rtld.c revision 320888
1/*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5 * Copyright 2012 John Marino <draco@marino.st>.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * $FreeBSD: stable/10/libexec/rtld-elf/rtld.c 320888 2017-07-11 05:36:02Z kib $
29 */
30
31/*
32 * Dynamic linker for ELF.
33 *
34 * John Polstra <jdp@polstra.com>.
35 */
36
37#include <sys/param.h>
38#include <sys/mount.h>
39#include <sys/mman.h>
40#include <sys/stat.h>
41#include <sys/sysctl.h>
42#include <sys/uio.h>
43#include <sys/utsname.h>
44#include <sys/ktrace.h>
45
46#include <dlfcn.h>
47#include <err.h>
48#include <errno.h>
49#include <fcntl.h>
50#include <stdarg.h>
51#include <stdio.h>
52#include <stdlib.h>
53#include <string.h>
54#include <unistd.h>
55
56#include "debug.h"
57#include "rtld.h"
58#include "libmap.h"
59#include "rtld_tls.h"
60#include "rtld_printf.h"
61#include "notes.h"
62
63#ifndef COMPAT_32BIT
64#define PATH_RTLD	"/libexec/ld-elf.so.1"
65#else
66#define PATH_RTLD	"/libexec/ld-elf32.so.1"
67#endif
68
69/* Types. */
70typedef void (*func_ptr_type)();
71typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
72
73/*
74 * Function declarations.
75 */
76static const char *basename(const char *);
77static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
78    const Elf_Dyn **, const Elf_Dyn **);
79static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
80    const Elf_Dyn *);
81static void digest_dynamic(Obj_Entry *, int);
82static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
83static Obj_Entry *dlcheck(void *);
84static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
85    int lo_flags, int mode, RtldLockState *lockstate);
86static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
87static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
88static bool donelist_check(DoneList *, const Obj_Entry *);
89static void errmsg_restore(char *);
90static char *errmsg_save(void);
91static void *fill_search_info(const char *, size_t, void *);
92static char *find_library(const char *, const Obj_Entry *);
93static const char *gethints(bool);
94static void init_dag(Obj_Entry *);
95static void init_pagesizes(Elf_Auxinfo **aux_info);
96static void init_rtld(caddr_t, Elf_Auxinfo **);
97static void initlist_add_neededs(Needed_Entry *, Objlist *);
98static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
99static void linkmap_add(Obj_Entry *);
100static void linkmap_delete(Obj_Entry *);
101static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
102static void unload_filtees(Obj_Entry *);
103static int load_needed_objects(Obj_Entry *, int);
104static int load_preload_objects(void);
105static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
106static void map_stacks_exec(RtldLockState *);
107static int obj_enforce_relro(Obj_Entry *);
108static Obj_Entry *obj_from_addr(const void *);
109static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
110static void objlist_call_init(Objlist *, RtldLockState *);
111static void objlist_clear(Objlist *);
112static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
113static void objlist_init(Objlist *);
114static void objlist_push_head(Objlist *, Obj_Entry *);
115static void objlist_push_tail(Objlist *, Obj_Entry *);
116static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
117static void objlist_remove(Objlist *, Obj_Entry *);
118static void *path_enumerate(const char *, path_enum_proc, void *);
119static int relocate_object_dag(Obj_Entry *root, bool bind_now,
120    Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
121static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
122    int flags, RtldLockState *lockstate);
123static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
124    RtldLockState *);
125static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
126    int flags, RtldLockState *lockstate);
127static int rtld_dirname(const char *, char *);
128static int rtld_dirname_abs(const char *, char *);
129static void *rtld_dlopen(const char *name, int fd, int mode);
130static void rtld_exit(void);
131static char *search_library_path(const char *, const char *);
132static const void **get_program_var_addr(const char *, RtldLockState *);
133static void set_program_var(const char *, const void *);
134static int symlook_default(SymLook *, const Obj_Entry *refobj);
135static int symlook_global(SymLook *, DoneList *);
136static void symlook_init_from_req(SymLook *, const SymLook *);
137static int symlook_list(SymLook *, const Objlist *, DoneList *);
138static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
139static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
140static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
141static void trace_loaded_objects(Obj_Entry *);
142static void unlink_object(Obj_Entry *);
143static void unload_object(Obj_Entry *);
144static void unref_dag(Obj_Entry *);
145static void ref_dag(Obj_Entry *);
146static char *origin_subst_one(Obj_Entry *, char *, const char *,
147    const char *, bool);
148static char *origin_subst(Obj_Entry *, char *);
149static bool obj_resolve_origin(Obj_Entry *obj);
150static void preinit_main(void);
151static int  rtld_verify_versions(const Objlist *);
152static int  rtld_verify_object_versions(Obj_Entry *);
153static void object_add_name(Obj_Entry *, const char *);
154static int  object_match_name(const Obj_Entry *, const char *);
155static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
156static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
157    struct dl_phdr_info *phdr_info);
158static uint32_t gnu_hash(const char *);
159static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
160    const unsigned long);
161
162void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
163void _r_debug_postinit(struct link_map *) __noinline __exported;
164
165/*
166 * Data declarations.
167 */
168static char *error_message;	/* Message for dlerror(), or NULL */
169struct r_debug r_debug __exported;	/* for GDB; */
170static bool libmap_disable;	/* Disable libmap */
171static bool ld_loadfltr;	/* Immediate filters processing */
172static char *libmap_override;	/* Maps to use in addition to libmap.conf */
173static bool trust;		/* False for setuid and setgid programs */
174static bool dangerous_ld_env;	/* True if environment variables have been
175				   used to affect the libraries loaded */
176static char *ld_bind_now;	/* Environment variable for immediate binding */
177static char *ld_debug;		/* Environment variable for debugging */
178static char *ld_library_path;	/* Environment variable for search path */
179static char *ld_preload;	/* Environment variable for libraries to
180				   load first */
181static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
182static char *ld_tracing;	/* Called from ldd to print libs */
183static char *ld_utrace;		/* Use utrace() to log events. */
184static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
185static Obj_Entry *obj_main;	/* The main program shared object */
186static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
187static unsigned int obj_count;	/* Number of objects in obj_list */
188static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
189
190static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
191  STAILQ_HEAD_INITIALIZER(list_global);
192static Objlist list_main =	/* Objects loaded at program startup */
193  STAILQ_HEAD_INITIALIZER(list_main);
194static Objlist list_fini =	/* Objects needing fini() calls */
195  STAILQ_HEAD_INITIALIZER(list_fini);
196
197Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
198
199#define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
200
201extern Elf_Dyn _DYNAMIC;
202#pragma weak _DYNAMIC
203#ifndef RTLD_IS_DYNAMIC
204#define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
205#endif
206
207int dlclose(void *) __exported;
208char *dlerror(void) __exported;
209void *dlopen(const char *, int) __exported;
210void *fdlopen(int, int) __exported;
211void *dlsym(void *, const char *) __exported;
212dlfunc_t dlfunc(void *, const char *) __exported;
213void *dlvsym(void *, const char *, const char *) __exported;
214int dladdr(const void *, Dl_info *) __exported;
215void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
216    void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
217int dlinfo(void *, int , void *) __exported;
218int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
219int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
220int _rtld_get_stack_prot(void) __exported;
221int _rtld_is_dlopened(void *) __exported;
222void _rtld_error(const char *, ...) __exported;
223
224int npagesizes, osreldate;
225size_t *pagesizes;
226
227long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
228
229static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
230static int max_stack_flags;
231
232/*
233 * Global declarations normally provided by crt1.  The dynamic linker is
234 * not built with crt1, so we have to provide them ourselves.
235 */
236char *__progname;
237char **environ;
238
239/*
240 * Used to pass argc, argv to init functions.
241 */
242int main_argc;
243char **main_argv;
244
245/*
246 * Globals to control TLS allocation.
247 */
248size_t tls_last_offset;		/* Static TLS offset of last module */
249size_t tls_last_size;		/* Static TLS size of last module */
250size_t tls_static_space;	/* Static TLS space allocated */
251size_t tls_static_max_align;
252int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
253int tls_max_index = 1;		/* Largest module index allocated */
254
255bool ld_library_path_rpath = false;
256
257/*
258 * Fill in a DoneList with an allocation large enough to hold all of
259 * the currently-loaded objects.  Keep this as a macro since it calls
260 * alloca and we want that to occur within the scope of the caller.
261 */
262#define donelist_init(dlp)					\
263    ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
264    assert((dlp)->objs != NULL),				\
265    (dlp)->num_alloc = obj_count,				\
266    (dlp)->num_used = 0)
267
268#define	UTRACE_DLOPEN_START		1
269#define	UTRACE_DLOPEN_STOP		2
270#define	UTRACE_DLCLOSE_START		3
271#define	UTRACE_DLCLOSE_STOP		4
272#define	UTRACE_LOAD_OBJECT		5
273#define	UTRACE_UNLOAD_OBJECT		6
274#define	UTRACE_ADD_RUNDEP		7
275#define	UTRACE_PRELOAD_FINISHED		8
276#define	UTRACE_INIT_CALL		9
277#define	UTRACE_FINI_CALL		10
278#define	UTRACE_DLSYM_START		11
279#define	UTRACE_DLSYM_STOP		12
280
281struct utrace_rtld {
282	char sig[4];			/* 'RTLD' */
283	int event;
284	void *handle;
285	void *mapbase;			/* Used for 'parent' and 'init/fini' */
286	size_t mapsize;
287	int refcnt;			/* Used for 'mode' */
288	char name[MAXPATHLEN];
289};
290
291#define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
292	if (ld_utrace != NULL)					\
293		ld_utrace_log(e, h, mb, ms, r, n);		\
294} while (0)
295
296static void
297ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
298    int refcnt, const char *name)
299{
300	struct utrace_rtld ut;
301
302	ut.sig[0] = 'R';
303	ut.sig[1] = 'T';
304	ut.sig[2] = 'L';
305	ut.sig[3] = 'D';
306	ut.event = event;
307	ut.handle = handle;
308	ut.mapbase = mapbase;
309	ut.mapsize = mapsize;
310	ut.refcnt = refcnt;
311	bzero(ut.name, sizeof(ut.name));
312	if (name)
313		strlcpy(ut.name, name, sizeof(ut.name));
314	utrace(&ut, sizeof(ut));
315}
316
317/*
318 * Main entry point for dynamic linking.  The first argument is the
319 * stack pointer.  The stack is expected to be laid out as described
320 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
321 * Specifically, the stack pointer points to a word containing
322 * ARGC.  Following that in the stack is a null-terminated sequence
323 * of pointers to argument strings.  Then comes a null-terminated
324 * sequence of pointers to environment strings.  Finally, there is a
325 * sequence of "auxiliary vector" entries.
326 *
327 * The second argument points to a place to store the dynamic linker's
328 * exit procedure pointer and the third to a place to store the main
329 * program's object.
330 *
331 * The return value is the main program's entry point.
332 */
333func_ptr_type
334_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
335{
336    Elf_Auxinfo *aux_info[AT_COUNT];
337    int i;
338    int argc;
339    char **argv;
340    char **env;
341    Elf_Auxinfo *aux;
342    Elf_Auxinfo *auxp;
343    const char *argv0;
344    Objlist_Entry *entry;
345    Obj_Entry *obj;
346    Obj_Entry *preload_tail;
347    Obj_Entry *last_interposer;
348    Objlist initlist;
349    RtldLockState lockstate;
350    char *library_path_rpath;
351    int mib[2];
352    size_t len;
353
354    /*
355     * On entry, the dynamic linker itself has not been relocated yet.
356     * Be very careful not to reference any global data until after
357     * init_rtld has returned.  It is OK to reference file-scope statics
358     * and string constants, and to call static and global functions.
359     */
360
361    /* Find the auxiliary vector on the stack. */
362    argc = *sp++;
363    argv = (char **) sp;
364    sp += argc + 1;	/* Skip over arguments and NULL terminator */
365    env = (char **) sp;
366    while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
367	;
368    aux = (Elf_Auxinfo *) sp;
369
370    /* Digest the auxiliary vector. */
371    for (i = 0;  i < AT_COUNT;  i++)
372	aux_info[i] = NULL;
373    for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
374	if (auxp->a_type < AT_COUNT)
375	    aux_info[auxp->a_type] = auxp;
376    }
377
378    /* Initialize and relocate ourselves. */
379    assert(aux_info[AT_BASE] != NULL);
380    init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
381
382    __progname = obj_rtld.path;
383    argv0 = argv[0] != NULL ? argv[0] : "(null)";
384    environ = env;
385    main_argc = argc;
386    main_argv = argv;
387
388    if (aux_info[AT_CANARY] != NULL &&
389	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
390	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
391	    if (i > sizeof(__stack_chk_guard))
392		    i = sizeof(__stack_chk_guard);
393	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
394    } else {
395	mib[0] = CTL_KERN;
396	mib[1] = KERN_ARND;
397
398	len = sizeof(__stack_chk_guard);
399	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
400	    len != sizeof(__stack_chk_guard)) {
401		/* If sysctl was unsuccessful, use the "terminator canary". */
402		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
403		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
404		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
405		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
406	}
407    }
408
409    trust = !issetugid();
410
411    ld_bind_now = getenv(LD_ "BIND_NOW");
412    /*
413     * If the process is tainted, then we un-set the dangerous environment
414     * variables.  The process will be marked as tainted until setuid(2)
415     * is called.  If any child process calls setuid(2) we do not want any
416     * future processes to honor the potentially un-safe variables.
417     */
418    if (!trust) {
419        if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
420	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
421	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
422	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
423		_rtld_error("environment corrupt; aborting");
424		rtld_die();
425	}
426    }
427    ld_debug = getenv(LD_ "DEBUG");
428    libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
429    libmap_override = getenv(LD_ "LIBMAP");
430    ld_library_path = getenv(LD_ "LIBRARY_PATH");
431    ld_preload = getenv(LD_ "PRELOAD");
432    ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
433    ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
434    library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
435    if (library_path_rpath != NULL) {
436	    if (library_path_rpath[0] == 'y' ||
437		library_path_rpath[0] == 'Y' ||
438		library_path_rpath[0] == '1')
439		    ld_library_path_rpath = true;
440	    else
441		    ld_library_path_rpath = false;
442    }
443    dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
444	(ld_library_path != NULL) || (ld_preload != NULL) ||
445	(ld_elf_hints_path != NULL) || ld_loadfltr;
446    ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
447    ld_utrace = getenv(LD_ "UTRACE");
448
449    if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
450	ld_elf_hints_path = _PATH_ELF_HINTS;
451
452    if (ld_debug != NULL && *ld_debug != '\0')
453	debug = 1;
454    dbg("%s is initialized, base address = %p", __progname,
455	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
456    dbg("RTLD dynamic = %p", obj_rtld.dynamic);
457    dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
458
459    dbg("initializing thread locks");
460    lockdflt_init();
461
462    /*
463     * Load the main program, or process its program header if it is
464     * already loaded.
465     */
466    if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
467	int fd = aux_info[AT_EXECFD]->a_un.a_val;
468	dbg("loading main program");
469	obj_main = map_object(fd, argv0, NULL);
470	close(fd);
471	if (obj_main == NULL)
472	    rtld_die();
473	max_stack_flags = obj->stack_flags;
474    } else {				/* Main program already loaded. */
475	const Elf_Phdr *phdr;
476	int phnum;
477	caddr_t entry;
478
479	dbg("processing main program's program header");
480	assert(aux_info[AT_PHDR] != NULL);
481	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
482	assert(aux_info[AT_PHNUM] != NULL);
483	phnum = aux_info[AT_PHNUM]->a_un.a_val;
484	assert(aux_info[AT_PHENT] != NULL);
485	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
486	assert(aux_info[AT_ENTRY] != NULL);
487	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
488	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
489	    rtld_die();
490    }
491
492    if (aux_info[AT_EXECPATH] != 0) {
493	    char *kexecpath;
494	    char buf[MAXPATHLEN];
495
496	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
497	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
498	    if (kexecpath[0] == '/')
499		    obj_main->path = kexecpath;
500	    else if (getcwd(buf, sizeof(buf)) == NULL ||
501		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
502		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
503		    obj_main->path = xstrdup(argv0);
504	    else
505		    obj_main->path = xstrdup(buf);
506    } else {
507	    dbg("No AT_EXECPATH");
508	    obj_main->path = xstrdup(argv0);
509    }
510    dbg("obj_main path %s", obj_main->path);
511    obj_main->mainprog = true;
512
513    if (aux_info[AT_STACKPROT] != NULL &&
514      aux_info[AT_STACKPROT]->a_un.a_val != 0)
515	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
516
517#ifndef COMPAT_32BIT
518    /*
519     * Get the actual dynamic linker pathname from the executable if
520     * possible.  (It should always be possible.)  That ensures that
521     * gdb will find the right dynamic linker even if a non-standard
522     * one is being used.
523     */
524    if (obj_main->interp != NULL &&
525      strcmp(obj_main->interp, obj_rtld.path) != 0) {
526	free(obj_rtld.path);
527	obj_rtld.path = xstrdup(obj_main->interp);
528        __progname = obj_rtld.path;
529    }
530#endif
531
532    digest_dynamic(obj_main, 0);
533    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
534	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
535	obj_main->dynsymcount);
536
537    linkmap_add(obj_main);
538    linkmap_add(&obj_rtld);
539
540    /* Link the main program into the list of objects. */
541    TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
542    obj_count++;
543    obj_loads++;
544
545    /* Initialize a fake symbol for resolving undefined weak references. */
546    sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
547    sym_zero.st_shndx = SHN_UNDEF;
548    sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
549
550    if (!libmap_disable)
551        libmap_disable = (bool)lm_init(libmap_override);
552
553    dbg("loading LD_PRELOAD libraries");
554    if (load_preload_objects() == -1)
555	rtld_die();
556    preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
557
558    dbg("loading needed objects");
559    if (load_needed_objects(obj_main, 0) == -1)
560	rtld_die();
561
562    /* Make a list of all objects loaded at startup. */
563    last_interposer = obj_main;
564    TAILQ_FOREACH(obj, &obj_list, next) {
565	if (obj->marker)
566	    continue;
567	if (obj->z_interpose && obj != obj_main) {
568	    objlist_put_after(&list_main, last_interposer, obj);
569	    last_interposer = obj;
570	} else {
571	    objlist_push_tail(&list_main, obj);
572	}
573    	obj->refcount++;
574    }
575
576    dbg("checking for required versions");
577    if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
578	rtld_die();
579
580    if (ld_tracing) {		/* We're done */
581	trace_loaded_objects(obj_main);
582	exit(0);
583    }
584
585    if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
586       dump_relocations(obj_main);
587       exit (0);
588    }
589
590    /*
591     * Processing tls relocations requires having the tls offsets
592     * initialized.  Prepare offsets before starting initial
593     * relocation processing.
594     */
595    dbg("initializing initial thread local storage offsets");
596    STAILQ_FOREACH(entry, &list_main, link) {
597	/*
598	 * Allocate all the initial objects out of the static TLS
599	 * block even if they didn't ask for it.
600	 */
601	allocate_tls_offset(entry->obj);
602    }
603
604    if (relocate_objects(obj_main,
605      ld_bind_now != NULL && *ld_bind_now != '\0',
606      &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
607	rtld_die();
608
609    dbg("doing copy relocations");
610    if (do_copy_relocations(obj_main) == -1)
611	rtld_die();
612
613    dbg("enforcing main obj relro");
614    if (obj_enforce_relro(obj_main) == -1)
615	rtld_die();
616
617    if (getenv(LD_ "DUMP_REL_POST") != NULL) {
618       dump_relocations(obj_main);
619       exit (0);
620    }
621
622    /*
623     * Setup TLS for main thread.  This must be done after the
624     * relocations are processed, since tls initialization section
625     * might be the subject for relocations.
626     */
627    dbg("initializing initial thread local storage");
628    allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
629
630    dbg("initializing key program variables");
631    set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
632    set_program_var("environ", env);
633    set_program_var("__elf_aux_vector", aux);
634
635    /* Make a list of init functions to call. */
636    objlist_init(&initlist);
637    initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
638      preload_tail, &initlist);
639
640    r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
641
642    map_stacks_exec(NULL);
643    ifunc_init(aux);
644
645    dbg("resolving ifuncs");
646    if (resolve_objects_ifunc(obj_main,
647      ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
648      NULL) == -1)
649	rtld_die();
650
651    if (!obj_main->crt_no_init) {
652	/*
653	 * Make sure we don't call the main program's init and fini
654	 * functions for binaries linked with old crt1 which calls
655	 * _init itself.
656	 */
657	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
658	obj_main->preinit_array = obj_main->init_array =
659	    obj_main->fini_array = (Elf_Addr)NULL;
660    }
661
662    wlock_acquire(rtld_bind_lock, &lockstate);
663    if (obj_main->crt_no_init)
664	preinit_main();
665    objlist_call_init(&initlist, &lockstate);
666    _r_debug_postinit(&obj_main->linkmap);
667    objlist_clear(&initlist);
668    dbg("loading filtees");
669    TAILQ_FOREACH(obj, &obj_list, next) {
670	if (obj->marker)
671	    continue;
672	if (ld_loadfltr || obj->z_loadfltr)
673	    load_filtees(obj, 0, &lockstate);
674    }
675    lock_release(rtld_bind_lock, &lockstate);
676
677    dbg("transferring control to program entry point = %p", obj_main->entry);
678
679    /* Return the exit procedure and the program entry point. */
680    *exit_proc = rtld_exit;
681    *objp = obj_main;
682    return (func_ptr_type) obj_main->entry;
683}
684
685void *
686rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
687{
688	void *ptr;
689	Elf_Addr target;
690
691	ptr = (void *)make_function_pointer(def, obj);
692	target = call_ifunc_resolver(ptr);
693	return ((void *)target);
694}
695
696Elf_Addr
697_rtld_bind(Obj_Entry *obj, Elf_Size reloff)
698{
699    const Elf_Rel *rel;
700    const Elf_Sym *def;
701    const Obj_Entry *defobj;
702    Elf_Addr *where;
703    Elf_Addr target;
704    RtldLockState lockstate;
705
706    rlock_acquire(rtld_bind_lock, &lockstate);
707    if (sigsetjmp(lockstate.env, 0) != 0)
708	    lock_upgrade(rtld_bind_lock, &lockstate);
709    if (obj->pltrel)
710	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
711    else
712	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
713
714    where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
715    def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
716	NULL, &lockstate);
717    if (def == NULL)
718	rtld_die();
719    if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
720	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
721    else
722	target = (Elf_Addr)(defobj->relocbase + def->st_value);
723
724    dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
725      defobj->strtab + def->st_name, basename(obj->path),
726      (void *)target, basename(defobj->path));
727
728    /*
729     * Write the new contents for the jmpslot. Note that depending on
730     * architecture, the value which we need to return back to the
731     * lazy binding trampoline may or may not be the target
732     * address. The value returned from reloc_jmpslot() is the value
733     * that the trampoline needs.
734     */
735    target = reloc_jmpslot(where, target, defobj, obj, rel);
736    lock_release(rtld_bind_lock, &lockstate);
737    return target;
738}
739
740/*
741 * Error reporting function.  Use it like printf.  If formats the message
742 * into a buffer, and sets things up so that the next call to dlerror()
743 * will return the message.
744 */
745void
746_rtld_error(const char *fmt, ...)
747{
748    static char buf[512];
749    va_list ap;
750
751    va_start(ap, fmt);
752    rtld_vsnprintf(buf, sizeof buf, fmt, ap);
753    error_message = buf;
754    va_end(ap);
755}
756
757/*
758 * Return a dynamically-allocated copy of the current error message, if any.
759 */
760static char *
761errmsg_save(void)
762{
763    return error_message == NULL ? NULL : xstrdup(error_message);
764}
765
766/*
767 * Restore the current error message from a copy which was previously saved
768 * by errmsg_save().  The copy is freed.
769 */
770static void
771errmsg_restore(char *saved_msg)
772{
773    if (saved_msg == NULL)
774	error_message = NULL;
775    else {
776	_rtld_error("%s", saved_msg);
777	free(saved_msg);
778    }
779}
780
781static const char *
782basename(const char *name)
783{
784    const char *p = strrchr(name, '/');
785    return p != NULL ? p + 1 : name;
786}
787
788static struct utsname uts;
789
790static char *
791origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
792    const char *subst, bool may_free)
793{
794	char *p, *p1, *res, *resp;
795	int subst_len, kw_len, subst_count, old_len, new_len;
796
797	kw_len = strlen(kw);
798
799	/*
800	 * First, count the number of the keyword occurences, to
801	 * preallocate the final string.
802	 */
803	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
804		p1 = strstr(p, kw);
805		if (p1 == NULL)
806			break;
807	}
808
809	/*
810	 * If the keyword is not found, just return.
811	 *
812	 * Return non-substituted string if resolution failed.  We
813	 * cannot do anything more reasonable, the failure mode of the
814	 * caller is unresolved library anyway.
815	 */
816	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
817		return (may_free ? real : xstrdup(real));
818	if (obj != NULL)
819		subst = obj->origin_path;
820
821	/*
822	 * There is indeed something to substitute.  Calculate the
823	 * length of the resulting string, and allocate it.
824	 */
825	subst_len = strlen(subst);
826	old_len = strlen(real);
827	new_len = old_len + (subst_len - kw_len) * subst_count;
828	res = xmalloc(new_len + 1);
829
830	/*
831	 * Now, execute the substitution loop.
832	 */
833	for (p = real, resp = res, *resp = '\0';;) {
834		p1 = strstr(p, kw);
835		if (p1 != NULL) {
836			/* Copy the prefix before keyword. */
837			memcpy(resp, p, p1 - p);
838			resp += p1 - p;
839			/* Keyword replacement. */
840			memcpy(resp, subst, subst_len);
841			resp += subst_len;
842			*resp = '\0';
843			p = p1 + kw_len;
844		} else
845			break;
846	}
847
848	/* Copy to the end of string and finish. */
849	strcat(resp, p);
850	if (may_free)
851		free(real);
852	return (res);
853}
854
855static char *
856origin_subst(Obj_Entry *obj, char *real)
857{
858	char *res1, *res2, *res3, *res4;
859
860	if (obj == NULL || !trust)
861		return (xstrdup(real));
862	if (uts.sysname[0] == '\0') {
863		if (uname(&uts) != 0) {
864			_rtld_error("utsname failed: %d", errno);
865			return (NULL);
866		}
867	}
868	res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false);
869	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
870	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
871	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
872	return (res4);
873}
874
875void
876rtld_die(void)
877{
878    const char *msg = dlerror();
879
880    if (msg == NULL)
881	msg = "Fatal error";
882    rtld_fdputstr(STDERR_FILENO, msg);
883    rtld_fdputchar(STDERR_FILENO, '\n');
884    _exit(1);
885}
886
887/*
888 * Process a shared object's DYNAMIC section, and save the important
889 * information in its Obj_Entry structure.
890 */
891static void
892digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
893    const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
894{
895    const Elf_Dyn *dynp;
896    Needed_Entry **needed_tail = &obj->needed;
897    Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
898    Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
899    const Elf_Hashelt *hashtab;
900    const Elf32_Word *hashval;
901    Elf32_Word bkt, nmaskwords;
902    int bloom_size32;
903    int plttype = DT_REL;
904
905    *dyn_rpath = NULL;
906    *dyn_soname = NULL;
907    *dyn_runpath = NULL;
908
909    obj->bind_now = false;
910    for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
911	switch (dynp->d_tag) {
912
913	case DT_REL:
914	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
915	    break;
916
917	case DT_RELSZ:
918	    obj->relsize = dynp->d_un.d_val;
919	    break;
920
921	case DT_RELENT:
922	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
923	    break;
924
925	case DT_JMPREL:
926	    obj->pltrel = (const Elf_Rel *)
927	      (obj->relocbase + dynp->d_un.d_ptr);
928	    break;
929
930	case DT_PLTRELSZ:
931	    obj->pltrelsize = dynp->d_un.d_val;
932	    break;
933
934	case DT_RELA:
935	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
936	    break;
937
938	case DT_RELASZ:
939	    obj->relasize = dynp->d_un.d_val;
940	    break;
941
942	case DT_RELAENT:
943	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
944	    break;
945
946	case DT_PLTREL:
947	    plttype = dynp->d_un.d_val;
948	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
949	    break;
950
951	case DT_SYMTAB:
952	    obj->symtab = (const Elf_Sym *)
953	      (obj->relocbase + dynp->d_un.d_ptr);
954	    break;
955
956	case DT_SYMENT:
957	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
958	    break;
959
960	case DT_STRTAB:
961	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
962	    break;
963
964	case DT_STRSZ:
965	    obj->strsize = dynp->d_un.d_val;
966	    break;
967
968	case DT_VERNEED:
969	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
970		dynp->d_un.d_val);
971	    break;
972
973	case DT_VERNEEDNUM:
974	    obj->verneednum = dynp->d_un.d_val;
975	    break;
976
977	case DT_VERDEF:
978	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
979		dynp->d_un.d_val);
980	    break;
981
982	case DT_VERDEFNUM:
983	    obj->verdefnum = dynp->d_un.d_val;
984	    break;
985
986	case DT_VERSYM:
987	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
988		dynp->d_un.d_val);
989	    break;
990
991	case DT_HASH:
992	    {
993		hashtab = (const Elf_Hashelt *)(obj->relocbase +
994		    dynp->d_un.d_ptr);
995		obj->nbuckets = hashtab[0];
996		obj->nchains = hashtab[1];
997		obj->buckets = hashtab + 2;
998		obj->chains = obj->buckets + obj->nbuckets;
999		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1000		  obj->buckets != NULL;
1001	    }
1002	    break;
1003
1004	case DT_GNU_HASH:
1005	    {
1006		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1007		    dynp->d_un.d_ptr);
1008		obj->nbuckets_gnu = hashtab[0];
1009		obj->symndx_gnu = hashtab[1];
1010		nmaskwords = hashtab[2];
1011		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1012		obj->maskwords_bm_gnu = nmaskwords - 1;
1013		obj->shift2_gnu = hashtab[3];
1014		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1015		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1016		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1017		  obj->symndx_gnu;
1018		/* Number of bitmask words is required to be power of 2 */
1019		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1020		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1021	    }
1022	    break;
1023
1024	case DT_NEEDED:
1025	    if (!obj->rtld) {
1026		Needed_Entry *nep = NEW(Needed_Entry);
1027		nep->name = dynp->d_un.d_val;
1028		nep->obj = NULL;
1029		nep->next = NULL;
1030
1031		*needed_tail = nep;
1032		needed_tail = &nep->next;
1033	    }
1034	    break;
1035
1036	case DT_FILTER:
1037	    if (!obj->rtld) {
1038		Needed_Entry *nep = NEW(Needed_Entry);
1039		nep->name = dynp->d_un.d_val;
1040		nep->obj = NULL;
1041		nep->next = NULL;
1042
1043		*needed_filtees_tail = nep;
1044		needed_filtees_tail = &nep->next;
1045	    }
1046	    break;
1047
1048	case DT_AUXILIARY:
1049	    if (!obj->rtld) {
1050		Needed_Entry *nep = NEW(Needed_Entry);
1051		nep->name = dynp->d_un.d_val;
1052		nep->obj = NULL;
1053		nep->next = NULL;
1054
1055		*needed_aux_filtees_tail = nep;
1056		needed_aux_filtees_tail = &nep->next;
1057	    }
1058	    break;
1059
1060	case DT_PLTGOT:
1061	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1062	    break;
1063
1064	case DT_TEXTREL:
1065	    obj->textrel = true;
1066	    break;
1067
1068	case DT_SYMBOLIC:
1069	    obj->symbolic = true;
1070	    break;
1071
1072	case DT_RPATH:
1073	    /*
1074	     * We have to wait until later to process this, because we
1075	     * might not have gotten the address of the string table yet.
1076	     */
1077	    *dyn_rpath = dynp;
1078	    break;
1079
1080	case DT_SONAME:
1081	    *dyn_soname = dynp;
1082	    break;
1083
1084	case DT_RUNPATH:
1085	    *dyn_runpath = dynp;
1086	    break;
1087
1088	case DT_INIT:
1089	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1090	    break;
1091
1092	case DT_PREINIT_ARRAY:
1093	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1094	    break;
1095
1096	case DT_PREINIT_ARRAYSZ:
1097	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1098	    break;
1099
1100	case DT_INIT_ARRAY:
1101	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1102	    break;
1103
1104	case DT_INIT_ARRAYSZ:
1105	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1106	    break;
1107
1108	case DT_FINI:
1109	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1110	    break;
1111
1112	case DT_FINI_ARRAY:
1113	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1114	    break;
1115
1116	case DT_FINI_ARRAYSZ:
1117	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1118	    break;
1119
1120	/*
1121	 * Don't process DT_DEBUG on MIPS as the dynamic section
1122	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1123	 */
1124
1125#ifndef __mips__
1126	case DT_DEBUG:
1127	    if (!early)
1128		dbg("Filling in DT_DEBUG entry");
1129	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1130	    break;
1131#endif
1132
1133	case DT_FLAGS:
1134		if (dynp->d_un.d_val & DF_ORIGIN)
1135		    obj->z_origin = true;
1136		if (dynp->d_un.d_val & DF_SYMBOLIC)
1137		    obj->symbolic = true;
1138		if (dynp->d_un.d_val & DF_TEXTREL)
1139		    obj->textrel = true;
1140		if (dynp->d_un.d_val & DF_BIND_NOW)
1141		    obj->bind_now = true;
1142		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1143		    ;*/
1144	    break;
1145#ifdef __mips__
1146	case DT_MIPS_LOCAL_GOTNO:
1147		obj->local_gotno = dynp->d_un.d_val;
1148	    break;
1149
1150	case DT_MIPS_SYMTABNO:
1151		obj->symtabno = dynp->d_un.d_val;
1152		break;
1153
1154	case DT_MIPS_GOTSYM:
1155		obj->gotsym = dynp->d_un.d_val;
1156		break;
1157
1158	case DT_MIPS_RLD_MAP:
1159		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1160		break;
1161#endif
1162
1163	case DT_FLAGS_1:
1164		if (dynp->d_un.d_val & DF_1_NOOPEN)
1165		    obj->z_noopen = true;
1166		if (dynp->d_un.d_val & DF_1_ORIGIN)
1167		    obj->z_origin = true;
1168		if (dynp->d_un.d_val & DF_1_GLOBAL)
1169		    obj->z_global = true;
1170		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1171		    obj->bind_now = true;
1172		if (dynp->d_un.d_val & DF_1_NODELETE)
1173		    obj->z_nodelete = true;
1174		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1175		    obj->z_loadfltr = true;
1176		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1177		    obj->z_interpose = true;
1178		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1179		    obj->z_nodeflib = true;
1180	    break;
1181
1182	default:
1183	    if (!early) {
1184		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1185		    (long)dynp->d_tag);
1186	    }
1187	    break;
1188	}
1189    }
1190
1191    obj->traced = false;
1192
1193    if (plttype == DT_RELA) {
1194	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1195	obj->pltrel = NULL;
1196	obj->pltrelasize = obj->pltrelsize;
1197	obj->pltrelsize = 0;
1198    }
1199
1200    /* Determine size of dynsym table (equal to nchains of sysv hash) */
1201    if (obj->valid_hash_sysv)
1202	obj->dynsymcount = obj->nchains;
1203    else if (obj->valid_hash_gnu) {
1204	obj->dynsymcount = 0;
1205	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1206	    if (obj->buckets_gnu[bkt] == 0)
1207		continue;
1208	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1209	    do
1210		obj->dynsymcount++;
1211	    while ((*hashval++ & 1u) == 0);
1212	}
1213	obj->dynsymcount += obj->symndx_gnu;
1214    }
1215}
1216
1217static bool
1218obj_resolve_origin(Obj_Entry *obj)
1219{
1220
1221	if (obj->origin_path != NULL)
1222		return (true);
1223	obj->origin_path = xmalloc(PATH_MAX);
1224	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1225}
1226
1227static void
1228digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1229    const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1230{
1231
1232	if (obj->z_origin && !obj_resolve_origin(obj))
1233		rtld_die();
1234
1235	if (dyn_runpath != NULL) {
1236		obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1237		obj->runpath = origin_subst(obj, obj->runpath);
1238	} else if (dyn_rpath != NULL) {
1239		obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1240		obj->rpath = origin_subst(obj, obj->rpath);
1241	}
1242	if (dyn_soname != NULL)
1243		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1244}
1245
1246static void
1247digest_dynamic(Obj_Entry *obj, int early)
1248{
1249	const Elf_Dyn *dyn_rpath;
1250	const Elf_Dyn *dyn_soname;
1251	const Elf_Dyn *dyn_runpath;
1252
1253	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1254	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1255}
1256
1257/*
1258 * Process a shared object's program header.  This is used only for the
1259 * main program, when the kernel has already loaded the main program
1260 * into memory before calling the dynamic linker.  It creates and
1261 * returns an Obj_Entry structure.
1262 */
1263static Obj_Entry *
1264digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1265{
1266    Obj_Entry *obj;
1267    const Elf_Phdr *phlimit = phdr + phnum;
1268    const Elf_Phdr *ph;
1269    Elf_Addr note_start, note_end;
1270    int nsegs = 0;
1271
1272    obj = obj_new();
1273    for (ph = phdr;  ph < phlimit;  ph++) {
1274	if (ph->p_type != PT_PHDR)
1275	    continue;
1276
1277	obj->phdr = phdr;
1278	obj->phsize = ph->p_memsz;
1279	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1280	break;
1281    }
1282
1283    obj->stack_flags = PF_X | PF_R | PF_W;
1284
1285    for (ph = phdr;  ph < phlimit;  ph++) {
1286	switch (ph->p_type) {
1287
1288	case PT_INTERP:
1289	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1290	    break;
1291
1292	case PT_LOAD:
1293	    if (nsegs == 0) {	/* First load segment */
1294		obj->vaddrbase = trunc_page(ph->p_vaddr);
1295		obj->mapbase = obj->vaddrbase + obj->relocbase;
1296		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1297		  obj->vaddrbase;
1298	    } else {		/* Last load segment */
1299		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1300		  obj->vaddrbase;
1301	    }
1302	    nsegs++;
1303	    break;
1304
1305	case PT_DYNAMIC:
1306	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1307	    break;
1308
1309	case PT_TLS:
1310	    obj->tlsindex = 1;
1311	    obj->tlssize = ph->p_memsz;
1312	    obj->tlsalign = ph->p_align;
1313	    obj->tlsinitsize = ph->p_filesz;
1314	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1315	    break;
1316
1317	case PT_GNU_STACK:
1318	    obj->stack_flags = ph->p_flags;
1319	    break;
1320
1321	case PT_GNU_RELRO:
1322	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1323	    obj->relro_size = round_page(ph->p_memsz);
1324	    break;
1325
1326	case PT_NOTE:
1327	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1328	    note_end = note_start + ph->p_filesz;
1329	    digest_notes(obj, note_start, note_end);
1330	    break;
1331	}
1332    }
1333    if (nsegs < 1) {
1334	_rtld_error("%s: too few PT_LOAD segments", path);
1335	return NULL;
1336    }
1337
1338    obj->entry = entry;
1339    return obj;
1340}
1341
1342void
1343digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1344{
1345	const Elf_Note *note;
1346	const char *note_name;
1347	uintptr_t p;
1348
1349	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1350	    note = (const Elf_Note *)((const char *)(note + 1) +
1351	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1352	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1353		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1354		    note->n_descsz != sizeof(int32_t))
1355			continue;
1356		if (note->n_type != ABI_NOTETYPE &&
1357		    note->n_type != CRT_NOINIT_NOTETYPE)
1358			continue;
1359		note_name = (const char *)(note + 1);
1360		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1361		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1362			continue;
1363		switch (note->n_type) {
1364		case ABI_NOTETYPE:
1365			/* FreeBSD osrel note */
1366			p = (uintptr_t)(note + 1);
1367			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1368			obj->osrel = *(const int32_t *)(p);
1369			dbg("note osrel %d", obj->osrel);
1370			break;
1371		case CRT_NOINIT_NOTETYPE:
1372			/* FreeBSD 'crt does not call init' note */
1373			obj->crt_no_init = true;
1374			dbg("note crt_no_init");
1375			break;
1376		}
1377	}
1378}
1379
1380static Obj_Entry *
1381dlcheck(void *handle)
1382{
1383    Obj_Entry *obj;
1384
1385    TAILQ_FOREACH(obj, &obj_list, next) {
1386	if (obj == (Obj_Entry *) handle)
1387	    break;
1388    }
1389
1390    if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1391	_rtld_error("Invalid shared object handle %p", handle);
1392	return NULL;
1393    }
1394    return obj;
1395}
1396
1397/*
1398 * If the given object is already in the donelist, return true.  Otherwise
1399 * add the object to the list and return false.
1400 */
1401static bool
1402donelist_check(DoneList *dlp, const Obj_Entry *obj)
1403{
1404    unsigned int i;
1405
1406    for (i = 0;  i < dlp->num_used;  i++)
1407	if (dlp->objs[i] == obj)
1408	    return true;
1409    /*
1410     * Our donelist allocation should always be sufficient.  But if
1411     * our threads locking isn't working properly, more shared objects
1412     * could have been loaded since we allocated the list.  That should
1413     * never happen, but we'll handle it properly just in case it does.
1414     */
1415    if (dlp->num_used < dlp->num_alloc)
1416	dlp->objs[dlp->num_used++] = obj;
1417    return false;
1418}
1419
1420/*
1421 * Hash function for symbol table lookup.  Don't even think about changing
1422 * this.  It is specified by the System V ABI.
1423 */
1424unsigned long
1425elf_hash(const char *name)
1426{
1427    const unsigned char *p = (const unsigned char *) name;
1428    unsigned long h = 0;
1429    unsigned long g;
1430
1431    while (*p != '\0') {
1432	h = (h << 4) + *p++;
1433	if ((g = h & 0xf0000000) != 0)
1434	    h ^= g >> 24;
1435	h &= ~g;
1436    }
1437    return h;
1438}
1439
1440/*
1441 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1442 * unsigned in case it's implemented with a wider type.
1443 */
1444static uint32_t
1445gnu_hash(const char *s)
1446{
1447	uint32_t h;
1448	unsigned char c;
1449
1450	h = 5381;
1451	for (c = *s; c != '\0'; c = *++s)
1452		h = h * 33 + c;
1453	return (h & 0xffffffff);
1454}
1455
1456/*
1457 * Find the library with the given name, and return its full pathname.
1458 * The returned string is dynamically allocated.  Generates an error
1459 * message and returns NULL if the library cannot be found.
1460 *
1461 * If the second argument is non-NULL, then it refers to an already-
1462 * loaded shared object, whose library search path will be searched.
1463 *
1464 * The search order is:
1465 *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1466 *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1467 *   LD_LIBRARY_PATH
1468 *   DT_RUNPATH in the referencing file
1469 *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1470 *	 from list)
1471 *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1472 *
1473 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1474 */
1475static char *
1476find_library(const char *xname, const Obj_Entry *refobj)
1477{
1478    char *pathname;
1479    char *name;
1480    bool nodeflib, objgiven;
1481
1482    objgiven = refobj != NULL;
1483    if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1484	if (xname[0] != '/' && !trust) {
1485	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1486	      xname);
1487	    return NULL;
1488	}
1489	return (origin_subst(__DECONST(Obj_Entry *, refobj),
1490	  __DECONST(char *, xname)));
1491    }
1492
1493    if (libmap_disable || !objgiven ||
1494	(name = lm_find(refobj->path, xname)) == NULL)
1495	name = (char *)xname;
1496
1497    dbg(" Searching for \"%s\"", name);
1498
1499    /*
1500     * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1501     * back to pre-conforming behaviour if user requested so with
1502     * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1503     * nodeflib.
1504     */
1505    if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1506	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1507	  (refobj != NULL &&
1508	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1509          (pathname = search_library_path(name, gethints(false))) != NULL ||
1510	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1511	    return (pathname);
1512    } else {
1513	nodeflib = objgiven ? refobj->z_nodeflib : false;
1514	if ((objgiven &&
1515	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1516	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1517	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1518	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1519	  (objgiven &&
1520	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1521	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1522	  (objgiven && !nodeflib &&
1523	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1524	    return (pathname);
1525    }
1526
1527    if (objgiven && refobj->path != NULL) {
1528	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1529	  name, basename(refobj->path));
1530    } else {
1531	_rtld_error("Shared object \"%s\" not found", name);
1532    }
1533    return NULL;
1534}
1535
1536/*
1537 * Given a symbol number in a referencing object, find the corresponding
1538 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1539 * no definition was found.  Returns a pointer to the Obj_Entry of the
1540 * defining object via the reference parameter DEFOBJ_OUT.
1541 */
1542const Elf_Sym *
1543find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1544    const Obj_Entry **defobj_out, int flags, SymCache *cache,
1545    RtldLockState *lockstate)
1546{
1547    const Elf_Sym *ref;
1548    const Elf_Sym *def;
1549    const Obj_Entry *defobj;
1550    const Ver_Entry *ve;
1551    SymLook req;
1552    const char *name;
1553    int res;
1554
1555    /*
1556     * If we have already found this symbol, get the information from
1557     * the cache.
1558     */
1559    if (symnum >= refobj->dynsymcount)
1560	return NULL;	/* Bad object */
1561    if (cache != NULL && cache[symnum].sym != NULL) {
1562	*defobj_out = cache[symnum].obj;
1563	return cache[symnum].sym;
1564    }
1565
1566    ref = refobj->symtab + symnum;
1567    name = refobj->strtab + ref->st_name;
1568    def = NULL;
1569    defobj = NULL;
1570    ve = NULL;
1571
1572    /*
1573     * We don't have to do a full scale lookup if the symbol is local.
1574     * We know it will bind to the instance in this load module; to
1575     * which we already have a pointer (ie ref). By not doing a lookup,
1576     * we not only improve performance, but it also avoids unresolvable
1577     * symbols when local symbols are not in the hash table. This has
1578     * been seen with the ia64 toolchain.
1579     */
1580    if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1581	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1582	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1583		symnum);
1584	}
1585	symlook_init(&req, name);
1586	req.flags = flags;
1587	ve = req.ventry = fetch_ventry(refobj, symnum);
1588	req.lockstate = lockstate;
1589	res = symlook_default(&req, refobj);
1590	if (res == 0) {
1591	    def = req.sym_out;
1592	    defobj = req.defobj_out;
1593	}
1594    } else {
1595	def = ref;
1596	defobj = refobj;
1597    }
1598
1599    /*
1600     * If we found no definition and the reference is weak, treat the
1601     * symbol as having the value zero.
1602     */
1603    if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1604	def = &sym_zero;
1605	defobj = obj_main;
1606    }
1607
1608    if (def != NULL) {
1609	*defobj_out = defobj;
1610	/* Record the information in the cache to avoid subsequent lookups. */
1611	if (cache != NULL) {
1612	    cache[symnum].sym = def;
1613	    cache[symnum].obj = defobj;
1614	}
1615    } else {
1616	if (refobj != &obj_rtld)
1617	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1618	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1619    }
1620    return def;
1621}
1622
1623/*
1624 * Return the search path from the ldconfig hints file, reading it if
1625 * necessary.  If nostdlib is true, then the default search paths are
1626 * not added to result.
1627 *
1628 * Returns NULL if there are problems with the hints file,
1629 * or if the search path there is empty.
1630 */
1631static const char *
1632gethints(bool nostdlib)
1633{
1634	static char *hints, *filtered_path;
1635	static struct elfhints_hdr hdr;
1636	struct fill_search_info_args sargs, hargs;
1637	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1638	struct dl_serpath *SLPpath, *hintpath;
1639	char *p;
1640	struct stat hint_stat;
1641	unsigned int SLPndx, hintndx, fndx, fcount;
1642	int fd;
1643	size_t flen;
1644	uint32_t dl;
1645	bool skip;
1646
1647	/* First call, read the hints file */
1648	if (hints == NULL) {
1649		/* Keep from trying again in case the hints file is bad. */
1650		hints = "";
1651
1652		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1653			return (NULL);
1654
1655		/*
1656		 * Check of hdr.dirlistlen value against type limit
1657		 * intends to pacify static analyzers.  Further
1658		 * paranoia leads to checks that dirlist is fully
1659		 * contained in the file range.
1660		 */
1661		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1662		    hdr.magic != ELFHINTS_MAGIC ||
1663		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1664		    fstat(fd, &hint_stat) == -1) {
1665cleanup1:
1666			close(fd);
1667			hdr.dirlistlen = 0;
1668			return (NULL);
1669		}
1670		dl = hdr.strtab;
1671		if (dl + hdr.dirlist < dl)
1672			goto cleanup1;
1673		dl += hdr.dirlist;
1674		if (dl + hdr.dirlistlen < dl)
1675			goto cleanup1;
1676		dl += hdr.dirlistlen;
1677		if (dl > hint_stat.st_size)
1678			goto cleanup1;
1679		p = xmalloc(hdr.dirlistlen + 1);
1680
1681		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1682		    read(fd, p, hdr.dirlistlen + 1) !=
1683		    (ssize_t)hdr.dirlistlen + 1 || p[hdr.dirlistlen] != '\0') {
1684			free(p);
1685			goto cleanup1;
1686		}
1687		hints = p;
1688		close(fd);
1689	}
1690
1691	/*
1692	 * If caller agreed to receive list which includes the default
1693	 * paths, we are done. Otherwise, if we still did not
1694	 * calculated filtered result, do it now.
1695	 */
1696	if (!nostdlib)
1697		return (hints[0] != '\0' ? hints : NULL);
1698	if (filtered_path != NULL)
1699		goto filt_ret;
1700
1701	/*
1702	 * Obtain the list of all configured search paths, and the
1703	 * list of the default paths.
1704	 *
1705	 * First estimate the size of the results.
1706	 */
1707	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1708	smeta.dls_cnt = 0;
1709	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1710	hmeta.dls_cnt = 0;
1711
1712	sargs.request = RTLD_DI_SERINFOSIZE;
1713	sargs.serinfo = &smeta;
1714	hargs.request = RTLD_DI_SERINFOSIZE;
1715	hargs.serinfo = &hmeta;
1716
1717	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1718	path_enumerate(hints, fill_search_info, &hargs);
1719
1720	SLPinfo = xmalloc(smeta.dls_size);
1721	hintinfo = xmalloc(hmeta.dls_size);
1722
1723	/*
1724	 * Next fetch both sets of paths.
1725	 */
1726	sargs.request = RTLD_DI_SERINFO;
1727	sargs.serinfo = SLPinfo;
1728	sargs.serpath = &SLPinfo->dls_serpath[0];
1729	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1730
1731	hargs.request = RTLD_DI_SERINFO;
1732	hargs.serinfo = hintinfo;
1733	hargs.serpath = &hintinfo->dls_serpath[0];
1734	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1735
1736	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1737	path_enumerate(hints, fill_search_info, &hargs);
1738
1739	/*
1740	 * Now calculate the difference between two sets, by excluding
1741	 * standard paths from the full set.
1742	 */
1743	fndx = 0;
1744	fcount = 0;
1745	filtered_path = xmalloc(hdr.dirlistlen + 1);
1746	hintpath = &hintinfo->dls_serpath[0];
1747	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1748		skip = false;
1749		SLPpath = &SLPinfo->dls_serpath[0];
1750		/*
1751		 * Check each standard path against current.
1752		 */
1753		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1754			/* matched, skip the path */
1755			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1756				skip = true;
1757				break;
1758			}
1759		}
1760		if (skip)
1761			continue;
1762		/*
1763		 * Not matched against any standard path, add the path
1764		 * to result. Separate consequtive paths with ':'.
1765		 */
1766		if (fcount > 0) {
1767			filtered_path[fndx] = ':';
1768			fndx++;
1769		}
1770		fcount++;
1771		flen = strlen(hintpath->dls_name);
1772		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1773		fndx += flen;
1774	}
1775	filtered_path[fndx] = '\0';
1776
1777	free(SLPinfo);
1778	free(hintinfo);
1779
1780filt_ret:
1781	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1782}
1783
1784static void
1785init_dag(Obj_Entry *root)
1786{
1787    const Needed_Entry *needed;
1788    const Objlist_Entry *elm;
1789    DoneList donelist;
1790
1791    if (root->dag_inited)
1792	return;
1793    donelist_init(&donelist);
1794
1795    /* Root object belongs to own DAG. */
1796    objlist_push_tail(&root->dldags, root);
1797    objlist_push_tail(&root->dagmembers, root);
1798    donelist_check(&donelist, root);
1799
1800    /*
1801     * Add dependencies of root object to DAG in breadth order
1802     * by exploiting the fact that each new object get added
1803     * to the tail of the dagmembers list.
1804     */
1805    STAILQ_FOREACH(elm, &root->dagmembers, link) {
1806	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1807	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1808		continue;
1809	    objlist_push_tail(&needed->obj->dldags, root);
1810	    objlist_push_tail(&root->dagmembers, needed->obj);
1811	}
1812    }
1813    root->dag_inited = true;
1814}
1815
1816Obj_Entry *
1817globallist_curr(const Obj_Entry *obj)
1818{
1819
1820	for (;;) {
1821		if (obj == NULL)
1822			return (NULL);
1823		if (!obj->marker)
1824			return (__DECONST(Obj_Entry *, obj));
1825		obj = TAILQ_PREV(obj, obj_entry_q, next);
1826	}
1827}
1828
1829Obj_Entry *
1830globallist_next(const Obj_Entry *obj)
1831{
1832
1833	for (;;) {
1834		obj = TAILQ_NEXT(obj, next);
1835		if (obj == NULL)
1836			return (NULL);
1837		if (!obj->marker)
1838			return (__DECONST(Obj_Entry *, obj));
1839	}
1840}
1841
1842static void
1843process_z(Obj_Entry *root)
1844{
1845	const Objlist_Entry *elm;
1846	Obj_Entry *obj;
1847
1848	/*
1849	 * Walk over object DAG and process every dependent object
1850	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
1851	 * to grow their own DAG.
1852	 *
1853	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
1854	 * symlook_global() to work.
1855	 *
1856	 * For DF_1_NODELETE, the DAG should have its reference upped.
1857	 */
1858	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1859		obj = elm->obj;
1860		if (obj == NULL)
1861			continue;
1862		if (obj->z_nodelete && !obj->ref_nodel) {
1863			dbg("obj %s -z nodelete", obj->path);
1864			init_dag(obj);
1865			ref_dag(obj);
1866			obj->ref_nodel = true;
1867		}
1868		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
1869			dbg("obj %s -z global", obj->path);
1870			objlist_push_tail(&list_global, obj);
1871			init_dag(obj);
1872		}
1873	}
1874}
1875/*
1876 * Initialize the dynamic linker.  The argument is the address at which
1877 * the dynamic linker has been mapped into memory.  The primary task of
1878 * this function is to relocate the dynamic linker.
1879 */
1880static void
1881init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1882{
1883    Obj_Entry objtmp;	/* Temporary rtld object */
1884    const Elf_Ehdr *ehdr;
1885    const Elf_Dyn *dyn_rpath;
1886    const Elf_Dyn *dyn_soname;
1887    const Elf_Dyn *dyn_runpath;
1888
1889#ifdef RTLD_INIT_PAGESIZES_EARLY
1890    /* The page size is required by the dynamic memory allocator. */
1891    init_pagesizes(aux_info);
1892#endif
1893
1894    /*
1895     * Conjure up an Obj_Entry structure for the dynamic linker.
1896     *
1897     * The "path" member can't be initialized yet because string constants
1898     * cannot yet be accessed. Below we will set it correctly.
1899     */
1900    memset(&objtmp, 0, sizeof(objtmp));
1901    objtmp.path = NULL;
1902    objtmp.rtld = true;
1903    objtmp.mapbase = mapbase;
1904#ifdef PIC
1905    objtmp.relocbase = mapbase;
1906#endif
1907    if (RTLD_IS_DYNAMIC()) {
1908	objtmp.dynamic = rtld_dynamic(&objtmp);
1909	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1910	assert(objtmp.needed == NULL);
1911#if !defined(__mips__)
1912	/* MIPS has a bogus DT_TEXTREL. */
1913	assert(!objtmp.textrel);
1914#endif
1915
1916	/*
1917	 * Temporarily put the dynamic linker entry into the object list, so
1918	 * that symbols can be found.
1919	 */
1920
1921	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1922    }
1923    ehdr = (Elf_Ehdr *)mapbase;
1924    objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
1925    objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
1926
1927    /* Initialize the object list. */
1928    TAILQ_INIT(&obj_list);
1929
1930    /* Now that non-local variables can be accesses, copy out obj_rtld. */
1931    memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1932
1933#ifndef RTLD_INIT_PAGESIZES_EARLY
1934    /* The page size is required by the dynamic memory allocator. */
1935    init_pagesizes(aux_info);
1936#endif
1937
1938    if (aux_info[AT_OSRELDATE] != NULL)
1939	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1940
1941    digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1942
1943    /* Replace the path with a dynamically allocated copy. */
1944    obj_rtld.path = xstrdup(PATH_RTLD);
1945
1946    r_debug.r_brk = r_debug_state;
1947    r_debug.r_state = RT_CONSISTENT;
1948}
1949
1950/*
1951 * Retrieve the array of supported page sizes.  The kernel provides the page
1952 * sizes in increasing order.
1953 */
1954static void
1955init_pagesizes(Elf_Auxinfo **aux_info)
1956{
1957	static size_t psa[MAXPAGESIZES];
1958	int mib[2];
1959	size_t len, size;
1960
1961	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
1962	    NULL) {
1963		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
1964		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
1965	} else {
1966		len = 2;
1967		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
1968			size = sizeof(psa);
1969		else {
1970			/* As a fallback, retrieve the base page size. */
1971			size = sizeof(psa[0]);
1972			if (aux_info[AT_PAGESZ] != NULL) {
1973				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
1974				goto psa_filled;
1975			} else {
1976				mib[0] = CTL_HW;
1977				mib[1] = HW_PAGESIZE;
1978				len = 2;
1979			}
1980		}
1981		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
1982			_rtld_error("sysctl for hw.pagesize(s) failed");
1983			rtld_die();
1984		}
1985psa_filled:
1986		pagesizes = psa;
1987	}
1988	npagesizes = size / sizeof(pagesizes[0]);
1989	/* Discard any invalid entries at the end of the array. */
1990	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
1991		npagesizes--;
1992}
1993
1994/*
1995 * Add the init functions from a needed object list (and its recursive
1996 * needed objects) to "list".  This is not used directly; it is a helper
1997 * function for initlist_add_objects().  The write lock must be held
1998 * when this function is called.
1999 */
2000static void
2001initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2002{
2003    /* Recursively process the successor needed objects. */
2004    if (needed->next != NULL)
2005	initlist_add_neededs(needed->next, list);
2006
2007    /* Process the current needed object. */
2008    if (needed->obj != NULL)
2009	initlist_add_objects(needed->obj, needed->obj, list);
2010}
2011
2012/*
2013 * Scan all of the DAGs rooted in the range of objects from "obj" to
2014 * "tail" and add their init functions to "list".  This recurses over
2015 * the DAGs and ensure the proper init ordering such that each object's
2016 * needed libraries are initialized before the object itself.  At the
2017 * same time, this function adds the objects to the global finalization
2018 * list "list_fini" in the opposite order.  The write lock must be
2019 * held when this function is called.
2020 */
2021static void
2022initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2023{
2024    Obj_Entry *nobj;
2025
2026    if (obj->init_scanned || obj->init_done)
2027	return;
2028    obj->init_scanned = true;
2029
2030    /* Recursively process the successor objects. */
2031    nobj = globallist_next(obj);
2032    if (nobj != NULL && obj != tail)
2033	initlist_add_objects(nobj, tail, list);
2034
2035    /* Recursively process the needed objects. */
2036    if (obj->needed != NULL)
2037	initlist_add_neededs(obj->needed, list);
2038    if (obj->needed_filtees != NULL)
2039	initlist_add_neededs(obj->needed_filtees, list);
2040    if (obj->needed_aux_filtees != NULL)
2041	initlist_add_neededs(obj->needed_aux_filtees, list);
2042
2043    /* Add the object to the init list. */
2044    if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
2045      obj->init_array != (Elf_Addr)NULL)
2046	objlist_push_tail(list, obj);
2047
2048    /* Add the object to the global fini list in the reverse order. */
2049    if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2050      && !obj->on_fini_list) {
2051	objlist_push_head(&list_fini, obj);
2052	obj->on_fini_list = true;
2053    }
2054}
2055
2056#ifndef FPTR_TARGET
2057#define FPTR_TARGET(f)	((Elf_Addr) (f))
2058#endif
2059
2060static void
2061free_needed_filtees(Needed_Entry *n)
2062{
2063    Needed_Entry *needed, *needed1;
2064
2065    for (needed = n; needed != NULL; needed = needed->next) {
2066	if (needed->obj != NULL) {
2067	    dlclose(needed->obj);
2068	    needed->obj = NULL;
2069	}
2070    }
2071    for (needed = n; needed != NULL; needed = needed1) {
2072	needed1 = needed->next;
2073	free(needed);
2074    }
2075}
2076
2077static void
2078unload_filtees(Obj_Entry *obj)
2079{
2080
2081    free_needed_filtees(obj->needed_filtees);
2082    obj->needed_filtees = NULL;
2083    free_needed_filtees(obj->needed_aux_filtees);
2084    obj->needed_aux_filtees = NULL;
2085    obj->filtees_loaded = false;
2086}
2087
2088static void
2089load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2090    RtldLockState *lockstate)
2091{
2092
2093    for (; needed != NULL; needed = needed->next) {
2094	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2095	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2096	  RTLD_LOCAL, lockstate);
2097    }
2098}
2099
2100static void
2101load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2102{
2103
2104    lock_restart_for_upgrade(lockstate);
2105    if (!obj->filtees_loaded) {
2106	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2107	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2108	obj->filtees_loaded = true;
2109    }
2110}
2111
2112static int
2113process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2114{
2115    Obj_Entry *obj1;
2116
2117    for (; needed != NULL; needed = needed->next) {
2118	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2119	  flags & ~RTLD_LO_NOLOAD);
2120	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2121	    return (-1);
2122    }
2123    return (0);
2124}
2125
2126/*
2127 * Given a shared object, traverse its list of needed objects, and load
2128 * each of them.  Returns 0 on success.  Generates an error message and
2129 * returns -1 on failure.
2130 */
2131static int
2132load_needed_objects(Obj_Entry *first, int flags)
2133{
2134    Obj_Entry *obj;
2135
2136    for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2137	if (obj->marker)
2138	    continue;
2139	if (process_needed(obj, obj->needed, flags) == -1)
2140	    return (-1);
2141    }
2142    return (0);
2143}
2144
2145static int
2146load_preload_objects(void)
2147{
2148    char *p = ld_preload;
2149    Obj_Entry *obj;
2150    static const char delim[] = " \t:;";
2151
2152    if (p == NULL)
2153	return 0;
2154
2155    p += strspn(p, delim);
2156    while (*p != '\0') {
2157	size_t len = strcspn(p, delim);
2158	char savech;
2159
2160	savech = p[len];
2161	p[len] = '\0';
2162	obj = load_object(p, -1, NULL, 0);
2163	if (obj == NULL)
2164	    return -1;	/* XXX - cleanup */
2165	obj->z_interpose = true;
2166	p[len] = savech;
2167	p += len;
2168	p += strspn(p, delim);
2169    }
2170    LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2171    return 0;
2172}
2173
2174static const char *
2175printable_path(const char *path)
2176{
2177
2178	return (path == NULL ? "<unknown>" : path);
2179}
2180
2181/*
2182 * Load a shared object into memory, if it is not already loaded.  The
2183 * object may be specified by name or by user-supplied file descriptor
2184 * fd_u. In the later case, the fd_u descriptor is not closed, but its
2185 * duplicate is.
2186 *
2187 * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2188 * on failure.
2189 */
2190static Obj_Entry *
2191load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2192{
2193    Obj_Entry *obj;
2194    int fd;
2195    struct stat sb;
2196    char *path;
2197
2198    if (name != NULL) {
2199	TAILQ_FOREACH(obj, &obj_list, next) {
2200	    if (obj->marker)
2201		continue;
2202	    if (object_match_name(obj, name))
2203		return (obj);
2204	}
2205
2206	path = find_library(name, refobj);
2207	if (path == NULL)
2208	    return (NULL);
2209    } else
2210	path = NULL;
2211
2212    /*
2213     * If we didn't find a match by pathname, or the name is not
2214     * supplied, open the file and check again by device and inode.
2215     * This avoids false mismatches caused by multiple links or ".."
2216     * in pathnames.
2217     *
2218     * To avoid a race, we open the file and use fstat() rather than
2219     * using stat().
2220     */
2221    fd = -1;
2222    if (fd_u == -1) {
2223	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2224	    _rtld_error("Cannot open \"%s\"", path);
2225	    free(path);
2226	    return (NULL);
2227	}
2228    } else {
2229	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2230	if (fd == -1) {
2231	    _rtld_error("Cannot dup fd");
2232	    free(path);
2233	    return (NULL);
2234	}
2235    }
2236    if (fstat(fd, &sb) == -1) {
2237	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2238	close(fd);
2239	free(path);
2240	return NULL;
2241    }
2242    TAILQ_FOREACH(obj, &obj_list, next) {
2243	if (obj->marker)
2244	    continue;
2245	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2246	    break;
2247    }
2248    if (obj != NULL && name != NULL) {
2249	object_add_name(obj, name);
2250	free(path);
2251	close(fd);
2252	return obj;
2253    }
2254    if (flags & RTLD_LO_NOLOAD) {
2255	free(path);
2256	close(fd);
2257	return (NULL);
2258    }
2259
2260    /* First use of this object, so we must map it in */
2261    obj = do_load_object(fd, name, path, &sb, flags);
2262    if (obj == NULL)
2263	free(path);
2264    close(fd);
2265
2266    return obj;
2267}
2268
2269static Obj_Entry *
2270do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2271  int flags)
2272{
2273    Obj_Entry *obj;
2274    struct statfs fs;
2275
2276    /*
2277     * but first, make sure that environment variables haven't been
2278     * used to circumvent the noexec flag on a filesystem.
2279     */
2280    if (dangerous_ld_env) {
2281	if (fstatfs(fd, &fs) != 0) {
2282	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2283	    return NULL;
2284	}
2285	if (fs.f_flags & MNT_NOEXEC) {
2286	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2287	    return NULL;
2288	}
2289    }
2290    dbg("loading \"%s\"", printable_path(path));
2291    obj = map_object(fd, printable_path(path), sbp);
2292    if (obj == NULL)
2293        return NULL;
2294
2295    /*
2296     * If DT_SONAME is present in the object, digest_dynamic2 already
2297     * added it to the object names.
2298     */
2299    if (name != NULL)
2300	object_add_name(obj, name);
2301    obj->path = path;
2302    digest_dynamic(obj, 0);
2303    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2304	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2305    if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2306      RTLD_LO_DLOPEN) {
2307	dbg("refusing to load non-loadable \"%s\"", obj->path);
2308	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2309	munmap(obj->mapbase, obj->mapsize);
2310	obj_free(obj);
2311	return (NULL);
2312    }
2313
2314    obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2315    TAILQ_INSERT_TAIL(&obj_list, obj, next);
2316    obj_count++;
2317    obj_loads++;
2318    linkmap_add(obj);	/* for GDB & dlinfo() */
2319    max_stack_flags |= obj->stack_flags;
2320
2321    dbg("  %p .. %p: %s", obj->mapbase,
2322         obj->mapbase + obj->mapsize - 1, obj->path);
2323    if (obj->textrel)
2324	dbg("  WARNING: %s has impure text", obj->path);
2325    LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2326	obj->path);
2327
2328    return obj;
2329}
2330
2331static Obj_Entry *
2332obj_from_addr(const void *addr)
2333{
2334    Obj_Entry *obj;
2335
2336    TAILQ_FOREACH(obj, &obj_list, next) {
2337	if (obj->marker)
2338	    continue;
2339	if (addr < (void *) obj->mapbase)
2340	    continue;
2341	if (addr < (void *) (obj->mapbase + obj->mapsize))
2342	    return obj;
2343    }
2344    return NULL;
2345}
2346
2347static void
2348preinit_main(void)
2349{
2350    Elf_Addr *preinit_addr;
2351    int index;
2352
2353    preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2354    if (preinit_addr == NULL)
2355	return;
2356
2357    for (index = 0; index < obj_main->preinit_array_num; index++) {
2358	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2359	    dbg("calling preinit function for %s at %p", obj_main->path,
2360	      (void *)preinit_addr[index]);
2361	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2362	      0, 0, obj_main->path);
2363	    call_init_pointer(obj_main, preinit_addr[index]);
2364	}
2365    }
2366}
2367
2368/*
2369 * Call the finalization functions for each of the objects in "list"
2370 * belonging to the DAG of "root" and referenced once. If NULL "root"
2371 * is specified, every finalization function will be called regardless
2372 * of the reference count and the list elements won't be freed. All of
2373 * the objects are expected to have non-NULL fini functions.
2374 */
2375static void
2376objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2377{
2378    Objlist_Entry *elm;
2379    char *saved_msg;
2380    Elf_Addr *fini_addr;
2381    int index;
2382
2383    assert(root == NULL || root->refcount == 1);
2384
2385    /*
2386     * Preserve the current error message since a fini function might
2387     * call into the dynamic linker and overwrite it.
2388     */
2389    saved_msg = errmsg_save();
2390    do {
2391	STAILQ_FOREACH(elm, list, link) {
2392	    if (root != NULL && (elm->obj->refcount != 1 ||
2393	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2394		continue;
2395	    /* Remove object from fini list to prevent recursive invocation. */
2396	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2397	    /*
2398	     * XXX: If a dlopen() call references an object while the
2399	     * fini function is in progress, we might end up trying to
2400	     * unload the referenced object in dlclose() or the object
2401	     * won't be unloaded although its fini function has been
2402	     * called.
2403	     */
2404	    lock_release(rtld_bind_lock, lockstate);
2405
2406	    /*
2407	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2408	     * When this happens, DT_FINI_ARRAY is processed first.
2409	     */
2410	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2411	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2412		for (index = elm->obj->fini_array_num - 1; index >= 0;
2413		  index--) {
2414		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2415			dbg("calling fini function for %s at %p",
2416			    elm->obj->path, (void *)fini_addr[index]);
2417			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2418			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2419			call_initfini_pointer(elm->obj, fini_addr[index]);
2420		    }
2421		}
2422	    }
2423	    if (elm->obj->fini != (Elf_Addr)NULL) {
2424		dbg("calling fini function for %s at %p", elm->obj->path,
2425		    (void *)elm->obj->fini);
2426		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2427		    0, 0, elm->obj->path);
2428		call_initfini_pointer(elm->obj, elm->obj->fini);
2429	    }
2430	    wlock_acquire(rtld_bind_lock, lockstate);
2431	    /* No need to free anything if process is going down. */
2432	    if (root != NULL)
2433	    	free(elm);
2434	    /*
2435	     * We must restart the list traversal after every fini call
2436	     * because a dlclose() call from the fini function or from
2437	     * another thread might have modified the reference counts.
2438	     */
2439	    break;
2440	}
2441    } while (elm != NULL);
2442    errmsg_restore(saved_msg);
2443}
2444
2445/*
2446 * Call the initialization functions for each of the objects in
2447 * "list".  All of the objects are expected to have non-NULL init
2448 * functions.
2449 */
2450static void
2451objlist_call_init(Objlist *list, RtldLockState *lockstate)
2452{
2453    Objlist_Entry *elm;
2454    Obj_Entry *obj;
2455    char *saved_msg;
2456    Elf_Addr *init_addr;
2457    int index;
2458
2459    /*
2460     * Clean init_scanned flag so that objects can be rechecked and
2461     * possibly initialized earlier if any of vectors called below
2462     * cause the change by using dlopen.
2463     */
2464    TAILQ_FOREACH(obj, &obj_list, next) {
2465	if (obj->marker)
2466	    continue;
2467	obj->init_scanned = false;
2468    }
2469
2470    /*
2471     * Preserve the current error message since an init function might
2472     * call into the dynamic linker and overwrite it.
2473     */
2474    saved_msg = errmsg_save();
2475    STAILQ_FOREACH(elm, list, link) {
2476	if (elm->obj->init_done) /* Initialized early. */
2477	    continue;
2478	/*
2479	 * Race: other thread might try to use this object before current
2480	 * one completes the initialization. Not much can be done here
2481	 * without better locking.
2482	 */
2483	elm->obj->init_done = true;
2484	lock_release(rtld_bind_lock, lockstate);
2485
2486        /*
2487         * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2488         * When this happens, DT_INIT is processed first.
2489         */
2490	if (elm->obj->init != (Elf_Addr)NULL) {
2491	    dbg("calling init function for %s at %p", elm->obj->path,
2492	        (void *)elm->obj->init);
2493	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2494	        0, 0, elm->obj->path);
2495	    call_initfini_pointer(elm->obj, elm->obj->init);
2496	}
2497	init_addr = (Elf_Addr *)elm->obj->init_array;
2498	if (init_addr != NULL) {
2499	    for (index = 0; index < elm->obj->init_array_num; index++) {
2500		if (init_addr[index] != 0 && init_addr[index] != 1) {
2501		    dbg("calling init function for %s at %p", elm->obj->path,
2502			(void *)init_addr[index]);
2503		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2504			(void *)init_addr[index], 0, 0, elm->obj->path);
2505		    call_init_pointer(elm->obj, init_addr[index]);
2506		}
2507	    }
2508	}
2509	wlock_acquire(rtld_bind_lock, lockstate);
2510    }
2511    errmsg_restore(saved_msg);
2512}
2513
2514static void
2515objlist_clear(Objlist *list)
2516{
2517    Objlist_Entry *elm;
2518
2519    while (!STAILQ_EMPTY(list)) {
2520	elm = STAILQ_FIRST(list);
2521	STAILQ_REMOVE_HEAD(list, link);
2522	free(elm);
2523    }
2524}
2525
2526static Objlist_Entry *
2527objlist_find(Objlist *list, const Obj_Entry *obj)
2528{
2529    Objlist_Entry *elm;
2530
2531    STAILQ_FOREACH(elm, list, link)
2532	if (elm->obj == obj)
2533	    return elm;
2534    return NULL;
2535}
2536
2537static void
2538objlist_init(Objlist *list)
2539{
2540    STAILQ_INIT(list);
2541}
2542
2543static void
2544objlist_push_head(Objlist *list, Obj_Entry *obj)
2545{
2546    Objlist_Entry *elm;
2547
2548    elm = NEW(Objlist_Entry);
2549    elm->obj = obj;
2550    STAILQ_INSERT_HEAD(list, elm, link);
2551}
2552
2553static void
2554objlist_push_tail(Objlist *list, Obj_Entry *obj)
2555{
2556    Objlist_Entry *elm;
2557
2558    elm = NEW(Objlist_Entry);
2559    elm->obj = obj;
2560    STAILQ_INSERT_TAIL(list, elm, link);
2561}
2562
2563static void
2564objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2565{
2566	Objlist_Entry *elm, *listelm;
2567
2568	STAILQ_FOREACH(listelm, list, link) {
2569		if (listelm->obj == listobj)
2570			break;
2571	}
2572	elm = NEW(Objlist_Entry);
2573	elm->obj = obj;
2574	if (listelm != NULL)
2575		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2576	else
2577		STAILQ_INSERT_TAIL(list, elm, link);
2578}
2579
2580static void
2581objlist_remove(Objlist *list, Obj_Entry *obj)
2582{
2583    Objlist_Entry *elm;
2584
2585    if ((elm = objlist_find(list, obj)) != NULL) {
2586	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2587	free(elm);
2588    }
2589}
2590
2591/*
2592 * Relocate dag rooted in the specified object.
2593 * Returns 0 on success, or -1 on failure.
2594 */
2595
2596static int
2597relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2598    int flags, RtldLockState *lockstate)
2599{
2600	Objlist_Entry *elm;
2601	int error;
2602
2603	error = 0;
2604	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2605		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2606		    lockstate);
2607		if (error == -1)
2608			break;
2609	}
2610	return (error);
2611}
2612
2613/*
2614 * Prepare for, or clean after, relocating an object marked with
2615 * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2616 * segments are remapped read-write.  After relocations are done, the
2617 * segment's permissions are returned back to the modes specified in
2618 * the phdrs.  If any relocation happened, or always for wired
2619 * program, COW is triggered.
2620 */
2621static int
2622reloc_textrel_prot(Obj_Entry *obj, bool before)
2623{
2624	const Elf_Phdr *ph;
2625	void *base;
2626	size_t l, sz;
2627	int prot;
2628
2629	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2630	    l--, ph++) {
2631		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2632			continue;
2633		base = obj->relocbase + trunc_page(ph->p_vaddr);
2634		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2635		    trunc_page(ph->p_vaddr);
2636		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2637		if (mprotect(base, sz, prot) == -1) {
2638			_rtld_error("%s: Cannot write-%sable text segment: %s",
2639			    obj->path, before ? "en" : "dis",
2640			    rtld_strerror(errno));
2641			return (-1);
2642		}
2643	}
2644	return (0);
2645}
2646
2647/*
2648 * Relocate single object.
2649 * Returns 0 on success, or -1 on failure.
2650 */
2651static int
2652relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2653    int flags, RtldLockState *lockstate)
2654{
2655
2656	if (obj->relocated)
2657		return (0);
2658	obj->relocated = true;
2659	if (obj != rtldobj)
2660		dbg("relocating \"%s\"", obj->path);
2661
2662	if (obj->symtab == NULL || obj->strtab == NULL ||
2663	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2664		_rtld_error("%s: Shared object has no run-time symbol table",
2665			    obj->path);
2666		return (-1);
2667	}
2668
2669	/* There are relocations to the write-protected text segment. */
2670	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2671		return (-1);
2672
2673	/* Process the non-PLT non-IFUNC relocations. */
2674	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2675		return (-1);
2676
2677	/* Re-protected the text segment. */
2678	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2679		return (-1);
2680
2681	/* Set the special PLT or GOT entries. */
2682	init_pltgot(obj);
2683
2684	/* Process the PLT relocations. */
2685	if (reloc_plt(obj) == -1)
2686		return (-1);
2687	/* Relocate the jump slots if we are doing immediate binding. */
2688	if (obj->bind_now || bind_now)
2689		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2690			return (-1);
2691
2692	/*
2693	 * Process the non-PLT IFUNC relocations.  The relocations are
2694	 * processed in two phases, because IFUNC resolvers may
2695	 * reference other symbols, which must be readily processed
2696	 * before resolvers are called.
2697	 */
2698	if (obj->non_plt_gnu_ifunc &&
2699	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2700		return (-1);
2701
2702	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
2703		return (-1);
2704
2705	/*
2706	 * Set up the magic number and version in the Obj_Entry.  These
2707	 * were checked in the crt1.o from the original ElfKit, so we
2708	 * set them for backward compatibility.
2709	 */
2710	obj->magic = RTLD_MAGIC;
2711	obj->version = RTLD_VERSION;
2712
2713	return (0);
2714}
2715
2716/*
2717 * Relocate newly-loaded shared objects.  The argument is a pointer to
2718 * the Obj_Entry for the first such object.  All objects from the first
2719 * to the end of the list of objects are relocated.  Returns 0 on success,
2720 * or -1 on failure.
2721 */
2722static int
2723relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2724    int flags, RtldLockState *lockstate)
2725{
2726	Obj_Entry *obj;
2727	int error;
2728
2729	for (error = 0, obj = first;  obj != NULL;
2730	    obj = TAILQ_NEXT(obj, next)) {
2731		if (obj->marker)
2732			continue;
2733		error = relocate_object(obj, bind_now, rtldobj, flags,
2734		    lockstate);
2735		if (error == -1)
2736			break;
2737	}
2738	return (error);
2739}
2740
2741/*
2742 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2743 * referencing STT_GNU_IFUNC symbols is postponed till the other
2744 * relocations are done.  The indirect functions specified as
2745 * ifunc are allowed to call other symbols, so we need to have
2746 * objects relocated before asking for resolution from indirects.
2747 *
2748 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2749 * instead of the usual lazy handling of PLT slots.  It is
2750 * consistent with how GNU does it.
2751 */
2752static int
2753resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2754    RtldLockState *lockstate)
2755{
2756	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2757		return (-1);
2758	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2759	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2760		return (-1);
2761	return (0);
2762}
2763
2764static int
2765resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2766    RtldLockState *lockstate)
2767{
2768	Obj_Entry *obj;
2769
2770	for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2771		if (obj->marker)
2772			continue;
2773		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2774			return (-1);
2775	}
2776	return (0);
2777}
2778
2779static int
2780initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2781    RtldLockState *lockstate)
2782{
2783	Objlist_Entry *elm;
2784
2785	STAILQ_FOREACH(elm, list, link) {
2786		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2787		    lockstate) == -1)
2788			return (-1);
2789	}
2790	return (0);
2791}
2792
2793/*
2794 * Cleanup procedure.  It will be called (by the atexit mechanism) just
2795 * before the process exits.
2796 */
2797static void
2798rtld_exit(void)
2799{
2800    RtldLockState lockstate;
2801
2802    wlock_acquire(rtld_bind_lock, &lockstate);
2803    dbg("rtld_exit()");
2804    objlist_call_fini(&list_fini, NULL, &lockstate);
2805    /* No need to remove the items from the list, since we are exiting. */
2806    if (!libmap_disable)
2807        lm_fini();
2808    lock_release(rtld_bind_lock, &lockstate);
2809}
2810
2811/*
2812 * Iterate over a search path, translate each element, and invoke the
2813 * callback on the result.
2814 */
2815static void *
2816path_enumerate(const char *path, path_enum_proc callback, void *arg)
2817{
2818    const char *trans;
2819    if (path == NULL)
2820	return (NULL);
2821
2822    path += strspn(path, ":;");
2823    while (*path != '\0') {
2824	size_t len;
2825	char  *res;
2826
2827	len = strcspn(path, ":;");
2828	trans = lm_findn(NULL, path, len);
2829	if (trans)
2830	    res = callback(trans, strlen(trans), arg);
2831	else
2832	    res = callback(path, len, arg);
2833
2834	if (res != NULL)
2835	    return (res);
2836
2837	path += len;
2838	path += strspn(path, ":;");
2839    }
2840
2841    return (NULL);
2842}
2843
2844struct try_library_args {
2845    const char	*name;
2846    size_t	 namelen;
2847    char	*buffer;
2848    size_t	 buflen;
2849};
2850
2851static void *
2852try_library_path(const char *dir, size_t dirlen, void *param)
2853{
2854    struct try_library_args *arg;
2855
2856    arg = param;
2857    if (*dir == '/' || trust) {
2858	char *pathname;
2859
2860	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2861		return (NULL);
2862
2863	pathname = arg->buffer;
2864	strncpy(pathname, dir, dirlen);
2865	pathname[dirlen] = '/';
2866	strcpy(pathname + dirlen + 1, arg->name);
2867
2868	dbg("  Trying \"%s\"", pathname);
2869	if (access(pathname, F_OK) == 0) {		/* We found it */
2870	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2871	    strcpy(pathname, arg->buffer);
2872	    return (pathname);
2873	}
2874    }
2875    return (NULL);
2876}
2877
2878static char *
2879search_library_path(const char *name, const char *path)
2880{
2881    char *p;
2882    struct try_library_args arg;
2883
2884    if (path == NULL)
2885	return NULL;
2886
2887    arg.name = name;
2888    arg.namelen = strlen(name);
2889    arg.buffer = xmalloc(PATH_MAX);
2890    arg.buflen = PATH_MAX;
2891
2892    p = path_enumerate(path, try_library_path, &arg);
2893
2894    free(arg.buffer);
2895
2896    return (p);
2897}
2898
2899int
2900dlclose(void *handle)
2901{
2902    Obj_Entry *root;
2903    RtldLockState lockstate;
2904
2905    wlock_acquire(rtld_bind_lock, &lockstate);
2906    root = dlcheck(handle);
2907    if (root == NULL) {
2908	lock_release(rtld_bind_lock, &lockstate);
2909	return -1;
2910    }
2911    LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2912	root->path);
2913
2914    /* Unreference the object and its dependencies. */
2915    root->dl_refcount--;
2916
2917    if (root->refcount == 1) {
2918	/*
2919	 * The object will be no longer referenced, so we must unload it.
2920	 * First, call the fini functions.
2921	 */
2922	objlist_call_fini(&list_fini, root, &lockstate);
2923
2924	unref_dag(root);
2925
2926	/* Finish cleaning up the newly-unreferenced objects. */
2927	GDB_STATE(RT_DELETE,&root->linkmap);
2928	unload_object(root);
2929	GDB_STATE(RT_CONSISTENT,NULL);
2930    } else
2931	unref_dag(root);
2932
2933    LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2934    lock_release(rtld_bind_lock, &lockstate);
2935    return 0;
2936}
2937
2938char *
2939dlerror(void)
2940{
2941    char *msg = error_message;
2942    error_message = NULL;
2943    return msg;
2944}
2945
2946/*
2947 * This function is deprecated and has no effect.
2948 */
2949void
2950dllockinit(void *context,
2951	   void *(*lock_create)(void *context),
2952           void (*rlock_acquire)(void *lock),
2953           void (*wlock_acquire)(void *lock),
2954           void (*lock_release)(void *lock),
2955           void (*lock_destroy)(void *lock),
2956	   void (*context_destroy)(void *context))
2957{
2958    static void *cur_context;
2959    static void (*cur_context_destroy)(void *);
2960
2961    /* Just destroy the context from the previous call, if necessary. */
2962    if (cur_context_destroy != NULL)
2963	cur_context_destroy(cur_context);
2964    cur_context = context;
2965    cur_context_destroy = context_destroy;
2966}
2967
2968void *
2969dlopen(const char *name, int mode)
2970{
2971
2972	return (rtld_dlopen(name, -1, mode));
2973}
2974
2975void *
2976fdlopen(int fd, int mode)
2977{
2978
2979	return (rtld_dlopen(NULL, fd, mode));
2980}
2981
2982static void *
2983rtld_dlopen(const char *name, int fd, int mode)
2984{
2985    RtldLockState lockstate;
2986    int lo_flags;
2987
2988    LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2989    ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2990    if (ld_tracing != NULL) {
2991	rlock_acquire(rtld_bind_lock, &lockstate);
2992	if (sigsetjmp(lockstate.env, 0) != 0)
2993	    lock_upgrade(rtld_bind_lock, &lockstate);
2994	environ = (char **)*get_program_var_addr("environ", &lockstate);
2995	lock_release(rtld_bind_lock, &lockstate);
2996    }
2997    lo_flags = RTLD_LO_DLOPEN;
2998    if (mode & RTLD_NODELETE)
2999	    lo_flags |= RTLD_LO_NODELETE;
3000    if (mode & RTLD_NOLOAD)
3001	    lo_flags |= RTLD_LO_NOLOAD;
3002    if (ld_tracing != NULL)
3003	    lo_flags |= RTLD_LO_TRACE;
3004
3005    return (dlopen_object(name, fd, obj_main, lo_flags,
3006      mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3007}
3008
3009static void
3010dlopen_cleanup(Obj_Entry *obj)
3011{
3012
3013	obj->dl_refcount--;
3014	unref_dag(obj);
3015	if (obj->refcount == 0)
3016		unload_object(obj);
3017}
3018
3019static Obj_Entry *
3020dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3021    int mode, RtldLockState *lockstate)
3022{
3023    Obj_Entry *old_obj_tail;
3024    Obj_Entry *obj;
3025    Objlist initlist;
3026    RtldLockState mlockstate;
3027    int result;
3028
3029    objlist_init(&initlist);
3030
3031    if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3032	wlock_acquire(rtld_bind_lock, &mlockstate);
3033	lockstate = &mlockstate;
3034    }
3035    GDB_STATE(RT_ADD,NULL);
3036
3037    old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3038    obj = NULL;
3039    if (name == NULL && fd == -1) {
3040	obj = obj_main;
3041	obj->refcount++;
3042    } else {
3043	obj = load_object(name, fd, refobj, lo_flags);
3044    }
3045
3046    if (obj) {
3047	obj->dl_refcount++;
3048	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3049	    objlist_push_tail(&list_global, obj);
3050	if (globallist_next(old_obj_tail) != NULL) {
3051	    /* We loaded something new. */
3052	    assert(globallist_next(old_obj_tail) == obj);
3053	    result = load_needed_objects(obj,
3054		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3055	    init_dag(obj);
3056	    ref_dag(obj);
3057	    if (result != -1)
3058		result = rtld_verify_versions(&obj->dagmembers);
3059	    if (result != -1 && ld_tracing)
3060		goto trace;
3061	    if (result == -1 || relocate_object_dag(obj,
3062	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3063	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3064	      lockstate) == -1) {
3065		dlopen_cleanup(obj);
3066		obj = NULL;
3067	    } else if (lo_flags & RTLD_LO_EARLY) {
3068		/*
3069		 * Do not call the init functions for early loaded
3070		 * filtees.  The image is still not initialized enough
3071		 * for them to work.
3072		 *
3073		 * Our object is found by the global object list and
3074		 * will be ordered among all init calls done right
3075		 * before transferring control to main.
3076		 */
3077	    } else {
3078		/* Make list of init functions to call. */
3079		initlist_add_objects(obj, obj, &initlist);
3080	    }
3081	    /*
3082	     * Process all no_delete or global objects here, given
3083	     * them own DAGs to prevent their dependencies from being
3084	     * unloaded.  This has to be done after we have loaded all
3085	     * of the dependencies, so that we do not miss any.
3086	     */
3087	    if (obj != NULL)
3088		process_z(obj);
3089	} else {
3090	    /*
3091	     * Bump the reference counts for objects on this DAG.  If
3092	     * this is the first dlopen() call for the object that was
3093	     * already loaded as a dependency, initialize the dag
3094	     * starting at it.
3095	     */
3096	    init_dag(obj);
3097	    ref_dag(obj);
3098
3099	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3100		goto trace;
3101	}
3102	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3103	  obj->z_nodelete) && !obj->ref_nodel) {
3104	    dbg("obj %s nodelete", obj->path);
3105	    ref_dag(obj);
3106	    obj->z_nodelete = obj->ref_nodel = true;
3107	}
3108    }
3109
3110    LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3111	name);
3112    GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3113
3114    if (!(lo_flags & RTLD_LO_EARLY)) {
3115	map_stacks_exec(lockstate);
3116    }
3117
3118    if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3119      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3120      lockstate) == -1) {
3121	objlist_clear(&initlist);
3122	dlopen_cleanup(obj);
3123	if (lockstate == &mlockstate)
3124	    lock_release(rtld_bind_lock, lockstate);
3125	return (NULL);
3126    }
3127
3128    if (!(lo_flags & RTLD_LO_EARLY)) {
3129	/* Call the init functions. */
3130	objlist_call_init(&initlist, lockstate);
3131    }
3132    objlist_clear(&initlist);
3133    if (lockstate == &mlockstate)
3134	lock_release(rtld_bind_lock, lockstate);
3135    return obj;
3136trace:
3137    trace_loaded_objects(obj);
3138    if (lockstate == &mlockstate)
3139	lock_release(rtld_bind_lock, lockstate);
3140    exit(0);
3141}
3142
3143static void *
3144do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3145    int flags)
3146{
3147    DoneList donelist;
3148    const Obj_Entry *obj, *defobj;
3149    const Elf_Sym *def;
3150    SymLook req;
3151    RtldLockState lockstate;
3152#ifndef __ia64__
3153    tls_index ti;
3154#endif
3155    void *sym;
3156    int res;
3157
3158    def = NULL;
3159    defobj = NULL;
3160    symlook_init(&req, name);
3161    req.ventry = ve;
3162    req.flags = flags | SYMLOOK_IN_PLT;
3163    req.lockstate = &lockstate;
3164
3165    LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3166    rlock_acquire(rtld_bind_lock, &lockstate);
3167    if (sigsetjmp(lockstate.env, 0) != 0)
3168	    lock_upgrade(rtld_bind_lock, &lockstate);
3169    if (handle == NULL || handle == RTLD_NEXT ||
3170	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3171
3172	if ((obj = obj_from_addr(retaddr)) == NULL) {
3173	    _rtld_error("Cannot determine caller's shared object");
3174	    lock_release(rtld_bind_lock, &lockstate);
3175	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3176	    return NULL;
3177	}
3178	if (handle == NULL) {	/* Just the caller's shared object. */
3179	    res = symlook_obj(&req, obj);
3180	    if (res == 0) {
3181		def = req.sym_out;
3182		defobj = req.defobj_out;
3183	    }
3184	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3185		   handle == RTLD_SELF) { /* ... caller included */
3186	    if (handle == RTLD_NEXT)
3187		obj = globallist_next(obj);
3188	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3189		if (obj->marker)
3190		    continue;
3191		res = symlook_obj(&req, obj);
3192		if (res == 0) {
3193		    if (def == NULL ||
3194		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3195			def = req.sym_out;
3196			defobj = req.defobj_out;
3197			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3198			    break;
3199		    }
3200		}
3201	    }
3202	    /*
3203	     * Search the dynamic linker itself, and possibly resolve the
3204	     * symbol from there.  This is how the application links to
3205	     * dynamic linker services such as dlopen.
3206	     */
3207	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3208		res = symlook_obj(&req, &obj_rtld);
3209		if (res == 0) {
3210		    def = req.sym_out;
3211		    defobj = req.defobj_out;
3212		}
3213	    }
3214	} else {
3215	    assert(handle == RTLD_DEFAULT);
3216	    res = symlook_default(&req, obj);
3217	    if (res == 0) {
3218		defobj = req.defobj_out;
3219		def = req.sym_out;
3220	    }
3221	}
3222    } else {
3223	if ((obj = dlcheck(handle)) == NULL) {
3224	    lock_release(rtld_bind_lock, &lockstate);
3225	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3226	    return NULL;
3227	}
3228
3229	donelist_init(&donelist);
3230	if (obj->mainprog) {
3231            /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3232	    res = symlook_global(&req, &donelist);
3233	    if (res == 0) {
3234		def = req.sym_out;
3235		defobj = req.defobj_out;
3236	    }
3237	    /*
3238	     * Search the dynamic linker itself, and possibly resolve the
3239	     * symbol from there.  This is how the application links to
3240	     * dynamic linker services such as dlopen.
3241	     */
3242	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3243		res = symlook_obj(&req, &obj_rtld);
3244		if (res == 0) {
3245		    def = req.sym_out;
3246		    defobj = req.defobj_out;
3247		}
3248	    }
3249	}
3250	else {
3251	    /* Search the whole DAG rooted at the given object. */
3252	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3253	    if (res == 0) {
3254		def = req.sym_out;
3255		defobj = req.defobj_out;
3256	    }
3257	}
3258    }
3259
3260    if (def != NULL) {
3261	lock_release(rtld_bind_lock, &lockstate);
3262
3263	/*
3264	 * The value required by the caller is derived from the value
3265	 * of the symbol. For the ia64 architecture, we need to
3266	 * construct a function descriptor which the caller can use to
3267	 * call the function with the right 'gp' value. For other
3268	 * architectures and for non-functions, the value is simply
3269	 * the relocated value of the symbol.
3270	 */
3271	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3272	    sym = make_function_pointer(def, defobj);
3273	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3274	    sym = rtld_resolve_ifunc(defobj, def);
3275	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3276#ifdef __ia64__
3277	    return (__tls_get_addr(defobj->tlsindex, def->st_value));
3278#else
3279	    ti.ti_module = defobj->tlsindex;
3280	    ti.ti_offset = def->st_value;
3281	    sym = __tls_get_addr(&ti);
3282#endif
3283	} else
3284	    sym = defobj->relocbase + def->st_value;
3285	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3286	return (sym);
3287    }
3288
3289    _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3290      ve != NULL ? ve->name : "");
3291    lock_release(rtld_bind_lock, &lockstate);
3292    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3293    return NULL;
3294}
3295
3296void *
3297dlsym(void *handle, const char *name)
3298{
3299	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3300	    SYMLOOK_DLSYM);
3301}
3302
3303dlfunc_t
3304dlfunc(void *handle, const char *name)
3305{
3306	union {
3307		void *d;
3308		dlfunc_t f;
3309	} rv;
3310
3311	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3312	    SYMLOOK_DLSYM);
3313	return (rv.f);
3314}
3315
3316void *
3317dlvsym(void *handle, const char *name, const char *version)
3318{
3319	Ver_Entry ventry;
3320
3321	ventry.name = version;
3322	ventry.file = NULL;
3323	ventry.hash = elf_hash(version);
3324	ventry.flags= 0;
3325	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3326	    SYMLOOK_DLSYM);
3327}
3328
3329int
3330_rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3331{
3332    const Obj_Entry *obj;
3333    RtldLockState lockstate;
3334
3335    rlock_acquire(rtld_bind_lock, &lockstate);
3336    obj = obj_from_addr(addr);
3337    if (obj == NULL) {
3338        _rtld_error("No shared object contains address");
3339	lock_release(rtld_bind_lock, &lockstate);
3340        return (0);
3341    }
3342    rtld_fill_dl_phdr_info(obj, phdr_info);
3343    lock_release(rtld_bind_lock, &lockstate);
3344    return (1);
3345}
3346
3347int
3348dladdr(const void *addr, Dl_info *info)
3349{
3350    const Obj_Entry *obj;
3351    const Elf_Sym *def;
3352    void *symbol_addr;
3353    unsigned long symoffset;
3354    RtldLockState lockstate;
3355
3356    rlock_acquire(rtld_bind_lock, &lockstate);
3357    obj = obj_from_addr(addr);
3358    if (obj == NULL) {
3359        _rtld_error("No shared object contains address");
3360	lock_release(rtld_bind_lock, &lockstate);
3361        return 0;
3362    }
3363    info->dli_fname = obj->path;
3364    info->dli_fbase = obj->mapbase;
3365    info->dli_saddr = (void *)0;
3366    info->dli_sname = NULL;
3367
3368    /*
3369     * Walk the symbol list looking for the symbol whose address is
3370     * closest to the address sent in.
3371     */
3372    for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3373        def = obj->symtab + symoffset;
3374
3375        /*
3376         * For skip the symbol if st_shndx is either SHN_UNDEF or
3377         * SHN_COMMON.
3378         */
3379        if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3380            continue;
3381
3382        /*
3383         * If the symbol is greater than the specified address, or if it
3384         * is further away from addr than the current nearest symbol,
3385         * then reject it.
3386         */
3387        symbol_addr = obj->relocbase + def->st_value;
3388        if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3389            continue;
3390
3391        /* Update our idea of the nearest symbol. */
3392        info->dli_sname = obj->strtab + def->st_name;
3393        info->dli_saddr = symbol_addr;
3394
3395        /* Exact match? */
3396        if (info->dli_saddr == addr)
3397            break;
3398    }
3399    lock_release(rtld_bind_lock, &lockstate);
3400    return 1;
3401}
3402
3403int
3404dlinfo(void *handle, int request, void *p)
3405{
3406    const Obj_Entry *obj;
3407    RtldLockState lockstate;
3408    int error;
3409
3410    rlock_acquire(rtld_bind_lock, &lockstate);
3411
3412    if (handle == NULL || handle == RTLD_SELF) {
3413	void *retaddr;
3414
3415	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3416	if ((obj = obj_from_addr(retaddr)) == NULL)
3417	    _rtld_error("Cannot determine caller's shared object");
3418    } else
3419	obj = dlcheck(handle);
3420
3421    if (obj == NULL) {
3422	lock_release(rtld_bind_lock, &lockstate);
3423	return (-1);
3424    }
3425
3426    error = 0;
3427    switch (request) {
3428    case RTLD_DI_LINKMAP:
3429	*((struct link_map const **)p) = &obj->linkmap;
3430	break;
3431    case RTLD_DI_ORIGIN:
3432	error = rtld_dirname(obj->path, p);
3433	break;
3434
3435    case RTLD_DI_SERINFOSIZE:
3436    case RTLD_DI_SERINFO:
3437	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3438	break;
3439
3440    default:
3441	_rtld_error("Invalid request %d passed to dlinfo()", request);
3442	error = -1;
3443    }
3444
3445    lock_release(rtld_bind_lock, &lockstate);
3446
3447    return (error);
3448}
3449
3450static void
3451rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3452{
3453
3454	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3455	phdr_info->dlpi_name = obj->path;
3456	phdr_info->dlpi_phdr = obj->phdr;
3457	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3458	phdr_info->dlpi_tls_modid = obj->tlsindex;
3459	phdr_info->dlpi_tls_data = obj->tlsinit;
3460	phdr_info->dlpi_adds = obj_loads;
3461	phdr_info->dlpi_subs = obj_loads - obj_count;
3462}
3463
3464int
3465dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3466{
3467	struct dl_phdr_info phdr_info;
3468	Obj_Entry *obj, marker;
3469	RtldLockState bind_lockstate, phdr_lockstate;
3470	int error;
3471
3472	bzero(&marker, sizeof(marker));
3473	marker.marker = true;
3474	error = 0;
3475
3476	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3477	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3478	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3479		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3480		rtld_fill_dl_phdr_info(obj, &phdr_info);
3481		lock_release(rtld_bind_lock, &bind_lockstate);
3482
3483		error = callback(&phdr_info, sizeof phdr_info, param);
3484
3485		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3486		obj = globallist_next(&marker);
3487		TAILQ_REMOVE(&obj_list, &marker, next);
3488		if (error != 0) {
3489			lock_release(rtld_bind_lock, &bind_lockstate);
3490			lock_release(rtld_phdr_lock, &phdr_lockstate);
3491			return (error);
3492		}
3493	}
3494
3495	if (error == 0) {
3496		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3497		lock_release(rtld_bind_lock, &bind_lockstate);
3498		error = callback(&phdr_info, sizeof(phdr_info), param);
3499	}
3500	lock_release(rtld_phdr_lock, &phdr_lockstate);
3501	return (error);
3502}
3503
3504static void *
3505fill_search_info(const char *dir, size_t dirlen, void *param)
3506{
3507    struct fill_search_info_args *arg;
3508
3509    arg = param;
3510
3511    if (arg->request == RTLD_DI_SERINFOSIZE) {
3512	arg->serinfo->dls_cnt ++;
3513	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3514    } else {
3515	struct dl_serpath *s_entry;
3516
3517	s_entry = arg->serpath;
3518	s_entry->dls_name  = arg->strspace;
3519	s_entry->dls_flags = arg->flags;
3520
3521	strncpy(arg->strspace, dir, dirlen);
3522	arg->strspace[dirlen] = '\0';
3523
3524	arg->strspace += dirlen + 1;
3525	arg->serpath++;
3526    }
3527
3528    return (NULL);
3529}
3530
3531static int
3532do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3533{
3534    struct dl_serinfo _info;
3535    struct fill_search_info_args args;
3536
3537    args.request = RTLD_DI_SERINFOSIZE;
3538    args.serinfo = &_info;
3539
3540    _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3541    _info.dls_cnt  = 0;
3542
3543    path_enumerate(obj->rpath, fill_search_info, &args);
3544    path_enumerate(ld_library_path, fill_search_info, &args);
3545    path_enumerate(obj->runpath, fill_search_info, &args);
3546    path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3547    if (!obj->z_nodeflib)
3548      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3549
3550
3551    if (request == RTLD_DI_SERINFOSIZE) {
3552	info->dls_size = _info.dls_size;
3553	info->dls_cnt = _info.dls_cnt;
3554	return (0);
3555    }
3556
3557    if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3558	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3559	return (-1);
3560    }
3561
3562    args.request  = RTLD_DI_SERINFO;
3563    args.serinfo  = info;
3564    args.serpath  = &info->dls_serpath[0];
3565    args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3566
3567    args.flags = LA_SER_RUNPATH;
3568    if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3569	return (-1);
3570
3571    args.flags = LA_SER_LIBPATH;
3572    if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3573	return (-1);
3574
3575    args.flags = LA_SER_RUNPATH;
3576    if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3577	return (-1);
3578
3579    args.flags = LA_SER_CONFIG;
3580    if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3581      != NULL)
3582	return (-1);
3583
3584    args.flags = LA_SER_DEFAULT;
3585    if (!obj->z_nodeflib &&
3586      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3587	return (-1);
3588    return (0);
3589}
3590
3591static int
3592rtld_dirname(const char *path, char *bname)
3593{
3594    const char *endp;
3595
3596    /* Empty or NULL string gets treated as "." */
3597    if (path == NULL || *path == '\0') {
3598	bname[0] = '.';
3599	bname[1] = '\0';
3600	return (0);
3601    }
3602
3603    /* Strip trailing slashes */
3604    endp = path + strlen(path) - 1;
3605    while (endp > path && *endp == '/')
3606	endp--;
3607
3608    /* Find the start of the dir */
3609    while (endp > path && *endp != '/')
3610	endp--;
3611
3612    /* Either the dir is "/" or there are no slashes */
3613    if (endp == path) {
3614	bname[0] = *endp == '/' ? '/' : '.';
3615	bname[1] = '\0';
3616	return (0);
3617    } else {
3618	do {
3619	    endp--;
3620	} while (endp > path && *endp == '/');
3621    }
3622
3623    if (endp - path + 2 > PATH_MAX)
3624    {
3625	_rtld_error("Filename is too long: %s", path);
3626	return(-1);
3627    }
3628
3629    strncpy(bname, path, endp - path + 1);
3630    bname[endp - path + 1] = '\0';
3631    return (0);
3632}
3633
3634static int
3635rtld_dirname_abs(const char *path, char *base)
3636{
3637	char *last;
3638
3639	if (realpath(path, base) == NULL)
3640		return (-1);
3641	dbg("%s -> %s", path, base);
3642	last = strrchr(base, '/');
3643	if (last == NULL)
3644		return (-1);
3645	if (last != base)
3646		*last = '\0';
3647	return (0);
3648}
3649
3650static void
3651linkmap_add(Obj_Entry *obj)
3652{
3653    struct link_map *l = &obj->linkmap;
3654    struct link_map *prev;
3655
3656    obj->linkmap.l_name = obj->path;
3657    obj->linkmap.l_addr = obj->mapbase;
3658    obj->linkmap.l_ld = obj->dynamic;
3659#ifdef __mips__
3660    /* GDB needs load offset on MIPS to use the symbols */
3661    obj->linkmap.l_offs = obj->relocbase;
3662#endif
3663
3664    if (r_debug.r_map == NULL) {
3665	r_debug.r_map = l;
3666	return;
3667    }
3668
3669    /*
3670     * Scan to the end of the list, but not past the entry for the
3671     * dynamic linker, which we want to keep at the very end.
3672     */
3673    for (prev = r_debug.r_map;
3674      prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3675      prev = prev->l_next)
3676	;
3677
3678    /* Link in the new entry. */
3679    l->l_prev = prev;
3680    l->l_next = prev->l_next;
3681    if (l->l_next != NULL)
3682	l->l_next->l_prev = l;
3683    prev->l_next = l;
3684}
3685
3686static void
3687linkmap_delete(Obj_Entry *obj)
3688{
3689    struct link_map *l = &obj->linkmap;
3690
3691    if (l->l_prev == NULL) {
3692	if ((r_debug.r_map = l->l_next) != NULL)
3693	    l->l_next->l_prev = NULL;
3694	return;
3695    }
3696
3697    if ((l->l_prev->l_next = l->l_next) != NULL)
3698	l->l_next->l_prev = l->l_prev;
3699}
3700
3701/*
3702 * Function for the debugger to set a breakpoint on to gain control.
3703 *
3704 * The two parameters allow the debugger to easily find and determine
3705 * what the runtime loader is doing and to whom it is doing it.
3706 *
3707 * When the loadhook trap is hit (r_debug_state, set at program
3708 * initialization), the arguments can be found on the stack:
3709 *
3710 *  +8   struct link_map *m
3711 *  +4   struct r_debug  *rd
3712 *  +0   RetAddr
3713 */
3714void
3715r_debug_state(struct r_debug* rd, struct link_map *m)
3716{
3717    /*
3718     * The following is a hack to force the compiler to emit calls to
3719     * this function, even when optimizing.  If the function is empty,
3720     * the compiler is not obliged to emit any code for calls to it,
3721     * even when marked __noinline.  However, gdb depends on those
3722     * calls being made.
3723     */
3724    __compiler_membar();
3725}
3726
3727/*
3728 * A function called after init routines have completed. This can be used to
3729 * break before a program's entry routine is called, and can be used when
3730 * main is not available in the symbol table.
3731 */
3732void
3733_r_debug_postinit(struct link_map *m)
3734{
3735
3736	/* See r_debug_state(). */
3737	__compiler_membar();
3738}
3739
3740/*
3741 * Get address of the pointer variable in the main program.
3742 * Prefer non-weak symbol over the weak one.
3743 */
3744static const void **
3745get_program_var_addr(const char *name, RtldLockState *lockstate)
3746{
3747    SymLook req;
3748    DoneList donelist;
3749
3750    symlook_init(&req, name);
3751    req.lockstate = lockstate;
3752    donelist_init(&donelist);
3753    if (symlook_global(&req, &donelist) != 0)
3754	return (NULL);
3755    if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3756	return ((const void **)make_function_pointer(req.sym_out,
3757	  req.defobj_out));
3758    else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3759	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3760    else
3761	return ((const void **)(req.defobj_out->relocbase +
3762	  req.sym_out->st_value));
3763}
3764
3765/*
3766 * Set a pointer variable in the main program to the given value.  This
3767 * is used to set key variables such as "environ" before any of the
3768 * init functions are called.
3769 */
3770static void
3771set_program_var(const char *name, const void *value)
3772{
3773    const void **addr;
3774
3775    if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3776	dbg("\"%s\": *%p <-- %p", name, addr, value);
3777	*addr = value;
3778    }
3779}
3780
3781/*
3782 * Search the global objects, including dependencies and main object,
3783 * for the given symbol.
3784 */
3785static int
3786symlook_global(SymLook *req, DoneList *donelist)
3787{
3788    SymLook req1;
3789    const Objlist_Entry *elm;
3790    int res;
3791
3792    symlook_init_from_req(&req1, req);
3793
3794    /* Search all objects loaded at program start up. */
3795    if (req->defobj_out == NULL ||
3796      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3797	res = symlook_list(&req1, &list_main, donelist);
3798	if (res == 0 && (req->defobj_out == NULL ||
3799	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3800	    req->sym_out = req1.sym_out;
3801	    req->defobj_out = req1.defobj_out;
3802	    assert(req->defobj_out != NULL);
3803	}
3804    }
3805
3806    /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3807    STAILQ_FOREACH(elm, &list_global, link) {
3808	if (req->defobj_out != NULL &&
3809	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3810	    break;
3811	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3812	if (res == 0 && (req->defobj_out == NULL ||
3813	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3814	    req->sym_out = req1.sym_out;
3815	    req->defobj_out = req1.defobj_out;
3816	    assert(req->defobj_out != NULL);
3817	}
3818    }
3819
3820    return (req->sym_out != NULL ? 0 : ESRCH);
3821}
3822
3823/*
3824 * Given a symbol name in a referencing object, find the corresponding
3825 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3826 * no definition was found.  Returns a pointer to the Obj_Entry of the
3827 * defining object via the reference parameter DEFOBJ_OUT.
3828 */
3829static int
3830symlook_default(SymLook *req, const Obj_Entry *refobj)
3831{
3832    DoneList donelist;
3833    const Objlist_Entry *elm;
3834    SymLook req1;
3835    int res;
3836
3837    donelist_init(&donelist);
3838    symlook_init_from_req(&req1, req);
3839
3840    /*
3841     * Look first in the referencing object if linked symbolically,
3842     * and similarly handle protected symbols.
3843     */
3844    res = symlook_obj(&req1, refobj);
3845    if (res == 0 && (refobj->symbolic ||
3846      ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
3847	req->sym_out = req1.sym_out;
3848	req->defobj_out = req1.defobj_out;
3849	assert(req->defobj_out != NULL);
3850    }
3851    if (refobj->symbolic || req->defobj_out != NULL)
3852	donelist_check(&donelist, refobj);
3853
3854    symlook_global(req, &donelist);
3855
3856    /* Search all dlopened DAGs containing the referencing object. */
3857    STAILQ_FOREACH(elm, &refobj->dldags, link) {
3858	if (req->sym_out != NULL &&
3859	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3860	    break;
3861	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3862	if (res == 0 && (req->sym_out == NULL ||
3863	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3864	    req->sym_out = req1.sym_out;
3865	    req->defobj_out = req1.defobj_out;
3866	    assert(req->defobj_out != NULL);
3867	}
3868    }
3869
3870    /*
3871     * Search the dynamic linker itself, and possibly resolve the
3872     * symbol from there.  This is how the application links to
3873     * dynamic linker services such as dlopen.
3874     */
3875    if (req->sym_out == NULL ||
3876      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3877	res = symlook_obj(&req1, &obj_rtld);
3878	if (res == 0) {
3879	    req->sym_out = req1.sym_out;
3880	    req->defobj_out = req1.defobj_out;
3881	    assert(req->defobj_out != NULL);
3882	}
3883    }
3884
3885    return (req->sym_out != NULL ? 0 : ESRCH);
3886}
3887
3888static int
3889symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3890{
3891    const Elf_Sym *def;
3892    const Obj_Entry *defobj;
3893    const Objlist_Entry *elm;
3894    SymLook req1;
3895    int res;
3896
3897    def = NULL;
3898    defobj = NULL;
3899    STAILQ_FOREACH(elm, objlist, link) {
3900	if (donelist_check(dlp, elm->obj))
3901	    continue;
3902	symlook_init_from_req(&req1, req);
3903	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3904	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3905		def = req1.sym_out;
3906		defobj = req1.defobj_out;
3907		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3908		    break;
3909	    }
3910	}
3911    }
3912    if (def != NULL) {
3913	req->sym_out = def;
3914	req->defobj_out = defobj;
3915	return (0);
3916    }
3917    return (ESRCH);
3918}
3919
3920/*
3921 * Search the chain of DAGS cointed to by the given Needed_Entry
3922 * for a symbol of the given name.  Each DAG is scanned completely
3923 * before advancing to the next one.  Returns a pointer to the symbol,
3924 * or NULL if no definition was found.
3925 */
3926static int
3927symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3928{
3929    const Elf_Sym *def;
3930    const Needed_Entry *n;
3931    const Obj_Entry *defobj;
3932    SymLook req1;
3933    int res;
3934
3935    def = NULL;
3936    defobj = NULL;
3937    symlook_init_from_req(&req1, req);
3938    for (n = needed; n != NULL; n = n->next) {
3939	if (n->obj == NULL ||
3940	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3941	    continue;
3942	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3943	    def = req1.sym_out;
3944	    defobj = req1.defobj_out;
3945	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3946		break;
3947	}
3948    }
3949    if (def != NULL) {
3950	req->sym_out = def;
3951	req->defobj_out = defobj;
3952	return (0);
3953    }
3954    return (ESRCH);
3955}
3956
3957/*
3958 * Search the symbol table of a single shared object for a symbol of
3959 * the given name and version, if requested.  Returns a pointer to the
3960 * symbol, or NULL if no definition was found.  If the object is
3961 * filter, return filtered symbol from filtee.
3962 *
3963 * The symbol's hash value is passed in for efficiency reasons; that
3964 * eliminates many recomputations of the hash value.
3965 */
3966int
3967symlook_obj(SymLook *req, const Obj_Entry *obj)
3968{
3969    DoneList donelist;
3970    SymLook req1;
3971    int flags, res, mres;
3972
3973    /*
3974     * If there is at least one valid hash at this point, we prefer to
3975     * use the faster GNU version if available.
3976     */
3977    if (obj->valid_hash_gnu)
3978	mres = symlook_obj1_gnu(req, obj);
3979    else if (obj->valid_hash_sysv)
3980	mres = symlook_obj1_sysv(req, obj);
3981    else
3982	return (EINVAL);
3983
3984    if (mres == 0) {
3985	if (obj->needed_filtees != NULL) {
3986	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3987	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3988	    donelist_init(&donelist);
3989	    symlook_init_from_req(&req1, req);
3990	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3991	    if (res == 0) {
3992		req->sym_out = req1.sym_out;
3993		req->defobj_out = req1.defobj_out;
3994	    }
3995	    return (res);
3996	}
3997	if (obj->needed_aux_filtees != NULL) {
3998	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3999	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4000	    donelist_init(&donelist);
4001	    symlook_init_from_req(&req1, req);
4002	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4003	    if (res == 0) {
4004		req->sym_out = req1.sym_out;
4005		req->defobj_out = req1.defobj_out;
4006		return (res);
4007	    }
4008	}
4009    }
4010    return (mres);
4011}
4012
4013/* Symbol match routine common to both hash functions */
4014static bool
4015matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4016    const unsigned long symnum)
4017{
4018	Elf_Versym verndx;
4019	const Elf_Sym *symp;
4020	const char *strp;
4021
4022	symp = obj->symtab + symnum;
4023	strp = obj->strtab + symp->st_name;
4024
4025	switch (ELF_ST_TYPE(symp->st_info)) {
4026	case STT_FUNC:
4027	case STT_NOTYPE:
4028	case STT_OBJECT:
4029	case STT_COMMON:
4030	case STT_GNU_IFUNC:
4031		if (symp->st_value == 0)
4032			return (false);
4033		/* fallthrough */
4034	case STT_TLS:
4035		if (symp->st_shndx != SHN_UNDEF)
4036			break;
4037#ifndef __mips__
4038		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4039		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4040			break;
4041		/* fallthrough */
4042#endif
4043	default:
4044		return (false);
4045	}
4046	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4047		return (false);
4048
4049	if (req->ventry == NULL) {
4050		if (obj->versyms != NULL) {
4051			verndx = VER_NDX(obj->versyms[symnum]);
4052			if (verndx > obj->vernum) {
4053				_rtld_error(
4054				    "%s: symbol %s references wrong version %d",
4055				    obj->path, obj->strtab + symnum, verndx);
4056				return (false);
4057			}
4058			/*
4059			 * If we are not called from dlsym (i.e. this
4060			 * is a normal relocation from unversioned
4061			 * binary), accept the symbol immediately if
4062			 * it happens to have first version after this
4063			 * shared object became versioned.  Otherwise,
4064			 * if symbol is versioned and not hidden,
4065			 * remember it. If it is the only symbol with
4066			 * this name exported by the shared object, it
4067			 * will be returned as a match by the calling
4068			 * function. If symbol is global (verndx < 2)
4069			 * accept it unconditionally.
4070			 */
4071			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4072			    verndx == VER_NDX_GIVEN) {
4073				result->sym_out = symp;
4074				return (true);
4075			}
4076			else if (verndx >= VER_NDX_GIVEN) {
4077				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4078				    == 0) {
4079					if (result->vsymp == NULL)
4080						result->vsymp = symp;
4081					result->vcount++;
4082				}
4083				return (false);
4084			}
4085		}
4086		result->sym_out = symp;
4087		return (true);
4088	}
4089	if (obj->versyms == NULL) {
4090		if (object_match_name(obj, req->ventry->name)) {
4091			_rtld_error("%s: object %s should provide version %s "
4092			    "for symbol %s", obj_rtld.path, obj->path,
4093			    req->ventry->name, obj->strtab + symnum);
4094			return (false);
4095		}
4096	} else {
4097		verndx = VER_NDX(obj->versyms[symnum]);
4098		if (verndx > obj->vernum) {
4099			_rtld_error("%s: symbol %s references wrong version %d",
4100			    obj->path, obj->strtab + symnum, verndx);
4101			return (false);
4102		}
4103		if (obj->vertab[verndx].hash != req->ventry->hash ||
4104		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4105			/*
4106			 * Version does not match. Look if this is a
4107			 * global symbol and if it is not hidden. If
4108			 * global symbol (verndx < 2) is available,
4109			 * use it. Do not return symbol if we are
4110			 * called by dlvsym, because dlvsym looks for
4111			 * a specific version and default one is not
4112			 * what dlvsym wants.
4113			 */
4114			if ((req->flags & SYMLOOK_DLSYM) ||
4115			    (verndx >= VER_NDX_GIVEN) ||
4116			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4117				return (false);
4118		}
4119	}
4120	result->sym_out = symp;
4121	return (true);
4122}
4123
4124/*
4125 * Search for symbol using SysV hash function.
4126 * obj->buckets is known not to be NULL at this point; the test for this was
4127 * performed with the obj->valid_hash_sysv assignment.
4128 */
4129static int
4130symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4131{
4132	unsigned long symnum;
4133	Sym_Match_Result matchres;
4134
4135	matchres.sym_out = NULL;
4136	matchres.vsymp = NULL;
4137	matchres.vcount = 0;
4138
4139	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4140	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4141		if (symnum >= obj->nchains)
4142			return (ESRCH);	/* Bad object */
4143
4144		if (matched_symbol(req, obj, &matchres, symnum)) {
4145			req->sym_out = matchres.sym_out;
4146			req->defobj_out = obj;
4147			return (0);
4148		}
4149	}
4150	if (matchres.vcount == 1) {
4151		req->sym_out = matchres.vsymp;
4152		req->defobj_out = obj;
4153		return (0);
4154	}
4155	return (ESRCH);
4156}
4157
4158/* Search for symbol using GNU hash function */
4159static int
4160symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4161{
4162	Elf_Addr bloom_word;
4163	const Elf32_Word *hashval;
4164	Elf32_Word bucket;
4165	Sym_Match_Result matchres;
4166	unsigned int h1, h2;
4167	unsigned long symnum;
4168
4169	matchres.sym_out = NULL;
4170	matchres.vsymp = NULL;
4171	matchres.vcount = 0;
4172
4173	/* Pick right bitmask word from Bloom filter array */
4174	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4175	    obj->maskwords_bm_gnu];
4176
4177	/* Calculate modulus word size of gnu hash and its derivative */
4178	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4179	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4180
4181	/* Filter out the "definitely not in set" queries */
4182	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4183		return (ESRCH);
4184
4185	/* Locate hash chain and corresponding value element*/
4186	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4187	if (bucket == 0)
4188		return (ESRCH);
4189	hashval = &obj->chain_zero_gnu[bucket];
4190	do {
4191		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4192			symnum = hashval - obj->chain_zero_gnu;
4193			if (matched_symbol(req, obj, &matchres, symnum)) {
4194				req->sym_out = matchres.sym_out;
4195				req->defobj_out = obj;
4196				return (0);
4197			}
4198		}
4199	} while ((*hashval++ & 1) == 0);
4200	if (matchres.vcount == 1) {
4201		req->sym_out = matchres.vsymp;
4202		req->defobj_out = obj;
4203		return (0);
4204	}
4205	return (ESRCH);
4206}
4207
4208static void
4209trace_loaded_objects(Obj_Entry *obj)
4210{
4211    char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4212    int		c;
4213
4214    if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4215	main_local = "";
4216
4217    if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4218	fmt1 = "\t%o => %p (%x)\n";
4219
4220    if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4221	fmt2 = "\t%o (%x)\n";
4222
4223    list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
4224
4225    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4226	Needed_Entry		*needed;
4227	char			*name, *path;
4228	bool			is_lib;
4229
4230	if (obj->marker)
4231	    continue;
4232	if (list_containers && obj->needed != NULL)
4233	    rtld_printf("%s:\n", obj->path);
4234	for (needed = obj->needed; needed; needed = needed->next) {
4235	    if (needed->obj != NULL) {
4236		if (needed->obj->traced && !list_containers)
4237		    continue;
4238		needed->obj->traced = true;
4239		path = needed->obj->path;
4240	    } else
4241		path = "not found";
4242
4243	    name = (char *)obj->strtab + needed->name;
4244	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4245
4246	    fmt = is_lib ? fmt1 : fmt2;
4247	    while ((c = *fmt++) != '\0') {
4248		switch (c) {
4249		default:
4250		    rtld_putchar(c);
4251		    continue;
4252		case '\\':
4253		    switch (c = *fmt) {
4254		    case '\0':
4255			continue;
4256		    case 'n':
4257			rtld_putchar('\n');
4258			break;
4259		    case 't':
4260			rtld_putchar('\t');
4261			break;
4262		    }
4263		    break;
4264		case '%':
4265		    switch (c = *fmt) {
4266		    case '\0':
4267			continue;
4268		    case '%':
4269		    default:
4270			rtld_putchar(c);
4271			break;
4272		    case 'A':
4273			rtld_putstr(main_local);
4274			break;
4275		    case 'a':
4276			rtld_putstr(obj_main->path);
4277			break;
4278		    case 'o':
4279			rtld_putstr(name);
4280			break;
4281#if 0
4282		    case 'm':
4283			rtld_printf("%d", sodp->sod_major);
4284			break;
4285		    case 'n':
4286			rtld_printf("%d", sodp->sod_minor);
4287			break;
4288#endif
4289		    case 'p':
4290			rtld_putstr(path);
4291			break;
4292		    case 'x':
4293			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4294			  0);
4295			break;
4296		    }
4297		    break;
4298		}
4299		++fmt;
4300	    }
4301	}
4302    }
4303}
4304
4305/*
4306 * Unload a dlopened object and its dependencies from memory and from
4307 * our data structures.  It is assumed that the DAG rooted in the
4308 * object has already been unreferenced, and that the object has a
4309 * reference count of 0.
4310 */
4311static void
4312unload_object(Obj_Entry *root)
4313{
4314	Obj_Entry *obj, *obj1;
4315
4316	assert(root->refcount == 0);
4317
4318	/*
4319	 * Pass over the DAG removing unreferenced objects from
4320	 * appropriate lists.
4321	 */
4322	unlink_object(root);
4323
4324	/* Unmap all objects that are no longer referenced. */
4325	TAILQ_FOREACH_SAFE(obj, &obj_list, next, obj1) {
4326		if (obj->marker || obj->refcount != 0)
4327			continue;
4328		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4329		    obj->mapsize, 0, obj->path);
4330		dbg("unloading \"%s\"", obj->path);
4331		unload_filtees(root);
4332		munmap(obj->mapbase, obj->mapsize);
4333		linkmap_delete(obj);
4334		TAILQ_REMOVE(&obj_list, obj, next);
4335		obj_count--;
4336		obj_free(obj);
4337	}
4338}
4339
4340static void
4341unlink_object(Obj_Entry *root)
4342{
4343    Objlist_Entry *elm;
4344
4345    if (root->refcount == 0) {
4346	/* Remove the object from the RTLD_GLOBAL list. */
4347	objlist_remove(&list_global, root);
4348
4349    	/* Remove the object from all objects' DAG lists. */
4350    	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4351	    objlist_remove(&elm->obj->dldags, root);
4352	    if (elm->obj != root)
4353		unlink_object(elm->obj);
4354	}
4355    }
4356}
4357
4358static void
4359ref_dag(Obj_Entry *root)
4360{
4361    Objlist_Entry *elm;
4362
4363    assert(root->dag_inited);
4364    STAILQ_FOREACH(elm, &root->dagmembers, link)
4365	elm->obj->refcount++;
4366}
4367
4368static void
4369unref_dag(Obj_Entry *root)
4370{
4371    Objlist_Entry *elm;
4372
4373    assert(root->dag_inited);
4374    STAILQ_FOREACH(elm, &root->dagmembers, link)
4375	elm->obj->refcount--;
4376}
4377
4378/*
4379 * Common code for MD __tls_get_addr().
4380 */
4381static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4382static void *
4383tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4384{
4385    Elf_Addr *newdtv, *dtv;
4386    RtldLockState lockstate;
4387    int to_copy;
4388
4389    dtv = *dtvp;
4390    /* Check dtv generation in case new modules have arrived */
4391    if (dtv[0] != tls_dtv_generation) {
4392	wlock_acquire(rtld_bind_lock, &lockstate);
4393	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4394	to_copy = dtv[1];
4395	if (to_copy > tls_max_index)
4396	    to_copy = tls_max_index;
4397	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4398	newdtv[0] = tls_dtv_generation;
4399	newdtv[1] = tls_max_index;
4400	free(dtv);
4401	lock_release(rtld_bind_lock, &lockstate);
4402	dtv = *dtvp = newdtv;
4403    }
4404
4405    /* Dynamically allocate module TLS if necessary */
4406    if (dtv[index + 1] == 0) {
4407	/* Signal safe, wlock will block out signals. */
4408	wlock_acquire(rtld_bind_lock, &lockstate);
4409	if (!dtv[index + 1])
4410	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4411	lock_release(rtld_bind_lock, &lockstate);
4412    }
4413    return ((void *)(dtv[index + 1] + offset));
4414}
4415
4416void *
4417tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4418{
4419	Elf_Addr *dtv;
4420
4421	dtv = *dtvp;
4422	/* Check dtv generation in case new modules have arrived */
4423	if (__predict_true(dtv[0] == tls_dtv_generation &&
4424	    dtv[index + 1] != 0))
4425		return ((void *)(dtv[index + 1] + offset));
4426	return (tls_get_addr_slow(dtvp, index, offset));
4427}
4428
4429#if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
4430
4431/*
4432 * Allocate Static TLS using the Variant I method.
4433 */
4434void *
4435allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4436{
4437    Obj_Entry *obj;
4438    char *tcb;
4439    Elf_Addr **tls;
4440    Elf_Addr *dtv;
4441    Elf_Addr addr;
4442    int i;
4443
4444    if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4445	return (oldtcb);
4446
4447    assert(tcbsize >= TLS_TCB_SIZE);
4448    tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4449    tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4450
4451    if (oldtcb != NULL) {
4452	memcpy(tls, oldtcb, tls_static_space);
4453	free(oldtcb);
4454
4455	/* Adjust the DTV. */
4456	dtv = tls[0];
4457	for (i = 0; i < dtv[1]; i++) {
4458	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4459		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4460		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4461	    }
4462	}
4463    } else {
4464	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4465	tls[0] = dtv;
4466	dtv[0] = tls_dtv_generation;
4467	dtv[1] = tls_max_index;
4468
4469	for (obj = globallist_curr(objs); obj != NULL;
4470	  obj = globallist_next(obj)) {
4471	    if (obj->tlsoffset > 0) {
4472		addr = (Elf_Addr)tls + obj->tlsoffset;
4473		if (obj->tlsinitsize > 0)
4474		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4475		if (obj->tlssize > obj->tlsinitsize)
4476		    memset((void*) (addr + obj->tlsinitsize), 0,
4477			   obj->tlssize - obj->tlsinitsize);
4478		dtv[obj->tlsindex + 1] = addr;
4479	    }
4480	}
4481    }
4482
4483    return (tcb);
4484}
4485
4486void
4487free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4488{
4489    Elf_Addr *dtv;
4490    Elf_Addr tlsstart, tlsend;
4491    int dtvsize, i;
4492
4493    assert(tcbsize >= TLS_TCB_SIZE);
4494
4495    tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4496    tlsend = tlsstart + tls_static_space;
4497
4498    dtv = *(Elf_Addr **)tlsstart;
4499    dtvsize = dtv[1];
4500    for (i = 0; i < dtvsize; i++) {
4501	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4502	    free((void*)dtv[i+2]);
4503	}
4504    }
4505    free(dtv);
4506    free(tcb);
4507}
4508
4509#endif
4510
4511#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4512
4513/*
4514 * Allocate Static TLS using the Variant II method.
4515 */
4516void *
4517allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4518{
4519    Obj_Entry *obj;
4520    size_t size, ralign;
4521    char *tls;
4522    Elf_Addr *dtv, *olddtv;
4523    Elf_Addr segbase, oldsegbase, addr;
4524    int i;
4525
4526    ralign = tcbalign;
4527    if (tls_static_max_align > ralign)
4528	    ralign = tls_static_max_align;
4529    size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4530
4531    assert(tcbsize >= 2*sizeof(Elf_Addr));
4532    tls = malloc_aligned(size, ralign);
4533    dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4534
4535    segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4536    ((Elf_Addr*)segbase)[0] = segbase;
4537    ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4538
4539    dtv[0] = tls_dtv_generation;
4540    dtv[1] = tls_max_index;
4541
4542    if (oldtls) {
4543	/*
4544	 * Copy the static TLS block over whole.
4545	 */
4546	oldsegbase = (Elf_Addr) oldtls;
4547	memcpy((void *)(segbase - tls_static_space),
4548	       (const void *)(oldsegbase - tls_static_space),
4549	       tls_static_space);
4550
4551	/*
4552	 * If any dynamic TLS blocks have been created tls_get_addr(),
4553	 * move them over.
4554	 */
4555	olddtv = ((Elf_Addr**)oldsegbase)[1];
4556	for (i = 0; i < olddtv[1]; i++) {
4557	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4558		dtv[i+2] = olddtv[i+2];
4559		olddtv[i+2] = 0;
4560	    }
4561	}
4562
4563	/*
4564	 * We assume that this block was the one we created with
4565	 * allocate_initial_tls().
4566	 */
4567	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4568    } else {
4569	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4570		if (obj->marker || obj->tlsoffset == 0)
4571			continue;
4572		addr = segbase - obj->tlsoffset;
4573		memset((void*) (addr + obj->tlsinitsize),
4574		       0, obj->tlssize - obj->tlsinitsize);
4575		if (obj->tlsinit)
4576		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4577		dtv[obj->tlsindex + 1] = addr;
4578	}
4579    }
4580
4581    return (void*) segbase;
4582}
4583
4584void
4585free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4586{
4587    Elf_Addr* dtv;
4588    size_t size, ralign;
4589    int dtvsize, i;
4590    Elf_Addr tlsstart, tlsend;
4591
4592    /*
4593     * Figure out the size of the initial TLS block so that we can
4594     * find stuff which ___tls_get_addr() allocated dynamically.
4595     */
4596    ralign = tcbalign;
4597    if (tls_static_max_align > ralign)
4598	    ralign = tls_static_max_align;
4599    size = round(tls_static_space, ralign);
4600
4601    dtv = ((Elf_Addr**)tls)[1];
4602    dtvsize = dtv[1];
4603    tlsend = (Elf_Addr) tls;
4604    tlsstart = tlsend - size;
4605    for (i = 0; i < dtvsize; i++) {
4606	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4607		free_aligned((void *)dtv[i + 2]);
4608	}
4609    }
4610
4611    free_aligned((void *)tlsstart);
4612    free((void*) dtv);
4613}
4614
4615#endif
4616
4617/*
4618 * Allocate TLS block for module with given index.
4619 */
4620void *
4621allocate_module_tls(int index)
4622{
4623    Obj_Entry* obj;
4624    char* p;
4625
4626    TAILQ_FOREACH(obj, &obj_list, next) {
4627	if (obj->marker)
4628	    continue;
4629	if (obj->tlsindex == index)
4630	    break;
4631    }
4632    if (!obj) {
4633	_rtld_error("Can't find module with TLS index %d", index);
4634	rtld_die();
4635    }
4636
4637    p = malloc_aligned(obj->tlssize, obj->tlsalign);
4638    memcpy(p, obj->tlsinit, obj->tlsinitsize);
4639    memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4640
4641    return p;
4642}
4643
4644bool
4645allocate_tls_offset(Obj_Entry *obj)
4646{
4647    size_t off;
4648
4649    if (obj->tls_done)
4650	return true;
4651
4652    if (obj->tlssize == 0) {
4653	obj->tls_done = true;
4654	return true;
4655    }
4656
4657    if (tls_last_offset == 0)
4658	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4659    else
4660	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4661				   obj->tlssize, obj->tlsalign);
4662
4663    /*
4664     * If we have already fixed the size of the static TLS block, we
4665     * must stay within that size. When allocating the static TLS, we
4666     * leave a small amount of space spare to be used for dynamically
4667     * loading modules which use static TLS.
4668     */
4669    if (tls_static_space != 0) {
4670	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4671	    return false;
4672    } else if (obj->tlsalign > tls_static_max_align) {
4673	    tls_static_max_align = obj->tlsalign;
4674    }
4675
4676    tls_last_offset = obj->tlsoffset = off;
4677    tls_last_size = obj->tlssize;
4678    obj->tls_done = true;
4679
4680    return true;
4681}
4682
4683void
4684free_tls_offset(Obj_Entry *obj)
4685{
4686
4687    /*
4688     * If we were the last thing to allocate out of the static TLS
4689     * block, we give our space back to the 'allocator'. This is a
4690     * simplistic workaround to allow libGL.so.1 to be loaded and
4691     * unloaded multiple times.
4692     */
4693    if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4694	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4695	tls_last_offset -= obj->tlssize;
4696	tls_last_size = 0;
4697    }
4698}
4699
4700void *
4701_rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4702{
4703    void *ret;
4704    RtldLockState lockstate;
4705
4706    wlock_acquire(rtld_bind_lock, &lockstate);
4707    ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
4708      tcbsize, tcbalign);
4709    lock_release(rtld_bind_lock, &lockstate);
4710    return (ret);
4711}
4712
4713void
4714_rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4715{
4716    RtldLockState lockstate;
4717
4718    wlock_acquire(rtld_bind_lock, &lockstate);
4719    free_tls(tcb, tcbsize, tcbalign);
4720    lock_release(rtld_bind_lock, &lockstate);
4721}
4722
4723static void
4724object_add_name(Obj_Entry *obj, const char *name)
4725{
4726    Name_Entry *entry;
4727    size_t len;
4728
4729    len = strlen(name);
4730    entry = malloc(sizeof(Name_Entry) + len);
4731
4732    if (entry != NULL) {
4733	strcpy(entry->name, name);
4734	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4735    }
4736}
4737
4738static int
4739object_match_name(const Obj_Entry *obj, const char *name)
4740{
4741    Name_Entry *entry;
4742
4743    STAILQ_FOREACH(entry, &obj->names, link) {
4744	if (strcmp(name, entry->name) == 0)
4745	    return (1);
4746    }
4747    return (0);
4748}
4749
4750static Obj_Entry *
4751locate_dependency(const Obj_Entry *obj, const char *name)
4752{
4753    const Objlist_Entry *entry;
4754    const Needed_Entry *needed;
4755
4756    STAILQ_FOREACH(entry, &list_main, link) {
4757	if (object_match_name(entry->obj, name))
4758	    return entry->obj;
4759    }
4760
4761    for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4762	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4763	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4764	    /*
4765	     * If there is DT_NEEDED for the name we are looking for,
4766	     * we are all set.  Note that object might not be found if
4767	     * dependency was not loaded yet, so the function can
4768	     * return NULL here.  This is expected and handled
4769	     * properly by the caller.
4770	     */
4771	    return (needed->obj);
4772	}
4773    }
4774    _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4775	obj->path, name);
4776    rtld_die();
4777}
4778
4779static int
4780check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4781    const Elf_Vernaux *vna)
4782{
4783    const Elf_Verdef *vd;
4784    const char *vername;
4785
4786    vername = refobj->strtab + vna->vna_name;
4787    vd = depobj->verdef;
4788    if (vd == NULL) {
4789	_rtld_error("%s: version %s required by %s not defined",
4790	    depobj->path, vername, refobj->path);
4791	return (-1);
4792    }
4793    for (;;) {
4794	if (vd->vd_version != VER_DEF_CURRENT) {
4795	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4796		depobj->path, vd->vd_version);
4797	    return (-1);
4798	}
4799	if (vna->vna_hash == vd->vd_hash) {
4800	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4801		((char *)vd + vd->vd_aux);
4802	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4803		return (0);
4804	}
4805	if (vd->vd_next == 0)
4806	    break;
4807	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4808    }
4809    if (vna->vna_flags & VER_FLG_WEAK)
4810	return (0);
4811    _rtld_error("%s: version %s required by %s not found",
4812	depobj->path, vername, refobj->path);
4813    return (-1);
4814}
4815
4816static int
4817rtld_verify_object_versions(Obj_Entry *obj)
4818{
4819    const Elf_Verneed *vn;
4820    const Elf_Verdef  *vd;
4821    const Elf_Verdaux *vda;
4822    const Elf_Vernaux *vna;
4823    const Obj_Entry *depobj;
4824    int maxvernum, vernum;
4825
4826    if (obj->ver_checked)
4827	return (0);
4828    obj->ver_checked = true;
4829
4830    maxvernum = 0;
4831    /*
4832     * Walk over defined and required version records and figure out
4833     * max index used by any of them. Do very basic sanity checking
4834     * while there.
4835     */
4836    vn = obj->verneed;
4837    while (vn != NULL) {
4838	if (vn->vn_version != VER_NEED_CURRENT) {
4839	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4840		obj->path, vn->vn_version);
4841	    return (-1);
4842	}
4843	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4844	for (;;) {
4845	    vernum = VER_NEED_IDX(vna->vna_other);
4846	    if (vernum > maxvernum)
4847		maxvernum = vernum;
4848	    if (vna->vna_next == 0)
4849		 break;
4850	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4851	}
4852	if (vn->vn_next == 0)
4853	    break;
4854	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4855    }
4856
4857    vd = obj->verdef;
4858    while (vd != NULL) {
4859	if (vd->vd_version != VER_DEF_CURRENT) {
4860	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4861		obj->path, vd->vd_version);
4862	    return (-1);
4863	}
4864	vernum = VER_DEF_IDX(vd->vd_ndx);
4865	if (vernum > maxvernum)
4866		maxvernum = vernum;
4867	if (vd->vd_next == 0)
4868	    break;
4869	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4870    }
4871
4872    if (maxvernum == 0)
4873	return (0);
4874
4875    /*
4876     * Store version information in array indexable by version index.
4877     * Verify that object version requirements are satisfied along the
4878     * way.
4879     */
4880    obj->vernum = maxvernum + 1;
4881    obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4882
4883    vd = obj->verdef;
4884    while (vd != NULL) {
4885	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4886	    vernum = VER_DEF_IDX(vd->vd_ndx);
4887	    assert(vernum <= maxvernum);
4888	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4889	    obj->vertab[vernum].hash = vd->vd_hash;
4890	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4891	    obj->vertab[vernum].file = NULL;
4892	    obj->vertab[vernum].flags = 0;
4893	}
4894	if (vd->vd_next == 0)
4895	    break;
4896	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4897    }
4898
4899    vn = obj->verneed;
4900    while (vn != NULL) {
4901	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4902	if (depobj == NULL)
4903	    return (-1);
4904	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4905	for (;;) {
4906	    if (check_object_provided_version(obj, depobj, vna))
4907		return (-1);
4908	    vernum = VER_NEED_IDX(vna->vna_other);
4909	    assert(vernum <= maxvernum);
4910	    obj->vertab[vernum].hash = vna->vna_hash;
4911	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4912	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4913	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4914		VER_INFO_HIDDEN : 0;
4915	    if (vna->vna_next == 0)
4916		 break;
4917	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4918	}
4919	if (vn->vn_next == 0)
4920	    break;
4921	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4922    }
4923    return 0;
4924}
4925
4926static int
4927rtld_verify_versions(const Objlist *objlist)
4928{
4929    Objlist_Entry *entry;
4930    int rc;
4931
4932    rc = 0;
4933    STAILQ_FOREACH(entry, objlist, link) {
4934	/*
4935	 * Skip dummy objects or objects that have their version requirements
4936	 * already checked.
4937	 */
4938	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4939	    continue;
4940	if (rtld_verify_object_versions(entry->obj) == -1) {
4941	    rc = -1;
4942	    if (ld_tracing == NULL)
4943		break;
4944	}
4945    }
4946    if (rc == 0 || ld_tracing != NULL)
4947    	rc = rtld_verify_object_versions(&obj_rtld);
4948    return rc;
4949}
4950
4951const Ver_Entry *
4952fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4953{
4954    Elf_Versym vernum;
4955
4956    if (obj->vertab) {
4957	vernum = VER_NDX(obj->versyms[symnum]);
4958	if (vernum >= obj->vernum) {
4959	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4960		obj->path, obj->strtab + symnum, vernum);
4961	} else if (obj->vertab[vernum].hash != 0) {
4962	    return &obj->vertab[vernum];
4963	}
4964    }
4965    return NULL;
4966}
4967
4968int
4969_rtld_get_stack_prot(void)
4970{
4971
4972	return (stack_prot);
4973}
4974
4975int
4976_rtld_is_dlopened(void *arg)
4977{
4978	Obj_Entry *obj;
4979	RtldLockState lockstate;
4980	int res;
4981
4982	rlock_acquire(rtld_bind_lock, &lockstate);
4983	obj = dlcheck(arg);
4984	if (obj == NULL)
4985		obj = obj_from_addr(arg);
4986	if (obj == NULL) {
4987		_rtld_error("No shared object contains address");
4988		lock_release(rtld_bind_lock, &lockstate);
4989		return (-1);
4990	}
4991	res = obj->dlopened ? 1 : 0;
4992	lock_release(rtld_bind_lock, &lockstate);
4993	return (res);
4994}
4995
4996int
4997obj_enforce_relro(Obj_Entry *obj)
4998{
4999
5000	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5001	    PROT_READ) == -1) {
5002		_rtld_error("%s: Cannot enforce relro protection: %s",
5003		    obj->path, rtld_strerror(errno));
5004		return (-1);
5005	}
5006	return (0);
5007}
5008
5009static void
5010map_stacks_exec(RtldLockState *lockstate)
5011{
5012	void (*thr_map_stacks_exec)(void);
5013
5014	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5015		return;
5016	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5017	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5018	if (thr_map_stacks_exec != NULL) {
5019		stack_prot |= PROT_EXEC;
5020		thr_map_stacks_exec();
5021	}
5022}
5023
5024void
5025symlook_init(SymLook *dst, const char *name)
5026{
5027
5028	bzero(dst, sizeof(*dst));
5029	dst->name = name;
5030	dst->hash = elf_hash(name);
5031	dst->hash_gnu = gnu_hash(name);
5032}
5033
5034static void
5035symlook_init_from_req(SymLook *dst, const SymLook *src)
5036{
5037
5038	dst->name = src->name;
5039	dst->hash = src->hash;
5040	dst->hash_gnu = src->hash_gnu;
5041	dst->ventry = src->ventry;
5042	dst->flags = src->flags;
5043	dst->defobj_out = NULL;
5044	dst->sym_out = NULL;
5045	dst->lockstate = src->lockstate;
5046}
5047
5048/*
5049 * Overrides for libc_pic-provided functions.
5050 */
5051
5052int
5053__getosreldate(void)
5054{
5055	size_t len;
5056	int oid[2];
5057	int error, osrel;
5058
5059	if (osreldate != 0)
5060		return (osreldate);
5061
5062	oid[0] = CTL_KERN;
5063	oid[1] = KERN_OSRELDATE;
5064	osrel = 0;
5065	len = sizeof(osrel);
5066	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5067	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5068		osreldate = osrel;
5069	return (osreldate);
5070}
5071
5072void
5073exit(int status)
5074{
5075
5076	_exit(status);
5077}
5078
5079void (*__cleanup)(void);
5080int __isthreaded = 0;
5081int _thread_autoinit_dummy_decl = 1;
5082
5083/*
5084 * No unresolved symbols for rtld.
5085 */
5086void
5087__pthread_cxa_finalize(struct dl_phdr_info *a)
5088{
5089}
5090
5091void
5092__stack_chk_fail(void)
5093{
5094
5095	_rtld_error("stack overflow detected; terminated");
5096	rtld_die();
5097}
5098__weak_reference(__stack_chk_fail, __stack_chk_fail_local);
5099
5100void
5101__chk_fail(void)
5102{
5103
5104	_rtld_error("buffer overflow detected; terminated");
5105	rtld_die();
5106}
5107
5108const char *
5109rtld_strerror(int errnum)
5110{
5111
5112	if (errnum < 0 || errnum >= sys_nerr)
5113		return ("Unknown error");
5114	return (sys_errlist[errnum]);
5115}
5116