880	struct pv_entry *pv;
2881
2882	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
2883	    pmap_dcache_wb_range(pv->pv_pmap, pv->pv_va, PAGE_SIZE, TRUE, TRUE);
2884}
2885/*
2886 * Add a list of wired pages to the kva
2887 * this routine is only used for temporary
2888 * kernel mappings that do not need to have
2889 * page modification or references recorded.
2890 * Note that old mappings are simply written
2891 * over.  The page *must* be wired.
2892 */
2893void
2894pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
2895{
2896	int i;
2897
2898	for (i = 0; i < count; i++) {
2899		pmap_wb_page(m[i]);
2900		pmap_kenter_internal(va, VM_PAGE_TO_PHYS(m[i]),
2901		    KENTER_CACHE);
2902		va += PAGE_SIZE;
2903	}
2904}
2905
2906
2907/*
2908 * this routine jerks page mappings from the
2909 * kernel -- it is meant only for temporary mappings.
2910 */
2911void
2912pmap_qremove(vm_offset_t va, int count)
2913{
2914	vm_paddr_t pa;
2915	int i;
2916
2917	for (i = 0; i < count; i++) {
2918		pa = vtophys(va);
2919		if (pa) {
2920			pmap_inv_page(PHYS_TO_VM_PAGE(pa));
2921			pmap_kremove(va);
2922		}
2923		va += PAGE_SIZE;
2924	}
2925}
2926
2927
2928/*
2929 * pmap_object_init_pt preloads the ptes for a given object
2930 * into the specified pmap.  This eliminates the blast of soft
2931 * faults on process startup and immediately after an mmap.
2932 */
2933void
2934pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
2935    vm_pindex_t pindex, vm_size_t size)
2936{
2937
2938	VM_OBJECT_ASSERT_WLOCKED(object);
2939	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2940	    ("pmap_object_init_pt: non-device object"));
2941}
2942
2943
2944/*
2945 *	pmap_is_prefaultable:
2946 *
2947 *	Return whether or not the specified virtual address is elgible
2948 *	for prefault.
2949 */
2950boolean_t
2951pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2952{
2953	pd_entry_t *pde;
2954	pt_entry_t *pte;
2955
2956	if (!pmap_get_pde_pte(pmap, addr, &pde, &pte))
2957		return (FALSE);
2958	KASSERT(pte != NULL, ("Valid mapping but no pte ?"));
2959	if (*pte == 0)
2960		return (TRUE);
2961	return (FALSE);
2962}
2963
2964/*
2965 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
2966 * Returns TRUE if the mapping exists, else FALSE.
2967 *
2968 * NOTE: This function is only used by a couple of arm-specific modules.
2969 * It is not safe to take any pmap locks here, since we could be right
2970 * in the middle of debugging the pmap anyway...
2971 *
2972 * It is possible for this routine to return FALSE even though a valid
2973 * mapping does exist. This is because we don't lock, so the metadata
2974 * state may be inconsistent.
2975 *
2976 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
2977 * a "section" mapping.
2978 */
2979boolean_t
2980pmap_get_pde_pte(pmap_t pm, vm_offset_t va, pd_entry_t **pdp, pt_entry_t **ptp)
2981{
2982	struct l2_dtable *l2;
2983	pd_entry_t *pl1pd, l1pd;
2984	pt_entry_t *ptep;
2985	u_short l1idx;
2986
2987	if (pm->pm_l1 == NULL)
2988		return (FALSE);
2989
2990	l1idx = L1_IDX(va);
2991	*pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
2992	l1pd = *pl1pd;
2993
2994	if (l1pte_section_p(l1pd)) {
2995		*ptp = NULL;
2996		return (TRUE);
2997	}
2998
2999	if (pm->pm_l2 == NULL)
3000		return (FALSE);
3001
3002	l2 = pm->pm_l2[L2_IDX(l1idx)];
3003
3004	if (l2 == NULL ||
3005	    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3006		return (FALSE);
3007	}
3008
3009	*ptp = &ptep[l2pte_index(va)];
3010	return (TRUE);
3011}
3012
3013/*
3014 *      Routine:        pmap_remove_all
3015 *      Function:
3016 *              Removes this physical page from
3017 *              all physical maps in which it resides.
3018 *              Reflects back modify bits to the pager.
3019 *
3020 *      Notes:
3021 *              Original versions of this routine were very
3022 *              inefficient because they iteratively called
3023 *              pmap_remove (slow...)
3024 */
3025void
3026pmap_remove_all(vm_page_t m)
3027{
3028	pv_entry_t pv;
3029	pt_entry_t *ptep;
3030	struct l2_bucket *l2b;
3031	boolean_t flush = FALSE;
3032	pmap_t curpm;
3033	int flags = 0;
3034
3035	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3036	    ("pmap_remove_all: page %p is not managed", m));
3037	if (TAILQ_EMPTY(&m->md.pv_list))
3038		return;
3039	rw_wlock(&pvh_global_lock);
3040	pmap_remove_write(m);
3041	curpm = vmspace_pmap(curproc->p_vmspace);
3042	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3043		if (flush == FALSE && (pv->pv_pmap == curpm ||
3044		    pv->pv_pmap == pmap_kernel()))
3045			flush = TRUE;
3046
3047		PMAP_LOCK(pv->pv_pmap);
3048		/*
3049		 * Cached contents were written-back in pmap_remove_write(),
3050		 * but we still have to invalidate the cache entry to make
3051		 * sure stale data are not retrieved when another page will be
3052		 * mapped under this virtual address.
3053		 */
3054		if (pmap_is_current(pv->pv_pmap)) {
3055			cpu_dcache_inv_range(pv->pv_va, PAGE_SIZE);
3056			if (pmap_has_valid_mapping(pv->pv_pmap, pv->pv_va))
3057				cpu_l2cache_inv_range(pv->pv_va, PAGE_SIZE);
3058		}
3059
3060		if (pv->pv_flags & PVF_UNMAN) {
3061			/* remove the pv entry, but do not remove the mapping
3062			 * and remember this is a kernel mapped page
3063			 */
3064			m->md.pv_kva = pv->pv_va;
3065		} else {
3066			/* remove the mapping and pv entry */
3067			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
3068			KASSERT(l2b != NULL, ("No l2 bucket"));
3069			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
3070			*ptep = 0;
3071			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
3072			pmap_free_l2_bucket(pv->pv_pmap, l2b, 1);
3073			pv->pv_pmap->pm_stats.resident_count--;
3074			flags |= pv->pv_flags;
3075		}
3076		pmap_nuke_pv(m, pv->pv_pmap, pv);
3077		PMAP_UNLOCK(pv->pv_pmap);
3078		pmap_free_pv_entry(pv);
3079	}
3080
3081	if (flush) {
3082		if (PV_BEEN_EXECD(flags))
3083			pmap_tlb_flushID(curpm);
3084		else
3085			pmap_tlb_flushD(curpm);
3086	}
3087	vm_page_aflag_clear(m, PGA_WRITEABLE);
3088	rw_wunlock(&pvh_global_lock);
3089}
3090
3091
3092/*
3093 *	Set the physical protection on the
3094 *	specified range of this map as requested.
3095 */
3096void
3097pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
3098{
3099	struct l2_bucket *l2b;
3100	pt_entry_t *ptep, pte;
3101	vm_offset_t next_bucket;
3102	u_int flags;
3103	int flush;
3104
3105	CTR4(KTR_PMAP, "pmap_protect: pmap %p sva 0x%08x eva 0x%08x prot %x",
3106	    pm, sva, eva, prot);
3107
3108	if ((prot & VM_PROT_READ) == 0) {
3109		pmap_remove(pm, sva, eva);
3110		return;
3111	}
3112
3113	if (prot & VM_PROT_WRITE) {
3114		/*
3115		 * If this is a read->write transition, just ignore it and let
3116		 * vm_fault() take care of it later.
3117		 */
3118		return;
3119	}
3120
3121	rw_wlock(&pvh_global_lock);
3122	PMAP_LOCK(pm);
3123
3124	/*
3125	 * OK, at this point, we know we're doing write-protect operation.
3126	 * If the pmap is active, write-back the range.
3127	 */
3128	pmap_dcache_wb_range(pm, sva, eva - sva, FALSE, FALSE);
3129
3130	flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
3131	flags = 0;
3132
3133	while (sva < eva) {
3134		next_bucket = L2_NEXT_BUCKET(sva);
3135		if (next_bucket > eva)
3136			next_bucket = eva;
3137
3138		l2b = pmap_get_l2_bucket(pm, sva);
3139		if (l2b == NULL) {
3140			sva = next_bucket;
3141			continue;
3142		}
3143
3144		ptep = &l2b->l2b_kva[l2pte_index(sva)];
3145
3146		while (sva < next_bucket) {
3147			if ((pte = *ptep) != 0 && (pte & L2_S_PROT_W) != 0) {
3148				struct vm_page *pg;
3149				u_int f;
3150
3151				pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3152				pte &= ~L2_S_PROT_W;
3153				*ptep = pte;
3154				PTE_SYNC(ptep);
3155
3156				if (!(pg->oflags & VPO_UNMANAGED)) {
3157					f = pmap_modify_pv(pg, pm, sva,
3158					    PVF_WRITE, 0);
3159					if (f & PVF_WRITE)
3160						vm_page_dirty(pg);
3161				} else
3162					f = 0;
3163
3164				if (flush >= 0) {
3165					flush++;
3166					flags |= f;
3167				} else
3168				if (PV_BEEN_EXECD(f))
3169					pmap_tlb_flushID_SE(pm, sva);
3170				else
3171				if (PV_BEEN_REFD(f))
3172					pmap_tlb_flushD_SE(pm, sva);
3173			}
3174
3175			sva += PAGE_SIZE;
3176			ptep++;
3177		}
3178	}
3179
3180
3181	if (flush) {
3182		if (PV_BEEN_EXECD(flags))
3183			pmap_tlb_flushID(pm);
3184		else
3185		if (PV_BEEN_REFD(flags))
3186			pmap_tlb_flushD(pm);
3187	}
3188	rw_wunlock(&pvh_global_lock);
3189
3190 	PMAP_UNLOCK(pm);
3191}
3192
3193
3194/*
3195 *	Insert the given physical page (p) at
3196 *	the specified virtual address (v) in the
3197 *	target physical map with the protection requested.
3198 *
3199 *	If specified, the page will be wired down, meaning
3200 *	that the related pte can not be reclaimed.
3201 *
3202 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3203 *	or lose information.  That is, this routine must actually
3204 *	insert this page into the given map NOW.
3205 */
3206
3207int
3208pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3209    u_int flags, int8_t psind __unused)
3210{
3211	int rv;
3212
3213	rw_wlock(&pvh_global_lock);
3214	PMAP_LOCK(pmap);
3215	rv = pmap_enter_locked(pmap, va, m, prot, flags);
3216	rw_wunlock(&pvh_global_lock);
3217 	PMAP_UNLOCK(pmap);
3218	return (rv);
3219}
3220
3221/*
3222 *	The pvh global and pmap locks must be held.
3223 */
3224static int
3225pmap_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3226    u_int flags)
3227{
3228	struct l2_bucket *l2b = NULL;
3229	struct vm_page *opg;
3230	struct pv_entry *pve = NULL;
3231	pt_entry_t *ptep, npte, opte;
3232	u_int nflags;
3233	u_int oflags;
3234	vm_paddr_t pa;
3235
3236	PMAP_ASSERT_LOCKED(pmap);
3237	rw_assert(&pvh_global_lock, RA_WLOCKED);
3238	if (va == vector_page) {
3239		pa = systempage.pv_pa;
3240		m = NULL;
3241	} else {
3242		if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
3243			VM_OBJECT_ASSERT_LOCKED(m->object);
3244		pa = VM_PAGE_TO_PHYS(m);
3245	}
3246	nflags = 0;
3247	if (prot & VM_PROT_WRITE)
3248		nflags |= PVF_WRITE;
3249	if (prot & VM_PROT_EXECUTE)
3250		nflags |= PVF_EXEC;
3251	if ((flags & PMAP_ENTER_WIRED) != 0)
3252		nflags |= PVF_WIRED;
3253	PDEBUG(1, printf("pmap_enter: pmap = %08x, va = %08x, m = %08x, prot = %x, "
3254	    "flags = %x\n", (uint32_t) pmap, va, (uint32_t) m, prot, flags));
3255
3256	if (pmap == pmap_kernel()) {
3257		l2b = pmap_get_l2_bucket(pmap, va);
3258		if (l2b == NULL)
3259			l2b = pmap_grow_l2_bucket(pmap, va);
3260	} else {
3261do_l2b_alloc:
3262		l2b = pmap_alloc_l2_bucket(pmap, va);
3263		if (l2b == NULL) {
3264			if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
3265				PMAP_UNLOCK(pmap);
3266				rw_wunlock(&pvh_global_lock);
3267				VM_WAIT;
3268				rw_wlock(&pvh_global_lock);
3269				PMAP_LOCK(pmap);
3270				goto do_l2b_alloc;
3271			}
3272			return (KERN_RESOURCE_SHORTAGE);
3273		}
3274	}
3275
3276	ptep = &l2b->l2b_kva[l2pte_index(va)];
3277
3278	opte = *ptep;
3279	npte = pa;
3280	oflags = 0;
3281	if (opte) {
3282		/*
3283		 * There is already a mapping at this address.
3284		 * If the physical address is different, lookup the
3285		 * vm_page.
3286		 */
3287		if (l2pte_pa(opte) != pa)
3288			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3289		else
3290			opg = m;
3291	} else
3292		opg = NULL;
3293
3294	if ((prot & (VM_PROT_ALL)) ||
3295	    (!m || m->md.pvh_attrs & PVF_REF)) {
3296		/*
3297		 * - The access type indicates that we don't need
3298		 *   to do referenced emulation.
3299		 * OR
3300		 * - The physical page has already been referenced
3301		 *   so no need to re-do referenced emulation here.
3302		 */
3303		npte |= L2_S_PROTO;
3304
3305		nflags |= PVF_REF;
3306
3307		if (m && ((prot & VM_PROT_WRITE) != 0 ||
3308		    (m->md.pvh_attrs & PVF_MOD))) {
3309			/*
3310			 * This is a writable mapping, and the
3311			 * page's mod state indicates it has
3312			 * already been modified. Make it
3313			 * writable from the outset.
3314			 */
3315			nflags |= PVF_MOD;
3316			if (!(m->md.pvh_attrs & PVF_MOD))
3317				vm_page_dirty(m);
3318		}
3319		if (m && opte)
3320			vm_page_aflag_set(m, PGA_REFERENCED);
3321	} else {
3322		/*
3323		 * Need to do page referenced emulation.
3324		 */
3325		npte |= L2_TYPE_INV;
3326	}
3327
3328	if (prot & VM_PROT_WRITE) {
3329		npte |= L2_S_PROT_W;
3330		if (m != NULL &&
3331		    (m->oflags & VPO_UNMANAGED) == 0)
3332			vm_page_aflag_set(m, PGA_WRITEABLE);
3333	}
3334	if (m->md.pv_memattr != VM_MEMATTR_UNCACHEABLE)
3335		npte |= pte_l2_s_cache_mode;
3336	if (m && m == opg) {
3337		/*
3338		 * We're changing the attrs of an existing mapping.
3339		 */
3340		oflags = pmap_modify_pv(m, pmap, va,
3341		    PVF_WRITE | PVF_EXEC | PVF_WIRED |
3342		    PVF_MOD | PVF_REF, nflags);
3343
3344		/*
3345		 * We may need to flush the cache if we're
3346		 * doing rw-ro...
3347		 */
3348		if (pmap_is_current(pmap) &&
3349		    (oflags & PVF_NC) == 0 &&
3350		    (opte & L2_S_PROT_W) != 0 &&
3351		    (prot & VM_PROT_WRITE) == 0 &&
3352		    (opte & L2_TYPE_MASK) != L2_TYPE_INV) {
3353			cpu_dcache_wb_range(va, PAGE_SIZE);
3354			cpu_l2cache_wb_range(va, PAGE_SIZE);
3355		}
3356	} else {
3357		/*
3358		 * New mapping, or changing the backing page
3359		 * of an existing mapping.
3360		 */
3361		if (opg) {
3362			/*
3363			 * Replacing an existing mapping with a new one.
3364			 * It is part of our managed memory so we
3365			 * must remove it from the PV list
3366			 */
3367			if ((pve = pmap_remove_pv(opg, pmap, va))) {
3368
3369			/* note for patch: the oflags/invalidation was moved
3370			 * because PG_FICTITIOUS pages could free the pve
3371			 */
3372			    oflags = pve->pv_flags;
3373			/*
3374			 * If the old mapping was valid (ref/mod
3375			 * emulation creates 'invalid' mappings
3376			 * initially) then make sure to frob
3377			 * the cache.
3378			 */
3379			    if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
3380				if (PV_BEEN_EXECD(oflags)) {
3381					pmap_idcache_wbinv_range(pmap, va,
3382					    PAGE_SIZE);
3383				} else
3384					if (PV_BEEN_REFD(oflags)) {
3385						pmap_dcache_wb_range(pmap, va,
3386						    PAGE_SIZE, TRUE,
3387						    (oflags & PVF_WRITE) == 0);
3388					}
3389			    }
3390
3391			/* free/allocate a pv_entry for UNMANAGED pages if
3392			 * this physical page is not/is already mapped.
3393			 */
3394
3395			    if (m && (m->oflags & VPO_UNMANAGED) &&
3396				  !m->md.pv_kva &&
3397				 TAILQ_EMPTY(&m->md.pv_list)) {
3398				pmap_free_pv_entry(pve);
3399				pve = NULL;
3400			    }
3401			} else if (m &&
3402				 (!(m->oflags & VPO_UNMANAGED) || m->md.pv_kva ||
3403				  !TAILQ_EMPTY(&m->md.pv_list)))
3404				pve = pmap_get_pv_entry();
3405		} else if (m &&
3406			   (!(m->oflags & VPO_UNMANAGED) || m->md.pv_kva ||
3407			   !TAILQ_EMPTY(&m->md.pv_list)))
3408			pve = pmap_get_pv_entry();
3409
3410		if (m) {
3411			if ((m->oflags & VPO_UNMANAGED)) {
3412				if (!TAILQ_EMPTY(&m->md.pv_list) ||
3413				    m->md.pv_kva) {
3414					KASSERT(pve != NULL, ("No pv"));
3415					nflags |= PVF_UNMAN;
3416					pmap_enter_pv(m, pve, pmap, va, nflags);
3417				} else
3418					m->md.pv_kva = va;
3419			} else {
3420				KASSERT(va < kmi.clean_sva ||
3421				    va >= kmi.clean_eva,
3422		("pmap_enter: managed mapping within the clean submap"));
3423 				KASSERT(pve != NULL, ("No pv"));
3424 				pmap_enter_pv(m, pve, pmap, va, nflags);
3425			}
3426		}
3427	}
3428	/*
3429	 * Make sure userland mappings get the right permissions
3430	 */
3431	if (pmap != pmap_kernel() && va != vector_page) {
3432		npte |= L2_S_PROT_U;
3433	}
3434
3435	/*
3436	 * Keep the stats up to date
3437	 */
3438	if (opte == 0) {
3439		l2b->l2b_occupancy++;
3440		pmap->pm_stats.resident_count++;
3441	}
3442
3443	/*
3444	 * If this is just a wiring change, the two PTEs will be
3445	 * identical, so there's no need to update the page table.
3446	 */
3447	if (npte != opte) {
3448		boolean_t is_cached = pmap_is_current(pmap);
3449
3450		*ptep = npte;
3451		if (is_cached) {
3452			/*
3453			 * We only need to frob the cache/tlb if this pmap
3454			 * is current
3455			 */
3456			PTE_SYNC(ptep);
3457			if (L1_IDX(va) != L1_IDX(vector_page) &&
3458			    l2pte_valid(npte)) {
3459				/*
3460				 * This mapping is likely to be accessed as
3461				 * soon as we return to userland. Fix up the
3462				 * L1 entry to avoid taking another
3463				 * page/domain fault.
3464				 */
3465				pd_entry_t *pl1pd, l1pd;
3466
3467				pl1pd = &pmap->pm_l1->l1_kva[L1_IDX(va)];
3468				l1pd = l2b->l2b_phys | L1_C_DOM(pmap->pm_domain) |
3469				    L1_C_PROTO;
3470				if (*pl1pd != l1pd) {
3471					*pl1pd = l1pd;
3472					PTE_SYNC(pl1pd);
3473				}
3474			}
3475		}
3476
3477		if (PV_BEEN_EXECD(oflags))
3478			pmap_tlb_flushID_SE(pmap, va);
3479		else if (PV_BEEN_REFD(oflags))
3480			pmap_tlb_flushD_SE(pmap, va);
3481
3482
3483		if (m)
3484			pmap_fix_cache(m, pmap, va);
3485	}
3486	return (KERN_SUCCESS);
3487}
3488
3489/*
3490 * Maps a sequence of resident pages belonging to the same object.
3491 * The sequence begins with the given page m_start.  This page is
3492 * mapped at the given virtual address start.  Each subsequent page is
3493 * mapped at a virtual address that is offset from start by the same
3494 * amount as the page is offset from m_start within the object.  The
3495 * last page in the sequence is the page with the largest offset from
3496 * m_start that can be mapped at a virtual address less than the given
3497 * virtual address end.  Not every virtual page between start and end
3498 * is mapped; only those for which a resident page exists with the
3499 * corresponding offset from m_start are mapped.
3500 */
3501void
3502pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3503    vm_page_t m_start, vm_prot_t prot)
3504{
3505	vm_page_t m;
3506	vm_pindex_t diff, psize;
3507
3508	VM_OBJECT_ASSERT_LOCKED(m_start->object);
3509
3510	psize = atop(end - start);
3511	m = m_start;
3512	rw_wlock(&pvh_global_lock);
3513	PMAP_LOCK(pmap);
3514	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3515		pmap_enter_locked(pmap, start + ptoa(diff), m, prot &
3516		    (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP);
3517		m = TAILQ_NEXT(m, listq);
3518	}
3519	rw_wunlock(&pvh_global_lock);
3520 	PMAP_UNLOCK(pmap);
3521}
3522
3523/*
3524 * this code makes some *MAJOR* assumptions:
3525 * 1. Current pmap & pmap exists.
3526 * 2. Not wired.
3527 * 3. Read access.
3528 * 4. No page table pages.
3529 * but is *MUCH* faster than pmap_enter...
3530 */
3531
3532void
3533pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3534{
3535
3536	rw_wlock(&pvh_global_lock);
3537 	PMAP_LOCK(pmap);
3538	pmap_enter_locked(pmap, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
3539	    PMAP_ENTER_NOSLEEP);
3540	rw_wunlock(&pvh_global_lock);
3541 	PMAP_UNLOCK(pmap);
3542}
3543
3544/*
3545 *	Clear the wired attribute from the mappings for the specified range of
3546 *	addresses in the given pmap.  Every valid mapping within that range
3547 *	must have the wired attribute set.  In contrast, invalid mappings
3548 *	cannot have the wired attribute set, so they are ignored.
3549 *
3550 *	XXX Wired mappings of unmanaged pages cannot be counted by this pmap
3551 *	implementation.
3552 */
3553void
3554pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3555{
3556	struct l2_bucket *l2b;
3557	pt_entry_t *ptep, pte;
3558	pv_entry_t pv;
3559	vm_offset_t next_bucket;
3560	vm_page_t m;
3561
3562	rw_wlock(&pvh_global_lock);
3563	PMAP_LOCK(pmap);
3564	while (sva < eva) {
3565		next_bucket = L2_NEXT_BUCKET(sva);
3566		if (next_bucket > eva)
3567			next_bucket = eva;
3568		l2b = pmap_get_l2_bucket(pmap, sva);
3569		if (l2b == NULL) {
3570			sva = next_bucket;
3571			continue;
3572		}
3573		for (ptep = &l2b->l2b_kva[l2pte_index(sva)]; sva < next_bucket;
3574		    sva += PAGE_SIZE, ptep++) {
3575			if ((pte = *ptep) == 0 ||
3576			    (m = PHYS_TO_VM_PAGE(l2pte_pa(pte))) == NULL ||
3577			    (m->oflags & VPO_UNMANAGED) != 0)
3578				continue;
3579			pv = pmap_find_pv(m, pmap, sva);
3580			if ((pv->pv_flags & PVF_WIRED) == 0)
3581				panic("pmap_unwire: pv %p isn't wired", pv);
3582			pv->pv_flags &= ~PVF_WIRED;
3583			pmap->pm_stats.wired_count--;
3584		}
3585	}
3586	rw_wunlock(&pvh_global_lock);
3587 	PMAP_UNLOCK(pmap);
3588}
3589
3590
3591/*
3592 *	Copy the range specified by src_addr/len
3593 *	from the source map to the range dst_addr/len
3594 *	in the destination map.
3595 *
3596 *	This routine is only advisory and need not do anything.
3597 */
3598void
3599pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
3600    vm_size_t len, vm_offset_t src_addr)
3601{
3602}
3603
3604
3605/*
3606 *	Routine:	pmap_extract
3607 *	Function:
3608 *		Extract the physical page address associated
3609 *		with the given map/virtual_address pair.
3610 */
3611vm_paddr_t
3612pmap_extract(pmap_t pmap, vm_offset_t va)
3613{
3614	vm_paddr_t pa;
3615
3616	PMAP_LOCK(pmap);
3617	pa = pmap_extract_locked(pmap, va);
3618	PMAP_UNLOCK(pmap);
3619	return (pa);
3620}
3621
3622static vm_paddr_t
3623pmap_extract_locked(pmap_t pmap, vm_offset_t va)
3624{
3625	struct l2_dtable *l2;
3626	pd_entry_t l1pd;
3627	pt_entry_t *ptep, pte;
3628	vm_paddr_t pa;
3629	u_int l1idx;
3630
3631	if (pmap != kernel_pmap)
3632		PMAP_ASSERT_LOCKED(pmap);
3633	l1idx = L1_IDX(va);
3634	l1pd = pmap->pm_l1->l1_kva[l1idx];
3635	if (l1pte_section_p(l1pd)) {
3636		/*
3637		 * These should only happen for the kernel pmap.
3638		 */
3639		KASSERT(pmap == kernel_pmap, ("unexpected section"));
3640		/* XXX: what to do about the bits > 32 ? */
3641		if (l1pd & L1_S_SUPERSEC)
3642			pa = (l1pd & L1_SUP_FRAME) | (va & L1_SUP_OFFSET);
3643		else
3644			pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3645	} else {
3646		/*
3647		 * Note that we can't rely on the validity of the L1
3648		 * descriptor as an indication that a mapping exists.
3649		 * We have to look it up in the L2 dtable.
3650		 */
3651		l2 = pmap->pm_l2[L2_IDX(l1idx)];
3652		if (l2 == NULL ||
3653		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL)
3654			return (0);
3655		pte = ptep[l2pte_index(va)];
3656		if (pte == 0)
3657			return (0);
3658		switch (pte & L2_TYPE_MASK) {
3659		case L2_TYPE_L:
3660			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3661			break;
3662		default:
3663			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3664			break;
3665		}
3666	}
3667	return (pa);
3668}
3669
3670/*
3671 * Atomically extract and hold the physical page with the given
3672 * pmap and virtual address pair if that mapping permits the given
3673 * protection.
3674 *
3675 */
3676vm_page_t
3677pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3678{
3679	struct l2_dtable *l2;
3680	pd_entry_t l1pd;
3681	pt_entry_t *ptep, pte;
3682	vm_paddr_t pa, paddr;
3683	vm_page_t m = NULL;
3684	u_int l1idx;
3685	l1idx = L1_IDX(va);
3686	paddr = 0;
3687
3688 	PMAP_LOCK(pmap);
3689retry:
3690	l1pd = pmap->pm_l1->l1_kva[l1idx];
3691	if (l1pte_section_p(l1pd)) {
3692		/*
3693		 * These should only happen for pmap_kernel()
3694		 */
3695		KASSERT(pmap == pmap_kernel(), ("huh"));
3696		/* XXX: what to do about the bits > 32 ? */
3697		if (l1pd & L1_S_SUPERSEC)
3698			pa = (l1pd & L1_SUP_FRAME) | (va & L1_SUP_OFFSET);
3699		else
3700			pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3701		if (vm_page_pa_tryrelock(pmap, pa & PG_FRAME, &paddr))
3702			goto retry;
3703		if (l1pd & L1_S_PROT_W || (prot & VM_PROT_WRITE) == 0) {
3704			m = PHYS_TO_VM_PAGE(pa);
3705			vm_page_hold(m);
3706		}
3707
3708	} else {
3709		/*
3710		 * Note that we can't rely on the validity of the L1
3711		 * descriptor as an indication that a mapping exists.
3712		 * We have to look it up in the L2 dtable.
3713		 */
3714		l2 = pmap->pm_l2[L2_IDX(l1idx)];
3715
3716		if (l2 == NULL ||
3717		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3718		 	PMAP_UNLOCK(pmap);
3719			return (NULL);
3720		}
3721
3722		ptep = &ptep[l2pte_index(va)];
3723		pte = *ptep;
3724
3725		if (pte == 0) {
3726		 	PMAP_UNLOCK(pmap);
3727			return (NULL);
3728		}
3729		if (pte & L2_S_PROT_W || (prot & VM_PROT_WRITE) == 0) {
3730			switch (pte & L2_TYPE_MASK) {
3731			case L2_TYPE_L:
3732				pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3733				break;
3734
3735			default:
3736				pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3737				break;
3738			}
3739			if (vm_page_pa_tryrelock(pmap, pa & PG_FRAME, &paddr))
3740				goto retry;
3741			m = PHYS_TO_VM_PAGE(pa);
3742			vm_page_hold(m);
3743		}
3744	}
3745
3746 	PMAP_UNLOCK(pmap);
3747	PA_UNLOCK_COND(paddr);
3748	return (m);
3749}
3750
3751/*
3752 * Initialize a preallocated and zeroed pmap structure,
3753 * such as one in a vmspace structure.
3754 */
3755
3756int
3757pmap_pinit(pmap_t pmap)
3758{
3759	PDEBUG(1, printf("pmap_pinit: pmap = %08x\n", (uint32_t) pmap));
3760
3761	pmap_alloc_l1(pmap);
3762	bzero(pmap->pm_l2, sizeof(pmap->pm_l2));
3763
3764	CPU_ZERO(&pmap->pm_active);
3765
3766	TAILQ_INIT(&pmap->pm_pvlist);
3767	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
3768	pmap->pm_stats.resident_count = 1;
3769	if (vector_page < KERNBASE) {
3770		pmap_enter(pmap, vector_page, PHYS_TO_VM_PAGE(systempage.pv_pa),
3771		    VM_PROT_READ, PMAP_ENTER_WIRED | VM_PROT_READ, 0);
3772	}
3773	return (1);
3774}
3775
3776
3777/***************************************************
3778 * page management routines.
3779 ***************************************************/
3780
3781
3782static void
3783pmap_free_pv_entry(pv_entry_t pv)
3784{
3785	pv_entry_count--;
3786	uma_zfree(pvzone, pv);
3787}
3788
3789
3790/*
3791 * get a new pv_entry, allocating a block from the system
3792 * when needed.
3793 * the memory allocation is performed bypassing the malloc code
3794 * because of the possibility of allocations at interrupt time.
3795 */
3796static pv_entry_t
3797pmap_get_pv_entry(void)
3798{
3799	pv_entry_t ret_value;
3800
3801	pv_entry_count++;
3802	if (pv_entry_count > pv_entry_high_water)
3803		pagedaemon_wakeup();
3804	ret_value = uma_zalloc(pvzone, M_NOWAIT);
3805	return ret_value;
3806}
3807
3808/*
3809 *	Remove the given range of addresses from the specified map.
3810 *
3811 *	It is assumed that the start and end are properly
3812 *	rounded to the page size.
3813 */
3814#define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
3815void
3816pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
3817{
3818	struct l2_bucket *l2b;
3819	vm_offset_t next_bucket;
3820	pt_entry_t *ptep;
3821	u_int total;
3822	u_int mappings, is_exec, is_refd;
3823	int flushall = 0;
3824
3825
3826	/*
3827	 * we lock in the pmap => pv_head direction
3828	 */
3829
3830	rw_wlock(&pvh_global_lock);
3831	PMAP_LOCK(pm);
3832	total = 0;
3833	while (sva < eva) {
3834		/*
3835		 * Do one L2 bucket's worth at a time.
3836		 */
3837		next_bucket = L2_NEXT_BUCKET(sva);
3838		if (next_bucket > eva)
3839			next_bucket = eva;
3840
3841		l2b = pmap_get_l2_bucket(pm, sva);
3842		if (l2b == NULL) {
3843			sva = next_bucket;
3844			continue;
3845		}
3846
3847		ptep = &l2b->l2b_kva[l2pte_index(sva)];
3848		mappings = 0;
3849
3850		while (sva < next_bucket) {
3851			struct vm_page *pg;
3852			pt_entry_t pte;
3853			vm_paddr_t pa;
3854
3855			pte = *ptep;
3856
3857			if (pte == 0) {
3858				/*
3859				 * Nothing here, move along
3860				 */
3861				sva += PAGE_SIZE;
3862				ptep++;
3863				continue;
3864			}
3865
3866			pm->pm_stats.resident_count--;
3867			pa = l2pte_pa(pte);
3868			is_exec = 0;
3869			is_refd = 1;
3870
3871			/*
3872			 * Update flags. In a number of circumstances,
3873			 * we could cluster a lot of these and do a
3874			 * number of sequential pages in one go.
3875			 */
3876			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3877				struct pv_entry *pve;
3878
3879				pve = pmap_remove_pv(pg, pm, sva);
3880				if (pve) {
3881					is_exec = PV_BEEN_EXECD(pve->pv_flags);
3882					is_refd = PV_BEEN_REFD(pve->pv_flags);
3883					pmap_free_pv_entry(pve);
3884				}
3885			}
3886
3887			if (l2pte_valid(pte) && pmap_is_current(pm)) {
3888				if (total < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3889					total++;
3890			   		if (is_exec) {
3891        					cpu_idcache_wbinv_range(sva,
3892						    PAGE_SIZE);
3893						cpu_l2cache_wbinv_range(sva,
3894						    PAGE_SIZE);
3895						cpu_tlb_flushID_SE(sva);
3896			   		} else if (is_refd) {
3897						cpu_dcache_wbinv_range(sva,
3898						    PAGE_SIZE);
3899						cpu_l2cache_wbinv_range(sva,
3900						    PAGE_SIZE);
3901						cpu_tlb_flushD_SE(sva);
3902					}
3903				} else if (total == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3904					/* flushall will also only get set for
3905					 * for a current pmap
3906					 */
3907					cpu_idcache_wbinv_all();
3908					cpu_l2cache_wbinv_all();
3909					flushall = 1;
3910					total++;
3911				}
3912			}
3913			*ptep = 0;
3914			PTE_SYNC(ptep);
3915
3916			sva += PAGE_SIZE;
3917			ptep++;
3918			mappings++;
3919		}
3920
3921		pmap_free_l2_bucket(pm, l2b, mappings);
3922	}
3923
3924	rw_wunlock(&pvh_global_lock);
3925	if (flushall)
3926		cpu_tlb_flushID();
3927 	PMAP_UNLOCK(pm);
3928}
3929
3930/*
3931 * pmap_zero_page()
3932 *
3933 * Zero a given physical page by mapping it at a page hook point.
3934 * In doing the zero page op, the page we zero is mapped cachable, as with
3935 * StrongARM accesses to non-cached pages are non-burst making writing
3936 * _any_ bulk data very slow.
3937 */
3938#if ARM_MMU_GENERIC != 0 || defined(CPU_XSCALE_CORE3)
3939void
3940pmap_zero_page_generic(vm_paddr_t phys, int off, int size)
3941{
3942
3943	if (_arm_bzero && size >= _min_bzero_size &&
3944	    _arm_bzero((void *)(phys + off), size, IS_PHYSICAL) == 0)
3945		return;
3946
3947	mtx_lock(&cmtx);
3948	/*
3949	 * Hook in the page, zero it, invalidate the TLB as needed.
3950	 *
3951	 * Note the temporary zero-page mapping must be a non-cached page in
3952	 * order to work without corruption when write-allocate is enabled.
3953	 */
3954	*cdst_pte = L2_S_PROTO | phys | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
3955	PTE_SYNC(cdst_pte);
3956	cpu_tlb_flushD_SE(cdstp);
3957	cpu_cpwait();
3958	if (off || size != PAGE_SIZE)
3959		bzero((void *)(cdstp + off), size);
3960	else
3961		bzero_page(cdstp);
3962
3963	mtx_unlock(&cmtx);
3964}
3965#endif /* ARM_MMU_GENERIC != 0 */
3966
3967#if ARM_MMU_XSCALE == 1
3968void
3969pmap_zero_page_xscale(vm_paddr_t phys, int off, int size)
3970{
3971
3972	if (_arm_bzero && size >= _min_bzero_size &&
3973	    _arm_bzero((void *)(phys + off), size, IS_PHYSICAL) == 0)
3974		return;
3975
3976	mtx_lock(&cmtx);
3977	/*
3978	 * Hook in the page, zero it, and purge the cache for that
3979	 * zeroed page. Invalidate the TLB as needed.
3980	 */
3981	*cdst_pte = L2_S_PROTO | phys |
3982	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
3983	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
3984	PTE_SYNC(cdst_pte);
3985	cpu_tlb_flushD_SE(cdstp);
3986	cpu_cpwait();
3987	if (off || size != PAGE_SIZE)
3988		bzero((void *)(cdstp + off), size);
3989	else
3990		bzero_page(cdstp);
3991	mtx_unlock(&cmtx);
3992	xscale_cache_clean_minidata();
3993}
3994
3995/*
3996 * Change the PTEs for the specified kernel mappings such that they
3997 * will use the mini data cache instead of the main data cache.
3998 */
3999void
4000pmap_use_minicache(vm_offset_t va, vm_size_t size)
4001{
4002	struct l2_bucket *l2b;
4003	pt_entry_t *ptep, *sptep, pte;
4004	vm_offset_t next_bucket, eva;
4005
4006#if (ARM_NMMUS > 1) || defined(CPU_XSCALE_CORE3)
4007	if (xscale_use_minidata == 0)
4008		return;
4009#endif
4010
4011	eva = va + size;
4012
4013	while (va < eva) {
4014		next_bucket = L2_NEXT_BUCKET(va);
4015		if (next_bucket > eva)
4016			next_bucket = eva;
4017
4018		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4019
4020		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
4021
4022		while (va < next_bucket) {
4023			pte = *ptep;
4024			if (!l2pte_minidata(pte)) {
4025				cpu_dcache_wbinv_range(va, PAGE_SIZE);
4026				cpu_tlb_flushD_SE(va);
4027				*ptep = pte & ~L2_B;
4028			}
4029			ptep++;
4030			va += PAGE_SIZE;
4031		}
4032		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
4033	}
4034	cpu_cpwait();
4035}
4036#endif /* ARM_MMU_XSCALE == 1 */
4037
4038/*
4039 *	pmap_zero_page zeros the specified hardware page by mapping
4040 *	the page into KVM and using bzero to clear its contents.
4041 */
4042void
4043pmap_zero_page(vm_page_t m)
4044{
4045	pmap_zero_page_func(VM_PAGE_TO_PHYS(m), 0, PAGE_SIZE);
4046}
4047
4048
4049/*
4050 *	pmap_zero_page_area zeros the specified hardware page by mapping
4051 *	the page into KVM and using bzero to clear its contents.
4052 *
4053 *	off and size may not cover an area beyond a single hardware page.
4054 */
4055void
4056pmap_zero_page_area(vm_page_t m, int off, int size)
4057{
4058
4059	pmap_zero_page_func(VM_PAGE_TO_PHYS(m), off, size);
4060}
4061
4062
4063/*
4064 *	pmap_zero_page_idle zeros the specified hardware page by mapping
4065 *	the page into KVM and using bzero to clear its contents.  This
4066 *	is intended to be called from the vm_pagezero process only and
4067 *	outside of Giant.
4068 */
4069void
4070pmap_zero_page_idle(vm_page_t m)
4071{
4072
4073	pmap_zero_page(m);
4074}
4075
4076#if 0
4077/*
4078 * pmap_clean_page()
4079 *
4080 * This is a local function used to work out the best strategy to clean
4081 * a single page referenced by its entry in the PV table. It should be used by
4082 * pmap_copy_page, pmap_zero page and maybe some others later on.
4083 *
4084 * Its policy is effectively:
4085 *  o If there are no mappings, we don't bother doing anything with the cache.
4086 *  o If there is one mapping, we clean just that page.
4087 *  o If there are multiple mappings, we clean the entire cache.
4088 *
4089 * So that some functions can be further optimised, it returns 0 if it didn't
4090 * clean the entire cache, or 1 if it did.
4091 *
4092 * XXX One bug in this routine is that if the pv_entry has a single page
4093 * mapped at 0x00000000 a whole cache clean will be performed rather than
4094 * just the 1 page. Since this should not occur in everyday use and if it does
4095 * it will just result in not the most efficient clean for the page.
4096 *
4097 * We don't yet use this function but may want to.
4098 */
4099static int
4100pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
4101{
4102	pmap_t pm, pm_to_clean = NULL;
4103	struct pv_entry *npv;
4104	u_int cache_needs_cleaning = 0;
4105	u_int flags = 0;
4106	vm_offset_t page_to_clean = 0;
4107
4108	if (pv == NULL) {
4109		/* nothing mapped in so nothing to flush */
4110		return (0);
4111	}
4112
4113	/*
4114	 * Since we flush the cache each time we change to a different
4115	 * user vmspace, we only need to flush the page if it is in the
4116	 * current pmap.
4117	 */
4118	if (curthread)
4119		pm = vmspace_pmap(curproc->p_vmspace);
4120	else
4121		pm = pmap_kernel();
4122
4123	for (npv = pv; npv; npv = TAILQ_NEXT(npv, pv_list)) {
4124		if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
4125			flags |= npv->pv_flags;
4126			/*
4127			 * The page is mapped non-cacheable in
4128			 * this map.  No need to flush the cache.
4129			 */
4130			if (npv->pv_flags & PVF_NC) {
4131#ifdef DIAGNOSTIC
4132				if (cache_needs_cleaning)
4133					panic("pmap_clean_page: "
4134					    "cache inconsistency");
4135#endif
4136				break;
4137			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
4138				continue;
4139			if (cache_needs_cleaning) {
4140				page_to_clean = 0;
4141				break;
4142			} else {
4143				page_to_clean = npv->pv_va;
4144				pm_to_clean = npv->pv_pmap;
4145			}
4146			cache_needs_cleaning = 1;
4147		}
4148	}
4149	if (page_to_clean) {
4150		if (PV_BEEN_EXECD(flags))
4151			pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
4152			    PAGE_SIZE);
4153		else
4154			pmap_dcache_wb_range(pm_to_clean, page_to_clean,
4155			    PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
4156	} else if (cache_needs_cleaning) {
4157		if (PV_BEEN_EXECD(flags))
4158			pmap_idcache_wbinv_all(pm);
4159		else
4160			pmap_dcache_wbinv_all(pm);
4161		return (1);
4162	}
4163	return (0);
4164}
4165#endif
4166
4167/*
4168 *	pmap_copy_page copies the specified (machine independent)
4169 *	page by mapping the page into virtual memory and using
4170 *	bcopy to copy the page, one machine dependent page at a
4171 *	time.
4172 */
4173
4174/*
4175 * pmap_copy_page()
4176 *
4177 * Copy one physical page into another, by mapping the pages into
4178 * hook points. The same comment regarding cachability as in
4179 * pmap_zero_page also applies here.
4180 */
4181#if ARM_MMU_GENERIC != 0 || defined (CPU_XSCALE_CORE3)
4182void
4183pmap_copy_page_generic(vm_paddr_t src, vm_paddr_t dst)
4184{
4185#if 0
4186	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4187#endif
4188
4189	/*
4190	 * Clean the source page.  Hold the source page's lock for
4191	 * the duration of the copy so that no other mappings can
4192	 * be created while we have a potentially aliased mapping.
4193	 */
4194#if 0
4195	/*
4196	 * XXX: Not needed while we call cpu_dcache_wbinv_all() in
4197	 * pmap_copy_page().
4198	 */
4199	(void) pmap_clean_page(TAILQ_FIRST(&src_pg->md.pv_list), TRUE);
4200#endif
4201	/*
4202	 * Map the pages into the page hook points, copy them, and purge
4203	 * the cache for the appropriate page. Invalidate the TLB
4204	 * as required.
4205	 */
4206	mtx_lock(&cmtx);
4207	*csrc_pte = L2_S_PROTO | src |
4208	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
4209	PTE_SYNC(csrc_pte);
4210	*cdst_pte = L2_S_PROTO | dst |
4211	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4212	PTE_SYNC(cdst_pte);
4213	cpu_tlb_flushD_SE(csrcp);
4214	cpu_tlb_flushD_SE(cdstp);
4215	cpu_cpwait();
4216	bcopy_page(csrcp, cdstp);
4217	mtx_unlock(&cmtx);
4218	cpu_dcache_inv_range(csrcp, PAGE_SIZE);
4219	cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
4220	cpu_l2cache_inv_range(csrcp, PAGE_SIZE);
4221	cpu_l2cache_wbinv_range(cdstp, PAGE_SIZE);
4222}
4223
4224void
4225pmap_copy_page_offs_generic(vm_paddr_t a_phys, vm_offset_t a_offs,
4226    vm_paddr_t b_phys, vm_offset_t b_offs, int cnt)
4227{
4228
4229	mtx_lock(&cmtx);
4230	*csrc_pte = L2_S_PROTO | a_phys |
4231	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
4232	PTE_SYNC(csrc_pte);
4233	*cdst_pte = L2_S_PROTO | b_phys |
4234	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4235	PTE_SYNC(cdst_pte);
4236	cpu_tlb_flushD_SE(csrcp);
4237	cpu_tlb_flushD_SE(cdstp);
4238	cpu_cpwait();
4239	bcopy((char *)csrcp + a_offs, (char *)cdstp + b_offs, cnt);
4240	mtx_unlock(&cmtx);
4241	cpu_dcache_inv_range(csrcp + a_offs, cnt);
4242	cpu_dcache_wbinv_range(cdstp + b_offs, cnt);
4243	cpu_l2cache_inv_range(csrcp + a_offs, cnt);
4244	cpu_l2cache_wbinv_range(cdstp + b_offs, cnt);
4245}
4246#endif /* ARM_MMU_GENERIC != 0 */
4247
4248#if ARM_MMU_XSCALE == 1
4249void
4250pmap_copy_page_xscale(vm_paddr_t src, vm_paddr_t dst)
4251{
4252#if 0
4253	/* XXX: Only needed for pmap_clean_page(), which is commented out. */
4254	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4255#endif
4256
4257	/*
4258	 * Clean the source page.  Hold the source page's lock for
4259	 * the duration of the copy so that no other mappings can
4260	 * be created while we have a potentially aliased mapping.
4261	 */
4262#if 0
4263	/*
4264	 * XXX: Not needed while we call cpu_dcache_wbinv_all() in
4265	 * pmap_copy_page().
4266	 */
4267	(void) pmap_clean_page(TAILQ_FIRST(&src_pg->md.pv_list), TRUE);
4268#endif
4269	/*
4270	 * Map the pages into the page hook points, copy them, and purge
4271	 * the cache for the appropriate page. Invalidate the TLB
4272	 * as required.
4273	 */
4274	mtx_lock(&cmtx);
4275	*csrc_pte = L2_S_PROTO | src |
4276	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4277	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
4278	PTE_SYNC(csrc_pte);
4279	*cdst_pte = L2_S_PROTO | dst |
4280	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4281	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
4282	PTE_SYNC(cdst_pte);
4283	cpu_tlb_flushD_SE(csrcp);
4284	cpu_tlb_flushD_SE(cdstp);
4285	cpu_cpwait();
4286	bcopy_page(csrcp, cdstp);
4287	mtx_unlock(&cmtx);
4288	xscale_cache_clean_minidata();
4289}
4290
4291void
4292pmap_copy_page_offs_xscale(vm_paddr_t a_phys, vm_offset_t a_offs,
4293    vm_paddr_t b_phys, vm_offset_t b_offs, int cnt)
4294{
4295
4296	mtx_lock(&cmtx);
4297	*csrc_pte = L2_S_PROTO | a_phys |
4298	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4299	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
4300	PTE_SYNC(csrc_pte);
4301	*cdst_pte = L2_S_PROTO | b_phys |
4302	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4303	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
4304	PTE_SYNC(cdst_pte);
4305	cpu_tlb_flushD_SE(csrcp);
4306	cpu_tlb_flushD_SE(cdstp);
4307	cpu_cpwait();
4308	bcopy((char *)csrcp + a_offs, (char *)cdstp + b_offs, cnt);
4309	mtx_unlock(&cmtx);
4310	xscale_cache_clean_minidata();
4311}
4312#endif /* ARM_MMU_XSCALE == 1 */
4313
4314void
4315pmap_copy_page(vm_page_t src, vm_page_t dst)
4316{
4317
4318	cpu_dcache_wbinv_all();
4319	cpu_l2cache_wbinv_all();
4320	if (_arm_memcpy && PAGE_SIZE >= _min_memcpy_size &&
4321	    _arm_memcpy((void *)VM_PAGE_TO_PHYS(dst),
4322	    (void *)VM_PAGE_TO_PHYS(src), PAGE_SIZE, IS_PHYSICAL) == 0)
4323		return;
4324	pmap_copy_page_func(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
4325}
4326
4327/*
4328 * We have code to do unmapped I/O. However, it isn't quite right and
4329 * causes un-page-aligned I/O to devices to fail (most notably newfs
4330 * or fsck). We give up a little performance to not allow unmapped I/O
4331 * to gain stability.
4332 */
4333int unmapped_buf_allowed = 0;
4334
4335void
4336pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
4337    vm_offset_t b_offset, int xfersize)
4338{
4339	vm_page_t a_pg, b_pg;
4340	vm_offset_t a_pg_offset, b_pg_offset;
4341	int cnt;
4342
4343	cpu_dcache_wbinv_all();
4344	cpu_l2cache_wbinv_all();
4345	while (xfersize > 0) {
4346		a_pg = ma[a_offset >> PAGE_SHIFT];
4347		a_pg_offset = a_offset & PAGE_MASK;
4348		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
4349		b_pg = mb[b_offset >> PAGE_SHIFT];
4350		b_pg_offset = b_offset & PAGE_MASK;
4351		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
4352		pmap_copy_page_offs_func(VM_PAGE_TO_PHYS(a_pg), a_pg_offset,
4353		    VM_PAGE_TO_PHYS(b_pg), b_pg_offset, cnt);
4354		xfersize -= cnt;
4355		a_offset += cnt;
4356		b_offset += cnt;
4357	}
4358}
4359
4360/*
4361 * this routine returns true if a physical page resides
4362 * in the given pmap.
4363 */
4364boolean_t
4365pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4366{
4367	pv_entry_t pv;
4368	int loops = 0;
4369	boolean_t rv;
4370
4371	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4372	    ("pmap_page_exists_quick: page %p is not managed", m));
4373	rv = FALSE;
4374	rw_wlock(&pvh_global_lock);
4375	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4376	    	if (pv->pv_pmap == pmap) {
4377			rv = TRUE;
4378			break;
4379	    	}
4380		loops++;
4381		if (loops >= 16)
4382			break;
4383	}
4384	rw_wunlock(&pvh_global_lock);
4385	return (rv);
4386}
4387
4388/*
4389 *	pmap_page_wired_mappings:
4390 *
4391 *	Return the number of managed mappings to the given physical page
4392 *	that are wired.
4393 */
4394int
4395pmap_page_wired_mappings(vm_page_t m)
4396{
4397	pv_entry_t pv;
4398	int count;
4399
4400	count = 0;
4401	if ((m->oflags & VPO_UNMANAGED) != 0)
4402		return (count);
4403	rw_wlock(&pvh_global_lock);
4404	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
4405		if ((pv->pv_flags & PVF_WIRED) != 0)
4406			count++;
4407	rw_wunlock(&pvh_global_lock);
4408	return (count);
4409}
4410
4411/*
4412 *	This function is advisory.
4413 */
4414void
4415pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
4416{
4417}
4418
4419/*
4420 *	pmap_ts_referenced:
4421 *
4422 *	Return the count of reference bits for a page, clearing all of them.
4423 */
4424int
4425pmap_ts_referenced(vm_page_t m)
4426{
4427
4428	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4429	    ("pmap_ts_referenced: page %p is not managed", m));
4430	return (pmap_clearbit(m, PVF_REF));
4431}
4432
4433
4434boolean_t
4435pmap_is_modified(vm_page_t m)
4436{
4437
4438	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4439	    ("pmap_is_modified: page %p is not managed", m));
4440	if (m->md.pvh_attrs & PVF_MOD)
4441		return (TRUE);
4442
4443	return(FALSE);
4444}
4445
4446
4447/*
4448 *	Clear the modify bits on the specified physical page.
4449 */
4450void
4451pmap_clear_modify(vm_page_t m)
4452{
4453
4454	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4455	    ("pmap_clear_modify: page %p is not managed", m));
4456	VM_OBJECT_ASSERT_WLOCKED(m->object);
4457	KASSERT(!vm_page_xbusied(m),
4458	    ("pmap_clear_modify: page %p is exclusive busied", m));
4459
4460	/*
4461	 * If the page is not PGA_WRITEABLE, then no mappings can be modified.
4462	 * If the object containing the page is locked and the page is not
4463	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
4464	 */
4465	if ((m->aflags & PGA_WRITEABLE) == 0)
4466		return;
4467	if (m->md.pvh_attrs & PVF_MOD)
4468		pmap_clearbit(m, PVF_MOD);
4469}
4470
4471
4472/*
4473 *	pmap_is_referenced:
4474 *
4475 *	Return whether or not the specified physical page was referenced
4476 *	in any physical maps.
4477 */
4478boolean_t
4479pmap_is_referenced(vm_page_t m)
4480{
4481
4482	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4483	    ("pmap_is_referenced: page %p is not managed", m));
4484	return ((m->md.pvh_attrs & PVF_REF) != 0);
4485}
4486
4487
4488/*
4489 * Clear the write and modified bits in each of the given page's mappings.
4490 */
4491void
4492pmap_remove_write(vm_page_t m)
4493{
4494
4495	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4496	    ("pmap_remove_write: page %p is not managed", m));
4497
4498	/*
4499	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
4500	 * set by another thread while the object is locked.  Thus,
4501	 * if PGA_WRITEABLE is clear, no page table entries need updating.
4502	 */
4503	VM_OBJECT_ASSERT_WLOCKED(m->object);
4504	if (vm_page_xbusied(m) || (m->aflags & PGA_WRITEABLE) != 0)
4505		pmap_clearbit(m, PVF_WRITE);
4506}
4507
4508
4509/*
4510 * perform the pmap work for mincore
4511 */
4512int
4513pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
4514{
4515	struct l2_bucket *l2b;
4516	pt_entry_t *ptep, pte;
4517	vm_paddr_t pa;
4518	vm_page_t m;
4519	int val;
4520	boolean_t managed;
4521
4522	PMAP_LOCK(pmap);
4523retry:
4524	l2b = pmap_get_l2_bucket(pmap, addr);
4525        if (l2b == NULL) {
4526                val = 0;
4527                goto out;
4528        }
4529	ptep = &l2b->l2b_kva[l2pte_index(addr)];
4530	pte = *ptep;
4531	if (!l2pte_valid(pte)) {
4532		val = 0;
4533		goto out;
4534	}
4535	val = MINCORE_INCORE;
4536	if (pte & L2_S_PROT_W)
4537		val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4538        managed = false;
4539	pa = l2pte_pa(pte);
4540        m = PHYS_TO_VM_PAGE(pa);
4541        if (m != NULL && !(m->oflags & VPO_UNMANAGED))
4542                managed = true;
4543	if (managed) {
4544		/*
4545		 * The ARM pmap tries to maintain a per-mapping
4546		 * reference bit.  The trouble is that it's kept in
4547		 * the PV entry, not the PTE, so it's costly to access
4548		 * here.  You would need to acquire the pvh global
4549		 * lock, call pmap_find_pv(), and introduce a custom
4550		 * version of vm_page_pa_tryrelock() that releases and
4551		 * reacquires the pvh global lock.  In the end, I
4552		 * doubt it's worthwhile.  This may falsely report
4553		 * the given address as referenced.
4554		 */
4555		if ((m->md.pvh_attrs & PVF_REF) != 0)
4556			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4557	}
4558	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
4559	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
4560		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
4561		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
4562			goto retry;
4563	} else
4564out:
4565		PA_UNLOCK_COND(*locked_pa);
4566	PMAP_UNLOCK(pmap);
4567	return (val);
4568}
4569
4570
4571void
4572pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4573{
4574}
4575
4576
4577/*
4578 *	Increase the starting virtual address of the given mapping if a
4579 *	different alignment might result in more superpage mappings.
4580 */
4581void
4582pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4583    vm_offset_t *addr, vm_size_t size)
4584{
4585}
4586
4587#define BOOTSTRAP_DEBUG
4588
4589/*
4590 * pmap_map_section:
4591 *
4592 *	Create a single section mapping.
4593 */
4594void
4595pmap_map_section(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa,
4596    int prot, int cache)
4597{
4598	pd_entry_t *pde = (pd_entry_t *) l1pt;
4599	pd_entry_t fl;
4600
4601	KASSERT(((va | pa) & L1_S_OFFSET) == 0, ("ouin2"));
4602
4603	switch (cache) {
4604	case PTE_NOCACHE:
4605	default:
4606		fl = 0;
4607		break;
4608
4609	case PTE_CACHE:
4610		fl = pte_l1_s_cache_mode;
4611		break;
4612
4613	case PTE_PAGETABLE:
4614		fl = pte_l1_s_cache_mode_pt;
4615		break;
4616	}
4617
4618	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
4619	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
4620	PTE_SYNC(&pde[va >> L1_S_SHIFT]);
4621
4622}
4623
4624/*
4625 * pmap_link_l2pt:
4626 *
4627 *	Link the L2 page table specified by l2pv.pv_pa into the L1
4628 *	page table at the slot for "va".
4629 */
4630void
4631pmap_link_l2pt(vm_offset_t l1pt, vm_offset_t va, struct pv_addr *l2pv)
4632{
4633	pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
4634	u_int slot = va >> L1_S_SHIFT;
4635
4636	proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
4637
4638#ifdef VERBOSE_INIT_ARM
4639	printf("pmap_link_l2pt: pa=0x%x va=0x%x\n", l2pv->pv_pa, l2pv->pv_va);
4640#endif
4641
4642	pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
4643
4644	PTE_SYNC(&pde[slot]);
4645
4646	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
4647
4648
4649}
4650
4651/*
4652 * pmap_map_entry
4653 *
4654 * 	Create a single page mapping.
4655 */
4656void
4657pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
4658    int cache)
4659{
4660	pd_entry_t *pde = (pd_entry_t *) l1pt;
4661	pt_entry_t fl;
4662	pt_entry_t *pte;
4663
4664	KASSERT(((va | pa) & PAGE_MASK) == 0, ("ouin"));
4665
4666	switch (cache) {
4667	case PTE_NOCACHE:
4668	default:
4669		fl = 0;
4670		break;
4671
4672	case PTE_CACHE:
4673		fl = pte_l2_s_cache_mode;
4674		break;
4675
4676	case PTE_PAGETABLE:
4677		fl = pte_l2_s_cache_mode_pt;
4678		break;
4679	}
4680
4681	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
4682		panic("pmap_map_entry: no L2 table for VA 0x%08x", va);
4683
4684	pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4685
4686	if (pte == NULL)
4687		panic("pmap_map_entry: can't find L2 table for VA 0x%08x", va);
4688
4689	pte[l2pte_index(va)] =
4690	    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
4691	PTE_SYNC(&pte[l2pte_index(va)]);
4692}
4693
4694/*
4695 * pmap_map_chunk:
4696 *
4697 *	Map a chunk of memory using the most efficient mappings
4698 *	possible (section. large page, small page) into the
4699 *	provided L1 and L2 tables at the specified virtual address.
4700 */
4701vm_size_t
4702pmap_map_chunk(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa,
4703    vm_size_t size, int prot, int cache)
4704{
4705	pd_entry_t *pde = (pd_entry_t *) l1pt;
4706	pt_entry_t *pte, f1, f2s, f2l;
4707	vm_size_t resid;
4708	int i;
4709
4710	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
4711
4712	if (l1pt == 0)
4713		panic("pmap_map_chunk: no L1 table provided");
4714
4715#ifdef VERBOSE_INIT_ARM
4716	printf("pmap_map_chunk: pa=0x%x va=0x%x size=0x%x resid=0x%x "
4717	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
4718#endif
4719
4720	switch (cache) {
4721	case PTE_NOCACHE:
4722	default:
4723		f1 = 0;
4724		f2l = 0;
4725		f2s = 0;
4726		break;
4727
4728	case PTE_CACHE:
4729		f1 = pte_l1_s_cache_mode;
4730		f2l = pte_l2_l_cache_mode;
4731		f2s = pte_l2_s_cache_mode;
4732		break;
4733
4734	case PTE_PAGETABLE:
4735		f1 = pte_l1_s_cache_mode_pt;
4736		f2l = pte_l2_l_cache_mode_pt;
4737		f2s = pte_l2_s_cache_mode_pt;
4738		break;
4739	}
4740
4741	size = resid;
4742
4743	while (resid > 0) {
4744		/* See if we can use a section mapping. */
4745		if (L1_S_MAPPABLE_P(va, pa, resid)) {
4746#ifdef VERBOSE_INIT_ARM
4747			printf("S");
4748#endif
4749			pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
4750			    L1_S_PROT(PTE_KERNEL, prot) | f1 |
4751			    L1_S_DOM(PMAP_DOMAIN_KERNEL);
4752			PTE_SYNC(&pde[va >> L1_S_SHIFT]);
4753			va += L1_S_SIZE;
4754			pa += L1_S_SIZE;
4755			resid -= L1_S_SIZE;
4756			continue;
4757		}
4758
4759		/*
4760		 * Ok, we're going to use an L2 table.  Make sure
4761		 * one is actually in the corresponding L1 slot
4762		 * for the current VA.
4763		 */
4764		if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
4765			panic("pmap_map_chunk: no L2 table for VA 0x%08x", va);
4766
4767		pte = (pt_entry_t *) kernel_pt_lookup(
4768		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4769		if (pte == NULL)
4770			panic("pmap_map_chunk: can't find L2 table for VA"
4771			    "0x%08x", va);
4772		/* See if we can use a L2 large page mapping. */
4773		if (L2_L_MAPPABLE_P(va, pa, resid)) {
4774#ifdef VERBOSE_INIT_ARM
4775			printf("L");
4776#endif
4777			for (i = 0; i < 16; i++) {
4778				pte[l2pte_index(va) + i] =
4779				    L2_L_PROTO | pa |
4780				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
4781				PTE_SYNC(&pte[l2pte_index(va) + i]);
4782			}
4783			va += L2_L_SIZE;
4784			pa += L2_L_SIZE;
4785			resid -= L2_L_SIZE;
4786			continue;
4787		}
4788
4789		/* Use a small page mapping. */
4790#ifdef VERBOSE_INIT_ARM
4791		printf("P");
4792#endif
4793		pte[l2pte_index(va)] =
4794		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
4795		PTE_SYNC(&pte[l2pte_index(va)]);
4796		va += PAGE_SIZE;
4797		pa += PAGE_SIZE;
4798		resid -= PAGE_SIZE;
4799	}
4800#ifdef VERBOSE_INIT_ARM
4801	printf("\n");
4802#endif
4803	return (size);
4804
4805}
4806
4807void
4808pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4809{
4810	/*
4811	 * Remember the memattr in a field that gets used to set the appropriate
4812	 * bits in the PTEs as mappings are established.
4813	 */
4814	m->md.pv_memattr = ma;
4815
4816	/*
4817	 * It appears that this function can only be called before any mappings
4818	 * for the page are established on ARM.  If this ever changes, this code
4819	 * will need to walk the pv_list and make each of the existing mappings
4820	 * uncacheable, being careful to sync caches and PTEs (and maybe
4821	 * invalidate TLB?) for any current mapping it modifies.
4822	 */
4823	if (m->md.pv_kva != 0 || TAILQ_FIRST(&m->md.pv_list) != NULL)
4824		panic("Can't change memattr on page with existing mappings");
4825}
4826
4827
4828