machdep.c revision 322523
1/*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: stable/10/sys/amd64/amd64/machdep.c 322523 2017-08-14 23:46:10Z jkim $");
43
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_isa.h"
52#include "opt_kstack_pages.h"
53#include "opt_maxmem.h"
54#include "opt_mp_watchdog.h"
55#include "opt_perfmon.h"
56#include "opt_platform.h"
57#include "opt_sched.h"
58#include "opt_kdtrace.h"
59
60#include <sys/param.h>
61#include <sys/proc.h>
62#include <sys/systm.h>
63#include <sys/bio.h>
64#include <sys/buf.h>
65#include <sys/bus.h>
66#include <sys/callout.h>
67#include <sys/cons.h>
68#include <sys/cpu.h>
69#include <sys/efi.h>
70#include <sys/eventhandler.h>
71#include <sys/exec.h>
72#include <sys/imgact.h>
73#include <sys/kdb.h>
74#include <sys/kernel.h>
75#include <sys/ktr.h>
76#include <sys/linker.h>
77#include <sys/lock.h>
78#include <sys/malloc.h>
79#include <sys/memrange.h>
80#include <sys/msgbuf.h>
81#include <sys/mutex.h>
82#include <sys/pcpu.h>
83#include <sys/ptrace.h>
84#include <sys/reboot.h>
85#include <sys/rwlock.h>
86#include <sys/sched.h>
87#include <sys/signalvar.h>
88#ifdef SMP
89#include <sys/smp.h>
90#endif
91#include <sys/syscallsubr.h>
92#include <sys/sysctl.h>
93#include <sys/sysent.h>
94#include <sys/sysproto.h>
95#include <sys/ucontext.h>
96#include <sys/vmmeter.h>
97
98#include <vm/vm.h>
99#include <vm/vm_extern.h>
100#include <vm/vm_kern.h>
101#include <vm/vm_page.h>
102#include <vm/vm_map.h>
103#include <vm/vm_object.h>
104#include <vm/vm_pager.h>
105#include <vm/vm_param.h>
106
107#ifdef DDB
108#ifndef KDB
109#error KDB must be enabled in order for DDB to work!
110#endif
111#include <ddb/ddb.h>
112#include <ddb/db_sym.h>
113#endif
114
115#include <net/netisr.h>
116
117#include <machine/clock.h>
118#include <machine/cpu.h>
119#include <machine/cputypes.h>
120#include <machine/intr_machdep.h>
121#include <x86/mca.h>
122#include <machine/md_var.h>
123#include <machine/metadata.h>
124#include <machine/mp_watchdog.h>
125#include <machine/pc/bios.h>
126#include <machine/pcb.h>
127#include <machine/proc.h>
128#include <machine/reg.h>
129#include <machine/sigframe.h>
130#include <machine/specialreg.h>
131#ifdef PERFMON
132#include <machine/perfmon.h>
133#endif
134#include <machine/tss.h>
135#ifdef SMP
136#include <machine/smp.h>
137#endif
138#ifdef FDT
139#include <x86/fdt.h>
140#endif
141
142#ifdef DEV_ATPIC
143#include <x86/isa/icu.h>
144#else
145#include <machine/apicvar.h>
146#endif
147
148#include <isa/isareg.h>
149#include <isa/rtc.h>
150
151/* Sanity check for __curthread() */
152CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
153
154extern u_int64_t hammer_time(u_int64_t, u_int64_t);
155
156#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
157#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
158
159static void cpu_startup(void *);
160static void get_fpcontext(struct thread *td, mcontext_t *mcp,
161    char *xfpusave, size_t xfpusave_len);
162static int  set_fpcontext(struct thread *td, mcontext_t *mcp,
163    char *xfpustate, size_t xfpustate_len);
164SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
165
166/*
167 * The file "conf/ldscript.amd64" defines the symbol "kernphys".  Its value is
168 * the physical address at which the kernel is loaded.
169 */
170extern char kernphys[];
171#ifdef DDB
172extern vm_offset_t ksym_start, ksym_end;
173#endif
174
175struct msgbuf *msgbufp;
176
177/* Intel ICH registers */
178#define ICH_PMBASE	0x400
179#define ICH_SMI_EN	ICH_PMBASE + 0x30
180
181int	_udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
182
183int cold = 1;
184
185long Maxmem = 0;
186long realmem = 0;
187
188/*
189 * The number of PHYSMAP entries must be one less than the number of
190 * PHYSSEG entries because the PHYSMAP entry that spans the largest
191 * physical address that is accessible by ISA DMA is split into two
192 * PHYSSEG entries.
193 */
194#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
195
196vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
197vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
198
199/* must be 2 less so 0 0 can signal end of chunks */
200#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
201#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
202
203struct kva_md_info kmi;
204
205static struct trapframe proc0_tf;
206struct region_descriptor r_gdt, r_idt;
207
208struct pcpu __pcpu[MAXCPU];
209
210struct mtx icu_lock;
211
212struct mem_range_softc mem_range_softc;
213
214struct mtx dt_lock;	/* lock for GDT and LDT */
215
216void (*vmm_resume_p)(void);
217
218static void
219cpu_startup(dummy)
220	void *dummy;
221{
222	uintmax_t memsize;
223	char *sysenv;
224
225	/*
226	 * On MacBooks, we need to disallow the legacy USB circuit to
227	 * generate an SMI# because this can cause several problems,
228	 * namely: incorrect CPU frequency detection and failure to
229	 * start the APs.
230	 * We do this by disabling a bit in the SMI_EN (SMI Control and
231	 * Enable register) of the Intel ICH LPC Interface Bridge.
232	 */
233	sysenv = getenv("smbios.system.product");
234	if (sysenv != NULL) {
235		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
236		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
237		    strncmp(sysenv, "MacBook4,1", 10) == 0 ||
238		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
239		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
240		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
241		    strncmp(sysenv, "MacBookPro4,1", 13) == 0 ||
242		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
243			if (bootverbose)
244				printf("Disabling LEGACY_USB_EN bit on "
245				    "Intel ICH.\n");
246			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
247		}
248		freeenv(sysenv);
249	}
250
251	/*
252	 * Good {morning,afternoon,evening,night}.
253	 */
254	startrtclock();
255	printcpuinfo();
256	panicifcpuunsupported();
257#ifdef PERFMON
258	perfmon_init();
259#endif
260
261	/*
262	 * Display physical memory if SMBIOS reports reasonable amount.
263	 */
264	memsize = 0;
265	sysenv = getenv("smbios.memory.enabled");
266	if (sysenv != NULL) {
267		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
268		freeenv(sysenv);
269	}
270	if (memsize < ptoa((uintmax_t)cnt.v_free_count))
271		memsize = ptoa((uintmax_t)Maxmem);
272	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
273	realmem = atop(memsize);
274
275	/*
276	 * Display any holes after the first chunk of extended memory.
277	 */
278	if (bootverbose) {
279		int indx;
280
281		printf("Physical memory chunk(s):\n");
282		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
283			vm_paddr_t size;
284
285			size = phys_avail[indx + 1] - phys_avail[indx];
286			printf(
287			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
288			    (uintmax_t)phys_avail[indx],
289			    (uintmax_t)phys_avail[indx + 1] - 1,
290			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
291		}
292	}
293
294	vm_ksubmap_init(&kmi);
295
296	printf("avail memory = %ju (%ju MB)\n",
297	    ptoa((uintmax_t)cnt.v_free_count),
298	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
299
300	/*
301	 * Set up buffers, so they can be used to read disk labels.
302	 */
303	bufinit();
304	vm_pager_bufferinit();
305
306	cpu_setregs();
307}
308
309/*
310 * Send an interrupt to process.
311 *
312 * Stack is set up to allow sigcode stored
313 * at top to call routine, followed by call
314 * to sigreturn routine below.  After sigreturn
315 * resets the signal mask, the stack, and the
316 * frame pointer, it returns to the user
317 * specified pc, psl.
318 */
319void
320sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
321{
322	struct sigframe sf, *sfp;
323	struct pcb *pcb;
324	struct proc *p;
325	struct thread *td;
326	struct sigacts *psp;
327	char *sp;
328	struct trapframe *regs;
329	char *xfpusave;
330	size_t xfpusave_len;
331	int sig;
332	int oonstack;
333
334	td = curthread;
335	pcb = td->td_pcb;
336	p = td->td_proc;
337	PROC_LOCK_ASSERT(p, MA_OWNED);
338	sig = ksi->ksi_signo;
339	psp = p->p_sigacts;
340	mtx_assert(&psp->ps_mtx, MA_OWNED);
341	regs = td->td_frame;
342	oonstack = sigonstack(regs->tf_rsp);
343
344	if (cpu_max_ext_state_size > sizeof(struct savefpu) && use_xsave) {
345		xfpusave_len = cpu_max_ext_state_size - sizeof(struct savefpu);
346		xfpusave = __builtin_alloca(xfpusave_len);
347	} else {
348		xfpusave_len = 0;
349		xfpusave = NULL;
350	}
351
352	/* Save user context. */
353	bzero(&sf, sizeof(sf));
354	sf.sf_uc.uc_sigmask = *mask;
355	sf.sf_uc.uc_stack = td->td_sigstk;
356	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
357	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
358	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
359	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
360	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
361	get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
362	fpstate_drop(td);
363	sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
364	sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
365	bzero(sf.sf_uc.uc_mcontext.mc_spare,
366	    sizeof(sf.sf_uc.uc_mcontext.mc_spare));
367	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
368
369	/* Allocate space for the signal handler context. */
370	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
371	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
372		sp = td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
373#if defined(COMPAT_43)
374		td->td_sigstk.ss_flags |= SS_ONSTACK;
375#endif
376	} else
377		sp = (char *)regs->tf_rsp - 128;
378	if (xfpusave != NULL) {
379		sp -= xfpusave_len;
380		sp = (char *)((unsigned long)sp & ~0x3Ful);
381		sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
382	}
383	sp -= sizeof(struct sigframe);
384	/* Align to 16 bytes. */
385	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
386
387	/* Build the argument list for the signal handler. */
388	regs->tf_rdi = sig;			/* arg 1 in %rdi */
389	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
390	bzero(&sf.sf_si, sizeof(sf.sf_si));
391	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
392		/* Signal handler installed with SA_SIGINFO. */
393		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
394		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
395
396		/* Fill in POSIX parts */
397		sf.sf_si = ksi->ksi_info;
398		sf.sf_si.si_signo = sig; /* maybe a translated signal */
399		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
400	} else {
401		/* Old FreeBSD-style arguments. */
402		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
403		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
404		sf.sf_ahu.sf_handler = catcher;
405	}
406	mtx_unlock(&psp->ps_mtx);
407	PROC_UNLOCK(p);
408
409	/*
410	 * Copy the sigframe out to the user's stack.
411	 */
412	if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
413	    (xfpusave != NULL && copyout(xfpusave,
414	    (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
415	    != 0)) {
416#ifdef DEBUG
417		printf("process %ld has trashed its stack\n", (long)p->p_pid);
418#endif
419		PROC_LOCK(p);
420		sigexit(td, SIGILL);
421	}
422
423	regs->tf_rsp = (long)sfp;
424	regs->tf_rip = p->p_sysent->sv_sigcode_base;
425	regs->tf_rflags &= ~(PSL_T | PSL_D);
426	regs->tf_cs = _ucodesel;
427	regs->tf_ds = _udatasel;
428	regs->tf_ss = _udatasel;
429	regs->tf_es = _udatasel;
430	regs->tf_fs = _ufssel;
431	regs->tf_gs = _ugssel;
432	regs->tf_flags = TF_HASSEGS;
433	set_pcb_flags(pcb, PCB_FULL_IRET);
434	PROC_LOCK(p);
435	mtx_lock(&psp->ps_mtx);
436}
437
438/*
439 * System call to cleanup state after a signal
440 * has been taken.  Reset signal mask and
441 * stack state from context left by sendsig (above).
442 * Return to previous pc and psl as specified by
443 * context left by sendsig. Check carefully to
444 * make sure that the user has not modified the
445 * state to gain improper privileges.
446 *
447 * MPSAFE
448 */
449int
450sys_sigreturn(td, uap)
451	struct thread *td;
452	struct sigreturn_args /* {
453		const struct __ucontext *sigcntxp;
454	} */ *uap;
455{
456	ucontext_t uc;
457	struct pcb *pcb;
458	struct proc *p;
459	struct trapframe *regs;
460	ucontext_t *ucp;
461	char *xfpustate;
462	size_t xfpustate_len;
463	long rflags;
464	int cs, error, ret;
465	ksiginfo_t ksi;
466
467	pcb = td->td_pcb;
468	p = td->td_proc;
469
470	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
471	if (error != 0) {
472		uprintf("pid %d (%s): sigreturn copyin failed\n",
473		    p->p_pid, td->td_name);
474		return (error);
475	}
476	ucp = &uc;
477	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
478		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
479		    td->td_name, ucp->uc_mcontext.mc_flags);
480		return (EINVAL);
481	}
482	regs = td->td_frame;
483	rflags = ucp->uc_mcontext.mc_rflags;
484	/*
485	 * Don't allow users to change privileged or reserved flags.
486	 */
487	if (!EFL_SECURE(rflags, regs->tf_rflags)) {
488		uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
489		    td->td_name, rflags);
490		return (EINVAL);
491	}
492
493	/*
494	 * Don't allow users to load a valid privileged %cs.  Let the
495	 * hardware check for invalid selectors, excess privilege in
496	 * other selectors, invalid %eip's and invalid %esp's.
497	 */
498	cs = ucp->uc_mcontext.mc_cs;
499	if (!CS_SECURE(cs)) {
500		uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
501		    td->td_name, cs);
502		ksiginfo_init_trap(&ksi);
503		ksi.ksi_signo = SIGBUS;
504		ksi.ksi_code = BUS_OBJERR;
505		ksi.ksi_trapno = T_PROTFLT;
506		ksi.ksi_addr = (void *)regs->tf_rip;
507		trapsignal(td, &ksi);
508		return (EINVAL);
509	}
510
511	if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
512		xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
513		if (xfpustate_len > cpu_max_ext_state_size -
514		    sizeof(struct savefpu)) {
515			uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
516			    p->p_pid, td->td_name, xfpustate_len);
517			return (EINVAL);
518		}
519		xfpustate = __builtin_alloca(xfpustate_len);
520		error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
521		    xfpustate, xfpustate_len);
522		if (error != 0) {
523			uprintf(
524	"pid %d (%s): sigreturn copying xfpustate failed\n",
525			    p->p_pid, td->td_name);
526			return (error);
527		}
528	} else {
529		xfpustate = NULL;
530		xfpustate_len = 0;
531	}
532	ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len);
533	if (ret != 0) {
534		uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
535		    p->p_pid, td->td_name, ret);
536		return (ret);
537	}
538	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
539	pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
540	pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
541
542#if defined(COMPAT_43)
543	if (ucp->uc_mcontext.mc_onstack & 1)
544		td->td_sigstk.ss_flags |= SS_ONSTACK;
545	else
546		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
547#endif
548
549	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
550	set_pcb_flags(pcb, PCB_FULL_IRET);
551	return (EJUSTRETURN);
552}
553
554#ifdef COMPAT_FREEBSD4
555int
556freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
557{
558
559	return sys_sigreturn(td, (struct sigreturn_args *)uap);
560}
561#endif
562
563
564/*
565 * Machine dependent boot() routine
566 *
567 * I haven't seen anything to put here yet
568 * Possibly some stuff might be grafted back here from boot()
569 */
570void
571cpu_boot(int howto)
572{
573}
574
575/*
576 * Flush the D-cache for non-DMA I/O so that the I-cache can
577 * be made coherent later.
578 */
579void
580cpu_flush_dcache(void *ptr, size_t len)
581{
582	/* Not applicable */
583}
584
585/* Get current clock frequency for the given cpu id. */
586int
587cpu_est_clockrate(int cpu_id, uint64_t *rate)
588{
589	uint64_t tsc1, tsc2;
590	uint64_t acnt, mcnt, perf;
591	register_t reg;
592
593	if (pcpu_find(cpu_id) == NULL || rate == NULL)
594		return (EINVAL);
595
596	/*
597	 * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
598	 * DELAY(9) based logic fails.
599	 */
600	if (tsc_is_invariant && !tsc_perf_stat)
601		return (EOPNOTSUPP);
602
603#ifdef SMP
604	if (smp_cpus > 1) {
605		/* Schedule ourselves on the indicated cpu. */
606		thread_lock(curthread);
607		sched_bind(curthread, cpu_id);
608		thread_unlock(curthread);
609	}
610#endif
611
612	/* Calibrate by measuring a short delay. */
613	reg = intr_disable();
614	if (tsc_is_invariant) {
615		wrmsr(MSR_MPERF, 0);
616		wrmsr(MSR_APERF, 0);
617		tsc1 = rdtsc();
618		DELAY(1000);
619		mcnt = rdmsr(MSR_MPERF);
620		acnt = rdmsr(MSR_APERF);
621		tsc2 = rdtsc();
622		intr_restore(reg);
623		perf = 1000 * acnt / mcnt;
624		*rate = (tsc2 - tsc1) * perf;
625	} else {
626		tsc1 = rdtsc();
627		DELAY(1000);
628		tsc2 = rdtsc();
629		intr_restore(reg);
630		*rate = (tsc2 - tsc1) * 1000;
631	}
632
633#ifdef SMP
634	if (smp_cpus > 1) {
635		thread_lock(curthread);
636		sched_unbind(curthread);
637		thread_unlock(curthread);
638	}
639#endif
640
641	return (0);
642}
643
644/*
645 * Shutdown the CPU as much as possible
646 */
647void
648cpu_halt(void)
649{
650	for (;;)
651		halt();
652}
653
654void (*cpu_idle_hook)(sbintime_t) = NULL;	/* ACPI idle hook. */
655static int	cpu_ident_amdc1e = 0;	/* AMD C1E supported. */
656static int	idle_mwait = 1;		/* Use MONITOR/MWAIT for short idle. */
657TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
658SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
659    0, "Use MONITOR/MWAIT for short idle");
660
661#define	STATE_RUNNING	0x0
662#define	STATE_MWAIT	0x1
663#define	STATE_SLEEPING	0x2
664
665static void
666cpu_idle_acpi(sbintime_t sbt)
667{
668	int *state;
669
670	state = (int *)PCPU_PTR(monitorbuf);
671	*state = STATE_SLEEPING;
672
673	/* See comments in cpu_idle_hlt(). */
674	disable_intr();
675	if (sched_runnable())
676		enable_intr();
677	else if (cpu_idle_hook)
678		cpu_idle_hook(sbt);
679	else
680		__asm __volatile("sti; hlt");
681	*state = STATE_RUNNING;
682}
683
684static void
685cpu_idle_hlt(sbintime_t sbt)
686{
687	int *state;
688
689	state = (int *)PCPU_PTR(monitorbuf);
690	*state = STATE_SLEEPING;
691
692	/*
693	 * Since we may be in a critical section from cpu_idle(), if
694	 * an interrupt fires during that critical section we may have
695	 * a pending preemption.  If the CPU halts, then that thread
696	 * may not execute until a later interrupt awakens the CPU.
697	 * To handle this race, check for a runnable thread after
698	 * disabling interrupts and immediately return if one is
699	 * found.  Also, we must absolutely guarentee that hlt is
700	 * the next instruction after sti.  This ensures that any
701	 * interrupt that fires after the call to disable_intr() will
702	 * immediately awaken the CPU from hlt.  Finally, please note
703	 * that on x86 this works fine because of interrupts enabled only
704	 * after the instruction following sti takes place, while IF is set
705	 * to 1 immediately, allowing hlt instruction to acknowledge the
706	 * interrupt.
707	 */
708	disable_intr();
709	if (sched_runnable())
710		enable_intr();
711	else
712		__asm __volatile("sti; hlt");
713	*state = STATE_RUNNING;
714}
715
716static void
717cpu_idle_mwait(sbintime_t sbt)
718{
719	int *state;
720
721	state = (int *)PCPU_PTR(monitorbuf);
722	*state = STATE_MWAIT;
723
724	/* See comments in cpu_idle_hlt(). */
725	disable_intr();
726	if (sched_runnable()) {
727		enable_intr();
728		*state = STATE_RUNNING;
729		return;
730	}
731	cpu_monitor(state, 0, 0);
732	if (*state == STATE_MWAIT)
733		__asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
734	else
735		enable_intr();
736	*state = STATE_RUNNING;
737}
738
739static void
740cpu_idle_spin(sbintime_t sbt)
741{
742	int *state;
743	int i;
744
745	state = (int *)PCPU_PTR(monitorbuf);
746	*state = STATE_RUNNING;
747
748	/*
749	 * The sched_runnable() call is racy but as long as there is
750	 * a loop missing it one time will have just a little impact if any
751	 * (and it is much better than missing the check at all).
752	 */
753	for (i = 0; i < 1000; i++) {
754		if (sched_runnable())
755			return;
756		cpu_spinwait();
757	}
758}
759
760/*
761 * C1E renders the local APIC timer dead, so we disable it by
762 * reading the Interrupt Pending Message register and clearing
763 * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
764 *
765 * Reference:
766 *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
767 *   #32559 revision 3.00+
768 */
769#define	MSR_AMDK8_IPM		0xc0010055
770#define	AMDK8_SMIONCMPHALT	(1ULL << 27)
771#define	AMDK8_C1EONCMPHALT	(1ULL << 28)
772#define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
773
774static void
775cpu_probe_amdc1e(void)
776{
777
778	/*
779	 * Detect the presence of C1E capability mostly on latest
780	 * dual-cores (or future) k8 family.
781	 */
782	if (cpu_vendor_id == CPU_VENDOR_AMD &&
783	    (cpu_id & 0x00000f00) == 0x00000f00 &&
784	    (cpu_id & 0x0fff0000) >=  0x00040000) {
785		cpu_ident_amdc1e = 1;
786	}
787}
788
789void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi;
790
791void
792cpu_idle(int busy)
793{
794	uint64_t msr;
795	sbintime_t sbt = -1;
796
797	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
798	    busy, curcpu);
799#ifdef MP_WATCHDOG
800	ap_watchdog(PCPU_GET(cpuid));
801#endif
802	/* If we are busy - try to use fast methods. */
803	if (busy) {
804		if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
805			cpu_idle_mwait(busy);
806			goto out;
807		}
808	}
809
810	/* If we have time - switch timers into idle mode. */
811	if (!busy) {
812		critical_enter();
813		sbt = cpu_idleclock();
814	}
815
816	/* Apply AMD APIC timer C1E workaround. */
817	if (cpu_ident_amdc1e && cpu_disable_c3_sleep) {
818		msr = rdmsr(MSR_AMDK8_IPM);
819		if (msr & AMDK8_CMPHALT)
820			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
821	}
822
823	/* Call main idle method. */
824	cpu_idle_fn(sbt);
825
826	/* Switch timers mack into active mode. */
827	if (!busy) {
828		cpu_activeclock();
829		critical_exit();
830	}
831out:
832	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
833	    busy, curcpu);
834}
835
836int
837cpu_idle_wakeup(int cpu)
838{
839	struct pcpu *pcpu;
840	int *state;
841
842	pcpu = pcpu_find(cpu);
843	state = (int *)pcpu->pc_monitorbuf;
844	/*
845	 * This doesn't need to be atomic since missing the race will
846	 * simply result in unnecessary IPIs.
847	 */
848	if (*state == STATE_SLEEPING)
849		return (0);
850	if (*state == STATE_MWAIT)
851		*state = STATE_RUNNING;
852	return (1);
853}
854
855/*
856 * Ordered by speed/power consumption.
857 */
858struct {
859	void	*id_fn;
860	char	*id_name;
861} idle_tbl[] = {
862	{ cpu_idle_spin, "spin" },
863	{ cpu_idle_mwait, "mwait" },
864	{ cpu_idle_hlt, "hlt" },
865	{ cpu_idle_acpi, "acpi" },
866	{ NULL, NULL }
867};
868
869static int
870idle_sysctl_available(SYSCTL_HANDLER_ARGS)
871{
872	char *avail, *p;
873	int error;
874	int i;
875
876	avail = malloc(256, M_TEMP, M_WAITOK);
877	p = avail;
878	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
879		if (strstr(idle_tbl[i].id_name, "mwait") &&
880		    (cpu_feature2 & CPUID2_MON) == 0)
881			continue;
882		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
883		    cpu_idle_hook == NULL)
884			continue;
885		p += sprintf(p, "%s%s", p != avail ? ", " : "",
886		    idle_tbl[i].id_name);
887	}
888	error = sysctl_handle_string(oidp, avail, 0, req);
889	free(avail, M_TEMP);
890	return (error);
891}
892
893SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
894    0, 0, idle_sysctl_available, "A", "list of available idle functions");
895
896static int
897idle_sysctl(SYSCTL_HANDLER_ARGS)
898{
899	char buf[16];
900	int error;
901	char *p;
902	int i;
903
904	p = "unknown";
905	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
906		if (idle_tbl[i].id_fn == cpu_idle_fn) {
907			p = idle_tbl[i].id_name;
908			break;
909		}
910	}
911	strncpy(buf, p, sizeof(buf));
912	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
913	if (error != 0 || req->newptr == NULL)
914		return (error);
915	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
916		if (strstr(idle_tbl[i].id_name, "mwait") &&
917		    (cpu_feature2 & CPUID2_MON) == 0)
918			continue;
919		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
920		    cpu_idle_hook == NULL)
921			continue;
922		if (strcmp(idle_tbl[i].id_name, buf))
923			continue;
924		cpu_idle_fn = idle_tbl[i].id_fn;
925		return (0);
926	}
927	return (EINVAL);
928}
929
930SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
931    idle_sysctl, "A", "currently selected idle function");
932
933/*
934 * Reset registers to default values on exec.
935 */
936void
937exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
938{
939	struct trapframe *regs = td->td_frame;
940	struct pcb *pcb = td->td_pcb;
941
942	mtx_lock(&dt_lock);
943	if (td->td_proc->p_md.md_ldt != NULL)
944		user_ldt_free(td);
945	else
946		mtx_unlock(&dt_lock);
947
948	pcb->pcb_fsbase = 0;
949	pcb->pcb_gsbase = 0;
950	clear_pcb_flags(pcb, PCB_32BIT);
951	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
952	set_pcb_flags(pcb, PCB_FULL_IRET);
953
954	bzero((char *)regs, sizeof(struct trapframe));
955	regs->tf_rip = imgp->entry_addr;
956	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
957	regs->tf_rdi = stack;		/* argv */
958	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
959	regs->tf_ss = _udatasel;
960	regs->tf_cs = _ucodesel;
961	regs->tf_ds = _udatasel;
962	regs->tf_es = _udatasel;
963	regs->tf_fs = _ufssel;
964	regs->tf_gs = _ugssel;
965	regs->tf_flags = TF_HASSEGS;
966	td->td_retval[1] = 0;
967
968	/*
969	 * Reset the hardware debug registers if they were in use.
970	 * They won't have any meaning for the newly exec'd process.
971	 */
972	if (pcb->pcb_flags & PCB_DBREGS) {
973		pcb->pcb_dr0 = 0;
974		pcb->pcb_dr1 = 0;
975		pcb->pcb_dr2 = 0;
976		pcb->pcb_dr3 = 0;
977		pcb->pcb_dr6 = 0;
978		pcb->pcb_dr7 = 0;
979		if (pcb == curpcb) {
980			/*
981			 * Clear the debug registers on the running
982			 * CPU, otherwise they will end up affecting
983			 * the next process we switch to.
984			 */
985			reset_dbregs();
986		}
987		clear_pcb_flags(pcb, PCB_DBREGS);
988	}
989
990	/*
991	 * Drop the FP state if we hold it, so that the process gets a
992	 * clean FP state if it uses the FPU again.
993	 */
994	fpstate_drop(td);
995}
996
997void
998cpu_setregs(void)
999{
1000	register_t cr0;
1001
1002	cr0 = rcr0();
1003	/*
1004	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
1005	 * BSP.  See the comments there about why we set them.
1006	 */
1007	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
1008	load_cr0(cr0);
1009}
1010
1011/*
1012 * Initialize amd64 and configure to run kernel
1013 */
1014
1015/*
1016 * Initialize segments & interrupt table
1017 */
1018
1019struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
1020static struct gate_descriptor idt0[NIDT];
1021struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1022
1023static char dblfault_stack[PAGE_SIZE] __aligned(16);
1024
1025static char nmi0_stack[PAGE_SIZE] __aligned(16);
1026CTASSERT(sizeof(struct nmi_pcpu) == 16);
1027
1028struct amd64tss common_tss[MAXCPU];
1029
1030/*
1031 * Software prototypes -- in more palatable form.
1032 *
1033 * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
1034 * slots as corresponding segments for i386 kernel.
1035 */
1036struct soft_segment_descriptor gdt_segs[] = {
1037/* GNULL_SEL	0 Null Descriptor */
1038{	.ssd_base = 0x0,
1039	.ssd_limit = 0x0,
1040	.ssd_type = 0,
1041	.ssd_dpl = 0,
1042	.ssd_p = 0,
1043	.ssd_long = 0,
1044	.ssd_def32 = 0,
1045	.ssd_gran = 0		},
1046/* GNULL2_SEL	1 Null Descriptor */
1047{	.ssd_base = 0x0,
1048	.ssd_limit = 0x0,
1049	.ssd_type = 0,
1050	.ssd_dpl = 0,
1051	.ssd_p = 0,
1052	.ssd_long = 0,
1053	.ssd_def32 = 0,
1054	.ssd_gran = 0		},
1055/* GUFS32_SEL	2 32 bit %gs Descriptor for user */
1056{	.ssd_base = 0x0,
1057	.ssd_limit = 0xfffff,
1058	.ssd_type = SDT_MEMRWA,
1059	.ssd_dpl = SEL_UPL,
1060	.ssd_p = 1,
1061	.ssd_long = 0,
1062	.ssd_def32 = 1,
1063	.ssd_gran = 1		},
1064/* GUGS32_SEL	3 32 bit %fs Descriptor for user */
1065{	.ssd_base = 0x0,
1066	.ssd_limit = 0xfffff,
1067	.ssd_type = SDT_MEMRWA,
1068	.ssd_dpl = SEL_UPL,
1069	.ssd_p = 1,
1070	.ssd_long = 0,
1071	.ssd_def32 = 1,
1072	.ssd_gran = 1		},
1073/* GCODE_SEL	4 Code Descriptor for kernel */
1074{	.ssd_base = 0x0,
1075	.ssd_limit = 0xfffff,
1076	.ssd_type = SDT_MEMERA,
1077	.ssd_dpl = SEL_KPL,
1078	.ssd_p = 1,
1079	.ssd_long = 1,
1080	.ssd_def32 = 0,
1081	.ssd_gran = 1		},
1082/* GDATA_SEL	5 Data Descriptor for kernel */
1083{	.ssd_base = 0x0,
1084	.ssd_limit = 0xfffff,
1085	.ssd_type = SDT_MEMRWA,
1086	.ssd_dpl = SEL_KPL,
1087	.ssd_p = 1,
1088	.ssd_long = 1,
1089	.ssd_def32 = 0,
1090	.ssd_gran = 1		},
1091/* GUCODE32_SEL	6 32 bit Code Descriptor for user */
1092{	.ssd_base = 0x0,
1093	.ssd_limit = 0xfffff,
1094	.ssd_type = SDT_MEMERA,
1095	.ssd_dpl = SEL_UPL,
1096	.ssd_p = 1,
1097	.ssd_long = 0,
1098	.ssd_def32 = 1,
1099	.ssd_gran = 1		},
1100/* GUDATA_SEL	7 32/64 bit Data Descriptor for user */
1101{	.ssd_base = 0x0,
1102	.ssd_limit = 0xfffff,
1103	.ssd_type = SDT_MEMRWA,
1104	.ssd_dpl = SEL_UPL,
1105	.ssd_p = 1,
1106	.ssd_long = 0,
1107	.ssd_def32 = 1,
1108	.ssd_gran = 1		},
1109/* GUCODE_SEL	8 64 bit Code Descriptor for user */
1110{	.ssd_base = 0x0,
1111	.ssd_limit = 0xfffff,
1112	.ssd_type = SDT_MEMERA,
1113	.ssd_dpl = SEL_UPL,
1114	.ssd_p = 1,
1115	.ssd_long = 1,
1116	.ssd_def32 = 0,
1117	.ssd_gran = 1		},
1118/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1119{	.ssd_base = 0x0,
1120	.ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1,
1121	.ssd_type = SDT_SYSTSS,
1122	.ssd_dpl = SEL_KPL,
1123	.ssd_p = 1,
1124	.ssd_long = 0,
1125	.ssd_def32 = 0,
1126	.ssd_gran = 0		},
1127/* Actually, the TSS is a system descriptor which is double size */
1128{	.ssd_base = 0x0,
1129	.ssd_limit = 0x0,
1130	.ssd_type = 0,
1131	.ssd_dpl = 0,
1132	.ssd_p = 0,
1133	.ssd_long = 0,
1134	.ssd_def32 = 0,
1135	.ssd_gran = 0		},
1136/* GUSERLDT_SEL	11 LDT Descriptor */
1137{	.ssd_base = 0x0,
1138	.ssd_limit = 0x0,
1139	.ssd_type = 0,
1140	.ssd_dpl = 0,
1141	.ssd_p = 0,
1142	.ssd_long = 0,
1143	.ssd_def32 = 0,
1144	.ssd_gran = 0		},
1145/* GUSERLDT_SEL	12 LDT Descriptor, double size */
1146{	.ssd_base = 0x0,
1147	.ssd_limit = 0x0,
1148	.ssd_type = 0,
1149	.ssd_dpl = 0,
1150	.ssd_p = 0,
1151	.ssd_long = 0,
1152	.ssd_def32 = 0,
1153	.ssd_gran = 0		},
1154};
1155
1156void
1157setidt(int idx, inthand_t *func, int typ, int dpl, int ist)
1158{
1159	struct gate_descriptor *ip;
1160
1161	ip = idt + idx;
1162	ip->gd_looffset = (uintptr_t)func;
1163	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1164	ip->gd_ist = ist;
1165	ip->gd_xx = 0;
1166	ip->gd_type = typ;
1167	ip->gd_dpl = dpl;
1168	ip->gd_p = 1;
1169	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1170}
1171
1172extern inthand_t
1173	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1174	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1175	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1176	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1177	IDTVEC(xmm), IDTVEC(dblfault),
1178#ifdef KDTRACE_HOOKS
1179	IDTVEC(dtrace_ret),
1180#endif
1181#ifdef XENHVM
1182	IDTVEC(xen_intr_upcall),
1183#endif
1184	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1185
1186#ifdef DDB
1187/*
1188 * Display the index and function name of any IDT entries that don't use
1189 * the default 'rsvd' entry point.
1190 */
1191DB_SHOW_COMMAND(idt, db_show_idt)
1192{
1193	struct gate_descriptor *ip;
1194	int idx;
1195	uintptr_t func;
1196
1197	ip = idt;
1198	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1199		func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
1200		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1201			db_printf("%3d\t", idx);
1202			db_printsym(func, DB_STGY_PROC);
1203			db_printf("\n");
1204		}
1205		ip++;
1206	}
1207}
1208
1209/* Show privileged registers. */
1210DB_SHOW_COMMAND(sysregs, db_show_sysregs)
1211{
1212	struct {
1213		uint16_t limit;
1214		uint64_t base;
1215	} __packed idtr, gdtr;
1216	uint16_t ldt, tr;
1217
1218	__asm __volatile("sidt %0" : "=m" (idtr));
1219	db_printf("idtr\t0x%016lx/%04x\n",
1220	    (u_long)idtr.base, (u_int)idtr.limit);
1221	__asm __volatile("sgdt %0" : "=m" (gdtr));
1222	db_printf("gdtr\t0x%016lx/%04x\n",
1223	    (u_long)gdtr.base, (u_int)gdtr.limit);
1224	__asm __volatile("sldt %0" : "=r" (ldt));
1225	db_printf("ldtr\t0x%04x\n", ldt);
1226	__asm __volatile("str %0" : "=r" (tr));
1227	db_printf("tr\t0x%04x\n", tr);
1228	db_printf("cr0\t0x%016lx\n", rcr0());
1229	db_printf("cr2\t0x%016lx\n", rcr2());
1230	db_printf("cr3\t0x%016lx\n", rcr3());
1231	db_printf("cr4\t0x%016lx\n", rcr4());
1232	if (rcr4() & CR4_XSAVE)
1233		db_printf("xcr0\t0x%016lx\n", rxcr(0));
1234	db_printf("EFER\t0x%016lx\n", rdmsr(MSR_EFER));
1235	if (cpu_feature2 & (CPUID2_VMX | CPUID2_SMX))
1236		db_printf("FEATURES_CTL\t%016lx\n",
1237		    rdmsr(MSR_IA32_FEATURE_CONTROL));
1238	db_printf("DEBUG_CTL\t0x%016lx\n", rdmsr(MSR_DEBUGCTLMSR));
1239	db_printf("PAT\t0x%016lx\n", rdmsr(MSR_PAT));
1240	db_printf("GSBASE\t0x%016lx\n", rdmsr(MSR_GSBASE));
1241}
1242
1243DB_SHOW_COMMAND(dbregs, db_show_dbregs)
1244{
1245
1246	db_printf("dr0\t0x%016lx\n", rdr0());
1247	db_printf("dr1\t0x%016lx\n", rdr1());
1248	db_printf("dr2\t0x%016lx\n", rdr2());
1249	db_printf("dr3\t0x%016lx\n", rdr3());
1250	db_printf("dr6\t0x%016lx\n", rdr6());
1251	db_printf("dr7\t0x%016lx\n", rdr7());
1252}
1253#endif
1254
1255void
1256sdtossd(sd, ssd)
1257	struct user_segment_descriptor *sd;
1258	struct soft_segment_descriptor *ssd;
1259{
1260
1261	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1262	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1263	ssd->ssd_type  = sd->sd_type;
1264	ssd->ssd_dpl   = sd->sd_dpl;
1265	ssd->ssd_p     = sd->sd_p;
1266	ssd->ssd_long  = sd->sd_long;
1267	ssd->ssd_def32 = sd->sd_def32;
1268	ssd->ssd_gran  = sd->sd_gran;
1269}
1270
1271void
1272ssdtosd(ssd, sd)
1273	struct soft_segment_descriptor *ssd;
1274	struct user_segment_descriptor *sd;
1275{
1276
1277	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1278	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1279	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1280	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1281	sd->sd_type  = ssd->ssd_type;
1282	sd->sd_dpl   = ssd->ssd_dpl;
1283	sd->sd_p     = ssd->ssd_p;
1284	sd->sd_long  = ssd->ssd_long;
1285	sd->sd_def32 = ssd->ssd_def32;
1286	sd->sd_gran  = ssd->ssd_gran;
1287}
1288
1289void
1290ssdtosyssd(ssd, sd)
1291	struct soft_segment_descriptor *ssd;
1292	struct system_segment_descriptor *sd;
1293{
1294
1295	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1296	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1297	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1298	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1299	sd->sd_type  = ssd->ssd_type;
1300	sd->sd_dpl   = ssd->ssd_dpl;
1301	sd->sd_p     = ssd->ssd_p;
1302	sd->sd_gran  = ssd->ssd_gran;
1303}
1304
1305#if !defined(DEV_ATPIC) && defined(DEV_ISA)
1306#include <isa/isavar.h>
1307#include <isa/isareg.h>
1308/*
1309 * Return a bitmap of the current interrupt requests.  This is 8259-specific
1310 * and is only suitable for use at probe time.
1311 * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
1312 * It shouldn't be here.  There should probably be an APIC centric
1313 * implementation in the apic driver code, if at all.
1314 */
1315intrmask_t
1316isa_irq_pending(void)
1317{
1318	u_char irr1;
1319	u_char irr2;
1320
1321	irr1 = inb(IO_ICU1);
1322	irr2 = inb(IO_ICU2);
1323	return ((irr2 << 8) | irr1);
1324}
1325#endif
1326
1327u_int basemem;
1328
1329static int
1330add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
1331    int *physmap_idxp)
1332{
1333	int i, insert_idx, physmap_idx;
1334
1335	physmap_idx = *physmap_idxp;
1336
1337	if (length == 0)
1338		return (1);
1339
1340	/*
1341	 * Find insertion point while checking for overlap.  Start off by
1342	 * assuming the new entry will be added to the end.
1343	 *
1344	 * NB: physmap_idx points to the next free slot.
1345	 */
1346	insert_idx = physmap_idx;
1347	for (i = 0; i <= physmap_idx; i += 2) {
1348		if (base < physmap[i + 1]) {
1349			if (base + length <= physmap[i]) {
1350				insert_idx = i;
1351				break;
1352			}
1353			if (boothowto & RB_VERBOSE)
1354				printf(
1355		    "Overlapping memory regions, ignoring second region\n");
1356			return (1);
1357		}
1358	}
1359
1360	/* See if we can prepend to the next entry. */
1361	if (insert_idx <= physmap_idx && base + length == physmap[insert_idx]) {
1362		physmap[insert_idx] = base;
1363		return (1);
1364	}
1365
1366	/* See if we can append to the previous entry. */
1367	if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
1368		physmap[insert_idx - 1] += length;
1369		return (1);
1370	}
1371
1372	physmap_idx += 2;
1373	*physmap_idxp = physmap_idx;
1374	if (physmap_idx == PHYSMAP_SIZE) {
1375		printf(
1376		"Too many segments in the physical address map, giving up\n");
1377		return (0);
1378	}
1379
1380	/*
1381	 * Move the last 'N' entries down to make room for the new
1382	 * entry if needed.
1383	 */
1384	for (i = (physmap_idx - 2); i > insert_idx; i -= 2) {
1385		physmap[i] = physmap[i - 2];
1386		physmap[i + 1] = physmap[i - 1];
1387	}
1388
1389	/* Insert the new entry. */
1390	physmap[insert_idx] = base;
1391	physmap[insert_idx + 1] = base + length;
1392	return (1);
1393}
1394
1395static void
1396add_smap_entries(struct bios_smap *smapbase, vm_paddr_t *physmap,
1397    int *physmap_idx)
1398{
1399	struct bios_smap *smap, *smapend;
1400	u_int32_t smapsize;
1401
1402	/*
1403	 * Memory map from INT 15:E820.
1404	 *
1405	 * subr_module.c says:
1406	 * "Consumer may safely assume that size value precedes data."
1407	 * ie: an int32_t immediately precedes smap.
1408	 */
1409	smapsize = *((u_int32_t *)smapbase - 1);
1410	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1411
1412	for (smap = smapbase; smap < smapend; smap++) {
1413		if (boothowto & RB_VERBOSE)
1414			printf("SMAP type=%02x base=%016lx len=%016lx\n",
1415			    smap->type, smap->base, smap->length);
1416
1417		if (smap->type != SMAP_TYPE_MEMORY)
1418			continue;
1419
1420		if (!add_physmap_entry(smap->base, smap->length, physmap,
1421		    physmap_idx))
1422			break;
1423	}
1424}
1425
1426#define efi_next_descriptor(ptr, size) \
1427	((struct efi_md *)(((uint8_t *) ptr) + size))
1428
1429static void
1430add_efi_map_entries(struct efi_map_header *efihdr, vm_paddr_t *physmap,
1431    int *physmap_idx)
1432{
1433	struct efi_md *map, *p;
1434	const char *type;
1435	size_t efisz;
1436	int ndesc, i;
1437
1438	static const char *types[] = {
1439		"Reserved",
1440		"LoaderCode",
1441		"LoaderData",
1442		"BootServicesCode",
1443		"BootServicesData",
1444		"RuntimeServicesCode",
1445		"RuntimeServicesData",
1446		"ConventionalMemory",
1447		"UnusableMemory",
1448		"ACPIReclaimMemory",
1449		"ACPIMemoryNVS",
1450		"MemoryMappedIO",
1451		"MemoryMappedIOPortSpace",
1452		"PalCode"
1453	};
1454
1455	/*
1456	 * Memory map data provided by UEFI via the GetMemoryMap
1457	 * Boot Services API.
1458	 */
1459	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1460	map = (struct efi_md *)((uint8_t *)efihdr + efisz);
1461
1462	if (efihdr->descriptor_size == 0)
1463		return;
1464	ndesc = efihdr->memory_size / efihdr->descriptor_size;
1465
1466	if (boothowto & RB_VERBOSE)
1467		printf("%23s %12s %12s %8s %4s\n",
1468		    "Type", "Physical", "Virtual", "#Pages", "Attr");
1469
1470	for (i = 0, p = map; i < ndesc; i++,
1471	    p = efi_next_descriptor(p, efihdr->descriptor_size)) {
1472		if (boothowto & RB_VERBOSE) {
1473			if (p->md_type <= EFI_MD_TYPE_PALCODE)
1474				type = types[p->md_type];
1475			else
1476				type = "<INVALID>";
1477			printf("%23s %012lx %12p %08lx ", type, p->md_phys,
1478			    p->md_virt, p->md_pages);
1479			if (p->md_attr & EFI_MD_ATTR_UC)
1480				printf("UC ");
1481			if (p->md_attr & EFI_MD_ATTR_WC)
1482				printf("WC ");
1483			if (p->md_attr & EFI_MD_ATTR_WT)
1484				printf("WT ");
1485			if (p->md_attr & EFI_MD_ATTR_WB)
1486				printf("WB ");
1487			if (p->md_attr & EFI_MD_ATTR_UCE)
1488				printf("UCE ");
1489			if (p->md_attr & EFI_MD_ATTR_WP)
1490				printf("WP ");
1491			if (p->md_attr & EFI_MD_ATTR_RP)
1492				printf("RP ");
1493			if (p->md_attr & EFI_MD_ATTR_XP)
1494				printf("XP ");
1495			if (p->md_attr & EFI_MD_ATTR_RT)
1496				printf("RUNTIME");
1497			printf("\n");
1498		}
1499
1500		switch (p->md_type) {
1501		case EFI_MD_TYPE_CODE:
1502		case EFI_MD_TYPE_DATA:
1503		case EFI_MD_TYPE_BS_CODE:
1504		case EFI_MD_TYPE_BS_DATA:
1505		case EFI_MD_TYPE_FREE:
1506			/*
1507			 * We're allowed to use any entry with these types.
1508			 */
1509			break;
1510		default:
1511			continue;
1512		}
1513
1514		if (!add_physmap_entry(p->md_phys, (p->md_pages * PAGE_SIZE),
1515		    physmap, physmap_idx))
1516			break;
1517	}
1518}
1519
1520static char bootmethod[16] = "";
1521SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0,
1522    "System firmware boot method");
1523
1524#define	PAGES_PER_GB	(1024 * 1024 * 1024 / PAGE_SIZE)
1525
1526/*
1527 * Populate the (physmap) array with base/bound pairs describing the
1528 * available physical memory in the system, then test this memory and
1529 * build the phys_avail array describing the actually-available memory.
1530 *
1531 * Total memory size may be set by the kernel environment variable
1532 * hw.physmem or the compile-time define MAXMEM.
1533 *
1534 * XXX first should be vm_paddr_t.
1535 */
1536static void
1537getmemsize(caddr_t kmdp, u_int64_t first)
1538{
1539	int i, physmap_idx, pa_indx, da_indx;
1540	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1541	u_long physmem_start, physmem_tunable, memtest;
1542	pt_entry_t *pte;
1543	struct bios_smap *smapbase;
1544	struct efi_map_header *efihdr;
1545	quad_t dcons_addr, dcons_size;
1546	int page_counter;
1547
1548	bzero(physmap, sizeof(physmap));
1549	physmap_idx = 0;
1550
1551	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1552	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1553	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1554	    MODINFO_METADATA | MODINFOMD_SMAP);
1555
1556	if (efihdr != NULL) {
1557		add_efi_map_entries(efihdr, physmap, &physmap_idx);
1558		strlcpy(bootmethod, "UEFI", sizeof(bootmethod));
1559	} else if (smapbase != NULL) {
1560		add_smap_entries(smapbase, physmap, &physmap_idx);
1561		strlcpy(bootmethod, "BIOS", sizeof(bootmethod));
1562	} else {
1563		panic("No BIOS smap or EFI map info from loader!");
1564	}
1565
1566	physmap_idx -= 2;
1567
1568	/*
1569	 * Find the 'base memory' segment for SMP
1570	 */
1571	basemem = 0;
1572	for (i = 0; i <= physmap_idx; i += 2) {
1573		if (physmap[i] <= 0xA0000) {
1574			basemem = physmap[i + 1] / 1024;
1575			break;
1576		}
1577	}
1578	if (basemem == 0 || basemem > 640) {
1579		if (bootverbose)
1580			printf(
1581		"Memory map doesn't contain a basemem segment, faking it");
1582		basemem = 640;
1583	}
1584
1585#ifdef SMP
1586	/* make hole for AP bootstrap code */
1587	if (physmap[1] >= 0x100000000)
1588		panic("Basemem segment is not suitable for AP bootstrap code!");
1589	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1590#endif
1591
1592	/*
1593	 * Maxmem isn't the "maximum memory", it's one larger than the
1594	 * highest page of the physical address space.  It should be
1595	 * called something like "Maxphyspage".  We may adjust this
1596	 * based on ``hw.physmem'' and the results of the memory test.
1597	 */
1598	Maxmem = atop(physmap[physmap_idx + 1]);
1599
1600#ifdef MAXMEM
1601	Maxmem = MAXMEM / 4;
1602#endif
1603
1604	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1605		Maxmem = atop(physmem_tunable);
1606
1607	/*
1608	 * The boot memory test is disabled by default, as it takes a
1609	 * significant amount of time on large-memory systems, and is
1610	 * unfriendly to virtual machines as it unnecessarily touches all
1611	 * pages.
1612	 *
1613	 * A general name is used as the code may be extended to support
1614	 * additional tests beyond the current "page present" test.
1615	 */
1616	memtest = 0;
1617	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
1618
1619	/*
1620	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1621	 * in the system.
1622	 */
1623	if (Maxmem > atop(physmap[physmap_idx + 1]))
1624		Maxmem = atop(physmap[physmap_idx + 1]);
1625
1626	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1627	    (boothowto & RB_VERBOSE))
1628		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1629
1630	/* call pmap initialization to make new kernel address space */
1631	pmap_bootstrap(&first);
1632
1633	/*
1634	 * Size up each available chunk of physical memory.
1635	 *
1636	 * XXX Some BIOSes corrupt low 64KB between suspend and resume.
1637	 * By default, mask off the first 16 pages unless we appear to be
1638	 * running in a VM.
1639	 */
1640	physmem_start = (vm_guest > VM_GUEST_NO ? 1 : 16) << PAGE_SHIFT;
1641	TUNABLE_ULONG_FETCH("hw.physmem.start", &physmem_start);
1642	if (physmap[0] < physmem_start) {
1643		if (physmem_start < PAGE_SIZE)
1644			physmap[0] = PAGE_SIZE;
1645		else if (physmem_start >= physmap[1])
1646			physmap[0] = round_page(physmap[1] - PAGE_SIZE);
1647		else
1648			physmap[0] = round_page(physmem_start);
1649	}
1650	pa_indx = 0;
1651	da_indx = 1;
1652	phys_avail[pa_indx++] = physmap[0];
1653	phys_avail[pa_indx] = physmap[0];
1654	dump_avail[da_indx] = physmap[0];
1655	pte = CMAP1;
1656
1657	/*
1658	 * Get dcons buffer address
1659	 */
1660	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1661	    getenv_quad("dcons.size", &dcons_size) == 0)
1662		dcons_addr = 0;
1663
1664	/*
1665	 * physmap is in bytes, so when converting to page boundaries,
1666	 * round up the start address and round down the end address.
1667	 */
1668	page_counter = 0;
1669	if (memtest != 0)
1670		printf("Testing system memory");
1671	for (i = 0; i <= physmap_idx; i += 2) {
1672		vm_paddr_t end;
1673
1674		end = ptoa((vm_paddr_t)Maxmem);
1675		if (physmap[i + 1] < end)
1676			end = trunc_page(physmap[i + 1]);
1677		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1678			int tmp, page_bad, full;
1679			int *ptr = (int *)CADDR1;
1680
1681			full = FALSE;
1682			/*
1683			 * block out kernel memory as not available.
1684			 */
1685			if (pa >= (vm_paddr_t)kernphys && pa < first)
1686				goto do_dump_avail;
1687
1688			/*
1689			 * block out dcons buffer
1690			 */
1691			if (dcons_addr > 0
1692			    && pa >= trunc_page(dcons_addr)
1693			    && pa < dcons_addr + dcons_size)
1694				goto do_dump_avail;
1695
1696			page_bad = FALSE;
1697			if (memtest == 0)
1698				goto skip_memtest;
1699
1700			/*
1701			 * Print a "." every GB to show we're making
1702			 * progress.
1703			 */
1704			page_counter++;
1705			if ((page_counter % PAGES_PER_GB) == 0)
1706				printf(".");
1707
1708			/*
1709			 * map page into kernel: valid, read/write,non-cacheable
1710			 */
1711			*pte = pa | PG_V | PG_RW | PG_NC_PWT | PG_NC_PCD;
1712			invltlb();
1713
1714			tmp = *(int *)ptr;
1715			/*
1716			 * Test for alternating 1's and 0's
1717			 */
1718			*(volatile int *)ptr = 0xaaaaaaaa;
1719			if (*(volatile int *)ptr != 0xaaaaaaaa)
1720				page_bad = TRUE;
1721			/*
1722			 * Test for alternating 0's and 1's
1723			 */
1724			*(volatile int *)ptr = 0x55555555;
1725			if (*(volatile int *)ptr != 0x55555555)
1726				page_bad = TRUE;
1727			/*
1728			 * Test for all 1's
1729			 */
1730			*(volatile int *)ptr = 0xffffffff;
1731			if (*(volatile int *)ptr != 0xffffffff)
1732				page_bad = TRUE;
1733			/*
1734			 * Test for all 0's
1735			 */
1736			*(volatile int *)ptr = 0x0;
1737			if (*(volatile int *)ptr != 0x0)
1738				page_bad = TRUE;
1739			/*
1740			 * Restore original value.
1741			 */
1742			*(int *)ptr = tmp;
1743
1744skip_memtest:
1745			/*
1746			 * Adjust array of valid/good pages.
1747			 */
1748			if (page_bad == TRUE)
1749				continue;
1750			/*
1751			 * If this good page is a continuation of the
1752			 * previous set of good pages, then just increase
1753			 * the end pointer. Otherwise start a new chunk.
1754			 * Note that "end" points one higher than end,
1755			 * making the range >= start and < end.
1756			 * If we're also doing a speculative memory
1757			 * test and we at or past the end, bump up Maxmem
1758			 * so that we keep going. The first bad page
1759			 * will terminate the loop.
1760			 */
1761			if (phys_avail[pa_indx] == pa) {
1762				phys_avail[pa_indx] += PAGE_SIZE;
1763			} else {
1764				pa_indx++;
1765				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1766					printf(
1767		"Too many holes in the physical address space, giving up\n");
1768					pa_indx--;
1769					full = TRUE;
1770					goto do_dump_avail;
1771				}
1772				phys_avail[pa_indx++] = pa;	/* start */
1773				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1774			}
1775			physmem++;
1776do_dump_avail:
1777			if (dump_avail[da_indx] == pa) {
1778				dump_avail[da_indx] += PAGE_SIZE;
1779			} else {
1780				da_indx++;
1781				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1782					da_indx--;
1783					goto do_next;
1784				}
1785				dump_avail[da_indx++] = pa; /* start */
1786				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1787			}
1788do_next:
1789			if (full)
1790				break;
1791		}
1792	}
1793	*pte = 0;
1794	invltlb();
1795	if (memtest != 0)
1796		printf("\n");
1797
1798	/*
1799	 * XXX
1800	 * The last chunk must contain at least one page plus the message
1801	 * buffer to avoid complicating other code (message buffer address
1802	 * calculation, etc.).
1803	 */
1804	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1805	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
1806		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1807		phys_avail[pa_indx--] = 0;
1808		phys_avail[pa_indx--] = 0;
1809	}
1810
1811	Maxmem = atop(phys_avail[pa_indx]);
1812
1813	/* Trim off space for the message buffer. */
1814	phys_avail[pa_indx] -= round_page(msgbufsize);
1815
1816	/* Map the message buffer. */
1817	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
1818}
1819
1820u_int64_t
1821hammer_time(u_int64_t modulep, u_int64_t physfree)
1822{
1823	caddr_t kmdp;
1824	int gsel_tss, x;
1825	struct pcpu *pc;
1826	struct nmi_pcpu *np;
1827	struct xstate_hdr *xhdr;
1828	u_int64_t msr;
1829	char *env;
1830	size_t kstack0_sz;
1831
1832	thread0.td_kstack = physfree + KERNBASE;
1833	thread0.td_kstack_pages = KSTACK_PAGES;
1834	kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
1835	bzero((void *)thread0.td_kstack, kstack0_sz);
1836	physfree += kstack0_sz;
1837
1838	/*
1839 	 * This may be done better later if it gets more high level
1840 	 * components in it. If so just link td->td_proc here.
1841	 */
1842	proc_linkup0(&proc0, &thread0);
1843
1844	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1845	preload_bootstrap_relocate(KERNBASE);
1846	kmdp = preload_search_by_type("elf kernel");
1847	if (kmdp == NULL)
1848		kmdp = preload_search_by_type("elf64 kernel");
1849	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1850	init_static_kenv(MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE, 0);
1851#ifdef DDB
1852	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1853	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1854#endif
1855
1856	identify_cpu();
1857	identify_hypervisor();
1858
1859	/* Init basic tunables, hz etc */
1860	init_param1();
1861
1862	/*
1863	 * make gdt memory segments
1864	 */
1865	for (x = 0; x < NGDT; x++) {
1866		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
1867		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
1868			ssdtosd(&gdt_segs[x], &gdt[x]);
1869	}
1870	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1871	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1872	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1873
1874	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1875	r_gdt.rd_base =  (long) gdt;
1876	lgdt(&r_gdt);
1877	pc = &__pcpu[0];
1878
1879	wrmsr(MSR_FSBASE, 0);		/* User value */
1880	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1881	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1882
1883	pcpu_init(pc, 0, sizeof(struct pcpu));
1884	dpcpu_init((void *)(physfree + KERNBASE), 0);
1885	physfree += DPCPU_SIZE;
1886	PCPU_SET(prvspace, pc);
1887	PCPU_SET(curthread, &thread0);
1888	PCPU_SET(tssp, &common_tss[0]);
1889	PCPU_SET(commontssp, &common_tss[0]);
1890	PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1891	PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
1892	PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
1893	PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1894
1895	/*
1896	 * Initialize mutexes.
1897	 *
1898	 * icu_lock: in order to allow an interrupt to occur in a critical
1899	 * 	     section, to set pcpu->ipending (etc...) properly, we
1900	 *	     must be able to get the icu lock, so it can't be
1901	 *	     under witness.
1902	 */
1903	mutex_init();
1904	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1905	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
1906
1907	/* exceptions */
1908	for (x = 0; x < NIDT; x++)
1909		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1910	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1911	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1912	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
1913 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1914	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1915	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1916	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1917	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1918	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1919	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1920	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1921	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1922	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1923	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1924	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1925	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1926	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1927	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1928	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1929#ifdef KDTRACE_HOOKS
1930	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
1931#endif
1932#ifdef XENHVM
1933	setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYSIGT, SEL_UPL, 0);
1934#endif
1935
1936	r_idt.rd_limit = sizeof(idt0) - 1;
1937	r_idt.rd_base = (long) idt;
1938	lidt(&r_idt);
1939
1940	/*
1941	 * Initialize the i8254 before the console so that console
1942	 * initialization can use DELAY().
1943	 */
1944	i8254_init();
1945
1946	/*
1947	 * Use vt(4) by default for UEFI boot (during the sc(4)/vt(4)
1948	 * transition).
1949	 */
1950	if (kmdp != NULL && preload_search_info(kmdp,
1951	    MODINFO_METADATA | MODINFOMD_EFI_MAP) != NULL)
1952		vty_set_preferred(VTY_VT);
1953
1954	finishidentcpu();	/* Final stage of CPU initialization */
1955	initializecpu();	/* Initialize CPU registers */
1956	initializecpucache();
1957
1958	/* doublefault stack space, runs on ist1 */
1959	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1960
1961	/*
1962	 * NMI stack, runs on ist2.  The pcpu pointer is stored just
1963	 * above the start of the ist2 stack.
1964	 */
1965	np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
1966	np->np_pcpu = (register_t) pc;
1967	common_tss[0].tss_ist2 = (long) np;
1968
1969	/* Set the IO permission bitmap (empty due to tss seg limit) */
1970	common_tss[0].tss_iobase = sizeof(struct amd64tss) +
1971	    IOPAGES * PAGE_SIZE;
1972
1973	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1974	ltr(gsel_tss);
1975
1976	/* Set up the fast syscall stuff */
1977	msr = rdmsr(MSR_EFER) | EFER_SCE;
1978	wrmsr(MSR_EFER, msr);
1979	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1980	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1981	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1982	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1983	wrmsr(MSR_STAR, msr);
1984	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1985
1986	getmemsize(kmdp, physfree);
1987	init_param2(physmem);
1988
1989	/* now running on new page tables, configured,and u/iom is accessible */
1990
1991	cninit();
1992
1993#ifdef DEV_ISA
1994#ifdef DEV_ATPIC
1995	elcr_probe();
1996	atpic_startup();
1997#else
1998	/* Reset and mask the atpics and leave them shut down. */
1999	atpic_reset();
2000
2001	/*
2002	 * Point the ICU spurious interrupt vectors at the APIC spurious
2003	 * interrupt handler.
2004	 */
2005	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
2006	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
2007#endif
2008#else
2009#error "have you forgotten the isa device?";
2010#endif
2011
2012	kdb_init();
2013
2014#ifdef KDB
2015	if (boothowto & RB_KDB)
2016		kdb_enter(KDB_WHY_BOOTFLAGS,
2017		    "Boot flags requested debugger");
2018#endif
2019
2020	msgbufinit(msgbufp, msgbufsize);
2021	fpuinit();
2022
2023	/*
2024	 * Set up thread0 pcb after fpuinit calculated pcb + fpu save
2025	 * area size.  Zero out the extended state header in fpu save
2026	 * area.
2027	 */
2028	thread0.td_pcb = get_pcb_td(&thread0);
2029	thread0.td_pcb->pcb_save = get_pcb_user_save_td(&thread0);
2030	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
2031	if (use_xsave) {
2032		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
2033		    1);
2034		xhdr->xstate_bv = xsave_mask;
2035	}
2036	/* make an initial tss so cpu can get interrupt stack on syscall! */
2037	common_tss[0].tss_rsp0 = (vm_offset_t)thread0.td_pcb;
2038	/* Ensure the stack is aligned to 16 bytes */
2039	common_tss[0].tss_rsp0 &= ~0xFul;
2040	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
2041	PCPU_SET(curpcb, thread0.td_pcb);
2042
2043	/* transfer to user mode */
2044
2045	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2046	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2047	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2048	_ufssel = GSEL(GUFS32_SEL, SEL_UPL);
2049	_ugssel = GSEL(GUGS32_SEL, SEL_UPL);
2050
2051	load_ds(_udatasel);
2052	load_es(_udatasel);
2053	load_fs(_ufssel);
2054
2055	/* setup proc 0's pcb */
2056	thread0.td_pcb->pcb_flags = 0;
2057	thread0.td_pcb->pcb_cr3 = KPML4phys; /* PCID 0 is reserved for kernel */
2058	thread0.td_frame = &proc0_tf;
2059
2060        env = getenv("kernelname");
2061	if (env != NULL)
2062		strlcpy(kernelname, env, sizeof(kernelname));
2063
2064	cpu_probe_amdc1e();
2065
2066#ifdef FDT
2067	x86_init_fdt();
2068#endif
2069
2070	/* Location of kernel stack for locore */
2071	return ((u_int64_t)thread0.td_pcb);
2072}
2073
2074void
2075cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
2076{
2077
2078	pcpu->pc_acpi_id = 0xffffffff;
2079}
2080
2081static int
2082smap_sysctl_handler(SYSCTL_HANDLER_ARGS)
2083{
2084	struct bios_smap *smapbase;
2085	struct bios_smap_xattr smap;
2086	caddr_t kmdp;
2087	uint32_t *smapattr;
2088	int count, error, i;
2089
2090	/* Retrieve the system memory map from the loader. */
2091	kmdp = preload_search_by_type("elf kernel");
2092	if (kmdp == NULL)
2093		kmdp = preload_search_by_type("elf64 kernel");
2094	smapbase = (struct bios_smap *)preload_search_info(kmdp,
2095	    MODINFO_METADATA | MODINFOMD_SMAP);
2096	if (smapbase == NULL)
2097		return (0);
2098	smapattr = (uint32_t *)preload_search_info(kmdp,
2099	    MODINFO_METADATA | MODINFOMD_SMAP_XATTR);
2100	count = *((uint32_t *)smapbase - 1) / sizeof(*smapbase);
2101	error = 0;
2102	for (i = 0; i < count; i++) {
2103		smap.base = smapbase[i].base;
2104		smap.length = smapbase[i].length;
2105		smap.type = smapbase[i].type;
2106		if (smapattr != NULL)
2107			smap.xattr = smapattr[i];
2108		else
2109			smap.xattr = 0;
2110		error = SYSCTL_OUT(req, &smap, sizeof(smap));
2111	}
2112	return (error);
2113}
2114SYSCTL_PROC(_machdep, OID_AUTO, smap, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
2115    smap_sysctl_handler, "S,bios_smap_xattr", "Raw BIOS SMAP data");
2116
2117static int
2118efi_map_sysctl_handler(SYSCTL_HANDLER_ARGS)
2119{
2120	struct efi_map_header *efihdr;
2121	caddr_t kmdp;
2122	uint32_t efisize;
2123
2124	kmdp = preload_search_by_type("elf kernel");
2125	if (kmdp == NULL)
2126		kmdp = preload_search_by_type("elf64 kernel");
2127	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
2128	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
2129	if (efihdr == NULL)
2130		return (0);
2131	efisize = *((uint32_t *)efihdr - 1);
2132	return (SYSCTL_OUT(req, efihdr, efisize));
2133}
2134SYSCTL_PROC(_machdep, OID_AUTO, efi_map, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
2135    efi_map_sysctl_handler, "S,efi_map_header", "Raw EFI Memory Map");
2136
2137void
2138spinlock_enter(void)
2139{
2140	struct thread *td;
2141	register_t flags;
2142
2143	td = curthread;
2144	if (td->td_md.md_spinlock_count == 0) {
2145		flags = intr_disable();
2146		td->td_md.md_spinlock_count = 1;
2147		td->td_md.md_saved_flags = flags;
2148	} else
2149		td->td_md.md_spinlock_count++;
2150	critical_enter();
2151}
2152
2153void
2154spinlock_exit(void)
2155{
2156	struct thread *td;
2157	register_t flags;
2158
2159	td = curthread;
2160	critical_exit();
2161	flags = td->td_md.md_saved_flags;
2162	td->td_md.md_spinlock_count--;
2163	if (td->td_md.md_spinlock_count == 0)
2164		intr_restore(flags);
2165}
2166
2167/*
2168 * Construct a PCB from a trapframe. This is called from kdb_trap() where
2169 * we want to start a backtrace from the function that caused us to enter
2170 * the debugger. We have the context in the trapframe, but base the trace
2171 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
2172 * enough for a backtrace.
2173 */
2174void
2175makectx(struct trapframe *tf, struct pcb *pcb)
2176{
2177
2178	pcb->pcb_r12 = tf->tf_r12;
2179	pcb->pcb_r13 = tf->tf_r13;
2180	pcb->pcb_r14 = tf->tf_r14;
2181	pcb->pcb_r15 = tf->tf_r15;
2182	pcb->pcb_rbp = tf->tf_rbp;
2183	pcb->pcb_rbx = tf->tf_rbx;
2184	pcb->pcb_rip = tf->tf_rip;
2185	pcb->pcb_rsp = tf->tf_rsp;
2186}
2187
2188int
2189ptrace_set_pc(struct thread *td, unsigned long addr)
2190{
2191
2192	td->td_frame->tf_rip = addr;
2193	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
2194	return (0);
2195}
2196
2197int
2198ptrace_single_step(struct thread *td)
2199{
2200	td->td_frame->tf_rflags |= PSL_T;
2201	return (0);
2202}
2203
2204int
2205ptrace_clear_single_step(struct thread *td)
2206{
2207	td->td_frame->tf_rflags &= ~PSL_T;
2208	return (0);
2209}
2210
2211int
2212fill_regs(struct thread *td, struct reg *regs)
2213{
2214	struct trapframe *tp;
2215
2216	tp = td->td_frame;
2217	return (fill_frame_regs(tp, regs));
2218}
2219
2220int
2221fill_frame_regs(struct trapframe *tp, struct reg *regs)
2222{
2223	regs->r_r15 = tp->tf_r15;
2224	regs->r_r14 = tp->tf_r14;
2225	regs->r_r13 = tp->tf_r13;
2226	regs->r_r12 = tp->tf_r12;
2227	regs->r_r11 = tp->tf_r11;
2228	regs->r_r10 = tp->tf_r10;
2229	regs->r_r9  = tp->tf_r9;
2230	regs->r_r8  = tp->tf_r8;
2231	regs->r_rdi = tp->tf_rdi;
2232	regs->r_rsi = tp->tf_rsi;
2233	regs->r_rbp = tp->tf_rbp;
2234	regs->r_rbx = tp->tf_rbx;
2235	regs->r_rdx = tp->tf_rdx;
2236	regs->r_rcx = tp->tf_rcx;
2237	regs->r_rax = tp->tf_rax;
2238	regs->r_rip = tp->tf_rip;
2239	regs->r_cs = tp->tf_cs;
2240	regs->r_rflags = tp->tf_rflags;
2241	regs->r_rsp = tp->tf_rsp;
2242	regs->r_ss = tp->tf_ss;
2243	if (tp->tf_flags & TF_HASSEGS) {
2244		regs->r_ds = tp->tf_ds;
2245		regs->r_es = tp->tf_es;
2246		regs->r_fs = tp->tf_fs;
2247		regs->r_gs = tp->tf_gs;
2248	} else {
2249		regs->r_ds = 0;
2250		regs->r_es = 0;
2251		regs->r_fs = 0;
2252		regs->r_gs = 0;
2253	}
2254	return (0);
2255}
2256
2257int
2258set_regs(struct thread *td, struct reg *regs)
2259{
2260	struct trapframe *tp;
2261	register_t rflags;
2262
2263	tp = td->td_frame;
2264	rflags = regs->r_rflags & 0xffffffff;
2265	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
2266		return (EINVAL);
2267	tp->tf_r15 = regs->r_r15;
2268	tp->tf_r14 = regs->r_r14;
2269	tp->tf_r13 = regs->r_r13;
2270	tp->tf_r12 = regs->r_r12;
2271	tp->tf_r11 = regs->r_r11;
2272	tp->tf_r10 = regs->r_r10;
2273	tp->tf_r9  = regs->r_r9;
2274	tp->tf_r8  = regs->r_r8;
2275	tp->tf_rdi = regs->r_rdi;
2276	tp->tf_rsi = regs->r_rsi;
2277	tp->tf_rbp = regs->r_rbp;
2278	tp->tf_rbx = regs->r_rbx;
2279	tp->tf_rdx = regs->r_rdx;
2280	tp->tf_rcx = regs->r_rcx;
2281	tp->tf_rax = regs->r_rax;
2282	tp->tf_rip = regs->r_rip;
2283	tp->tf_cs = regs->r_cs;
2284	tp->tf_rflags = rflags;
2285	tp->tf_rsp = regs->r_rsp;
2286	tp->tf_ss = regs->r_ss;
2287	if (0) {	/* XXXKIB */
2288		tp->tf_ds = regs->r_ds;
2289		tp->tf_es = regs->r_es;
2290		tp->tf_fs = regs->r_fs;
2291		tp->tf_gs = regs->r_gs;
2292		tp->tf_flags = TF_HASSEGS;
2293	}
2294	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
2295	return (0);
2296}
2297
2298/* XXX check all this stuff! */
2299/* externalize from sv_xmm */
2300static void
2301fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
2302{
2303	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2304	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2305	int i;
2306
2307	/* pcb -> fpregs */
2308	bzero(fpregs, sizeof(*fpregs));
2309
2310	/* FPU control/status */
2311	penv_fpreg->en_cw = penv_xmm->en_cw;
2312	penv_fpreg->en_sw = penv_xmm->en_sw;
2313	penv_fpreg->en_tw = penv_xmm->en_tw;
2314	penv_fpreg->en_opcode = penv_xmm->en_opcode;
2315	penv_fpreg->en_rip = penv_xmm->en_rip;
2316	penv_fpreg->en_rdp = penv_xmm->en_rdp;
2317	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
2318	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
2319
2320	/* FPU registers */
2321	for (i = 0; i < 8; ++i)
2322		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
2323
2324	/* SSE registers */
2325	for (i = 0; i < 16; ++i)
2326		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
2327}
2328
2329/* internalize from fpregs into sv_xmm */
2330static void
2331set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
2332{
2333	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2334	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2335	int i;
2336
2337	/* fpregs -> pcb */
2338	/* FPU control/status */
2339	penv_xmm->en_cw = penv_fpreg->en_cw;
2340	penv_xmm->en_sw = penv_fpreg->en_sw;
2341	penv_xmm->en_tw = penv_fpreg->en_tw;
2342	penv_xmm->en_opcode = penv_fpreg->en_opcode;
2343	penv_xmm->en_rip = penv_fpreg->en_rip;
2344	penv_xmm->en_rdp = penv_fpreg->en_rdp;
2345	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
2346	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
2347
2348	/* FPU registers */
2349	for (i = 0; i < 8; ++i)
2350		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
2351
2352	/* SSE registers */
2353	for (i = 0; i < 16; ++i)
2354		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
2355}
2356
2357/* externalize from td->pcb */
2358int
2359fill_fpregs(struct thread *td, struct fpreg *fpregs)
2360{
2361
2362	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
2363	    P_SHOULDSTOP(td->td_proc),
2364	    ("not suspended thread %p", td));
2365	fpugetregs(td);
2366	fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs);
2367	return (0);
2368}
2369
2370/* internalize to td->pcb */
2371int
2372set_fpregs(struct thread *td, struct fpreg *fpregs)
2373{
2374
2375	set_fpregs_xmm(fpregs, get_pcb_user_save_td(td));
2376	fpuuserinited(td);
2377	return (0);
2378}
2379
2380/*
2381 * Get machine context.
2382 */
2383int
2384get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
2385{
2386	struct pcb *pcb;
2387	struct trapframe *tp;
2388
2389	pcb = td->td_pcb;
2390	tp = td->td_frame;
2391	PROC_LOCK(curthread->td_proc);
2392	mcp->mc_onstack = sigonstack(tp->tf_rsp);
2393	PROC_UNLOCK(curthread->td_proc);
2394	mcp->mc_r15 = tp->tf_r15;
2395	mcp->mc_r14 = tp->tf_r14;
2396	mcp->mc_r13 = tp->tf_r13;
2397	mcp->mc_r12 = tp->tf_r12;
2398	mcp->mc_r11 = tp->tf_r11;
2399	mcp->mc_r10 = tp->tf_r10;
2400	mcp->mc_r9  = tp->tf_r9;
2401	mcp->mc_r8  = tp->tf_r8;
2402	mcp->mc_rdi = tp->tf_rdi;
2403	mcp->mc_rsi = tp->tf_rsi;
2404	mcp->mc_rbp = tp->tf_rbp;
2405	mcp->mc_rbx = tp->tf_rbx;
2406	mcp->mc_rcx = tp->tf_rcx;
2407	mcp->mc_rflags = tp->tf_rflags;
2408	if (flags & GET_MC_CLEAR_RET) {
2409		mcp->mc_rax = 0;
2410		mcp->mc_rdx = 0;
2411		mcp->mc_rflags &= ~PSL_C;
2412	} else {
2413		mcp->mc_rax = tp->tf_rax;
2414		mcp->mc_rdx = tp->tf_rdx;
2415	}
2416	mcp->mc_rip = tp->tf_rip;
2417	mcp->mc_cs = tp->tf_cs;
2418	mcp->mc_rsp = tp->tf_rsp;
2419	mcp->mc_ss = tp->tf_ss;
2420	mcp->mc_ds = tp->tf_ds;
2421	mcp->mc_es = tp->tf_es;
2422	mcp->mc_fs = tp->tf_fs;
2423	mcp->mc_gs = tp->tf_gs;
2424	mcp->mc_flags = tp->tf_flags;
2425	mcp->mc_len = sizeof(*mcp);
2426	get_fpcontext(td, mcp, NULL, 0);
2427	mcp->mc_fsbase = pcb->pcb_fsbase;
2428	mcp->mc_gsbase = pcb->pcb_gsbase;
2429	mcp->mc_xfpustate = 0;
2430	mcp->mc_xfpustate_len = 0;
2431	bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
2432	return (0);
2433}
2434
2435/*
2436 * Set machine context.
2437 *
2438 * However, we don't set any but the user modifiable flags, and we won't
2439 * touch the cs selector.
2440 */
2441int
2442set_mcontext(struct thread *td, mcontext_t *mcp)
2443{
2444	struct pcb *pcb;
2445	struct trapframe *tp;
2446	char *xfpustate;
2447	long rflags;
2448	int ret;
2449
2450	pcb = td->td_pcb;
2451	tp = td->td_frame;
2452	if (mcp->mc_len != sizeof(*mcp) ||
2453	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2454		return (EINVAL);
2455	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
2456	    (tp->tf_rflags & ~PSL_USERCHANGE);
2457	if (mcp->mc_flags & _MC_HASFPXSTATE) {
2458		if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
2459		    sizeof(struct savefpu))
2460			return (EINVAL);
2461		xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
2462		ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
2463		    mcp->mc_xfpustate_len);
2464		if (ret != 0)
2465			return (ret);
2466	} else
2467		xfpustate = NULL;
2468	ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
2469	if (ret != 0)
2470		return (ret);
2471	tp->tf_r15 = mcp->mc_r15;
2472	tp->tf_r14 = mcp->mc_r14;
2473	tp->tf_r13 = mcp->mc_r13;
2474	tp->tf_r12 = mcp->mc_r12;
2475	tp->tf_r11 = mcp->mc_r11;
2476	tp->tf_r10 = mcp->mc_r10;
2477	tp->tf_r9  = mcp->mc_r9;
2478	tp->tf_r8  = mcp->mc_r8;
2479	tp->tf_rdi = mcp->mc_rdi;
2480	tp->tf_rsi = mcp->mc_rsi;
2481	tp->tf_rbp = mcp->mc_rbp;
2482	tp->tf_rbx = mcp->mc_rbx;
2483	tp->tf_rdx = mcp->mc_rdx;
2484	tp->tf_rcx = mcp->mc_rcx;
2485	tp->tf_rax = mcp->mc_rax;
2486	tp->tf_rip = mcp->mc_rip;
2487	tp->tf_rflags = rflags;
2488	tp->tf_rsp = mcp->mc_rsp;
2489	tp->tf_ss = mcp->mc_ss;
2490	tp->tf_flags = mcp->mc_flags;
2491	if (tp->tf_flags & TF_HASSEGS) {
2492		tp->tf_ds = mcp->mc_ds;
2493		tp->tf_es = mcp->mc_es;
2494		tp->tf_fs = mcp->mc_fs;
2495		tp->tf_gs = mcp->mc_gs;
2496	}
2497	if (mcp->mc_flags & _MC_HASBASES) {
2498		pcb->pcb_fsbase = mcp->mc_fsbase;
2499		pcb->pcb_gsbase = mcp->mc_gsbase;
2500	}
2501	set_pcb_flags(pcb, PCB_FULL_IRET);
2502	return (0);
2503}
2504
2505static void
2506get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
2507    size_t xfpusave_len)
2508{
2509	size_t max_len, len;
2510
2511	mcp->mc_ownedfp = fpugetregs(td);
2512	bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
2513	    sizeof(mcp->mc_fpstate));
2514	mcp->mc_fpformat = fpuformat();
2515	if (!use_xsave || xfpusave_len == 0)
2516		return;
2517	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
2518	len = xfpusave_len;
2519	if (len > max_len) {
2520		len = max_len;
2521		bzero(xfpusave + max_len, len - max_len);
2522	}
2523	mcp->mc_flags |= _MC_HASFPXSTATE;
2524	mcp->mc_xfpustate_len = len;
2525	bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
2526}
2527
2528static int
2529set_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpustate,
2530    size_t xfpustate_len)
2531{
2532	struct savefpu *fpstate;
2533	int error;
2534
2535	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2536		return (0);
2537	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
2538		return (EINVAL);
2539	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
2540		/* We don't care what state is left in the FPU or PCB. */
2541		fpstate_drop(td);
2542		error = 0;
2543	} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2544	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2545		fpstate = (struct savefpu *)&mcp->mc_fpstate;
2546		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
2547		error = fpusetregs(td, fpstate, xfpustate, xfpustate_len);
2548	} else
2549		return (EINVAL);
2550	return (error);
2551}
2552
2553void
2554fpstate_drop(struct thread *td)
2555{
2556
2557	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
2558	critical_enter();
2559	if (PCPU_GET(fpcurthread) == td)
2560		fpudrop();
2561	/*
2562	 * XXX force a full drop of the fpu.  The above only drops it if we
2563	 * owned it.
2564	 *
2565	 * XXX I don't much like fpugetuserregs()'s semantics of doing a full
2566	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2567	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2568	 * sendsig() is the only caller of fpugetuserregs()... perhaps we just
2569	 * have too many layers.
2570	 */
2571	clear_pcb_flags(curthread->td_pcb,
2572	    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
2573	critical_exit();
2574}
2575
2576int
2577fill_dbregs(struct thread *td, struct dbreg *dbregs)
2578{
2579	struct pcb *pcb;
2580
2581	if (td == NULL) {
2582		dbregs->dr[0] = rdr0();
2583		dbregs->dr[1] = rdr1();
2584		dbregs->dr[2] = rdr2();
2585		dbregs->dr[3] = rdr3();
2586		dbregs->dr[6] = rdr6();
2587		dbregs->dr[7] = rdr7();
2588	} else {
2589		pcb = td->td_pcb;
2590		dbregs->dr[0] = pcb->pcb_dr0;
2591		dbregs->dr[1] = pcb->pcb_dr1;
2592		dbregs->dr[2] = pcb->pcb_dr2;
2593		dbregs->dr[3] = pcb->pcb_dr3;
2594		dbregs->dr[6] = pcb->pcb_dr6;
2595		dbregs->dr[7] = pcb->pcb_dr7;
2596	}
2597	dbregs->dr[4] = 0;
2598	dbregs->dr[5] = 0;
2599	dbregs->dr[8] = 0;
2600	dbregs->dr[9] = 0;
2601	dbregs->dr[10] = 0;
2602	dbregs->dr[11] = 0;
2603	dbregs->dr[12] = 0;
2604	dbregs->dr[13] = 0;
2605	dbregs->dr[14] = 0;
2606	dbregs->dr[15] = 0;
2607	return (0);
2608}
2609
2610int
2611set_dbregs(struct thread *td, struct dbreg *dbregs)
2612{
2613	struct pcb *pcb;
2614	int i;
2615
2616	if (td == NULL) {
2617		load_dr0(dbregs->dr[0]);
2618		load_dr1(dbregs->dr[1]);
2619		load_dr2(dbregs->dr[2]);
2620		load_dr3(dbregs->dr[3]);
2621		load_dr6(dbregs->dr[6]);
2622		load_dr7(dbregs->dr[7]);
2623	} else {
2624		/*
2625		 * Don't let an illegal value for dr7 get set.  Specifically,
2626		 * check for undefined settings.  Setting these bit patterns
2627		 * result in undefined behaviour and can lead to an unexpected
2628		 * TRCTRAP or a general protection fault right here.
2629		 * Upper bits of dr6 and dr7 must not be set
2630		 */
2631		for (i = 0; i < 4; i++) {
2632			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
2633				return (EINVAL);
2634			if (td->td_frame->tf_cs == _ucode32sel &&
2635			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
2636				return (EINVAL);
2637		}
2638		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
2639		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
2640			return (EINVAL);
2641
2642		pcb = td->td_pcb;
2643
2644		/*
2645		 * Don't let a process set a breakpoint that is not within the
2646		 * process's address space.  If a process could do this, it
2647		 * could halt the system by setting a breakpoint in the kernel
2648		 * (if ddb was enabled).  Thus, we need to check to make sure
2649		 * that no breakpoints are being enabled for addresses outside
2650		 * process's address space.
2651		 *
2652		 * XXX - what about when the watched area of the user's
2653		 * address space is written into from within the kernel
2654		 * ... wouldn't that still cause a breakpoint to be generated
2655		 * from within kernel mode?
2656		 */
2657
2658		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2659			/* dr0 is enabled */
2660			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2661				return (EINVAL);
2662		}
2663		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2664			/* dr1 is enabled */
2665			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2666				return (EINVAL);
2667		}
2668		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2669			/* dr2 is enabled */
2670			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2671				return (EINVAL);
2672		}
2673		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2674			/* dr3 is enabled */
2675			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2676				return (EINVAL);
2677		}
2678
2679		pcb->pcb_dr0 = dbregs->dr[0];
2680		pcb->pcb_dr1 = dbregs->dr[1];
2681		pcb->pcb_dr2 = dbregs->dr[2];
2682		pcb->pcb_dr3 = dbregs->dr[3];
2683		pcb->pcb_dr6 = dbregs->dr[6];
2684		pcb->pcb_dr7 = dbregs->dr[7];
2685
2686		set_pcb_flags(pcb, PCB_DBREGS);
2687	}
2688
2689	return (0);
2690}
2691
2692void
2693reset_dbregs(void)
2694{
2695
2696	load_dr7(0);	/* Turn off the control bits first */
2697	load_dr0(0);
2698	load_dr1(0);
2699	load_dr2(0);
2700	load_dr3(0);
2701	load_dr6(0);
2702}
2703
2704/*
2705 * Return > 0 if a hardware breakpoint has been hit, and the
2706 * breakpoint was in user space.  Return 0, otherwise.
2707 */
2708int
2709user_dbreg_trap(void)
2710{
2711        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2712        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2713        int nbp;            /* number of breakpoints that triggered */
2714        caddr_t addr[4];    /* breakpoint addresses */
2715        int i;
2716
2717        dr7 = rdr7();
2718        if ((dr7 & 0x000000ff) == 0) {
2719                /*
2720                 * all GE and LE bits in the dr7 register are zero,
2721                 * thus the trap couldn't have been caused by the
2722                 * hardware debug registers
2723                 */
2724                return 0;
2725        }
2726
2727        nbp = 0;
2728        dr6 = rdr6();
2729        bp = dr6 & 0x0000000f;
2730
2731        if (!bp) {
2732                /*
2733                 * None of the breakpoint bits are set meaning this
2734                 * trap was not caused by any of the debug registers
2735                 */
2736                return 0;
2737        }
2738
2739        /*
2740         * at least one of the breakpoints were hit, check to see
2741         * which ones and if any of them are user space addresses
2742         */
2743
2744        if (bp & 0x01) {
2745                addr[nbp++] = (caddr_t)rdr0();
2746        }
2747        if (bp & 0x02) {
2748                addr[nbp++] = (caddr_t)rdr1();
2749        }
2750        if (bp & 0x04) {
2751                addr[nbp++] = (caddr_t)rdr2();
2752        }
2753        if (bp & 0x08) {
2754                addr[nbp++] = (caddr_t)rdr3();
2755        }
2756
2757        for (i = 0; i < nbp; i++) {
2758                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2759                        /*
2760                         * addr[i] is in user space
2761                         */
2762                        return nbp;
2763                }
2764        }
2765
2766        /*
2767         * None of the breakpoints are in user space.
2768         */
2769        return 0;
2770}
2771
2772#ifdef KDB
2773
2774/*
2775 * Provide inb() and outb() as functions.  They are normally only available as
2776 * inline functions, thus cannot be called from the debugger.
2777 */
2778
2779/* silence compiler warnings */
2780u_char inb_(u_short);
2781void outb_(u_short, u_char);
2782
2783u_char
2784inb_(u_short port)
2785{
2786	return inb(port);
2787}
2788
2789void
2790outb_(u_short port, u_char data)
2791{
2792	outb(port, data);
2793}
2794
2795#endif /* KDB */
2796