rtld.c revision 331206
1/*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5 * Copyright 2012 John Marino <draco@marino.st>.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * $FreeBSD: stable/10/libexec/rtld-elf/rtld.c 331206 2018-03-19 14:28:58Z marius $
29 */
30
31/*
32 * Dynamic linker for ELF.
33 *
34 * John Polstra <jdp@polstra.com>.
35 */
36
37#include <sys/param.h>
38#include <sys/mount.h>
39#include <sys/mman.h>
40#include <sys/stat.h>
41#include <sys/sysctl.h>
42#include <sys/uio.h>
43#include <sys/utsname.h>
44#include <sys/ktrace.h>
45
46#include <dlfcn.h>
47#include <err.h>
48#include <errno.h>
49#include <fcntl.h>
50#include <stdarg.h>
51#include <stdio.h>
52#include <stdlib.h>
53#include <string.h>
54#include <unistd.h>
55
56#include "debug.h"
57#include "rtld.h"
58#include "libmap.h"
59#include "rtld_tls.h"
60#include "rtld_printf.h"
61#include "notes.h"
62
63#ifndef COMPAT_32BIT
64#define PATH_RTLD	"/libexec/ld-elf.so.1"
65#else
66#define PATH_RTLD	"/libexec/ld-elf32.so.1"
67#endif
68
69/* Types. */
70typedef void (*func_ptr_type)();
71typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
72
73/*
74 * Function declarations.
75 */
76static const char *basename(const char *);
77static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
78    const Elf_Dyn **, const Elf_Dyn **);
79static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
80    const Elf_Dyn *);
81static void digest_dynamic(Obj_Entry *, int);
82static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
83static Obj_Entry *dlcheck(void *);
84static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
85    int lo_flags, int mode, RtldLockState *lockstate);
86static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
87static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
88static bool donelist_check(DoneList *, const Obj_Entry *);
89static void errmsg_restore(char *);
90static char *errmsg_save(void);
91static void *fill_search_info(const char *, size_t, void *);
92static char *find_library(const char *, const Obj_Entry *);
93static const char *gethints(bool);
94static void init_dag(Obj_Entry *);
95static void init_pagesizes(Elf_Auxinfo **aux_info);
96static void init_rtld(caddr_t, Elf_Auxinfo **);
97static void initlist_add_neededs(Needed_Entry *, Objlist *);
98static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
99static void linkmap_add(Obj_Entry *);
100static void linkmap_delete(Obj_Entry *);
101static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
102static void unload_filtees(Obj_Entry *);
103static int load_needed_objects(Obj_Entry *, int);
104static int load_preload_objects(void);
105static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
106static void map_stacks_exec(RtldLockState *);
107static int obj_enforce_relro(Obj_Entry *);
108static Obj_Entry *obj_from_addr(const void *);
109static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
110static void objlist_call_init(Objlist *, RtldLockState *);
111static void objlist_clear(Objlist *);
112static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
113static void objlist_init(Objlist *);
114static void objlist_push_head(Objlist *, Obj_Entry *);
115static void objlist_push_tail(Objlist *, Obj_Entry *);
116static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
117static void objlist_remove(Objlist *, Obj_Entry *);
118static void *path_enumerate(const char *, path_enum_proc, void *);
119static int relocate_object_dag(Obj_Entry *root, bool bind_now,
120    Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
121static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
122    int flags, RtldLockState *lockstate);
123static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
124    RtldLockState *);
125static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
126    int flags, RtldLockState *lockstate);
127static int rtld_dirname(const char *, char *);
128static int rtld_dirname_abs(const char *, char *);
129static void *rtld_dlopen(const char *name, int fd, int mode);
130static void rtld_exit(void);
131static char *search_library_path(const char *, const char *);
132static const void **get_program_var_addr(const char *, RtldLockState *);
133static void set_program_var(const char *, const void *);
134static int symlook_default(SymLook *, const Obj_Entry *refobj);
135static int symlook_global(SymLook *, DoneList *);
136static void symlook_init_from_req(SymLook *, const SymLook *);
137static int symlook_list(SymLook *, const Objlist *, DoneList *);
138static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
139static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
140static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
141static void trace_loaded_objects(Obj_Entry *);
142static void unlink_object(Obj_Entry *);
143static void unload_object(Obj_Entry *);
144static void unref_dag(Obj_Entry *);
145static void ref_dag(Obj_Entry *);
146static char *origin_subst_one(Obj_Entry *, char *, const char *,
147    const char *, bool);
148static char *origin_subst(Obj_Entry *, char *);
149static bool obj_resolve_origin(Obj_Entry *obj);
150static void preinit_main(void);
151static int  rtld_verify_versions(const Objlist *);
152static int  rtld_verify_object_versions(Obj_Entry *);
153static void object_add_name(Obj_Entry *, const char *);
154static int  object_match_name(const Obj_Entry *, const char *);
155static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
156static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
157    struct dl_phdr_info *phdr_info);
158static uint32_t gnu_hash(const char *);
159static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
160    const unsigned long);
161
162void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
163void _r_debug_postinit(struct link_map *) __noinline __exported;
164
165/*
166 * Data declarations.
167 */
168static char *error_message;	/* Message for dlerror(), or NULL */
169struct r_debug r_debug __exported;	/* for GDB; */
170static bool libmap_disable;	/* Disable libmap */
171static bool ld_loadfltr;	/* Immediate filters processing */
172static char *libmap_override;	/* Maps to use in addition to libmap.conf */
173static bool trust;		/* False for setuid and setgid programs */
174static bool dangerous_ld_env;	/* True if environment variables have been
175				   used to affect the libraries loaded */
176static char *ld_bind_now;	/* Environment variable for immediate binding */
177static char *ld_debug;		/* Environment variable for debugging */
178static char *ld_library_path;	/* Environment variable for search path */
179static char *ld_preload;	/* Environment variable for libraries to
180				   load first */
181static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
182static char *ld_tracing;	/* Called from ldd to print libs */
183static char *ld_utrace;		/* Use utrace() to log events. */
184static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
185static Obj_Entry *obj_main;	/* The main program shared object */
186static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
187static unsigned int obj_count;	/* Number of objects in obj_list */
188static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
189
190static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
191  STAILQ_HEAD_INITIALIZER(list_global);
192static Objlist list_main =	/* Objects loaded at program startup */
193  STAILQ_HEAD_INITIALIZER(list_main);
194static Objlist list_fini =	/* Objects needing fini() calls */
195  STAILQ_HEAD_INITIALIZER(list_fini);
196
197Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
198
199#define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
200
201extern Elf_Dyn _DYNAMIC;
202#pragma weak _DYNAMIC
203#ifndef RTLD_IS_DYNAMIC
204#define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
205#endif
206
207int dlclose(void *) __exported;
208char *dlerror(void) __exported;
209void *dlopen(const char *, int) __exported;
210void *fdlopen(int, int) __exported;
211void *dlsym(void *, const char *) __exported;
212dlfunc_t dlfunc(void *, const char *) __exported;
213void *dlvsym(void *, const char *, const char *) __exported;
214int dladdr(const void *, Dl_info *) __exported;
215void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
216    void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
217int dlinfo(void *, int , void *) __exported;
218int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
219int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
220int _rtld_get_stack_prot(void) __exported;
221int _rtld_is_dlopened(void *) __exported;
222void _rtld_error(const char *, ...) __exported;
223
224int npagesizes, osreldate;
225size_t *pagesizes;
226
227long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
228
229static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
230static int max_stack_flags;
231
232/*
233 * Global declarations normally provided by crt1.  The dynamic linker is
234 * not built with crt1, so we have to provide them ourselves.
235 */
236char *__progname;
237char **environ;
238
239/*
240 * Used to pass argc, argv to init functions.
241 */
242int main_argc;
243char **main_argv;
244
245/*
246 * Globals to control TLS allocation.
247 */
248size_t tls_last_offset;		/* Static TLS offset of last module */
249size_t tls_last_size;		/* Static TLS size of last module */
250size_t tls_static_space;	/* Static TLS space allocated */
251size_t tls_static_max_align;
252int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
253int tls_max_index = 1;		/* Largest module index allocated */
254
255bool ld_library_path_rpath = false;
256
257/*
258 * Fill in a DoneList with an allocation large enough to hold all of
259 * the currently-loaded objects.  Keep this as a macro since it calls
260 * alloca and we want that to occur within the scope of the caller.
261 */
262#define donelist_init(dlp)					\
263    ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
264    assert((dlp)->objs != NULL),				\
265    (dlp)->num_alloc = obj_count,				\
266    (dlp)->num_used = 0)
267
268#define	UTRACE_DLOPEN_START		1
269#define	UTRACE_DLOPEN_STOP		2
270#define	UTRACE_DLCLOSE_START		3
271#define	UTRACE_DLCLOSE_STOP		4
272#define	UTRACE_LOAD_OBJECT		5
273#define	UTRACE_UNLOAD_OBJECT		6
274#define	UTRACE_ADD_RUNDEP		7
275#define	UTRACE_PRELOAD_FINISHED		8
276#define	UTRACE_INIT_CALL		9
277#define	UTRACE_FINI_CALL		10
278#define	UTRACE_DLSYM_START		11
279#define	UTRACE_DLSYM_STOP		12
280
281struct utrace_rtld {
282	char sig[4];			/* 'RTLD' */
283	int event;
284	void *handle;
285	void *mapbase;			/* Used for 'parent' and 'init/fini' */
286	size_t mapsize;
287	int refcnt;			/* Used for 'mode' */
288	char name[MAXPATHLEN];
289};
290
291#define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
292	if (ld_utrace != NULL)					\
293		ld_utrace_log(e, h, mb, ms, r, n);		\
294} while (0)
295
296static void
297ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
298    int refcnt, const char *name)
299{
300	struct utrace_rtld ut;
301
302	ut.sig[0] = 'R';
303	ut.sig[1] = 'T';
304	ut.sig[2] = 'L';
305	ut.sig[3] = 'D';
306	ut.event = event;
307	ut.handle = handle;
308	ut.mapbase = mapbase;
309	ut.mapsize = mapsize;
310	ut.refcnt = refcnt;
311	bzero(ut.name, sizeof(ut.name));
312	if (name)
313		strlcpy(ut.name, name, sizeof(ut.name));
314	utrace(&ut, sizeof(ut));
315}
316
317/*
318 * Main entry point for dynamic linking.  The first argument is the
319 * stack pointer.  The stack is expected to be laid out as described
320 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
321 * Specifically, the stack pointer points to a word containing
322 * ARGC.  Following that in the stack is a null-terminated sequence
323 * of pointers to argument strings.  Then comes a null-terminated
324 * sequence of pointers to environment strings.  Finally, there is a
325 * sequence of "auxiliary vector" entries.
326 *
327 * The second argument points to a place to store the dynamic linker's
328 * exit procedure pointer and the third to a place to store the main
329 * program's object.
330 *
331 * The return value is the main program's entry point.
332 */
333func_ptr_type
334_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
335{
336    Elf_Auxinfo *aux_info[AT_COUNT];
337    int i;
338    int argc;
339    char **argv;
340    char **env;
341    Elf_Auxinfo *aux;
342    Elf_Auxinfo *auxp;
343    const char *argv0;
344    Objlist_Entry *entry;
345    Obj_Entry *obj;
346    Obj_Entry *preload_tail;
347    Obj_Entry *last_interposer;
348    Objlist initlist;
349    RtldLockState lockstate;
350    char *library_path_rpath;
351    int mib[2];
352    size_t len;
353
354    /*
355     * On entry, the dynamic linker itself has not been relocated yet.
356     * Be very careful not to reference any global data until after
357     * init_rtld has returned.  It is OK to reference file-scope statics
358     * and string constants, and to call static and global functions.
359     */
360
361    /* Find the auxiliary vector on the stack. */
362    argc = *sp++;
363    argv = (char **) sp;
364    sp += argc + 1;	/* Skip over arguments and NULL terminator */
365    env = (char **) sp;
366    while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
367	;
368    aux = (Elf_Auxinfo *) sp;
369
370    /* Digest the auxiliary vector. */
371    for (i = 0;  i < AT_COUNT;  i++)
372	aux_info[i] = NULL;
373    for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
374	if (auxp->a_type < AT_COUNT)
375	    aux_info[auxp->a_type] = auxp;
376    }
377
378    /* Initialize and relocate ourselves. */
379    assert(aux_info[AT_BASE] != NULL);
380    init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
381
382    __progname = obj_rtld.path;
383    argv0 = argv[0] != NULL ? argv[0] : "(null)";
384    environ = env;
385    main_argc = argc;
386    main_argv = argv;
387
388    if (aux_info[AT_CANARY] != NULL &&
389	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
390	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
391	    if (i > sizeof(__stack_chk_guard))
392		    i = sizeof(__stack_chk_guard);
393	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
394    } else {
395	mib[0] = CTL_KERN;
396	mib[1] = KERN_ARND;
397
398	len = sizeof(__stack_chk_guard);
399	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
400	    len != sizeof(__stack_chk_guard)) {
401		/* If sysctl was unsuccessful, use the "terminator canary". */
402		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
403		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
404		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
405		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
406	}
407    }
408
409    trust = !issetugid();
410
411    ld_bind_now = getenv(LD_ "BIND_NOW");
412    /*
413     * If the process is tainted, then we un-set the dangerous environment
414     * variables.  The process will be marked as tainted until setuid(2)
415     * is called.  If any child process calls setuid(2) we do not want any
416     * future processes to honor the potentially un-safe variables.
417     */
418    if (!trust) {
419        if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
420	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
421	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
422	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
423		_rtld_error("environment corrupt; aborting");
424		rtld_die();
425	}
426    }
427    ld_debug = getenv(LD_ "DEBUG");
428    libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
429    libmap_override = getenv(LD_ "LIBMAP");
430    ld_library_path = getenv(LD_ "LIBRARY_PATH");
431    ld_preload = getenv(LD_ "PRELOAD");
432    ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
433    ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
434    library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
435    if (library_path_rpath != NULL) {
436	    if (library_path_rpath[0] == 'y' ||
437		library_path_rpath[0] == 'Y' ||
438		library_path_rpath[0] == '1')
439		    ld_library_path_rpath = true;
440	    else
441		    ld_library_path_rpath = false;
442    }
443    dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
444	(ld_library_path != NULL) || (ld_preload != NULL) ||
445	(ld_elf_hints_path != NULL) || ld_loadfltr;
446    ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
447    ld_utrace = getenv(LD_ "UTRACE");
448
449    if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
450	ld_elf_hints_path = _PATH_ELF_HINTS;
451
452    if (ld_debug != NULL && *ld_debug != '\0')
453	debug = 1;
454    dbg("%s is initialized, base address = %p", __progname,
455	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
456    dbg("RTLD dynamic = %p", obj_rtld.dynamic);
457    dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
458
459    dbg("initializing thread locks");
460    lockdflt_init();
461
462    /*
463     * Load the main program, or process its program header if it is
464     * already loaded.
465     */
466    if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
467	int fd = aux_info[AT_EXECFD]->a_un.a_val;
468	dbg("loading main program");
469	obj_main = map_object(fd, argv0, NULL);
470	close(fd);
471	if (obj_main == NULL)
472	    rtld_die();
473	max_stack_flags = obj_main->stack_flags;
474    } else {				/* Main program already loaded. */
475	const Elf_Phdr *phdr;
476	int phnum;
477	caddr_t entry;
478
479	dbg("processing main program's program header");
480	assert(aux_info[AT_PHDR] != NULL);
481	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
482	assert(aux_info[AT_PHNUM] != NULL);
483	phnum = aux_info[AT_PHNUM]->a_un.a_val;
484	assert(aux_info[AT_PHENT] != NULL);
485	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
486	assert(aux_info[AT_ENTRY] != NULL);
487	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
488	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
489	    rtld_die();
490    }
491
492    if (aux_info[AT_EXECPATH] != 0) {
493	    char *kexecpath;
494	    char buf[MAXPATHLEN];
495
496	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
497	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
498	    if (kexecpath[0] == '/')
499		    obj_main->path = kexecpath;
500	    else if (getcwd(buf, sizeof(buf)) == NULL ||
501		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
502		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
503		    obj_main->path = xstrdup(argv0);
504	    else
505		    obj_main->path = xstrdup(buf);
506    } else {
507	    dbg("No AT_EXECPATH");
508	    obj_main->path = xstrdup(argv0);
509    }
510    dbg("obj_main path %s", obj_main->path);
511    obj_main->mainprog = true;
512
513    if (aux_info[AT_STACKPROT] != NULL &&
514      aux_info[AT_STACKPROT]->a_un.a_val != 0)
515	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
516
517#ifndef COMPAT_32BIT
518    /*
519     * Get the actual dynamic linker pathname from the executable if
520     * possible.  (It should always be possible.)  That ensures that
521     * gdb will find the right dynamic linker even if a non-standard
522     * one is being used.
523     */
524    if (obj_main->interp != NULL &&
525      strcmp(obj_main->interp, obj_rtld.path) != 0) {
526	free(obj_rtld.path);
527	obj_rtld.path = xstrdup(obj_main->interp);
528        __progname = obj_rtld.path;
529    }
530#endif
531
532    digest_dynamic(obj_main, 0);
533    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
534	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
535	obj_main->dynsymcount);
536
537    linkmap_add(obj_main);
538    linkmap_add(&obj_rtld);
539
540    /* Link the main program into the list of objects. */
541    TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
542    obj_count++;
543    obj_loads++;
544
545    /* Initialize a fake symbol for resolving undefined weak references. */
546    sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
547    sym_zero.st_shndx = SHN_UNDEF;
548    sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
549
550    if (!libmap_disable)
551        libmap_disable = (bool)lm_init(libmap_override);
552
553    dbg("loading LD_PRELOAD libraries");
554    if (load_preload_objects() == -1)
555	rtld_die();
556    preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
557
558    dbg("loading needed objects");
559    if (load_needed_objects(obj_main, 0) == -1)
560	rtld_die();
561
562    /* Make a list of all objects loaded at startup. */
563    last_interposer = obj_main;
564    TAILQ_FOREACH(obj, &obj_list, next) {
565	if (obj->marker)
566	    continue;
567	if (obj->z_interpose && obj != obj_main) {
568	    objlist_put_after(&list_main, last_interposer, obj);
569	    last_interposer = obj;
570	} else {
571	    objlist_push_tail(&list_main, obj);
572	}
573    	obj->refcount++;
574    }
575
576    dbg("checking for required versions");
577    if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
578	rtld_die();
579
580    if (ld_tracing) {		/* We're done */
581	trace_loaded_objects(obj_main);
582	exit(0);
583    }
584
585    if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
586       dump_relocations(obj_main);
587       exit (0);
588    }
589
590    /*
591     * Processing tls relocations requires having the tls offsets
592     * initialized.  Prepare offsets before starting initial
593     * relocation processing.
594     */
595    dbg("initializing initial thread local storage offsets");
596    STAILQ_FOREACH(entry, &list_main, link) {
597	/*
598	 * Allocate all the initial objects out of the static TLS
599	 * block even if they didn't ask for it.
600	 */
601	allocate_tls_offset(entry->obj);
602    }
603
604    if (relocate_objects(obj_main,
605      ld_bind_now != NULL && *ld_bind_now != '\0',
606      &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
607	rtld_die();
608
609    dbg("doing copy relocations");
610    if (do_copy_relocations(obj_main) == -1)
611	rtld_die();
612
613    dbg("enforcing main obj relro");
614    if (obj_enforce_relro(obj_main) == -1)
615	rtld_die();
616
617    if (getenv(LD_ "DUMP_REL_POST") != NULL) {
618       dump_relocations(obj_main);
619       exit (0);
620    }
621
622    /*
623     * Setup TLS for main thread.  This must be done after the
624     * relocations are processed, since tls initialization section
625     * might be the subject for relocations.
626     */
627    dbg("initializing initial thread local storage");
628    allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
629
630    dbg("initializing key program variables");
631    set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
632    set_program_var("environ", env);
633    set_program_var("__elf_aux_vector", aux);
634
635    /* Make a list of init functions to call. */
636    objlist_init(&initlist);
637    initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
638      preload_tail, &initlist);
639
640    r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
641
642    map_stacks_exec(NULL);
643    ifunc_init(aux);
644
645    dbg("resolving ifuncs");
646    if (resolve_objects_ifunc(obj_main,
647      ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
648      NULL) == -1)
649	rtld_die();
650
651    if (!obj_main->crt_no_init) {
652	/*
653	 * Make sure we don't call the main program's init and fini
654	 * functions for binaries linked with old crt1 which calls
655	 * _init itself.
656	 */
657	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
658	obj_main->preinit_array = obj_main->init_array =
659	    obj_main->fini_array = (Elf_Addr)NULL;
660    }
661
662    /*
663     * Execute MD initializers required before we call the objects'
664     * init functions.
665     */
666    pre_init();
667
668    wlock_acquire(rtld_bind_lock, &lockstate);
669    if (obj_main->crt_no_init)
670	preinit_main();
671    objlist_call_init(&initlist, &lockstate);
672    _r_debug_postinit(&obj_main->linkmap);
673    objlist_clear(&initlist);
674    dbg("loading filtees");
675    TAILQ_FOREACH(obj, &obj_list, next) {
676	if (obj->marker)
677	    continue;
678	if (ld_loadfltr || obj->z_loadfltr)
679	    load_filtees(obj, 0, &lockstate);
680    }
681    lock_release(rtld_bind_lock, &lockstate);
682
683    dbg("transferring control to program entry point = %p", obj_main->entry);
684
685    /* Return the exit procedure and the program entry point. */
686    *exit_proc = rtld_exit;
687    *objp = obj_main;
688    return (func_ptr_type) obj_main->entry;
689}
690
691void *
692rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
693{
694	void *ptr;
695	Elf_Addr target;
696
697	ptr = (void *)make_function_pointer(def, obj);
698	target = call_ifunc_resolver(ptr);
699	return ((void *)target);
700}
701
702Elf_Addr
703_rtld_bind(Obj_Entry *obj, Elf_Size reloff)
704{
705    const Elf_Rel *rel;
706    const Elf_Sym *def;
707    const Obj_Entry *defobj;
708    Elf_Addr *where;
709    Elf_Addr target;
710    RtldLockState lockstate;
711
712    rlock_acquire(rtld_bind_lock, &lockstate);
713    if (sigsetjmp(lockstate.env, 0) != 0)
714	    lock_upgrade(rtld_bind_lock, &lockstate);
715    if (obj->pltrel)
716	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
717    else
718	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
719
720    where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
721    def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
722	NULL, &lockstate);
723    if (def == NULL)
724	rtld_die();
725    if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
726	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
727    else
728	target = (Elf_Addr)(defobj->relocbase + def->st_value);
729
730    dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
731      defobj->strtab + def->st_name, basename(obj->path),
732      (void *)target, basename(defobj->path));
733
734    /*
735     * Write the new contents for the jmpslot. Note that depending on
736     * architecture, the value which we need to return back to the
737     * lazy binding trampoline may or may not be the target
738     * address. The value returned from reloc_jmpslot() is the value
739     * that the trampoline needs.
740     */
741    target = reloc_jmpslot(where, target, defobj, obj, rel);
742    lock_release(rtld_bind_lock, &lockstate);
743    return target;
744}
745
746/*
747 * Error reporting function.  Use it like printf.  If formats the message
748 * into a buffer, and sets things up so that the next call to dlerror()
749 * will return the message.
750 */
751void
752_rtld_error(const char *fmt, ...)
753{
754    static char buf[512];
755    va_list ap;
756
757    va_start(ap, fmt);
758    rtld_vsnprintf(buf, sizeof buf, fmt, ap);
759    error_message = buf;
760    va_end(ap);
761}
762
763/*
764 * Return a dynamically-allocated copy of the current error message, if any.
765 */
766static char *
767errmsg_save(void)
768{
769    return error_message == NULL ? NULL : xstrdup(error_message);
770}
771
772/*
773 * Restore the current error message from a copy which was previously saved
774 * by errmsg_save().  The copy is freed.
775 */
776static void
777errmsg_restore(char *saved_msg)
778{
779    if (saved_msg == NULL)
780	error_message = NULL;
781    else {
782	_rtld_error("%s", saved_msg);
783	free(saved_msg);
784    }
785}
786
787static const char *
788basename(const char *name)
789{
790    const char *p = strrchr(name, '/');
791    return p != NULL ? p + 1 : name;
792}
793
794static struct utsname uts;
795
796static char *
797origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
798    const char *subst, bool may_free)
799{
800	char *p, *p1, *res, *resp;
801	int subst_len, kw_len, subst_count, old_len, new_len;
802
803	kw_len = strlen(kw);
804
805	/*
806	 * First, count the number of the keyword occurences, to
807	 * preallocate the final string.
808	 */
809	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
810		p1 = strstr(p, kw);
811		if (p1 == NULL)
812			break;
813	}
814
815	/*
816	 * If the keyword is not found, just return.
817	 *
818	 * Return non-substituted string if resolution failed.  We
819	 * cannot do anything more reasonable, the failure mode of the
820	 * caller is unresolved library anyway.
821	 */
822	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
823		return (may_free ? real : xstrdup(real));
824	if (obj != NULL)
825		subst = obj->origin_path;
826
827	/*
828	 * There is indeed something to substitute.  Calculate the
829	 * length of the resulting string, and allocate it.
830	 */
831	subst_len = strlen(subst);
832	old_len = strlen(real);
833	new_len = old_len + (subst_len - kw_len) * subst_count;
834	res = xmalloc(new_len + 1);
835
836	/*
837	 * Now, execute the substitution loop.
838	 */
839	for (p = real, resp = res, *resp = '\0';;) {
840		p1 = strstr(p, kw);
841		if (p1 != NULL) {
842			/* Copy the prefix before keyword. */
843			memcpy(resp, p, p1 - p);
844			resp += p1 - p;
845			/* Keyword replacement. */
846			memcpy(resp, subst, subst_len);
847			resp += subst_len;
848			*resp = '\0';
849			p = p1 + kw_len;
850		} else
851			break;
852	}
853
854	/* Copy to the end of string and finish. */
855	strcat(resp, p);
856	if (may_free)
857		free(real);
858	return (res);
859}
860
861static char *
862origin_subst(Obj_Entry *obj, char *real)
863{
864	char *res1, *res2, *res3, *res4;
865
866	if (obj == NULL || !trust)
867		return (xstrdup(real));
868	if (uts.sysname[0] == '\0') {
869		if (uname(&uts) != 0) {
870			_rtld_error("utsname failed: %d", errno);
871			return (NULL);
872		}
873	}
874	res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false);
875	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
876	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
877	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
878	return (res4);
879}
880
881void
882rtld_die(void)
883{
884    const char *msg = dlerror();
885
886    if (msg == NULL)
887	msg = "Fatal error";
888    rtld_fdputstr(STDERR_FILENO, msg);
889    rtld_fdputchar(STDERR_FILENO, '\n');
890    _exit(1);
891}
892
893/*
894 * Process a shared object's DYNAMIC section, and save the important
895 * information in its Obj_Entry structure.
896 */
897static void
898digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
899    const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
900{
901    const Elf_Dyn *dynp;
902    Needed_Entry **needed_tail = &obj->needed;
903    Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
904    Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
905    const Elf_Hashelt *hashtab;
906    const Elf32_Word *hashval;
907    Elf32_Word bkt, nmaskwords;
908    int bloom_size32;
909    int plttype = DT_REL;
910
911    *dyn_rpath = NULL;
912    *dyn_soname = NULL;
913    *dyn_runpath = NULL;
914
915    obj->bind_now = false;
916    for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
917	switch (dynp->d_tag) {
918
919	case DT_REL:
920	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
921	    break;
922
923	case DT_RELSZ:
924	    obj->relsize = dynp->d_un.d_val;
925	    break;
926
927	case DT_RELENT:
928	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
929	    break;
930
931	case DT_JMPREL:
932	    obj->pltrel = (const Elf_Rel *)
933	      (obj->relocbase + dynp->d_un.d_ptr);
934	    break;
935
936	case DT_PLTRELSZ:
937	    obj->pltrelsize = dynp->d_un.d_val;
938	    break;
939
940	case DT_RELA:
941	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
942	    break;
943
944	case DT_RELASZ:
945	    obj->relasize = dynp->d_un.d_val;
946	    break;
947
948	case DT_RELAENT:
949	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
950	    break;
951
952	case DT_PLTREL:
953	    plttype = dynp->d_un.d_val;
954	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
955	    break;
956
957	case DT_SYMTAB:
958	    obj->symtab = (const Elf_Sym *)
959	      (obj->relocbase + dynp->d_un.d_ptr);
960	    break;
961
962	case DT_SYMENT:
963	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
964	    break;
965
966	case DT_STRTAB:
967	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
968	    break;
969
970	case DT_STRSZ:
971	    obj->strsize = dynp->d_un.d_val;
972	    break;
973
974	case DT_VERNEED:
975	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
976		dynp->d_un.d_val);
977	    break;
978
979	case DT_VERNEEDNUM:
980	    obj->verneednum = dynp->d_un.d_val;
981	    break;
982
983	case DT_VERDEF:
984	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
985		dynp->d_un.d_val);
986	    break;
987
988	case DT_VERDEFNUM:
989	    obj->verdefnum = dynp->d_un.d_val;
990	    break;
991
992	case DT_VERSYM:
993	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
994		dynp->d_un.d_val);
995	    break;
996
997	case DT_HASH:
998	    {
999		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1000		    dynp->d_un.d_ptr);
1001		obj->nbuckets = hashtab[0];
1002		obj->nchains = hashtab[1];
1003		obj->buckets = hashtab + 2;
1004		obj->chains = obj->buckets + obj->nbuckets;
1005		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1006		  obj->buckets != NULL;
1007	    }
1008	    break;
1009
1010	case DT_GNU_HASH:
1011	    {
1012		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1013		    dynp->d_un.d_ptr);
1014		obj->nbuckets_gnu = hashtab[0];
1015		obj->symndx_gnu = hashtab[1];
1016		nmaskwords = hashtab[2];
1017		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1018		obj->maskwords_bm_gnu = nmaskwords - 1;
1019		obj->shift2_gnu = hashtab[3];
1020		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1021		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1022		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1023		  obj->symndx_gnu;
1024		/* Number of bitmask words is required to be power of 2 */
1025		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1026		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1027	    }
1028	    break;
1029
1030	case DT_NEEDED:
1031	    if (!obj->rtld) {
1032		Needed_Entry *nep = NEW(Needed_Entry);
1033		nep->name = dynp->d_un.d_val;
1034		nep->obj = NULL;
1035		nep->next = NULL;
1036
1037		*needed_tail = nep;
1038		needed_tail = &nep->next;
1039	    }
1040	    break;
1041
1042	case DT_FILTER:
1043	    if (!obj->rtld) {
1044		Needed_Entry *nep = NEW(Needed_Entry);
1045		nep->name = dynp->d_un.d_val;
1046		nep->obj = NULL;
1047		nep->next = NULL;
1048
1049		*needed_filtees_tail = nep;
1050		needed_filtees_tail = &nep->next;
1051	    }
1052	    break;
1053
1054	case DT_AUXILIARY:
1055	    if (!obj->rtld) {
1056		Needed_Entry *nep = NEW(Needed_Entry);
1057		nep->name = dynp->d_un.d_val;
1058		nep->obj = NULL;
1059		nep->next = NULL;
1060
1061		*needed_aux_filtees_tail = nep;
1062		needed_aux_filtees_tail = &nep->next;
1063	    }
1064	    break;
1065
1066	case DT_PLTGOT:
1067	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1068	    break;
1069
1070	case DT_TEXTREL:
1071	    obj->textrel = true;
1072	    break;
1073
1074	case DT_SYMBOLIC:
1075	    obj->symbolic = true;
1076	    break;
1077
1078	case DT_RPATH:
1079	    /*
1080	     * We have to wait until later to process this, because we
1081	     * might not have gotten the address of the string table yet.
1082	     */
1083	    *dyn_rpath = dynp;
1084	    break;
1085
1086	case DT_SONAME:
1087	    *dyn_soname = dynp;
1088	    break;
1089
1090	case DT_RUNPATH:
1091	    *dyn_runpath = dynp;
1092	    break;
1093
1094	case DT_INIT:
1095	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1096	    break;
1097
1098	case DT_PREINIT_ARRAY:
1099	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1100	    break;
1101
1102	case DT_PREINIT_ARRAYSZ:
1103	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1104	    break;
1105
1106	case DT_INIT_ARRAY:
1107	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1108	    break;
1109
1110	case DT_INIT_ARRAYSZ:
1111	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1112	    break;
1113
1114	case DT_FINI:
1115	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1116	    break;
1117
1118	case DT_FINI_ARRAY:
1119	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1120	    break;
1121
1122	case DT_FINI_ARRAYSZ:
1123	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1124	    break;
1125
1126	/*
1127	 * Don't process DT_DEBUG on MIPS as the dynamic section
1128	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1129	 */
1130
1131#ifndef __mips__
1132	case DT_DEBUG:
1133	    if (!early)
1134		dbg("Filling in DT_DEBUG entry");
1135	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1136	    break;
1137#endif
1138
1139	case DT_FLAGS:
1140		if (dynp->d_un.d_val & DF_ORIGIN)
1141		    obj->z_origin = true;
1142		if (dynp->d_un.d_val & DF_SYMBOLIC)
1143		    obj->symbolic = true;
1144		if (dynp->d_un.d_val & DF_TEXTREL)
1145		    obj->textrel = true;
1146		if (dynp->d_un.d_val & DF_BIND_NOW)
1147		    obj->bind_now = true;
1148		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1149		    ;*/
1150	    break;
1151#ifdef __mips__
1152	case DT_MIPS_LOCAL_GOTNO:
1153		obj->local_gotno = dynp->d_un.d_val;
1154	    break;
1155
1156	case DT_MIPS_SYMTABNO:
1157		obj->symtabno = dynp->d_un.d_val;
1158		break;
1159
1160	case DT_MIPS_GOTSYM:
1161		obj->gotsym = dynp->d_un.d_val;
1162		break;
1163
1164	case DT_MIPS_RLD_MAP:
1165		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1166		break;
1167#endif
1168
1169	case DT_FLAGS_1:
1170		if (dynp->d_un.d_val & DF_1_NOOPEN)
1171		    obj->z_noopen = true;
1172		if (dynp->d_un.d_val & DF_1_ORIGIN)
1173		    obj->z_origin = true;
1174		if (dynp->d_un.d_val & DF_1_GLOBAL)
1175		    obj->z_global = true;
1176		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1177		    obj->bind_now = true;
1178		if (dynp->d_un.d_val & DF_1_NODELETE)
1179		    obj->z_nodelete = true;
1180		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1181		    obj->z_loadfltr = true;
1182		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1183		    obj->z_interpose = true;
1184		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1185		    obj->z_nodeflib = true;
1186	    break;
1187
1188	default:
1189	    if (!early) {
1190		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1191		    (long)dynp->d_tag);
1192	    }
1193	    break;
1194	}
1195    }
1196
1197    obj->traced = false;
1198
1199    if (plttype == DT_RELA) {
1200	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1201	obj->pltrel = NULL;
1202	obj->pltrelasize = obj->pltrelsize;
1203	obj->pltrelsize = 0;
1204    }
1205
1206    /* Determine size of dynsym table (equal to nchains of sysv hash) */
1207    if (obj->valid_hash_sysv)
1208	obj->dynsymcount = obj->nchains;
1209    else if (obj->valid_hash_gnu) {
1210	obj->dynsymcount = 0;
1211	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1212	    if (obj->buckets_gnu[bkt] == 0)
1213		continue;
1214	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1215	    do
1216		obj->dynsymcount++;
1217	    while ((*hashval++ & 1u) == 0);
1218	}
1219	obj->dynsymcount += obj->symndx_gnu;
1220    }
1221}
1222
1223static bool
1224obj_resolve_origin(Obj_Entry *obj)
1225{
1226
1227	if (obj->origin_path != NULL)
1228		return (true);
1229	obj->origin_path = xmalloc(PATH_MAX);
1230	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1231}
1232
1233static void
1234digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1235    const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1236{
1237
1238	if (obj->z_origin && !obj_resolve_origin(obj))
1239		rtld_die();
1240
1241	if (dyn_runpath != NULL) {
1242		obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1243		obj->runpath = origin_subst(obj, obj->runpath);
1244	} else if (dyn_rpath != NULL) {
1245		obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1246		obj->rpath = origin_subst(obj, obj->rpath);
1247	}
1248	if (dyn_soname != NULL)
1249		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1250}
1251
1252static void
1253digest_dynamic(Obj_Entry *obj, int early)
1254{
1255	const Elf_Dyn *dyn_rpath;
1256	const Elf_Dyn *dyn_soname;
1257	const Elf_Dyn *dyn_runpath;
1258
1259	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1260	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1261}
1262
1263/*
1264 * Process a shared object's program header.  This is used only for the
1265 * main program, when the kernel has already loaded the main program
1266 * into memory before calling the dynamic linker.  It creates and
1267 * returns an Obj_Entry structure.
1268 */
1269static Obj_Entry *
1270digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1271{
1272    Obj_Entry *obj;
1273    const Elf_Phdr *phlimit = phdr + phnum;
1274    const Elf_Phdr *ph;
1275    Elf_Addr note_start, note_end;
1276    int nsegs = 0;
1277
1278    obj = obj_new();
1279    for (ph = phdr;  ph < phlimit;  ph++) {
1280	if (ph->p_type != PT_PHDR)
1281	    continue;
1282
1283	obj->phdr = phdr;
1284	obj->phsize = ph->p_memsz;
1285	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1286	break;
1287    }
1288
1289    obj->stack_flags = PF_X | PF_R | PF_W;
1290
1291    for (ph = phdr;  ph < phlimit;  ph++) {
1292	switch (ph->p_type) {
1293
1294	case PT_INTERP:
1295	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1296	    break;
1297
1298	case PT_LOAD:
1299	    if (nsegs == 0) {	/* First load segment */
1300		obj->vaddrbase = trunc_page(ph->p_vaddr);
1301		obj->mapbase = obj->vaddrbase + obj->relocbase;
1302		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1303		  obj->vaddrbase;
1304	    } else {		/* Last load segment */
1305		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1306		  obj->vaddrbase;
1307	    }
1308	    nsegs++;
1309	    break;
1310
1311	case PT_DYNAMIC:
1312	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1313	    break;
1314
1315	case PT_TLS:
1316	    obj->tlsindex = 1;
1317	    obj->tlssize = ph->p_memsz;
1318	    obj->tlsalign = ph->p_align;
1319	    obj->tlsinitsize = ph->p_filesz;
1320	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1321	    break;
1322
1323	case PT_GNU_STACK:
1324	    obj->stack_flags = ph->p_flags;
1325	    break;
1326
1327	case PT_GNU_RELRO:
1328	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1329	    obj->relro_size = round_page(ph->p_memsz);
1330	    break;
1331
1332	case PT_NOTE:
1333	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1334	    note_end = note_start + ph->p_filesz;
1335	    digest_notes(obj, note_start, note_end);
1336	    break;
1337	}
1338    }
1339    if (nsegs < 1) {
1340	_rtld_error("%s: too few PT_LOAD segments", path);
1341	return NULL;
1342    }
1343
1344    obj->entry = entry;
1345    return obj;
1346}
1347
1348void
1349digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1350{
1351	const Elf_Note *note;
1352	const char *note_name;
1353	uintptr_t p;
1354
1355	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1356	    note = (const Elf_Note *)((const char *)(note + 1) +
1357	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1358	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1359		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1360		    note->n_descsz != sizeof(int32_t))
1361			continue;
1362		if (note->n_type != ABI_NOTETYPE &&
1363		    note->n_type != CRT_NOINIT_NOTETYPE)
1364			continue;
1365		note_name = (const char *)(note + 1);
1366		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1367		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1368			continue;
1369		switch (note->n_type) {
1370		case ABI_NOTETYPE:
1371			/* FreeBSD osrel note */
1372			p = (uintptr_t)(note + 1);
1373			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1374			obj->osrel = *(const int32_t *)(p);
1375			dbg("note osrel %d", obj->osrel);
1376			break;
1377		case CRT_NOINIT_NOTETYPE:
1378			/* FreeBSD 'crt does not call init' note */
1379			obj->crt_no_init = true;
1380			dbg("note crt_no_init");
1381			break;
1382		}
1383	}
1384}
1385
1386static Obj_Entry *
1387dlcheck(void *handle)
1388{
1389    Obj_Entry *obj;
1390
1391    TAILQ_FOREACH(obj, &obj_list, next) {
1392	if (obj == (Obj_Entry *) handle)
1393	    break;
1394    }
1395
1396    if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1397	_rtld_error("Invalid shared object handle %p", handle);
1398	return NULL;
1399    }
1400    return obj;
1401}
1402
1403/*
1404 * If the given object is already in the donelist, return true.  Otherwise
1405 * add the object to the list and return false.
1406 */
1407static bool
1408donelist_check(DoneList *dlp, const Obj_Entry *obj)
1409{
1410    unsigned int i;
1411
1412    for (i = 0;  i < dlp->num_used;  i++)
1413	if (dlp->objs[i] == obj)
1414	    return true;
1415    /*
1416     * Our donelist allocation should always be sufficient.  But if
1417     * our threads locking isn't working properly, more shared objects
1418     * could have been loaded since we allocated the list.  That should
1419     * never happen, but we'll handle it properly just in case it does.
1420     */
1421    if (dlp->num_used < dlp->num_alloc)
1422	dlp->objs[dlp->num_used++] = obj;
1423    return false;
1424}
1425
1426/*
1427 * Hash function for symbol table lookup.  Don't even think about changing
1428 * this.  It is specified by the System V ABI.
1429 */
1430unsigned long
1431elf_hash(const char *name)
1432{
1433    const unsigned char *p = (const unsigned char *) name;
1434    unsigned long h = 0;
1435    unsigned long g;
1436
1437    while (*p != '\0') {
1438	h = (h << 4) + *p++;
1439	if ((g = h & 0xf0000000) != 0)
1440	    h ^= g >> 24;
1441	h &= ~g;
1442    }
1443    return h;
1444}
1445
1446/*
1447 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1448 * unsigned in case it's implemented with a wider type.
1449 */
1450static uint32_t
1451gnu_hash(const char *s)
1452{
1453	uint32_t h;
1454	unsigned char c;
1455
1456	h = 5381;
1457	for (c = *s; c != '\0'; c = *++s)
1458		h = h * 33 + c;
1459	return (h & 0xffffffff);
1460}
1461
1462/*
1463 * Find the library with the given name, and return its full pathname.
1464 * The returned string is dynamically allocated.  Generates an error
1465 * message and returns NULL if the library cannot be found.
1466 *
1467 * If the second argument is non-NULL, then it refers to an already-
1468 * loaded shared object, whose library search path will be searched.
1469 *
1470 * The search order is:
1471 *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1472 *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1473 *   LD_LIBRARY_PATH
1474 *   DT_RUNPATH in the referencing file
1475 *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1476 *	 from list)
1477 *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1478 *
1479 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1480 */
1481static char *
1482find_library(const char *xname, const Obj_Entry *refobj)
1483{
1484    char *pathname;
1485    char *name;
1486    bool nodeflib, objgiven;
1487
1488    objgiven = refobj != NULL;
1489    if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1490	if (xname[0] != '/' && !trust) {
1491	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1492	      xname);
1493	    return NULL;
1494	}
1495	return (origin_subst(__DECONST(Obj_Entry *, refobj),
1496	  __DECONST(char *, xname)));
1497    }
1498
1499    if (libmap_disable || !objgiven ||
1500	(name = lm_find(refobj->path, xname)) == NULL)
1501	name = (char *)xname;
1502
1503    dbg(" Searching for \"%s\"", name);
1504
1505    /*
1506     * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1507     * back to pre-conforming behaviour if user requested so with
1508     * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1509     * nodeflib.
1510     */
1511    if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1512	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1513	  (refobj != NULL &&
1514	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1515          (pathname = search_library_path(name, gethints(false))) != NULL ||
1516	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1517	    return (pathname);
1518    } else {
1519	nodeflib = objgiven ? refobj->z_nodeflib : false;
1520	if ((objgiven &&
1521	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1522	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1523	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1524	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1525	  (objgiven &&
1526	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1527	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1528	  (objgiven && !nodeflib &&
1529	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1530	    return (pathname);
1531    }
1532
1533    if (objgiven && refobj->path != NULL) {
1534	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1535	  name, basename(refobj->path));
1536    } else {
1537	_rtld_error("Shared object \"%s\" not found", name);
1538    }
1539    return NULL;
1540}
1541
1542/*
1543 * Given a symbol number in a referencing object, find the corresponding
1544 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1545 * no definition was found.  Returns a pointer to the Obj_Entry of the
1546 * defining object via the reference parameter DEFOBJ_OUT.
1547 */
1548const Elf_Sym *
1549find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1550    const Obj_Entry **defobj_out, int flags, SymCache *cache,
1551    RtldLockState *lockstate)
1552{
1553    const Elf_Sym *ref;
1554    const Elf_Sym *def;
1555    const Obj_Entry *defobj;
1556    const Ver_Entry *ve;
1557    SymLook req;
1558    const char *name;
1559    int res;
1560
1561    /*
1562     * If we have already found this symbol, get the information from
1563     * the cache.
1564     */
1565    if (symnum >= refobj->dynsymcount)
1566	return NULL;	/* Bad object */
1567    if (cache != NULL && cache[symnum].sym != NULL) {
1568	*defobj_out = cache[symnum].obj;
1569	return cache[symnum].sym;
1570    }
1571
1572    ref = refobj->symtab + symnum;
1573    name = refobj->strtab + ref->st_name;
1574    def = NULL;
1575    defobj = NULL;
1576    ve = NULL;
1577
1578    /*
1579     * We don't have to do a full scale lookup if the symbol is local.
1580     * We know it will bind to the instance in this load module; to
1581     * which we already have a pointer (ie ref). By not doing a lookup,
1582     * we not only improve performance, but it also avoids unresolvable
1583     * symbols when local symbols are not in the hash table. This has
1584     * been seen with the ia64 toolchain.
1585     */
1586    if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1587	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1588	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1589		symnum);
1590	}
1591	symlook_init(&req, name);
1592	req.flags = flags;
1593	ve = req.ventry = fetch_ventry(refobj, symnum);
1594	req.lockstate = lockstate;
1595	res = symlook_default(&req, refobj);
1596	if (res == 0) {
1597	    def = req.sym_out;
1598	    defobj = req.defobj_out;
1599	}
1600    } else {
1601	def = ref;
1602	defobj = refobj;
1603    }
1604
1605    /*
1606     * If we found no definition and the reference is weak, treat the
1607     * symbol as having the value zero.
1608     */
1609    if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1610	def = &sym_zero;
1611	defobj = obj_main;
1612    }
1613
1614    if (def != NULL) {
1615	*defobj_out = defobj;
1616	/* Record the information in the cache to avoid subsequent lookups. */
1617	if (cache != NULL) {
1618	    cache[symnum].sym = def;
1619	    cache[symnum].obj = defobj;
1620	}
1621    } else {
1622	if (refobj != &obj_rtld)
1623	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1624	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1625    }
1626    return def;
1627}
1628
1629/*
1630 * Return the search path from the ldconfig hints file, reading it if
1631 * necessary.  If nostdlib is true, then the default search paths are
1632 * not added to result.
1633 *
1634 * Returns NULL if there are problems with the hints file,
1635 * or if the search path there is empty.
1636 */
1637static const char *
1638gethints(bool nostdlib)
1639{
1640	static char *hints, *filtered_path;
1641	static struct elfhints_hdr hdr;
1642	struct fill_search_info_args sargs, hargs;
1643	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1644	struct dl_serpath *SLPpath, *hintpath;
1645	char *p;
1646	struct stat hint_stat;
1647	unsigned int SLPndx, hintndx, fndx, fcount;
1648	int fd;
1649	size_t flen;
1650	uint32_t dl;
1651	bool skip;
1652
1653	/* First call, read the hints file */
1654	if (hints == NULL) {
1655		/* Keep from trying again in case the hints file is bad. */
1656		hints = "";
1657
1658		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1659			return (NULL);
1660
1661		/*
1662		 * Check of hdr.dirlistlen value against type limit
1663		 * intends to pacify static analyzers.  Further
1664		 * paranoia leads to checks that dirlist is fully
1665		 * contained in the file range.
1666		 */
1667		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1668		    hdr.magic != ELFHINTS_MAGIC ||
1669		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1670		    fstat(fd, &hint_stat) == -1) {
1671cleanup1:
1672			close(fd);
1673			hdr.dirlistlen = 0;
1674			return (NULL);
1675		}
1676		dl = hdr.strtab;
1677		if (dl + hdr.dirlist < dl)
1678			goto cleanup1;
1679		dl += hdr.dirlist;
1680		if (dl + hdr.dirlistlen < dl)
1681			goto cleanup1;
1682		dl += hdr.dirlistlen;
1683		if (dl > hint_stat.st_size)
1684			goto cleanup1;
1685		p = xmalloc(hdr.dirlistlen + 1);
1686
1687		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1688		    read(fd, p, hdr.dirlistlen + 1) !=
1689		    (ssize_t)hdr.dirlistlen + 1 || p[hdr.dirlistlen] != '\0') {
1690			free(p);
1691			goto cleanup1;
1692		}
1693		hints = p;
1694		close(fd);
1695	}
1696
1697	/*
1698	 * If caller agreed to receive list which includes the default
1699	 * paths, we are done. Otherwise, if we still did not
1700	 * calculated filtered result, do it now.
1701	 */
1702	if (!nostdlib)
1703		return (hints[0] != '\0' ? hints : NULL);
1704	if (filtered_path != NULL)
1705		goto filt_ret;
1706
1707	/*
1708	 * Obtain the list of all configured search paths, and the
1709	 * list of the default paths.
1710	 *
1711	 * First estimate the size of the results.
1712	 */
1713	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1714	smeta.dls_cnt = 0;
1715	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1716	hmeta.dls_cnt = 0;
1717
1718	sargs.request = RTLD_DI_SERINFOSIZE;
1719	sargs.serinfo = &smeta;
1720	hargs.request = RTLD_DI_SERINFOSIZE;
1721	hargs.serinfo = &hmeta;
1722
1723	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1724	path_enumerate(hints, fill_search_info, &hargs);
1725
1726	SLPinfo = xmalloc(smeta.dls_size);
1727	hintinfo = xmalloc(hmeta.dls_size);
1728
1729	/*
1730	 * Next fetch both sets of paths.
1731	 */
1732	sargs.request = RTLD_DI_SERINFO;
1733	sargs.serinfo = SLPinfo;
1734	sargs.serpath = &SLPinfo->dls_serpath[0];
1735	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1736
1737	hargs.request = RTLD_DI_SERINFO;
1738	hargs.serinfo = hintinfo;
1739	hargs.serpath = &hintinfo->dls_serpath[0];
1740	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1741
1742	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1743	path_enumerate(hints, fill_search_info, &hargs);
1744
1745	/*
1746	 * Now calculate the difference between two sets, by excluding
1747	 * standard paths from the full set.
1748	 */
1749	fndx = 0;
1750	fcount = 0;
1751	filtered_path = xmalloc(hdr.dirlistlen + 1);
1752	hintpath = &hintinfo->dls_serpath[0];
1753	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1754		skip = false;
1755		SLPpath = &SLPinfo->dls_serpath[0];
1756		/*
1757		 * Check each standard path against current.
1758		 */
1759		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1760			/* matched, skip the path */
1761			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1762				skip = true;
1763				break;
1764			}
1765		}
1766		if (skip)
1767			continue;
1768		/*
1769		 * Not matched against any standard path, add the path
1770		 * to result. Separate consequtive paths with ':'.
1771		 */
1772		if (fcount > 0) {
1773			filtered_path[fndx] = ':';
1774			fndx++;
1775		}
1776		fcount++;
1777		flen = strlen(hintpath->dls_name);
1778		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1779		fndx += flen;
1780	}
1781	filtered_path[fndx] = '\0';
1782
1783	free(SLPinfo);
1784	free(hintinfo);
1785
1786filt_ret:
1787	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1788}
1789
1790static void
1791init_dag(Obj_Entry *root)
1792{
1793    const Needed_Entry *needed;
1794    const Objlist_Entry *elm;
1795    DoneList donelist;
1796
1797    if (root->dag_inited)
1798	return;
1799    donelist_init(&donelist);
1800
1801    /* Root object belongs to own DAG. */
1802    objlist_push_tail(&root->dldags, root);
1803    objlist_push_tail(&root->dagmembers, root);
1804    donelist_check(&donelist, root);
1805
1806    /*
1807     * Add dependencies of root object to DAG in breadth order
1808     * by exploiting the fact that each new object get added
1809     * to the tail of the dagmembers list.
1810     */
1811    STAILQ_FOREACH(elm, &root->dagmembers, link) {
1812	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1813	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1814		continue;
1815	    objlist_push_tail(&needed->obj->dldags, root);
1816	    objlist_push_tail(&root->dagmembers, needed->obj);
1817	}
1818    }
1819    root->dag_inited = true;
1820}
1821
1822Obj_Entry *
1823globallist_curr(const Obj_Entry *obj)
1824{
1825
1826	for (;;) {
1827		if (obj == NULL)
1828			return (NULL);
1829		if (!obj->marker)
1830			return (__DECONST(Obj_Entry *, obj));
1831		obj = TAILQ_PREV(obj, obj_entry_q, next);
1832	}
1833}
1834
1835Obj_Entry *
1836globallist_next(const Obj_Entry *obj)
1837{
1838
1839	for (;;) {
1840		obj = TAILQ_NEXT(obj, next);
1841		if (obj == NULL)
1842			return (NULL);
1843		if (!obj->marker)
1844			return (__DECONST(Obj_Entry *, obj));
1845	}
1846}
1847
1848static void
1849process_z(Obj_Entry *root)
1850{
1851	const Objlist_Entry *elm;
1852	Obj_Entry *obj;
1853
1854	/*
1855	 * Walk over object DAG and process every dependent object
1856	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
1857	 * to grow their own DAG.
1858	 *
1859	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
1860	 * symlook_global() to work.
1861	 *
1862	 * For DF_1_NODELETE, the DAG should have its reference upped.
1863	 */
1864	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1865		obj = elm->obj;
1866		if (obj == NULL)
1867			continue;
1868		if (obj->z_nodelete && !obj->ref_nodel) {
1869			dbg("obj %s -z nodelete", obj->path);
1870			init_dag(obj);
1871			ref_dag(obj);
1872			obj->ref_nodel = true;
1873		}
1874		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
1875			dbg("obj %s -z global", obj->path);
1876			objlist_push_tail(&list_global, obj);
1877			init_dag(obj);
1878		}
1879	}
1880}
1881/*
1882 * Initialize the dynamic linker.  The argument is the address at which
1883 * the dynamic linker has been mapped into memory.  The primary task of
1884 * this function is to relocate the dynamic linker.
1885 */
1886static void
1887init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1888{
1889    Obj_Entry objtmp;	/* Temporary rtld object */
1890    const Elf_Ehdr *ehdr;
1891    const Elf_Dyn *dyn_rpath;
1892    const Elf_Dyn *dyn_soname;
1893    const Elf_Dyn *dyn_runpath;
1894
1895#ifdef RTLD_INIT_PAGESIZES_EARLY
1896    /* The page size is required by the dynamic memory allocator. */
1897    init_pagesizes(aux_info);
1898#endif
1899
1900    /*
1901     * Conjure up an Obj_Entry structure for the dynamic linker.
1902     *
1903     * The "path" member can't be initialized yet because string constants
1904     * cannot yet be accessed. Below we will set it correctly.
1905     */
1906    memset(&objtmp, 0, sizeof(objtmp));
1907    objtmp.path = NULL;
1908    objtmp.rtld = true;
1909    objtmp.mapbase = mapbase;
1910#ifdef PIC
1911    objtmp.relocbase = mapbase;
1912#endif
1913    if (RTLD_IS_DYNAMIC()) {
1914	objtmp.dynamic = rtld_dynamic(&objtmp);
1915	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1916	assert(objtmp.needed == NULL);
1917#if !defined(__mips__)
1918	/* MIPS has a bogus DT_TEXTREL. */
1919	assert(!objtmp.textrel);
1920#endif
1921
1922	/*
1923	 * Temporarily put the dynamic linker entry into the object list, so
1924	 * that symbols can be found.
1925	 */
1926
1927	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1928    }
1929    ehdr = (Elf_Ehdr *)mapbase;
1930    objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
1931    objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
1932
1933    /* Initialize the object list. */
1934    TAILQ_INIT(&obj_list);
1935
1936    /* Now that non-local variables can be accesses, copy out obj_rtld. */
1937    memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1938
1939#ifndef RTLD_INIT_PAGESIZES_EARLY
1940    /* The page size is required by the dynamic memory allocator. */
1941    init_pagesizes(aux_info);
1942#endif
1943
1944    if (aux_info[AT_OSRELDATE] != NULL)
1945	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1946
1947    digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1948
1949    /* Replace the path with a dynamically allocated copy. */
1950    obj_rtld.path = xstrdup(PATH_RTLD);
1951
1952    r_debug.r_brk = r_debug_state;
1953    r_debug.r_state = RT_CONSISTENT;
1954}
1955
1956/*
1957 * Retrieve the array of supported page sizes.  The kernel provides the page
1958 * sizes in increasing order.
1959 */
1960static void
1961init_pagesizes(Elf_Auxinfo **aux_info)
1962{
1963	static size_t psa[MAXPAGESIZES];
1964	int mib[2];
1965	size_t len, size;
1966
1967	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
1968	    NULL) {
1969		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
1970		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
1971	} else {
1972		len = 2;
1973		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
1974			size = sizeof(psa);
1975		else {
1976			/* As a fallback, retrieve the base page size. */
1977			size = sizeof(psa[0]);
1978			if (aux_info[AT_PAGESZ] != NULL) {
1979				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
1980				goto psa_filled;
1981			} else {
1982				mib[0] = CTL_HW;
1983				mib[1] = HW_PAGESIZE;
1984				len = 2;
1985			}
1986		}
1987		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
1988			_rtld_error("sysctl for hw.pagesize(s) failed");
1989			rtld_die();
1990		}
1991psa_filled:
1992		pagesizes = psa;
1993	}
1994	npagesizes = size / sizeof(pagesizes[0]);
1995	/* Discard any invalid entries at the end of the array. */
1996	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
1997		npagesizes--;
1998}
1999
2000/*
2001 * Add the init functions from a needed object list (and its recursive
2002 * needed objects) to "list".  This is not used directly; it is a helper
2003 * function for initlist_add_objects().  The write lock must be held
2004 * when this function is called.
2005 */
2006static void
2007initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2008{
2009    /* Recursively process the successor needed objects. */
2010    if (needed->next != NULL)
2011	initlist_add_neededs(needed->next, list);
2012
2013    /* Process the current needed object. */
2014    if (needed->obj != NULL)
2015	initlist_add_objects(needed->obj, needed->obj, list);
2016}
2017
2018/*
2019 * Scan all of the DAGs rooted in the range of objects from "obj" to
2020 * "tail" and add their init functions to "list".  This recurses over
2021 * the DAGs and ensure the proper init ordering such that each object's
2022 * needed libraries are initialized before the object itself.  At the
2023 * same time, this function adds the objects to the global finalization
2024 * list "list_fini" in the opposite order.  The write lock must be
2025 * held when this function is called.
2026 */
2027static void
2028initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2029{
2030    Obj_Entry *nobj;
2031
2032    if (obj->init_scanned || obj->init_done)
2033	return;
2034    obj->init_scanned = true;
2035
2036    /* Recursively process the successor objects. */
2037    nobj = globallist_next(obj);
2038    if (nobj != NULL && obj != tail)
2039	initlist_add_objects(nobj, tail, list);
2040
2041    /* Recursively process the needed objects. */
2042    if (obj->needed != NULL)
2043	initlist_add_neededs(obj->needed, list);
2044    if (obj->needed_filtees != NULL)
2045	initlist_add_neededs(obj->needed_filtees, list);
2046    if (obj->needed_aux_filtees != NULL)
2047	initlist_add_neededs(obj->needed_aux_filtees, list);
2048
2049    /* Add the object to the init list. */
2050    if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
2051      obj->init_array != (Elf_Addr)NULL)
2052	objlist_push_tail(list, obj);
2053
2054    /* Add the object to the global fini list in the reverse order. */
2055    if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2056      && !obj->on_fini_list) {
2057	objlist_push_head(&list_fini, obj);
2058	obj->on_fini_list = true;
2059    }
2060}
2061
2062#ifndef FPTR_TARGET
2063#define FPTR_TARGET(f)	((Elf_Addr) (f))
2064#endif
2065
2066static void
2067free_needed_filtees(Needed_Entry *n)
2068{
2069    Needed_Entry *needed, *needed1;
2070
2071    for (needed = n; needed != NULL; needed = needed->next) {
2072	if (needed->obj != NULL) {
2073	    dlclose(needed->obj);
2074	    needed->obj = NULL;
2075	}
2076    }
2077    for (needed = n; needed != NULL; needed = needed1) {
2078	needed1 = needed->next;
2079	free(needed);
2080    }
2081}
2082
2083static void
2084unload_filtees(Obj_Entry *obj)
2085{
2086
2087    free_needed_filtees(obj->needed_filtees);
2088    obj->needed_filtees = NULL;
2089    free_needed_filtees(obj->needed_aux_filtees);
2090    obj->needed_aux_filtees = NULL;
2091    obj->filtees_loaded = false;
2092}
2093
2094static void
2095load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2096    RtldLockState *lockstate)
2097{
2098
2099    for (; needed != NULL; needed = needed->next) {
2100	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2101	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2102	  RTLD_LOCAL, lockstate);
2103    }
2104}
2105
2106static void
2107load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2108{
2109
2110    lock_restart_for_upgrade(lockstate);
2111    if (!obj->filtees_loaded) {
2112	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2113	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2114	obj->filtees_loaded = true;
2115    }
2116}
2117
2118static int
2119process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2120{
2121    Obj_Entry *obj1;
2122
2123    for (; needed != NULL; needed = needed->next) {
2124	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2125	  flags & ~RTLD_LO_NOLOAD);
2126	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2127	    return (-1);
2128    }
2129    return (0);
2130}
2131
2132/*
2133 * Given a shared object, traverse its list of needed objects, and load
2134 * each of them.  Returns 0 on success.  Generates an error message and
2135 * returns -1 on failure.
2136 */
2137static int
2138load_needed_objects(Obj_Entry *first, int flags)
2139{
2140    Obj_Entry *obj;
2141
2142    for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2143	if (obj->marker)
2144	    continue;
2145	if (process_needed(obj, obj->needed, flags) == -1)
2146	    return (-1);
2147    }
2148    return (0);
2149}
2150
2151static int
2152load_preload_objects(void)
2153{
2154    char *p = ld_preload;
2155    Obj_Entry *obj;
2156    static const char delim[] = " \t:;";
2157
2158    if (p == NULL)
2159	return 0;
2160
2161    p += strspn(p, delim);
2162    while (*p != '\0') {
2163	size_t len = strcspn(p, delim);
2164	char savech;
2165
2166	savech = p[len];
2167	p[len] = '\0';
2168	obj = load_object(p, -1, NULL, 0);
2169	if (obj == NULL)
2170	    return -1;	/* XXX - cleanup */
2171	obj->z_interpose = true;
2172	p[len] = savech;
2173	p += len;
2174	p += strspn(p, delim);
2175    }
2176    LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2177    return 0;
2178}
2179
2180static const char *
2181printable_path(const char *path)
2182{
2183
2184	return (path == NULL ? "<unknown>" : path);
2185}
2186
2187/*
2188 * Load a shared object into memory, if it is not already loaded.  The
2189 * object may be specified by name or by user-supplied file descriptor
2190 * fd_u. In the later case, the fd_u descriptor is not closed, but its
2191 * duplicate is.
2192 *
2193 * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2194 * on failure.
2195 */
2196static Obj_Entry *
2197load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2198{
2199    Obj_Entry *obj;
2200    int fd;
2201    struct stat sb;
2202    char *path;
2203
2204    if (name != NULL) {
2205	TAILQ_FOREACH(obj, &obj_list, next) {
2206	    if (obj->marker)
2207		continue;
2208	    if (object_match_name(obj, name))
2209		return (obj);
2210	}
2211
2212	path = find_library(name, refobj);
2213	if (path == NULL)
2214	    return (NULL);
2215    } else
2216	path = NULL;
2217
2218    /*
2219     * If we didn't find a match by pathname, or the name is not
2220     * supplied, open the file and check again by device and inode.
2221     * This avoids false mismatches caused by multiple links or ".."
2222     * in pathnames.
2223     *
2224     * To avoid a race, we open the file and use fstat() rather than
2225     * using stat().
2226     */
2227    fd = -1;
2228    if (fd_u == -1) {
2229	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2230	    _rtld_error("Cannot open \"%s\"", path);
2231	    free(path);
2232	    return (NULL);
2233	}
2234    } else {
2235	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2236	if (fd == -1) {
2237	    _rtld_error("Cannot dup fd");
2238	    free(path);
2239	    return (NULL);
2240	}
2241    }
2242    if (fstat(fd, &sb) == -1) {
2243	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2244	close(fd);
2245	free(path);
2246	return NULL;
2247    }
2248    TAILQ_FOREACH(obj, &obj_list, next) {
2249	if (obj->marker)
2250	    continue;
2251	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2252	    break;
2253    }
2254    if (obj != NULL && name != NULL) {
2255	object_add_name(obj, name);
2256	free(path);
2257	close(fd);
2258	return obj;
2259    }
2260    if (flags & RTLD_LO_NOLOAD) {
2261	free(path);
2262	close(fd);
2263	return (NULL);
2264    }
2265
2266    /* First use of this object, so we must map it in */
2267    obj = do_load_object(fd, name, path, &sb, flags);
2268    if (obj == NULL)
2269	free(path);
2270    close(fd);
2271
2272    return obj;
2273}
2274
2275static Obj_Entry *
2276do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2277  int flags)
2278{
2279    Obj_Entry *obj;
2280    struct statfs fs;
2281
2282    /*
2283     * but first, make sure that environment variables haven't been
2284     * used to circumvent the noexec flag on a filesystem.
2285     */
2286    if (dangerous_ld_env) {
2287	if (fstatfs(fd, &fs) != 0) {
2288	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2289	    return NULL;
2290	}
2291	if (fs.f_flags & MNT_NOEXEC) {
2292	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2293	    return NULL;
2294	}
2295    }
2296    dbg("loading \"%s\"", printable_path(path));
2297    obj = map_object(fd, printable_path(path), sbp);
2298    if (obj == NULL)
2299        return NULL;
2300
2301    /*
2302     * If DT_SONAME is present in the object, digest_dynamic2 already
2303     * added it to the object names.
2304     */
2305    if (name != NULL)
2306	object_add_name(obj, name);
2307    obj->path = path;
2308    digest_dynamic(obj, 0);
2309    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2310	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2311    if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2312      RTLD_LO_DLOPEN) {
2313	dbg("refusing to load non-loadable \"%s\"", obj->path);
2314	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2315	munmap(obj->mapbase, obj->mapsize);
2316	obj_free(obj);
2317	return (NULL);
2318    }
2319
2320    obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2321    TAILQ_INSERT_TAIL(&obj_list, obj, next);
2322    obj_count++;
2323    obj_loads++;
2324    linkmap_add(obj);	/* for GDB & dlinfo() */
2325    max_stack_flags |= obj->stack_flags;
2326
2327    dbg("  %p .. %p: %s", obj->mapbase,
2328         obj->mapbase + obj->mapsize - 1, obj->path);
2329    if (obj->textrel)
2330	dbg("  WARNING: %s has impure text", obj->path);
2331    LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2332	obj->path);
2333
2334    return obj;
2335}
2336
2337static Obj_Entry *
2338obj_from_addr(const void *addr)
2339{
2340    Obj_Entry *obj;
2341
2342    TAILQ_FOREACH(obj, &obj_list, next) {
2343	if (obj->marker)
2344	    continue;
2345	if (addr < (void *) obj->mapbase)
2346	    continue;
2347	if (addr < (void *) (obj->mapbase + obj->mapsize))
2348	    return obj;
2349    }
2350    return NULL;
2351}
2352
2353static void
2354preinit_main(void)
2355{
2356    Elf_Addr *preinit_addr;
2357    int index;
2358
2359    preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2360    if (preinit_addr == NULL)
2361	return;
2362
2363    for (index = 0; index < obj_main->preinit_array_num; index++) {
2364	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2365	    dbg("calling preinit function for %s at %p", obj_main->path,
2366	      (void *)preinit_addr[index]);
2367	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2368	      0, 0, obj_main->path);
2369	    call_init_pointer(obj_main, preinit_addr[index]);
2370	}
2371    }
2372}
2373
2374/*
2375 * Call the finalization functions for each of the objects in "list"
2376 * belonging to the DAG of "root" and referenced once. If NULL "root"
2377 * is specified, every finalization function will be called regardless
2378 * of the reference count and the list elements won't be freed. All of
2379 * the objects are expected to have non-NULL fini functions.
2380 */
2381static void
2382objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2383{
2384    Objlist_Entry *elm;
2385    char *saved_msg;
2386    Elf_Addr *fini_addr;
2387    int index;
2388
2389    assert(root == NULL || root->refcount == 1);
2390
2391    /*
2392     * Preserve the current error message since a fini function might
2393     * call into the dynamic linker and overwrite it.
2394     */
2395    saved_msg = errmsg_save();
2396    do {
2397	STAILQ_FOREACH(elm, list, link) {
2398	    if (root != NULL && (elm->obj->refcount != 1 ||
2399	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2400		continue;
2401	    /* Remove object from fini list to prevent recursive invocation. */
2402	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2403	    /*
2404	     * XXX: If a dlopen() call references an object while the
2405	     * fini function is in progress, we might end up trying to
2406	     * unload the referenced object in dlclose() or the object
2407	     * won't be unloaded although its fini function has been
2408	     * called.
2409	     */
2410	    lock_release(rtld_bind_lock, lockstate);
2411
2412	    /*
2413	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2414	     * When this happens, DT_FINI_ARRAY is processed first.
2415	     */
2416	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2417	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2418		for (index = elm->obj->fini_array_num - 1; index >= 0;
2419		  index--) {
2420		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2421			dbg("calling fini function for %s at %p",
2422			    elm->obj->path, (void *)fini_addr[index]);
2423			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2424			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2425			call_initfini_pointer(elm->obj, fini_addr[index]);
2426		    }
2427		}
2428	    }
2429	    if (elm->obj->fini != (Elf_Addr)NULL) {
2430		dbg("calling fini function for %s at %p", elm->obj->path,
2431		    (void *)elm->obj->fini);
2432		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2433		    0, 0, elm->obj->path);
2434		call_initfini_pointer(elm->obj, elm->obj->fini);
2435	    }
2436	    wlock_acquire(rtld_bind_lock, lockstate);
2437	    /* No need to free anything if process is going down. */
2438	    if (root != NULL)
2439	    	free(elm);
2440	    /*
2441	     * We must restart the list traversal after every fini call
2442	     * because a dlclose() call from the fini function or from
2443	     * another thread might have modified the reference counts.
2444	     */
2445	    break;
2446	}
2447    } while (elm != NULL);
2448    errmsg_restore(saved_msg);
2449}
2450
2451/*
2452 * Call the initialization functions for each of the objects in
2453 * "list".  All of the objects are expected to have non-NULL init
2454 * functions.
2455 */
2456static void
2457objlist_call_init(Objlist *list, RtldLockState *lockstate)
2458{
2459    Objlist_Entry *elm;
2460    Obj_Entry *obj;
2461    char *saved_msg;
2462    Elf_Addr *init_addr;
2463    int index;
2464
2465    /*
2466     * Clean init_scanned flag so that objects can be rechecked and
2467     * possibly initialized earlier if any of vectors called below
2468     * cause the change by using dlopen.
2469     */
2470    TAILQ_FOREACH(obj, &obj_list, next) {
2471	if (obj->marker)
2472	    continue;
2473	obj->init_scanned = false;
2474    }
2475
2476    /*
2477     * Preserve the current error message since an init function might
2478     * call into the dynamic linker and overwrite it.
2479     */
2480    saved_msg = errmsg_save();
2481    STAILQ_FOREACH(elm, list, link) {
2482	if (elm->obj->init_done) /* Initialized early. */
2483	    continue;
2484	/*
2485	 * Race: other thread might try to use this object before current
2486	 * one completes the initialization. Not much can be done here
2487	 * without better locking.
2488	 */
2489	elm->obj->init_done = true;
2490	lock_release(rtld_bind_lock, lockstate);
2491
2492        /*
2493         * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2494         * When this happens, DT_INIT is processed first.
2495         */
2496	if (elm->obj->init != (Elf_Addr)NULL) {
2497	    dbg("calling init function for %s at %p", elm->obj->path,
2498	        (void *)elm->obj->init);
2499	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2500	        0, 0, elm->obj->path);
2501	    call_initfini_pointer(elm->obj, elm->obj->init);
2502	}
2503	init_addr = (Elf_Addr *)elm->obj->init_array;
2504	if (init_addr != NULL) {
2505	    for (index = 0; index < elm->obj->init_array_num; index++) {
2506		if (init_addr[index] != 0 && init_addr[index] != 1) {
2507		    dbg("calling init function for %s at %p", elm->obj->path,
2508			(void *)init_addr[index]);
2509		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2510			(void *)init_addr[index], 0, 0, elm->obj->path);
2511		    call_init_pointer(elm->obj, init_addr[index]);
2512		}
2513	    }
2514	}
2515	wlock_acquire(rtld_bind_lock, lockstate);
2516    }
2517    errmsg_restore(saved_msg);
2518}
2519
2520static void
2521objlist_clear(Objlist *list)
2522{
2523    Objlist_Entry *elm;
2524
2525    while (!STAILQ_EMPTY(list)) {
2526	elm = STAILQ_FIRST(list);
2527	STAILQ_REMOVE_HEAD(list, link);
2528	free(elm);
2529    }
2530}
2531
2532static Objlist_Entry *
2533objlist_find(Objlist *list, const Obj_Entry *obj)
2534{
2535    Objlist_Entry *elm;
2536
2537    STAILQ_FOREACH(elm, list, link)
2538	if (elm->obj == obj)
2539	    return elm;
2540    return NULL;
2541}
2542
2543static void
2544objlist_init(Objlist *list)
2545{
2546    STAILQ_INIT(list);
2547}
2548
2549static void
2550objlist_push_head(Objlist *list, Obj_Entry *obj)
2551{
2552    Objlist_Entry *elm;
2553
2554    elm = NEW(Objlist_Entry);
2555    elm->obj = obj;
2556    STAILQ_INSERT_HEAD(list, elm, link);
2557}
2558
2559static void
2560objlist_push_tail(Objlist *list, Obj_Entry *obj)
2561{
2562    Objlist_Entry *elm;
2563
2564    elm = NEW(Objlist_Entry);
2565    elm->obj = obj;
2566    STAILQ_INSERT_TAIL(list, elm, link);
2567}
2568
2569static void
2570objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2571{
2572	Objlist_Entry *elm, *listelm;
2573
2574	STAILQ_FOREACH(listelm, list, link) {
2575		if (listelm->obj == listobj)
2576			break;
2577	}
2578	elm = NEW(Objlist_Entry);
2579	elm->obj = obj;
2580	if (listelm != NULL)
2581		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2582	else
2583		STAILQ_INSERT_TAIL(list, elm, link);
2584}
2585
2586static void
2587objlist_remove(Objlist *list, Obj_Entry *obj)
2588{
2589    Objlist_Entry *elm;
2590
2591    if ((elm = objlist_find(list, obj)) != NULL) {
2592	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2593	free(elm);
2594    }
2595}
2596
2597/*
2598 * Relocate dag rooted in the specified object.
2599 * Returns 0 on success, or -1 on failure.
2600 */
2601
2602static int
2603relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2604    int flags, RtldLockState *lockstate)
2605{
2606	Objlist_Entry *elm;
2607	int error;
2608
2609	error = 0;
2610	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2611		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2612		    lockstate);
2613		if (error == -1)
2614			break;
2615	}
2616	return (error);
2617}
2618
2619/*
2620 * Prepare for, or clean after, relocating an object marked with
2621 * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2622 * segments are remapped read-write.  After relocations are done, the
2623 * segment's permissions are returned back to the modes specified in
2624 * the phdrs.  If any relocation happened, or always for wired
2625 * program, COW is triggered.
2626 */
2627static int
2628reloc_textrel_prot(Obj_Entry *obj, bool before)
2629{
2630	const Elf_Phdr *ph;
2631	void *base;
2632	size_t l, sz;
2633	int prot;
2634
2635	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2636	    l--, ph++) {
2637		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2638			continue;
2639		base = obj->relocbase + trunc_page(ph->p_vaddr);
2640		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2641		    trunc_page(ph->p_vaddr);
2642		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2643		if (mprotect(base, sz, prot) == -1) {
2644			_rtld_error("%s: Cannot write-%sable text segment: %s",
2645			    obj->path, before ? "en" : "dis",
2646			    rtld_strerror(errno));
2647			return (-1);
2648		}
2649	}
2650	return (0);
2651}
2652
2653/*
2654 * Relocate single object.
2655 * Returns 0 on success, or -1 on failure.
2656 */
2657static int
2658relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2659    int flags, RtldLockState *lockstate)
2660{
2661
2662	if (obj->relocated)
2663		return (0);
2664	obj->relocated = true;
2665	if (obj != rtldobj)
2666		dbg("relocating \"%s\"", obj->path);
2667
2668	if (obj->symtab == NULL || obj->strtab == NULL ||
2669	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2670		_rtld_error("%s: Shared object has no run-time symbol table",
2671			    obj->path);
2672		return (-1);
2673	}
2674
2675	/* There are relocations to the write-protected text segment. */
2676	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2677		return (-1);
2678
2679	/* Process the non-PLT non-IFUNC relocations. */
2680	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2681		return (-1);
2682
2683	/* Re-protected the text segment. */
2684	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2685		return (-1);
2686
2687	/* Set the special PLT or GOT entries. */
2688	init_pltgot(obj);
2689
2690	/* Process the PLT relocations. */
2691	if (reloc_plt(obj) == -1)
2692		return (-1);
2693	/* Relocate the jump slots if we are doing immediate binding. */
2694	if (obj->bind_now || bind_now)
2695		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2696			return (-1);
2697
2698	/*
2699	 * Process the non-PLT IFUNC relocations.  The relocations are
2700	 * processed in two phases, because IFUNC resolvers may
2701	 * reference other symbols, which must be readily processed
2702	 * before resolvers are called.
2703	 */
2704	if (obj->non_plt_gnu_ifunc &&
2705	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2706		return (-1);
2707
2708	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
2709		return (-1);
2710
2711	/*
2712	 * Set up the magic number and version in the Obj_Entry.  These
2713	 * were checked in the crt1.o from the original ElfKit, so we
2714	 * set them for backward compatibility.
2715	 */
2716	obj->magic = RTLD_MAGIC;
2717	obj->version = RTLD_VERSION;
2718
2719	return (0);
2720}
2721
2722/*
2723 * Relocate newly-loaded shared objects.  The argument is a pointer to
2724 * the Obj_Entry for the first such object.  All objects from the first
2725 * to the end of the list of objects are relocated.  Returns 0 on success,
2726 * or -1 on failure.
2727 */
2728static int
2729relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2730    int flags, RtldLockState *lockstate)
2731{
2732	Obj_Entry *obj;
2733	int error;
2734
2735	for (error = 0, obj = first;  obj != NULL;
2736	    obj = TAILQ_NEXT(obj, next)) {
2737		if (obj->marker)
2738			continue;
2739		error = relocate_object(obj, bind_now, rtldobj, flags,
2740		    lockstate);
2741		if (error == -1)
2742			break;
2743	}
2744	return (error);
2745}
2746
2747/*
2748 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2749 * referencing STT_GNU_IFUNC symbols is postponed till the other
2750 * relocations are done.  The indirect functions specified as
2751 * ifunc are allowed to call other symbols, so we need to have
2752 * objects relocated before asking for resolution from indirects.
2753 *
2754 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2755 * instead of the usual lazy handling of PLT slots.  It is
2756 * consistent with how GNU does it.
2757 */
2758static int
2759resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2760    RtldLockState *lockstate)
2761{
2762	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2763		return (-1);
2764	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2765	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2766		return (-1);
2767	return (0);
2768}
2769
2770static int
2771resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2772    RtldLockState *lockstate)
2773{
2774	Obj_Entry *obj;
2775
2776	for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2777		if (obj->marker)
2778			continue;
2779		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2780			return (-1);
2781	}
2782	return (0);
2783}
2784
2785static int
2786initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2787    RtldLockState *lockstate)
2788{
2789	Objlist_Entry *elm;
2790
2791	STAILQ_FOREACH(elm, list, link) {
2792		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2793		    lockstate) == -1)
2794			return (-1);
2795	}
2796	return (0);
2797}
2798
2799/*
2800 * Cleanup procedure.  It will be called (by the atexit mechanism) just
2801 * before the process exits.
2802 */
2803static void
2804rtld_exit(void)
2805{
2806    RtldLockState lockstate;
2807
2808    wlock_acquire(rtld_bind_lock, &lockstate);
2809    dbg("rtld_exit()");
2810    objlist_call_fini(&list_fini, NULL, &lockstate);
2811    /* No need to remove the items from the list, since we are exiting. */
2812    if (!libmap_disable)
2813        lm_fini();
2814    lock_release(rtld_bind_lock, &lockstate);
2815}
2816
2817/*
2818 * Iterate over a search path, translate each element, and invoke the
2819 * callback on the result.
2820 */
2821static void *
2822path_enumerate(const char *path, path_enum_proc callback, void *arg)
2823{
2824    const char *trans;
2825    if (path == NULL)
2826	return (NULL);
2827
2828    path += strspn(path, ":;");
2829    while (*path != '\0') {
2830	size_t len;
2831	char  *res;
2832
2833	len = strcspn(path, ":;");
2834	trans = lm_findn(NULL, path, len);
2835	if (trans)
2836	    res = callback(trans, strlen(trans), arg);
2837	else
2838	    res = callback(path, len, arg);
2839
2840	if (res != NULL)
2841	    return (res);
2842
2843	path += len;
2844	path += strspn(path, ":;");
2845    }
2846
2847    return (NULL);
2848}
2849
2850struct try_library_args {
2851    const char	*name;
2852    size_t	 namelen;
2853    char	*buffer;
2854    size_t	 buflen;
2855};
2856
2857static void *
2858try_library_path(const char *dir, size_t dirlen, void *param)
2859{
2860    struct try_library_args *arg;
2861
2862    arg = param;
2863    if (*dir == '/' || trust) {
2864	char *pathname;
2865
2866	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2867		return (NULL);
2868
2869	pathname = arg->buffer;
2870	strncpy(pathname, dir, dirlen);
2871	pathname[dirlen] = '/';
2872	strcpy(pathname + dirlen + 1, arg->name);
2873
2874	dbg("  Trying \"%s\"", pathname);
2875	if (access(pathname, F_OK) == 0) {		/* We found it */
2876	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2877	    strcpy(pathname, arg->buffer);
2878	    return (pathname);
2879	}
2880    }
2881    return (NULL);
2882}
2883
2884static char *
2885search_library_path(const char *name, const char *path)
2886{
2887    char *p;
2888    struct try_library_args arg;
2889
2890    if (path == NULL)
2891	return NULL;
2892
2893    arg.name = name;
2894    arg.namelen = strlen(name);
2895    arg.buffer = xmalloc(PATH_MAX);
2896    arg.buflen = PATH_MAX;
2897
2898    p = path_enumerate(path, try_library_path, &arg);
2899
2900    free(arg.buffer);
2901
2902    return (p);
2903}
2904
2905int
2906dlclose(void *handle)
2907{
2908    Obj_Entry *root;
2909    RtldLockState lockstate;
2910
2911    wlock_acquire(rtld_bind_lock, &lockstate);
2912    root = dlcheck(handle);
2913    if (root == NULL) {
2914	lock_release(rtld_bind_lock, &lockstate);
2915	return -1;
2916    }
2917    LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2918	root->path);
2919
2920    /* Unreference the object and its dependencies. */
2921    root->dl_refcount--;
2922
2923    if (root->refcount == 1) {
2924	/*
2925	 * The object will be no longer referenced, so we must unload it.
2926	 * First, call the fini functions.
2927	 */
2928	objlist_call_fini(&list_fini, root, &lockstate);
2929
2930	unref_dag(root);
2931
2932	/* Finish cleaning up the newly-unreferenced objects. */
2933	GDB_STATE(RT_DELETE,&root->linkmap);
2934	unload_object(root);
2935	GDB_STATE(RT_CONSISTENT,NULL);
2936    } else
2937	unref_dag(root);
2938
2939    LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2940    lock_release(rtld_bind_lock, &lockstate);
2941    return 0;
2942}
2943
2944char *
2945dlerror(void)
2946{
2947    char *msg = error_message;
2948    error_message = NULL;
2949    return msg;
2950}
2951
2952/*
2953 * This function is deprecated and has no effect.
2954 */
2955void
2956dllockinit(void *context,
2957	   void *(*lock_create)(void *context),
2958           void (*rlock_acquire)(void *lock),
2959           void (*wlock_acquire)(void *lock),
2960           void (*lock_release)(void *lock),
2961           void (*lock_destroy)(void *lock),
2962	   void (*context_destroy)(void *context))
2963{
2964    static void *cur_context;
2965    static void (*cur_context_destroy)(void *);
2966
2967    /* Just destroy the context from the previous call, if necessary. */
2968    if (cur_context_destroy != NULL)
2969	cur_context_destroy(cur_context);
2970    cur_context = context;
2971    cur_context_destroy = context_destroy;
2972}
2973
2974void *
2975dlopen(const char *name, int mode)
2976{
2977
2978	return (rtld_dlopen(name, -1, mode));
2979}
2980
2981void *
2982fdlopen(int fd, int mode)
2983{
2984
2985	return (rtld_dlopen(NULL, fd, mode));
2986}
2987
2988static void *
2989rtld_dlopen(const char *name, int fd, int mode)
2990{
2991    RtldLockState lockstate;
2992    int lo_flags;
2993
2994    LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2995    ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2996    if (ld_tracing != NULL) {
2997	rlock_acquire(rtld_bind_lock, &lockstate);
2998	if (sigsetjmp(lockstate.env, 0) != 0)
2999	    lock_upgrade(rtld_bind_lock, &lockstate);
3000	environ = (char **)*get_program_var_addr("environ", &lockstate);
3001	lock_release(rtld_bind_lock, &lockstate);
3002    }
3003    lo_flags = RTLD_LO_DLOPEN;
3004    if (mode & RTLD_NODELETE)
3005	    lo_flags |= RTLD_LO_NODELETE;
3006    if (mode & RTLD_NOLOAD)
3007	    lo_flags |= RTLD_LO_NOLOAD;
3008    if (ld_tracing != NULL)
3009	    lo_flags |= RTLD_LO_TRACE;
3010
3011    return (dlopen_object(name, fd, obj_main, lo_flags,
3012      mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3013}
3014
3015static void
3016dlopen_cleanup(Obj_Entry *obj)
3017{
3018
3019	obj->dl_refcount--;
3020	unref_dag(obj);
3021	if (obj->refcount == 0)
3022		unload_object(obj);
3023}
3024
3025static Obj_Entry *
3026dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3027    int mode, RtldLockState *lockstate)
3028{
3029    Obj_Entry *old_obj_tail;
3030    Obj_Entry *obj;
3031    Objlist initlist;
3032    RtldLockState mlockstate;
3033    int result;
3034
3035    objlist_init(&initlist);
3036
3037    if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3038	wlock_acquire(rtld_bind_lock, &mlockstate);
3039	lockstate = &mlockstate;
3040    }
3041    GDB_STATE(RT_ADD,NULL);
3042
3043    old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3044    obj = NULL;
3045    if (name == NULL && fd == -1) {
3046	obj = obj_main;
3047	obj->refcount++;
3048    } else {
3049	obj = load_object(name, fd, refobj, lo_flags);
3050    }
3051
3052    if (obj) {
3053	obj->dl_refcount++;
3054	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3055	    objlist_push_tail(&list_global, obj);
3056	if (globallist_next(old_obj_tail) != NULL) {
3057	    /* We loaded something new. */
3058	    assert(globallist_next(old_obj_tail) == obj);
3059	    result = load_needed_objects(obj,
3060		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3061	    init_dag(obj);
3062	    ref_dag(obj);
3063	    if (result != -1)
3064		result = rtld_verify_versions(&obj->dagmembers);
3065	    if (result != -1 && ld_tracing)
3066		goto trace;
3067	    if (result == -1 || relocate_object_dag(obj,
3068	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3069	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3070	      lockstate) == -1) {
3071		dlopen_cleanup(obj);
3072		obj = NULL;
3073	    } else if (lo_flags & RTLD_LO_EARLY) {
3074		/*
3075		 * Do not call the init functions for early loaded
3076		 * filtees.  The image is still not initialized enough
3077		 * for them to work.
3078		 *
3079		 * Our object is found by the global object list and
3080		 * will be ordered among all init calls done right
3081		 * before transferring control to main.
3082		 */
3083	    } else {
3084		/* Make list of init functions to call. */
3085		initlist_add_objects(obj, obj, &initlist);
3086	    }
3087	    /*
3088	     * Process all no_delete or global objects here, given
3089	     * them own DAGs to prevent their dependencies from being
3090	     * unloaded.  This has to be done after we have loaded all
3091	     * of the dependencies, so that we do not miss any.
3092	     */
3093	    if (obj != NULL)
3094		process_z(obj);
3095	} else {
3096	    /*
3097	     * Bump the reference counts for objects on this DAG.  If
3098	     * this is the first dlopen() call for the object that was
3099	     * already loaded as a dependency, initialize the dag
3100	     * starting at it.
3101	     */
3102	    init_dag(obj);
3103	    ref_dag(obj);
3104
3105	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3106		goto trace;
3107	}
3108	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3109	  obj->z_nodelete) && !obj->ref_nodel) {
3110	    dbg("obj %s nodelete", obj->path);
3111	    ref_dag(obj);
3112	    obj->z_nodelete = obj->ref_nodel = true;
3113	}
3114    }
3115
3116    LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3117	name);
3118    GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3119
3120    if (!(lo_flags & RTLD_LO_EARLY)) {
3121	map_stacks_exec(lockstate);
3122    }
3123
3124    if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3125      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3126      lockstate) == -1) {
3127	objlist_clear(&initlist);
3128	dlopen_cleanup(obj);
3129	if (lockstate == &mlockstate)
3130	    lock_release(rtld_bind_lock, lockstate);
3131	return (NULL);
3132    }
3133
3134    if (!(lo_flags & RTLD_LO_EARLY)) {
3135	/* Call the init functions. */
3136	objlist_call_init(&initlist, lockstate);
3137    }
3138    objlist_clear(&initlist);
3139    if (lockstate == &mlockstate)
3140	lock_release(rtld_bind_lock, lockstate);
3141    return obj;
3142trace:
3143    trace_loaded_objects(obj);
3144    if (lockstate == &mlockstate)
3145	lock_release(rtld_bind_lock, lockstate);
3146    exit(0);
3147}
3148
3149static void *
3150do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3151    int flags)
3152{
3153    DoneList donelist;
3154    const Obj_Entry *obj, *defobj;
3155    const Elf_Sym *def;
3156    SymLook req;
3157    RtldLockState lockstate;
3158#ifndef __ia64__
3159    tls_index ti;
3160#endif
3161    void *sym;
3162    int res;
3163
3164    def = NULL;
3165    defobj = NULL;
3166    symlook_init(&req, name);
3167    req.ventry = ve;
3168    req.flags = flags | SYMLOOK_IN_PLT;
3169    req.lockstate = &lockstate;
3170
3171    LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3172    rlock_acquire(rtld_bind_lock, &lockstate);
3173    if (sigsetjmp(lockstate.env, 0) != 0)
3174	    lock_upgrade(rtld_bind_lock, &lockstate);
3175    if (handle == NULL || handle == RTLD_NEXT ||
3176	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3177
3178	if ((obj = obj_from_addr(retaddr)) == NULL) {
3179	    _rtld_error("Cannot determine caller's shared object");
3180	    lock_release(rtld_bind_lock, &lockstate);
3181	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3182	    return NULL;
3183	}
3184	if (handle == NULL) {	/* Just the caller's shared object. */
3185	    res = symlook_obj(&req, obj);
3186	    if (res == 0) {
3187		def = req.sym_out;
3188		defobj = req.defobj_out;
3189	    }
3190	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3191		   handle == RTLD_SELF) { /* ... caller included */
3192	    if (handle == RTLD_NEXT)
3193		obj = globallist_next(obj);
3194	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3195		if (obj->marker)
3196		    continue;
3197		res = symlook_obj(&req, obj);
3198		if (res == 0) {
3199		    if (def == NULL ||
3200		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3201			def = req.sym_out;
3202			defobj = req.defobj_out;
3203			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3204			    break;
3205		    }
3206		}
3207	    }
3208	    /*
3209	     * Search the dynamic linker itself, and possibly resolve the
3210	     * symbol from there.  This is how the application links to
3211	     * dynamic linker services such as dlopen.
3212	     */
3213	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3214		res = symlook_obj(&req, &obj_rtld);
3215		if (res == 0) {
3216		    def = req.sym_out;
3217		    defobj = req.defobj_out;
3218		}
3219	    }
3220	} else {
3221	    assert(handle == RTLD_DEFAULT);
3222	    res = symlook_default(&req, obj);
3223	    if (res == 0) {
3224		defobj = req.defobj_out;
3225		def = req.sym_out;
3226	    }
3227	}
3228    } else {
3229	if ((obj = dlcheck(handle)) == NULL) {
3230	    lock_release(rtld_bind_lock, &lockstate);
3231	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3232	    return NULL;
3233	}
3234
3235	donelist_init(&donelist);
3236	if (obj->mainprog) {
3237            /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3238	    res = symlook_global(&req, &donelist);
3239	    if (res == 0) {
3240		def = req.sym_out;
3241		defobj = req.defobj_out;
3242	    }
3243	    /*
3244	     * Search the dynamic linker itself, and possibly resolve the
3245	     * symbol from there.  This is how the application links to
3246	     * dynamic linker services such as dlopen.
3247	     */
3248	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3249		res = symlook_obj(&req, &obj_rtld);
3250		if (res == 0) {
3251		    def = req.sym_out;
3252		    defobj = req.defobj_out;
3253		}
3254	    }
3255	}
3256	else {
3257	    /* Search the whole DAG rooted at the given object. */
3258	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3259	    if (res == 0) {
3260		def = req.sym_out;
3261		defobj = req.defobj_out;
3262	    }
3263	}
3264    }
3265
3266    if (def != NULL) {
3267	lock_release(rtld_bind_lock, &lockstate);
3268
3269	/*
3270	 * The value required by the caller is derived from the value
3271	 * of the symbol. For the ia64 architecture, we need to
3272	 * construct a function descriptor which the caller can use to
3273	 * call the function with the right 'gp' value. For other
3274	 * architectures and for non-functions, the value is simply
3275	 * the relocated value of the symbol.
3276	 */
3277	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3278	    sym = make_function_pointer(def, defobj);
3279	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3280	    sym = rtld_resolve_ifunc(defobj, def);
3281	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3282#ifdef __ia64__
3283	    return (__tls_get_addr(defobj->tlsindex, def->st_value));
3284#else
3285	    ti.ti_module = defobj->tlsindex;
3286	    ti.ti_offset = def->st_value;
3287	    sym = __tls_get_addr(&ti);
3288#endif
3289	} else
3290	    sym = defobj->relocbase + def->st_value;
3291	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3292	return (sym);
3293    }
3294
3295    _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3296      ve != NULL ? ve->name : "");
3297    lock_release(rtld_bind_lock, &lockstate);
3298    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3299    return NULL;
3300}
3301
3302void *
3303dlsym(void *handle, const char *name)
3304{
3305	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3306	    SYMLOOK_DLSYM);
3307}
3308
3309dlfunc_t
3310dlfunc(void *handle, const char *name)
3311{
3312	union {
3313		void *d;
3314		dlfunc_t f;
3315	} rv;
3316
3317	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3318	    SYMLOOK_DLSYM);
3319	return (rv.f);
3320}
3321
3322void *
3323dlvsym(void *handle, const char *name, const char *version)
3324{
3325	Ver_Entry ventry;
3326
3327	ventry.name = version;
3328	ventry.file = NULL;
3329	ventry.hash = elf_hash(version);
3330	ventry.flags= 0;
3331	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3332	    SYMLOOK_DLSYM);
3333}
3334
3335int
3336_rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3337{
3338    const Obj_Entry *obj;
3339    RtldLockState lockstate;
3340
3341    rlock_acquire(rtld_bind_lock, &lockstate);
3342    obj = obj_from_addr(addr);
3343    if (obj == NULL) {
3344        _rtld_error("No shared object contains address");
3345	lock_release(rtld_bind_lock, &lockstate);
3346        return (0);
3347    }
3348    rtld_fill_dl_phdr_info(obj, phdr_info);
3349    lock_release(rtld_bind_lock, &lockstate);
3350    return (1);
3351}
3352
3353int
3354dladdr(const void *addr, Dl_info *info)
3355{
3356    const Obj_Entry *obj;
3357    const Elf_Sym *def;
3358    void *symbol_addr;
3359    unsigned long symoffset;
3360    RtldLockState lockstate;
3361
3362    rlock_acquire(rtld_bind_lock, &lockstate);
3363    obj = obj_from_addr(addr);
3364    if (obj == NULL) {
3365        _rtld_error("No shared object contains address");
3366	lock_release(rtld_bind_lock, &lockstate);
3367        return 0;
3368    }
3369    info->dli_fname = obj->path;
3370    info->dli_fbase = obj->mapbase;
3371    info->dli_saddr = (void *)0;
3372    info->dli_sname = NULL;
3373
3374    /*
3375     * Walk the symbol list looking for the symbol whose address is
3376     * closest to the address sent in.
3377     */
3378    for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3379        def = obj->symtab + symoffset;
3380
3381        /*
3382         * For skip the symbol if st_shndx is either SHN_UNDEF or
3383         * SHN_COMMON.
3384         */
3385        if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3386            continue;
3387
3388        /*
3389         * If the symbol is greater than the specified address, or if it
3390         * is further away from addr than the current nearest symbol,
3391         * then reject it.
3392         */
3393        symbol_addr = obj->relocbase + def->st_value;
3394        if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3395            continue;
3396
3397        /* Update our idea of the nearest symbol. */
3398        info->dli_sname = obj->strtab + def->st_name;
3399        info->dli_saddr = symbol_addr;
3400
3401        /* Exact match? */
3402        if (info->dli_saddr == addr)
3403            break;
3404    }
3405    lock_release(rtld_bind_lock, &lockstate);
3406    return 1;
3407}
3408
3409int
3410dlinfo(void *handle, int request, void *p)
3411{
3412    const Obj_Entry *obj;
3413    RtldLockState lockstate;
3414    int error;
3415
3416    rlock_acquire(rtld_bind_lock, &lockstate);
3417
3418    if (handle == NULL || handle == RTLD_SELF) {
3419	void *retaddr;
3420
3421	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3422	if ((obj = obj_from_addr(retaddr)) == NULL)
3423	    _rtld_error("Cannot determine caller's shared object");
3424    } else
3425	obj = dlcheck(handle);
3426
3427    if (obj == NULL) {
3428	lock_release(rtld_bind_lock, &lockstate);
3429	return (-1);
3430    }
3431
3432    error = 0;
3433    switch (request) {
3434    case RTLD_DI_LINKMAP:
3435	*((struct link_map const **)p) = &obj->linkmap;
3436	break;
3437    case RTLD_DI_ORIGIN:
3438	error = rtld_dirname(obj->path, p);
3439	break;
3440
3441    case RTLD_DI_SERINFOSIZE:
3442    case RTLD_DI_SERINFO:
3443	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3444	break;
3445
3446    default:
3447	_rtld_error("Invalid request %d passed to dlinfo()", request);
3448	error = -1;
3449    }
3450
3451    lock_release(rtld_bind_lock, &lockstate);
3452
3453    return (error);
3454}
3455
3456static void
3457rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3458{
3459
3460	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3461	phdr_info->dlpi_name = obj->path;
3462	phdr_info->dlpi_phdr = obj->phdr;
3463	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3464	phdr_info->dlpi_tls_modid = obj->tlsindex;
3465	phdr_info->dlpi_tls_data = obj->tlsinit;
3466	phdr_info->dlpi_adds = obj_loads;
3467	phdr_info->dlpi_subs = obj_loads - obj_count;
3468}
3469
3470int
3471dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3472{
3473	struct dl_phdr_info phdr_info;
3474	Obj_Entry *obj, marker;
3475	RtldLockState bind_lockstate, phdr_lockstate;
3476	int error;
3477
3478	bzero(&marker, sizeof(marker));
3479	marker.marker = true;
3480	error = 0;
3481
3482	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3483	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3484	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3485		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3486		rtld_fill_dl_phdr_info(obj, &phdr_info);
3487		lock_release(rtld_bind_lock, &bind_lockstate);
3488
3489		error = callback(&phdr_info, sizeof phdr_info, param);
3490
3491		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3492		obj = globallist_next(&marker);
3493		TAILQ_REMOVE(&obj_list, &marker, next);
3494		if (error != 0) {
3495			lock_release(rtld_bind_lock, &bind_lockstate);
3496			lock_release(rtld_phdr_lock, &phdr_lockstate);
3497			return (error);
3498		}
3499	}
3500
3501	if (error == 0) {
3502		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3503		lock_release(rtld_bind_lock, &bind_lockstate);
3504		error = callback(&phdr_info, sizeof(phdr_info), param);
3505	}
3506	lock_release(rtld_phdr_lock, &phdr_lockstate);
3507	return (error);
3508}
3509
3510static void *
3511fill_search_info(const char *dir, size_t dirlen, void *param)
3512{
3513    struct fill_search_info_args *arg;
3514
3515    arg = param;
3516
3517    if (arg->request == RTLD_DI_SERINFOSIZE) {
3518	arg->serinfo->dls_cnt ++;
3519	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3520    } else {
3521	struct dl_serpath *s_entry;
3522
3523	s_entry = arg->serpath;
3524	s_entry->dls_name  = arg->strspace;
3525	s_entry->dls_flags = arg->flags;
3526
3527	strncpy(arg->strspace, dir, dirlen);
3528	arg->strspace[dirlen] = '\0';
3529
3530	arg->strspace += dirlen + 1;
3531	arg->serpath++;
3532    }
3533
3534    return (NULL);
3535}
3536
3537static int
3538do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3539{
3540    struct dl_serinfo _info;
3541    struct fill_search_info_args args;
3542
3543    args.request = RTLD_DI_SERINFOSIZE;
3544    args.serinfo = &_info;
3545
3546    _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3547    _info.dls_cnt  = 0;
3548
3549    path_enumerate(obj->rpath, fill_search_info, &args);
3550    path_enumerate(ld_library_path, fill_search_info, &args);
3551    path_enumerate(obj->runpath, fill_search_info, &args);
3552    path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3553    if (!obj->z_nodeflib)
3554      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3555
3556
3557    if (request == RTLD_DI_SERINFOSIZE) {
3558	info->dls_size = _info.dls_size;
3559	info->dls_cnt = _info.dls_cnt;
3560	return (0);
3561    }
3562
3563    if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3564	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3565	return (-1);
3566    }
3567
3568    args.request  = RTLD_DI_SERINFO;
3569    args.serinfo  = info;
3570    args.serpath  = &info->dls_serpath[0];
3571    args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3572
3573    args.flags = LA_SER_RUNPATH;
3574    if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3575	return (-1);
3576
3577    args.flags = LA_SER_LIBPATH;
3578    if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3579	return (-1);
3580
3581    args.flags = LA_SER_RUNPATH;
3582    if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3583	return (-1);
3584
3585    args.flags = LA_SER_CONFIG;
3586    if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3587      != NULL)
3588	return (-1);
3589
3590    args.flags = LA_SER_DEFAULT;
3591    if (!obj->z_nodeflib &&
3592      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3593	return (-1);
3594    return (0);
3595}
3596
3597static int
3598rtld_dirname(const char *path, char *bname)
3599{
3600    const char *endp;
3601
3602    /* Empty or NULL string gets treated as "." */
3603    if (path == NULL || *path == '\0') {
3604	bname[0] = '.';
3605	bname[1] = '\0';
3606	return (0);
3607    }
3608
3609    /* Strip trailing slashes */
3610    endp = path + strlen(path) - 1;
3611    while (endp > path && *endp == '/')
3612	endp--;
3613
3614    /* Find the start of the dir */
3615    while (endp > path && *endp != '/')
3616	endp--;
3617
3618    /* Either the dir is "/" or there are no slashes */
3619    if (endp == path) {
3620	bname[0] = *endp == '/' ? '/' : '.';
3621	bname[1] = '\0';
3622	return (0);
3623    } else {
3624	do {
3625	    endp--;
3626	} while (endp > path && *endp == '/');
3627    }
3628
3629    if (endp - path + 2 > PATH_MAX)
3630    {
3631	_rtld_error("Filename is too long: %s", path);
3632	return(-1);
3633    }
3634
3635    strncpy(bname, path, endp - path + 1);
3636    bname[endp - path + 1] = '\0';
3637    return (0);
3638}
3639
3640static int
3641rtld_dirname_abs(const char *path, char *base)
3642{
3643	char *last;
3644
3645	if (realpath(path, base) == NULL)
3646		return (-1);
3647	dbg("%s -> %s", path, base);
3648	last = strrchr(base, '/');
3649	if (last == NULL)
3650		return (-1);
3651	if (last != base)
3652		*last = '\0';
3653	return (0);
3654}
3655
3656static void
3657linkmap_add(Obj_Entry *obj)
3658{
3659    struct link_map *l = &obj->linkmap;
3660    struct link_map *prev;
3661
3662    obj->linkmap.l_name = obj->path;
3663    obj->linkmap.l_addr = obj->mapbase;
3664    obj->linkmap.l_ld = obj->dynamic;
3665#ifdef __mips__
3666    /* GDB needs load offset on MIPS to use the symbols */
3667    obj->linkmap.l_offs = obj->relocbase;
3668#endif
3669
3670    if (r_debug.r_map == NULL) {
3671	r_debug.r_map = l;
3672	return;
3673    }
3674
3675    /*
3676     * Scan to the end of the list, but not past the entry for the
3677     * dynamic linker, which we want to keep at the very end.
3678     */
3679    for (prev = r_debug.r_map;
3680      prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3681      prev = prev->l_next)
3682	;
3683
3684    /* Link in the new entry. */
3685    l->l_prev = prev;
3686    l->l_next = prev->l_next;
3687    if (l->l_next != NULL)
3688	l->l_next->l_prev = l;
3689    prev->l_next = l;
3690}
3691
3692static void
3693linkmap_delete(Obj_Entry *obj)
3694{
3695    struct link_map *l = &obj->linkmap;
3696
3697    if (l->l_prev == NULL) {
3698	if ((r_debug.r_map = l->l_next) != NULL)
3699	    l->l_next->l_prev = NULL;
3700	return;
3701    }
3702
3703    if ((l->l_prev->l_next = l->l_next) != NULL)
3704	l->l_next->l_prev = l->l_prev;
3705}
3706
3707/*
3708 * Function for the debugger to set a breakpoint on to gain control.
3709 *
3710 * The two parameters allow the debugger to easily find and determine
3711 * what the runtime loader is doing and to whom it is doing it.
3712 *
3713 * When the loadhook trap is hit (r_debug_state, set at program
3714 * initialization), the arguments can be found on the stack:
3715 *
3716 *  +8   struct link_map *m
3717 *  +4   struct r_debug  *rd
3718 *  +0   RetAddr
3719 */
3720void
3721r_debug_state(struct r_debug* rd, struct link_map *m)
3722{
3723    /*
3724     * The following is a hack to force the compiler to emit calls to
3725     * this function, even when optimizing.  If the function is empty,
3726     * the compiler is not obliged to emit any code for calls to it,
3727     * even when marked __noinline.  However, gdb depends on those
3728     * calls being made.
3729     */
3730    __compiler_membar();
3731}
3732
3733/*
3734 * A function called after init routines have completed. This can be used to
3735 * break before a program's entry routine is called, and can be used when
3736 * main is not available in the symbol table.
3737 */
3738void
3739_r_debug_postinit(struct link_map *m)
3740{
3741
3742	/* See r_debug_state(). */
3743	__compiler_membar();
3744}
3745
3746/*
3747 * Get address of the pointer variable in the main program.
3748 * Prefer non-weak symbol over the weak one.
3749 */
3750static const void **
3751get_program_var_addr(const char *name, RtldLockState *lockstate)
3752{
3753    SymLook req;
3754    DoneList donelist;
3755
3756    symlook_init(&req, name);
3757    req.lockstate = lockstate;
3758    donelist_init(&donelist);
3759    if (symlook_global(&req, &donelist) != 0)
3760	return (NULL);
3761    if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3762	return ((const void **)make_function_pointer(req.sym_out,
3763	  req.defobj_out));
3764    else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3765	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3766    else
3767	return ((const void **)(req.defobj_out->relocbase +
3768	  req.sym_out->st_value));
3769}
3770
3771/*
3772 * Set a pointer variable in the main program to the given value.  This
3773 * is used to set key variables such as "environ" before any of the
3774 * init functions are called.
3775 */
3776static void
3777set_program_var(const char *name, const void *value)
3778{
3779    const void **addr;
3780
3781    if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3782	dbg("\"%s\": *%p <-- %p", name, addr, value);
3783	*addr = value;
3784    }
3785}
3786
3787/*
3788 * Search the global objects, including dependencies and main object,
3789 * for the given symbol.
3790 */
3791static int
3792symlook_global(SymLook *req, DoneList *donelist)
3793{
3794    SymLook req1;
3795    const Objlist_Entry *elm;
3796    int res;
3797
3798    symlook_init_from_req(&req1, req);
3799
3800    /* Search all objects loaded at program start up. */
3801    if (req->defobj_out == NULL ||
3802      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3803	res = symlook_list(&req1, &list_main, donelist);
3804	if (res == 0 && (req->defobj_out == NULL ||
3805	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3806	    req->sym_out = req1.sym_out;
3807	    req->defobj_out = req1.defobj_out;
3808	    assert(req->defobj_out != NULL);
3809	}
3810    }
3811
3812    /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3813    STAILQ_FOREACH(elm, &list_global, link) {
3814	if (req->defobj_out != NULL &&
3815	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3816	    break;
3817	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3818	if (res == 0 && (req->defobj_out == NULL ||
3819	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3820	    req->sym_out = req1.sym_out;
3821	    req->defobj_out = req1.defobj_out;
3822	    assert(req->defobj_out != NULL);
3823	}
3824    }
3825
3826    return (req->sym_out != NULL ? 0 : ESRCH);
3827}
3828
3829/*
3830 * Given a symbol name in a referencing object, find the corresponding
3831 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3832 * no definition was found.  Returns a pointer to the Obj_Entry of the
3833 * defining object via the reference parameter DEFOBJ_OUT.
3834 */
3835static int
3836symlook_default(SymLook *req, const Obj_Entry *refobj)
3837{
3838    DoneList donelist;
3839    const Objlist_Entry *elm;
3840    SymLook req1;
3841    int res;
3842
3843    donelist_init(&donelist);
3844    symlook_init_from_req(&req1, req);
3845
3846    /*
3847     * Look first in the referencing object if linked symbolically,
3848     * and similarly handle protected symbols.
3849     */
3850    res = symlook_obj(&req1, refobj);
3851    if (res == 0 && (refobj->symbolic ||
3852      ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
3853	req->sym_out = req1.sym_out;
3854	req->defobj_out = req1.defobj_out;
3855	assert(req->defobj_out != NULL);
3856    }
3857    if (refobj->symbolic || req->defobj_out != NULL)
3858	donelist_check(&donelist, refobj);
3859
3860    symlook_global(req, &donelist);
3861
3862    /* Search all dlopened DAGs containing the referencing object. */
3863    STAILQ_FOREACH(elm, &refobj->dldags, link) {
3864	if (req->sym_out != NULL &&
3865	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3866	    break;
3867	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3868	if (res == 0 && (req->sym_out == NULL ||
3869	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3870	    req->sym_out = req1.sym_out;
3871	    req->defobj_out = req1.defobj_out;
3872	    assert(req->defobj_out != NULL);
3873	}
3874    }
3875
3876    /*
3877     * Search the dynamic linker itself, and possibly resolve the
3878     * symbol from there.  This is how the application links to
3879     * dynamic linker services such as dlopen.
3880     */
3881    if (req->sym_out == NULL ||
3882      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3883	res = symlook_obj(&req1, &obj_rtld);
3884	if (res == 0) {
3885	    req->sym_out = req1.sym_out;
3886	    req->defobj_out = req1.defobj_out;
3887	    assert(req->defobj_out != NULL);
3888	}
3889    }
3890
3891    return (req->sym_out != NULL ? 0 : ESRCH);
3892}
3893
3894static int
3895symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3896{
3897    const Elf_Sym *def;
3898    const Obj_Entry *defobj;
3899    const Objlist_Entry *elm;
3900    SymLook req1;
3901    int res;
3902
3903    def = NULL;
3904    defobj = NULL;
3905    STAILQ_FOREACH(elm, objlist, link) {
3906	if (donelist_check(dlp, elm->obj))
3907	    continue;
3908	symlook_init_from_req(&req1, req);
3909	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3910	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3911		def = req1.sym_out;
3912		defobj = req1.defobj_out;
3913		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3914		    break;
3915	    }
3916	}
3917    }
3918    if (def != NULL) {
3919	req->sym_out = def;
3920	req->defobj_out = defobj;
3921	return (0);
3922    }
3923    return (ESRCH);
3924}
3925
3926/*
3927 * Search the chain of DAGS cointed to by the given Needed_Entry
3928 * for a symbol of the given name.  Each DAG is scanned completely
3929 * before advancing to the next one.  Returns a pointer to the symbol,
3930 * or NULL if no definition was found.
3931 */
3932static int
3933symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3934{
3935    const Elf_Sym *def;
3936    const Needed_Entry *n;
3937    const Obj_Entry *defobj;
3938    SymLook req1;
3939    int res;
3940
3941    def = NULL;
3942    defobj = NULL;
3943    symlook_init_from_req(&req1, req);
3944    for (n = needed; n != NULL; n = n->next) {
3945	if (n->obj == NULL ||
3946	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3947	    continue;
3948	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3949	    def = req1.sym_out;
3950	    defobj = req1.defobj_out;
3951	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3952		break;
3953	}
3954    }
3955    if (def != NULL) {
3956	req->sym_out = def;
3957	req->defobj_out = defobj;
3958	return (0);
3959    }
3960    return (ESRCH);
3961}
3962
3963/*
3964 * Search the symbol table of a single shared object for a symbol of
3965 * the given name and version, if requested.  Returns a pointer to the
3966 * symbol, or NULL if no definition was found.  If the object is
3967 * filter, return filtered symbol from filtee.
3968 *
3969 * The symbol's hash value is passed in for efficiency reasons; that
3970 * eliminates many recomputations of the hash value.
3971 */
3972int
3973symlook_obj(SymLook *req, const Obj_Entry *obj)
3974{
3975    DoneList donelist;
3976    SymLook req1;
3977    int flags, res, mres;
3978
3979    /*
3980     * If there is at least one valid hash at this point, we prefer to
3981     * use the faster GNU version if available.
3982     */
3983    if (obj->valid_hash_gnu)
3984	mres = symlook_obj1_gnu(req, obj);
3985    else if (obj->valid_hash_sysv)
3986	mres = symlook_obj1_sysv(req, obj);
3987    else
3988	return (EINVAL);
3989
3990    if (mres == 0) {
3991	if (obj->needed_filtees != NULL) {
3992	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3993	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3994	    donelist_init(&donelist);
3995	    symlook_init_from_req(&req1, req);
3996	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3997	    if (res == 0) {
3998		req->sym_out = req1.sym_out;
3999		req->defobj_out = req1.defobj_out;
4000	    }
4001	    return (res);
4002	}
4003	if (obj->needed_aux_filtees != NULL) {
4004	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4005	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4006	    donelist_init(&donelist);
4007	    symlook_init_from_req(&req1, req);
4008	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4009	    if (res == 0) {
4010		req->sym_out = req1.sym_out;
4011		req->defobj_out = req1.defobj_out;
4012		return (res);
4013	    }
4014	}
4015    }
4016    return (mres);
4017}
4018
4019/* Symbol match routine common to both hash functions */
4020static bool
4021matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4022    const unsigned long symnum)
4023{
4024	Elf_Versym verndx;
4025	const Elf_Sym *symp;
4026	const char *strp;
4027
4028	symp = obj->symtab + symnum;
4029	strp = obj->strtab + symp->st_name;
4030
4031	switch (ELF_ST_TYPE(symp->st_info)) {
4032	case STT_FUNC:
4033	case STT_NOTYPE:
4034	case STT_OBJECT:
4035	case STT_COMMON:
4036	case STT_GNU_IFUNC:
4037		if (symp->st_value == 0)
4038			return (false);
4039		/* fallthrough */
4040	case STT_TLS:
4041		if (symp->st_shndx != SHN_UNDEF)
4042			break;
4043#ifndef __mips__
4044		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4045		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4046			break;
4047		/* fallthrough */
4048#endif
4049	default:
4050		return (false);
4051	}
4052	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4053		return (false);
4054
4055	if (req->ventry == NULL) {
4056		if (obj->versyms != NULL) {
4057			verndx = VER_NDX(obj->versyms[symnum]);
4058			if (verndx > obj->vernum) {
4059				_rtld_error(
4060				    "%s: symbol %s references wrong version %d",
4061				    obj->path, obj->strtab + symnum, verndx);
4062				return (false);
4063			}
4064			/*
4065			 * If we are not called from dlsym (i.e. this
4066			 * is a normal relocation from unversioned
4067			 * binary), accept the symbol immediately if
4068			 * it happens to have first version after this
4069			 * shared object became versioned.  Otherwise,
4070			 * if symbol is versioned and not hidden,
4071			 * remember it. If it is the only symbol with
4072			 * this name exported by the shared object, it
4073			 * will be returned as a match by the calling
4074			 * function. If symbol is global (verndx < 2)
4075			 * accept it unconditionally.
4076			 */
4077			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4078			    verndx == VER_NDX_GIVEN) {
4079				result->sym_out = symp;
4080				return (true);
4081			}
4082			else if (verndx >= VER_NDX_GIVEN) {
4083				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4084				    == 0) {
4085					if (result->vsymp == NULL)
4086						result->vsymp = symp;
4087					result->vcount++;
4088				}
4089				return (false);
4090			}
4091		}
4092		result->sym_out = symp;
4093		return (true);
4094	}
4095	if (obj->versyms == NULL) {
4096		if (object_match_name(obj, req->ventry->name)) {
4097			_rtld_error("%s: object %s should provide version %s "
4098			    "for symbol %s", obj_rtld.path, obj->path,
4099			    req->ventry->name, obj->strtab + symnum);
4100			return (false);
4101		}
4102	} else {
4103		verndx = VER_NDX(obj->versyms[symnum]);
4104		if (verndx > obj->vernum) {
4105			_rtld_error("%s: symbol %s references wrong version %d",
4106			    obj->path, obj->strtab + symnum, verndx);
4107			return (false);
4108		}
4109		if (obj->vertab[verndx].hash != req->ventry->hash ||
4110		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4111			/*
4112			 * Version does not match. Look if this is a
4113			 * global symbol and if it is not hidden. If
4114			 * global symbol (verndx < 2) is available,
4115			 * use it. Do not return symbol if we are
4116			 * called by dlvsym, because dlvsym looks for
4117			 * a specific version and default one is not
4118			 * what dlvsym wants.
4119			 */
4120			if ((req->flags & SYMLOOK_DLSYM) ||
4121			    (verndx >= VER_NDX_GIVEN) ||
4122			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4123				return (false);
4124		}
4125	}
4126	result->sym_out = symp;
4127	return (true);
4128}
4129
4130/*
4131 * Search for symbol using SysV hash function.
4132 * obj->buckets is known not to be NULL at this point; the test for this was
4133 * performed with the obj->valid_hash_sysv assignment.
4134 */
4135static int
4136symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4137{
4138	unsigned long symnum;
4139	Sym_Match_Result matchres;
4140
4141	matchres.sym_out = NULL;
4142	matchres.vsymp = NULL;
4143	matchres.vcount = 0;
4144
4145	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4146	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4147		if (symnum >= obj->nchains)
4148			return (ESRCH);	/* Bad object */
4149
4150		if (matched_symbol(req, obj, &matchres, symnum)) {
4151			req->sym_out = matchres.sym_out;
4152			req->defobj_out = obj;
4153			return (0);
4154		}
4155	}
4156	if (matchres.vcount == 1) {
4157		req->sym_out = matchres.vsymp;
4158		req->defobj_out = obj;
4159		return (0);
4160	}
4161	return (ESRCH);
4162}
4163
4164/* Search for symbol using GNU hash function */
4165static int
4166symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4167{
4168	Elf_Addr bloom_word;
4169	const Elf32_Word *hashval;
4170	Elf32_Word bucket;
4171	Sym_Match_Result matchres;
4172	unsigned int h1, h2;
4173	unsigned long symnum;
4174
4175	matchres.sym_out = NULL;
4176	matchres.vsymp = NULL;
4177	matchres.vcount = 0;
4178
4179	/* Pick right bitmask word from Bloom filter array */
4180	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4181	    obj->maskwords_bm_gnu];
4182
4183	/* Calculate modulus word size of gnu hash and its derivative */
4184	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4185	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4186
4187	/* Filter out the "definitely not in set" queries */
4188	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4189		return (ESRCH);
4190
4191	/* Locate hash chain and corresponding value element*/
4192	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4193	if (bucket == 0)
4194		return (ESRCH);
4195	hashval = &obj->chain_zero_gnu[bucket];
4196	do {
4197		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4198			symnum = hashval - obj->chain_zero_gnu;
4199			if (matched_symbol(req, obj, &matchres, symnum)) {
4200				req->sym_out = matchres.sym_out;
4201				req->defobj_out = obj;
4202				return (0);
4203			}
4204		}
4205	} while ((*hashval++ & 1) == 0);
4206	if (matchres.vcount == 1) {
4207		req->sym_out = matchres.vsymp;
4208		req->defobj_out = obj;
4209		return (0);
4210	}
4211	return (ESRCH);
4212}
4213
4214static void
4215trace_loaded_objects(Obj_Entry *obj)
4216{
4217    char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4218    int		c;
4219
4220    if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4221	main_local = "";
4222
4223    if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4224	fmt1 = "\t%o => %p (%x)\n";
4225
4226    if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4227	fmt2 = "\t%o (%x)\n";
4228
4229    list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
4230
4231    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4232	Needed_Entry		*needed;
4233	char			*name, *path;
4234	bool			is_lib;
4235
4236	if (obj->marker)
4237	    continue;
4238	if (list_containers && obj->needed != NULL)
4239	    rtld_printf("%s:\n", obj->path);
4240	for (needed = obj->needed; needed; needed = needed->next) {
4241	    if (needed->obj != NULL) {
4242		if (needed->obj->traced && !list_containers)
4243		    continue;
4244		needed->obj->traced = true;
4245		path = needed->obj->path;
4246	    } else
4247		path = "not found";
4248
4249	    name = (char *)obj->strtab + needed->name;
4250	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4251
4252	    fmt = is_lib ? fmt1 : fmt2;
4253	    while ((c = *fmt++) != '\0') {
4254		switch (c) {
4255		default:
4256		    rtld_putchar(c);
4257		    continue;
4258		case '\\':
4259		    switch (c = *fmt) {
4260		    case '\0':
4261			continue;
4262		    case 'n':
4263			rtld_putchar('\n');
4264			break;
4265		    case 't':
4266			rtld_putchar('\t');
4267			break;
4268		    }
4269		    break;
4270		case '%':
4271		    switch (c = *fmt) {
4272		    case '\0':
4273			continue;
4274		    case '%':
4275		    default:
4276			rtld_putchar(c);
4277			break;
4278		    case 'A':
4279			rtld_putstr(main_local);
4280			break;
4281		    case 'a':
4282			rtld_putstr(obj_main->path);
4283			break;
4284		    case 'o':
4285			rtld_putstr(name);
4286			break;
4287#if 0
4288		    case 'm':
4289			rtld_printf("%d", sodp->sod_major);
4290			break;
4291		    case 'n':
4292			rtld_printf("%d", sodp->sod_minor);
4293			break;
4294#endif
4295		    case 'p':
4296			rtld_putstr(path);
4297			break;
4298		    case 'x':
4299			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4300			  0);
4301			break;
4302		    }
4303		    break;
4304		}
4305		++fmt;
4306	    }
4307	}
4308    }
4309}
4310
4311/*
4312 * Unload a dlopened object and its dependencies from memory and from
4313 * our data structures.  It is assumed that the DAG rooted in the
4314 * object has already been unreferenced, and that the object has a
4315 * reference count of 0.
4316 */
4317static void
4318unload_object(Obj_Entry *root)
4319{
4320	Obj_Entry *obj, *obj1;
4321
4322	assert(root->refcount == 0);
4323
4324	/*
4325	 * Pass over the DAG removing unreferenced objects from
4326	 * appropriate lists.
4327	 */
4328	unlink_object(root);
4329
4330	/* Unmap all objects that are no longer referenced. */
4331	TAILQ_FOREACH_SAFE(obj, &obj_list, next, obj1) {
4332		if (obj->marker || obj->refcount != 0)
4333			continue;
4334		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4335		    obj->mapsize, 0, obj->path);
4336		dbg("unloading \"%s\"", obj->path);
4337		unload_filtees(root);
4338		munmap(obj->mapbase, obj->mapsize);
4339		linkmap_delete(obj);
4340		TAILQ_REMOVE(&obj_list, obj, next);
4341		obj_count--;
4342		obj_free(obj);
4343	}
4344}
4345
4346static void
4347unlink_object(Obj_Entry *root)
4348{
4349    Objlist_Entry *elm;
4350
4351    if (root->refcount == 0) {
4352	/* Remove the object from the RTLD_GLOBAL list. */
4353	objlist_remove(&list_global, root);
4354
4355    	/* Remove the object from all objects' DAG lists. */
4356    	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4357	    objlist_remove(&elm->obj->dldags, root);
4358	    if (elm->obj != root)
4359		unlink_object(elm->obj);
4360	}
4361    }
4362}
4363
4364static void
4365ref_dag(Obj_Entry *root)
4366{
4367    Objlist_Entry *elm;
4368
4369    assert(root->dag_inited);
4370    STAILQ_FOREACH(elm, &root->dagmembers, link)
4371	elm->obj->refcount++;
4372}
4373
4374static void
4375unref_dag(Obj_Entry *root)
4376{
4377    Objlist_Entry *elm;
4378
4379    assert(root->dag_inited);
4380    STAILQ_FOREACH(elm, &root->dagmembers, link)
4381	elm->obj->refcount--;
4382}
4383
4384/*
4385 * Common code for MD __tls_get_addr().
4386 */
4387static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4388static void *
4389tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4390{
4391    Elf_Addr *newdtv, *dtv;
4392    RtldLockState lockstate;
4393    int to_copy;
4394
4395    dtv = *dtvp;
4396    /* Check dtv generation in case new modules have arrived */
4397    if (dtv[0] != tls_dtv_generation) {
4398	wlock_acquire(rtld_bind_lock, &lockstate);
4399	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4400	to_copy = dtv[1];
4401	if (to_copy > tls_max_index)
4402	    to_copy = tls_max_index;
4403	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4404	newdtv[0] = tls_dtv_generation;
4405	newdtv[1] = tls_max_index;
4406	free(dtv);
4407	lock_release(rtld_bind_lock, &lockstate);
4408	dtv = *dtvp = newdtv;
4409    }
4410
4411    /* Dynamically allocate module TLS if necessary */
4412    if (dtv[index + 1] == 0) {
4413	/* Signal safe, wlock will block out signals. */
4414	wlock_acquire(rtld_bind_lock, &lockstate);
4415	if (!dtv[index + 1])
4416	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4417	lock_release(rtld_bind_lock, &lockstate);
4418    }
4419    return ((void *)(dtv[index + 1] + offset));
4420}
4421
4422void *
4423tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4424{
4425	Elf_Addr *dtv;
4426
4427	dtv = *dtvp;
4428	/* Check dtv generation in case new modules have arrived */
4429	if (__predict_true(dtv[0] == tls_dtv_generation &&
4430	    dtv[index + 1] != 0))
4431		return ((void *)(dtv[index + 1] + offset));
4432	return (tls_get_addr_slow(dtvp, index, offset));
4433}
4434
4435#if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
4436
4437/*
4438 * Allocate Static TLS using the Variant I method.
4439 */
4440void *
4441allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4442{
4443    Obj_Entry *obj;
4444    char *tcb;
4445    Elf_Addr **tls;
4446    Elf_Addr *dtv;
4447    Elf_Addr addr;
4448    int i;
4449
4450    if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4451	return (oldtcb);
4452
4453    assert(tcbsize >= TLS_TCB_SIZE);
4454    tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4455    tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4456
4457    if (oldtcb != NULL) {
4458	memcpy(tls, oldtcb, tls_static_space);
4459	free(oldtcb);
4460
4461	/* Adjust the DTV. */
4462	dtv = tls[0];
4463	for (i = 0; i < dtv[1]; i++) {
4464	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4465		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4466		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4467	    }
4468	}
4469    } else {
4470	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4471	tls[0] = dtv;
4472	dtv[0] = tls_dtv_generation;
4473	dtv[1] = tls_max_index;
4474
4475	for (obj = globallist_curr(objs); obj != NULL;
4476	  obj = globallist_next(obj)) {
4477	    if (obj->tlsoffset > 0) {
4478		addr = (Elf_Addr)tls + obj->tlsoffset;
4479		if (obj->tlsinitsize > 0)
4480		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4481		if (obj->tlssize > obj->tlsinitsize)
4482		    memset((void*) (addr + obj->tlsinitsize), 0,
4483			   obj->tlssize - obj->tlsinitsize);
4484		dtv[obj->tlsindex + 1] = addr;
4485	    }
4486	}
4487    }
4488
4489    return (tcb);
4490}
4491
4492void
4493free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4494{
4495    Elf_Addr *dtv;
4496    Elf_Addr tlsstart, tlsend;
4497    int dtvsize, i;
4498
4499    assert(tcbsize >= TLS_TCB_SIZE);
4500
4501    tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4502    tlsend = tlsstart + tls_static_space;
4503
4504    dtv = *(Elf_Addr **)tlsstart;
4505    dtvsize = dtv[1];
4506    for (i = 0; i < dtvsize; i++) {
4507	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4508	    free((void*)dtv[i+2]);
4509	}
4510    }
4511    free(dtv);
4512    free(tcb);
4513}
4514
4515#endif
4516
4517#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4518
4519/*
4520 * Allocate Static TLS using the Variant II method.
4521 */
4522void *
4523allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4524{
4525    Obj_Entry *obj;
4526    size_t size, ralign;
4527    char *tls;
4528    Elf_Addr *dtv, *olddtv;
4529    Elf_Addr segbase, oldsegbase, addr;
4530    int i;
4531
4532    ralign = tcbalign;
4533    if (tls_static_max_align > ralign)
4534	    ralign = tls_static_max_align;
4535    size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4536
4537    assert(tcbsize >= 2*sizeof(Elf_Addr));
4538    tls = malloc_aligned(size, ralign);
4539    dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4540
4541    segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4542    ((Elf_Addr*)segbase)[0] = segbase;
4543    ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4544
4545    dtv[0] = tls_dtv_generation;
4546    dtv[1] = tls_max_index;
4547
4548    if (oldtls) {
4549	/*
4550	 * Copy the static TLS block over whole.
4551	 */
4552	oldsegbase = (Elf_Addr) oldtls;
4553	memcpy((void *)(segbase - tls_static_space),
4554	       (const void *)(oldsegbase - tls_static_space),
4555	       tls_static_space);
4556
4557	/*
4558	 * If any dynamic TLS blocks have been created tls_get_addr(),
4559	 * move them over.
4560	 */
4561	olddtv = ((Elf_Addr**)oldsegbase)[1];
4562	for (i = 0; i < olddtv[1]; i++) {
4563	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4564		dtv[i+2] = olddtv[i+2];
4565		olddtv[i+2] = 0;
4566	    }
4567	}
4568
4569	/*
4570	 * We assume that this block was the one we created with
4571	 * allocate_initial_tls().
4572	 */
4573	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4574    } else {
4575	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4576		if (obj->marker || obj->tlsoffset == 0)
4577			continue;
4578		addr = segbase - obj->tlsoffset;
4579		memset((void*) (addr + obj->tlsinitsize),
4580		       0, obj->tlssize - obj->tlsinitsize);
4581		if (obj->tlsinit)
4582		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4583		dtv[obj->tlsindex + 1] = addr;
4584	}
4585    }
4586
4587    return (void*) segbase;
4588}
4589
4590void
4591free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4592{
4593    Elf_Addr* dtv;
4594    size_t size, ralign;
4595    int dtvsize, i;
4596    Elf_Addr tlsstart, tlsend;
4597
4598    /*
4599     * Figure out the size of the initial TLS block so that we can
4600     * find stuff which ___tls_get_addr() allocated dynamically.
4601     */
4602    ralign = tcbalign;
4603    if (tls_static_max_align > ralign)
4604	    ralign = tls_static_max_align;
4605    size = round(tls_static_space, ralign);
4606
4607    dtv = ((Elf_Addr**)tls)[1];
4608    dtvsize = dtv[1];
4609    tlsend = (Elf_Addr) tls;
4610    tlsstart = tlsend - size;
4611    for (i = 0; i < dtvsize; i++) {
4612	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4613		free_aligned((void *)dtv[i + 2]);
4614	}
4615    }
4616
4617    free_aligned((void *)tlsstart);
4618    free((void*) dtv);
4619}
4620
4621#endif
4622
4623/*
4624 * Allocate TLS block for module with given index.
4625 */
4626void *
4627allocate_module_tls(int index)
4628{
4629    Obj_Entry* obj;
4630    char* p;
4631
4632    TAILQ_FOREACH(obj, &obj_list, next) {
4633	if (obj->marker)
4634	    continue;
4635	if (obj->tlsindex == index)
4636	    break;
4637    }
4638    if (!obj) {
4639	_rtld_error("Can't find module with TLS index %d", index);
4640	rtld_die();
4641    }
4642
4643    p = malloc_aligned(obj->tlssize, obj->tlsalign);
4644    memcpy(p, obj->tlsinit, obj->tlsinitsize);
4645    memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4646
4647    return p;
4648}
4649
4650bool
4651allocate_tls_offset(Obj_Entry *obj)
4652{
4653    size_t off;
4654
4655    if (obj->tls_done)
4656	return true;
4657
4658    if (obj->tlssize == 0) {
4659	obj->tls_done = true;
4660	return true;
4661    }
4662
4663    if (tls_last_offset == 0)
4664	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4665    else
4666	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4667				   obj->tlssize, obj->tlsalign);
4668
4669    /*
4670     * If we have already fixed the size of the static TLS block, we
4671     * must stay within that size. When allocating the static TLS, we
4672     * leave a small amount of space spare to be used for dynamically
4673     * loading modules which use static TLS.
4674     */
4675    if (tls_static_space != 0) {
4676	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4677	    return false;
4678    } else if (obj->tlsalign > tls_static_max_align) {
4679	    tls_static_max_align = obj->tlsalign;
4680    }
4681
4682    tls_last_offset = obj->tlsoffset = off;
4683    tls_last_size = obj->tlssize;
4684    obj->tls_done = true;
4685
4686    return true;
4687}
4688
4689void
4690free_tls_offset(Obj_Entry *obj)
4691{
4692
4693    /*
4694     * If we were the last thing to allocate out of the static TLS
4695     * block, we give our space back to the 'allocator'. This is a
4696     * simplistic workaround to allow libGL.so.1 to be loaded and
4697     * unloaded multiple times.
4698     */
4699    if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4700	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4701	tls_last_offset -= obj->tlssize;
4702	tls_last_size = 0;
4703    }
4704}
4705
4706void *
4707_rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4708{
4709    void *ret;
4710    RtldLockState lockstate;
4711
4712    wlock_acquire(rtld_bind_lock, &lockstate);
4713    ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
4714      tcbsize, tcbalign);
4715    lock_release(rtld_bind_lock, &lockstate);
4716    return (ret);
4717}
4718
4719void
4720_rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4721{
4722    RtldLockState lockstate;
4723
4724    wlock_acquire(rtld_bind_lock, &lockstate);
4725    free_tls(tcb, tcbsize, tcbalign);
4726    lock_release(rtld_bind_lock, &lockstate);
4727}
4728
4729static void
4730object_add_name(Obj_Entry *obj, const char *name)
4731{
4732    Name_Entry *entry;
4733    size_t len;
4734
4735    len = strlen(name);
4736    entry = malloc(sizeof(Name_Entry) + len);
4737
4738    if (entry != NULL) {
4739	strcpy(entry->name, name);
4740	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4741    }
4742}
4743
4744static int
4745object_match_name(const Obj_Entry *obj, const char *name)
4746{
4747    Name_Entry *entry;
4748
4749    STAILQ_FOREACH(entry, &obj->names, link) {
4750	if (strcmp(name, entry->name) == 0)
4751	    return (1);
4752    }
4753    return (0);
4754}
4755
4756static Obj_Entry *
4757locate_dependency(const Obj_Entry *obj, const char *name)
4758{
4759    const Objlist_Entry *entry;
4760    const Needed_Entry *needed;
4761
4762    STAILQ_FOREACH(entry, &list_main, link) {
4763	if (object_match_name(entry->obj, name))
4764	    return entry->obj;
4765    }
4766
4767    for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4768	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4769	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4770	    /*
4771	     * If there is DT_NEEDED for the name we are looking for,
4772	     * we are all set.  Note that object might not be found if
4773	     * dependency was not loaded yet, so the function can
4774	     * return NULL here.  This is expected and handled
4775	     * properly by the caller.
4776	     */
4777	    return (needed->obj);
4778	}
4779    }
4780    _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4781	obj->path, name);
4782    rtld_die();
4783}
4784
4785static int
4786check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4787    const Elf_Vernaux *vna)
4788{
4789    const Elf_Verdef *vd;
4790    const char *vername;
4791
4792    vername = refobj->strtab + vna->vna_name;
4793    vd = depobj->verdef;
4794    if (vd == NULL) {
4795	_rtld_error("%s: version %s required by %s not defined",
4796	    depobj->path, vername, refobj->path);
4797	return (-1);
4798    }
4799    for (;;) {
4800	if (vd->vd_version != VER_DEF_CURRENT) {
4801	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4802		depobj->path, vd->vd_version);
4803	    return (-1);
4804	}
4805	if (vna->vna_hash == vd->vd_hash) {
4806	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4807		((char *)vd + vd->vd_aux);
4808	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4809		return (0);
4810	}
4811	if (vd->vd_next == 0)
4812	    break;
4813	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4814    }
4815    if (vna->vna_flags & VER_FLG_WEAK)
4816	return (0);
4817    _rtld_error("%s: version %s required by %s not found",
4818	depobj->path, vername, refobj->path);
4819    return (-1);
4820}
4821
4822static int
4823rtld_verify_object_versions(Obj_Entry *obj)
4824{
4825    const Elf_Verneed *vn;
4826    const Elf_Verdef  *vd;
4827    const Elf_Verdaux *vda;
4828    const Elf_Vernaux *vna;
4829    const Obj_Entry *depobj;
4830    int maxvernum, vernum;
4831
4832    if (obj->ver_checked)
4833	return (0);
4834    obj->ver_checked = true;
4835
4836    maxvernum = 0;
4837    /*
4838     * Walk over defined and required version records and figure out
4839     * max index used by any of them. Do very basic sanity checking
4840     * while there.
4841     */
4842    vn = obj->verneed;
4843    while (vn != NULL) {
4844	if (vn->vn_version != VER_NEED_CURRENT) {
4845	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4846		obj->path, vn->vn_version);
4847	    return (-1);
4848	}
4849	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4850	for (;;) {
4851	    vernum = VER_NEED_IDX(vna->vna_other);
4852	    if (vernum > maxvernum)
4853		maxvernum = vernum;
4854	    if (vna->vna_next == 0)
4855		 break;
4856	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4857	}
4858	if (vn->vn_next == 0)
4859	    break;
4860	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4861    }
4862
4863    vd = obj->verdef;
4864    while (vd != NULL) {
4865	if (vd->vd_version != VER_DEF_CURRENT) {
4866	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4867		obj->path, vd->vd_version);
4868	    return (-1);
4869	}
4870	vernum = VER_DEF_IDX(vd->vd_ndx);
4871	if (vernum > maxvernum)
4872		maxvernum = vernum;
4873	if (vd->vd_next == 0)
4874	    break;
4875	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4876    }
4877
4878    if (maxvernum == 0)
4879	return (0);
4880
4881    /*
4882     * Store version information in array indexable by version index.
4883     * Verify that object version requirements are satisfied along the
4884     * way.
4885     */
4886    obj->vernum = maxvernum + 1;
4887    obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4888
4889    vd = obj->verdef;
4890    while (vd != NULL) {
4891	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4892	    vernum = VER_DEF_IDX(vd->vd_ndx);
4893	    assert(vernum <= maxvernum);
4894	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4895	    obj->vertab[vernum].hash = vd->vd_hash;
4896	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4897	    obj->vertab[vernum].file = NULL;
4898	    obj->vertab[vernum].flags = 0;
4899	}
4900	if (vd->vd_next == 0)
4901	    break;
4902	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4903    }
4904
4905    vn = obj->verneed;
4906    while (vn != NULL) {
4907	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4908	if (depobj == NULL)
4909	    return (-1);
4910	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4911	for (;;) {
4912	    if (check_object_provided_version(obj, depobj, vna))
4913		return (-1);
4914	    vernum = VER_NEED_IDX(vna->vna_other);
4915	    assert(vernum <= maxvernum);
4916	    obj->vertab[vernum].hash = vna->vna_hash;
4917	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4918	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4919	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4920		VER_INFO_HIDDEN : 0;
4921	    if (vna->vna_next == 0)
4922		 break;
4923	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4924	}
4925	if (vn->vn_next == 0)
4926	    break;
4927	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4928    }
4929    return 0;
4930}
4931
4932static int
4933rtld_verify_versions(const Objlist *objlist)
4934{
4935    Objlist_Entry *entry;
4936    int rc;
4937
4938    rc = 0;
4939    STAILQ_FOREACH(entry, objlist, link) {
4940	/*
4941	 * Skip dummy objects or objects that have their version requirements
4942	 * already checked.
4943	 */
4944	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4945	    continue;
4946	if (rtld_verify_object_versions(entry->obj) == -1) {
4947	    rc = -1;
4948	    if (ld_tracing == NULL)
4949		break;
4950	}
4951    }
4952    if (rc == 0 || ld_tracing != NULL)
4953    	rc = rtld_verify_object_versions(&obj_rtld);
4954    return rc;
4955}
4956
4957const Ver_Entry *
4958fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4959{
4960    Elf_Versym vernum;
4961
4962    if (obj->vertab) {
4963	vernum = VER_NDX(obj->versyms[symnum]);
4964	if (vernum >= obj->vernum) {
4965	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4966		obj->path, obj->strtab + symnum, vernum);
4967	} else if (obj->vertab[vernum].hash != 0) {
4968	    return &obj->vertab[vernum];
4969	}
4970    }
4971    return NULL;
4972}
4973
4974int
4975_rtld_get_stack_prot(void)
4976{
4977
4978	return (stack_prot);
4979}
4980
4981int
4982_rtld_is_dlopened(void *arg)
4983{
4984	Obj_Entry *obj;
4985	RtldLockState lockstate;
4986	int res;
4987
4988	rlock_acquire(rtld_bind_lock, &lockstate);
4989	obj = dlcheck(arg);
4990	if (obj == NULL)
4991		obj = obj_from_addr(arg);
4992	if (obj == NULL) {
4993		_rtld_error("No shared object contains address");
4994		lock_release(rtld_bind_lock, &lockstate);
4995		return (-1);
4996	}
4997	res = obj->dlopened ? 1 : 0;
4998	lock_release(rtld_bind_lock, &lockstate);
4999	return (res);
5000}
5001
5002int
5003obj_enforce_relro(Obj_Entry *obj)
5004{
5005
5006	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5007	    PROT_READ) == -1) {
5008		_rtld_error("%s: Cannot enforce relro protection: %s",
5009		    obj->path, rtld_strerror(errno));
5010		return (-1);
5011	}
5012	return (0);
5013}
5014
5015static void
5016map_stacks_exec(RtldLockState *lockstate)
5017{
5018	void (*thr_map_stacks_exec)(void);
5019
5020	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5021		return;
5022	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5023	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5024	if (thr_map_stacks_exec != NULL) {
5025		stack_prot |= PROT_EXEC;
5026		thr_map_stacks_exec();
5027	}
5028}
5029
5030void
5031symlook_init(SymLook *dst, const char *name)
5032{
5033
5034	bzero(dst, sizeof(*dst));
5035	dst->name = name;
5036	dst->hash = elf_hash(name);
5037	dst->hash_gnu = gnu_hash(name);
5038}
5039
5040static void
5041symlook_init_from_req(SymLook *dst, const SymLook *src)
5042{
5043
5044	dst->name = src->name;
5045	dst->hash = src->hash;
5046	dst->hash_gnu = src->hash_gnu;
5047	dst->ventry = src->ventry;
5048	dst->flags = src->flags;
5049	dst->defobj_out = NULL;
5050	dst->sym_out = NULL;
5051	dst->lockstate = src->lockstate;
5052}
5053
5054/*
5055 * Overrides for libc_pic-provided functions.
5056 */
5057
5058int
5059__getosreldate(void)
5060{
5061	size_t len;
5062	int oid[2];
5063	int error, osrel;
5064
5065	if (osreldate != 0)
5066		return (osreldate);
5067
5068	oid[0] = CTL_KERN;
5069	oid[1] = KERN_OSRELDATE;
5070	osrel = 0;
5071	len = sizeof(osrel);
5072	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5073	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5074		osreldate = osrel;
5075	return (osreldate);
5076}
5077
5078void
5079exit(int status)
5080{
5081
5082	_exit(status);
5083}
5084
5085void (*__cleanup)(void);
5086int __isthreaded = 0;
5087int _thread_autoinit_dummy_decl = 1;
5088
5089/*
5090 * No unresolved symbols for rtld.
5091 */
5092void
5093__pthread_cxa_finalize(struct dl_phdr_info *a)
5094{
5095}
5096
5097void
5098__stack_chk_fail(void)
5099{
5100
5101	_rtld_error("stack overflow detected; terminated");
5102	rtld_die();
5103}
5104__weak_reference(__stack_chk_fail, __stack_chk_fail_local);
5105
5106void
5107__chk_fail(void)
5108{
5109
5110	_rtld_error("buffer overflow detected; terminated");
5111	rtld_die();
5112}
5113
5114const char *
5115rtld_strerror(int errnum)
5116{
5117
5118	if (errnum < 0 || errnum >= sys_nerr)
5119		return ("Unknown error");
5120	return (sys_errlist[errnum]);
5121}
5122