vmx.c revision 261088
1/*-
2 * Copyright (c) 2011 NetApp, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 * $FreeBSD: stable/10/sys/amd64/vmm/intel/vmx.c 261088 2014-01-23 20:21:39Z jhb $
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD: stable/10/sys/amd64/vmm/intel/vmx.c 261088 2014-01-23 20:21:39Z jhb $");
31
32#include <sys/param.h>
33#include <sys/systm.h>
34#include <sys/smp.h>
35#include <sys/kernel.h>
36#include <sys/malloc.h>
37#include <sys/pcpu.h>
38#include <sys/proc.h>
39#include <sys/sysctl.h>
40
41#include <vm/vm.h>
42#include <vm/pmap.h>
43
44#include <machine/psl.h>
45#include <machine/cpufunc.h>
46#include <machine/md_var.h>
47#include <machine/pmap.h>
48#include <machine/segments.h>
49#include <machine/specialreg.h>
50#include <machine/vmparam.h>
51
52#include <machine/vmm.h>
53#include "vmm_host.h"
54#include "vmm_lapic.h"
55#include "vmm_msr.h"
56#include "vmm_ktr.h"
57#include "vmm_stat.h"
58
59#include "vmx_msr.h"
60#include "ept.h"
61#include "vmx_cpufunc.h"
62#include "vmx.h"
63#include "x86.h"
64#include "vmx_controls.h"
65
66#define	PINBASED_CTLS_ONE_SETTING					\
67	(PINBASED_EXTINT_EXITING	|				\
68	 PINBASED_NMI_EXITING		|				\
69	 PINBASED_VIRTUAL_NMI)
70#define	PINBASED_CTLS_ZERO_SETTING	0
71
72#define PROCBASED_CTLS_WINDOW_SETTING					\
73	(PROCBASED_INT_WINDOW_EXITING	|				\
74	 PROCBASED_NMI_WINDOW_EXITING)
75
76#define	PROCBASED_CTLS_ONE_SETTING 					\
77	(PROCBASED_SECONDARY_CONTROLS	|				\
78	 PROCBASED_IO_EXITING		|				\
79	 PROCBASED_MSR_BITMAPS		|				\
80	 PROCBASED_CTLS_WINDOW_SETTING)
81#define	PROCBASED_CTLS_ZERO_SETTING	\
82	(PROCBASED_CR3_LOAD_EXITING |	\
83	PROCBASED_CR3_STORE_EXITING |	\
84	PROCBASED_IO_BITMAPS)
85
86#define	PROCBASED_CTLS2_ONE_SETTING	PROCBASED2_ENABLE_EPT
87#define	PROCBASED_CTLS2_ZERO_SETTING	0
88
89#define VM_EXIT_CTLS_ONE_SETTING_NO_PAT					\
90	(VM_EXIT_HOST_LMA			|			\
91	VM_EXIT_SAVE_EFER			|			\
92	VM_EXIT_LOAD_EFER)
93
94#define	VM_EXIT_CTLS_ONE_SETTING					\
95	(VM_EXIT_CTLS_ONE_SETTING_NO_PAT       	|			\
96	VM_EXIT_SAVE_PAT			|			\
97	VM_EXIT_LOAD_PAT)
98#define	VM_EXIT_CTLS_ZERO_SETTING	VM_EXIT_SAVE_DEBUG_CONTROLS
99
100#define	VM_ENTRY_CTLS_ONE_SETTING_NO_PAT	VM_ENTRY_LOAD_EFER
101
102#define	VM_ENTRY_CTLS_ONE_SETTING					\
103	(VM_ENTRY_CTLS_ONE_SETTING_NO_PAT     	|			\
104	VM_ENTRY_LOAD_PAT)
105#define	VM_ENTRY_CTLS_ZERO_SETTING					\
106	(VM_ENTRY_LOAD_DEBUG_CONTROLS		|			\
107	VM_ENTRY_INTO_SMM			|			\
108	VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
109
110#define	guest_msr_rw(vmx, msr) \
111	msr_bitmap_change_access((vmx)->msr_bitmap, (msr), MSR_BITMAP_ACCESS_RW)
112
113#define	HANDLED		1
114#define	UNHANDLED	0
115
116MALLOC_DEFINE(M_VMX, "vmx", "vmx");
117
118SYSCTL_DECL(_hw_vmm);
119SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW, NULL, NULL);
120
121int vmxon_enabled[MAXCPU];
122static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
123
124static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
125static uint32_t exit_ctls, entry_ctls;
126
127static uint64_t cr0_ones_mask, cr0_zeros_mask;
128SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
129	     &cr0_ones_mask, 0, NULL);
130SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
131	     &cr0_zeros_mask, 0, NULL);
132
133static uint64_t cr4_ones_mask, cr4_zeros_mask;
134SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
135	     &cr4_ones_mask, 0, NULL);
136SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
137	     &cr4_zeros_mask, 0, NULL);
138
139static int vmx_no_patmsr;
140
141static int vmx_initialized;
142SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
143	   &vmx_initialized, 0, "Intel VMX initialized");
144
145/*
146 * Virtual NMI blocking conditions.
147 *
148 * Some processor implementations also require NMI to be blocked if
149 * the STI_BLOCKING bit is set. It is possible to detect this at runtime
150 * based on the (exit_reason,exit_qual) tuple being set to
151 * (EXIT_REASON_INVAL_VMCS, EXIT_QUAL_NMI_WHILE_STI_BLOCKING).
152 *
153 * We take the easy way out and also include STI_BLOCKING as one of the
154 * gating items for vNMI injection.
155 */
156static uint64_t nmi_blocking_bits = VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING |
157				    VMCS_INTERRUPTIBILITY_NMI_BLOCKING |
158				    VMCS_INTERRUPTIBILITY_STI_BLOCKING;
159
160/*
161 * Optional capabilities
162 */
163static int cap_halt_exit;
164static int cap_pause_exit;
165static int cap_unrestricted_guest;
166static int cap_monitor_trap;
167static int cap_invpcid;
168
169static struct unrhdr *vpid_unr;
170static u_int vpid_alloc_failed;
171SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
172	    &vpid_alloc_failed, 0, NULL);
173
174#ifdef KTR
175static const char *
176exit_reason_to_str(int reason)
177{
178	static char reasonbuf[32];
179
180	switch (reason) {
181	case EXIT_REASON_EXCEPTION:
182		return "exception";
183	case EXIT_REASON_EXT_INTR:
184		return "extint";
185	case EXIT_REASON_TRIPLE_FAULT:
186		return "triplefault";
187	case EXIT_REASON_INIT:
188		return "init";
189	case EXIT_REASON_SIPI:
190		return "sipi";
191	case EXIT_REASON_IO_SMI:
192		return "iosmi";
193	case EXIT_REASON_SMI:
194		return "smi";
195	case EXIT_REASON_INTR_WINDOW:
196		return "intrwindow";
197	case EXIT_REASON_NMI_WINDOW:
198		return "nmiwindow";
199	case EXIT_REASON_TASK_SWITCH:
200		return "taskswitch";
201	case EXIT_REASON_CPUID:
202		return "cpuid";
203	case EXIT_REASON_GETSEC:
204		return "getsec";
205	case EXIT_REASON_HLT:
206		return "hlt";
207	case EXIT_REASON_INVD:
208		return "invd";
209	case EXIT_REASON_INVLPG:
210		return "invlpg";
211	case EXIT_REASON_RDPMC:
212		return "rdpmc";
213	case EXIT_REASON_RDTSC:
214		return "rdtsc";
215	case EXIT_REASON_RSM:
216		return "rsm";
217	case EXIT_REASON_VMCALL:
218		return "vmcall";
219	case EXIT_REASON_VMCLEAR:
220		return "vmclear";
221	case EXIT_REASON_VMLAUNCH:
222		return "vmlaunch";
223	case EXIT_REASON_VMPTRLD:
224		return "vmptrld";
225	case EXIT_REASON_VMPTRST:
226		return "vmptrst";
227	case EXIT_REASON_VMREAD:
228		return "vmread";
229	case EXIT_REASON_VMRESUME:
230		return "vmresume";
231	case EXIT_REASON_VMWRITE:
232		return "vmwrite";
233	case EXIT_REASON_VMXOFF:
234		return "vmxoff";
235	case EXIT_REASON_VMXON:
236		return "vmxon";
237	case EXIT_REASON_CR_ACCESS:
238		return "craccess";
239	case EXIT_REASON_DR_ACCESS:
240		return "draccess";
241	case EXIT_REASON_INOUT:
242		return "inout";
243	case EXIT_REASON_RDMSR:
244		return "rdmsr";
245	case EXIT_REASON_WRMSR:
246		return "wrmsr";
247	case EXIT_REASON_INVAL_VMCS:
248		return "invalvmcs";
249	case EXIT_REASON_INVAL_MSR:
250		return "invalmsr";
251	case EXIT_REASON_MWAIT:
252		return "mwait";
253	case EXIT_REASON_MTF:
254		return "mtf";
255	case EXIT_REASON_MONITOR:
256		return "monitor";
257	case EXIT_REASON_PAUSE:
258		return "pause";
259	case EXIT_REASON_MCE:
260		return "mce";
261	case EXIT_REASON_TPR:
262		return "tpr";
263	case EXIT_REASON_APIC:
264		return "apic";
265	case EXIT_REASON_GDTR_IDTR:
266		return "gdtridtr";
267	case EXIT_REASON_LDTR_TR:
268		return "ldtrtr";
269	case EXIT_REASON_EPT_FAULT:
270		return "eptfault";
271	case EXIT_REASON_EPT_MISCONFIG:
272		return "eptmisconfig";
273	case EXIT_REASON_INVEPT:
274		return "invept";
275	case EXIT_REASON_RDTSCP:
276		return "rdtscp";
277	case EXIT_REASON_VMX_PREEMPT:
278		return "vmxpreempt";
279	case EXIT_REASON_INVVPID:
280		return "invvpid";
281	case EXIT_REASON_WBINVD:
282		return "wbinvd";
283	case EXIT_REASON_XSETBV:
284		return "xsetbv";
285	default:
286		snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
287		return (reasonbuf);
288	}
289}
290
291#ifdef SETJMP_TRACE
292static const char *
293vmx_setjmp_rc2str(int rc)
294{
295	switch (rc) {
296	case VMX_RETURN_DIRECT:
297		return "direct";
298	case VMX_RETURN_LONGJMP:
299		return "longjmp";
300	case VMX_RETURN_VMRESUME:
301		return "vmresume";
302	case VMX_RETURN_VMLAUNCH:
303		return "vmlaunch";
304	case VMX_RETURN_AST:
305		return "ast";
306	default:
307		return "unknown";
308	}
309}
310
311#define	SETJMP_TRACE(vmx, vcpu, vmxctx, regname)			    \
312	VCPU_CTR1((vmx)->vm, (vcpu), "setjmp trace " #regname " 0x%016lx",  \
313		 (vmxctx)->regname)
314
315static void
316vmx_setjmp_trace(struct vmx *vmx, int vcpu, struct vmxctx *vmxctx, int rc)
317{
318	uint64_t host_rip, host_rsp;
319
320	if (vmxctx != &vmx->ctx[vcpu])
321		panic("vmx_setjmp_trace: invalid vmxctx %p; should be %p",
322			vmxctx, &vmx->ctx[vcpu]);
323
324	VCPU_CTR1((vmx)->vm, (vcpu), "vmxctx = %p", vmxctx);
325	VCPU_CTR2((vmx)->vm, (vcpu), "setjmp return code %s(%d)",
326		 vmx_setjmp_rc2str(rc), rc);
327
328	host_rsp = host_rip = ~0;
329	vmread(VMCS_HOST_RIP, &host_rip);
330	vmread(VMCS_HOST_RSP, &host_rsp);
331	VCPU_CTR2((vmx)->vm, (vcpu), "vmcs host_rip 0x%016lx, host_rsp %#lx",
332		 host_rip, host_rsp);
333
334	SETJMP_TRACE(vmx, vcpu, vmxctx, host_r15);
335	SETJMP_TRACE(vmx, vcpu, vmxctx, host_r14);
336	SETJMP_TRACE(vmx, vcpu, vmxctx, host_r13);
337	SETJMP_TRACE(vmx, vcpu, vmxctx, host_r12);
338	SETJMP_TRACE(vmx, vcpu, vmxctx, host_rbp);
339	SETJMP_TRACE(vmx, vcpu, vmxctx, host_rsp);
340	SETJMP_TRACE(vmx, vcpu, vmxctx, host_rbx);
341	SETJMP_TRACE(vmx, vcpu, vmxctx, host_rip);
342
343	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_rdi);
344	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_rsi);
345	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_rdx);
346	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_rcx);
347	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r8);
348	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r9);
349	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_rax);
350	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_rbx);
351	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_rbp);
352	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r10);
353	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r11);
354	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r12);
355	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r13);
356	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r14);
357	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r15);
358	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_cr2);
359}
360#endif
361#else
362static void __inline
363vmx_setjmp_trace(struct vmx *vmx, int vcpu, struct vmxctx *vmxctx, int rc)
364{
365	return;
366}
367#endif	/* KTR */
368
369u_long
370vmx_fix_cr0(u_long cr0)
371{
372
373	return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
374}
375
376u_long
377vmx_fix_cr4(u_long cr4)
378{
379
380	return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
381}
382
383static void
384vpid_free(int vpid)
385{
386	if (vpid < 0 || vpid > 0xffff)
387		panic("vpid_free: invalid vpid %d", vpid);
388
389	/*
390	 * VPIDs [0,VM_MAXCPU] are special and are not allocated from
391	 * the unit number allocator.
392	 */
393
394	if (vpid > VM_MAXCPU)
395		free_unr(vpid_unr, vpid);
396}
397
398static void
399vpid_alloc(uint16_t *vpid, int num)
400{
401	int i, x;
402
403	if (num <= 0 || num > VM_MAXCPU)
404		panic("invalid number of vpids requested: %d", num);
405
406	/*
407	 * If the "enable vpid" execution control is not enabled then the
408	 * VPID is required to be 0 for all vcpus.
409	 */
410	if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
411		for (i = 0; i < num; i++)
412			vpid[i] = 0;
413		return;
414	}
415
416	/*
417	 * Allocate a unique VPID for each vcpu from the unit number allocator.
418	 */
419	for (i = 0; i < num; i++) {
420		x = alloc_unr(vpid_unr);
421		if (x == -1)
422			break;
423		else
424			vpid[i] = x;
425	}
426
427	if (i < num) {
428		atomic_add_int(&vpid_alloc_failed, 1);
429
430		/*
431		 * If the unit number allocator does not have enough unique
432		 * VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
433		 *
434		 * These VPIDs are not be unique across VMs but this does not
435		 * affect correctness because the combined mappings are also
436		 * tagged with the EP4TA which is unique for each VM.
437		 *
438		 * It is still sub-optimal because the invvpid will invalidate
439		 * combined mappings for a particular VPID across all EP4TAs.
440		 */
441		while (i-- > 0)
442			vpid_free(vpid[i]);
443
444		for (i = 0; i < num; i++)
445			vpid[i] = i + 1;
446	}
447}
448
449static void
450vpid_init(void)
451{
452	/*
453	 * VPID 0 is required when the "enable VPID" execution control is
454	 * disabled.
455	 *
456	 * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the
457	 * unit number allocator does not have sufficient unique VPIDs to
458	 * satisfy the allocation.
459	 *
460	 * The remaining VPIDs are managed by the unit number allocator.
461	 */
462	vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL);
463}
464
465static void
466msr_save_area_init(struct msr_entry *g_area, int *g_count)
467{
468	int cnt;
469
470	static struct msr_entry guest_msrs[] = {
471		{ MSR_KGSBASE, 0, 0 },
472	};
473
474	cnt = sizeof(guest_msrs) / sizeof(guest_msrs[0]);
475	if (cnt > GUEST_MSR_MAX_ENTRIES)
476		panic("guest msr save area overrun");
477	bcopy(guest_msrs, g_area, sizeof(guest_msrs));
478	*g_count = cnt;
479}
480
481static void
482vmx_disable(void *arg __unused)
483{
484	struct invvpid_desc invvpid_desc = { 0 };
485	struct invept_desc invept_desc = { 0 };
486
487	if (vmxon_enabled[curcpu]) {
488		/*
489		 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
490		 *
491		 * VMXON or VMXOFF are not required to invalidate any TLB
492		 * caching structures. This prevents potential retention of
493		 * cached information in the TLB between distinct VMX episodes.
494		 */
495		invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
496		invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
497		vmxoff();
498	}
499	load_cr4(rcr4() & ~CR4_VMXE);
500}
501
502static int
503vmx_cleanup(void)
504{
505
506	if (vpid_unr != NULL) {
507		delete_unrhdr(vpid_unr);
508		vpid_unr = NULL;
509	}
510
511	smp_rendezvous(NULL, vmx_disable, NULL, NULL);
512
513	return (0);
514}
515
516static void
517vmx_enable(void *arg __unused)
518{
519	int error;
520
521	load_cr4(rcr4() | CR4_VMXE);
522
523	*(uint32_t *)vmxon_region[curcpu] = vmx_revision();
524	error = vmxon(vmxon_region[curcpu]);
525	if (error == 0)
526		vmxon_enabled[curcpu] = 1;
527}
528
529static int
530vmx_init(void)
531{
532	int error;
533	uint64_t fixed0, fixed1, feature_control;
534	uint32_t tmp;
535
536	/* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
537	if (!(cpu_feature2 & CPUID2_VMX)) {
538		printf("vmx_init: processor does not support VMX operation\n");
539		return (ENXIO);
540	}
541
542	/*
543	 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
544	 * are set (bits 0 and 2 respectively).
545	 */
546	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
547	if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
548	    (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
549		printf("vmx_init: VMX operation disabled by BIOS\n");
550		return (ENXIO);
551	}
552
553	/* Check support for primary processor-based VM-execution controls */
554	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
555			       MSR_VMX_TRUE_PROCBASED_CTLS,
556			       PROCBASED_CTLS_ONE_SETTING,
557			       PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
558	if (error) {
559		printf("vmx_init: processor does not support desired primary "
560		       "processor-based controls\n");
561		return (error);
562	}
563
564	/* Clear the processor-based ctl bits that are set on demand */
565	procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
566
567	/* Check support for secondary processor-based VM-execution controls */
568	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
569			       MSR_VMX_PROCBASED_CTLS2,
570			       PROCBASED_CTLS2_ONE_SETTING,
571			       PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
572	if (error) {
573		printf("vmx_init: processor does not support desired secondary "
574		       "processor-based controls\n");
575		return (error);
576	}
577
578	/* Check support for VPID */
579	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
580			       PROCBASED2_ENABLE_VPID, 0, &tmp);
581	if (error == 0)
582		procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
583
584	/* Check support for pin-based VM-execution controls */
585	error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
586			       MSR_VMX_TRUE_PINBASED_CTLS,
587			       PINBASED_CTLS_ONE_SETTING,
588			       PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
589	if (error) {
590		printf("vmx_init: processor does not support desired "
591		       "pin-based controls\n");
592		return (error);
593	}
594
595	/* Check support for VM-exit controls */
596	error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
597			       VM_EXIT_CTLS_ONE_SETTING,
598			       VM_EXIT_CTLS_ZERO_SETTING,
599			       &exit_ctls);
600	if (error) {
601		/* Try again without the PAT MSR bits */
602		error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS,
603				       MSR_VMX_TRUE_EXIT_CTLS,
604				       VM_EXIT_CTLS_ONE_SETTING_NO_PAT,
605				       VM_EXIT_CTLS_ZERO_SETTING,
606				       &exit_ctls);
607		if (error) {
608			printf("vmx_init: processor does not support desired "
609			       "exit controls\n");
610			return (error);
611		} else {
612			if (bootverbose)
613				printf("vmm: PAT MSR access not supported\n");
614			guest_msr_valid(MSR_PAT);
615			vmx_no_patmsr = 1;
616		}
617	}
618
619	/* Check support for VM-entry controls */
620	if (!vmx_no_patmsr) {
621		error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS,
622				       MSR_VMX_TRUE_ENTRY_CTLS,
623				       VM_ENTRY_CTLS_ONE_SETTING,
624				       VM_ENTRY_CTLS_ZERO_SETTING,
625				       &entry_ctls);
626	} else {
627		error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS,
628				       MSR_VMX_TRUE_ENTRY_CTLS,
629				       VM_ENTRY_CTLS_ONE_SETTING_NO_PAT,
630				       VM_ENTRY_CTLS_ZERO_SETTING,
631				       &entry_ctls);
632	}
633
634	if (error) {
635		printf("vmx_init: processor does not support desired "
636		       "entry controls\n");
637		       return (error);
638	}
639
640	/*
641	 * Check support for optional features by testing them
642	 * as individual bits
643	 */
644	cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
645					MSR_VMX_TRUE_PROCBASED_CTLS,
646					PROCBASED_HLT_EXITING, 0,
647					&tmp) == 0);
648
649	cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
650					MSR_VMX_PROCBASED_CTLS,
651					PROCBASED_MTF, 0,
652					&tmp) == 0);
653
654	cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
655					 MSR_VMX_TRUE_PROCBASED_CTLS,
656					 PROCBASED_PAUSE_EXITING, 0,
657					 &tmp) == 0);
658
659	cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
660					MSR_VMX_PROCBASED_CTLS2,
661					PROCBASED2_UNRESTRICTED_GUEST, 0,
662				        &tmp) == 0);
663
664	cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
665	    MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
666	    &tmp) == 0);
667
668
669	/* Initialize EPT */
670	error = ept_init();
671	if (error) {
672		printf("vmx_init: ept initialization failed (%d)\n", error);
673		return (error);
674	}
675
676	/*
677	 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
678	 */
679	fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
680	fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
681	cr0_ones_mask = fixed0 & fixed1;
682	cr0_zeros_mask = ~fixed0 & ~fixed1;
683
684	/*
685	 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
686	 * if unrestricted guest execution is allowed.
687	 */
688	if (cap_unrestricted_guest)
689		cr0_ones_mask &= ~(CR0_PG | CR0_PE);
690
691	/*
692	 * Do not allow the guest to set CR0_NW or CR0_CD.
693	 */
694	cr0_zeros_mask |= (CR0_NW | CR0_CD);
695
696	fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
697	fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
698	cr4_ones_mask = fixed0 & fixed1;
699	cr4_zeros_mask = ~fixed0 & ~fixed1;
700
701	vpid_init();
702
703	/* enable VMX operation */
704	smp_rendezvous(NULL, vmx_enable, NULL, NULL);
705
706	vmx_initialized = 1;
707
708	return (0);
709}
710
711static int
712vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
713{
714	int error, mask_ident, shadow_ident;
715	uint64_t mask_value;
716
717	if (which != 0 && which != 4)
718		panic("vmx_setup_cr_shadow: unknown cr%d", which);
719
720	if (which == 0) {
721		mask_ident = VMCS_CR0_MASK;
722		mask_value = cr0_ones_mask | cr0_zeros_mask;
723		shadow_ident = VMCS_CR0_SHADOW;
724	} else {
725		mask_ident = VMCS_CR4_MASK;
726		mask_value = cr4_ones_mask | cr4_zeros_mask;
727		shadow_ident = VMCS_CR4_SHADOW;
728	}
729
730	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
731	if (error)
732		return (error);
733
734	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
735	if (error)
736		return (error);
737
738	return (0);
739}
740#define	vmx_setup_cr0_shadow(vmcs,init)	vmx_setup_cr_shadow(0, (vmcs), (init))
741#define	vmx_setup_cr4_shadow(vmcs,init)	vmx_setup_cr_shadow(4, (vmcs), (init))
742
743static void *
744vmx_vminit(struct vm *vm, pmap_t pmap)
745{
746	uint16_t vpid[VM_MAXCPU];
747	int i, error, guest_msr_count;
748	struct vmx *vmx;
749
750	vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
751	if ((uintptr_t)vmx & PAGE_MASK) {
752		panic("malloc of struct vmx not aligned on %d byte boundary",
753		      PAGE_SIZE);
754	}
755	vmx->vm = vm;
756
757	vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pml4));
758
759	/*
760	 * Clean up EPTP-tagged guest physical and combined mappings
761	 *
762	 * VMX transitions are not required to invalidate any guest physical
763	 * mappings. So, it may be possible for stale guest physical mappings
764	 * to be present in the processor TLBs.
765	 *
766	 * Combined mappings for this EP4TA are also invalidated for all VPIDs.
767	 */
768	ept_invalidate_mappings(vmx->eptp);
769
770	msr_bitmap_initialize(vmx->msr_bitmap);
771
772	/*
773	 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
774	 * The guest FSBASE and GSBASE are saved and restored during
775	 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
776	 * always restored from the vmcs host state area on vm-exit.
777	 *
778	 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
779	 * how they are saved/restored so can be directly accessed by the
780	 * guest.
781	 *
782	 * Guest KGSBASE is saved and restored in the guest MSR save area.
783	 * Host KGSBASE is restored before returning to userland from the pcb.
784	 * There will be a window of time when we are executing in the host
785	 * kernel context with a value of KGSBASE from the guest. This is ok
786	 * because the value of KGSBASE is inconsequential in kernel context.
787	 *
788	 * MSR_EFER is saved and restored in the guest VMCS area on a
789	 * VM exit and entry respectively. It is also restored from the
790	 * host VMCS area on a VM exit.
791	 */
792	if (guest_msr_rw(vmx, MSR_GSBASE) ||
793	    guest_msr_rw(vmx, MSR_FSBASE) ||
794	    guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
795	    guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
796	    guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
797	    guest_msr_rw(vmx, MSR_KGSBASE) ||
798	    guest_msr_rw(vmx, MSR_EFER))
799		panic("vmx_vminit: error setting guest msr access");
800
801	/*
802	 * MSR_PAT is saved and restored in the guest VMCS are on a VM exit
803	 * and entry respectively. It is also restored from the host VMCS
804	 * area on a VM exit. However, if running on a system with no
805	 * MSR_PAT save/restore support, leave access disabled so accesses
806	 * will be trapped.
807	 */
808	if (!vmx_no_patmsr && guest_msr_rw(vmx, MSR_PAT))
809		panic("vmx_vminit: error setting guest pat msr access");
810
811	vpid_alloc(vpid, VM_MAXCPU);
812
813	for (i = 0; i < VM_MAXCPU; i++) {
814		vmx->vmcs[i].identifier = vmx_revision();
815		error = vmclear(&vmx->vmcs[i]);
816		if (error != 0) {
817			panic("vmx_vminit: vmclear error %d on vcpu %d\n",
818			      error, i);
819		}
820
821		error = vmcs_set_defaults(&vmx->vmcs[i],
822					  (u_long)vmx_longjmp,
823					  (u_long)&vmx->ctx[i],
824					  vmx->eptp,
825					  pinbased_ctls,
826					  procbased_ctls,
827					  procbased_ctls2,
828					  exit_ctls, entry_ctls,
829					  vtophys(vmx->msr_bitmap),
830					  vpid[i]);
831
832		if (error != 0)
833			panic("vmx_vminit: vmcs_set_defaults error %d", error);
834
835		vmx->cap[i].set = 0;
836		vmx->cap[i].proc_ctls = procbased_ctls;
837		vmx->cap[i].proc_ctls2 = procbased_ctls2;
838
839		vmx->state[i].lastcpu = -1;
840		vmx->state[i].vpid = vpid[i];
841
842		msr_save_area_init(vmx->guest_msrs[i], &guest_msr_count);
843
844		error = vmcs_set_msr_save(&vmx->vmcs[i],
845					  vtophys(vmx->guest_msrs[i]),
846					  guest_msr_count);
847		if (error != 0)
848			panic("vmcs_set_msr_save error %d", error);
849
850		/*
851		 * Set up the CR0/4 shadows, and init the read shadow
852		 * to the power-on register value from the Intel Sys Arch.
853		 *  CR0 - 0x60000010
854		 *  CR4 - 0
855		 */
856		error = vmx_setup_cr0_shadow(&vmx->vmcs[i], 0x60000010);
857		if (error != 0)
858			panic("vmx_setup_cr0_shadow %d", error);
859
860		error = vmx_setup_cr4_shadow(&vmx->vmcs[i], 0);
861		if (error != 0)
862			panic("vmx_setup_cr4_shadow %d", error);
863
864		vmx->ctx[i].pmap = pmap;
865		vmx->ctx[i].eptp = vmx->eptp;
866	}
867
868	return (vmx);
869}
870
871static int
872vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
873{
874	int handled, func;
875
876	func = vmxctx->guest_rax;
877
878	handled = x86_emulate_cpuid(vm, vcpu,
879				    (uint32_t*)(&vmxctx->guest_rax),
880				    (uint32_t*)(&vmxctx->guest_rbx),
881				    (uint32_t*)(&vmxctx->guest_rcx),
882				    (uint32_t*)(&vmxctx->guest_rdx));
883	return (handled);
884}
885
886static __inline void
887vmx_run_trace(struct vmx *vmx, int vcpu)
888{
889#ifdef KTR
890	VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip());
891#endif
892}
893
894static __inline void
895vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason,
896	       int handled)
897{
898#ifdef KTR
899	VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx",
900		 handled ? "handled" : "unhandled",
901		 exit_reason_to_str(exit_reason), rip);
902#endif
903}
904
905static __inline void
906vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
907{
908#ifdef KTR
909	VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
910#endif
911}
912
913static int
914vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu)
915{
916	int error, lastcpu;
917	struct vmxstate *vmxstate;
918	struct invvpid_desc invvpid_desc = { 0 };
919
920	vmxstate = &vmx->state[vcpu];
921	lastcpu = vmxstate->lastcpu;
922	vmxstate->lastcpu = curcpu;
923
924	if (lastcpu == curcpu) {
925		error = 0;
926		goto done;
927	}
928
929	vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
930
931	error = vmwrite(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
932	if (error != 0)
933		goto done;
934
935	error = vmwrite(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
936	if (error != 0)
937		goto done;
938
939	error = vmwrite(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
940	if (error != 0)
941		goto done;
942
943	/*
944	 * If we are using VPIDs then invalidate all mappings tagged with 'vpid'
945	 *
946	 * We do this because this vcpu was executing on a different host
947	 * cpu when it last ran. We do not track whether it invalidated
948	 * mappings associated with its 'vpid' during that run. So we must
949	 * assume that the mappings associated with 'vpid' on 'curcpu' are
950	 * stale and invalidate them.
951	 *
952	 * Note that we incur this penalty only when the scheduler chooses to
953	 * move the thread associated with this vcpu between host cpus.
954	 *
955	 * Note also that this will invalidate mappings tagged with 'vpid'
956	 * for "all" EP4TAs.
957	 */
958	if (vmxstate->vpid != 0) {
959		invvpid_desc.vpid = vmxstate->vpid;
960		invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
961	}
962done:
963	return (error);
964}
965
966static void
967vm_exit_update_rip(struct vm_exit *vmexit)
968{
969	int error;
970
971	error = vmwrite(VMCS_GUEST_RIP, vmexit->rip + vmexit->inst_length);
972	if (error)
973		panic("vmx_run: error %d writing to VMCS_GUEST_RIP", error);
974}
975
976/*
977 * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
978 */
979CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
980
981static void __inline
982vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
983{
984	int error;
985
986	vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
987
988	error = vmwrite(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
989	if (error)
990		panic("vmx_set_int_window_exiting: vmwrite error %d", error);
991}
992
993static void __inline
994vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
995{
996	int error;
997
998	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
999
1000	error = vmwrite(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1001	if (error)
1002		panic("vmx_clear_int_window_exiting: vmwrite error %d", error);
1003}
1004
1005static void __inline
1006vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
1007{
1008	int error;
1009
1010	vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1011
1012	error = vmwrite(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1013	if (error)
1014		panic("vmx_set_nmi_window_exiting: vmwrite error %d", error);
1015}
1016
1017static void __inline
1018vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
1019{
1020	int error;
1021
1022	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1023
1024	error = vmwrite(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1025	if (error)
1026		panic("vmx_clear_nmi_window_exiting: vmwrite error %d", error);
1027}
1028
1029static int
1030vmx_inject_nmi(struct vmx *vmx, int vcpu)
1031{
1032	int error;
1033	uint64_t info, interruptibility;
1034
1035	/* Bail out if no NMI requested */
1036	if (!vm_nmi_pending(vmx->vm, vcpu))
1037		return (0);
1038
1039	error = vmread(VMCS_GUEST_INTERRUPTIBILITY, &interruptibility);
1040	if (error) {
1041		panic("vmx_inject_nmi: vmread(interruptibility) %d",
1042			error);
1043	}
1044	if (interruptibility & nmi_blocking_bits)
1045		goto nmiblocked;
1046
1047	/*
1048	 * Inject the virtual NMI. The vector must be the NMI IDT entry
1049	 * or the VMCS entry check will fail.
1050	 */
1051	info = VMCS_INTERRUPTION_INFO_NMI | VMCS_INTERRUPTION_INFO_VALID;
1052	info |= IDT_NMI;
1053
1054	error = vmwrite(VMCS_ENTRY_INTR_INFO, info);
1055	if (error)
1056		panic("vmx_inject_nmi: vmwrite(intrinfo) %d", error);
1057
1058	VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI");
1059
1060	/* Clear the request */
1061	vm_nmi_clear(vmx->vm, vcpu);
1062	return (1);
1063
1064nmiblocked:
1065	/*
1066	 * Set the NMI Window Exiting execution control so we can inject
1067	 * the virtual NMI as soon as blocking condition goes away.
1068	 */
1069	vmx_set_nmi_window_exiting(vmx, vcpu);
1070
1071	VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting");
1072	return (1);
1073}
1074
1075static void
1076vmx_inject_interrupts(struct vmx *vmx, int vcpu)
1077{
1078	int error, vector;
1079	uint64_t info, rflags, interruptibility;
1080
1081	const int HWINTR_BLOCKED = VMCS_INTERRUPTIBILITY_STI_BLOCKING |
1082				   VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING;
1083
1084	/*
1085	 * If there is already an interrupt pending then just return.
1086	 *
1087	 * This could happen if an interrupt was injected on a prior
1088	 * VM entry but the actual entry into guest mode was aborted
1089	 * because of a pending AST.
1090	 */
1091	error = vmread(VMCS_ENTRY_INTR_INFO, &info);
1092	if (error)
1093		panic("vmx_inject_interrupts: vmread(intrinfo) %d", error);
1094	if (info & VMCS_INTERRUPTION_INFO_VALID)
1095		return;
1096
1097	/*
1098	 * NMI injection has priority so deal with those first
1099	 */
1100	if (vmx_inject_nmi(vmx, vcpu))
1101		return;
1102
1103	/* Ask the local apic for a vector to inject */
1104	vector = lapic_pending_intr(vmx->vm, vcpu);
1105	if (vector < 0)
1106		return;
1107
1108	if (vector < 32 || vector > 255)
1109		panic("vmx_inject_interrupts: invalid vector %d\n", vector);
1110
1111	/* Check RFLAGS.IF and the interruptibility state of the guest */
1112	error = vmread(VMCS_GUEST_RFLAGS, &rflags);
1113	if (error)
1114		panic("vmx_inject_interrupts: vmread(rflags) %d", error);
1115
1116	if ((rflags & PSL_I) == 0)
1117		goto cantinject;
1118
1119	error = vmread(VMCS_GUEST_INTERRUPTIBILITY, &interruptibility);
1120	if (error) {
1121		panic("vmx_inject_interrupts: vmread(interruptibility) %d",
1122			error);
1123	}
1124	if (interruptibility & HWINTR_BLOCKED)
1125		goto cantinject;
1126
1127	/* Inject the interrupt */
1128	info = VMCS_INTERRUPTION_INFO_HW_INTR | VMCS_INTERRUPTION_INFO_VALID;
1129	info |= vector;
1130	error = vmwrite(VMCS_ENTRY_INTR_INFO, info);
1131	if (error)
1132		panic("vmx_inject_interrupts: vmwrite(intrinfo) %d", error);
1133
1134	/* Update the Local APIC ISR */
1135	lapic_intr_accepted(vmx->vm, vcpu, vector);
1136
1137	VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector);
1138
1139	return;
1140
1141cantinject:
1142	/*
1143	 * Set the Interrupt Window Exiting execution control so we can inject
1144	 * the interrupt as soon as blocking condition goes away.
1145	 */
1146	vmx_set_int_window_exiting(vmx, vcpu);
1147
1148	VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
1149}
1150
1151static int
1152vmx_emulate_cr_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1153{
1154	int error, cr, vmcs_guest_cr, vmcs_shadow_cr;
1155	uint64_t crval, regval, ones_mask, zeros_mask;
1156	const struct vmxctx *vmxctx;
1157
1158	/* We only handle mov to %cr0 or %cr4 at this time */
1159	if ((exitqual & 0xf0) != 0x00)
1160		return (UNHANDLED);
1161
1162	cr = exitqual & 0xf;
1163	if (cr != 0 && cr != 4)
1164		return (UNHANDLED);
1165
1166	vmxctx = &vmx->ctx[vcpu];
1167
1168	/*
1169	 * We must use vmwrite() directly here because vmcs_setreg() will
1170	 * call vmclear(vmcs) as a side-effect which we certainly don't want.
1171	 */
1172	switch ((exitqual >> 8) & 0xf) {
1173	case 0:
1174		regval = vmxctx->guest_rax;
1175		break;
1176	case 1:
1177		regval = vmxctx->guest_rcx;
1178		break;
1179	case 2:
1180		regval = vmxctx->guest_rdx;
1181		break;
1182	case 3:
1183		regval = vmxctx->guest_rbx;
1184		break;
1185	case 4:
1186		error = vmread(VMCS_GUEST_RSP, &regval);
1187		if (error) {
1188			panic("vmx_emulate_cr_access: "
1189			      "error %d reading guest rsp", error);
1190		}
1191		break;
1192	case 5:
1193		regval = vmxctx->guest_rbp;
1194		break;
1195	case 6:
1196		regval = vmxctx->guest_rsi;
1197		break;
1198	case 7:
1199		regval = vmxctx->guest_rdi;
1200		break;
1201	case 8:
1202		regval = vmxctx->guest_r8;
1203		break;
1204	case 9:
1205		regval = vmxctx->guest_r9;
1206		break;
1207	case 10:
1208		regval = vmxctx->guest_r10;
1209		break;
1210	case 11:
1211		regval = vmxctx->guest_r11;
1212		break;
1213	case 12:
1214		regval = vmxctx->guest_r12;
1215		break;
1216	case 13:
1217		regval = vmxctx->guest_r13;
1218		break;
1219	case 14:
1220		regval = vmxctx->guest_r14;
1221		break;
1222	case 15:
1223		regval = vmxctx->guest_r15;
1224		break;
1225	}
1226
1227	if (cr == 0) {
1228		ones_mask = cr0_ones_mask;
1229		zeros_mask = cr0_zeros_mask;
1230		vmcs_guest_cr = VMCS_GUEST_CR0;
1231		vmcs_shadow_cr = VMCS_CR0_SHADOW;
1232	} else {
1233		ones_mask = cr4_ones_mask;
1234		zeros_mask = cr4_zeros_mask;
1235		vmcs_guest_cr = VMCS_GUEST_CR4;
1236		vmcs_shadow_cr = VMCS_CR4_SHADOW;
1237	}
1238
1239	error = vmwrite(vmcs_shadow_cr, regval);
1240	if (error) {
1241		panic("vmx_emulate_cr_access: error %d writing cr%d shadow",
1242		      error, cr);
1243	}
1244
1245	crval = regval | ones_mask;
1246	crval &= ~zeros_mask;
1247	error = vmwrite(vmcs_guest_cr, crval);
1248	if (error) {
1249		panic("vmx_emulate_cr_access: error %d writing cr%d",
1250		      error, cr);
1251	}
1252
1253	if (cr == 0 && regval & CR0_PG) {
1254		uint64_t efer, entry_ctls;
1255
1256		/*
1257		 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1258		 * the "IA-32e mode guest" bit in VM-entry control must be
1259		 * equal.
1260		 */
1261		error = vmread(VMCS_GUEST_IA32_EFER, &efer);
1262		if (error) {
1263		  panic("vmx_emulate_cr_access: error %d efer read",
1264			error);
1265		}
1266		if (efer & EFER_LME) {
1267			efer |= EFER_LMA;
1268			error = vmwrite(VMCS_GUEST_IA32_EFER, efer);
1269			if (error) {
1270				panic("vmx_emulate_cr_access: error %d"
1271				      " efer write", error);
1272			}
1273			error = vmread(VMCS_ENTRY_CTLS, &entry_ctls);
1274			if (error) {
1275				panic("vmx_emulate_cr_access: error %d"
1276				      " entry ctls read", error);
1277			}
1278			entry_ctls |= VM_ENTRY_GUEST_LMA;
1279			error = vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
1280			if (error) {
1281				panic("vmx_emulate_cr_access: error %d"
1282				      " entry ctls write", error);
1283			}
1284		}
1285	}
1286
1287	return (HANDLED);
1288}
1289
1290static int
1291ept_fault_type(uint64_t ept_qual)
1292{
1293	int fault_type;
1294
1295	if (ept_qual & EPT_VIOLATION_DATA_WRITE)
1296		fault_type = VM_PROT_WRITE;
1297	else if (ept_qual & EPT_VIOLATION_INST_FETCH)
1298		fault_type = VM_PROT_EXECUTE;
1299	else
1300		fault_type= VM_PROT_READ;
1301
1302	return (fault_type);
1303}
1304
1305static int
1306ept_protection(uint64_t ept_qual)
1307{
1308	int prot = 0;
1309
1310	if (ept_qual & EPT_VIOLATION_GPA_READABLE)
1311		prot |= VM_PROT_READ;
1312	if (ept_qual & EPT_VIOLATION_GPA_WRITEABLE)
1313		prot |= VM_PROT_WRITE;
1314	if (ept_qual & EPT_VIOLATION_GPA_EXECUTABLE)
1315		prot |= VM_PROT_EXECUTE;
1316
1317	return (prot);
1318}
1319
1320static boolean_t
1321ept_emulation_fault(uint64_t ept_qual)
1322{
1323	int read, write;
1324
1325	/* EPT fault on an instruction fetch doesn't make sense here */
1326	if (ept_qual & EPT_VIOLATION_INST_FETCH)
1327		return (FALSE);
1328
1329	/* EPT fault must be a read fault or a write fault */
1330	read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
1331	write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
1332	if ((read | write) == 0)
1333		return (FALSE);
1334
1335	/*
1336	 * The EPT violation must have been caused by accessing a
1337	 * guest-physical address that is a translation of a guest-linear
1338	 * address.
1339	 */
1340	if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
1341	    (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
1342		return (FALSE);
1343	}
1344
1345	return (TRUE);
1346}
1347
1348static int
1349vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1350{
1351	int error, handled;
1352	struct vmcs *vmcs;
1353	struct vmxctx *vmxctx;
1354	uint32_t eax, ecx, edx, idtvec_info, idtvec_err, reason;
1355	uint64_t qual, gpa;
1356
1357	handled = 0;
1358	vmcs = &vmx->vmcs[vcpu];
1359	vmxctx = &vmx->ctx[vcpu];
1360	qual = vmexit->u.vmx.exit_qualification;
1361	reason = vmexit->u.vmx.exit_reason;
1362	vmexit->exitcode = VM_EXITCODE_BOGUS;
1363
1364	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
1365
1366	/*
1367	 * VM exits that could be triggered during event injection on the
1368	 * previous VM entry need to be handled specially by re-injecting
1369	 * the event.
1370	 *
1371	 * See "Information for VM Exits During Event Delivery" in Intel SDM
1372	 * for details.
1373	 */
1374	switch (reason) {
1375	case EXIT_REASON_EPT_FAULT:
1376	case EXIT_REASON_EPT_MISCONFIG:
1377	case EXIT_REASON_APIC:
1378	case EXIT_REASON_TASK_SWITCH:
1379	case EXIT_REASON_EXCEPTION:
1380		idtvec_info = vmcs_idt_vectoring_info();
1381		if (idtvec_info & VMCS_IDT_VEC_VALID) {
1382			idtvec_info &= ~(1 << 12); /* clear undefined bit */
1383			vmwrite(VMCS_ENTRY_INTR_INFO, idtvec_info);
1384			if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
1385				idtvec_err = vmcs_idt_vectoring_err();
1386				vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, idtvec_err);
1387			}
1388			vmwrite(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
1389		}
1390	default:
1391		break;
1392	}
1393
1394	switch (reason) {
1395	case EXIT_REASON_CR_ACCESS:
1396		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
1397		handled = vmx_emulate_cr_access(vmx, vcpu, qual);
1398		break;
1399	case EXIT_REASON_RDMSR:
1400		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1);
1401		ecx = vmxctx->guest_rcx;
1402		error = emulate_rdmsr(vmx->vm, vcpu, ecx);
1403		if (error) {
1404			vmexit->exitcode = VM_EXITCODE_RDMSR;
1405			vmexit->u.msr.code = ecx;
1406		} else
1407			handled = 1;
1408		break;
1409	case EXIT_REASON_WRMSR:
1410		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1);
1411		eax = vmxctx->guest_rax;
1412		ecx = vmxctx->guest_rcx;
1413		edx = vmxctx->guest_rdx;
1414		error = emulate_wrmsr(vmx->vm, vcpu, ecx,
1415					(uint64_t)edx << 32 | eax);
1416		if (error) {
1417			vmexit->exitcode = VM_EXITCODE_WRMSR;
1418			vmexit->u.msr.code = ecx;
1419			vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
1420		} else
1421			handled = 1;
1422		break;
1423	case EXIT_REASON_HLT:
1424		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
1425		vmexit->exitcode = VM_EXITCODE_HLT;
1426		break;
1427	case EXIT_REASON_MTF:
1428		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
1429		vmexit->exitcode = VM_EXITCODE_MTRAP;
1430		break;
1431	case EXIT_REASON_PAUSE:
1432		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
1433		vmexit->exitcode = VM_EXITCODE_PAUSE;
1434		break;
1435	case EXIT_REASON_INTR_WINDOW:
1436		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
1437		vmx_clear_int_window_exiting(vmx, vcpu);
1438		VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
1439		return (1);
1440	case EXIT_REASON_EXT_INTR:
1441		/*
1442		 * External interrupts serve only to cause VM exits and allow
1443		 * the host interrupt handler to run.
1444		 *
1445		 * If this external interrupt triggers a virtual interrupt
1446		 * to a VM, then that state will be recorded by the
1447		 * host interrupt handler in the VM's softc. We will inject
1448		 * this virtual interrupt during the subsequent VM enter.
1449		 */
1450
1451		/*
1452		 * This is special. We want to treat this as an 'handled'
1453		 * VM-exit but not increment the instruction pointer.
1454		 */
1455		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
1456		return (1);
1457	case EXIT_REASON_NMI_WINDOW:
1458		/* Exit to allow the pending virtual NMI to be injected */
1459		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
1460		vmx_clear_nmi_window_exiting(vmx, vcpu);
1461		VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting");
1462		return (1);
1463	case EXIT_REASON_INOUT:
1464		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
1465		vmexit->exitcode = VM_EXITCODE_INOUT;
1466		vmexit->u.inout.bytes = (qual & 0x7) + 1;
1467		vmexit->u.inout.in = (qual & 0x8) ? 1 : 0;
1468		vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
1469		vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
1470		vmexit->u.inout.port = (uint16_t)(qual >> 16);
1471		vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
1472		break;
1473	case EXIT_REASON_CPUID:
1474		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
1475		handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
1476		break;
1477	case EXIT_REASON_EPT_FAULT:
1478		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EPT_FAULT, 1);
1479		/*
1480		 * If 'gpa' lies within the address space allocated to
1481		 * memory then this must be a nested page fault otherwise
1482		 * this must be an instruction that accesses MMIO space.
1483		 */
1484		gpa = vmcs_gpa();
1485		if (vm_mem_allocated(vmx->vm, gpa)) {
1486			vmexit->exitcode = VM_EXITCODE_PAGING;
1487			vmexit->u.paging.gpa = gpa;
1488			vmexit->u.paging.fault_type = ept_fault_type(qual);
1489			vmexit->u.paging.protection = ept_protection(qual);
1490		} else if (ept_emulation_fault(qual)) {
1491			vmexit->exitcode = VM_EXITCODE_INST_EMUL;
1492			vmexit->u.inst_emul.gpa = gpa;
1493			vmexit->u.inst_emul.gla = vmcs_gla();
1494			vmexit->u.inst_emul.cr3 = vmcs_guest_cr3();
1495		}
1496		break;
1497	default:
1498		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
1499		break;
1500	}
1501
1502	if (handled) {
1503		/*
1504		 * It is possible that control is returned to userland
1505		 * even though we were able to handle the VM exit in the
1506		 * kernel.
1507		 *
1508		 * In such a case we want to make sure that the userland
1509		 * restarts guest execution at the instruction *after*
1510		 * the one we just processed. Therefore we update the
1511		 * guest rip in the VMCS and in 'vmexit'.
1512		 */
1513		vm_exit_update_rip(vmexit);
1514		vmexit->rip += vmexit->inst_length;
1515		vmexit->inst_length = 0;
1516	} else {
1517		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1518			/*
1519			 * If this VM exit was not claimed by anybody then
1520			 * treat it as a generic VMX exit.
1521			 */
1522			vmexit->exitcode = VM_EXITCODE_VMX;
1523			vmexit->u.vmx.error = 0;
1524		} else {
1525			/*
1526			 * The exitcode and collateral have been populated.
1527			 * The VM exit will be processed further in userland.
1528			 */
1529		}
1530	}
1531	return (handled);
1532}
1533
1534static int
1535vmx_run(void *arg, int vcpu, register_t rip, pmap_t pmap)
1536{
1537	int error, vie, rc, handled, astpending;
1538	uint32_t exit_reason;
1539	struct vmx *vmx;
1540	struct vmxctx *vmxctx;
1541	struct vmcs *vmcs;
1542	struct vm_exit *vmexit;
1543
1544	vmx = arg;
1545	vmcs = &vmx->vmcs[vcpu];
1546	vmxctx = &vmx->ctx[vcpu];
1547	vmxctx->launched = 0;
1548
1549	astpending = 0;
1550	vmexit = vm_exitinfo(vmx->vm, vcpu);
1551
1552	KASSERT(vmxctx->pmap == pmap,
1553	    ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
1554	KASSERT(vmxctx->eptp == vmx->eptp,
1555	    ("eptp %p different than ctx eptp %#lx", eptp, vmxctx->eptp));
1556
1557	/*
1558	 * XXX Can we avoid doing this every time we do a vm run?
1559	 */
1560	VMPTRLD(vmcs);
1561
1562	/*
1563	 * XXX
1564	 * We do this every time because we may setup the virtual machine
1565	 * from a different process than the one that actually runs it.
1566	 *
1567	 * If the life of a virtual machine was spent entirely in the context
1568	 * of a single process we could do this once in vmcs_set_defaults().
1569	 */
1570	if ((error = vmwrite(VMCS_HOST_CR3, rcr3())) != 0)
1571		panic("vmx_run: error %d writing to VMCS_HOST_CR3", error);
1572
1573	if ((error = vmwrite(VMCS_GUEST_RIP, rip)) != 0)
1574		panic("vmx_run: error %d writing to VMCS_GUEST_RIP", error);
1575
1576	if ((error = vmx_set_pcpu_defaults(vmx, vcpu)) != 0)
1577		panic("vmx_run: error %d setting up pcpu defaults", error);
1578
1579	do {
1580		lapic_timer_tick(vmx->vm, vcpu);
1581		vmx_inject_interrupts(vmx, vcpu);
1582		vmx_run_trace(vmx, vcpu);
1583		rc = vmx_setjmp(vmxctx);
1584#ifdef SETJMP_TRACE
1585		vmx_setjmp_trace(vmx, vcpu, vmxctx, rc);
1586#endif
1587		switch (rc) {
1588		case VMX_RETURN_DIRECT:
1589			if (vmxctx->launched == 0) {
1590				vmxctx->launched = 1;
1591				vmx_launch(vmxctx);
1592			} else
1593				vmx_resume(vmxctx);
1594			panic("vmx_launch/resume should not return");
1595			break;
1596		case VMX_RETURN_LONGJMP:
1597			break;			/* vm exit */
1598		case VMX_RETURN_AST:
1599			astpending = 1;
1600			break;
1601		case VMX_RETURN_VMRESUME:
1602			vie = vmcs_instruction_error();
1603			if (vmxctx->launch_error == VM_FAIL_INVALID ||
1604			    vie != VMRESUME_WITH_NON_LAUNCHED_VMCS) {
1605				printf("vmresume error %d vmcs inst error %d\n",
1606					vmxctx->launch_error, vie);
1607				goto err_exit;
1608			}
1609			vmx_launch(vmxctx);	/* try to launch the guest */
1610			panic("vmx_launch should not return");
1611			break;
1612		case VMX_RETURN_VMLAUNCH:
1613			vie = vmcs_instruction_error();
1614#if 1
1615			printf("vmlaunch error %d vmcs inst error %d\n",
1616				vmxctx->launch_error, vie);
1617#endif
1618			goto err_exit;
1619		case VMX_RETURN_INVEPT:
1620			panic("vm %s:%d invept error %d",
1621			      vm_name(vmx->vm), vcpu, vmxctx->launch_error);
1622		default:
1623			panic("vmx_setjmp returned %d", rc);
1624		}
1625
1626		/* enable interrupts */
1627		enable_intr();
1628
1629		/* collect some basic information for VM exit processing */
1630		vmexit->rip = rip = vmcs_guest_rip();
1631		vmexit->inst_length = vmexit_instruction_length();
1632		vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
1633		vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
1634
1635		if (astpending) {
1636			handled = 1;
1637			vmexit->inst_length = 0;
1638			vmexit->exitcode = VM_EXITCODE_BOGUS;
1639			vmx_astpending_trace(vmx, vcpu, rip);
1640			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_ASTPENDING, 1);
1641			break;
1642		}
1643
1644		handled = vmx_exit_process(vmx, vcpu, vmexit);
1645		vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled);
1646
1647	} while (handled);
1648
1649	/*
1650	 * If a VM exit has been handled then the exitcode must be BOGUS
1651	 * If a VM exit is not handled then the exitcode must not be BOGUS
1652	 */
1653	if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
1654	    (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
1655		panic("Mismatch between handled (%d) and exitcode (%d)",
1656		      handled, vmexit->exitcode);
1657	}
1658
1659	if (!handled)
1660		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_USERSPACE, 1);
1661
1662	VCPU_CTR1(vmx->vm, vcpu, "goto userland: exitcode %d",vmexit->exitcode);
1663
1664	/*
1665	 * XXX
1666	 * We need to do this to ensure that any VMCS state cached by the
1667	 * processor is flushed to memory. We need to do this in case the
1668	 * VM moves to a different cpu the next time it runs.
1669	 *
1670	 * Can we avoid doing this?
1671	 */
1672	VMCLEAR(vmcs);
1673	return (0);
1674
1675err_exit:
1676	vmexit->exitcode = VM_EXITCODE_VMX;
1677	vmexit->u.vmx.exit_reason = (uint32_t)-1;
1678	vmexit->u.vmx.exit_qualification = (uint32_t)-1;
1679	vmexit->u.vmx.error = vie;
1680	VMCLEAR(vmcs);
1681	return (ENOEXEC);
1682}
1683
1684static void
1685vmx_vmcleanup(void *arg)
1686{
1687	int i, error;
1688	struct vmx *vmx = arg;
1689
1690	for (i = 0; i < VM_MAXCPU; i++)
1691		vpid_free(vmx->state[i].vpid);
1692
1693	/*
1694	 * XXXSMP we also need to clear the VMCS active on the other vcpus.
1695	 */
1696	error = vmclear(&vmx->vmcs[0]);
1697	if (error != 0)
1698		panic("vmx_vmcleanup: vmclear error %d on vcpu 0", error);
1699
1700	free(vmx, M_VMX);
1701
1702	return;
1703}
1704
1705static register_t *
1706vmxctx_regptr(struct vmxctx *vmxctx, int reg)
1707{
1708
1709	switch (reg) {
1710	case VM_REG_GUEST_RAX:
1711		return (&vmxctx->guest_rax);
1712	case VM_REG_GUEST_RBX:
1713		return (&vmxctx->guest_rbx);
1714	case VM_REG_GUEST_RCX:
1715		return (&vmxctx->guest_rcx);
1716	case VM_REG_GUEST_RDX:
1717		return (&vmxctx->guest_rdx);
1718	case VM_REG_GUEST_RSI:
1719		return (&vmxctx->guest_rsi);
1720	case VM_REG_GUEST_RDI:
1721		return (&vmxctx->guest_rdi);
1722	case VM_REG_GUEST_RBP:
1723		return (&vmxctx->guest_rbp);
1724	case VM_REG_GUEST_R8:
1725		return (&vmxctx->guest_r8);
1726	case VM_REG_GUEST_R9:
1727		return (&vmxctx->guest_r9);
1728	case VM_REG_GUEST_R10:
1729		return (&vmxctx->guest_r10);
1730	case VM_REG_GUEST_R11:
1731		return (&vmxctx->guest_r11);
1732	case VM_REG_GUEST_R12:
1733		return (&vmxctx->guest_r12);
1734	case VM_REG_GUEST_R13:
1735		return (&vmxctx->guest_r13);
1736	case VM_REG_GUEST_R14:
1737		return (&vmxctx->guest_r14);
1738	case VM_REG_GUEST_R15:
1739		return (&vmxctx->guest_r15);
1740	default:
1741		break;
1742	}
1743	return (NULL);
1744}
1745
1746static int
1747vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
1748{
1749	register_t *regp;
1750
1751	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
1752		*retval = *regp;
1753		return (0);
1754	} else
1755		return (EINVAL);
1756}
1757
1758static int
1759vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
1760{
1761	register_t *regp;
1762
1763	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
1764		*regp = val;
1765		return (0);
1766	} else
1767		return (EINVAL);
1768}
1769
1770static int
1771vmx_shadow_reg(int reg)
1772{
1773	int shreg;
1774
1775	shreg = -1;
1776
1777	switch (reg) {
1778	case VM_REG_GUEST_CR0:
1779		shreg = VMCS_CR0_SHADOW;
1780                break;
1781        case VM_REG_GUEST_CR4:
1782		shreg = VMCS_CR4_SHADOW;
1783		break;
1784	default:
1785		break;
1786	}
1787
1788	return (shreg);
1789}
1790
1791static int
1792vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
1793{
1794	int running, hostcpu;
1795	struct vmx *vmx = arg;
1796
1797	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
1798	if (running && hostcpu != curcpu)
1799		panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
1800
1801	if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0)
1802		return (0);
1803
1804	return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval));
1805}
1806
1807static int
1808vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
1809{
1810	int error, hostcpu, running, shadow;
1811	uint64_t ctls;
1812	struct vmx *vmx = arg;
1813
1814	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
1815	if (running && hostcpu != curcpu)
1816		panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
1817
1818	if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0)
1819		return (0);
1820
1821	error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val);
1822
1823	if (error == 0) {
1824		/*
1825		 * If the "load EFER" VM-entry control is 1 then the
1826		 * value of EFER.LMA must be identical to "IA-32e mode guest"
1827		 * bit in the VM-entry control.
1828		 */
1829		if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
1830		    (reg == VM_REG_GUEST_EFER)) {
1831			vmcs_getreg(&vmx->vmcs[vcpu], running,
1832				    VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
1833			if (val & EFER_LMA)
1834				ctls |= VM_ENTRY_GUEST_LMA;
1835			else
1836				ctls &= ~VM_ENTRY_GUEST_LMA;
1837			vmcs_setreg(&vmx->vmcs[vcpu], running,
1838				    VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
1839		}
1840
1841		shadow = vmx_shadow_reg(reg);
1842		if (shadow > 0) {
1843			/*
1844			 * Store the unmodified value in the shadow
1845			 */
1846			error = vmcs_setreg(&vmx->vmcs[vcpu], running,
1847				    VMCS_IDENT(shadow), val);
1848		}
1849	}
1850
1851	return (error);
1852}
1853
1854static int
1855vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
1856{
1857	struct vmx *vmx = arg;
1858
1859	return (vmcs_getdesc(&vmx->vmcs[vcpu], reg, desc));
1860}
1861
1862static int
1863vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
1864{
1865	struct vmx *vmx = arg;
1866
1867	return (vmcs_setdesc(&vmx->vmcs[vcpu], reg, desc));
1868}
1869
1870static int
1871vmx_inject(void *arg, int vcpu, int type, int vector, uint32_t code,
1872	   int code_valid)
1873{
1874	int error;
1875	uint64_t info;
1876	struct vmx *vmx = arg;
1877	struct vmcs *vmcs = &vmx->vmcs[vcpu];
1878
1879	static uint32_t type_map[VM_EVENT_MAX] = {
1880		0x1,		/* VM_EVENT_NONE */
1881		0x0,		/* VM_HW_INTR */
1882		0x2,		/* VM_NMI */
1883		0x3,		/* VM_HW_EXCEPTION */
1884		0x4,		/* VM_SW_INTR */
1885		0x5,		/* VM_PRIV_SW_EXCEPTION */
1886		0x6,		/* VM_SW_EXCEPTION */
1887	};
1888
1889	/*
1890	 * If there is already an exception pending to be delivered to the
1891	 * vcpu then just return.
1892	 */
1893	error = vmcs_getreg(vmcs, 0, VMCS_IDENT(VMCS_ENTRY_INTR_INFO), &info);
1894	if (error)
1895		return (error);
1896
1897	if (info & VMCS_INTERRUPTION_INFO_VALID)
1898		return (EAGAIN);
1899
1900	info = vector | (type_map[type] << 8) | (code_valid ? 1 << 11 : 0);
1901	info |= VMCS_INTERRUPTION_INFO_VALID;
1902	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(VMCS_ENTRY_INTR_INFO), info);
1903	if (error != 0)
1904		return (error);
1905
1906	if (code_valid) {
1907		error = vmcs_setreg(vmcs, 0,
1908				    VMCS_IDENT(VMCS_ENTRY_EXCEPTION_ERROR),
1909				    code);
1910	}
1911	return (error);
1912}
1913
1914static int
1915vmx_getcap(void *arg, int vcpu, int type, int *retval)
1916{
1917	struct vmx *vmx = arg;
1918	int vcap;
1919	int ret;
1920
1921	ret = ENOENT;
1922
1923	vcap = vmx->cap[vcpu].set;
1924
1925	switch (type) {
1926	case VM_CAP_HALT_EXIT:
1927		if (cap_halt_exit)
1928			ret = 0;
1929		break;
1930	case VM_CAP_PAUSE_EXIT:
1931		if (cap_pause_exit)
1932			ret = 0;
1933		break;
1934	case VM_CAP_MTRAP_EXIT:
1935		if (cap_monitor_trap)
1936			ret = 0;
1937		break;
1938	case VM_CAP_UNRESTRICTED_GUEST:
1939		if (cap_unrestricted_guest)
1940			ret = 0;
1941		break;
1942	case VM_CAP_ENABLE_INVPCID:
1943		if (cap_invpcid)
1944			ret = 0;
1945		break;
1946	default:
1947		break;
1948	}
1949
1950	if (ret == 0)
1951		*retval = (vcap & (1 << type)) ? 1 : 0;
1952
1953	return (ret);
1954}
1955
1956static int
1957vmx_setcap(void *arg, int vcpu, int type, int val)
1958{
1959	struct vmx *vmx = arg;
1960	struct vmcs *vmcs = &vmx->vmcs[vcpu];
1961	uint32_t baseval;
1962	uint32_t *pptr;
1963	int error;
1964	int flag;
1965	int reg;
1966	int retval;
1967
1968	retval = ENOENT;
1969	pptr = NULL;
1970
1971	switch (type) {
1972	case VM_CAP_HALT_EXIT:
1973		if (cap_halt_exit) {
1974			retval = 0;
1975			pptr = &vmx->cap[vcpu].proc_ctls;
1976			baseval = *pptr;
1977			flag = PROCBASED_HLT_EXITING;
1978			reg = VMCS_PRI_PROC_BASED_CTLS;
1979		}
1980		break;
1981	case VM_CAP_MTRAP_EXIT:
1982		if (cap_monitor_trap) {
1983			retval = 0;
1984			pptr = &vmx->cap[vcpu].proc_ctls;
1985			baseval = *pptr;
1986			flag = PROCBASED_MTF;
1987			reg = VMCS_PRI_PROC_BASED_CTLS;
1988		}
1989		break;
1990	case VM_CAP_PAUSE_EXIT:
1991		if (cap_pause_exit) {
1992			retval = 0;
1993			pptr = &vmx->cap[vcpu].proc_ctls;
1994			baseval = *pptr;
1995			flag = PROCBASED_PAUSE_EXITING;
1996			reg = VMCS_PRI_PROC_BASED_CTLS;
1997		}
1998		break;
1999	case VM_CAP_UNRESTRICTED_GUEST:
2000		if (cap_unrestricted_guest) {
2001			retval = 0;
2002			pptr = &vmx->cap[vcpu].proc_ctls2;
2003			baseval = *pptr;
2004			flag = PROCBASED2_UNRESTRICTED_GUEST;
2005			reg = VMCS_SEC_PROC_BASED_CTLS;
2006		}
2007		break;
2008	case VM_CAP_ENABLE_INVPCID:
2009		if (cap_invpcid) {
2010			retval = 0;
2011			pptr = &vmx->cap[vcpu].proc_ctls2;
2012			baseval = *pptr;
2013			flag = PROCBASED2_ENABLE_INVPCID;
2014			reg = VMCS_SEC_PROC_BASED_CTLS;
2015		}
2016		break;
2017	default:
2018		break;
2019	}
2020
2021	if (retval == 0) {
2022		if (val) {
2023			baseval |= flag;
2024		} else {
2025			baseval &= ~flag;
2026		}
2027		VMPTRLD(vmcs);
2028		error = vmwrite(reg, baseval);
2029		VMCLEAR(vmcs);
2030
2031		if (error) {
2032			retval = error;
2033		} else {
2034			/*
2035			 * Update optional stored flags, and record
2036			 * setting
2037			 */
2038			if (pptr != NULL) {
2039				*pptr = baseval;
2040			}
2041
2042			if (val) {
2043				vmx->cap[vcpu].set |= (1 << type);
2044			} else {
2045				vmx->cap[vcpu].set &= ~(1 << type);
2046			}
2047		}
2048	}
2049
2050        return (retval);
2051}
2052
2053struct vmm_ops vmm_ops_intel = {
2054	vmx_init,
2055	vmx_cleanup,
2056	vmx_vminit,
2057	vmx_run,
2058	vmx_vmcleanup,
2059	vmx_getreg,
2060	vmx_setreg,
2061	vmx_getdesc,
2062	vmx_setdesc,
2063	vmx_inject,
2064	vmx_getcap,
2065	vmx_setcap,
2066	ept_vmspace_alloc,
2067	ept_vmspace_free,
2068};
2069