vmx.c revision 266593
1/*-
2 * Copyright (c) 2011 NetApp, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 * $FreeBSD: stable/10/sys/amd64/vmm/intel/vmx.c 266593 2014-05-23 19:39:58Z jhb $
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD: stable/10/sys/amd64/vmm/intel/vmx.c 266593 2014-05-23 19:39:58Z jhb $");
31
32#include <sys/param.h>
33#include <sys/systm.h>
34#include <sys/smp.h>
35#include <sys/kernel.h>
36#include <sys/malloc.h>
37#include <sys/pcpu.h>
38#include <sys/proc.h>
39#include <sys/sysctl.h>
40
41#include <vm/vm.h>
42#include <vm/pmap.h>
43
44#include <machine/psl.h>
45#include <machine/cpufunc.h>
46#include <machine/md_var.h>
47#include <machine/segments.h>
48#include <machine/smp.h>
49#include <machine/specialreg.h>
50#include <machine/vmparam.h>
51
52#include <machine/vmm.h>
53#include "vmm_host.h"
54#include "vmm_ipi.h"
55#include "vmm_msr.h"
56#include "vmm_ktr.h"
57#include "vmm_stat.h"
58#include "vlapic.h"
59#include "vlapic_priv.h"
60
61#include "vmx_msr.h"
62#include "ept.h"
63#include "vmx_cpufunc.h"
64#include "vmx.h"
65#include "x86.h"
66#include "vmx_controls.h"
67
68#define	PINBASED_CTLS_ONE_SETTING					\
69	(PINBASED_EXTINT_EXITING	|				\
70	 PINBASED_NMI_EXITING		|				\
71	 PINBASED_VIRTUAL_NMI)
72#define	PINBASED_CTLS_ZERO_SETTING	0
73
74#define PROCBASED_CTLS_WINDOW_SETTING					\
75	(PROCBASED_INT_WINDOW_EXITING	|				\
76	 PROCBASED_NMI_WINDOW_EXITING)
77
78#define	PROCBASED_CTLS_ONE_SETTING 					\
79	(PROCBASED_SECONDARY_CONTROLS	|				\
80	 PROCBASED_IO_EXITING		|				\
81	 PROCBASED_MSR_BITMAPS		|				\
82	 PROCBASED_CTLS_WINDOW_SETTING)
83#define	PROCBASED_CTLS_ZERO_SETTING	\
84	(PROCBASED_CR3_LOAD_EXITING |	\
85	PROCBASED_CR3_STORE_EXITING |	\
86	PROCBASED_IO_BITMAPS)
87
88#define	PROCBASED_CTLS2_ONE_SETTING	PROCBASED2_ENABLE_EPT
89#define	PROCBASED_CTLS2_ZERO_SETTING	0
90
91#define VM_EXIT_CTLS_ONE_SETTING_NO_PAT					\
92	(VM_EXIT_HOST_LMA			|			\
93	VM_EXIT_SAVE_EFER			|			\
94	VM_EXIT_LOAD_EFER)
95
96#define	VM_EXIT_CTLS_ONE_SETTING					\
97	(VM_EXIT_CTLS_ONE_SETTING_NO_PAT       	|			\
98	VM_EXIT_ACKNOWLEDGE_INTERRUPT		|			\
99	VM_EXIT_SAVE_PAT			|			\
100	VM_EXIT_LOAD_PAT)
101#define	VM_EXIT_CTLS_ZERO_SETTING	VM_EXIT_SAVE_DEBUG_CONTROLS
102
103#define	VM_ENTRY_CTLS_ONE_SETTING_NO_PAT	VM_ENTRY_LOAD_EFER
104
105#define	VM_ENTRY_CTLS_ONE_SETTING					\
106	(VM_ENTRY_CTLS_ONE_SETTING_NO_PAT     	|			\
107	VM_ENTRY_LOAD_PAT)
108#define	VM_ENTRY_CTLS_ZERO_SETTING					\
109	(VM_ENTRY_LOAD_DEBUG_CONTROLS		|			\
110	VM_ENTRY_INTO_SMM			|			\
111	VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
112
113#define	guest_msr_rw(vmx, msr) \
114	msr_bitmap_change_access((vmx)->msr_bitmap, (msr), MSR_BITMAP_ACCESS_RW)
115
116#define	HANDLED		1
117#define	UNHANDLED	0
118
119static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
120static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
121
122SYSCTL_DECL(_hw_vmm);
123SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW, NULL, NULL);
124
125int vmxon_enabled[MAXCPU];
126static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
127
128static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
129static uint32_t exit_ctls, entry_ctls;
130
131static uint64_t cr0_ones_mask, cr0_zeros_mask;
132SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
133	     &cr0_ones_mask, 0, NULL);
134SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
135	     &cr0_zeros_mask, 0, NULL);
136
137static uint64_t cr4_ones_mask, cr4_zeros_mask;
138SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
139	     &cr4_ones_mask, 0, NULL);
140SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
141	     &cr4_zeros_mask, 0, NULL);
142
143static int vmx_no_patmsr;
144
145static int vmx_initialized;
146SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
147	   &vmx_initialized, 0, "Intel VMX initialized");
148
149/*
150 * Optional capabilities
151 */
152static int cap_halt_exit;
153static int cap_pause_exit;
154static int cap_unrestricted_guest;
155static int cap_monitor_trap;
156static int cap_invpcid;
157
158static int virtual_interrupt_delivery;
159SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD,
160    &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support");
161
162static int posted_interrupts;
163SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupts, CTLFLAG_RD,
164    &posted_interrupts, 0, "APICv posted interrupt support");
165
166static int pirvec;
167SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD,
168    &pirvec, 0, "APICv posted interrupt vector");
169
170static struct unrhdr *vpid_unr;
171static u_int vpid_alloc_failed;
172SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
173	    &vpid_alloc_failed, 0, NULL);
174
175/*
176 * Use the last page below 4GB as the APIC access address. This address is
177 * occupied by the boot firmware so it is guaranteed that it will not conflict
178 * with a page in system memory.
179 */
180#define	APIC_ACCESS_ADDRESS	0xFFFFF000
181
182static void vmx_inject_pir(struct vlapic *vlapic);
183
184#ifdef KTR
185static const char *
186exit_reason_to_str(int reason)
187{
188	static char reasonbuf[32];
189
190	switch (reason) {
191	case EXIT_REASON_EXCEPTION:
192		return "exception";
193	case EXIT_REASON_EXT_INTR:
194		return "extint";
195	case EXIT_REASON_TRIPLE_FAULT:
196		return "triplefault";
197	case EXIT_REASON_INIT:
198		return "init";
199	case EXIT_REASON_SIPI:
200		return "sipi";
201	case EXIT_REASON_IO_SMI:
202		return "iosmi";
203	case EXIT_REASON_SMI:
204		return "smi";
205	case EXIT_REASON_INTR_WINDOW:
206		return "intrwindow";
207	case EXIT_REASON_NMI_WINDOW:
208		return "nmiwindow";
209	case EXIT_REASON_TASK_SWITCH:
210		return "taskswitch";
211	case EXIT_REASON_CPUID:
212		return "cpuid";
213	case EXIT_REASON_GETSEC:
214		return "getsec";
215	case EXIT_REASON_HLT:
216		return "hlt";
217	case EXIT_REASON_INVD:
218		return "invd";
219	case EXIT_REASON_INVLPG:
220		return "invlpg";
221	case EXIT_REASON_RDPMC:
222		return "rdpmc";
223	case EXIT_REASON_RDTSC:
224		return "rdtsc";
225	case EXIT_REASON_RSM:
226		return "rsm";
227	case EXIT_REASON_VMCALL:
228		return "vmcall";
229	case EXIT_REASON_VMCLEAR:
230		return "vmclear";
231	case EXIT_REASON_VMLAUNCH:
232		return "vmlaunch";
233	case EXIT_REASON_VMPTRLD:
234		return "vmptrld";
235	case EXIT_REASON_VMPTRST:
236		return "vmptrst";
237	case EXIT_REASON_VMREAD:
238		return "vmread";
239	case EXIT_REASON_VMRESUME:
240		return "vmresume";
241	case EXIT_REASON_VMWRITE:
242		return "vmwrite";
243	case EXIT_REASON_VMXOFF:
244		return "vmxoff";
245	case EXIT_REASON_VMXON:
246		return "vmxon";
247	case EXIT_REASON_CR_ACCESS:
248		return "craccess";
249	case EXIT_REASON_DR_ACCESS:
250		return "draccess";
251	case EXIT_REASON_INOUT:
252		return "inout";
253	case EXIT_REASON_RDMSR:
254		return "rdmsr";
255	case EXIT_REASON_WRMSR:
256		return "wrmsr";
257	case EXIT_REASON_INVAL_VMCS:
258		return "invalvmcs";
259	case EXIT_REASON_INVAL_MSR:
260		return "invalmsr";
261	case EXIT_REASON_MWAIT:
262		return "mwait";
263	case EXIT_REASON_MTF:
264		return "mtf";
265	case EXIT_REASON_MONITOR:
266		return "monitor";
267	case EXIT_REASON_PAUSE:
268		return "pause";
269	case EXIT_REASON_MCE:
270		return "mce";
271	case EXIT_REASON_TPR:
272		return "tpr";
273	case EXIT_REASON_APIC_ACCESS:
274		return "apic-access";
275	case EXIT_REASON_GDTR_IDTR:
276		return "gdtridtr";
277	case EXIT_REASON_LDTR_TR:
278		return "ldtrtr";
279	case EXIT_REASON_EPT_FAULT:
280		return "eptfault";
281	case EXIT_REASON_EPT_MISCONFIG:
282		return "eptmisconfig";
283	case EXIT_REASON_INVEPT:
284		return "invept";
285	case EXIT_REASON_RDTSCP:
286		return "rdtscp";
287	case EXIT_REASON_VMX_PREEMPT:
288		return "vmxpreempt";
289	case EXIT_REASON_INVVPID:
290		return "invvpid";
291	case EXIT_REASON_WBINVD:
292		return "wbinvd";
293	case EXIT_REASON_XSETBV:
294		return "xsetbv";
295	case EXIT_REASON_APIC_WRITE:
296		return "apic-write";
297	default:
298		snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
299		return (reasonbuf);
300	}
301}
302#endif	/* KTR */
303
304u_long
305vmx_fix_cr0(u_long cr0)
306{
307
308	return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
309}
310
311u_long
312vmx_fix_cr4(u_long cr4)
313{
314
315	return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
316}
317
318static void
319vpid_free(int vpid)
320{
321	if (vpid < 0 || vpid > 0xffff)
322		panic("vpid_free: invalid vpid %d", vpid);
323
324	/*
325	 * VPIDs [0,VM_MAXCPU] are special and are not allocated from
326	 * the unit number allocator.
327	 */
328
329	if (vpid > VM_MAXCPU)
330		free_unr(vpid_unr, vpid);
331}
332
333static void
334vpid_alloc(uint16_t *vpid, int num)
335{
336	int i, x;
337
338	if (num <= 0 || num > VM_MAXCPU)
339		panic("invalid number of vpids requested: %d", num);
340
341	/*
342	 * If the "enable vpid" execution control is not enabled then the
343	 * VPID is required to be 0 for all vcpus.
344	 */
345	if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
346		for (i = 0; i < num; i++)
347			vpid[i] = 0;
348		return;
349	}
350
351	/*
352	 * Allocate a unique VPID for each vcpu from the unit number allocator.
353	 */
354	for (i = 0; i < num; i++) {
355		x = alloc_unr(vpid_unr);
356		if (x == -1)
357			break;
358		else
359			vpid[i] = x;
360	}
361
362	if (i < num) {
363		atomic_add_int(&vpid_alloc_failed, 1);
364
365		/*
366		 * If the unit number allocator does not have enough unique
367		 * VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
368		 *
369		 * These VPIDs are not be unique across VMs but this does not
370		 * affect correctness because the combined mappings are also
371		 * tagged with the EP4TA which is unique for each VM.
372		 *
373		 * It is still sub-optimal because the invvpid will invalidate
374		 * combined mappings for a particular VPID across all EP4TAs.
375		 */
376		while (i-- > 0)
377			vpid_free(vpid[i]);
378
379		for (i = 0; i < num; i++)
380			vpid[i] = i + 1;
381	}
382}
383
384static void
385vpid_init(void)
386{
387	/*
388	 * VPID 0 is required when the "enable VPID" execution control is
389	 * disabled.
390	 *
391	 * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the
392	 * unit number allocator does not have sufficient unique VPIDs to
393	 * satisfy the allocation.
394	 *
395	 * The remaining VPIDs are managed by the unit number allocator.
396	 */
397	vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL);
398}
399
400static void
401msr_save_area_init(struct msr_entry *g_area, int *g_count)
402{
403	int cnt;
404
405	static struct msr_entry guest_msrs[] = {
406		{ MSR_KGSBASE, 0, 0 },
407	};
408
409	cnt = sizeof(guest_msrs) / sizeof(guest_msrs[0]);
410	if (cnt > GUEST_MSR_MAX_ENTRIES)
411		panic("guest msr save area overrun");
412	bcopy(guest_msrs, g_area, sizeof(guest_msrs));
413	*g_count = cnt;
414}
415
416static void
417vmx_disable(void *arg __unused)
418{
419	struct invvpid_desc invvpid_desc = { 0 };
420	struct invept_desc invept_desc = { 0 };
421
422	if (vmxon_enabled[curcpu]) {
423		/*
424		 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
425		 *
426		 * VMXON or VMXOFF are not required to invalidate any TLB
427		 * caching structures. This prevents potential retention of
428		 * cached information in the TLB between distinct VMX episodes.
429		 */
430		invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
431		invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
432		vmxoff();
433	}
434	load_cr4(rcr4() & ~CR4_VMXE);
435}
436
437static int
438vmx_cleanup(void)
439{
440
441	if (pirvec != 0)
442		vmm_ipi_free(pirvec);
443
444	if (vpid_unr != NULL) {
445		delete_unrhdr(vpid_unr);
446		vpid_unr = NULL;
447	}
448
449	smp_rendezvous(NULL, vmx_disable, NULL, NULL);
450
451	return (0);
452}
453
454static void
455vmx_enable(void *arg __unused)
456{
457	int error;
458
459	load_cr4(rcr4() | CR4_VMXE);
460
461	*(uint32_t *)vmxon_region[curcpu] = vmx_revision();
462	error = vmxon(vmxon_region[curcpu]);
463	if (error == 0)
464		vmxon_enabled[curcpu] = 1;
465}
466
467static void
468vmx_restore(void)
469{
470
471	if (vmxon_enabled[curcpu])
472		vmxon(vmxon_region[curcpu]);
473}
474
475static int
476vmx_init(int ipinum)
477{
478	int error, use_tpr_shadow;
479	uint64_t fixed0, fixed1, feature_control;
480	uint32_t tmp, procbased2_vid_bits;
481
482	/* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
483	if (!(cpu_feature2 & CPUID2_VMX)) {
484		printf("vmx_init: processor does not support VMX operation\n");
485		return (ENXIO);
486	}
487
488	/*
489	 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
490	 * are set (bits 0 and 2 respectively).
491	 */
492	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
493	if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
494	    (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
495		printf("vmx_init: VMX operation disabled by BIOS\n");
496		return (ENXIO);
497	}
498
499	/* Check support for primary processor-based VM-execution controls */
500	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
501			       MSR_VMX_TRUE_PROCBASED_CTLS,
502			       PROCBASED_CTLS_ONE_SETTING,
503			       PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
504	if (error) {
505		printf("vmx_init: processor does not support desired primary "
506		       "processor-based controls\n");
507		return (error);
508	}
509
510	/* Clear the processor-based ctl bits that are set on demand */
511	procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
512
513	/* Check support for secondary processor-based VM-execution controls */
514	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
515			       MSR_VMX_PROCBASED_CTLS2,
516			       PROCBASED_CTLS2_ONE_SETTING,
517			       PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
518	if (error) {
519		printf("vmx_init: processor does not support desired secondary "
520		       "processor-based controls\n");
521		return (error);
522	}
523
524	/* Check support for VPID */
525	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
526			       PROCBASED2_ENABLE_VPID, 0, &tmp);
527	if (error == 0)
528		procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
529
530	/* Check support for pin-based VM-execution controls */
531	error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
532			       MSR_VMX_TRUE_PINBASED_CTLS,
533			       PINBASED_CTLS_ONE_SETTING,
534			       PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
535	if (error) {
536		printf("vmx_init: processor does not support desired "
537		       "pin-based controls\n");
538		return (error);
539	}
540
541	/* Check support for VM-exit controls */
542	error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
543			       VM_EXIT_CTLS_ONE_SETTING,
544			       VM_EXIT_CTLS_ZERO_SETTING,
545			       &exit_ctls);
546	if (error) {
547		/* Try again without the PAT MSR bits */
548		error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS,
549				       MSR_VMX_TRUE_EXIT_CTLS,
550				       VM_EXIT_CTLS_ONE_SETTING_NO_PAT,
551				       VM_EXIT_CTLS_ZERO_SETTING,
552				       &exit_ctls);
553		if (error) {
554			printf("vmx_init: processor does not support desired "
555			       "exit controls\n");
556			return (error);
557		} else {
558			if (bootverbose)
559				printf("vmm: PAT MSR access not supported\n");
560			guest_msr_valid(MSR_PAT);
561			vmx_no_patmsr = 1;
562		}
563	}
564
565	/* Check support for VM-entry controls */
566	if (!vmx_no_patmsr) {
567		error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS,
568				       MSR_VMX_TRUE_ENTRY_CTLS,
569				       VM_ENTRY_CTLS_ONE_SETTING,
570				       VM_ENTRY_CTLS_ZERO_SETTING,
571				       &entry_ctls);
572	} else {
573		error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS,
574				       MSR_VMX_TRUE_ENTRY_CTLS,
575				       VM_ENTRY_CTLS_ONE_SETTING_NO_PAT,
576				       VM_ENTRY_CTLS_ZERO_SETTING,
577				       &entry_ctls);
578	}
579
580	if (error) {
581		printf("vmx_init: processor does not support desired "
582		       "entry controls\n");
583		       return (error);
584	}
585
586	/*
587	 * Check support for optional features by testing them
588	 * as individual bits
589	 */
590	cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
591					MSR_VMX_TRUE_PROCBASED_CTLS,
592					PROCBASED_HLT_EXITING, 0,
593					&tmp) == 0);
594
595	cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
596					MSR_VMX_PROCBASED_CTLS,
597					PROCBASED_MTF, 0,
598					&tmp) == 0);
599
600	cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
601					 MSR_VMX_TRUE_PROCBASED_CTLS,
602					 PROCBASED_PAUSE_EXITING, 0,
603					 &tmp) == 0);
604
605	cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
606					MSR_VMX_PROCBASED_CTLS2,
607					PROCBASED2_UNRESTRICTED_GUEST, 0,
608				        &tmp) == 0);
609
610	cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
611	    MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
612	    &tmp) == 0);
613
614	/*
615	 * Check support for virtual interrupt delivery.
616	 */
617	procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
618	    PROCBASED2_VIRTUALIZE_X2APIC_MODE |
619	    PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
620	    PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
621
622	use_tpr_shadow = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
623	    MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0,
624	    &tmp) == 0);
625
626	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
627	    procbased2_vid_bits, 0, &tmp);
628	if (error == 0 && use_tpr_shadow) {
629		virtual_interrupt_delivery = 1;
630		TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid",
631		    &virtual_interrupt_delivery);
632	}
633
634	if (virtual_interrupt_delivery) {
635		procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
636		procbased_ctls2 |= procbased2_vid_bits;
637		procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE;
638
639		/*
640		 * Check for Posted Interrupts only if Virtual Interrupt
641		 * Delivery is enabled.
642		 */
643		error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
644		    MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0,
645		    &tmp);
646		if (error == 0) {
647			pirvec = vmm_ipi_alloc();
648			if (pirvec == 0) {
649				if (bootverbose) {
650					printf("vmx_init: unable to allocate "
651					    "posted interrupt vector\n");
652				}
653			} else {
654				posted_interrupts = 1;
655				TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir",
656				    &posted_interrupts);
657			}
658		}
659	}
660
661	if (posted_interrupts)
662		    pinbased_ctls |= PINBASED_POSTED_INTERRUPT;
663
664	/* Initialize EPT */
665	error = ept_init(ipinum);
666	if (error) {
667		printf("vmx_init: ept initialization failed (%d)\n", error);
668		return (error);
669	}
670
671	/*
672	 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
673	 */
674	fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
675	fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
676	cr0_ones_mask = fixed0 & fixed1;
677	cr0_zeros_mask = ~fixed0 & ~fixed1;
678
679	/*
680	 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
681	 * if unrestricted guest execution is allowed.
682	 */
683	if (cap_unrestricted_guest)
684		cr0_ones_mask &= ~(CR0_PG | CR0_PE);
685
686	/*
687	 * Do not allow the guest to set CR0_NW or CR0_CD.
688	 */
689	cr0_zeros_mask |= (CR0_NW | CR0_CD);
690
691	fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
692	fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
693	cr4_ones_mask = fixed0 & fixed1;
694	cr4_zeros_mask = ~fixed0 & ~fixed1;
695
696	vpid_init();
697
698	/* enable VMX operation */
699	smp_rendezvous(NULL, vmx_enable, NULL, NULL);
700
701	vmx_initialized = 1;
702
703	return (0);
704}
705
706static void
707vmx_trigger_hostintr(int vector)
708{
709	uintptr_t func;
710	struct gate_descriptor *gd;
711
712	gd = &idt[vector];
713
714	KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: "
715	    "invalid vector %d", vector));
716	KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present",
717	    vector));
718	KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d "
719	    "has invalid type %d", vector, gd->gd_type));
720	KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d "
721	    "has invalid dpl %d", vector, gd->gd_dpl));
722	KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor "
723	    "for vector %d has invalid selector %d", vector, gd->gd_selector));
724	KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid "
725	    "IST %d", vector, gd->gd_ist));
726
727	func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset);
728	vmx_call_isr(func);
729}
730
731static int
732vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
733{
734	int error, mask_ident, shadow_ident;
735	uint64_t mask_value;
736
737	if (which != 0 && which != 4)
738		panic("vmx_setup_cr_shadow: unknown cr%d", which);
739
740	if (which == 0) {
741		mask_ident = VMCS_CR0_MASK;
742		mask_value = cr0_ones_mask | cr0_zeros_mask;
743		shadow_ident = VMCS_CR0_SHADOW;
744	} else {
745		mask_ident = VMCS_CR4_MASK;
746		mask_value = cr4_ones_mask | cr4_zeros_mask;
747		shadow_ident = VMCS_CR4_SHADOW;
748	}
749
750	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
751	if (error)
752		return (error);
753
754	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
755	if (error)
756		return (error);
757
758	return (0);
759}
760#define	vmx_setup_cr0_shadow(vmcs,init)	vmx_setup_cr_shadow(0, (vmcs), (init))
761#define	vmx_setup_cr4_shadow(vmcs,init)	vmx_setup_cr_shadow(4, (vmcs), (init))
762
763static void *
764vmx_vminit(struct vm *vm, pmap_t pmap)
765{
766	uint16_t vpid[VM_MAXCPU];
767	int i, error, guest_msr_count;
768	struct vmx *vmx;
769	struct vmcs *vmcs;
770
771	vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
772	if ((uintptr_t)vmx & PAGE_MASK) {
773		panic("malloc of struct vmx not aligned on %d byte boundary",
774		      PAGE_SIZE);
775	}
776	vmx->vm = vm;
777
778	vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pml4));
779
780	/*
781	 * Clean up EPTP-tagged guest physical and combined mappings
782	 *
783	 * VMX transitions are not required to invalidate any guest physical
784	 * mappings. So, it may be possible for stale guest physical mappings
785	 * to be present in the processor TLBs.
786	 *
787	 * Combined mappings for this EP4TA are also invalidated for all VPIDs.
788	 */
789	ept_invalidate_mappings(vmx->eptp);
790
791	msr_bitmap_initialize(vmx->msr_bitmap);
792
793	/*
794	 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
795	 * The guest FSBASE and GSBASE are saved and restored during
796	 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
797	 * always restored from the vmcs host state area on vm-exit.
798	 *
799	 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
800	 * how they are saved/restored so can be directly accessed by the
801	 * guest.
802	 *
803	 * Guest KGSBASE is saved and restored in the guest MSR save area.
804	 * Host KGSBASE is restored before returning to userland from the pcb.
805	 * There will be a window of time when we are executing in the host
806	 * kernel context with a value of KGSBASE from the guest. This is ok
807	 * because the value of KGSBASE is inconsequential in kernel context.
808	 *
809	 * MSR_EFER is saved and restored in the guest VMCS area on a
810	 * VM exit and entry respectively. It is also restored from the
811	 * host VMCS area on a VM exit.
812	 */
813	if (guest_msr_rw(vmx, MSR_GSBASE) ||
814	    guest_msr_rw(vmx, MSR_FSBASE) ||
815	    guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
816	    guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
817	    guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
818	    guest_msr_rw(vmx, MSR_KGSBASE) ||
819	    guest_msr_rw(vmx, MSR_EFER))
820		panic("vmx_vminit: error setting guest msr access");
821
822	/*
823	 * MSR_PAT is saved and restored in the guest VMCS are on a VM exit
824	 * and entry respectively. It is also restored from the host VMCS
825	 * area on a VM exit. However, if running on a system with no
826	 * MSR_PAT save/restore support, leave access disabled so accesses
827	 * will be trapped.
828	 */
829	if (!vmx_no_patmsr && guest_msr_rw(vmx, MSR_PAT))
830		panic("vmx_vminit: error setting guest pat msr access");
831
832	vpid_alloc(vpid, VM_MAXCPU);
833
834	if (virtual_interrupt_delivery) {
835		error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
836		    APIC_ACCESS_ADDRESS);
837		/* XXX this should really return an error to the caller */
838		KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
839	}
840
841	for (i = 0; i < VM_MAXCPU; i++) {
842		vmcs = &vmx->vmcs[i];
843		vmcs->identifier = vmx_revision();
844		error = vmclear(vmcs);
845		if (error != 0) {
846			panic("vmx_vminit: vmclear error %d on vcpu %d\n",
847			      error, i);
848		}
849
850		error = vmcs_init(vmcs);
851		KASSERT(error == 0, ("vmcs_init error %d", error));
852
853		VMPTRLD(vmcs);
854		error = 0;
855		error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]);
856		error += vmwrite(VMCS_EPTP, vmx->eptp);
857		error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls);
858		error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls);
859		error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2);
860		error += vmwrite(VMCS_EXIT_CTLS, exit_ctls);
861		error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
862		error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap));
863		error += vmwrite(VMCS_VPID, vpid[i]);
864		if (virtual_interrupt_delivery) {
865			error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
866			error += vmwrite(VMCS_VIRTUAL_APIC,
867			    vtophys(&vmx->apic_page[i]));
868			error += vmwrite(VMCS_EOI_EXIT0, 0);
869			error += vmwrite(VMCS_EOI_EXIT1, 0);
870			error += vmwrite(VMCS_EOI_EXIT2, 0);
871			error += vmwrite(VMCS_EOI_EXIT3, 0);
872		}
873		if (posted_interrupts) {
874			error += vmwrite(VMCS_PIR_VECTOR, pirvec);
875			error += vmwrite(VMCS_PIR_DESC,
876			    vtophys(&vmx->pir_desc[i]));
877		}
878		VMCLEAR(vmcs);
879		KASSERT(error == 0, ("vmx_vminit: error customizing the vmcs"));
880
881		vmx->cap[i].set = 0;
882		vmx->cap[i].proc_ctls = procbased_ctls;
883		vmx->cap[i].proc_ctls2 = procbased_ctls2;
884
885		vmx->state[i].lastcpu = -1;
886		vmx->state[i].vpid = vpid[i];
887
888		msr_save_area_init(vmx->guest_msrs[i], &guest_msr_count);
889
890		error = vmcs_set_msr_save(vmcs, vtophys(vmx->guest_msrs[i]),
891		    guest_msr_count);
892		if (error != 0)
893			panic("vmcs_set_msr_save error %d", error);
894
895		/*
896		 * Set up the CR0/4 shadows, and init the read shadow
897		 * to the power-on register value from the Intel Sys Arch.
898		 *  CR0 - 0x60000010
899		 *  CR4 - 0
900		 */
901		error = vmx_setup_cr0_shadow(vmcs, 0x60000010);
902		if (error != 0)
903			panic("vmx_setup_cr0_shadow %d", error);
904
905		error = vmx_setup_cr4_shadow(vmcs, 0);
906		if (error != 0)
907			panic("vmx_setup_cr4_shadow %d", error);
908
909		vmx->ctx[i].pmap = pmap;
910	}
911
912	return (vmx);
913}
914
915static int
916vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
917{
918	int handled, func;
919
920	func = vmxctx->guest_rax;
921
922	handled = x86_emulate_cpuid(vm, vcpu,
923				    (uint32_t*)(&vmxctx->guest_rax),
924				    (uint32_t*)(&vmxctx->guest_rbx),
925				    (uint32_t*)(&vmxctx->guest_rcx),
926				    (uint32_t*)(&vmxctx->guest_rdx));
927	return (handled);
928}
929
930static __inline void
931vmx_run_trace(struct vmx *vmx, int vcpu)
932{
933#ifdef KTR
934	VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip());
935#endif
936}
937
938static __inline void
939vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason,
940	       int handled)
941{
942#ifdef KTR
943	VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx",
944		 handled ? "handled" : "unhandled",
945		 exit_reason_to_str(exit_reason), rip);
946#endif
947}
948
949static __inline void
950vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
951{
952#ifdef KTR
953	VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
954#endif
955}
956
957static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
958
959static void
960vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu, pmap_t pmap)
961{
962	struct vmxstate *vmxstate;
963	struct invvpid_desc invvpid_desc;
964
965	vmxstate = &vmx->state[vcpu];
966	if (vmxstate->lastcpu == curcpu)
967		return;
968
969	vmxstate->lastcpu = curcpu;
970
971	vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
972
973	vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
974	vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
975	vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
976
977	/*
978	 * If we are using VPIDs then invalidate all mappings tagged with 'vpid'
979	 *
980	 * We do this because this vcpu was executing on a different host
981	 * cpu when it last ran. We do not track whether it invalidated
982	 * mappings associated with its 'vpid' during that run. So we must
983	 * assume that the mappings associated with 'vpid' on 'curcpu' are
984	 * stale and invalidate them.
985	 *
986	 * Note that we incur this penalty only when the scheduler chooses to
987	 * move the thread associated with this vcpu between host cpus.
988	 *
989	 * Note also that this will invalidate mappings tagged with 'vpid'
990	 * for "all" EP4TAs.
991	 */
992	if (vmxstate->vpid != 0) {
993		if (pmap->pm_eptgen == vmx->eptgen[curcpu]) {
994			invvpid_desc._res1 = 0;
995			invvpid_desc._res2 = 0;
996			invvpid_desc.vpid = vmxstate->vpid;
997			invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
998		} else {
999			/*
1000			 * The invvpid can be skipped if an invept is going to
1001			 * be performed before entering the guest. The invept
1002			 * will invalidate combined mappings tagged with
1003			 * 'vmx->eptp' for all vpids.
1004			 */
1005			vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1);
1006		}
1007	}
1008}
1009
1010/*
1011 * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
1012 */
1013CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
1014
1015static void __inline
1016vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
1017{
1018
1019	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
1020		vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1021		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1022		VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
1023	}
1024}
1025
1026static void __inline
1027vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
1028{
1029
1030	KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
1031	    ("intr_window_exiting not set: %#x", vmx->cap[vcpu].proc_ctls));
1032	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1033	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1034	VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
1035}
1036
1037static void __inline
1038vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
1039{
1040
1041	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) {
1042		vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1043		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1044		VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting");
1045	}
1046}
1047
1048static void __inline
1049vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
1050{
1051
1052	KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0,
1053	    ("nmi_window_exiting not set %#x", vmx->cap[vcpu].proc_ctls));
1054	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1055	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1056	VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting");
1057}
1058
1059#define	NMI_BLOCKING	(VMCS_INTERRUPTIBILITY_NMI_BLOCKING |		\
1060			 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1061#define	HWINTR_BLOCKING	(VMCS_INTERRUPTIBILITY_STI_BLOCKING |		\
1062			 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1063
1064static void
1065vmx_inject_nmi(struct vmx *vmx, int vcpu)
1066{
1067	uint32_t gi, info;
1068
1069	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1070	KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest "
1071	    "interruptibility-state %#x", gi));
1072
1073	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1074	KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid "
1075	    "VM-entry interruption information %#x", info));
1076
1077	/*
1078	 * Inject the virtual NMI. The vector must be the NMI IDT entry
1079	 * or the VMCS entry check will fail.
1080	 */
1081	info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID;
1082	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1083
1084	VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI");
1085
1086	/* Clear the request */
1087	vm_nmi_clear(vmx->vm, vcpu);
1088}
1089
1090static void
1091vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic)
1092{
1093	int vector, need_nmi_exiting;
1094	uint64_t rflags;
1095	uint32_t gi, info;
1096
1097	if (vm_nmi_pending(vmx->vm, vcpu)) {
1098		/*
1099		 * If there are no conditions blocking NMI injection then
1100		 * inject it directly here otherwise enable "NMI window
1101		 * exiting" to inject it as soon as we can.
1102		 *
1103		 * We also check for STI_BLOCKING because some implementations
1104		 * don't allow NMI injection in this case. If we are running
1105		 * on a processor that doesn't have this restriction it will
1106		 * immediately exit and the NMI will be injected in the
1107		 * "NMI window exiting" handler.
1108		 */
1109		need_nmi_exiting = 1;
1110		gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1111		if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
1112			info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1113			if ((info & VMCS_INTR_VALID) == 0) {
1114				vmx_inject_nmi(vmx, vcpu);
1115				need_nmi_exiting = 0;
1116			} else {
1117				VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI "
1118				    "due to VM-entry intr info %#x", info);
1119			}
1120		} else {
1121			VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI due to "
1122			    "Guest Interruptibility-state %#x", gi);
1123		}
1124
1125		if (need_nmi_exiting)
1126			vmx_set_nmi_window_exiting(vmx, vcpu);
1127	}
1128
1129	if (virtual_interrupt_delivery) {
1130		vmx_inject_pir(vlapic);
1131		return;
1132	}
1133
1134	/*
1135	 * If interrupt-window exiting is already in effect then don't bother
1136	 * checking for pending interrupts. This is just an optimization and
1137	 * not needed for correctness.
1138	 */
1139	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) {
1140		VCPU_CTR0(vmx->vm, vcpu, "Skip interrupt injection due to "
1141		    "pending int_window_exiting");
1142		return;
1143	}
1144
1145	/* Ask the local apic for a vector to inject */
1146	if (!vlapic_pending_intr(vlapic, &vector))
1147		return;
1148
1149	KASSERT(vector >= 32 && vector <= 255, ("invalid vector %d", vector));
1150
1151	/* Check RFLAGS.IF and the interruptibility state of the guest */
1152	rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1153	if ((rflags & PSL_I) == 0) {
1154		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1155		    "rflags %#lx", vector, rflags);
1156		goto cantinject;
1157	}
1158
1159	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1160	if (gi & HWINTR_BLOCKING) {
1161		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1162		    "Guest Interruptibility-state %#x", vector, gi);
1163		goto cantinject;
1164	}
1165
1166	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1167	if (info & VMCS_INTR_VALID) {
1168		/*
1169		 * This is expected and could happen for multiple reasons:
1170		 * - A vectoring VM-entry was aborted due to astpending
1171		 * - A VM-exit happened during event injection.
1172		 * - An NMI was injected above or after "NMI window exiting"
1173		 */
1174		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1175		    "VM-entry intr info %#x", vector, info);
1176		goto cantinject;
1177	}
1178
1179	/* Inject the interrupt */
1180	info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID;
1181	info |= vector;
1182	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1183
1184	/* Update the Local APIC ISR */
1185	vlapic_intr_accepted(vlapic, vector);
1186
1187	VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector);
1188
1189	return;
1190
1191cantinject:
1192	/*
1193	 * Set the Interrupt Window Exiting execution control so we can inject
1194	 * the interrupt as soon as blocking condition goes away.
1195	 */
1196	vmx_set_int_window_exiting(vmx, vcpu);
1197}
1198
1199/*
1200 * If the Virtual NMIs execution control is '1' then the logical processor
1201 * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1202 * the VMCS. An IRET instruction in VMX non-root operation will remove any
1203 * virtual-NMI blocking.
1204 *
1205 * This unblocking occurs even if the IRET causes a fault. In this case the
1206 * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1207 */
1208static void
1209vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid)
1210{
1211	uint32_t gi;
1212
1213	VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking");
1214	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1215	gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1216	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1217}
1218
1219static void
1220vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid)
1221{
1222	uint32_t gi;
1223
1224	VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking");
1225	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1226	gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1227	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1228}
1229
1230static int
1231vmx_emulate_cr_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1232{
1233	int cr, vmcs_guest_cr, vmcs_shadow_cr;
1234	uint64_t crval, regval, ones_mask, zeros_mask;
1235	const struct vmxctx *vmxctx;
1236
1237	/* We only handle mov to %cr0 or %cr4 at this time */
1238	if ((exitqual & 0xf0) != 0x00)
1239		return (UNHANDLED);
1240
1241	cr = exitqual & 0xf;
1242	if (cr != 0 && cr != 4)
1243		return (UNHANDLED);
1244
1245	vmxctx = &vmx->ctx[vcpu];
1246
1247	/*
1248	 * We must use vmcs_write() directly here because vmcs_setreg() will
1249	 * call vmclear(vmcs) as a side-effect which we certainly don't want.
1250	 */
1251	switch ((exitqual >> 8) & 0xf) {
1252	case 0:
1253		regval = vmxctx->guest_rax;
1254		break;
1255	case 1:
1256		regval = vmxctx->guest_rcx;
1257		break;
1258	case 2:
1259		regval = vmxctx->guest_rdx;
1260		break;
1261	case 3:
1262		regval = vmxctx->guest_rbx;
1263		break;
1264	case 4:
1265		regval = vmcs_read(VMCS_GUEST_RSP);
1266		break;
1267	case 5:
1268		regval = vmxctx->guest_rbp;
1269		break;
1270	case 6:
1271		regval = vmxctx->guest_rsi;
1272		break;
1273	case 7:
1274		regval = vmxctx->guest_rdi;
1275		break;
1276	case 8:
1277		regval = vmxctx->guest_r8;
1278		break;
1279	case 9:
1280		regval = vmxctx->guest_r9;
1281		break;
1282	case 10:
1283		regval = vmxctx->guest_r10;
1284		break;
1285	case 11:
1286		regval = vmxctx->guest_r11;
1287		break;
1288	case 12:
1289		regval = vmxctx->guest_r12;
1290		break;
1291	case 13:
1292		regval = vmxctx->guest_r13;
1293		break;
1294	case 14:
1295		regval = vmxctx->guest_r14;
1296		break;
1297	case 15:
1298		regval = vmxctx->guest_r15;
1299		break;
1300	}
1301
1302	if (cr == 0) {
1303		ones_mask = cr0_ones_mask;
1304		zeros_mask = cr0_zeros_mask;
1305		vmcs_guest_cr = VMCS_GUEST_CR0;
1306		vmcs_shadow_cr = VMCS_CR0_SHADOW;
1307	} else {
1308		ones_mask = cr4_ones_mask;
1309		zeros_mask = cr4_zeros_mask;
1310		vmcs_guest_cr = VMCS_GUEST_CR4;
1311		vmcs_shadow_cr = VMCS_CR4_SHADOW;
1312	}
1313	vmcs_write(vmcs_shadow_cr, regval);
1314
1315	crval = regval | ones_mask;
1316	crval &= ~zeros_mask;
1317	vmcs_write(vmcs_guest_cr, crval);
1318
1319	if (cr == 0 && regval & CR0_PG) {
1320		uint64_t efer, entry_ctls;
1321
1322		/*
1323		 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1324		 * the "IA-32e mode guest" bit in VM-entry control must be
1325		 * equal.
1326		 */
1327		efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1328		if (efer & EFER_LME) {
1329			efer |= EFER_LMA;
1330			vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1331			entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
1332			entry_ctls |= VM_ENTRY_GUEST_LMA;
1333			vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
1334		}
1335	}
1336
1337	return (HANDLED);
1338}
1339
1340static int
1341ept_fault_type(uint64_t ept_qual)
1342{
1343	int fault_type;
1344
1345	if (ept_qual & EPT_VIOLATION_DATA_WRITE)
1346		fault_type = VM_PROT_WRITE;
1347	else if (ept_qual & EPT_VIOLATION_INST_FETCH)
1348		fault_type = VM_PROT_EXECUTE;
1349	else
1350		fault_type= VM_PROT_READ;
1351
1352	return (fault_type);
1353}
1354
1355static boolean_t
1356ept_emulation_fault(uint64_t ept_qual)
1357{
1358	int read, write;
1359
1360	/* EPT fault on an instruction fetch doesn't make sense here */
1361	if (ept_qual & EPT_VIOLATION_INST_FETCH)
1362		return (FALSE);
1363
1364	/* EPT fault must be a read fault or a write fault */
1365	read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
1366	write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
1367	if ((read | write) == 0)
1368		return (FALSE);
1369
1370	/*
1371	 * The EPT violation must have been caused by accessing a
1372	 * guest-physical address that is a translation of a guest-linear
1373	 * address.
1374	 */
1375	if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
1376	    (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
1377		return (FALSE);
1378	}
1379
1380	return (TRUE);
1381}
1382
1383static int
1384vmx_handle_apic_write(struct vlapic *vlapic, uint64_t qual)
1385{
1386	int error, handled, offset;
1387	bool retu;
1388
1389	if (!virtual_interrupt_delivery)
1390		return (UNHANDLED);
1391
1392	handled = 1;
1393	offset = APIC_WRITE_OFFSET(qual);
1394	switch (offset) {
1395	case APIC_OFFSET_ID:
1396		vlapic_id_write_handler(vlapic);
1397		break;
1398	case APIC_OFFSET_LDR:
1399		vlapic_ldr_write_handler(vlapic);
1400		break;
1401	case APIC_OFFSET_DFR:
1402		vlapic_dfr_write_handler(vlapic);
1403		break;
1404	case APIC_OFFSET_SVR:
1405		vlapic_svr_write_handler(vlapic);
1406		break;
1407	case APIC_OFFSET_ESR:
1408		vlapic_esr_write_handler(vlapic);
1409		break;
1410	case APIC_OFFSET_ICR_LOW:
1411		retu = false;
1412		error = vlapic_icrlo_write_handler(vlapic, &retu);
1413		if (error != 0 || retu)
1414			handled = 0;
1415		break;
1416	case APIC_OFFSET_CMCI_LVT:
1417	case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
1418		vlapic_lvt_write_handler(vlapic, offset);
1419		break;
1420	case APIC_OFFSET_TIMER_ICR:
1421		vlapic_icrtmr_write_handler(vlapic);
1422		break;
1423	case APIC_OFFSET_TIMER_DCR:
1424		vlapic_dcr_write_handler(vlapic);
1425		break;
1426	default:
1427		handled = 0;
1428		break;
1429	}
1430	return (handled);
1431}
1432
1433static bool
1434apic_access_fault(uint64_t gpa)
1435{
1436
1437	if (virtual_interrupt_delivery &&
1438	    (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
1439		return (true);
1440	else
1441		return (false);
1442}
1443
1444static int
1445vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
1446{
1447	uint64_t qual;
1448	int access_type, offset, allowed;
1449
1450	if (!virtual_interrupt_delivery)
1451		return (UNHANDLED);
1452
1453	qual = vmexit->u.vmx.exit_qualification;
1454	access_type = APIC_ACCESS_TYPE(qual);
1455	offset = APIC_ACCESS_OFFSET(qual);
1456
1457	allowed = 0;
1458	if (access_type == 0) {
1459		/*
1460		 * Read data access to the following registers is expected.
1461		 */
1462		switch (offset) {
1463		case APIC_OFFSET_APR:
1464		case APIC_OFFSET_PPR:
1465		case APIC_OFFSET_RRR:
1466		case APIC_OFFSET_CMCI_LVT:
1467		case APIC_OFFSET_TIMER_CCR:
1468			allowed = 1;
1469			break;
1470		default:
1471			break;
1472		}
1473	} else if (access_type == 1) {
1474		/*
1475		 * Write data access to the following registers is expected.
1476		 */
1477		switch (offset) {
1478		case APIC_OFFSET_VER:
1479		case APIC_OFFSET_APR:
1480		case APIC_OFFSET_PPR:
1481		case APIC_OFFSET_RRR:
1482		case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
1483		case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
1484		case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
1485		case APIC_OFFSET_CMCI_LVT:
1486		case APIC_OFFSET_TIMER_CCR:
1487			allowed = 1;
1488			break;
1489		default:
1490			break;
1491		}
1492	}
1493
1494	if (allowed) {
1495		vmexit->exitcode = VM_EXITCODE_INST_EMUL;
1496		vmexit->u.inst_emul.gpa = DEFAULT_APIC_BASE + offset;
1497		vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
1498		vmexit->u.inst_emul.cr3 = vmcs_guest_cr3();
1499	}
1500
1501	/*
1502	 * Regardless of whether the APIC-access is allowed this handler
1503	 * always returns UNHANDLED:
1504	 * - if the access is allowed then it is handled by emulating the
1505	 *   instruction that caused the VM-exit (outside the critical section)
1506	 * - if the access is not allowed then it will be converted to an
1507	 *   exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
1508	 */
1509	return (UNHANDLED);
1510}
1511
1512static int
1513vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1514{
1515	int error, handled;
1516	struct vmxctx *vmxctx;
1517	struct vlapic *vlapic;
1518	uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, reason;
1519	uint64_t qual, gpa;
1520	bool retu;
1521
1522	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
1523	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
1524
1525	handled = 0;
1526	vmxctx = &vmx->ctx[vcpu];
1527
1528	qual = vmexit->u.vmx.exit_qualification;
1529	reason = vmexit->u.vmx.exit_reason;
1530	vmexit->exitcode = VM_EXITCODE_BOGUS;
1531
1532	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
1533
1534	/*
1535	 * VM exits that could be triggered during event injection on the
1536	 * previous VM entry need to be handled specially by re-injecting
1537	 * the event.
1538	 *
1539	 * See "Information for VM Exits During Event Delivery" in Intel SDM
1540	 * for details.
1541	 */
1542	switch (reason) {
1543	case EXIT_REASON_EPT_FAULT:
1544	case EXIT_REASON_EPT_MISCONFIG:
1545	case EXIT_REASON_APIC_ACCESS:
1546	case EXIT_REASON_TASK_SWITCH:
1547	case EXIT_REASON_EXCEPTION:
1548		idtvec_info = vmcs_idt_vectoring_info();
1549		if (idtvec_info & VMCS_IDT_VEC_VALID) {
1550			idtvec_info &= ~(1 << 12); /* clear undefined bit */
1551			vmcs_write(VMCS_ENTRY_INTR_INFO, idtvec_info);
1552			if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
1553				idtvec_err = vmcs_idt_vectoring_err();
1554				vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR,
1555				    idtvec_err);
1556			}
1557			/*
1558			 * If 'virtual NMIs' are being used and the VM-exit
1559			 * happened while injecting an NMI during the previous
1560			 * VM-entry, then clear "blocking by NMI" in the Guest
1561			 * Interruptibility-state.
1562			 */
1563			if ((idtvec_info & VMCS_INTR_T_MASK) ==
1564			    VMCS_INTR_T_NMI) {
1565				 vmx_clear_nmi_blocking(vmx, vcpu);
1566			}
1567			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
1568		}
1569	default:
1570		idtvec_info = 0;
1571		break;
1572	}
1573
1574	switch (reason) {
1575	case EXIT_REASON_CR_ACCESS:
1576		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
1577		handled = vmx_emulate_cr_access(vmx, vcpu, qual);
1578		break;
1579	case EXIT_REASON_RDMSR:
1580		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1);
1581		retu = false;
1582		ecx = vmxctx->guest_rcx;
1583		error = emulate_rdmsr(vmx->vm, vcpu, ecx, &retu);
1584		if (error) {
1585			vmexit->exitcode = VM_EXITCODE_RDMSR;
1586			vmexit->u.msr.code = ecx;
1587		} else if (!retu) {
1588			handled = 1;
1589		} else {
1590			/* Return to userspace with a valid exitcode */
1591			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1592			    ("emulate_wrmsr retu with bogus exitcode"));
1593		}
1594		break;
1595	case EXIT_REASON_WRMSR:
1596		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1);
1597		retu = false;
1598		eax = vmxctx->guest_rax;
1599		ecx = vmxctx->guest_rcx;
1600		edx = vmxctx->guest_rdx;
1601		error = emulate_wrmsr(vmx->vm, vcpu, ecx,
1602		    (uint64_t)edx << 32 | eax, &retu);
1603		if (error) {
1604			vmexit->exitcode = VM_EXITCODE_WRMSR;
1605			vmexit->u.msr.code = ecx;
1606			vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
1607		} else if (!retu) {
1608			handled = 1;
1609		} else {
1610			/* Return to userspace with a valid exitcode */
1611			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1612			    ("emulate_wrmsr retu with bogus exitcode"));
1613		}
1614		break;
1615	case EXIT_REASON_HLT:
1616		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
1617		vmexit->exitcode = VM_EXITCODE_HLT;
1618		vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1619		break;
1620	case EXIT_REASON_MTF:
1621		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
1622		vmexit->exitcode = VM_EXITCODE_MTRAP;
1623		break;
1624	case EXIT_REASON_PAUSE:
1625		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
1626		vmexit->exitcode = VM_EXITCODE_PAUSE;
1627		break;
1628	case EXIT_REASON_INTR_WINDOW:
1629		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
1630		vmx_clear_int_window_exiting(vmx, vcpu);
1631		return (1);
1632	case EXIT_REASON_EXT_INTR:
1633		/*
1634		 * External interrupts serve only to cause VM exits and allow
1635		 * the host interrupt handler to run.
1636		 *
1637		 * If this external interrupt triggers a virtual interrupt
1638		 * to a VM, then that state will be recorded by the
1639		 * host interrupt handler in the VM's softc. We will inject
1640		 * this virtual interrupt during the subsequent VM enter.
1641		 */
1642		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
1643		KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
1644		    (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
1645		    ("VM exit interruption info invalid: %#x", intr_info));
1646		vmx_trigger_hostintr(intr_info & 0xff);
1647
1648		/*
1649		 * This is special. We want to treat this as an 'handled'
1650		 * VM-exit but not increment the instruction pointer.
1651		 */
1652		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
1653		return (1);
1654	case EXIT_REASON_NMI_WINDOW:
1655		/* Exit to allow the pending virtual NMI to be injected */
1656		if (vm_nmi_pending(vmx->vm, vcpu))
1657			vmx_inject_nmi(vmx, vcpu);
1658		vmx_clear_nmi_window_exiting(vmx, vcpu);
1659		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
1660		return (1);
1661	case EXIT_REASON_INOUT:
1662		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
1663		vmexit->exitcode = VM_EXITCODE_INOUT;
1664		vmexit->u.inout.bytes = (qual & 0x7) + 1;
1665		vmexit->u.inout.in = (qual & 0x8) ? 1 : 0;
1666		vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
1667		vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
1668		vmexit->u.inout.port = (uint16_t)(qual >> 16);
1669		vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
1670		break;
1671	case EXIT_REASON_CPUID:
1672		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
1673		handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
1674		break;
1675	case EXIT_REASON_EXCEPTION:
1676		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1);
1677		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
1678		KASSERT((intr_info & VMCS_INTR_VALID) != 0,
1679		    ("VM exit interruption info invalid: %#x", intr_info));
1680
1681		/*
1682		 * If Virtual NMIs control is 1 and the VM-exit is due to a
1683		 * fault encountered during the execution of IRET then we must
1684		 * restore the state of "virtual-NMI blocking" before resuming
1685		 * the guest.
1686		 *
1687		 * See "Resuming Guest Software after Handling an Exception".
1688		 */
1689		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
1690		    (intr_info & 0xff) != IDT_DF &&
1691		    (intr_info & EXIT_QUAL_NMIUDTI) != 0)
1692			vmx_restore_nmi_blocking(vmx, vcpu);
1693
1694		/*
1695		 * The NMI has already been handled in vmx_exit_handle_nmi().
1696		 */
1697		if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI)
1698			return (1);
1699		break;
1700	case EXIT_REASON_EPT_FAULT:
1701		/*
1702		 * If 'gpa' lies within the address space allocated to
1703		 * memory then this must be a nested page fault otherwise
1704		 * this must be an instruction that accesses MMIO space.
1705		 */
1706		gpa = vmcs_gpa();
1707		if (vm_mem_allocated(vmx->vm, gpa) || apic_access_fault(gpa)) {
1708			vmexit->exitcode = VM_EXITCODE_PAGING;
1709			vmexit->u.paging.gpa = gpa;
1710			vmexit->u.paging.fault_type = ept_fault_type(qual);
1711			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
1712		} else if (ept_emulation_fault(qual)) {
1713			vmexit->exitcode = VM_EXITCODE_INST_EMUL;
1714			vmexit->u.inst_emul.gpa = gpa;
1715			vmexit->u.inst_emul.gla = vmcs_gla();
1716			vmexit->u.inst_emul.cr3 = vmcs_guest_cr3();
1717			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INST_EMUL, 1);
1718		}
1719		/*
1720		 * If Virtual NMIs control is 1 and the VM-exit is due to an
1721		 * EPT fault during the execution of IRET then we must restore
1722		 * the state of "virtual-NMI blocking" before resuming.
1723		 *
1724		 * See description of "NMI unblocking due to IRET" in
1725		 * "Exit Qualification for EPT Violations".
1726		 */
1727		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
1728		    (qual & EXIT_QUAL_NMIUDTI) != 0)
1729			vmx_restore_nmi_blocking(vmx, vcpu);
1730		break;
1731	case EXIT_REASON_VIRTUALIZED_EOI:
1732		vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
1733		vmexit->u.ioapic_eoi.vector = qual & 0xFF;
1734		vmexit->inst_length = 0;	/* trap-like */
1735		break;
1736	case EXIT_REASON_APIC_ACCESS:
1737		handled = vmx_handle_apic_access(vmx, vcpu, vmexit);
1738		break;
1739	case EXIT_REASON_APIC_WRITE:
1740		/*
1741		 * APIC-write VM exit is trap-like so the %rip is already
1742		 * pointing to the next instruction.
1743		 */
1744		vmexit->inst_length = 0;
1745		vlapic = vm_lapic(vmx->vm, vcpu);
1746		handled = vmx_handle_apic_write(vlapic, qual);
1747		break;
1748	default:
1749		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
1750		break;
1751	}
1752
1753	if (handled) {
1754		/*
1755		 * It is possible that control is returned to userland
1756		 * even though we were able to handle the VM exit in the
1757		 * kernel.
1758		 *
1759		 * In such a case we want to make sure that the userland
1760		 * restarts guest execution at the instruction *after*
1761		 * the one we just processed. Therefore we update the
1762		 * guest rip in the VMCS and in 'vmexit'.
1763		 */
1764		vmexit->rip += vmexit->inst_length;
1765		vmexit->inst_length = 0;
1766		vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
1767	} else {
1768		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1769			/*
1770			 * If this VM exit was not claimed by anybody then
1771			 * treat it as a generic VMX exit.
1772			 */
1773			vmexit->exitcode = VM_EXITCODE_VMX;
1774			vmexit->u.vmx.status = VM_SUCCESS;
1775			vmexit->u.vmx.inst_type = 0;
1776			vmexit->u.vmx.inst_error = 0;
1777		} else {
1778			/*
1779			 * The exitcode and collateral have been populated.
1780			 * The VM exit will be processed further in userland.
1781			 */
1782		}
1783	}
1784	return (handled);
1785}
1786
1787static __inline int
1788vmx_exit_astpending(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1789{
1790
1791	vmexit->rip = vmcs_guest_rip();
1792	vmexit->inst_length = 0;
1793	vmexit->exitcode = VM_EXITCODE_BOGUS;
1794	vmx_astpending_trace(vmx, vcpu, vmexit->rip);
1795	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_ASTPENDING, 1);
1796
1797	return (HANDLED);
1798}
1799
1800static __inline int
1801vmx_exit_rendezvous(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1802{
1803
1804	vmexit->rip = vmcs_guest_rip();
1805	vmexit->inst_length = 0;
1806	vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
1807	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RENDEZVOUS, 1);
1808
1809	return (UNHANDLED);
1810}
1811
1812static __inline int
1813vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
1814{
1815
1816	KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
1817	    ("vmx_exit_inst_error: invalid inst_fail_status %d",
1818	    vmxctx->inst_fail_status));
1819
1820	vmexit->inst_length = 0;
1821	vmexit->exitcode = VM_EXITCODE_VMX;
1822	vmexit->u.vmx.status = vmxctx->inst_fail_status;
1823	vmexit->u.vmx.inst_error = vmcs_instruction_error();
1824	vmexit->u.vmx.exit_reason = ~0;
1825	vmexit->u.vmx.exit_qualification = ~0;
1826
1827	switch (rc) {
1828	case VMX_VMRESUME_ERROR:
1829	case VMX_VMLAUNCH_ERROR:
1830	case VMX_INVEPT_ERROR:
1831		vmexit->u.vmx.inst_type = rc;
1832		break;
1833	default:
1834		panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
1835	}
1836
1837	return (UNHANDLED);
1838}
1839
1840/*
1841 * If the NMI-exiting VM execution control is set to '1' then an NMI in
1842 * non-root operation causes a VM-exit. NMI blocking is in effect so it is
1843 * sufficient to simply vector to the NMI handler via a software interrupt.
1844 * However, this must be done before maskable interrupts are enabled
1845 * otherwise the "iret" issued by an interrupt handler will incorrectly
1846 * clear NMI blocking.
1847 */
1848static __inline void
1849vmx_exit_handle_nmi(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
1850{
1851	uint32_t intr_info;
1852
1853	KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
1854
1855	if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION)
1856		return;
1857
1858	intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
1859	KASSERT((intr_info & VMCS_INTR_VALID) != 0,
1860	    ("VM exit interruption info invalid: %#x", intr_info));
1861
1862	if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
1863		KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due "
1864		    "to NMI has invalid vector: %#x", intr_info));
1865		VCPU_CTR0(vmx->vm, vcpuid, "Vectoring to NMI handler");
1866		__asm __volatile("int $2");
1867	}
1868}
1869
1870static int
1871vmx_run(void *arg, int vcpu, register_t startrip, pmap_t pmap,
1872    void *rendezvous_cookie)
1873{
1874	int rc, handled, launched;
1875	struct vmx *vmx;
1876	struct vm *vm;
1877	struct vmxctx *vmxctx;
1878	struct vmcs *vmcs;
1879	struct vm_exit *vmexit;
1880	struct vlapic *vlapic;
1881	uint64_t rip;
1882	uint32_t exit_reason;
1883
1884	vmx = arg;
1885	vm = vmx->vm;
1886	vmcs = &vmx->vmcs[vcpu];
1887	vmxctx = &vmx->ctx[vcpu];
1888	vlapic = vm_lapic(vm, vcpu);
1889	vmexit = vm_exitinfo(vm, vcpu);
1890	launched = 0;
1891
1892	KASSERT(vmxctx->pmap == pmap,
1893	    ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
1894
1895	VMPTRLD(vmcs);
1896
1897	/*
1898	 * XXX
1899	 * We do this every time because we may setup the virtual machine
1900	 * from a different process than the one that actually runs it.
1901	 *
1902	 * If the life of a virtual machine was spent entirely in the context
1903	 * of a single process we could do this once in vmx_vminit().
1904	 */
1905	vmcs_write(VMCS_HOST_CR3, rcr3());
1906
1907	vmcs_write(VMCS_GUEST_RIP, startrip);
1908	vmx_set_pcpu_defaults(vmx, vcpu, pmap);
1909	do {
1910		/*
1911		 * Interrupts are disabled from this point on until the
1912		 * guest starts executing. This is done for the following
1913		 * reasons:
1914		 *
1915		 * If an AST is asserted on this thread after the check below,
1916		 * then the IPI_AST notification will not be lost, because it
1917		 * will cause a VM exit due to external interrupt as soon as
1918		 * the guest state is loaded.
1919		 *
1920		 * A posted interrupt after 'vmx_inject_interrupts()' will
1921		 * not be "lost" because it will be held pending in the host
1922		 * APIC because interrupts are disabled. The pending interrupt
1923		 * will be recognized as soon as the guest state is loaded.
1924		 *
1925		 * The same reasoning applies to the IPI generated by
1926		 * pmap_invalidate_ept().
1927		 */
1928		disable_intr();
1929		if (curthread->td_flags & (TDF_ASTPENDING | TDF_NEEDRESCHED)) {
1930			enable_intr();
1931			handled = vmx_exit_astpending(vmx, vcpu, vmexit);
1932			break;
1933		}
1934
1935		if (vcpu_rendezvous_pending(rendezvous_cookie)) {
1936			enable_intr();
1937			handled = vmx_exit_rendezvous(vmx, vcpu, vmexit);
1938			break;
1939		}
1940
1941		vmx_inject_interrupts(vmx, vcpu, vlapic);
1942		vmx_run_trace(vmx, vcpu);
1943		rc = vmx_enter_guest(vmxctx, vmx, launched);
1944
1945		/* Collect some information for VM exit processing */
1946		vmexit->rip = rip = vmcs_guest_rip();
1947		vmexit->inst_length = vmexit_instruction_length();
1948		vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
1949		vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
1950
1951		if (rc == VMX_GUEST_VMEXIT) {
1952			vmx_exit_handle_nmi(vmx, vcpu, vmexit);
1953			enable_intr();
1954			handled = vmx_exit_process(vmx, vcpu, vmexit);
1955		} else {
1956			enable_intr();
1957			handled = vmx_exit_inst_error(vmxctx, rc, vmexit);
1958		}
1959		launched = 1;
1960		vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled);
1961	} while (handled);
1962
1963	/*
1964	 * If a VM exit has been handled then the exitcode must be BOGUS
1965	 * If a VM exit is not handled then the exitcode must not be BOGUS
1966	 */
1967	if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
1968	    (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
1969		panic("Mismatch between handled (%d) and exitcode (%d)",
1970		      handled, vmexit->exitcode);
1971	}
1972
1973	if (!handled)
1974		vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1);
1975
1976	VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d",
1977	    vmexit->exitcode);
1978
1979	VMCLEAR(vmcs);
1980	return (0);
1981}
1982
1983static void
1984vmx_vmcleanup(void *arg)
1985{
1986	int i, error;
1987	struct vmx *vmx = arg;
1988
1989	if (virtual_interrupt_delivery)
1990		vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
1991
1992	for (i = 0; i < VM_MAXCPU; i++)
1993		vpid_free(vmx->state[i].vpid);
1994
1995	/*
1996	 * XXXSMP we also need to clear the VMCS active on the other vcpus.
1997	 */
1998	error = vmclear(&vmx->vmcs[0]);
1999	if (error != 0)
2000		panic("vmx_vmcleanup: vmclear error %d on vcpu 0", error);
2001
2002	free(vmx, M_VMX);
2003
2004	return;
2005}
2006
2007static register_t *
2008vmxctx_regptr(struct vmxctx *vmxctx, int reg)
2009{
2010
2011	switch (reg) {
2012	case VM_REG_GUEST_RAX:
2013		return (&vmxctx->guest_rax);
2014	case VM_REG_GUEST_RBX:
2015		return (&vmxctx->guest_rbx);
2016	case VM_REG_GUEST_RCX:
2017		return (&vmxctx->guest_rcx);
2018	case VM_REG_GUEST_RDX:
2019		return (&vmxctx->guest_rdx);
2020	case VM_REG_GUEST_RSI:
2021		return (&vmxctx->guest_rsi);
2022	case VM_REG_GUEST_RDI:
2023		return (&vmxctx->guest_rdi);
2024	case VM_REG_GUEST_RBP:
2025		return (&vmxctx->guest_rbp);
2026	case VM_REG_GUEST_R8:
2027		return (&vmxctx->guest_r8);
2028	case VM_REG_GUEST_R9:
2029		return (&vmxctx->guest_r9);
2030	case VM_REG_GUEST_R10:
2031		return (&vmxctx->guest_r10);
2032	case VM_REG_GUEST_R11:
2033		return (&vmxctx->guest_r11);
2034	case VM_REG_GUEST_R12:
2035		return (&vmxctx->guest_r12);
2036	case VM_REG_GUEST_R13:
2037		return (&vmxctx->guest_r13);
2038	case VM_REG_GUEST_R14:
2039		return (&vmxctx->guest_r14);
2040	case VM_REG_GUEST_R15:
2041		return (&vmxctx->guest_r15);
2042	default:
2043		break;
2044	}
2045	return (NULL);
2046}
2047
2048static int
2049vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
2050{
2051	register_t *regp;
2052
2053	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
2054		*retval = *regp;
2055		return (0);
2056	} else
2057		return (EINVAL);
2058}
2059
2060static int
2061vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
2062{
2063	register_t *regp;
2064
2065	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
2066		*regp = val;
2067		return (0);
2068	} else
2069		return (EINVAL);
2070}
2071
2072static int
2073vmx_shadow_reg(int reg)
2074{
2075	int shreg;
2076
2077	shreg = -1;
2078
2079	switch (reg) {
2080	case VM_REG_GUEST_CR0:
2081		shreg = VMCS_CR0_SHADOW;
2082                break;
2083        case VM_REG_GUEST_CR4:
2084		shreg = VMCS_CR4_SHADOW;
2085		break;
2086	default:
2087		break;
2088	}
2089
2090	return (shreg);
2091}
2092
2093static int
2094vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
2095{
2096	int running, hostcpu;
2097	struct vmx *vmx = arg;
2098
2099	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2100	if (running && hostcpu != curcpu)
2101		panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
2102
2103	if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0)
2104		return (0);
2105
2106	return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval));
2107}
2108
2109static int
2110vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
2111{
2112	int error, hostcpu, running, shadow;
2113	uint64_t ctls;
2114	struct vmx *vmx = arg;
2115
2116	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2117	if (running && hostcpu != curcpu)
2118		panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
2119
2120	if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0)
2121		return (0);
2122
2123	error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val);
2124
2125	if (error == 0) {
2126		/*
2127		 * If the "load EFER" VM-entry control is 1 then the
2128		 * value of EFER.LMA must be identical to "IA-32e mode guest"
2129		 * bit in the VM-entry control.
2130		 */
2131		if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
2132		    (reg == VM_REG_GUEST_EFER)) {
2133			vmcs_getreg(&vmx->vmcs[vcpu], running,
2134				    VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
2135			if (val & EFER_LMA)
2136				ctls |= VM_ENTRY_GUEST_LMA;
2137			else
2138				ctls &= ~VM_ENTRY_GUEST_LMA;
2139			vmcs_setreg(&vmx->vmcs[vcpu], running,
2140				    VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
2141		}
2142
2143		shadow = vmx_shadow_reg(reg);
2144		if (shadow > 0) {
2145			/*
2146			 * Store the unmodified value in the shadow
2147			 */
2148			error = vmcs_setreg(&vmx->vmcs[vcpu], running,
2149				    VMCS_IDENT(shadow), val);
2150		}
2151	}
2152
2153	return (error);
2154}
2155
2156static int
2157vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
2158{
2159	struct vmx *vmx = arg;
2160
2161	return (vmcs_getdesc(&vmx->vmcs[vcpu], reg, desc));
2162}
2163
2164static int
2165vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
2166{
2167	struct vmx *vmx = arg;
2168
2169	return (vmcs_setdesc(&vmx->vmcs[vcpu], reg, desc));
2170}
2171
2172static int
2173vmx_inject(void *arg, int vcpu, int type, int vector, uint32_t code,
2174	   int code_valid)
2175{
2176	int error;
2177	uint64_t info;
2178	struct vmx *vmx = arg;
2179	struct vmcs *vmcs = &vmx->vmcs[vcpu];
2180
2181	static uint32_t type_map[VM_EVENT_MAX] = {
2182		0x1,		/* VM_EVENT_NONE */
2183		0x0,		/* VM_HW_INTR */
2184		0x2,		/* VM_NMI */
2185		0x3,		/* VM_HW_EXCEPTION */
2186		0x4,		/* VM_SW_INTR */
2187		0x5,		/* VM_PRIV_SW_EXCEPTION */
2188		0x6,		/* VM_SW_EXCEPTION */
2189	};
2190
2191	/*
2192	 * If there is already an exception pending to be delivered to the
2193	 * vcpu then just return.
2194	 */
2195	error = vmcs_getreg(vmcs, 0, VMCS_IDENT(VMCS_ENTRY_INTR_INFO), &info);
2196	if (error)
2197		return (error);
2198
2199	if (info & VMCS_INTR_VALID)
2200		return (EAGAIN);
2201
2202	info = vector | (type_map[type] << 8) | (code_valid ? 1 << 11 : 0);
2203	info |= VMCS_INTR_VALID;
2204	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(VMCS_ENTRY_INTR_INFO), info);
2205	if (error != 0)
2206		return (error);
2207
2208	if (code_valid) {
2209		error = vmcs_setreg(vmcs, 0,
2210				    VMCS_IDENT(VMCS_ENTRY_EXCEPTION_ERROR),
2211				    code);
2212	}
2213	return (error);
2214}
2215
2216static int
2217vmx_getcap(void *arg, int vcpu, int type, int *retval)
2218{
2219	struct vmx *vmx = arg;
2220	int vcap;
2221	int ret;
2222
2223	ret = ENOENT;
2224
2225	vcap = vmx->cap[vcpu].set;
2226
2227	switch (type) {
2228	case VM_CAP_HALT_EXIT:
2229		if (cap_halt_exit)
2230			ret = 0;
2231		break;
2232	case VM_CAP_PAUSE_EXIT:
2233		if (cap_pause_exit)
2234			ret = 0;
2235		break;
2236	case VM_CAP_MTRAP_EXIT:
2237		if (cap_monitor_trap)
2238			ret = 0;
2239		break;
2240	case VM_CAP_UNRESTRICTED_GUEST:
2241		if (cap_unrestricted_guest)
2242			ret = 0;
2243		break;
2244	case VM_CAP_ENABLE_INVPCID:
2245		if (cap_invpcid)
2246			ret = 0;
2247		break;
2248	default:
2249		break;
2250	}
2251
2252	if (ret == 0)
2253		*retval = (vcap & (1 << type)) ? 1 : 0;
2254
2255	return (ret);
2256}
2257
2258static int
2259vmx_setcap(void *arg, int vcpu, int type, int val)
2260{
2261	struct vmx *vmx = arg;
2262	struct vmcs *vmcs = &vmx->vmcs[vcpu];
2263	uint32_t baseval;
2264	uint32_t *pptr;
2265	int error;
2266	int flag;
2267	int reg;
2268	int retval;
2269
2270	retval = ENOENT;
2271	pptr = NULL;
2272
2273	switch (type) {
2274	case VM_CAP_HALT_EXIT:
2275		if (cap_halt_exit) {
2276			retval = 0;
2277			pptr = &vmx->cap[vcpu].proc_ctls;
2278			baseval = *pptr;
2279			flag = PROCBASED_HLT_EXITING;
2280			reg = VMCS_PRI_PROC_BASED_CTLS;
2281		}
2282		break;
2283	case VM_CAP_MTRAP_EXIT:
2284		if (cap_monitor_trap) {
2285			retval = 0;
2286			pptr = &vmx->cap[vcpu].proc_ctls;
2287			baseval = *pptr;
2288			flag = PROCBASED_MTF;
2289			reg = VMCS_PRI_PROC_BASED_CTLS;
2290		}
2291		break;
2292	case VM_CAP_PAUSE_EXIT:
2293		if (cap_pause_exit) {
2294			retval = 0;
2295			pptr = &vmx->cap[vcpu].proc_ctls;
2296			baseval = *pptr;
2297			flag = PROCBASED_PAUSE_EXITING;
2298			reg = VMCS_PRI_PROC_BASED_CTLS;
2299		}
2300		break;
2301	case VM_CAP_UNRESTRICTED_GUEST:
2302		if (cap_unrestricted_guest) {
2303			retval = 0;
2304			pptr = &vmx->cap[vcpu].proc_ctls2;
2305			baseval = *pptr;
2306			flag = PROCBASED2_UNRESTRICTED_GUEST;
2307			reg = VMCS_SEC_PROC_BASED_CTLS;
2308		}
2309		break;
2310	case VM_CAP_ENABLE_INVPCID:
2311		if (cap_invpcid) {
2312			retval = 0;
2313			pptr = &vmx->cap[vcpu].proc_ctls2;
2314			baseval = *pptr;
2315			flag = PROCBASED2_ENABLE_INVPCID;
2316			reg = VMCS_SEC_PROC_BASED_CTLS;
2317		}
2318		break;
2319	default:
2320		break;
2321	}
2322
2323	if (retval == 0) {
2324		if (val) {
2325			baseval |= flag;
2326		} else {
2327			baseval &= ~flag;
2328		}
2329		VMPTRLD(vmcs);
2330		error = vmwrite(reg, baseval);
2331		VMCLEAR(vmcs);
2332
2333		if (error) {
2334			retval = error;
2335		} else {
2336			/*
2337			 * Update optional stored flags, and record
2338			 * setting
2339			 */
2340			if (pptr != NULL) {
2341				*pptr = baseval;
2342			}
2343
2344			if (val) {
2345				vmx->cap[vcpu].set |= (1 << type);
2346			} else {
2347				vmx->cap[vcpu].set &= ~(1 << type);
2348			}
2349		}
2350	}
2351
2352        return (retval);
2353}
2354
2355struct vlapic_vtx {
2356	struct vlapic	vlapic;
2357	struct pir_desc	*pir_desc;
2358	struct vmx	*vmx;
2359};
2360
2361#define	VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg)	\
2362do {									\
2363	VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d",	\
2364	    level ? "level" : "edge", vector);				\
2365	VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]);	\
2366	VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]);	\
2367	VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]);	\
2368	VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]);	\
2369	VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\
2370} while (0)
2371
2372/*
2373 * vlapic->ops handlers that utilize the APICv hardware assist described in
2374 * Chapter 29 of the Intel SDM.
2375 */
2376static int
2377vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level)
2378{
2379	struct vlapic_vtx *vlapic_vtx;
2380	struct pir_desc *pir_desc;
2381	uint64_t mask;
2382	int idx, notify;
2383
2384	vlapic_vtx = (struct vlapic_vtx *)vlapic;
2385	pir_desc = vlapic_vtx->pir_desc;
2386
2387	/*
2388	 * Keep track of interrupt requests in the PIR descriptor. This is
2389	 * because the virtual APIC page pointed to by the VMCS cannot be
2390	 * modified if the vcpu is running.
2391	 */
2392	idx = vector / 64;
2393	mask = 1UL << (vector % 64);
2394	atomic_set_long(&pir_desc->pir[idx], mask);
2395	notify = atomic_cmpset_long(&pir_desc->pending, 0, 1);
2396
2397	VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector,
2398	    level, "vmx_set_intr_ready");
2399	return (notify);
2400}
2401
2402static int
2403vmx_pending_intr(struct vlapic *vlapic, int *vecptr)
2404{
2405	struct vlapic_vtx *vlapic_vtx;
2406	struct pir_desc *pir_desc;
2407	struct LAPIC *lapic;
2408	uint64_t pending, pirval;
2409	uint32_t ppr, vpr;
2410	int i;
2411
2412	/*
2413	 * This function is only expected to be called from the 'HLT' exit
2414	 * handler which does not care about the vector that is pending.
2415	 */
2416	KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL"));
2417
2418	vlapic_vtx = (struct vlapic_vtx *)vlapic;
2419	pir_desc = vlapic_vtx->pir_desc;
2420
2421	pending = atomic_load_acq_long(&pir_desc->pending);
2422	if (!pending)
2423		return (0);	/* common case */
2424
2425	/*
2426	 * If there is an interrupt pending then it will be recognized only
2427	 * if its priority is greater than the processor priority.
2428	 *
2429	 * Special case: if the processor priority is zero then any pending
2430	 * interrupt will be recognized.
2431	 */
2432	lapic = vlapic->apic_page;
2433	ppr = lapic->ppr & 0xf0;
2434	if (ppr == 0)
2435		return (1);
2436
2437	VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d",
2438	    lapic->ppr);
2439
2440	for (i = 3; i >= 0; i--) {
2441		pirval = pir_desc->pir[i];
2442		if (pirval != 0) {
2443			vpr = (i * 64 + flsl(pirval) - 1) & 0xf0;
2444			return (vpr > ppr);
2445		}
2446	}
2447	return (0);
2448}
2449
2450static void
2451vmx_intr_accepted(struct vlapic *vlapic, int vector)
2452{
2453
2454	panic("vmx_intr_accepted: not expected to be called");
2455}
2456
2457static void
2458vmx_set_tmr(struct vlapic *vlapic, int vector, bool level)
2459{
2460	struct vlapic_vtx *vlapic_vtx;
2461	struct vmx *vmx;
2462	struct vmcs *vmcs;
2463	uint64_t mask, val;
2464
2465	KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector));
2466	KASSERT(!vcpu_is_running(vlapic->vm, vlapic->vcpuid, NULL),
2467	    ("vmx_set_tmr: vcpu cannot be running"));
2468
2469	vlapic_vtx = (struct vlapic_vtx *)vlapic;
2470	vmx = vlapic_vtx->vmx;
2471	vmcs = &vmx->vmcs[vlapic->vcpuid];
2472	mask = 1UL << (vector % 64);
2473
2474	VMPTRLD(vmcs);
2475	val = vmcs_read(VMCS_EOI_EXIT(vector));
2476	if (level)
2477		val |= mask;
2478	else
2479		val &= ~mask;
2480	vmcs_write(VMCS_EOI_EXIT(vector), val);
2481	VMCLEAR(vmcs);
2482}
2483
2484static void
2485vmx_post_intr(struct vlapic *vlapic, int hostcpu)
2486{
2487
2488	ipi_cpu(hostcpu, pirvec);
2489}
2490
2491/*
2492 * Transfer the pending interrupts in the PIR descriptor to the IRR
2493 * in the virtual APIC page.
2494 */
2495static void
2496vmx_inject_pir(struct vlapic *vlapic)
2497{
2498	struct vlapic_vtx *vlapic_vtx;
2499	struct pir_desc *pir_desc;
2500	struct LAPIC *lapic;
2501	uint64_t val, pirval;
2502	int rvi, pirbase;
2503	uint16_t intr_status_old, intr_status_new;
2504
2505	vlapic_vtx = (struct vlapic_vtx *)vlapic;
2506	pir_desc = vlapic_vtx->pir_desc;
2507	if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
2508		VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
2509		    "no posted interrupt pending");
2510		return;
2511	}
2512
2513	pirval = 0;
2514	lapic = vlapic->apic_page;
2515
2516	val = atomic_readandclear_long(&pir_desc->pir[0]);
2517	if (val != 0) {
2518		lapic->irr0 |= val;
2519		lapic->irr1 |= val >> 32;
2520		pirbase = 0;
2521		pirval = val;
2522	}
2523
2524	val = atomic_readandclear_long(&pir_desc->pir[1]);
2525	if (val != 0) {
2526		lapic->irr2 |= val;
2527		lapic->irr3 |= val >> 32;
2528		pirbase = 64;
2529		pirval = val;
2530	}
2531
2532	val = atomic_readandclear_long(&pir_desc->pir[2]);
2533	if (val != 0) {
2534		lapic->irr4 |= val;
2535		lapic->irr5 |= val >> 32;
2536		pirbase = 128;
2537		pirval = val;
2538	}
2539
2540	val = atomic_readandclear_long(&pir_desc->pir[3]);
2541	if (val != 0) {
2542		lapic->irr6 |= val;
2543		lapic->irr7 |= val >> 32;
2544		pirbase = 192;
2545		pirval = val;
2546	}
2547	VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir");
2548
2549	/*
2550	 * Update RVI so the processor can evaluate pending virtual
2551	 * interrupts on VM-entry.
2552	 */
2553	if (pirval != 0) {
2554		rvi = pirbase + flsl(pirval) - 1;
2555		intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
2556		intr_status_new = (intr_status_old & 0xFF00) | rvi;
2557		if (intr_status_new > intr_status_old) {
2558			vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new);
2559			VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
2560			    "guest_intr_status changed from 0x%04x to 0x%04x",
2561			    intr_status_old, intr_status_new);
2562		}
2563	}
2564}
2565
2566static struct vlapic *
2567vmx_vlapic_init(void *arg, int vcpuid)
2568{
2569	struct vmx *vmx;
2570	struct vlapic *vlapic;
2571	struct vlapic_vtx *vlapic_vtx;
2572
2573	vmx = arg;
2574
2575	vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO);
2576	vlapic->vm = vmx->vm;
2577	vlapic->vcpuid = vcpuid;
2578	vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid];
2579
2580	vlapic_vtx = (struct vlapic_vtx *)vlapic;
2581	vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid];
2582	vlapic_vtx->vmx = vmx;
2583
2584	if (virtual_interrupt_delivery) {
2585		vlapic->ops.set_intr_ready = vmx_set_intr_ready;
2586		vlapic->ops.pending_intr = vmx_pending_intr;
2587		vlapic->ops.intr_accepted = vmx_intr_accepted;
2588		vlapic->ops.set_tmr = vmx_set_tmr;
2589	}
2590
2591	if (posted_interrupts)
2592		vlapic->ops.post_intr = vmx_post_intr;
2593
2594	vlapic_init(vlapic);
2595
2596	return (vlapic);
2597}
2598
2599static void
2600vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic)
2601{
2602
2603	vlapic_cleanup(vlapic);
2604	free(vlapic, M_VLAPIC);
2605}
2606
2607struct vmm_ops vmm_ops_intel = {
2608	vmx_init,
2609	vmx_cleanup,
2610	vmx_restore,
2611	vmx_vminit,
2612	vmx_run,
2613	vmx_vmcleanup,
2614	vmx_getreg,
2615	vmx_setreg,
2616	vmx_getdesc,
2617	vmx_setdesc,
2618	vmx_inject,
2619	vmx_getcap,
2620	vmx_setcap,
2621	ept_vmspace_alloc,
2622	ept_vmspace_free,
2623	vmx_vlapic_init,
2624	vmx_vlapic_cleanup,
2625};
2626