pmap.c revision 266175
1/* From: $NetBSD: pmap.c,v 1.148 2004/04/03 04:35:48 bsh Exp $ */
2/*-
3 * Copyright 2004 Olivier Houchard.
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *      This product includes software developed for the NetBSD Project by
20 *      Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 *    or promote products derived from this software without specific prior
23 *    written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38/*-
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 *    endorse or promote products derived from this software without specific
51 *    prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 */
65/*-
66 * Copyright (c) 1999 The NetBSD Foundation, Inc.
67 * All rights reserved.
68 *
69 * This code is derived from software contributed to The NetBSD Foundation
70 * by Charles M. Hannum.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 *    notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 *    notice, this list of conditions and the following disclaimer in the
79 *    documentation and/or other materials provided with the distribution.
80 *
81 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
82 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
83 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
84 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
85 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
86 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
87 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
88 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
89 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
90 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
91 * POSSIBILITY OF SUCH DAMAGE.
92 */
93
94/*-
95 * Copyright (c) 1994-1998 Mark Brinicombe.
96 * Copyright (c) 1994 Brini.
97 * All rights reserved.
98 *
99 * This code is derived from software written for Brini by Mark Brinicombe
100 *
101 * Redistribution and use in source and binary forms, with or without
102 * modification, are permitted provided that the following conditions
103 * are met:
104 * 1. Redistributions of source code must retain the above copyright
105 *    notice, this list of conditions and the following disclaimer.
106 * 2. Redistributions in binary form must reproduce the above copyright
107 *    notice, this list of conditions and the following disclaimer in the
108 *    documentation and/or other materials provided with the distribution.
109 * 3. All advertising materials mentioning features or use of this software
110 *    must display the following acknowledgement:
111 *      This product includes software developed by Mark Brinicombe.
112 * 4. The name of the author may not be used to endorse or promote products
113 *    derived from this software without specific prior written permission.
114 *
115 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
116 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
117 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
118 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
119 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
120 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
121 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
122 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
123 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
124 *
125 * RiscBSD kernel project
126 *
127 * pmap.c
128 *
129 * Machine dependant vm stuff
130 *
131 * Created      : 20/09/94
132 */
133
134/*
135 * Special compilation symbols
136 * PMAP_DEBUG           - Build in pmap_debug_level code
137 *
138 * Note that pmap_mapdev() and pmap_unmapdev() are implemented in arm/devmap.c
139 */
140/* Include header files */
141
142#include "opt_vm.h"
143
144#include <sys/cdefs.h>
145__FBSDID("$FreeBSD: stable/10/sys/arm/arm/pmap.c 266175 2014-05-15 19:09:31Z ian $");
146#include <sys/param.h>
147#include <sys/systm.h>
148#include <sys/kernel.h>
149#include <sys/ktr.h>
150#include <sys/lock.h>
151#include <sys/proc.h>
152#include <sys/malloc.h>
153#include <sys/msgbuf.h>
154#include <sys/mutex.h>
155#include <sys/vmmeter.h>
156#include <sys/mman.h>
157#include <sys/rwlock.h>
158#include <sys/smp.h>
159#include <sys/sched.h>
160
161#include <vm/vm.h>
162#include <vm/vm_param.h>
163#include <vm/uma.h>
164#include <vm/pmap.h>
165#include <vm/vm_kern.h>
166#include <vm/vm_object.h>
167#include <vm/vm_map.h>
168#include <vm/vm_page.h>
169#include <vm/vm_pageout.h>
170#include <vm/vm_phys.h>
171#include <vm/vm_extern.h>
172
173#include <machine/md_var.h>
174#include <machine/cpu.h>
175#include <machine/cpufunc.h>
176#include <machine/pcb.h>
177
178#ifdef PMAP_DEBUG
179#define PDEBUG(_lev_,_stat_) \
180        if (pmap_debug_level >= (_lev_)) \
181                ((_stat_))
182#define dprintf printf
183
184int pmap_debug_level = 0;
185#define PMAP_INLINE
186#else   /* PMAP_DEBUG */
187#define PDEBUG(_lev_,_stat_) /* Nothing */
188#define dprintf(x, arg...)
189#define PMAP_INLINE __inline
190#endif  /* PMAP_DEBUG */
191
192extern struct pv_addr systempage;
193
194extern int last_fault_code;
195
196/*
197 * Internal function prototypes
198 */
199static void pmap_free_pv_entry (pv_entry_t);
200static pv_entry_t pmap_get_pv_entry(void);
201
202static void		pmap_enter_locked(pmap_t, vm_offset_t, vm_page_t,
203    vm_prot_t, boolean_t, int);
204static vm_paddr_t	pmap_extract_locked(pmap_t pmap, vm_offset_t va);
205static void		pmap_fix_cache(struct vm_page *, pmap_t, vm_offset_t);
206static void		pmap_alloc_l1(pmap_t);
207static void		pmap_free_l1(pmap_t);
208
209static int		pmap_clearbit(struct vm_page *, u_int);
210
211static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vm_offset_t);
212static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vm_offset_t);
213static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
214static vm_offset_t	kernel_pt_lookup(vm_paddr_t);
215
216static MALLOC_DEFINE(M_VMPMAP, "pmap", "PMAP L1");
217
218vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
219vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
220vm_offset_t pmap_curmaxkvaddr;
221vm_paddr_t kernel_l1pa;
222
223vm_offset_t kernel_vm_end = 0;
224
225vm_offset_t vm_max_kernel_address;
226
227struct pmap kernel_pmap_store;
228
229static pt_entry_t *csrc_pte, *cdst_pte;
230static vm_offset_t csrcp, cdstp;
231static struct mtx cmtx;
232
233static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
234/*
235 * These routines are called when the CPU type is identified to set up
236 * the PTE prototypes, cache modes, etc.
237 *
238 * The variables are always here, just in case LKMs need to reference
239 * them (though, they shouldn't).
240 */
241
242pt_entry_t	pte_l1_s_cache_mode;
243pt_entry_t	pte_l1_s_cache_mode_pt;
244pt_entry_t	pte_l1_s_cache_mask;
245
246pt_entry_t	pte_l2_l_cache_mode;
247pt_entry_t	pte_l2_l_cache_mode_pt;
248pt_entry_t	pte_l2_l_cache_mask;
249
250pt_entry_t	pte_l2_s_cache_mode;
251pt_entry_t	pte_l2_s_cache_mode_pt;
252pt_entry_t	pte_l2_s_cache_mask;
253
254pt_entry_t	pte_l2_s_prot_u;
255pt_entry_t	pte_l2_s_prot_w;
256pt_entry_t	pte_l2_s_prot_mask;
257
258pt_entry_t	pte_l1_s_proto;
259pt_entry_t	pte_l1_c_proto;
260pt_entry_t	pte_l2_s_proto;
261
262void		(*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
263void		(*pmap_copy_page_offs_func)(vm_paddr_t a_phys,
264		    vm_offset_t a_offs, vm_paddr_t b_phys, vm_offset_t b_offs,
265		    int cnt);
266void		(*pmap_zero_page_func)(vm_paddr_t, int, int);
267
268struct msgbuf *msgbufp = 0;
269
270/*
271 * Crashdump maps.
272 */
273static caddr_t crashdumpmap;
274
275extern void bcopy_page(vm_offset_t, vm_offset_t);
276extern void bzero_page(vm_offset_t);
277
278extern vm_offset_t alloc_firstaddr;
279
280char *_tmppt;
281
282/*
283 * Metadata for L1 translation tables.
284 */
285struct l1_ttable {
286	/* Entry on the L1 Table list */
287	SLIST_ENTRY(l1_ttable) l1_link;
288
289	/* Entry on the L1 Least Recently Used list */
290	TAILQ_ENTRY(l1_ttable) l1_lru;
291
292	/* Track how many domains are allocated from this L1 */
293	volatile u_int l1_domain_use_count;
294
295	/*
296	 * A free-list of domain numbers for this L1.
297	 * We avoid using ffs() and a bitmap to track domains since ffs()
298	 * is slow on ARM.
299	 */
300	u_int8_t l1_domain_first;
301	u_int8_t l1_domain_free[PMAP_DOMAINS];
302
303	/* Physical address of this L1 page table */
304	vm_paddr_t l1_physaddr;
305
306	/* KVA of this L1 page table */
307	pd_entry_t *l1_kva;
308};
309
310/*
311 * Convert a virtual address into its L1 table index. That is, the
312 * index used to locate the L2 descriptor table pointer in an L1 table.
313 * This is basically used to index l1->l1_kva[].
314 *
315 * Each L2 descriptor table represents 1MB of VA space.
316 */
317#define	L1_IDX(va)		(((vm_offset_t)(va)) >> L1_S_SHIFT)
318
319/*
320 * L1 Page Tables are tracked using a Least Recently Used list.
321 *  - New L1s are allocated from the HEAD.
322 *  - Freed L1s are added to the TAIl.
323 *  - Recently accessed L1s (where an 'access' is some change to one of
324 *    the userland pmaps which owns this L1) are moved to the TAIL.
325 */
326static TAILQ_HEAD(, l1_ttable) l1_lru_list;
327/*
328 * A list of all L1 tables
329 */
330static SLIST_HEAD(, l1_ttable) l1_list;
331static struct mtx l1_lru_lock;
332
333/*
334 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
335 *
336 * This is normally 16MB worth L2 page descriptors for any given pmap.
337 * Reference counts are maintained for L2 descriptors so they can be
338 * freed when empty.
339 */
340struct l2_dtable {
341	/* The number of L2 page descriptors allocated to this l2_dtable */
342	u_int l2_occupancy;
343
344	/* List of L2 page descriptors */
345	struct l2_bucket {
346		pt_entry_t *l2b_kva;	/* KVA of L2 Descriptor Table */
347		vm_paddr_t l2b_phys;	/* Physical address of same */
348		u_short l2b_l1idx;	/* This L2 table's L1 index */
349		u_short l2b_occupancy;	/* How many active descriptors */
350	} l2_bucket[L2_BUCKET_SIZE];
351};
352
353/* pmap_kenter_internal flags */
354#define KENTER_CACHE	0x1
355#define KENTER_USER	0x2
356
357/*
358 * Given an L1 table index, calculate the corresponding l2_dtable index
359 * and bucket index within the l2_dtable.
360 */
361#define	L2_IDX(l1idx)		(((l1idx) >> L2_BUCKET_LOG2) & \
362				 (L2_SIZE - 1))
363#define	L2_BUCKET(l1idx)	((l1idx) & (L2_BUCKET_SIZE - 1))
364
365/*
366 * Given a virtual address, this macro returns the
367 * virtual address required to drop into the next L2 bucket.
368 */
369#define	L2_NEXT_BUCKET(va)	(((va) & L1_S_FRAME) + L1_S_SIZE)
370
371/*
372 * We try to map the page tables write-through, if possible.  However, not
373 * all CPUs have a write-through cache mode, so on those we have to sync
374 * the cache when we frob page tables.
375 *
376 * We try to evaluate this at compile time, if possible.  However, it's
377 * not always possible to do that, hence this run-time var.
378 */
379int	pmap_needs_pte_sync;
380
381/*
382 * Macro to determine if a mapping might be resident in the
383 * instruction cache and/or TLB
384 */
385#define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
386
387/*
388 * Macro to determine if a mapping might be resident in the
389 * data cache and/or TLB
390 */
391#define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
392
393#ifndef PMAP_SHPGPERPROC
394#define PMAP_SHPGPERPROC 200
395#endif
396
397#define pmap_is_current(pm)	((pm) == pmap_kernel() || \
398            curproc->p_vmspace->vm_map.pmap == (pm))
399static uma_zone_t pvzone = NULL;
400uma_zone_t l2zone;
401static uma_zone_t l2table_zone;
402static vm_offset_t pmap_kernel_l2dtable_kva;
403static vm_offset_t pmap_kernel_l2ptp_kva;
404static vm_paddr_t pmap_kernel_l2ptp_phys;
405static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
406static struct rwlock pvh_global_lock;
407
408void pmap_copy_page_offs_generic(vm_paddr_t a_phys, vm_offset_t a_offs,
409    vm_paddr_t b_phys, vm_offset_t b_offs, int cnt);
410#if ARM_MMU_XSCALE == 1
411void pmap_copy_page_offs_xscale(vm_paddr_t a_phys, vm_offset_t a_offs,
412    vm_paddr_t b_phys, vm_offset_t b_offs, int cnt);
413#endif
414
415/*
416 * This list exists for the benefit of pmap_map_chunk().  It keeps track
417 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
418 * find them as necessary.
419 *
420 * Note that the data on this list MUST remain valid after initarm() returns,
421 * as pmap_bootstrap() uses it to contruct L2 table metadata.
422 */
423SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
424
425static void
426pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
427{
428	int i;
429
430	l1->l1_kva = l1pt;
431	l1->l1_domain_use_count = 0;
432	l1->l1_domain_first = 0;
433
434	for (i = 0; i < PMAP_DOMAINS; i++)
435		l1->l1_domain_free[i] = i + 1;
436
437	/*
438	 * Copy the kernel's L1 entries to each new L1.
439	 */
440	if (l1pt != pmap_kernel()->pm_l1->l1_kva)
441		memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
442
443	if ((l1->l1_physaddr = pmap_extract(pmap_kernel(), (vm_offset_t)l1pt)) == 0)
444		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
445	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
446	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
447}
448
449static vm_offset_t
450kernel_pt_lookup(vm_paddr_t pa)
451{
452	struct pv_addr *pv;
453
454	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
455		if (pv->pv_pa == pa)
456			return (pv->pv_va);
457	}
458	return (0);
459}
460
461#if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
462void
463pmap_pte_init_generic(void)
464{
465
466	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
467	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
468
469	pte_l2_l_cache_mode = L2_B|L2_C;
470	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
471
472	pte_l2_s_cache_mode = L2_B|L2_C;
473	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
474
475	/*
476	 * If we have a write-through cache, set B and C.  If
477	 * we have a write-back cache, then we assume setting
478	 * only C will make those pages write-through.
479	 */
480	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
481		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
482		pte_l2_l_cache_mode_pt = L2_B|L2_C;
483		pte_l2_s_cache_mode_pt = L2_B|L2_C;
484	} else {
485		pte_l1_s_cache_mode_pt = L1_S_C;
486		pte_l2_l_cache_mode_pt = L2_C;
487		pte_l2_s_cache_mode_pt = L2_C;
488	}
489
490	pte_l2_s_prot_u = L2_S_PROT_U_generic;
491	pte_l2_s_prot_w = L2_S_PROT_W_generic;
492	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
493
494	pte_l1_s_proto = L1_S_PROTO_generic;
495	pte_l1_c_proto = L1_C_PROTO_generic;
496	pte_l2_s_proto = L2_S_PROTO_generic;
497
498	pmap_copy_page_func = pmap_copy_page_generic;
499	pmap_copy_page_offs_func = pmap_copy_page_offs_generic;
500	pmap_zero_page_func = pmap_zero_page_generic;
501}
502
503#if defined(CPU_ARM8)
504void
505pmap_pte_init_arm8(void)
506{
507
508	/*
509	 * ARM8 is compatible with generic, but we need to use
510	 * the page tables uncached.
511	 */
512	pmap_pte_init_generic();
513
514	pte_l1_s_cache_mode_pt = 0;
515	pte_l2_l_cache_mode_pt = 0;
516	pte_l2_s_cache_mode_pt = 0;
517}
518#endif /* CPU_ARM8 */
519
520#if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
521void
522pmap_pte_init_arm9(void)
523{
524
525	/*
526	 * ARM9 is compatible with generic, but we want to use
527	 * write-through caching for now.
528	 */
529	pmap_pte_init_generic();
530
531	pte_l1_s_cache_mode = L1_S_C;
532	pte_l2_l_cache_mode = L2_C;
533	pte_l2_s_cache_mode = L2_C;
534
535	pte_l1_s_cache_mode_pt = L1_S_C;
536	pte_l2_l_cache_mode_pt = L2_C;
537	pte_l2_s_cache_mode_pt = L2_C;
538}
539#endif /* CPU_ARM9 */
540#endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
541
542#if defined(CPU_ARM10)
543void
544pmap_pte_init_arm10(void)
545{
546
547	/*
548	 * ARM10 is compatible with generic, but we want to use
549	 * write-through caching for now.
550	 */
551	pmap_pte_init_generic();
552
553	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
554	pte_l2_l_cache_mode = L2_B | L2_C;
555	pte_l2_s_cache_mode = L2_B | L2_C;
556
557	pte_l1_s_cache_mode_pt = L1_S_C;
558	pte_l2_l_cache_mode_pt = L2_C;
559	pte_l2_s_cache_mode_pt = L2_C;
560
561}
562#endif /* CPU_ARM10 */
563
564#if  ARM_MMU_SA1 == 1
565void
566pmap_pte_init_sa1(void)
567{
568
569	/*
570	 * The StrongARM SA-1 cache does not have a write-through
571	 * mode.  So, do the generic initialization, then reset
572	 * the page table cache mode to B=1,C=1, and note that
573	 * the PTEs need to be sync'd.
574	 */
575	pmap_pte_init_generic();
576
577	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
578	pte_l2_l_cache_mode_pt = L2_B|L2_C;
579	pte_l2_s_cache_mode_pt = L2_B|L2_C;
580
581	pmap_needs_pte_sync = 1;
582}
583#endif /* ARM_MMU_SA1 == 1*/
584
585#if ARM_MMU_XSCALE == 1
586#if (ARM_NMMUS > 1) || defined (CPU_XSCALE_CORE3)
587static u_int xscale_use_minidata;
588#endif
589
590void
591pmap_pte_init_xscale(void)
592{
593	uint32_t auxctl;
594	int write_through = 0;
595
596	pte_l1_s_cache_mode = L1_S_B|L1_S_C|L1_S_XSCALE_P;
597	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
598
599	pte_l2_l_cache_mode = L2_B|L2_C;
600	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
601
602	pte_l2_s_cache_mode = L2_B|L2_C;
603	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
604
605	pte_l1_s_cache_mode_pt = L1_S_C;
606	pte_l2_l_cache_mode_pt = L2_C;
607	pte_l2_s_cache_mode_pt = L2_C;
608#ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
609	/*
610	 * The XScale core has an enhanced mode where writes that
611	 * miss the cache cause a cache line to be allocated.  This
612	 * is significantly faster than the traditional, write-through
613	 * behavior of this case.
614	 */
615	pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
616	pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
617	pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
618#endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
619#ifdef XSCALE_CACHE_WRITE_THROUGH
620	/*
621	 * Some versions of the XScale core have various bugs in
622	 * their cache units, the work-around for which is to run
623	 * the cache in write-through mode.  Unfortunately, this
624	 * has a major (negative) impact on performance.  So, we
625	 * go ahead and run fast-and-loose, in the hopes that we
626	 * don't line up the planets in a way that will trip the
627	 * bugs.
628	 *
629	 * However, we give you the option to be slow-but-correct.
630	 */
631	write_through = 1;
632#elif defined(XSCALE_CACHE_WRITE_BACK)
633	/* force write back cache mode */
634	write_through = 0;
635#elif defined(CPU_XSCALE_PXA2X0)
636	/*
637	 * Intel PXA2[15]0 processors are known to have a bug in
638	 * write-back cache on revision 4 and earlier (stepping
639	 * A[01] and B[012]).  Fixed for C0 and later.
640	 */
641	{
642		uint32_t id, type;
643
644		id = cpufunc_id();
645		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
646
647		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
648			if ((id & CPU_ID_REVISION_MASK) < 5) {
649				/* write through for stepping A0-1 and B0-2 */
650				write_through = 1;
651			}
652		}
653	}
654#endif /* XSCALE_CACHE_WRITE_THROUGH */
655
656	if (write_through) {
657		pte_l1_s_cache_mode = L1_S_C;
658		pte_l2_l_cache_mode = L2_C;
659		pte_l2_s_cache_mode = L2_C;
660	}
661
662#if (ARM_NMMUS > 1)
663	xscale_use_minidata = 1;
664#endif
665
666	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
667	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
668	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
669
670	pte_l1_s_proto = L1_S_PROTO_xscale;
671	pte_l1_c_proto = L1_C_PROTO_xscale;
672	pte_l2_s_proto = L2_S_PROTO_xscale;
673
674#ifdef CPU_XSCALE_CORE3
675	pmap_copy_page_func = pmap_copy_page_generic;
676	pmap_copy_page_offs_func = pmap_copy_page_offs_generic;
677	pmap_zero_page_func = pmap_zero_page_generic;
678	xscale_use_minidata = 0;
679	/* Make sure it is L2-cachable */
680    	pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_T);
681	pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode &~ L1_S_XSCALE_P;
682	pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_T) ;
683	pte_l2_l_cache_mode_pt = pte_l1_s_cache_mode;
684	pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_T);
685	pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
686
687#else
688	pmap_copy_page_func = pmap_copy_page_xscale;
689	pmap_copy_page_offs_func = pmap_copy_page_offs_xscale;
690	pmap_zero_page_func = pmap_zero_page_xscale;
691#endif
692
693	/*
694	 * Disable ECC protection of page table access, for now.
695	 */
696	__asm __volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
697	auxctl &= ~XSCALE_AUXCTL_P;
698	__asm __volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
699}
700
701/*
702 * xscale_setup_minidata:
703 *
704 *	Set up the mini-data cache clean area.  We require the
705 *	caller to allocate the right amount of physically and
706 *	virtually contiguous space.
707 */
708extern vm_offset_t xscale_minidata_clean_addr;
709extern vm_size_t xscale_minidata_clean_size; /* already initialized */
710void
711xscale_setup_minidata(vm_offset_t l1pt, vm_offset_t va, vm_paddr_t pa)
712{
713	pd_entry_t *pde = (pd_entry_t *) l1pt;
714	pt_entry_t *pte;
715	vm_size_t size;
716	uint32_t auxctl;
717
718	xscale_minidata_clean_addr = va;
719
720	/* Round it to page size. */
721	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
722
723	for (; size != 0;
724	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
725		pte = (pt_entry_t *) kernel_pt_lookup(
726		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
727		if (pte == NULL)
728			panic("xscale_setup_minidata: can't find L2 table for "
729			    "VA 0x%08x", (u_int32_t) va);
730		pte[l2pte_index(va)] =
731		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
732		    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
733	}
734
735	/*
736	 * Configure the mini-data cache for write-back with
737	 * read/write-allocate.
738	 *
739	 * NOTE: In order to reconfigure the mini-data cache, we must
740	 * make sure it contains no valid data!  In order to do that,
741	 * we must issue a global data cache invalidate command!
742	 *
743	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
744	 * THIS IS VERY IMPORTANT!
745	 */
746
747	/* Invalidate data and mini-data. */
748	__asm __volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
749	__asm __volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
750	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
751	__asm __volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
752}
753#endif
754
755/*
756 * Allocate an L1 translation table for the specified pmap.
757 * This is called at pmap creation time.
758 */
759static void
760pmap_alloc_l1(pmap_t pm)
761{
762	struct l1_ttable *l1;
763	u_int8_t domain;
764
765	/*
766	 * Remove the L1 at the head of the LRU list
767	 */
768	mtx_lock(&l1_lru_lock);
769	l1 = TAILQ_FIRST(&l1_lru_list);
770	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
771
772	/*
773	 * Pick the first available domain number, and update
774	 * the link to the next number.
775	 */
776	domain = l1->l1_domain_first;
777	l1->l1_domain_first = l1->l1_domain_free[domain];
778
779	/*
780	 * If there are still free domain numbers in this L1,
781	 * put it back on the TAIL of the LRU list.
782	 */
783	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
784		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
785
786	mtx_unlock(&l1_lru_lock);
787
788	/*
789	 * Fix up the relevant bits in the pmap structure
790	 */
791	pm->pm_l1 = l1;
792	pm->pm_domain = domain + 1;
793}
794
795/*
796 * Free an L1 translation table.
797 * This is called at pmap destruction time.
798 */
799static void
800pmap_free_l1(pmap_t pm)
801{
802	struct l1_ttable *l1 = pm->pm_l1;
803
804	mtx_lock(&l1_lru_lock);
805
806	/*
807	 * If this L1 is currently on the LRU list, remove it.
808	 */
809	if (l1->l1_domain_use_count < PMAP_DOMAINS)
810		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
811
812	/*
813	 * Free up the domain number which was allocated to the pmap
814	 */
815	l1->l1_domain_free[pm->pm_domain - 1] = l1->l1_domain_first;
816	l1->l1_domain_first = pm->pm_domain - 1;
817	l1->l1_domain_use_count--;
818
819	/*
820	 * The L1 now must have at least 1 free domain, so add
821	 * it back to the LRU list. If the use count is zero,
822	 * put it at the head of the list, otherwise it goes
823	 * to the tail.
824	 */
825	if (l1->l1_domain_use_count == 0) {
826		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
827	}	else
828		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
829
830	mtx_unlock(&l1_lru_lock);
831}
832
833/*
834 * Returns a pointer to the L2 bucket associated with the specified pmap
835 * and VA, or NULL if no L2 bucket exists for the address.
836 */
837static PMAP_INLINE struct l2_bucket *
838pmap_get_l2_bucket(pmap_t pm, vm_offset_t va)
839{
840	struct l2_dtable *l2;
841	struct l2_bucket *l2b;
842	u_short l1idx;
843
844	l1idx = L1_IDX(va);
845
846	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
847	    (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
848		return (NULL);
849
850	return (l2b);
851}
852
853/*
854 * Returns a pointer to the L2 bucket associated with the specified pmap
855 * and VA.
856 *
857 * If no L2 bucket exists, perform the necessary allocations to put an L2
858 * bucket/page table in place.
859 *
860 * Note that if a new L2 bucket/page was allocated, the caller *must*
861 * increment the bucket occupancy counter appropriately *before*
862 * releasing the pmap's lock to ensure no other thread or cpu deallocates
863 * the bucket/page in the meantime.
864 */
865static struct l2_bucket *
866pmap_alloc_l2_bucket(pmap_t pm, vm_offset_t va)
867{
868	struct l2_dtable *l2;
869	struct l2_bucket *l2b;
870	u_short l1idx;
871
872	l1idx = L1_IDX(va);
873
874	PMAP_ASSERT_LOCKED(pm);
875	rw_assert(&pvh_global_lock, RA_WLOCKED);
876	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
877		/*
878		 * No mapping at this address, as there is
879		 * no entry in the L1 table.
880		 * Need to allocate a new l2_dtable.
881		 */
882		PMAP_UNLOCK(pm);
883		rw_wunlock(&pvh_global_lock);
884		if ((l2 = uma_zalloc(l2table_zone, M_NOWAIT)) == NULL) {
885			rw_wlock(&pvh_global_lock);
886			PMAP_LOCK(pm);
887			return (NULL);
888		}
889		rw_wlock(&pvh_global_lock);
890		PMAP_LOCK(pm);
891		if (pm->pm_l2[L2_IDX(l1idx)] != NULL) {
892			/*
893			 * Someone already allocated the l2_dtable while
894			 * we were doing the same.
895			 */
896			uma_zfree(l2table_zone, l2);
897			l2 = pm->pm_l2[L2_IDX(l1idx)];
898		} else {
899			bzero(l2, sizeof(*l2));
900			/*
901			 * Link it into the parent pmap
902			 */
903			pm->pm_l2[L2_IDX(l1idx)] = l2;
904		}
905	}
906
907	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
908
909	/*
910	 * Fetch pointer to the L2 page table associated with the address.
911	 */
912	if (l2b->l2b_kva == NULL) {
913		pt_entry_t *ptep;
914
915		/*
916		 * No L2 page table has been allocated. Chances are, this
917		 * is because we just allocated the l2_dtable, above.
918		 */
919		PMAP_UNLOCK(pm);
920		rw_wunlock(&pvh_global_lock);
921		ptep = uma_zalloc(l2zone, M_NOWAIT);
922		rw_wlock(&pvh_global_lock);
923		PMAP_LOCK(pm);
924		if (l2b->l2b_kva != 0) {
925			/* We lost the race. */
926			uma_zfree(l2zone, ptep);
927			return (l2b);
928		}
929		l2b->l2b_phys = vtophys(ptep);
930		if (ptep == NULL) {
931			/*
932			 * Oops, no more L2 page tables available at this
933			 * time. We may need to deallocate the l2_dtable
934			 * if we allocated a new one above.
935			 */
936			if (l2->l2_occupancy == 0) {
937				pm->pm_l2[L2_IDX(l1idx)] = NULL;
938				uma_zfree(l2table_zone, l2);
939			}
940			return (NULL);
941		}
942
943		l2->l2_occupancy++;
944		l2b->l2b_kva = ptep;
945		l2b->l2b_l1idx = l1idx;
946	}
947
948	return (l2b);
949}
950
951static PMAP_INLINE void
952#ifndef PMAP_INCLUDE_PTE_SYNC
953pmap_free_l2_ptp(pt_entry_t *l2)
954#else
955pmap_free_l2_ptp(boolean_t need_sync, pt_entry_t *l2)
956#endif
957{
958#ifdef PMAP_INCLUDE_PTE_SYNC
959	/*
960	 * Note: With a write-back cache, we may need to sync this
961	 * L2 table before re-using it.
962	 * This is because it may have belonged to a non-current
963	 * pmap, in which case the cache syncs would have been
964	 * skipped when the pages were being unmapped. If the
965	 * L2 table were then to be immediately re-allocated to
966	 * the *current* pmap, it may well contain stale mappings
967	 * which have not yet been cleared by a cache write-back
968	 * and so would still be visible to the mmu.
969	 */
970	if (need_sync)
971		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
972#endif
973	uma_zfree(l2zone, l2);
974}
975/*
976 * One or more mappings in the specified L2 descriptor table have just been
977 * invalidated.
978 *
979 * Garbage collect the metadata and descriptor table itself if necessary.
980 *
981 * The pmap lock must be acquired when this is called (not necessary
982 * for the kernel pmap).
983 */
984static void
985pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
986{
987	struct l2_dtable *l2;
988	pd_entry_t *pl1pd, l1pd;
989	pt_entry_t *ptep;
990	u_short l1idx;
991
992
993	/*
994	 * Update the bucket's reference count according to how many
995	 * PTEs the caller has just invalidated.
996	 */
997	l2b->l2b_occupancy -= count;
998
999	/*
1000	 * Note:
1001	 *
1002	 * Level 2 page tables allocated to the kernel pmap are never freed
1003	 * as that would require checking all Level 1 page tables and
1004	 * removing any references to the Level 2 page table. See also the
1005	 * comment elsewhere about never freeing bootstrap L2 descriptors.
1006	 *
1007	 * We make do with just invalidating the mapping in the L2 table.
1008	 *
1009	 * This isn't really a big deal in practice and, in fact, leads
1010	 * to a performance win over time as we don't need to continually
1011	 * alloc/free.
1012	 */
1013	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1014		return;
1015
1016	/*
1017	 * There are no more valid mappings in this level 2 page table.
1018	 * Go ahead and NULL-out the pointer in the bucket, then
1019	 * free the page table.
1020	 */
1021	l1idx = l2b->l2b_l1idx;
1022	ptep = l2b->l2b_kva;
1023	l2b->l2b_kva = NULL;
1024
1025	pl1pd = &pm->pm_l1->l1_kva[l1idx];
1026
1027	/*
1028	 * If the L1 slot matches the pmap's domain
1029	 * number, then invalidate it.
1030	 */
1031	l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1032	if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
1033		*pl1pd = 0;
1034		PTE_SYNC(pl1pd);
1035	}
1036
1037	/*
1038	 * Release the L2 descriptor table back to the pool cache.
1039	 */
1040#ifndef PMAP_INCLUDE_PTE_SYNC
1041	pmap_free_l2_ptp(ptep);
1042#else
1043	pmap_free_l2_ptp(!pmap_is_current(pm), ptep);
1044#endif
1045
1046	/*
1047	 * Update the reference count in the associated l2_dtable
1048	 */
1049	l2 = pm->pm_l2[L2_IDX(l1idx)];
1050	if (--l2->l2_occupancy > 0)
1051		return;
1052
1053	/*
1054	 * There are no more valid mappings in any of the Level 1
1055	 * slots managed by this l2_dtable. Go ahead and NULL-out
1056	 * the pointer in the parent pmap and free the l2_dtable.
1057	 */
1058	pm->pm_l2[L2_IDX(l1idx)] = NULL;
1059	uma_zfree(l2table_zone, l2);
1060}
1061
1062/*
1063 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1064 * structures.
1065 */
1066static int
1067pmap_l2ptp_ctor(void *mem, int size, void *arg, int flags)
1068{
1069#ifndef PMAP_INCLUDE_PTE_SYNC
1070	struct l2_bucket *l2b;
1071	pt_entry_t *ptep, pte;
1072
1073	vm_offset_t va = (vm_offset_t)mem & ~PAGE_MASK;
1074
1075	/*
1076	 * The mappings for these page tables were initially made using
1077	 * pmap_kenter() by the pool subsystem. Therefore, the cache-
1078	 * mode will not be right for page table mappings. To avoid
1079	 * polluting the pmap_kenter() code with a special case for
1080	 * page tables, we simply fix up the cache-mode here if it's not
1081	 * correct.
1082	 */
1083		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1084		ptep = &l2b->l2b_kva[l2pte_index(va)];
1085		pte = *ptep;
1086
1087		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1088			/*
1089			 * Page tables must have the cache-mode set to
1090			 * Write-Thru.
1091			 */
1092			*ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1093			PTE_SYNC(ptep);
1094			cpu_tlb_flushD_SE(va);
1095			cpu_cpwait();
1096		}
1097#endif
1098	memset(mem, 0, L2_TABLE_SIZE_REAL);
1099	PTE_SYNC_RANGE(mem, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1100	return (0);
1101}
1102
1103/*
1104 * A bunch of routines to conditionally flush the caches/TLB depending
1105 * on whether the specified pmap actually needs to be flushed at any
1106 * given time.
1107 */
1108static PMAP_INLINE void
1109pmap_tlb_flushID_SE(pmap_t pm, vm_offset_t va)
1110{
1111
1112	if (pmap_is_current(pm))
1113		cpu_tlb_flushID_SE(va);
1114}
1115
1116static PMAP_INLINE void
1117pmap_tlb_flushD_SE(pmap_t pm, vm_offset_t va)
1118{
1119
1120	if (pmap_is_current(pm))
1121		cpu_tlb_flushD_SE(va);
1122}
1123
1124static PMAP_INLINE void
1125pmap_tlb_flushID(pmap_t pm)
1126{
1127
1128	if (pmap_is_current(pm))
1129		cpu_tlb_flushID();
1130}
1131static PMAP_INLINE void
1132pmap_tlb_flushD(pmap_t pm)
1133{
1134
1135	if (pmap_is_current(pm))
1136		cpu_tlb_flushD();
1137}
1138
1139static int
1140pmap_has_valid_mapping(pmap_t pm, vm_offset_t va)
1141{
1142	pd_entry_t *pde;
1143	pt_entry_t *ptep;
1144
1145	if (pmap_get_pde_pte(pm, va, &pde, &ptep) &&
1146	    ptep && ((*ptep & L2_TYPE_MASK) != L2_TYPE_INV))
1147		return (1);
1148
1149	return (0);
1150}
1151
1152static PMAP_INLINE void
1153pmap_idcache_wbinv_range(pmap_t pm, vm_offset_t va, vm_size_t len)
1154{
1155	vm_size_t rest;
1156
1157	CTR4(KTR_PMAP, "pmap_dcache_wbinv_range: pmap %p is_kernel %d va 0x%08x"
1158	    " len 0x%x ", pm, pm == pmap_kernel(), va, len);
1159
1160	if (pmap_is_current(pm) || pm == pmap_kernel()) {
1161		rest = MIN(PAGE_SIZE - (va & PAGE_MASK), len);
1162		while (len > 0) {
1163			if (pmap_has_valid_mapping(pm, va)) {
1164				cpu_idcache_wbinv_range(va, rest);
1165				cpu_l2cache_wbinv_range(va, rest);
1166			}
1167			len -= rest;
1168			va += rest;
1169			rest = MIN(PAGE_SIZE, len);
1170		}
1171	}
1172}
1173
1174static PMAP_INLINE void
1175pmap_dcache_wb_range(pmap_t pm, vm_offset_t va, vm_size_t len, boolean_t do_inv,
1176    boolean_t rd_only)
1177{
1178	vm_size_t rest;
1179
1180	CTR4(KTR_PMAP, "pmap_dcache_wb_range: pmap %p is_kernel %d va 0x%08x "
1181	    "len 0x%x ", pm, pm == pmap_kernel(), va, len);
1182	CTR2(KTR_PMAP, " do_inv %d rd_only %d", do_inv, rd_only);
1183
1184	if (pmap_is_current(pm)) {
1185		rest = MIN(PAGE_SIZE - (va & PAGE_MASK), len);
1186		while (len > 0) {
1187			if (pmap_has_valid_mapping(pm, va)) {
1188				if (do_inv && rd_only) {
1189					cpu_dcache_inv_range(va, rest);
1190					cpu_l2cache_inv_range(va, rest);
1191				} else if (do_inv) {
1192					cpu_dcache_wbinv_range(va, rest);
1193					cpu_l2cache_wbinv_range(va, rest);
1194				} else if (!rd_only) {
1195					cpu_dcache_wb_range(va, rest);
1196					cpu_l2cache_wb_range(va, rest);
1197				}
1198			}
1199			len -= rest;
1200			va += rest;
1201
1202			rest = MIN(PAGE_SIZE, len);
1203		}
1204	}
1205}
1206
1207static PMAP_INLINE void
1208pmap_idcache_wbinv_all(pmap_t pm)
1209{
1210
1211	if (pmap_is_current(pm)) {
1212		cpu_idcache_wbinv_all();
1213		cpu_l2cache_wbinv_all();
1214	}
1215}
1216
1217#ifdef notyet
1218static PMAP_INLINE void
1219pmap_dcache_wbinv_all(pmap_t pm)
1220{
1221
1222	if (pmap_is_current(pm)) {
1223		cpu_dcache_wbinv_all();
1224		cpu_l2cache_wbinv_all();
1225	}
1226}
1227#endif
1228
1229/*
1230 * PTE_SYNC_CURRENT:
1231 *
1232 *     Make sure the pte is written out to RAM.
1233 *     We need to do this for one of two cases:
1234 *       - We're dealing with the kernel pmap
1235 *       - There is no pmap active in the cache/tlb.
1236 *       - The specified pmap is 'active' in the cache/tlb.
1237 */
1238#ifdef PMAP_INCLUDE_PTE_SYNC
1239#define	PTE_SYNC_CURRENT(pm, ptep)	\
1240do {					\
1241	if (PMAP_NEEDS_PTE_SYNC && 	\
1242	    pmap_is_current(pm))	\
1243		PTE_SYNC(ptep);		\
1244} while (/*CONSTCOND*/0)
1245#else
1246#define	PTE_SYNC_CURRENT(pm, ptep)	/* nothing */
1247#endif
1248
1249/*
1250 * cacheable == -1 means we must make the entry uncacheable, 1 means
1251 * cacheable;
1252 */
1253static __inline void
1254pmap_set_cache_entry(pv_entry_t pv, pmap_t pm, vm_offset_t va, int cacheable)
1255{
1256	struct l2_bucket *l2b;
1257	pt_entry_t *ptep, pte;
1258
1259	l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1260	ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1261
1262	if (cacheable == 1) {
1263		pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1264		if (l2pte_valid(pte)) {
1265			if (PV_BEEN_EXECD(pv->pv_flags)) {
1266				pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
1267			} else if (PV_BEEN_REFD(pv->pv_flags)) {
1268				pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
1269			}
1270		}
1271	} else {
1272		pte = *ptep &~ L2_S_CACHE_MASK;
1273		if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1274			    l2pte_valid(pte)) {
1275			if (PV_BEEN_EXECD(pv->pv_flags)) {
1276				pmap_idcache_wbinv_range(pv->pv_pmap,
1277					    pv->pv_va, PAGE_SIZE);
1278				pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
1279			} else if (PV_BEEN_REFD(pv->pv_flags)) {
1280				pmap_dcache_wb_range(pv->pv_pmap,
1281					    pv->pv_va, PAGE_SIZE, TRUE,
1282					    (pv->pv_flags & PVF_WRITE) == 0);
1283				pmap_tlb_flushD_SE(pv->pv_pmap,
1284					    pv->pv_va);
1285			}
1286		}
1287	}
1288	*ptep = pte;
1289	PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1290}
1291
1292static void
1293pmap_fix_cache(struct vm_page *pg, pmap_t pm, vm_offset_t va)
1294{
1295	int pmwc = 0;
1296	int writable = 0, kwritable = 0, uwritable = 0;
1297	int entries = 0, kentries = 0, uentries = 0;
1298	struct pv_entry *pv;
1299
1300	rw_assert(&pvh_global_lock, RA_WLOCKED);
1301
1302	/* the cache gets written back/invalidated on context switch.
1303	 * therefore, if a user page shares an entry in the same page or
1304	 * with the kernel map and at least one is writable, then the
1305	 * cache entry must be set write-through.
1306	 */
1307
1308	TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) {
1309			/* generate a count of the pv_entry uses */
1310		if (pv->pv_flags & PVF_WRITE) {
1311			if (pv->pv_pmap == pmap_kernel())
1312				kwritable++;
1313			else if (pv->pv_pmap == pm)
1314				uwritable++;
1315			writable++;
1316		}
1317		if (pv->pv_pmap == pmap_kernel())
1318			kentries++;
1319		else {
1320			if (pv->pv_pmap == pm)
1321				uentries++;
1322			entries++;
1323		}
1324	}
1325		/*
1326		 * check if the user duplicate mapping has
1327		 * been removed.
1328		 */
1329	if ((pm != pmap_kernel()) && (((uentries > 1) && uwritable) ||
1330	    (uwritable > 1)))
1331			pmwc = 1;
1332
1333	TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) {
1334		/* check for user uncachable conditions - order is important */
1335		if (pm != pmap_kernel() &&
1336		    (pv->pv_pmap == pm || pv->pv_pmap == pmap_kernel())) {
1337
1338			if ((uentries > 1 && uwritable) || uwritable > 1) {
1339
1340				/* user duplicate mapping */
1341				if (pv->pv_pmap != pmap_kernel())
1342					pv->pv_flags |= PVF_MWC;
1343
1344				if (!(pv->pv_flags & PVF_NC)) {
1345					pv->pv_flags |= PVF_NC;
1346					pmap_set_cache_entry(pv, pm, va, -1);
1347				}
1348				continue;
1349			} else	/* no longer a duplicate user */
1350				pv->pv_flags &= ~PVF_MWC;
1351		}
1352
1353		/*
1354		 * check for kernel uncachable conditions
1355		 * kernel writable or kernel readable with writable user entry
1356		 */
1357		if ((kwritable && (entries || kentries > 1)) ||
1358		    (kwritable > 1) ||
1359		    ((kwritable != writable) && kentries &&
1360		     (pv->pv_pmap == pmap_kernel() ||
1361		      (pv->pv_flags & PVF_WRITE) ||
1362		      (pv->pv_flags & PVF_MWC)))) {
1363
1364			if (!(pv->pv_flags & PVF_NC)) {
1365				pv->pv_flags |= PVF_NC;
1366				pmap_set_cache_entry(pv, pm, va, -1);
1367			}
1368			continue;
1369		}
1370
1371			/* kernel and user are cachable */
1372		if ((pm == pmap_kernel()) && !(pv->pv_flags & PVF_MWC) &&
1373		    (pv->pv_flags & PVF_NC)) {
1374
1375			pv->pv_flags &= ~PVF_NC;
1376			if (pg->md.pv_memattr != VM_MEMATTR_UNCACHEABLE)
1377				pmap_set_cache_entry(pv, pm, va, 1);
1378			continue;
1379		}
1380			/* user is no longer sharable and writable */
1381		if (pm != pmap_kernel() &&
1382		    (pv->pv_pmap == pm || pv->pv_pmap == pmap_kernel()) &&
1383		    !pmwc && (pv->pv_flags & PVF_NC)) {
1384
1385			pv->pv_flags &= ~(PVF_NC | PVF_MWC);
1386			if (pg->md.pv_memattr != VM_MEMATTR_UNCACHEABLE)
1387				pmap_set_cache_entry(pv, pm, va, 1);
1388		}
1389	}
1390
1391	if ((kwritable == 0) && (writable == 0)) {
1392		pg->md.pvh_attrs &= ~PVF_MOD;
1393		vm_page_aflag_clear(pg, PGA_WRITEABLE);
1394		return;
1395	}
1396}
1397
1398/*
1399 * Modify pte bits for all ptes corresponding to the given physical address.
1400 * We use `maskbits' rather than `clearbits' because we're always passing
1401 * constants and the latter would require an extra inversion at run-time.
1402 */
1403static int
1404pmap_clearbit(struct vm_page *pg, u_int maskbits)
1405{
1406	struct l2_bucket *l2b;
1407	struct pv_entry *pv;
1408	pt_entry_t *ptep, npte, opte;
1409	pmap_t pm;
1410	vm_offset_t va;
1411	u_int oflags;
1412	int count = 0;
1413
1414	rw_wlock(&pvh_global_lock);
1415
1416	if (maskbits & PVF_WRITE)
1417		maskbits |= PVF_MOD;
1418	/*
1419	 * Clear saved attributes (modify, reference)
1420	 */
1421	pg->md.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
1422
1423	if (TAILQ_EMPTY(&pg->md.pv_list)) {
1424		rw_wunlock(&pvh_global_lock);
1425		return (0);
1426	}
1427
1428	/*
1429	 * Loop over all current mappings setting/clearing as appropos
1430	 */
1431	TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) {
1432		va = pv->pv_va;
1433		pm = pv->pv_pmap;
1434		oflags = pv->pv_flags;
1435
1436		if (!(oflags & maskbits)) {
1437			if ((maskbits & PVF_WRITE) && (pv->pv_flags & PVF_NC)) {
1438				if (pg->md.pv_memattr !=
1439				    VM_MEMATTR_UNCACHEABLE) {
1440					PMAP_LOCK(pm);
1441					l2b = pmap_get_l2_bucket(pm, va);
1442					ptep = &l2b->l2b_kva[l2pte_index(va)];
1443					*ptep |= pte_l2_s_cache_mode;
1444					PTE_SYNC(ptep);
1445					PMAP_UNLOCK(pm);
1446				}
1447				pv->pv_flags &= ~(PVF_NC | PVF_MWC);
1448			}
1449			continue;
1450		}
1451		pv->pv_flags &= ~maskbits;
1452
1453		PMAP_LOCK(pm);
1454
1455		l2b = pmap_get_l2_bucket(pm, va);
1456
1457		ptep = &l2b->l2b_kva[l2pte_index(va)];
1458		npte = opte = *ptep;
1459
1460		if (maskbits & (PVF_WRITE|PVF_MOD)) {
1461			if ((pv->pv_flags & PVF_NC)) {
1462				/*
1463				 * Entry is not cacheable:
1464				 *
1465				 * Don't turn caching on again if this is a
1466				 * modified emulation. This would be
1467				 * inconsitent with the settings created by
1468				 * pmap_fix_cache(). Otherwise, it's safe
1469				 * to re-enable cacheing.
1470				 *
1471				 * There's no need to call pmap_fix_cache()
1472				 * here: all pages are losing their write
1473				 * permission.
1474				 */
1475				if (maskbits & PVF_WRITE) {
1476					if (pg->md.pv_memattr !=
1477					    VM_MEMATTR_UNCACHEABLE)
1478						npte |= pte_l2_s_cache_mode;
1479					pv->pv_flags &= ~(PVF_NC | PVF_MWC);
1480				}
1481			} else
1482			if (opte & L2_S_PROT_W) {
1483				vm_page_dirty(pg);
1484				/*
1485				 * Entry is writable/cacheable: check if pmap
1486				 * is current if it is flush it, otherwise it
1487				 * won't be in the cache
1488				 */
1489				if (PV_BEEN_EXECD(oflags))
1490					pmap_idcache_wbinv_range(pm, pv->pv_va,
1491					    PAGE_SIZE);
1492				else
1493				if (PV_BEEN_REFD(oflags))
1494					pmap_dcache_wb_range(pm, pv->pv_va,
1495					    PAGE_SIZE,
1496					    (maskbits & PVF_REF) ? TRUE : FALSE,
1497					    FALSE);
1498			}
1499
1500			/* make the pte read only */
1501			npte &= ~L2_S_PROT_W;
1502		}
1503
1504		if (maskbits & PVF_REF) {
1505			if ((pv->pv_flags & PVF_NC) == 0 &&
1506			    (maskbits & (PVF_WRITE|PVF_MOD)) == 0) {
1507				/*
1508				 * Check npte here; we may have already
1509				 * done the wbinv above, and the validity
1510				 * of the PTE is the same for opte and
1511				 * npte.
1512				 */
1513				if (npte & L2_S_PROT_W) {
1514					if (PV_BEEN_EXECD(oflags))
1515						pmap_idcache_wbinv_range(pm,
1516						    pv->pv_va, PAGE_SIZE);
1517					else
1518					if (PV_BEEN_REFD(oflags))
1519						pmap_dcache_wb_range(pm,
1520						    pv->pv_va, PAGE_SIZE,
1521						    TRUE, FALSE);
1522				} else
1523				if ((npte & L2_TYPE_MASK) != L2_TYPE_INV) {
1524					/* XXXJRT need idcache_inv_range */
1525					if (PV_BEEN_EXECD(oflags))
1526						pmap_idcache_wbinv_range(pm,
1527						    pv->pv_va, PAGE_SIZE);
1528					else
1529					if (PV_BEEN_REFD(oflags))
1530						pmap_dcache_wb_range(pm,
1531						    pv->pv_va, PAGE_SIZE,
1532						    TRUE, TRUE);
1533				}
1534			}
1535
1536			/*
1537			 * Make the PTE invalid so that we will take a
1538			 * page fault the next time the mapping is
1539			 * referenced.
1540			 */
1541			npte &= ~L2_TYPE_MASK;
1542			npte |= L2_TYPE_INV;
1543		}
1544
1545		if (npte != opte) {
1546			count++;
1547			*ptep = npte;
1548			PTE_SYNC(ptep);
1549			/* Flush the TLB entry if a current pmap. */
1550			if (PV_BEEN_EXECD(oflags))
1551				pmap_tlb_flushID_SE(pm, pv->pv_va);
1552			else
1553			if (PV_BEEN_REFD(oflags))
1554				pmap_tlb_flushD_SE(pm, pv->pv_va);
1555		}
1556
1557		PMAP_UNLOCK(pm);
1558
1559	}
1560
1561	if (maskbits & PVF_WRITE)
1562		vm_page_aflag_clear(pg, PGA_WRITEABLE);
1563	rw_wunlock(&pvh_global_lock);
1564	return (count);
1565}
1566
1567/*
1568 * main pv_entry manipulation functions:
1569 *   pmap_enter_pv: enter a mapping onto a vm_page list
1570 *   pmap_remove_pv: remove a mappiing from a vm_page list
1571 *
1572 * NOTE: pmap_enter_pv expects to lock the pvh itself
1573 *       pmap_remove_pv expects the caller to lock the pvh before calling
1574 */
1575
1576/*
1577 * pmap_enter_pv: enter a mapping onto a vm_page's PV list
1578 *
1579 * => caller should hold the proper lock on pvh_global_lock
1580 * => caller should have pmap locked
1581 * => we will (someday) gain the lock on the vm_page's PV list
1582 * => caller should adjust ptp's wire_count before calling
1583 * => caller should not adjust pmap's wire_count
1584 */
1585static void
1586pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
1587    vm_offset_t va, u_int flags)
1588{
1589
1590	rw_assert(&pvh_global_lock, RA_WLOCKED);
1591	PMAP_ASSERT_LOCKED(pm);
1592	if (pg->md.pv_kva != 0) {
1593		pve->pv_pmap = kernel_pmap;
1594		pve->pv_va = pg->md.pv_kva;
1595		pve->pv_flags = PVF_WRITE | PVF_UNMAN;
1596		if (pm != kernel_pmap)
1597			PMAP_LOCK(kernel_pmap);
1598		TAILQ_INSERT_HEAD(&pg->md.pv_list, pve, pv_list);
1599		TAILQ_INSERT_HEAD(&kernel_pmap->pm_pvlist, pve, pv_plist);
1600		if (pm != kernel_pmap)
1601			PMAP_UNLOCK(kernel_pmap);
1602		pg->md.pv_kva = 0;
1603		if ((pve = pmap_get_pv_entry()) == NULL)
1604			panic("pmap_kenter_pv: no pv entries");
1605	}
1606	pve->pv_pmap = pm;
1607	pve->pv_va = va;
1608	pve->pv_flags = flags;
1609	TAILQ_INSERT_HEAD(&pg->md.pv_list, pve, pv_list);
1610	TAILQ_INSERT_HEAD(&pm->pm_pvlist, pve, pv_plist);
1611	pg->md.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
1612	if (pve->pv_flags & PVF_WIRED)
1613		++pm->pm_stats.wired_count;
1614	vm_page_aflag_set(pg, PGA_REFERENCED);
1615}
1616
1617/*
1618 *
1619 * pmap_find_pv: Find a pv entry
1620 *
1621 * => caller should hold lock on vm_page
1622 */
1623static PMAP_INLINE struct pv_entry *
1624pmap_find_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va)
1625{
1626	struct pv_entry *pv;
1627
1628	rw_assert(&pvh_global_lock, RA_WLOCKED);
1629	TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list)
1630	    if (pm == pv->pv_pmap && va == pv->pv_va)
1631		    break;
1632	return (pv);
1633}
1634
1635/*
1636 * vector_page_setprot:
1637 *
1638 *	Manipulate the protection of the vector page.
1639 */
1640void
1641vector_page_setprot(int prot)
1642{
1643	struct l2_bucket *l2b;
1644	pt_entry_t *ptep;
1645
1646	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
1647
1648	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
1649
1650	*ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
1651	PTE_SYNC(ptep);
1652	cpu_tlb_flushD_SE(vector_page);
1653	cpu_cpwait();
1654}
1655
1656/*
1657 * pmap_remove_pv: try to remove a mapping from a pv_list
1658 *
1659 * => caller should hold proper lock on pmap_main_lock
1660 * => pmap should be locked
1661 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1662 * => caller should adjust ptp's wire_count and free PTP if needed
1663 * => caller should NOT adjust pmap's wire_count
1664 * => we return the removed pve
1665 */
1666
1667static void
1668pmap_nuke_pv(struct vm_page *pg, pmap_t pm, struct pv_entry *pve)
1669{
1670
1671	struct pv_entry *pv;
1672	rw_assert(&pvh_global_lock, RA_WLOCKED);
1673	PMAP_ASSERT_LOCKED(pm);
1674	TAILQ_REMOVE(&pg->md.pv_list, pve, pv_list);
1675	TAILQ_REMOVE(&pm->pm_pvlist, pve, pv_plist);
1676	if (pve->pv_flags & PVF_WIRED)
1677		--pm->pm_stats.wired_count;
1678	if (pg->md.pvh_attrs & PVF_MOD)
1679		vm_page_dirty(pg);
1680	if (TAILQ_FIRST(&pg->md.pv_list) == NULL)
1681		pg->md.pvh_attrs &= ~PVF_REF;
1682       	else
1683		vm_page_aflag_set(pg, PGA_REFERENCED);
1684	if ((pve->pv_flags & PVF_NC) && ((pm == pmap_kernel()) ||
1685	     (pve->pv_flags & PVF_WRITE) || !(pve->pv_flags & PVF_MWC)))
1686		pmap_fix_cache(pg, pm, 0);
1687	else if (pve->pv_flags & PVF_WRITE) {
1688		TAILQ_FOREACH(pve, &pg->md.pv_list, pv_list)
1689		    if (pve->pv_flags & PVF_WRITE)
1690			    break;
1691		if (!pve) {
1692			pg->md.pvh_attrs &= ~PVF_MOD;
1693			vm_page_aflag_clear(pg, PGA_WRITEABLE);
1694		}
1695	}
1696	pv = TAILQ_FIRST(&pg->md.pv_list);
1697	if (pv != NULL && (pv->pv_flags & PVF_UNMAN) &&
1698	    TAILQ_NEXT(pv, pv_list) == NULL) {
1699		pm = kernel_pmap;
1700		pg->md.pv_kva = pv->pv_va;
1701			/* a recursive pmap_nuke_pv */
1702		TAILQ_REMOVE(&pg->md.pv_list, pv, pv_list);
1703		TAILQ_REMOVE(&pm->pm_pvlist, pv, pv_plist);
1704		if (pv->pv_flags & PVF_WIRED)
1705			--pm->pm_stats.wired_count;
1706		pg->md.pvh_attrs &= ~PVF_REF;
1707		pg->md.pvh_attrs &= ~PVF_MOD;
1708		vm_page_aflag_clear(pg, PGA_WRITEABLE);
1709		pmap_free_pv_entry(pv);
1710	}
1711}
1712
1713static struct pv_entry *
1714pmap_remove_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va)
1715{
1716	struct pv_entry *pve;
1717
1718	rw_assert(&pvh_global_lock, RA_WLOCKED);
1719	pve = TAILQ_FIRST(&pg->md.pv_list);
1720
1721	while (pve) {
1722		if (pve->pv_pmap == pm && pve->pv_va == va) {	/* match? */
1723			pmap_nuke_pv(pg, pm, pve);
1724			break;
1725		}
1726		pve = TAILQ_NEXT(pve, pv_list);
1727	}
1728
1729	if (pve == NULL && pg->md.pv_kva == va)
1730		pg->md.pv_kva = 0;
1731
1732	return(pve);				/* return removed pve */
1733}
1734/*
1735 *
1736 * pmap_modify_pv: Update pv flags
1737 *
1738 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1739 * => caller should NOT adjust pmap's wire_count
1740 * => we return the old flags
1741 *
1742 * Modify a physical-virtual mapping in the pv table
1743 */
1744static u_int
1745pmap_modify_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va,
1746    u_int clr_mask, u_int set_mask)
1747{
1748	struct pv_entry *npv;
1749	u_int flags, oflags;
1750
1751	PMAP_ASSERT_LOCKED(pm);
1752	rw_assert(&pvh_global_lock, RA_WLOCKED);
1753	if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
1754		return (0);
1755
1756	/*
1757	 * There is at least one VA mapping this page.
1758	 */
1759
1760	if (clr_mask & (PVF_REF | PVF_MOD))
1761		pg->md.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1762
1763	oflags = npv->pv_flags;
1764	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1765
1766	if ((flags ^ oflags) & PVF_WIRED) {
1767		if (flags & PVF_WIRED)
1768			++pm->pm_stats.wired_count;
1769		else
1770			--pm->pm_stats.wired_count;
1771	}
1772
1773	if ((flags ^ oflags) & PVF_WRITE)
1774		pmap_fix_cache(pg, pm, 0);
1775
1776	return (oflags);
1777}
1778
1779/* Function to set the debug level of the pmap code */
1780#ifdef PMAP_DEBUG
1781void
1782pmap_debug(int level)
1783{
1784	pmap_debug_level = level;
1785	dprintf("pmap_debug: level=%d\n", pmap_debug_level);
1786}
1787#endif  /* PMAP_DEBUG */
1788
1789void
1790pmap_pinit0(struct pmap *pmap)
1791{
1792	PDEBUG(1, printf("pmap_pinit0: pmap = %08x\n", (u_int32_t) pmap));
1793
1794	bcopy(kernel_pmap, pmap, sizeof(*pmap));
1795	bzero(&pmap->pm_mtx, sizeof(pmap->pm_mtx));
1796	PMAP_LOCK_INIT(pmap);
1797}
1798
1799/*
1800 *	Initialize a vm_page's machine-dependent fields.
1801 */
1802void
1803pmap_page_init(vm_page_t m)
1804{
1805
1806	TAILQ_INIT(&m->md.pv_list);
1807	m->md.pv_memattr = VM_MEMATTR_DEFAULT;
1808}
1809
1810/*
1811 *      Initialize the pmap module.
1812 *      Called by vm_init, to initialize any structures that the pmap
1813 *      system needs to map virtual memory.
1814 */
1815void
1816pmap_init(void)
1817{
1818	int shpgperproc = PMAP_SHPGPERPROC;
1819
1820	l2zone = uma_zcreate("L2 Table", L2_TABLE_SIZE_REAL, pmap_l2ptp_ctor,
1821	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1822	l2table_zone = uma_zcreate("L2 Table", sizeof(struct l2_dtable), NULL,
1823	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1824
1825	/*
1826	 * Initialize the PV entry allocator.
1827	 */
1828	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
1829	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1830	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1831	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1832	uma_zone_reserve_kva(pvzone, pv_entry_max);
1833	pv_entry_high_water = 9 * (pv_entry_max / 10);
1834
1835	/*
1836	 * Now it is safe to enable pv_table recording.
1837	 */
1838	PDEBUG(1, printf("pmap_init: done!\n"));
1839}
1840
1841int
1842pmap_fault_fixup(pmap_t pm, vm_offset_t va, vm_prot_t ftype, int user)
1843{
1844	struct l2_dtable *l2;
1845	struct l2_bucket *l2b;
1846	pd_entry_t *pl1pd, l1pd;
1847	pt_entry_t *ptep, pte;
1848	vm_paddr_t pa;
1849	u_int l1idx;
1850	int rv = 0;
1851
1852	l1idx = L1_IDX(va);
1853	rw_wlock(&pvh_global_lock);
1854	PMAP_LOCK(pm);
1855
1856	/*
1857	 * If there is no l2_dtable for this address, then the process
1858	 * has no business accessing it.
1859	 *
1860	 * Note: This will catch userland processes trying to access
1861	 * kernel addresses.
1862	 */
1863	l2 = pm->pm_l2[L2_IDX(l1idx)];
1864	if (l2 == NULL)
1865		goto out;
1866
1867	/*
1868	 * Likewise if there is no L2 descriptor table
1869	 */
1870	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1871	if (l2b->l2b_kva == NULL)
1872		goto out;
1873
1874	/*
1875	 * Check the PTE itself.
1876	 */
1877	ptep = &l2b->l2b_kva[l2pte_index(va)];
1878	pte = *ptep;
1879	if (pte == 0)
1880		goto out;
1881
1882	/*
1883	 * Catch a userland access to the vector page mapped at 0x0
1884	 */
1885	if (user && (pte & L2_S_PROT_U) == 0)
1886		goto out;
1887	if (va == vector_page)
1888		goto out;
1889
1890	pa = l2pte_pa(pte);
1891
1892	if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
1893		/*
1894		 * This looks like a good candidate for "page modified"
1895		 * emulation...
1896		 */
1897		struct pv_entry *pv;
1898		struct vm_page *pg;
1899
1900		/* Extract the physical address of the page */
1901		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
1902			goto out;
1903		}
1904		/* Get the current flags for this page. */
1905
1906		pv = pmap_find_pv(pg, pm, va);
1907		if (pv == NULL) {
1908			goto out;
1909		}
1910
1911		/*
1912		 * Do the flags say this page is writable? If not then it
1913		 * is a genuine write fault. If yes then the write fault is
1914		 * our fault as we did not reflect the write access in the
1915		 * PTE. Now we know a write has occurred we can correct this
1916		 * and also set the modified bit
1917		 */
1918		if ((pv->pv_flags & PVF_WRITE) == 0) {
1919			goto out;
1920		}
1921
1922		pg->md.pvh_attrs |= PVF_REF | PVF_MOD;
1923		vm_page_dirty(pg);
1924		pv->pv_flags |= PVF_REF | PVF_MOD;
1925
1926		/*
1927		 * Re-enable write permissions for the page.  No need to call
1928		 * pmap_fix_cache(), since this is just a
1929		 * modified-emulation fault, and the PVF_WRITE bit isn't
1930		 * changing. We've already set the cacheable bits based on
1931		 * the assumption that we can write to this page.
1932		 */
1933		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
1934		PTE_SYNC(ptep);
1935		rv = 1;
1936	} else
1937	if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
1938		/*
1939		 * This looks like a good candidate for "page referenced"
1940		 * emulation.
1941		 */
1942		struct pv_entry *pv;
1943		struct vm_page *pg;
1944
1945		/* Extract the physical address of the page */
1946		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
1947			goto out;
1948		/* Get the current flags for this page. */
1949
1950		pv = pmap_find_pv(pg, pm, va);
1951		if (pv == NULL)
1952			goto out;
1953
1954		pg->md.pvh_attrs |= PVF_REF;
1955		pv->pv_flags |= PVF_REF;
1956
1957
1958		*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
1959		PTE_SYNC(ptep);
1960		rv = 1;
1961	}
1962
1963	/*
1964	 * We know there is a valid mapping here, so simply
1965	 * fix up the L1 if necessary.
1966	 */
1967	pl1pd = &pm->pm_l1->l1_kva[l1idx];
1968	l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
1969	if (*pl1pd != l1pd) {
1970		*pl1pd = l1pd;
1971		PTE_SYNC(pl1pd);
1972		rv = 1;
1973	}
1974
1975#ifdef CPU_SA110
1976	/*
1977	 * There are bugs in the rev K SA110.  This is a check for one
1978	 * of them.
1979	 */
1980	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
1981	    curcpu()->ci_arm_cpurev < 3) {
1982		/* Always current pmap */
1983		if (l2pte_valid(pte)) {
1984			extern int kernel_debug;
1985			if (kernel_debug & 1) {
1986				struct proc *p = curlwp->l_proc;
1987				printf("prefetch_abort: page is already "
1988				    "mapped - pte=%p *pte=%08x\n", ptep, pte);
1989				printf("prefetch_abort: pc=%08lx proc=%p "
1990				    "process=%s\n", va, p, p->p_comm);
1991				printf("prefetch_abort: far=%08x fs=%x\n",
1992				    cpu_faultaddress(), cpu_faultstatus());
1993			}
1994#ifdef DDB
1995			if (kernel_debug & 2)
1996				Debugger();
1997#endif
1998			rv = 1;
1999		}
2000	}
2001#endif /* CPU_SA110 */
2002
2003#ifdef DEBUG
2004	/*
2005	 * If 'rv == 0' at this point, it generally indicates that there is a
2006	 * stale TLB entry for the faulting address. This happens when two or
2007	 * more processes are sharing an L1. Since we don't flush the TLB on
2008	 * a context switch between such processes, we can take domain faults
2009	 * for mappings which exist at the same VA in both processes. EVEN IF
2010	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
2011	 * example.
2012	 *
2013	 * This is extremely likely to happen if pmap_enter() updated the L1
2014	 * entry for a recently entered mapping. In this case, the TLB is
2015	 * flushed for the new mapping, but there may still be TLB entries for
2016	 * other mappings belonging to other processes in the 1MB range
2017	 * covered by the L1 entry.
2018	 *
2019	 * Since 'rv == 0', we know that the L1 already contains the correct
2020	 * value, so the fault must be due to a stale TLB entry.
2021	 *
2022	 * Since we always need to flush the TLB anyway in the case where we
2023	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
2024	 * stale TLB entries dynamically.
2025	 *
2026	 * However, the above condition can ONLY happen if the current L1 is
2027	 * being shared. If it happens when the L1 is unshared, it indicates
2028	 * that other parts of the pmap are not doing their job WRT managing
2029	 * the TLB.
2030	 */
2031	if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
2032		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
2033		    pm, (u_long)va, ftype);
2034		printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
2035		    l2, l2b, ptep, pl1pd);
2036		printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
2037		    pte, l1pd, last_fault_code);
2038#ifdef DDB
2039		Debugger();
2040#endif
2041	}
2042#endif
2043
2044	cpu_tlb_flushID_SE(va);
2045	cpu_cpwait();
2046
2047	rv = 1;
2048
2049out:
2050	rw_wunlock(&pvh_global_lock);
2051	PMAP_UNLOCK(pm);
2052	return (rv);
2053}
2054
2055void
2056pmap_postinit(void)
2057{
2058	struct l2_bucket *l2b;
2059	struct l1_ttable *l1;
2060	pd_entry_t *pl1pt;
2061	pt_entry_t *ptep, pte;
2062	vm_offset_t va, eva;
2063	u_int loop, needed;
2064
2065	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
2066	needed -= 1;
2067	l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
2068
2069	for (loop = 0; loop < needed; loop++, l1++) {
2070		/* Allocate a L1 page table */
2071		va = (vm_offset_t)contigmalloc(L1_TABLE_SIZE, M_VMPMAP, 0, 0x0,
2072		    0xffffffff, L1_TABLE_SIZE, 0);
2073
2074		if (va == 0)
2075			panic("Cannot allocate L1 KVM");
2076
2077		eva = va + L1_TABLE_SIZE;
2078		pl1pt = (pd_entry_t *)va;
2079
2080		while (va < eva) {
2081				l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2082				ptep = &l2b->l2b_kva[l2pte_index(va)];
2083				pte = *ptep;
2084				pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
2085				*ptep = pte;
2086				PTE_SYNC(ptep);
2087				cpu_tlb_flushD_SE(va);
2088
2089				va += PAGE_SIZE;
2090		}
2091		pmap_init_l1(l1, pl1pt);
2092	}
2093
2094
2095#ifdef DEBUG
2096	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
2097	    needed);
2098#endif
2099}
2100
2101/*
2102 * This is used to stuff certain critical values into the PCB where they
2103 * can be accessed quickly from cpu_switch() et al.
2104 */
2105void
2106pmap_set_pcb_pagedir(pmap_t pm, struct pcb *pcb)
2107{
2108	struct l2_bucket *l2b;
2109
2110	pcb->pcb_pagedir = pm->pm_l1->l1_physaddr;
2111	pcb->pcb_dacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
2112	    (DOMAIN_CLIENT << (pm->pm_domain * 2));
2113
2114	if (vector_page < KERNBASE) {
2115		pcb->pcb_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
2116		l2b = pmap_get_l2_bucket(pm, vector_page);
2117		pcb->pcb_l1vec = l2b->l2b_phys | L1_C_PROTO |
2118	 	    L1_C_DOM(pm->pm_domain) | L1_C_DOM(PMAP_DOMAIN_KERNEL);
2119	} else
2120		pcb->pcb_pl1vec = NULL;
2121}
2122
2123void
2124pmap_activate(struct thread *td)
2125{
2126	pmap_t pm;
2127	struct pcb *pcb;
2128
2129	pm = vmspace_pmap(td->td_proc->p_vmspace);
2130	pcb = td->td_pcb;
2131
2132	critical_enter();
2133	pmap_set_pcb_pagedir(pm, pcb);
2134
2135	if (td == curthread) {
2136		u_int cur_dacr, cur_ttb;
2137
2138		__asm __volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(cur_ttb));
2139		__asm __volatile("mrc p15, 0, %0, c3, c0, 0" : "=r"(cur_dacr));
2140
2141		cur_ttb &= ~(L1_TABLE_SIZE - 1);
2142
2143		if (cur_ttb == (u_int)pcb->pcb_pagedir &&
2144		    cur_dacr == pcb->pcb_dacr) {
2145			/*
2146			 * No need to switch address spaces.
2147			 */
2148			critical_exit();
2149			return;
2150		}
2151
2152
2153		/*
2154		 * We MUST, I repeat, MUST fix up the L1 entry corresponding
2155		 * to 'vector_page' in the incoming L1 table before switching
2156		 * to it otherwise subsequent interrupts/exceptions (including
2157		 * domain faults!) will jump into hyperspace.
2158		 */
2159		if (pcb->pcb_pl1vec) {
2160
2161			*pcb->pcb_pl1vec = pcb->pcb_l1vec;
2162			/*
2163			 * Don't need to PTE_SYNC() at this point since
2164			 * cpu_setttb() is about to flush both the cache
2165			 * and the TLB.
2166			 */
2167		}
2168
2169		cpu_domains(pcb->pcb_dacr);
2170		cpu_setttb(pcb->pcb_pagedir);
2171	}
2172	critical_exit();
2173}
2174
2175static int
2176pmap_set_pt_cache_mode(pd_entry_t *kl1, vm_offset_t va)
2177{
2178	pd_entry_t *pdep, pde;
2179	pt_entry_t *ptep, pte;
2180	vm_offset_t pa;
2181	int rv = 0;
2182
2183	/*
2184	 * Make sure the descriptor itself has the correct cache mode
2185	 */
2186	pdep = &kl1[L1_IDX(va)];
2187	pde = *pdep;
2188
2189	if (l1pte_section_p(pde)) {
2190		if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
2191			*pdep = (pde & ~L1_S_CACHE_MASK) |
2192			    pte_l1_s_cache_mode_pt;
2193			PTE_SYNC(pdep);
2194			cpu_dcache_wbinv_range((vm_offset_t)pdep,
2195			    sizeof(*pdep));
2196			cpu_l2cache_wbinv_range((vm_offset_t)pdep,
2197			    sizeof(*pdep));
2198			rv = 1;
2199		}
2200	} else {
2201		pa = (vm_paddr_t)(pde & L1_C_ADDR_MASK);
2202		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
2203		if (ptep == NULL)
2204			panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
2205
2206		ptep = &ptep[l2pte_index(va)];
2207		pte = *ptep;
2208		if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
2209			*ptep = (pte & ~L2_S_CACHE_MASK) |
2210			    pte_l2_s_cache_mode_pt;
2211			PTE_SYNC(ptep);
2212			cpu_dcache_wbinv_range((vm_offset_t)ptep,
2213			    sizeof(*ptep));
2214			cpu_l2cache_wbinv_range((vm_offset_t)ptep,
2215			    sizeof(*ptep));
2216			rv = 1;
2217		}
2218	}
2219
2220	return (rv);
2221}
2222
2223static void
2224pmap_alloc_specials(vm_offset_t *availp, int pages, vm_offset_t *vap,
2225    pt_entry_t **ptep)
2226{
2227	vm_offset_t va = *availp;
2228	struct l2_bucket *l2b;
2229
2230	if (ptep) {
2231		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2232		if (l2b == NULL)
2233			panic("pmap_alloc_specials: no l2b for 0x%x", va);
2234
2235		*ptep = &l2b->l2b_kva[l2pte_index(va)];
2236	}
2237
2238	*vap = va;
2239	*availp = va + (PAGE_SIZE * pages);
2240}
2241
2242/*
2243 *	Bootstrap the system enough to run with virtual memory.
2244 *
2245 *	On the arm this is called after mapping has already been enabled
2246 *	and just syncs the pmap module with what has already been done.
2247 *	[We can't call it easily with mapping off since the kernel is not
2248 *	mapped with PA == VA, hence we would have to relocate every address
2249 *	from the linked base (virtual) address "KERNBASE" to the actual
2250 *	(physical) address starting relative to 0]
2251 */
2252#define PMAP_STATIC_L2_SIZE 16
2253void
2254pmap_bootstrap(vm_offset_t firstaddr, struct pv_addr *l1pt)
2255{
2256	static struct l1_ttable static_l1;
2257	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
2258	struct l1_ttable *l1 = &static_l1;
2259	struct l2_dtable *l2;
2260	struct l2_bucket *l2b;
2261	pd_entry_t pde;
2262	pd_entry_t *kernel_l1pt = (pd_entry_t *)l1pt->pv_va;
2263	pt_entry_t *ptep;
2264	vm_paddr_t pa;
2265	vm_offset_t va;
2266	vm_size_t size;
2267	int l1idx, l2idx, l2next = 0;
2268
2269	PDEBUG(1, printf("firstaddr = %08x, lastaddr = %08x\n",
2270	    firstaddr, vm_max_kernel_address));
2271
2272	virtual_avail = firstaddr;
2273	kernel_pmap->pm_l1 = l1;
2274	kernel_l1pa = l1pt->pv_pa;
2275
2276	/*
2277	 * Scan the L1 translation table created by initarm() and create
2278	 * the required metadata for all valid mappings found in it.
2279	 */
2280	for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
2281		pde = kernel_l1pt[l1idx];
2282
2283		/*
2284		 * We're only interested in Coarse mappings.
2285		 * pmap_extract() can deal with section mappings without
2286		 * recourse to checking L2 metadata.
2287		 */
2288		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
2289			continue;
2290
2291		/*
2292		 * Lookup the KVA of this L2 descriptor table
2293		 */
2294		pa = (vm_paddr_t)(pde & L1_C_ADDR_MASK);
2295		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
2296
2297		if (ptep == NULL) {
2298			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
2299			    (u_int)l1idx << L1_S_SHIFT, (long unsigned int)pa);
2300		}
2301
2302		/*
2303		 * Fetch the associated L2 metadata structure.
2304		 * Allocate a new one if necessary.
2305		 */
2306		if ((l2 = kernel_pmap->pm_l2[L2_IDX(l1idx)]) == NULL) {
2307			if (l2next == PMAP_STATIC_L2_SIZE)
2308				panic("pmap_bootstrap: out of static L2s");
2309			kernel_pmap->pm_l2[L2_IDX(l1idx)] = l2 =
2310			    &static_l2[l2next++];
2311		}
2312
2313		/*
2314		 * One more L1 slot tracked...
2315		 */
2316		l2->l2_occupancy++;
2317
2318		/*
2319		 * Fill in the details of the L2 descriptor in the
2320		 * appropriate bucket.
2321		 */
2322		l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
2323		l2b->l2b_kva = ptep;
2324		l2b->l2b_phys = pa;
2325		l2b->l2b_l1idx = l1idx;
2326
2327		/*
2328		 * Establish an initial occupancy count for this descriptor
2329		 */
2330		for (l2idx = 0;
2331		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
2332		    l2idx++) {
2333			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
2334				l2b->l2b_occupancy++;
2335			}
2336		}
2337
2338		/*
2339		 * Make sure the descriptor itself has the correct cache mode.
2340		 * If not, fix it, but whine about the problem. Port-meisters
2341		 * should consider this a clue to fix up their initarm()
2342		 * function. :)
2343		 */
2344		if (pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)ptep)) {
2345			printf("pmap_bootstrap: WARNING! wrong cache mode for "
2346			    "L2 pte @ %p\n", ptep);
2347		}
2348	}
2349
2350
2351	/*
2352	 * Ensure the primary (kernel) L1 has the correct cache mode for
2353	 * a page table. Bitch if it is not correctly set.
2354	 */
2355	for (va = (vm_offset_t)kernel_l1pt;
2356	    va < ((vm_offset_t)kernel_l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
2357		if (pmap_set_pt_cache_mode(kernel_l1pt, va))
2358			printf("pmap_bootstrap: WARNING! wrong cache mode for "
2359			    "primary L1 @ 0x%x\n", va);
2360	}
2361
2362	cpu_dcache_wbinv_all();
2363	cpu_l2cache_wbinv_all();
2364	cpu_tlb_flushID();
2365	cpu_cpwait();
2366
2367	PMAP_LOCK_INIT(kernel_pmap);
2368	CPU_FILL(&kernel_pmap->pm_active);
2369	kernel_pmap->pm_domain = PMAP_DOMAIN_KERNEL;
2370	TAILQ_INIT(&kernel_pmap->pm_pvlist);
2371
2372 	/*
2373	 * Initialize the global pv list lock.
2374	 */
2375	rw_init_flags(&pvh_global_lock, "pmap pv global", RW_RECURSE);
2376
2377	/*
2378	 * Reserve some special page table entries/VA space for temporary
2379	 * mapping of pages.
2380	 */
2381#define SYSMAP(c, p, v, n)						\
2382    v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
2383
2384	pmap_alloc_specials(&virtual_avail, 1, &csrcp, &csrc_pte);
2385	pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)csrc_pte);
2386	pmap_alloc_specials(&virtual_avail, 1, &cdstp, &cdst_pte);
2387	pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)cdst_pte);
2388	size = ((vm_max_kernel_address - pmap_curmaxkvaddr) + L1_S_OFFSET) /
2389	    L1_S_SIZE;
2390	pmap_alloc_specials(&virtual_avail,
2391	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
2392	    &pmap_kernel_l2ptp_kva, NULL);
2393
2394	size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
2395	pmap_alloc_specials(&virtual_avail,
2396	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
2397	    &pmap_kernel_l2dtable_kva, NULL);
2398
2399	pmap_alloc_specials(&virtual_avail,
2400	    1, (vm_offset_t*)&_tmppt, NULL);
2401	pmap_alloc_specials(&virtual_avail,
2402	    MAXDUMPPGS, (vm_offset_t *)&crashdumpmap, NULL);
2403	SLIST_INIT(&l1_list);
2404	TAILQ_INIT(&l1_lru_list);
2405	mtx_init(&l1_lru_lock, "l1 list lock", NULL, MTX_DEF);
2406	pmap_init_l1(l1, kernel_l1pt);
2407	cpu_dcache_wbinv_all();
2408	cpu_l2cache_wbinv_all();
2409
2410	virtual_avail = round_page(virtual_avail);
2411	virtual_end = vm_max_kernel_address;
2412	kernel_vm_end = pmap_curmaxkvaddr;
2413	mtx_init(&cmtx, "TMP mappings mtx", NULL, MTX_DEF);
2414
2415	pmap_set_pcb_pagedir(kernel_pmap, thread0.td_pcb);
2416}
2417
2418/***************************************************
2419 * Pmap allocation/deallocation routines.
2420 ***************************************************/
2421
2422/*
2423 * Release any resources held by the given physical map.
2424 * Called when a pmap initialized by pmap_pinit is being released.
2425 * Should only be called if the map contains no valid mappings.
2426 */
2427void
2428pmap_release(pmap_t pmap)
2429{
2430	struct pcb *pcb;
2431
2432	pmap_idcache_wbinv_all(pmap);
2433	cpu_l2cache_wbinv_all();
2434	pmap_tlb_flushID(pmap);
2435	cpu_cpwait();
2436	if (vector_page < KERNBASE) {
2437		struct pcb *curpcb = PCPU_GET(curpcb);
2438		pcb = thread0.td_pcb;
2439		if (pmap_is_current(pmap)) {
2440			/*
2441 			 * Frob the L1 entry corresponding to the vector
2442			 * page so that it contains the kernel pmap's domain
2443			 * number. This will ensure pmap_remove() does not
2444			 * pull the current vector page out from under us.
2445			 */
2446			critical_enter();
2447			*pcb->pcb_pl1vec = pcb->pcb_l1vec;
2448			cpu_domains(pcb->pcb_dacr);
2449			cpu_setttb(pcb->pcb_pagedir);
2450			critical_exit();
2451		}
2452		pmap_remove(pmap, vector_page, vector_page + PAGE_SIZE);
2453		/*
2454		 * Make sure cpu_switch(), et al, DTRT. This is safe to do
2455		 * since this process has no remaining mappings of its own.
2456		 */
2457		curpcb->pcb_pl1vec = pcb->pcb_pl1vec;
2458		curpcb->pcb_l1vec = pcb->pcb_l1vec;
2459		curpcb->pcb_dacr = pcb->pcb_dacr;
2460		curpcb->pcb_pagedir = pcb->pcb_pagedir;
2461
2462	}
2463	pmap_free_l1(pmap);
2464
2465	dprintf("pmap_release()\n");
2466}
2467
2468
2469
2470/*
2471 * Helper function for pmap_grow_l2_bucket()
2472 */
2473static __inline int
2474pmap_grow_map(vm_offset_t va, pt_entry_t cache_mode, vm_paddr_t *pap)
2475{
2476	struct l2_bucket *l2b;
2477	pt_entry_t *ptep;
2478	vm_paddr_t pa;
2479	struct vm_page *pg;
2480
2481	pg = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
2482	if (pg == NULL)
2483		return (1);
2484	pa = VM_PAGE_TO_PHYS(pg);
2485
2486	if (pap)
2487		*pap = pa;
2488
2489	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2490
2491	ptep = &l2b->l2b_kva[l2pte_index(va)];
2492	*ptep = L2_S_PROTO | pa | cache_mode |
2493	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
2494	PTE_SYNC(ptep);
2495	return (0);
2496}
2497
2498/*
2499 * This is the same as pmap_alloc_l2_bucket(), except that it is only
2500 * used by pmap_growkernel().
2501 */
2502static __inline struct l2_bucket *
2503pmap_grow_l2_bucket(pmap_t pm, vm_offset_t va)
2504{
2505	struct l2_dtable *l2;
2506	struct l2_bucket *l2b;
2507	struct l1_ttable *l1;
2508	pd_entry_t *pl1pd;
2509	u_short l1idx;
2510	vm_offset_t nva;
2511
2512	l1idx = L1_IDX(va);
2513
2514	if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
2515		/*
2516		 * No mapping at this address, as there is
2517		 * no entry in the L1 table.
2518		 * Need to allocate a new l2_dtable.
2519		 */
2520		nva = pmap_kernel_l2dtable_kva;
2521		if ((nva & PAGE_MASK) == 0) {
2522			/*
2523			 * Need to allocate a backing page
2524			 */
2525			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
2526				return (NULL);
2527		}
2528
2529		l2 = (struct l2_dtable *)nva;
2530		nva += sizeof(struct l2_dtable);
2531
2532		if ((nva & PAGE_MASK) < (pmap_kernel_l2dtable_kva &
2533		    PAGE_MASK)) {
2534			/*
2535			 * The new l2_dtable straddles a page boundary.
2536			 * Map in another page to cover it.
2537			 */
2538			if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
2539				return (NULL);
2540		}
2541
2542		pmap_kernel_l2dtable_kva = nva;
2543
2544		/*
2545		 * Link it into the parent pmap
2546		 */
2547		pm->pm_l2[L2_IDX(l1idx)] = l2;
2548		memset(l2, 0, sizeof(*l2));
2549	}
2550
2551	l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
2552
2553	/*
2554	 * Fetch pointer to the L2 page table associated with the address.
2555	 */
2556	if (l2b->l2b_kva == NULL) {
2557		pt_entry_t *ptep;
2558
2559		/*
2560		 * No L2 page table has been allocated. Chances are, this
2561		 * is because we just allocated the l2_dtable, above.
2562		 */
2563		nva = pmap_kernel_l2ptp_kva;
2564		ptep = (pt_entry_t *)nva;
2565		if ((nva & PAGE_MASK) == 0) {
2566			/*
2567			 * Need to allocate a backing page
2568			 */
2569			if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
2570			    &pmap_kernel_l2ptp_phys))
2571				return (NULL);
2572			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
2573		}
2574		memset(ptep, 0, L2_TABLE_SIZE_REAL);
2575		l2->l2_occupancy++;
2576		l2b->l2b_kva = ptep;
2577		l2b->l2b_l1idx = l1idx;
2578		l2b->l2b_phys = pmap_kernel_l2ptp_phys;
2579
2580		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
2581		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
2582	}
2583
2584	/* Distribute new L1 entry to all other L1s */
2585	SLIST_FOREACH(l1, &l1_list, l1_link) {
2586			pl1pd = &l1->l1_kva[L1_IDX(va)];
2587			*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
2588			    L1_C_PROTO;
2589			PTE_SYNC(pl1pd);
2590	}
2591
2592	return (l2b);
2593}
2594
2595
2596/*
2597 * grow the number of kernel page table entries, if needed
2598 */
2599void
2600pmap_growkernel(vm_offset_t addr)
2601{
2602	pmap_t kpm = pmap_kernel();
2603
2604	if (addr <= pmap_curmaxkvaddr)
2605		return;		/* we are OK */
2606
2607	/*
2608	 * whoops!   we need to add kernel PTPs
2609	 */
2610
2611	/* Map 1MB at a time */
2612	for (; pmap_curmaxkvaddr < addr; pmap_curmaxkvaddr += L1_S_SIZE)
2613		pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
2614
2615	/*
2616	 * flush out the cache, expensive but growkernel will happen so
2617	 * rarely
2618	 */
2619	cpu_dcache_wbinv_all();
2620	cpu_l2cache_wbinv_all();
2621	cpu_tlb_flushD();
2622	cpu_cpwait();
2623	kernel_vm_end = pmap_curmaxkvaddr;
2624}
2625
2626
2627/*
2628 * Remove all pages from specified address space
2629 * this aids process exit speeds.  Also, this code
2630 * is special cased for current process only, but
2631 * can have the more generic (and slightly slower)
2632 * mode enabled.  This is much faster than pmap_remove
2633 * in the case of running down an entire address space.
2634 */
2635void
2636pmap_remove_pages(pmap_t pmap)
2637{
2638	struct pv_entry *pv, *npv;
2639	struct l2_bucket *l2b = NULL;
2640	vm_page_t m;
2641	pt_entry_t *pt;
2642
2643	rw_wlock(&pvh_global_lock);
2644	PMAP_LOCK(pmap);
2645	cpu_idcache_wbinv_all();
2646	cpu_l2cache_wbinv_all();
2647	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2648		if (pv->pv_flags & PVF_WIRED || pv->pv_flags & PVF_UNMAN) {
2649			/* Cannot remove wired or unmanaged pages now. */
2650			npv = TAILQ_NEXT(pv, pv_plist);
2651			continue;
2652		}
2653		pmap->pm_stats.resident_count--;
2654		l2b = pmap_get_l2_bucket(pmap, pv->pv_va);
2655		KASSERT(l2b != NULL, ("No L2 bucket in pmap_remove_pages"));
2656		pt = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2657		m = PHYS_TO_VM_PAGE(*pt & L2_ADDR_MASK);
2658		KASSERT((vm_offset_t)m >= KERNBASE, ("Trying to access non-existent page va %x pte %x", pv->pv_va, *pt));
2659		*pt = 0;
2660		PTE_SYNC(pt);
2661		npv = TAILQ_NEXT(pv, pv_plist);
2662		pmap_nuke_pv(m, pmap, pv);
2663		if (TAILQ_EMPTY(&m->md.pv_list))
2664			vm_page_aflag_clear(m, PGA_WRITEABLE);
2665		pmap_free_pv_entry(pv);
2666		pmap_free_l2_bucket(pmap, l2b, 1);
2667	}
2668	rw_wunlock(&pvh_global_lock);
2669	cpu_tlb_flushID();
2670	cpu_cpwait();
2671	PMAP_UNLOCK(pmap);
2672}
2673
2674
2675/***************************************************
2676 * Low level mapping routines.....
2677 ***************************************************/
2678
2679#ifdef ARM_HAVE_SUPERSECTIONS
2680/* Map a super section into the KVA. */
2681
2682void
2683pmap_kenter_supersection(vm_offset_t va, uint64_t pa, int flags)
2684{
2685	pd_entry_t pd = L1_S_PROTO | L1_S_SUPERSEC | (pa & L1_SUP_FRAME) |
2686	    (((pa >> 32) & 0xf) << 20) | L1_S_PROT(PTE_KERNEL,
2687	    VM_PROT_READ|VM_PROT_WRITE) | L1_S_DOM(PMAP_DOMAIN_KERNEL);
2688	struct l1_ttable *l1;
2689	vm_offset_t va0, va_end;
2690
2691	KASSERT(((va | pa) & L1_SUP_OFFSET) == 0,
2692	    ("Not a valid super section mapping"));
2693	if (flags & SECTION_CACHE)
2694		pd |= pte_l1_s_cache_mode;
2695	else if (flags & SECTION_PT)
2696		pd |= pte_l1_s_cache_mode_pt;
2697	va0 = va & L1_SUP_FRAME;
2698	va_end = va + L1_SUP_SIZE;
2699	SLIST_FOREACH(l1, &l1_list, l1_link) {
2700		va = va0;
2701		for (; va < va_end; va += L1_S_SIZE) {
2702			l1->l1_kva[L1_IDX(va)] = pd;
2703			PTE_SYNC(&l1->l1_kva[L1_IDX(va)]);
2704		}
2705	}
2706}
2707#endif
2708
2709/* Map a section into the KVA. */
2710
2711void
2712pmap_kenter_section(vm_offset_t va, vm_offset_t pa, int flags)
2713{
2714	pd_entry_t pd = L1_S_PROTO | pa | L1_S_PROT(PTE_KERNEL,
2715	    VM_PROT_READ|VM_PROT_WRITE) | L1_S_DOM(PMAP_DOMAIN_KERNEL);
2716	struct l1_ttable *l1;
2717
2718	KASSERT(((va | pa) & L1_S_OFFSET) == 0,
2719	    ("Not a valid section mapping"));
2720	if (flags & SECTION_CACHE)
2721		pd |= pte_l1_s_cache_mode;
2722	else if (flags & SECTION_PT)
2723		pd |= pte_l1_s_cache_mode_pt;
2724	SLIST_FOREACH(l1, &l1_list, l1_link) {
2725		l1->l1_kva[L1_IDX(va)] = pd;
2726		PTE_SYNC(&l1->l1_kva[L1_IDX(va)]);
2727	}
2728}
2729
2730/*
2731 * Make a temporary mapping for a physical address.  This is only intended
2732 * to be used for panic dumps.
2733 */
2734void *
2735pmap_kenter_temp(vm_paddr_t pa, int i)
2736{
2737	vm_offset_t va;
2738
2739	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2740	pmap_kenter(va, pa);
2741	return ((void *)crashdumpmap);
2742}
2743
2744/*
2745 * add a wired page to the kva
2746 * note that in order for the mapping to take effect -- you
2747 * should do a invltlb after doing the pmap_kenter...
2748 */
2749static PMAP_INLINE void
2750pmap_kenter_internal(vm_offset_t va, vm_offset_t pa, int flags)
2751{
2752	struct l2_bucket *l2b;
2753	pt_entry_t *pte;
2754	pt_entry_t opte;
2755	struct pv_entry *pve;
2756	vm_page_t m;
2757
2758	PDEBUG(1, printf("pmap_kenter: va = %08x, pa = %08x\n",
2759	    (uint32_t) va, (uint32_t) pa));
2760
2761
2762	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2763	if (l2b == NULL)
2764		l2b = pmap_grow_l2_bucket(pmap_kernel(), va);
2765	KASSERT(l2b != NULL, ("No L2 Bucket"));
2766	pte = &l2b->l2b_kva[l2pte_index(va)];
2767	opte = *pte;
2768	PDEBUG(1, printf("pmap_kenter: pte = %08x, opte = %08x, npte = %08x\n",
2769	    (uint32_t) pte, opte, *pte));
2770	if (l2pte_valid(opte)) {
2771		pmap_kremove(va);
2772	} else {
2773		if (opte == 0)
2774			l2b->l2b_occupancy++;
2775	}
2776	*pte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL,
2777	    VM_PROT_READ | VM_PROT_WRITE);
2778	if (flags & KENTER_CACHE)
2779		*pte |= pte_l2_s_cache_mode;
2780	if (flags & KENTER_USER)
2781		*pte |= L2_S_PROT_U;
2782	PTE_SYNC(pte);
2783
2784	/*
2785	 * A kernel mapping may not be the page's only mapping, so create a PV
2786	 * entry to ensure proper caching.
2787 	 *
2788	 * The existence test for the pvzone is used to delay the recording of
2789	 * kernel mappings until the VM system is fully initialized.
2790	 *
2791	 * This expects the physical memory to have a vm_page_array entry.
2792	 */
2793	if (pvzone != NULL && (m = vm_phys_paddr_to_vm_page(pa)) != NULL) {
2794		rw_wlock(&pvh_global_lock);
2795		if (!TAILQ_EMPTY(&m->md.pv_list) || m->md.pv_kva != 0) {
2796			if ((pve = pmap_get_pv_entry()) == NULL)
2797				panic("pmap_kenter_internal: no pv entries");
2798			PMAP_LOCK(pmap_kernel());
2799			pmap_enter_pv(m, pve, pmap_kernel(), va,
2800			    PVF_WRITE | PVF_UNMAN);
2801			pmap_fix_cache(m, pmap_kernel(), va);
2802			PMAP_UNLOCK(pmap_kernel());
2803		} else {
2804			m->md.pv_kva = va;
2805		}
2806		rw_wunlock(&pvh_global_lock);
2807	}
2808}
2809
2810void
2811pmap_kenter(vm_offset_t va, vm_paddr_t pa)
2812{
2813	pmap_kenter_internal(va, pa, KENTER_CACHE);
2814}
2815
2816void
2817pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa)
2818{
2819
2820	pmap_kenter_internal(va, pa, 0);
2821}
2822
2823void
2824pmap_kenter_device(vm_offset_t va, vm_paddr_t pa)
2825{
2826
2827	/*
2828	 * XXX - Need a way for kenter_internal to handle PTE_DEVICE mapping as
2829	 * a potentially different thing than PTE_NOCACHE.
2830	 */
2831	pmap_kenter_internal(va, pa, 0);
2832}
2833
2834void
2835pmap_kenter_user(vm_offset_t va, vm_paddr_t pa)
2836{
2837
2838	pmap_kenter_internal(va, pa, KENTER_CACHE|KENTER_USER);
2839	/*
2840	 * Call pmap_fault_fixup now, to make sure we'll have no exception
2841	 * at the first use of the new address, or bad things will happen,
2842	 * as we use one of these addresses in the exception handlers.
2843	 */
2844	pmap_fault_fixup(pmap_kernel(), va, VM_PROT_READ|VM_PROT_WRITE, 1);
2845}
2846
2847vm_paddr_t
2848pmap_kextract(vm_offset_t va)
2849{
2850
2851	return (pmap_extract_locked(kernel_pmap, va));
2852}
2853
2854/*
2855 * remove a page from the kernel pagetables
2856 */
2857void
2858pmap_kremove(vm_offset_t va)
2859{
2860	struct l2_bucket *l2b;
2861	pt_entry_t *pte, opte;
2862	struct pv_entry *pve;
2863	vm_page_t m;
2864	vm_offset_t pa;
2865
2866	l2b = pmap_get_l2_bucket(pmap_kernel(), va);
2867	if (!l2b)
2868		return;
2869	KASSERT(l2b != NULL, ("No L2 Bucket"));
2870	pte = &l2b->l2b_kva[l2pte_index(va)];
2871	opte = *pte;
2872	if (l2pte_valid(opte)) {
2873			/* pa = vtophs(va) taken from pmap_extract() */
2874		switch (opte & L2_TYPE_MASK) {
2875		case L2_TYPE_L:
2876			pa = (opte & L2_L_FRAME) | (va & L2_L_OFFSET);
2877			break;
2878		default:
2879			pa = (opte & L2_S_FRAME) | (va & L2_S_OFFSET);
2880			break;
2881		}
2882			/* note: should never have to remove an allocation
2883			 * before the pvzone is initialized.
2884			 */
2885		rw_wlock(&pvh_global_lock);
2886		PMAP_LOCK(pmap_kernel());
2887		if (pvzone != NULL && (m = vm_phys_paddr_to_vm_page(pa)) &&
2888		    (pve = pmap_remove_pv(m, pmap_kernel(), va)))
2889			pmap_free_pv_entry(pve);
2890		PMAP_UNLOCK(pmap_kernel());
2891		rw_wunlock(&pvh_global_lock);
2892		va = va & ~PAGE_MASK;
2893		cpu_dcache_wbinv_range(va, PAGE_SIZE);
2894		cpu_l2cache_wbinv_range(va, PAGE_SIZE);
2895		cpu_tlb_flushD_SE(va);
2896		cpu_cpwait();
2897		*pte = 0;
2898	}
2899}
2900
2901
2902/*
2903 *	Used to map a range of physical addresses into kernel
2904 *	virtual address space.
2905 *
2906 *	The value passed in '*virt' is a suggested virtual address for
2907 *	the mapping. Architectures which can support a direct-mapped
2908 *	physical to virtual region can return the appropriate address
2909 *	within that region, leaving '*virt' unchanged. Other
2910 *	architectures should map the pages starting at '*virt' and
2911 *	update '*virt' with the first usable address after the mapped
2912 *	region.
2913 */
2914vm_offset_t
2915pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
2916{
2917	vm_offset_t sva = *virt;
2918	vm_offset_t va = sva;
2919
2920	PDEBUG(1, printf("pmap_map: virt = %08x, start = %08x, end = %08x, "
2921	    "prot = %d\n", (uint32_t) *virt, (uint32_t) start, (uint32_t) end,
2922	    prot));
2923
2924	while (start < end) {
2925		pmap_kenter(va, start);
2926		va += PAGE_SIZE;
2927		start += PAGE_SIZE;
2928	}
2929	*virt = va;
2930	return (sva);
2931}
2932
2933static void
2934pmap_wb_page(vm_page_t m)
2935{
2936	struct pv_entry *pv;
2937
2938	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
2939	    pmap_dcache_wb_range(pv->pv_pmap, pv->pv_va, PAGE_SIZE, FALSE,
2940		(pv->pv_flags & PVF_WRITE) == 0);
2941}
2942
2943static void
2944pmap_inv_page(vm_page_t m)
2945{
2946	struct pv_entry *pv;
2947
2948	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
2949	    pmap_dcache_wb_range(pv->pv_pmap, pv->pv_va, PAGE_SIZE, TRUE, TRUE);
2950}
2951/*
2952 * Add a list of wired pages to the kva
2953 * this routine is only used for temporary
2954 * kernel mappings that do not need to have
2955 * page modification or references recorded.
2956 * Note that old mappings are simply written
2957 * over.  The page *must* be wired.
2958 */
2959void
2960pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
2961{
2962	int i;
2963
2964	for (i = 0; i < count; i++) {
2965		pmap_wb_page(m[i]);
2966		pmap_kenter_internal(va, VM_PAGE_TO_PHYS(m[i]),
2967		    KENTER_CACHE);
2968		va += PAGE_SIZE;
2969	}
2970}
2971
2972
2973/*
2974 * this routine jerks page mappings from the
2975 * kernel -- it is meant only for temporary mappings.
2976 */
2977void
2978pmap_qremove(vm_offset_t va, int count)
2979{
2980	vm_paddr_t pa;
2981	int i;
2982
2983	for (i = 0; i < count; i++) {
2984		pa = vtophys(va);
2985		if (pa) {
2986			pmap_inv_page(PHYS_TO_VM_PAGE(pa));
2987			pmap_kremove(va);
2988		}
2989		va += PAGE_SIZE;
2990	}
2991}
2992
2993
2994/*
2995 * pmap_object_init_pt preloads the ptes for a given object
2996 * into the specified pmap.  This eliminates the blast of soft
2997 * faults on process startup and immediately after an mmap.
2998 */
2999void
3000pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3001    vm_pindex_t pindex, vm_size_t size)
3002{
3003
3004	VM_OBJECT_ASSERT_WLOCKED(object);
3005	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3006	    ("pmap_object_init_pt: non-device object"));
3007}
3008
3009
3010/*
3011 *	pmap_is_prefaultable:
3012 *
3013 *	Return whether or not the specified virtual address is elgible
3014 *	for prefault.
3015 */
3016boolean_t
3017pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3018{
3019	pd_entry_t *pde;
3020	pt_entry_t *pte;
3021
3022	if (!pmap_get_pde_pte(pmap, addr, &pde, &pte))
3023		return (FALSE);
3024	KASSERT(pte != NULL, ("Valid mapping but no pte ?"));
3025	if (*pte == 0)
3026		return (TRUE);
3027	return (FALSE);
3028}
3029
3030/*
3031 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
3032 * Returns TRUE if the mapping exists, else FALSE.
3033 *
3034 * NOTE: This function is only used by a couple of arm-specific modules.
3035 * It is not safe to take any pmap locks here, since we could be right
3036 * in the middle of debugging the pmap anyway...
3037 *
3038 * It is possible for this routine to return FALSE even though a valid
3039 * mapping does exist. This is because we don't lock, so the metadata
3040 * state may be inconsistent.
3041 *
3042 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
3043 * a "section" mapping.
3044 */
3045boolean_t
3046pmap_get_pde_pte(pmap_t pm, vm_offset_t va, pd_entry_t **pdp, pt_entry_t **ptp)
3047{
3048	struct l2_dtable *l2;
3049	pd_entry_t *pl1pd, l1pd;
3050	pt_entry_t *ptep;
3051	u_short l1idx;
3052
3053	if (pm->pm_l1 == NULL)
3054		return (FALSE);
3055
3056	l1idx = L1_IDX(va);
3057	*pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
3058	l1pd = *pl1pd;
3059
3060	if (l1pte_section_p(l1pd)) {
3061		*ptp = NULL;
3062		return (TRUE);
3063	}
3064
3065	if (pm->pm_l2 == NULL)
3066		return (FALSE);
3067
3068	l2 = pm->pm_l2[L2_IDX(l1idx)];
3069
3070	if (l2 == NULL ||
3071	    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3072		return (FALSE);
3073	}
3074
3075	*ptp = &ptep[l2pte_index(va)];
3076	return (TRUE);
3077}
3078
3079/*
3080 *      Routine:        pmap_remove_all
3081 *      Function:
3082 *              Removes this physical page from
3083 *              all physical maps in which it resides.
3084 *              Reflects back modify bits to the pager.
3085 *
3086 *      Notes:
3087 *              Original versions of this routine were very
3088 *              inefficient because they iteratively called
3089 *              pmap_remove (slow...)
3090 */
3091void
3092pmap_remove_all(vm_page_t m)
3093{
3094	pv_entry_t pv;
3095	pt_entry_t *ptep;
3096	struct l2_bucket *l2b;
3097	boolean_t flush = FALSE;
3098	pmap_t curpm;
3099	int flags = 0;
3100
3101	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3102	    ("pmap_remove_all: page %p is not managed", m));
3103	if (TAILQ_EMPTY(&m->md.pv_list))
3104		return;
3105	rw_wlock(&pvh_global_lock);
3106	pmap_remove_write(m);
3107	curpm = vmspace_pmap(curproc->p_vmspace);
3108	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3109		if (flush == FALSE && (pv->pv_pmap == curpm ||
3110		    pv->pv_pmap == pmap_kernel()))
3111			flush = TRUE;
3112
3113		PMAP_LOCK(pv->pv_pmap);
3114		/*
3115		 * Cached contents were written-back in pmap_remove_write(),
3116		 * but we still have to invalidate the cache entry to make
3117		 * sure stale data are not retrieved when another page will be
3118		 * mapped under this virtual address.
3119		 */
3120		if (pmap_is_current(pv->pv_pmap)) {
3121			cpu_dcache_inv_range(pv->pv_va, PAGE_SIZE);
3122			if (pmap_has_valid_mapping(pv->pv_pmap, pv->pv_va))
3123				cpu_l2cache_inv_range(pv->pv_va, PAGE_SIZE);
3124		}
3125
3126		if (pv->pv_flags & PVF_UNMAN) {
3127			/* remove the pv entry, but do not remove the mapping
3128			 * and remember this is a kernel mapped page
3129			 */
3130			m->md.pv_kva = pv->pv_va;
3131		} else {
3132			/* remove the mapping and pv entry */
3133			l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
3134			KASSERT(l2b != NULL, ("No l2 bucket"));
3135			ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
3136			*ptep = 0;
3137			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
3138			pmap_free_l2_bucket(pv->pv_pmap, l2b, 1);
3139			pv->pv_pmap->pm_stats.resident_count--;
3140			flags |= pv->pv_flags;
3141		}
3142		pmap_nuke_pv(m, pv->pv_pmap, pv);
3143		PMAP_UNLOCK(pv->pv_pmap);
3144		pmap_free_pv_entry(pv);
3145	}
3146
3147	if (flush) {
3148		if (PV_BEEN_EXECD(flags))
3149			pmap_tlb_flushID(curpm);
3150		else
3151			pmap_tlb_flushD(curpm);
3152	}
3153	vm_page_aflag_clear(m, PGA_WRITEABLE);
3154	rw_wunlock(&pvh_global_lock);
3155}
3156
3157
3158/*
3159 *	Set the physical protection on the
3160 *	specified range of this map as requested.
3161 */
3162void
3163pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
3164{
3165	struct l2_bucket *l2b;
3166	pt_entry_t *ptep, pte;
3167	vm_offset_t next_bucket;
3168	u_int flags;
3169	int flush;
3170
3171	CTR4(KTR_PMAP, "pmap_protect: pmap %p sva 0x%08x eva 0x%08x prot %x",
3172	    pm, sva, eva, prot);
3173
3174	if ((prot & VM_PROT_READ) == 0) {
3175		pmap_remove(pm, sva, eva);
3176		return;
3177	}
3178
3179	if (prot & VM_PROT_WRITE) {
3180		/*
3181		 * If this is a read->write transition, just ignore it and let
3182		 * vm_fault() take care of it later.
3183		 */
3184		return;
3185	}
3186
3187	rw_wlock(&pvh_global_lock);
3188	PMAP_LOCK(pm);
3189
3190	/*
3191	 * OK, at this point, we know we're doing write-protect operation.
3192	 * If the pmap is active, write-back the range.
3193	 */
3194	pmap_dcache_wb_range(pm, sva, eva - sva, FALSE, FALSE);
3195
3196	flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
3197	flags = 0;
3198
3199	while (sva < eva) {
3200		next_bucket = L2_NEXT_BUCKET(sva);
3201		if (next_bucket > eva)
3202			next_bucket = eva;
3203
3204		l2b = pmap_get_l2_bucket(pm, sva);
3205		if (l2b == NULL) {
3206			sva = next_bucket;
3207			continue;
3208		}
3209
3210		ptep = &l2b->l2b_kva[l2pte_index(sva)];
3211
3212		while (sva < next_bucket) {
3213			if ((pte = *ptep) != 0 && (pte & L2_S_PROT_W) != 0) {
3214				struct vm_page *pg;
3215				u_int f;
3216
3217				pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3218				pte &= ~L2_S_PROT_W;
3219				*ptep = pte;
3220				PTE_SYNC(ptep);
3221
3222				if (!(pg->oflags & VPO_UNMANAGED)) {
3223					f = pmap_modify_pv(pg, pm, sva,
3224					    PVF_WRITE, 0);
3225					if (f & PVF_WRITE)
3226						vm_page_dirty(pg);
3227				} else
3228					f = 0;
3229
3230				if (flush >= 0) {
3231					flush++;
3232					flags |= f;
3233				} else
3234				if (PV_BEEN_EXECD(f))
3235					pmap_tlb_flushID_SE(pm, sva);
3236				else
3237				if (PV_BEEN_REFD(f))
3238					pmap_tlb_flushD_SE(pm, sva);
3239			}
3240
3241			sva += PAGE_SIZE;
3242			ptep++;
3243		}
3244	}
3245
3246
3247	if (flush) {
3248		if (PV_BEEN_EXECD(flags))
3249			pmap_tlb_flushID(pm);
3250		else
3251		if (PV_BEEN_REFD(flags))
3252			pmap_tlb_flushD(pm);
3253	}
3254	rw_wunlock(&pvh_global_lock);
3255
3256 	PMAP_UNLOCK(pm);
3257}
3258
3259
3260/*
3261 *	Insert the given physical page (p) at
3262 *	the specified virtual address (v) in the
3263 *	target physical map with the protection requested.
3264 *
3265 *	If specified, the page will be wired down, meaning
3266 *	that the related pte can not be reclaimed.
3267 *
3268 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3269 *	or lose information.  That is, this routine must actually
3270 *	insert this page into the given map NOW.
3271 */
3272
3273void
3274pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
3275    vm_prot_t prot, boolean_t wired)
3276{
3277
3278	rw_wlock(&pvh_global_lock);
3279	PMAP_LOCK(pmap);
3280	pmap_enter_locked(pmap, va, m, prot, wired, M_WAITOK);
3281	rw_wunlock(&pvh_global_lock);
3282 	PMAP_UNLOCK(pmap);
3283}
3284
3285/*
3286 *	The pvh global and pmap locks must be held.
3287 */
3288static void
3289pmap_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3290    boolean_t wired, int flags)
3291{
3292	struct l2_bucket *l2b = NULL;
3293	struct vm_page *opg;
3294	struct pv_entry *pve = NULL;
3295	pt_entry_t *ptep, npte, opte;
3296	u_int nflags;
3297	u_int oflags;
3298	vm_paddr_t pa;
3299
3300	PMAP_ASSERT_LOCKED(pmap);
3301	rw_assert(&pvh_global_lock, RA_WLOCKED);
3302	if (va == vector_page) {
3303		pa = systempage.pv_pa;
3304		m = NULL;
3305	} else {
3306		KASSERT((m->oflags & VPO_UNMANAGED) != 0 ||
3307		    vm_page_xbusied(m) || (flags & M_NOWAIT) != 0,
3308		    ("pmap_enter_locked: page %p is not busy", m));
3309		pa = VM_PAGE_TO_PHYS(m);
3310	}
3311	nflags = 0;
3312	if (prot & VM_PROT_WRITE)
3313		nflags |= PVF_WRITE;
3314	if (prot & VM_PROT_EXECUTE)
3315		nflags |= PVF_EXEC;
3316	if (wired)
3317		nflags |= PVF_WIRED;
3318	PDEBUG(1, printf("pmap_enter: pmap = %08x, va = %08x, m = %08x, prot = %x, "
3319	    "wired = %x\n", (uint32_t) pmap, va, (uint32_t) m, prot, wired));
3320
3321	if (pmap == pmap_kernel()) {
3322		l2b = pmap_get_l2_bucket(pmap, va);
3323		if (l2b == NULL)
3324			l2b = pmap_grow_l2_bucket(pmap, va);
3325	} else {
3326do_l2b_alloc:
3327		l2b = pmap_alloc_l2_bucket(pmap, va);
3328		if (l2b == NULL) {
3329			if (flags & M_WAITOK) {
3330				PMAP_UNLOCK(pmap);
3331				rw_wunlock(&pvh_global_lock);
3332				VM_WAIT;
3333				rw_wlock(&pvh_global_lock);
3334				PMAP_LOCK(pmap);
3335				goto do_l2b_alloc;
3336			}
3337			return;
3338		}
3339	}
3340
3341	ptep = &l2b->l2b_kva[l2pte_index(va)];
3342
3343	opte = *ptep;
3344	npte = pa;
3345	oflags = 0;
3346	if (opte) {
3347		/*
3348		 * There is already a mapping at this address.
3349		 * If the physical address is different, lookup the
3350		 * vm_page.
3351		 */
3352		if (l2pte_pa(opte) != pa)
3353			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3354		else
3355			opg = m;
3356	} else
3357		opg = NULL;
3358
3359	if ((prot & (VM_PROT_ALL)) ||
3360	    (!m || m->md.pvh_attrs & PVF_REF)) {
3361		/*
3362		 * - The access type indicates that we don't need
3363		 *   to do referenced emulation.
3364		 * OR
3365		 * - The physical page has already been referenced
3366		 *   so no need to re-do referenced emulation here.
3367		 */
3368		npte |= L2_S_PROTO;
3369
3370		nflags |= PVF_REF;
3371
3372		if (m && ((prot & VM_PROT_WRITE) != 0 ||
3373		    (m->md.pvh_attrs & PVF_MOD))) {
3374			/*
3375			 * This is a writable mapping, and the
3376			 * page's mod state indicates it has
3377			 * already been modified. Make it
3378			 * writable from the outset.
3379			 */
3380			nflags |= PVF_MOD;
3381			if (!(m->md.pvh_attrs & PVF_MOD))
3382				vm_page_dirty(m);
3383		}
3384		if (m && opte)
3385			vm_page_aflag_set(m, PGA_REFERENCED);
3386	} else {
3387		/*
3388		 * Need to do page referenced emulation.
3389		 */
3390		npte |= L2_TYPE_INV;
3391	}
3392
3393	if (prot & VM_PROT_WRITE) {
3394		npte |= L2_S_PROT_W;
3395		if (m != NULL &&
3396		    (m->oflags & VPO_UNMANAGED) == 0)
3397			vm_page_aflag_set(m, PGA_WRITEABLE);
3398	}
3399	if (m->md.pv_memattr != VM_MEMATTR_UNCACHEABLE)
3400		npte |= pte_l2_s_cache_mode;
3401	if (m && m == opg) {
3402		/*
3403		 * We're changing the attrs of an existing mapping.
3404		 */
3405		oflags = pmap_modify_pv(m, pmap, va,
3406		    PVF_WRITE | PVF_EXEC | PVF_WIRED |
3407		    PVF_MOD | PVF_REF, nflags);
3408
3409		/*
3410		 * We may need to flush the cache if we're
3411		 * doing rw-ro...
3412		 */
3413		if (pmap_is_current(pmap) &&
3414		    (oflags & PVF_NC) == 0 &&
3415		    (opte & L2_S_PROT_W) != 0 &&
3416		    (prot & VM_PROT_WRITE) == 0 &&
3417		    (opte & L2_TYPE_MASK) != L2_TYPE_INV) {
3418			cpu_dcache_wb_range(va, PAGE_SIZE);
3419			cpu_l2cache_wb_range(va, PAGE_SIZE);
3420		}
3421	} else {
3422		/*
3423		 * New mapping, or changing the backing page
3424		 * of an existing mapping.
3425		 */
3426		if (opg) {
3427			/*
3428			 * Replacing an existing mapping with a new one.
3429			 * It is part of our managed memory so we
3430			 * must remove it from the PV list
3431			 */
3432			if ((pve = pmap_remove_pv(opg, pmap, va))) {
3433
3434			/* note for patch: the oflags/invalidation was moved
3435			 * because PG_FICTITIOUS pages could free the pve
3436			 */
3437			    oflags = pve->pv_flags;
3438			/*
3439			 * If the old mapping was valid (ref/mod
3440			 * emulation creates 'invalid' mappings
3441			 * initially) then make sure to frob
3442			 * the cache.
3443			 */
3444			    if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
3445				if (PV_BEEN_EXECD(oflags)) {
3446					pmap_idcache_wbinv_range(pmap, va,
3447					    PAGE_SIZE);
3448				} else
3449					if (PV_BEEN_REFD(oflags)) {
3450						pmap_dcache_wb_range(pmap, va,
3451						    PAGE_SIZE, TRUE,
3452						    (oflags & PVF_WRITE) == 0);
3453					}
3454			    }
3455
3456			/* free/allocate a pv_entry for UNMANAGED pages if
3457			 * this physical page is not/is already mapped.
3458			 */
3459
3460			    if (m && (m->oflags & VPO_UNMANAGED) &&
3461				  !m->md.pv_kva &&
3462				 TAILQ_EMPTY(&m->md.pv_list)) {
3463				pmap_free_pv_entry(pve);
3464				pve = NULL;
3465			    }
3466			} else if (m &&
3467				 (!(m->oflags & VPO_UNMANAGED) || m->md.pv_kva ||
3468				  !TAILQ_EMPTY(&m->md.pv_list)))
3469				pve = pmap_get_pv_entry();
3470		} else if (m &&
3471			   (!(m->oflags & VPO_UNMANAGED) || m->md.pv_kva ||
3472			   !TAILQ_EMPTY(&m->md.pv_list)))
3473			pve = pmap_get_pv_entry();
3474
3475		if (m) {
3476			if ((m->oflags & VPO_UNMANAGED)) {
3477				if (!TAILQ_EMPTY(&m->md.pv_list) ||
3478				    m->md.pv_kva) {
3479					KASSERT(pve != NULL, ("No pv"));
3480					nflags |= PVF_UNMAN;
3481					pmap_enter_pv(m, pve, pmap, va, nflags);
3482				} else
3483					m->md.pv_kva = va;
3484			} else {
3485				KASSERT(va < kmi.clean_sva ||
3486				    va >= kmi.clean_eva,
3487		("pmap_enter: managed mapping within the clean submap"));
3488 				KASSERT(pve != NULL, ("No pv"));
3489 				pmap_enter_pv(m, pve, pmap, va, nflags);
3490			}
3491		}
3492	}
3493	/*
3494	 * Make sure userland mappings get the right permissions
3495	 */
3496	if (pmap != pmap_kernel() && va != vector_page) {
3497		npte |= L2_S_PROT_U;
3498	}
3499
3500	/*
3501	 * Keep the stats up to date
3502	 */
3503	if (opte == 0) {
3504		l2b->l2b_occupancy++;
3505		pmap->pm_stats.resident_count++;
3506	}
3507
3508	/*
3509	 * If this is just a wiring change, the two PTEs will be
3510	 * identical, so there's no need to update the page table.
3511	 */
3512	if (npte != opte) {
3513		boolean_t is_cached = pmap_is_current(pmap);
3514
3515		*ptep = npte;
3516		if (is_cached) {
3517			/*
3518			 * We only need to frob the cache/tlb if this pmap
3519			 * is current
3520			 */
3521			PTE_SYNC(ptep);
3522			if (L1_IDX(va) != L1_IDX(vector_page) &&
3523			    l2pte_valid(npte)) {
3524				/*
3525				 * This mapping is likely to be accessed as
3526				 * soon as we return to userland. Fix up the
3527				 * L1 entry to avoid taking another
3528				 * page/domain fault.
3529				 */
3530				pd_entry_t *pl1pd, l1pd;
3531
3532				pl1pd = &pmap->pm_l1->l1_kva[L1_IDX(va)];
3533				l1pd = l2b->l2b_phys | L1_C_DOM(pmap->pm_domain) |
3534				    L1_C_PROTO;
3535				if (*pl1pd != l1pd) {
3536					*pl1pd = l1pd;
3537					PTE_SYNC(pl1pd);
3538				}
3539			}
3540		}
3541
3542		if (PV_BEEN_EXECD(oflags))
3543			pmap_tlb_flushID_SE(pmap, va);
3544		else if (PV_BEEN_REFD(oflags))
3545			pmap_tlb_flushD_SE(pmap, va);
3546
3547
3548		if (m)
3549			pmap_fix_cache(m, pmap, va);
3550	}
3551}
3552
3553/*
3554 * Maps a sequence of resident pages belonging to the same object.
3555 * The sequence begins with the given page m_start.  This page is
3556 * mapped at the given virtual address start.  Each subsequent page is
3557 * mapped at a virtual address that is offset from start by the same
3558 * amount as the page is offset from m_start within the object.  The
3559 * last page in the sequence is the page with the largest offset from
3560 * m_start that can be mapped at a virtual address less than the given
3561 * virtual address end.  Not every virtual page between start and end
3562 * is mapped; only those for which a resident page exists with the
3563 * corresponding offset from m_start are mapped.
3564 */
3565void
3566pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3567    vm_page_t m_start, vm_prot_t prot)
3568{
3569	vm_page_t m;
3570	vm_pindex_t diff, psize;
3571
3572	VM_OBJECT_ASSERT_LOCKED(m_start->object);
3573
3574	psize = atop(end - start);
3575	m = m_start;
3576	rw_wlock(&pvh_global_lock);
3577	PMAP_LOCK(pmap);
3578	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3579		pmap_enter_locked(pmap, start + ptoa(diff), m, prot &
3580		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE, M_NOWAIT);
3581		m = TAILQ_NEXT(m, listq);
3582	}
3583	rw_wunlock(&pvh_global_lock);
3584 	PMAP_UNLOCK(pmap);
3585}
3586
3587/*
3588 * this code makes some *MAJOR* assumptions:
3589 * 1. Current pmap & pmap exists.
3590 * 2. Not wired.
3591 * 3. Read access.
3592 * 4. No page table pages.
3593 * but is *MUCH* faster than pmap_enter...
3594 */
3595
3596void
3597pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3598{
3599
3600	rw_wlock(&pvh_global_lock);
3601 	PMAP_LOCK(pmap);
3602	pmap_enter_locked(pmap, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
3603	    FALSE, M_NOWAIT);
3604	rw_wunlock(&pvh_global_lock);
3605 	PMAP_UNLOCK(pmap);
3606}
3607
3608/*
3609 *	Routine:	pmap_change_wiring
3610 *	Function:	Change the wiring attribute for a map/virtual-address
3611 *			pair.
3612 *	In/out conditions:
3613 *			The mapping must already exist in the pmap.
3614 */
3615void
3616pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3617{
3618	struct l2_bucket *l2b;
3619	pt_entry_t *ptep, pte;
3620	vm_page_t pg;
3621
3622	rw_wlock(&pvh_global_lock);
3623 	PMAP_LOCK(pmap);
3624	l2b = pmap_get_l2_bucket(pmap, va);
3625	KASSERT(l2b, ("No l2b bucket in pmap_change_wiring"));
3626	ptep = &l2b->l2b_kva[l2pte_index(va)];
3627	pte = *ptep;
3628	pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3629	if (pg)
3630		pmap_modify_pv(pg, pmap, va, PVF_WIRED, wired ? PVF_WIRED : 0);
3631	rw_wunlock(&pvh_global_lock);
3632 	PMAP_UNLOCK(pmap);
3633}
3634
3635
3636/*
3637 *	Copy the range specified by src_addr/len
3638 *	from the source map to the range dst_addr/len
3639 *	in the destination map.
3640 *
3641 *	This routine is only advisory and need not do anything.
3642 */
3643void
3644pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
3645    vm_size_t len, vm_offset_t src_addr)
3646{
3647}
3648
3649
3650/*
3651 *	Routine:	pmap_extract
3652 *	Function:
3653 *		Extract the physical page address associated
3654 *		with the given map/virtual_address pair.
3655 */
3656vm_paddr_t
3657pmap_extract(pmap_t pmap, vm_offset_t va)
3658{
3659	vm_paddr_t pa;
3660
3661	PMAP_LOCK(pmap);
3662	pa = pmap_extract_locked(pmap, va);
3663	PMAP_UNLOCK(pmap);
3664	return (pa);
3665}
3666
3667static vm_paddr_t
3668pmap_extract_locked(pmap_t pmap, vm_offset_t va)
3669{
3670	struct l2_dtable *l2;
3671	pd_entry_t l1pd;
3672	pt_entry_t *ptep, pte;
3673	vm_paddr_t pa;
3674	u_int l1idx;
3675
3676	if (pmap != kernel_pmap)
3677		PMAP_ASSERT_LOCKED(pmap);
3678	l1idx = L1_IDX(va);
3679	l1pd = pmap->pm_l1->l1_kva[l1idx];
3680	if (l1pte_section_p(l1pd)) {
3681		/*
3682		 * These should only happen for the kernel pmap.
3683		 */
3684		KASSERT(pmap == kernel_pmap, ("unexpected section"));
3685		/* XXX: what to do about the bits > 32 ? */
3686		if (l1pd & L1_S_SUPERSEC)
3687			pa = (l1pd & L1_SUP_FRAME) | (va & L1_SUP_OFFSET);
3688		else
3689			pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3690	} else {
3691		/*
3692		 * Note that we can't rely on the validity of the L1
3693		 * descriptor as an indication that a mapping exists.
3694		 * We have to look it up in the L2 dtable.
3695		 */
3696		l2 = pmap->pm_l2[L2_IDX(l1idx)];
3697		if (l2 == NULL ||
3698		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL)
3699			return (0);
3700		pte = ptep[l2pte_index(va)];
3701		if (pte == 0)
3702			return (0);
3703		switch (pte & L2_TYPE_MASK) {
3704		case L2_TYPE_L:
3705			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3706			break;
3707		default:
3708			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3709			break;
3710		}
3711	}
3712	return (pa);
3713}
3714
3715/*
3716 * Atomically extract and hold the physical page with the given
3717 * pmap and virtual address pair if that mapping permits the given
3718 * protection.
3719 *
3720 */
3721vm_page_t
3722pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3723{
3724	struct l2_dtable *l2;
3725	pd_entry_t l1pd;
3726	pt_entry_t *ptep, pte;
3727	vm_paddr_t pa, paddr;
3728	vm_page_t m = NULL;
3729	u_int l1idx;
3730	l1idx = L1_IDX(va);
3731	paddr = 0;
3732
3733 	PMAP_LOCK(pmap);
3734retry:
3735	l1pd = pmap->pm_l1->l1_kva[l1idx];
3736	if (l1pte_section_p(l1pd)) {
3737		/*
3738		 * These should only happen for pmap_kernel()
3739		 */
3740		KASSERT(pmap == pmap_kernel(), ("huh"));
3741		/* XXX: what to do about the bits > 32 ? */
3742		if (l1pd & L1_S_SUPERSEC)
3743			pa = (l1pd & L1_SUP_FRAME) | (va & L1_SUP_OFFSET);
3744		else
3745			pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3746		if (vm_page_pa_tryrelock(pmap, pa & PG_FRAME, &paddr))
3747			goto retry;
3748		if (l1pd & L1_S_PROT_W || (prot & VM_PROT_WRITE) == 0) {
3749			m = PHYS_TO_VM_PAGE(pa);
3750			vm_page_hold(m);
3751		}
3752
3753	} else {
3754		/*
3755		 * Note that we can't rely on the validity of the L1
3756		 * descriptor as an indication that a mapping exists.
3757		 * We have to look it up in the L2 dtable.
3758		 */
3759		l2 = pmap->pm_l2[L2_IDX(l1idx)];
3760
3761		if (l2 == NULL ||
3762		    (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3763		 	PMAP_UNLOCK(pmap);
3764			return (NULL);
3765		}
3766
3767		ptep = &ptep[l2pte_index(va)];
3768		pte = *ptep;
3769
3770		if (pte == 0) {
3771		 	PMAP_UNLOCK(pmap);
3772			return (NULL);
3773		}
3774		if (pte & L2_S_PROT_W || (prot & VM_PROT_WRITE) == 0) {
3775			switch (pte & L2_TYPE_MASK) {
3776			case L2_TYPE_L:
3777				pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3778				break;
3779
3780			default:
3781				pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3782				break;
3783			}
3784			if (vm_page_pa_tryrelock(pmap, pa & PG_FRAME, &paddr))
3785				goto retry;
3786			m = PHYS_TO_VM_PAGE(pa);
3787			vm_page_hold(m);
3788		}
3789	}
3790
3791 	PMAP_UNLOCK(pmap);
3792	PA_UNLOCK_COND(paddr);
3793	return (m);
3794}
3795
3796/*
3797 * Initialize a preallocated and zeroed pmap structure,
3798 * such as one in a vmspace structure.
3799 */
3800
3801int
3802pmap_pinit(pmap_t pmap)
3803{
3804	PDEBUG(1, printf("pmap_pinit: pmap = %08x\n", (uint32_t) pmap));
3805
3806	pmap_alloc_l1(pmap);
3807	bzero(pmap->pm_l2, sizeof(pmap->pm_l2));
3808
3809	CPU_ZERO(&pmap->pm_active);
3810
3811	TAILQ_INIT(&pmap->pm_pvlist);
3812	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
3813	pmap->pm_stats.resident_count = 1;
3814	if (vector_page < KERNBASE) {
3815		pmap_enter(pmap, vector_page,
3816		    VM_PROT_READ, PHYS_TO_VM_PAGE(systempage.pv_pa),
3817		    VM_PROT_READ, 1);
3818	}
3819	return (1);
3820}
3821
3822
3823/***************************************************
3824 * page management routines.
3825 ***************************************************/
3826
3827
3828static void
3829pmap_free_pv_entry(pv_entry_t pv)
3830{
3831	pv_entry_count--;
3832	uma_zfree(pvzone, pv);
3833}
3834
3835
3836/*
3837 * get a new pv_entry, allocating a block from the system
3838 * when needed.
3839 * the memory allocation is performed bypassing the malloc code
3840 * because of the possibility of allocations at interrupt time.
3841 */
3842static pv_entry_t
3843pmap_get_pv_entry(void)
3844{
3845	pv_entry_t ret_value;
3846
3847	pv_entry_count++;
3848	if (pv_entry_count > pv_entry_high_water)
3849		pagedaemon_wakeup();
3850	ret_value = uma_zalloc(pvzone, M_NOWAIT);
3851	return ret_value;
3852}
3853
3854/*
3855 *	Remove the given range of addresses from the specified map.
3856 *
3857 *	It is assumed that the start and end are properly
3858 *	rounded to the page size.
3859 */
3860#define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
3861void
3862pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
3863{
3864	struct l2_bucket *l2b;
3865	vm_offset_t next_bucket;
3866	pt_entry_t *ptep;
3867	u_int total;
3868	u_int mappings, is_exec, is_refd;
3869	int flushall = 0;
3870
3871
3872	/*
3873	 * we lock in the pmap => pv_head direction
3874	 */
3875
3876	rw_wlock(&pvh_global_lock);
3877	PMAP_LOCK(pm);
3878	total = 0;
3879	while (sva < eva) {
3880		/*
3881		 * Do one L2 bucket's worth at a time.
3882		 */
3883		next_bucket = L2_NEXT_BUCKET(sva);
3884		if (next_bucket > eva)
3885			next_bucket = eva;
3886
3887		l2b = pmap_get_l2_bucket(pm, sva);
3888		if (l2b == NULL) {
3889			sva = next_bucket;
3890			continue;
3891		}
3892
3893		ptep = &l2b->l2b_kva[l2pte_index(sva)];
3894		mappings = 0;
3895
3896		while (sva < next_bucket) {
3897			struct vm_page *pg;
3898			pt_entry_t pte;
3899			vm_paddr_t pa;
3900
3901			pte = *ptep;
3902
3903			if (pte == 0) {
3904				/*
3905				 * Nothing here, move along
3906				 */
3907				sva += PAGE_SIZE;
3908				ptep++;
3909				continue;
3910			}
3911
3912			pm->pm_stats.resident_count--;
3913			pa = l2pte_pa(pte);
3914			is_exec = 0;
3915			is_refd = 1;
3916
3917			/*
3918			 * Update flags. In a number of circumstances,
3919			 * we could cluster a lot of these and do a
3920			 * number of sequential pages in one go.
3921			 */
3922			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3923				struct pv_entry *pve;
3924
3925				pve = pmap_remove_pv(pg, pm, sva);
3926				if (pve) {
3927					is_exec = PV_BEEN_EXECD(pve->pv_flags);
3928					is_refd = PV_BEEN_REFD(pve->pv_flags);
3929					pmap_free_pv_entry(pve);
3930				}
3931			}
3932
3933			if (l2pte_valid(pte) && pmap_is_current(pm)) {
3934				if (total < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3935					total++;
3936			   		if (is_exec) {
3937        					cpu_idcache_wbinv_range(sva,
3938						    PAGE_SIZE);
3939						cpu_l2cache_wbinv_range(sva,
3940						    PAGE_SIZE);
3941						cpu_tlb_flushID_SE(sva);
3942			   		} else if (is_refd) {
3943						cpu_dcache_wbinv_range(sva,
3944						    PAGE_SIZE);
3945						cpu_l2cache_wbinv_range(sva,
3946						    PAGE_SIZE);
3947						cpu_tlb_flushD_SE(sva);
3948					}
3949				} else if (total == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3950					/* flushall will also only get set for
3951					 * for a current pmap
3952					 */
3953					cpu_idcache_wbinv_all();
3954					cpu_l2cache_wbinv_all();
3955					flushall = 1;
3956					total++;
3957				}
3958			}
3959			*ptep = 0;
3960			PTE_SYNC(ptep);
3961
3962			sva += PAGE_SIZE;
3963			ptep++;
3964			mappings++;
3965		}
3966
3967		pmap_free_l2_bucket(pm, l2b, mappings);
3968	}
3969
3970	rw_wunlock(&pvh_global_lock);
3971	if (flushall)
3972		cpu_tlb_flushID();
3973 	PMAP_UNLOCK(pm);
3974}
3975
3976/*
3977 * pmap_zero_page()
3978 *
3979 * Zero a given physical page by mapping it at a page hook point.
3980 * In doing the zero page op, the page we zero is mapped cachable, as with
3981 * StrongARM accesses to non-cached pages are non-burst making writing
3982 * _any_ bulk data very slow.
3983 */
3984#if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 || defined(CPU_XSCALE_CORE3)
3985void
3986pmap_zero_page_generic(vm_paddr_t phys, int off, int size)
3987{
3988
3989	if (_arm_bzero && size >= _min_bzero_size &&
3990	    _arm_bzero((void *)(phys + off), size, IS_PHYSICAL) == 0)
3991		return;
3992
3993	mtx_lock(&cmtx);
3994	/*
3995	 * Hook in the page, zero it, invalidate the TLB as needed.
3996	 *
3997	 * Note the temporary zero-page mapping must be a non-cached page in
3998	 * order to work without corruption when write-allocate is enabled.
3999	 */
4000	*cdst_pte = L2_S_PROTO | phys | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
4001	PTE_SYNC(cdst_pte);
4002	cpu_tlb_flushD_SE(cdstp);
4003	cpu_cpwait();
4004	if (off || size != PAGE_SIZE)
4005		bzero((void *)(cdstp + off), size);
4006	else
4007		bzero_page(cdstp);
4008
4009	mtx_unlock(&cmtx);
4010}
4011#endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
4012
4013#if ARM_MMU_XSCALE == 1
4014void
4015pmap_zero_page_xscale(vm_paddr_t phys, int off, int size)
4016{
4017
4018	if (_arm_bzero && size >= _min_bzero_size &&
4019	    _arm_bzero((void *)(phys + off), size, IS_PHYSICAL) == 0)
4020		return;
4021
4022	mtx_lock(&cmtx);
4023	/*
4024	 * Hook in the page, zero it, and purge the cache for that
4025	 * zeroed page. Invalidate the TLB as needed.
4026	 */
4027	*cdst_pte = L2_S_PROTO | phys |
4028	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4029	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
4030	PTE_SYNC(cdst_pte);
4031	cpu_tlb_flushD_SE(cdstp);
4032	cpu_cpwait();
4033	if (off || size != PAGE_SIZE)
4034		bzero((void *)(cdstp + off), size);
4035	else
4036		bzero_page(cdstp);
4037	mtx_unlock(&cmtx);
4038	xscale_cache_clean_minidata();
4039}
4040
4041/*
4042 * Change the PTEs for the specified kernel mappings such that they
4043 * will use the mini data cache instead of the main data cache.
4044 */
4045void
4046pmap_use_minicache(vm_offset_t va, vm_size_t size)
4047{
4048	struct l2_bucket *l2b;
4049	pt_entry_t *ptep, *sptep, pte;
4050	vm_offset_t next_bucket, eva;
4051
4052#if (ARM_NMMUS > 1) || defined(CPU_XSCALE_CORE3)
4053	if (xscale_use_minidata == 0)
4054		return;
4055#endif
4056
4057	eva = va + size;
4058
4059	while (va < eva) {
4060		next_bucket = L2_NEXT_BUCKET(va);
4061		if (next_bucket > eva)
4062			next_bucket = eva;
4063
4064		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4065
4066		sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
4067
4068		while (va < next_bucket) {
4069			pte = *ptep;
4070			if (!l2pte_minidata(pte)) {
4071				cpu_dcache_wbinv_range(va, PAGE_SIZE);
4072				cpu_tlb_flushD_SE(va);
4073				*ptep = pte & ~L2_B;
4074			}
4075			ptep++;
4076			va += PAGE_SIZE;
4077		}
4078		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
4079	}
4080	cpu_cpwait();
4081}
4082#endif /* ARM_MMU_XSCALE == 1 */
4083
4084/*
4085 *	pmap_zero_page zeros the specified hardware page by mapping
4086 *	the page into KVM and using bzero to clear its contents.
4087 */
4088void
4089pmap_zero_page(vm_page_t m)
4090{
4091	pmap_zero_page_func(VM_PAGE_TO_PHYS(m), 0, PAGE_SIZE);
4092}
4093
4094
4095/*
4096 *	pmap_zero_page_area zeros the specified hardware page by mapping
4097 *	the page into KVM and using bzero to clear its contents.
4098 *
4099 *	off and size may not cover an area beyond a single hardware page.
4100 */
4101void
4102pmap_zero_page_area(vm_page_t m, int off, int size)
4103{
4104
4105	pmap_zero_page_func(VM_PAGE_TO_PHYS(m), off, size);
4106}
4107
4108
4109/*
4110 *	pmap_zero_page_idle zeros the specified hardware page by mapping
4111 *	the page into KVM and using bzero to clear its contents.  This
4112 *	is intended to be called from the vm_pagezero process only and
4113 *	outside of Giant.
4114 */
4115void
4116pmap_zero_page_idle(vm_page_t m)
4117{
4118
4119	pmap_zero_page(m);
4120}
4121
4122#if 0
4123/*
4124 * pmap_clean_page()
4125 *
4126 * This is a local function used to work out the best strategy to clean
4127 * a single page referenced by its entry in the PV table. It should be used by
4128 * pmap_copy_page, pmap_zero page and maybe some others later on.
4129 *
4130 * Its policy is effectively:
4131 *  o If there are no mappings, we don't bother doing anything with the cache.
4132 *  o If there is one mapping, we clean just that page.
4133 *  o If there are multiple mappings, we clean the entire cache.
4134 *
4135 * So that some functions can be further optimised, it returns 0 if it didn't
4136 * clean the entire cache, or 1 if it did.
4137 *
4138 * XXX One bug in this routine is that if the pv_entry has a single page
4139 * mapped at 0x00000000 a whole cache clean will be performed rather than
4140 * just the 1 page. Since this should not occur in everyday use and if it does
4141 * it will just result in not the most efficient clean for the page.
4142 *
4143 * We don't yet use this function but may want to.
4144 */
4145static int
4146pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
4147{
4148	pmap_t pm, pm_to_clean = NULL;
4149	struct pv_entry *npv;
4150	u_int cache_needs_cleaning = 0;
4151	u_int flags = 0;
4152	vm_offset_t page_to_clean = 0;
4153
4154	if (pv == NULL) {
4155		/* nothing mapped in so nothing to flush */
4156		return (0);
4157	}
4158
4159	/*
4160	 * Since we flush the cache each time we change to a different
4161	 * user vmspace, we only need to flush the page if it is in the
4162	 * current pmap.
4163	 */
4164	if (curthread)
4165		pm = vmspace_pmap(curproc->p_vmspace);
4166	else
4167		pm = pmap_kernel();
4168
4169	for (npv = pv; npv; npv = TAILQ_NEXT(npv, pv_list)) {
4170		if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
4171			flags |= npv->pv_flags;
4172			/*
4173			 * The page is mapped non-cacheable in
4174			 * this map.  No need to flush the cache.
4175			 */
4176			if (npv->pv_flags & PVF_NC) {
4177#ifdef DIAGNOSTIC
4178				if (cache_needs_cleaning)
4179					panic("pmap_clean_page: "
4180					    "cache inconsistency");
4181#endif
4182				break;
4183			} else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
4184				continue;
4185			if (cache_needs_cleaning) {
4186				page_to_clean = 0;
4187				break;
4188			} else {
4189				page_to_clean = npv->pv_va;
4190				pm_to_clean = npv->pv_pmap;
4191			}
4192			cache_needs_cleaning = 1;
4193		}
4194	}
4195	if (page_to_clean) {
4196		if (PV_BEEN_EXECD(flags))
4197			pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
4198			    PAGE_SIZE);
4199		else
4200			pmap_dcache_wb_range(pm_to_clean, page_to_clean,
4201			    PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
4202	} else if (cache_needs_cleaning) {
4203		if (PV_BEEN_EXECD(flags))
4204			pmap_idcache_wbinv_all(pm);
4205		else
4206			pmap_dcache_wbinv_all(pm);
4207		return (1);
4208	}
4209	return (0);
4210}
4211#endif
4212
4213/*
4214 *	pmap_copy_page copies the specified (machine independent)
4215 *	page by mapping the page into virtual memory and using
4216 *	bcopy to copy the page, one machine dependent page at a
4217 *	time.
4218 */
4219
4220/*
4221 * pmap_copy_page()
4222 *
4223 * Copy one physical page into another, by mapping the pages into
4224 * hook points. The same comment regarding cachability as in
4225 * pmap_zero_page also applies here.
4226 */
4227#if  (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 || defined (CPU_XSCALE_CORE3)
4228void
4229pmap_copy_page_generic(vm_paddr_t src, vm_paddr_t dst)
4230{
4231#if 0
4232	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4233#endif
4234
4235	/*
4236	 * Clean the source page.  Hold the source page's lock for
4237	 * the duration of the copy so that no other mappings can
4238	 * be created while we have a potentially aliased mapping.
4239	 */
4240#if 0
4241	/*
4242	 * XXX: Not needed while we call cpu_dcache_wbinv_all() in
4243	 * pmap_copy_page().
4244	 */
4245	(void) pmap_clean_page(TAILQ_FIRST(&src_pg->md.pv_list), TRUE);
4246#endif
4247	/*
4248	 * Map the pages into the page hook points, copy them, and purge
4249	 * the cache for the appropriate page. Invalidate the TLB
4250	 * as required.
4251	 */
4252	mtx_lock(&cmtx);
4253	*csrc_pte = L2_S_PROTO | src |
4254	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
4255	PTE_SYNC(csrc_pte);
4256	*cdst_pte = L2_S_PROTO | dst |
4257	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4258	PTE_SYNC(cdst_pte);
4259	cpu_tlb_flushD_SE(csrcp);
4260	cpu_tlb_flushD_SE(cdstp);
4261	cpu_cpwait();
4262	bcopy_page(csrcp, cdstp);
4263	mtx_unlock(&cmtx);
4264	cpu_dcache_inv_range(csrcp, PAGE_SIZE);
4265	cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
4266	cpu_l2cache_inv_range(csrcp, PAGE_SIZE);
4267	cpu_l2cache_wbinv_range(cdstp, PAGE_SIZE);
4268}
4269
4270void
4271pmap_copy_page_offs_generic(vm_paddr_t a_phys, vm_offset_t a_offs,
4272    vm_paddr_t b_phys, vm_offset_t b_offs, int cnt)
4273{
4274
4275	mtx_lock(&cmtx);
4276	*csrc_pte = L2_S_PROTO | a_phys |
4277	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
4278	PTE_SYNC(csrc_pte);
4279	*cdst_pte = L2_S_PROTO | b_phys |
4280	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4281	PTE_SYNC(cdst_pte);
4282	cpu_tlb_flushD_SE(csrcp);
4283	cpu_tlb_flushD_SE(cdstp);
4284	cpu_cpwait();
4285	bcopy((char *)csrcp + a_offs, (char *)cdstp + b_offs, cnt);
4286	mtx_unlock(&cmtx);
4287	cpu_dcache_inv_range(csrcp + a_offs, cnt);
4288	cpu_dcache_wbinv_range(cdstp + b_offs, cnt);
4289	cpu_l2cache_inv_range(csrcp + a_offs, cnt);
4290	cpu_l2cache_wbinv_range(cdstp + b_offs, cnt);
4291}
4292#endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
4293
4294#if ARM_MMU_XSCALE == 1
4295void
4296pmap_copy_page_xscale(vm_paddr_t src, vm_paddr_t dst)
4297{
4298#if 0
4299	/* XXX: Only needed for pmap_clean_page(), which is commented out. */
4300	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4301#endif
4302
4303	/*
4304	 * Clean the source page.  Hold the source page's lock for
4305	 * the duration of the copy so that no other mappings can
4306	 * be created while we have a potentially aliased mapping.
4307	 */
4308#if 0
4309	/*
4310	 * XXX: Not needed while we call cpu_dcache_wbinv_all() in
4311	 * pmap_copy_page().
4312	 */
4313	(void) pmap_clean_page(TAILQ_FIRST(&src_pg->md.pv_list), TRUE);
4314#endif
4315	/*
4316	 * Map the pages into the page hook points, copy them, and purge
4317	 * the cache for the appropriate page. Invalidate the TLB
4318	 * as required.
4319	 */
4320	mtx_lock(&cmtx);
4321	*csrc_pte = L2_S_PROTO | src |
4322	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4323	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
4324	PTE_SYNC(csrc_pte);
4325	*cdst_pte = L2_S_PROTO | dst |
4326	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4327	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
4328	PTE_SYNC(cdst_pte);
4329	cpu_tlb_flushD_SE(csrcp);
4330	cpu_tlb_flushD_SE(cdstp);
4331	cpu_cpwait();
4332	bcopy_page(csrcp, cdstp);
4333	mtx_unlock(&cmtx);
4334	xscale_cache_clean_minidata();
4335}
4336
4337void
4338pmap_copy_page_offs_xscale(vm_paddr_t a_phys, vm_offset_t a_offs,
4339    vm_paddr_t b_phys, vm_offset_t b_offs, int cnt)
4340{
4341
4342	mtx_lock(&cmtx);
4343	*csrc_pte = L2_S_PROTO | a_phys |
4344	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4345	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
4346	PTE_SYNC(csrc_pte);
4347	*cdst_pte = L2_S_PROTO | b_phys |
4348	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4349	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
4350	PTE_SYNC(cdst_pte);
4351	cpu_tlb_flushD_SE(csrcp);
4352	cpu_tlb_flushD_SE(cdstp);
4353	cpu_cpwait();
4354	bcopy((char *)csrcp + a_offs, (char *)cdstp + b_offs, cnt);
4355	mtx_unlock(&cmtx);
4356	xscale_cache_clean_minidata();
4357}
4358#endif /* ARM_MMU_XSCALE == 1 */
4359
4360void
4361pmap_copy_page(vm_page_t src, vm_page_t dst)
4362{
4363
4364	cpu_dcache_wbinv_all();
4365	cpu_l2cache_wbinv_all();
4366	if (_arm_memcpy && PAGE_SIZE >= _min_memcpy_size &&
4367	    _arm_memcpy((void *)VM_PAGE_TO_PHYS(dst),
4368	    (void *)VM_PAGE_TO_PHYS(src), PAGE_SIZE, IS_PHYSICAL) == 0)
4369		return;
4370	pmap_copy_page_func(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
4371}
4372
4373int unmapped_buf_allowed = 1;
4374
4375void
4376pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
4377    vm_offset_t b_offset, int xfersize)
4378{
4379	vm_page_t a_pg, b_pg;
4380	vm_offset_t a_pg_offset, b_pg_offset;
4381	int cnt;
4382
4383	cpu_dcache_wbinv_all();
4384	cpu_l2cache_wbinv_all();
4385	while (xfersize > 0) {
4386		a_pg = ma[a_offset >> PAGE_SHIFT];
4387		a_pg_offset = a_offset & PAGE_MASK;
4388		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
4389		b_pg = mb[b_offset >> PAGE_SHIFT];
4390		b_pg_offset = b_offset & PAGE_MASK;
4391		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
4392		pmap_copy_page_offs_func(VM_PAGE_TO_PHYS(a_pg), a_pg_offset,
4393		    VM_PAGE_TO_PHYS(b_pg), b_pg_offset, cnt);
4394		xfersize -= cnt;
4395		a_offset += cnt;
4396		b_offset += cnt;
4397	}
4398}
4399
4400/*
4401 * this routine returns true if a physical page resides
4402 * in the given pmap.
4403 */
4404boolean_t
4405pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4406{
4407	pv_entry_t pv;
4408	int loops = 0;
4409	boolean_t rv;
4410
4411	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4412	    ("pmap_page_exists_quick: page %p is not managed", m));
4413	rv = FALSE;
4414	rw_wlock(&pvh_global_lock);
4415	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4416	    	if (pv->pv_pmap == pmap) {
4417			rv = TRUE;
4418			break;
4419	    	}
4420		loops++;
4421		if (loops >= 16)
4422			break;
4423	}
4424	rw_wunlock(&pvh_global_lock);
4425	return (rv);
4426}
4427
4428/*
4429 *	pmap_page_wired_mappings:
4430 *
4431 *	Return the number of managed mappings to the given physical page
4432 *	that are wired.
4433 */
4434int
4435pmap_page_wired_mappings(vm_page_t m)
4436{
4437	pv_entry_t pv;
4438	int count;
4439
4440	count = 0;
4441	if ((m->oflags & VPO_UNMANAGED) != 0)
4442		return (count);
4443	rw_wlock(&pvh_global_lock);
4444	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
4445		if ((pv->pv_flags & PVF_WIRED) != 0)
4446			count++;
4447	rw_wunlock(&pvh_global_lock);
4448	return (count);
4449}
4450
4451/*
4452 *	This function is advisory.
4453 */
4454void
4455pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
4456{
4457}
4458
4459/*
4460 *	pmap_ts_referenced:
4461 *
4462 *	Return the count of reference bits for a page, clearing all of them.
4463 */
4464int
4465pmap_ts_referenced(vm_page_t m)
4466{
4467
4468	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4469	    ("pmap_ts_referenced: page %p is not managed", m));
4470	return (pmap_clearbit(m, PVF_REF));
4471}
4472
4473
4474boolean_t
4475pmap_is_modified(vm_page_t m)
4476{
4477
4478	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4479	    ("pmap_is_modified: page %p is not managed", m));
4480	if (m->md.pvh_attrs & PVF_MOD)
4481		return (TRUE);
4482
4483	return(FALSE);
4484}
4485
4486
4487/*
4488 *	Clear the modify bits on the specified physical page.
4489 */
4490void
4491pmap_clear_modify(vm_page_t m)
4492{
4493
4494	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4495	    ("pmap_clear_modify: page %p is not managed", m));
4496	VM_OBJECT_ASSERT_WLOCKED(m->object);
4497	KASSERT(!vm_page_xbusied(m),
4498	    ("pmap_clear_modify: page %p is exclusive busied", m));
4499
4500	/*
4501	 * If the page is not PGA_WRITEABLE, then no mappings can be modified.
4502	 * If the object containing the page is locked and the page is not
4503	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
4504	 */
4505	if ((m->aflags & PGA_WRITEABLE) == 0)
4506		return;
4507	if (m->md.pvh_attrs & PVF_MOD)
4508		pmap_clearbit(m, PVF_MOD);
4509}
4510
4511
4512/*
4513 *	pmap_is_referenced:
4514 *
4515 *	Return whether or not the specified physical page was referenced
4516 *	in any physical maps.
4517 */
4518boolean_t
4519pmap_is_referenced(vm_page_t m)
4520{
4521
4522	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4523	    ("pmap_is_referenced: page %p is not managed", m));
4524	return ((m->md.pvh_attrs & PVF_REF) != 0);
4525}
4526
4527
4528/*
4529 * Clear the write and modified bits in each of the given page's mappings.
4530 */
4531void
4532pmap_remove_write(vm_page_t m)
4533{
4534
4535	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4536	    ("pmap_remove_write: page %p is not managed", m));
4537
4538	/*
4539	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
4540	 * set by another thread while the object is locked.  Thus,
4541	 * if PGA_WRITEABLE is clear, no page table entries need updating.
4542	 */
4543	VM_OBJECT_ASSERT_WLOCKED(m->object);
4544	if (vm_page_xbusied(m) || (m->aflags & PGA_WRITEABLE) != 0)
4545		pmap_clearbit(m, PVF_WRITE);
4546}
4547
4548
4549/*
4550 * perform the pmap work for mincore
4551 */
4552int
4553pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
4554{
4555	struct l2_bucket *l2b;
4556	pt_entry_t *ptep, pte;
4557	vm_paddr_t pa;
4558	vm_page_t m;
4559	int val;
4560	boolean_t managed;
4561
4562	PMAP_LOCK(pmap);
4563retry:
4564	l2b = pmap_get_l2_bucket(pmap, addr);
4565        if (l2b == NULL) {
4566                val = 0;
4567                goto out;
4568        }
4569	ptep = &l2b->l2b_kva[l2pte_index(addr)];
4570	pte = *ptep;
4571	if (!l2pte_valid(pte)) {
4572		val = 0;
4573		goto out;
4574	}
4575	val = MINCORE_INCORE;
4576	if (pte & L2_S_PROT_W)
4577		val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4578        managed = false;
4579	pa = l2pte_pa(pte);
4580        m = PHYS_TO_VM_PAGE(pa);
4581        if (m != NULL && !(m->oflags & VPO_UNMANAGED))
4582                managed = true;
4583	if (managed) {
4584		/*
4585		 * The ARM pmap tries to maintain a per-mapping
4586		 * reference bit.  The trouble is that it's kept in
4587		 * the PV entry, not the PTE, so it's costly to access
4588		 * here.  You would need to acquire the pvh global
4589		 * lock, call pmap_find_pv(), and introduce a custom
4590		 * version of vm_page_pa_tryrelock() that releases and
4591		 * reacquires the pvh global lock.  In the end, I
4592		 * doubt it's worthwhile.  This may falsely report
4593		 * the given address as referenced.
4594		 */
4595		if ((m->md.pvh_attrs & PVF_REF) != 0)
4596			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4597	}
4598	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
4599	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
4600		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
4601		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
4602			goto retry;
4603	} else
4604out:
4605		PA_UNLOCK_COND(*locked_pa);
4606	PMAP_UNLOCK(pmap);
4607	return (val);
4608}
4609
4610
4611void
4612pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4613{
4614}
4615
4616
4617/*
4618 *	Increase the starting virtual address of the given mapping if a
4619 *	different alignment might result in more superpage mappings.
4620 */
4621void
4622pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4623    vm_offset_t *addr, vm_size_t size)
4624{
4625}
4626
4627#define BOOTSTRAP_DEBUG
4628
4629/*
4630 * pmap_map_section:
4631 *
4632 *	Create a single section mapping.
4633 */
4634void
4635pmap_map_section(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa,
4636    int prot, int cache)
4637{
4638	pd_entry_t *pde = (pd_entry_t *) l1pt;
4639	pd_entry_t fl;
4640
4641	KASSERT(((va | pa) & L1_S_OFFSET) == 0, ("ouin2"));
4642
4643	switch (cache) {
4644	case PTE_NOCACHE:
4645	default:
4646		fl = 0;
4647		break;
4648
4649	case PTE_CACHE:
4650		fl = pte_l1_s_cache_mode;
4651		break;
4652
4653	case PTE_PAGETABLE:
4654		fl = pte_l1_s_cache_mode_pt;
4655		break;
4656	}
4657
4658	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
4659	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
4660	PTE_SYNC(&pde[va >> L1_S_SHIFT]);
4661
4662}
4663
4664/*
4665 * pmap_link_l2pt:
4666 *
4667 *	Link the L2 page table specified by l2pv.pv_pa into the L1
4668 *	page table at the slot for "va".
4669 */
4670void
4671pmap_link_l2pt(vm_offset_t l1pt, vm_offset_t va, struct pv_addr *l2pv)
4672{
4673	pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
4674	u_int slot = va >> L1_S_SHIFT;
4675
4676	proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
4677
4678#ifdef VERBOSE_INIT_ARM
4679	printf("pmap_link_l2pt: pa=0x%x va=0x%x\n", l2pv->pv_pa, l2pv->pv_va);
4680#endif
4681
4682	pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
4683
4684	PTE_SYNC(&pde[slot]);
4685
4686	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
4687
4688
4689}
4690
4691/*
4692 * pmap_map_entry
4693 *
4694 * 	Create a single page mapping.
4695 */
4696void
4697pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
4698    int cache)
4699{
4700	pd_entry_t *pde = (pd_entry_t *) l1pt;
4701	pt_entry_t fl;
4702	pt_entry_t *pte;
4703
4704	KASSERT(((va | pa) & PAGE_MASK) == 0, ("ouin"));
4705
4706	switch (cache) {
4707	case PTE_NOCACHE:
4708	default:
4709		fl = 0;
4710		break;
4711
4712	case PTE_CACHE:
4713		fl = pte_l2_s_cache_mode;
4714		break;
4715
4716	case PTE_PAGETABLE:
4717		fl = pte_l2_s_cache_mode_pt;
4718		break;
4719	}
4720
4721	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
4722		panic("pmap_map_entry: no L2 table for VA 0x%08x", va);
4723
4724	pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4725
4726	if (pte == NULL)
4727		panic("pmap_map_entry: can't find L2 table for VA 0x%08x", va);
4728
4729	pte[l2pte_index(va)] =
4730	    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
4731	PTE_SYNC(&pte[l2pte_index(va)]);
4732}
4733
4734/*
4735 * pmap_map_chunk:
4736 *
4737 *	Map a chunk of memory using the most efficient mappings
4738 *	possible (section. large page, small page) into the
4739 *	provided L1 and L2 tables at the specified virtual address.
4740 */
4741vm_size_t
4742pmap_map_chunk(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa,
4743    vm_size_t size, int prot, int cache)
4744{
4745	pd_entry_t *pde = (pd_entry_t *) l1pt;
4746	pt_entry_t *pte, f1, f2s, f2l;
4747	vm_size_t resid;
4748	int i;
4749
4750	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
4751
4752	if (l1pt == 0)
4753		panic("pmap_map_chunk: no L1 table provided");
4754
4755#ifdef VERBOSE_INIT_ARM
4756	printf("pmap_map_chunk: pa=0x%x va=0x%x size=0x%x resid=0x%x "
4757	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
4758#endif
4759
4760	switch (cache) {
4761	case PTE_NOCACHE:
4762	default:
4763		f1 = 0;
4764		f2l = 0;
4765		f2s = 0;
4766		break;
4767
4768	case PTE_CACHE:
4769		f1 = pte_l1_s_cache_mode;
4770		f2l = pte_l2_l_cache_mode;
4771		f2s = pte_l2_s_cache_mode;
4772		break;
4773
4774	case PTE_PAGETABLE:
4775		f1 = pte_l1_s_cache_mode_pt;
4776		f2l = pte_l2_l_cache_mode_pt;
4777		f2s = pte_l2_s_cache_mode_pt;
4778		break;
4779	}
4780
4781	size = resid;
4782
4783	while (resid > 0) {
4784		/* See if we can use a section mapping. */
4785		if (L1_S_MAPPABLE_P(va, pa, resid)) {
4786#ifdef VERBOSE_INIT_ARM
4787			printf("S");
4788#endif
4789			pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
4790			    L1_S_PROT(PTE_KERNEL, prot) | f1 |
4791			    L1_S_DOM(PMAP_DOMAIN_KERNEL);
4792			PTE_SYNC(&pde[va >> L1_S_SHIFT]);
4793			va += L1_S_SIZE;
4794			pa += L1_S_SIZE;
4795			resid -= L1_S_SIZE;
4796			continue;
4797		}
4798
4799		/*
4800		 * Ok, we're going to use an L2 table.  Make sure
4801		 * one is actually in the corresponding L1 slot
4802		 * for the current VA.
4803		 */
4804		if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
4805			panic("pmap_map_chunk: no L2 table for VA 0x%08x", va);
4806
4807		pte = (pt_entry_t *) kernel_pt_lookup(
4808		    pde[L1_IDX(va)] & L1_C_ADDR_MASK);
4809		if (pte == NULL)
4810			panic("pmap_map_chunk: can't find L2 table for VA"
4811			    "0x%08x", va);
4812		/* See if we can use a L2 large page mapping. */
4813		if (L2_L_MAPPABLE_P(va, pa, resid)) {
4814#ifdef VERBOSE_INIT_ARM
4815			printf("L");
4816#endif
4817			for (i = 0; i < 16; i++) {
4818				pte[l2pte_index(va) + i] =
4819				    L2_L_PROTO | pa |
4820				    L2_L_PROT(PTE_KERNEL, prot) | f2l;
4821				PTE_SYNC(&pte[l2pte_index(va) + i]);
4822			}
4823			va += L2_L_SIZE;
4824			pa += L2_L_SIZE;
4825			resid -= L2_L_SIZE;
4826			continue;
4827		}
4828
4829		/* Use a small page mapping. */
4830#ifdef VERBOSE_INIT_ARM
4831		printf("P");
4832#endif
4833		pte[l2pte_index(va)] =
4834		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
4835		PTE_SYNC(&pte[l2pte_index(va)]);
4836		va += PAGE_SIZE;
4837		pa += PAGE_SIZE;
4838		resid -= PAGE_SIZE;
4839	}
4840#ifdef VERBOSE_INIT_ARM
4841	printf("\n");
4842#endif
4843	return (size);
4844
4845}
4846
4847void
4848pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4849{
4850	/*
4851	 * Remember the memattr in a field that gets used to set the appropriate
4852	 * bits in the PTEs as mappings are established.
4853	 */
4854	m->md.pv_memattr = ma;
4855
4856	/*
4857	 * It appears that this function can only be called before any mappings
4858	 * for the page are established on ARM.  If this ever changes, this code
4859	 * will need to walk the pv_list and make each of the existing mappings
4860	 * uncacheable, being careful to sync caches and PTEs (and maybe
4861	 * invalidate TLB?) for any current mapping it modifies.
4862	 */
4863	if (m->md.pv_kva != 0 || TAILQ_FIRST(&m->md.pv_list) != NULL)
4864		panic("Can't change memattr on page with existing mappings");
4865}
4866
4867
4868