rtld.c revision 314199
1/*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5 * Copyright 2012 John Marino <draco@marino.st>.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * $FreeBSD: stable/10/libexec/rtld-elf/rtld.c 314199 2017-02-24 11:07:49Z kib $
29 */
30
31/*
32 * Dynamic linker for ELF.
33 *
34 * John Polstra <jdp@polstra.com>.
35 */
36
37#include <sys/param.h>
38#include <sys/mount.h>
39#include <sys/mman.h>
40#include <sys/stat.h>
41#include <sys/sysctl.h>
42#include <sys/uio.h>
43#include <sys/utsname.h>
44#include <sys/ktrace.h>
45
46#include <dlfcn.h>
47#include <err.h>
48#include <errno.h>
49#include <fcntl.h>
50#include <stdarg.h>
51#include <stdio.h>
52#include <stdlib.h>
53#include <string.h>
54#include <unistd.h>
55
56#include "debug.h"
57#include "rtld.h"
58#include "libmap.h"
59#include "rtld_tls.h"
60#include "rtld_printf.h"
61#include "notes.h"
62
63#ifndef COMPAT_32BIT
64#define PATH_RTLD	"/libexec/ld-elf.so.1"
65#else
66#define PATH_RTLD	"/libexec/ld-elf32.so.1"
67#endif
68
69/* Types. */
70typedef void (*func_ptr_type)();
71typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
72
73/*
74 * Function declarations.
75 */
76static const char *basename(const char *);
77static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
78    const Elf_Dyn **, const Elf_Dyn **);
79static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
80    const Elf_Dyn *);
81static void digest_dynamic(Obj_Entry *, int);
82static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
83static Obj_Entry *dlcheck(void *);
84static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
85    int lo_flags, int mode, RtldLockState *lockstate);
86static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
87static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
88static bool donelist_check(DoneList *, const Obj_Entry *);
89static void errmsg_restore(char *);
90static char *errmsg_save(void);
91static void *fill_search_info(const char *, size_t, void *);
92static char *find_library(const char *, const Obj_Entry *);
93static const char *gethints(bool);
94static void init_dag(Obj_Entry *);
95static void init_pagesizes(Elf_Auxinfo **aux_info);
96static void init_rtld(caddr_t, Elf_Auxinfo **);
97static void initlist_add_neededs(Needed_Entry *, Objlist *);
98static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
99static void linkmap_add(Obj_Entry *);
100static void linkmap_delete(Obj_Entry *);
101static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
102static void unload_filtees(Obj_Entry *);
103static int load_needed_objects(Obj_Entry *, int);
104static int load_preload_objects(void);
105static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
106static void map_stacks_exec(RtldLockState *);
107static int obj_enforce_relro(Obj_Entry *);
108static Obj_Entry *obj_from_addr(const void *);
109static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
110static void objlist_call_init(Objlist *, RtldLockState *);
111static void objlist_clear(Objlist *);
112static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
113static void objlist_init(Objlist *);
114static void objlist_push_head(Objlist *, Obj_Entry *);
115static void objlist_push_tail(Objlist *, Obj_Entry *);
116static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
117static void objlist_remove(Objlist *, Obj_Entry *);
118static void *path_enumerate(const char *, path_enum_proc, void *);
119static int relocate_object_dag(Obj_Entry *root, bool bind_now,
120    Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
121static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
122    int flags, RtldLockState *lockstate);
123static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
124    RtldLockState *);
125static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
126    int flags, RtldLockState *lockstate);
127static int rtld_dirname(const char *, char *);
128static int rtld_dirname_abs(const char *, char *);
129static void *rtld_dlopen(const char *name, int fd, int mode);
130static void rtld_exit(void);
131static char *search_library_path(const char *, const char *);
132static const void **get_program_var_addr(const char *, RtldLockState *);
133static void set_program_var(const char *, const void *);
134static int symlook_default(SymLook *, const Obj_Entry *refobj);
135static int symlook_global(SymLook *, DoneList *);
136static void symlook_init_from_req(SymLook *, const SymLook *);
137static int symlook_list(SymLook *, const Objlist *, DoneList *);
138static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
139static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
140static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
141static void trace_loaded_objects(Obj_Entry *);
142static void unlink_object(Obj_Entry *);
143static void unload_object(Obj_Entry *);
144static void unref_dag(Obj_Entry *);
145static void ref_dag(Obj_Entry *);
146static char *origin_subst_one(Obj_Entry *, char *, const char *,
147    const char *, bool);
148static char *origin_subst(Obj_Entry *, char *);
149static bool obj_resolve_origin(Obj_Entry *obj);
150static void preinit_main(void);
151static int  rtld_verify_versions(const Objlist *);
152static int  rtld_verify_object_versions(Obj_Entry *);
153static void object_add_name(Obj_Entry *, const char *);
154static int  object_match_name(const Obj_Entry *, const char *);
155static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
156static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
157    struct dl_phdr_info *phdr_info);
158static uint32_t gnu_hash(const char *);
159static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
160    const unsigned long);
161
162void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
163void _r_debug_postinit(struct link_map *) __noinline __exported;
164
165/*
166 * Data declarations.
167 */
168static char *error_message;	/* Message for dlerror(), or NULL */
169struct r_debug r_debug __exported;	/* for GDB; */
170static bool libmap_disable;	/* Disable libmap */
171static bool ld_loadfltr;	/* Immediate filters processing */
172static char *libmap_override;	/* Maps to use in addition to libmap.conf */
173static bool trust;		/* False for setuid and setgid programs */
174static bool dangerous_ld_env;	/* True if environment variables have been
175				   used to affect the libraries loaded */
176static char *ld_bind_now;	/* Environment variable for immediate binding */
177static char *ld_debug;		/* Environment variable for debugging */
178static char *ld_library_path;	/* Environment variable for search path */
179static char *ld_preload;	/* Environment variable for libraries to
180				   load first */
181static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
182static char *ld_tracing;	/* Called from ldd to print libs */
183static char *ld_utrace;		/* Use utrace() to log events. */
184static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
185static Obj_Entry *obj_main;	/* The main program shared object */
186static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
187static unsigned int obj_count;	/* Number of objects in obj_list */
188static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
189
190static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
191  STAILQ_HEAD_INITIALIZER(list_global);
192static Objlist list_main =	/* Objects loaded at program startup */
193  STAILQ_HEAD_INITIALIZER(list_main);
194static Objlist list_fini =	/* Objects needing fini() calls */
195  STAILQ_HEAD_INITIALIZER(list_fini);
196
197Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
198
199#define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
200
201extern Elf_Dyn _DYNAMIC;
202#pragma weak _DYNAMIC
203#ifndef RTLD_IS_DYNAMIC
204#define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
205#endif
206
207int dlclose(void *) __exported;
208char *dlerror(void) __exported;
209void *dlopen(const char *, int) __exported;
210void *fdlopen(int, int) __exported;
211void *dlsym(void *, const char *) __exported;
212dlfunc_t dlfunc(void *, const char *) __exported;
213void *dlvsym(void *, const char *, const char *) __exported;
214int dladdr(const void *, Dl_info *) __exported;
215void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
216    void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
217int dlinfo(void *, int , void *) __exported;
218int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
219int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
220int _rtld_get_stack_prot(void) __exported;
221int _rtld_is_dlopened(void *) __exported;
222void _rtld_error(const char *, ...) __exported;
223
224int npagesizes, osreldate;
225size_t *pagesizes;
226
227long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
228
229static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
230static int max_stack_flags;
231
232/*
233 * Global declarations normally provided by crt1.  The dynamic linker is
234 * not built with crt1, so we have to provide them ourselves.
235 */
236char *__progname;
237char **environ;
238
239/*
240 * Used to pass argc, argv to init functions.
241 */
242int main_argc;
243char **main_argv;
244
245/*
246 * Globals to control TLS allocation.
247 */
248size_t tls_last_offset;		/* Static TLS offset of last module */
249size_t tls_last_size;		/* Static TLS size of last module */
250size_t tls_static_space;	/* Static TLS space allocated */
251size_t tls_static_max_align;
252int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
253int tls_max_index = 1;		/* Largest module index allocated */
254
255bool ld_library_path_rpath = false;
256
257/*
258 * Fill in a DoneList with an allocation large enough to hold all of
259 * the currently-loaded objects.  Keep this as a macro since it calls
260 * alloca and we want that to occur within the scope of the caller.
261 */
262#define donelist_init(dlp)					\
263    ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
264    assert((dlp)->objs != NULL),				\
265    (dlp)->num_alloc = obj_count,				\
266    (dlp)->num_used = 0)
267
268#define	UTRACE_DLOPEN_START		1
269#define	UTRACE_DLOPEN_STOP		2
270#define	UTRACE_DLCLOSE_START		3
271#define	UTRACE_DLCLOSE_STOP		4
272#define	UTRACE_LOAD_OBJECT		5
273#define	UTRACE_UNLOAD_OBJECT		6
274#define	UTRACE_ADD_RUNDEP		7
275#define	UTRACE_PRELOAD_FINISHED		8
276#define	UTRACE_INIT_CALL		9
277#define	UTRACE_FINI_CALL		10
278#define	UTRACE_DLSYM_START		11
279#define	UTRACE_DLSYM_STOP		12
280
281struct utrace_rtld {
282	char sig[4];			/* 'RTLD' */
283	int event;
284	void *handle;
285	void *mapbase;			/* Used for 'parent' and 'init/fini' */
286	size_t mapsize;
287	int refcnt;			/* Used for 'mode' */
288	char name[MAXPATHLEN];
289};
290
291#define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
292	if (ld_utrace != NULL)					\
293		ld_utrace_log(e, h, mb, ms, r, n);		\
294} while (0)
295
296static void
297ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
298    int refcnt, const char *name)
299{
300	struct utrace_rtld ut;
301
302	ut.sig[0] = 'R';
303	ut.sig[1] = 'T';
304	ut.sig[2] = 'L';
305	ut.sig[3] = 'D';
306	ut.event = event;
307	ut.handle = handle;
308	ut.mapbase = mapbase;
309	ut.mapsize = mapsize;
310	ut.refcnt = refcnt;
311	bzero(ut.name, sizeof(ut.name));
312	if (name)
313		strlcpy(ut.name, name, sizeof(ut.name));
314	utrace(&ut, sizeof(ut));
315}
316
317/*
318 * Main entry point for dynamic linking.  The first argument is the
319 * stack pointer.  The stack is expected to be laid out as described
320 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
321 * Specifically, the stack pointer points to a word containing
322 * ARGC.  Following that in the stack is a null-terminated sequence
323 * of pointers to argument strings.  Then comes a null-terminated
324 * sequence of pointers to environment strings.  Finally, there is a
325 * sequence of "auxiliary vector" entries.
326 *
327 * The second argument points to a place to store the dynamic linker's
328 * exit procedure pointer and the third to a place to store the main
329 * program's object.
330 *
331 * The return value is the main program's entry point.
332 */
333func_ptr_type
334_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
335{
336    Elf_Auxinfo *aux_info[AT_COUNT];
337    int i;
338    int argc;
339    char **argv;
340    char **env;
341    Elf_Auxinfo *aux;
342    Elf_Auxinfo *auxp;
343    const char *argv0;
344    Objlist_Entry *entry;
345    Obj_Entry *obj;
346    Obj_Entry *preload_tail;
347    Obj_Entry *last_interposer;
348    Objlist initlist;
349    RtldLockState lockstate;
350    char *library_path_rpath;
351    int mib[2];
352    size_t len;
353
354    /*
355     * On entry, the dynamic linker itself has not been relocated yet.
356     * Be very careful not to reference any global data until after
357     * init_rtld has returned.  It is OK to reference file-scope statics
358     * and string constants, and to call static and global functions.
359     */
360
361    /* Find the auxiliary vector on the stack. */
362    argc = *sp++;
363    argv = (char **) sp;
364    sp += argc + 1;	/* Skip over arguments and NULL terminator */
365    env = (char **) sp;
366    while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
367	;
368    aux = (Elf_Auxinfo *) sp;
369
370    /* Digest the auxiliary vector. */
371    for (i = 0;  i < AT_COUNT;  i++)
372	aux_info[i] = NULL;
373    for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
374	if (auxp->a_type < AT_COUNT)
375	    aux_info[auxp->a_type] = auxp;
376    }
377
378    /* Initialize and relocate ourselves. */
379    assert(aux_info[AT_BASE] != NULL);
380    init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
381
382    __progname = obj_rtld.path;
383    argv0 = argv[0] != NULL ? argv[0] : "(null)";
384    environ = env;
385    main_argc = argc;
386    main_argv = argv;
387
388    if (aux_info[AT_CANARY] != NULL &&
389	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
390	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
391	    if (i > sizeof(__stack_chk_guard))
392		    i = sizeof(__stack_chk_guard);
393	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
394    } else {
395	mib[0] = CTL_KERN;
396	mib[1] = KERN_ARND;
397
398	len = sizeof(__stack_chk_guard);
399	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
400	    len != sizeof(__stack_chk_guard)) {
401		/* If sysctl was unsuccessful, use the "terminator canary". */
402		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
403		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
404		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
405		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
406	}
407    }
408
409    trust = !issetugid();
410
411    ld_bind_now = getenv(LD_ "BIND_NOW");
412    /*
413     * If the process is tainted, then we un-set the dangerous environment
414     * variables.  The process will be marked as tainted until setuid(2)
415     * is called.  If any child process calls setuid(2) we do not want any
416     * future processes to honor the potentially un-safe variables.
417     */
418    if (!trust) {
419        if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
420	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
421	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
422	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
423		_rtld_error("environment corrupt; aborting");
424		rtld_die();
425	}
426    }
427    ld_debug = getenv(LD_ "DEBUG");
428    libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
429    libmap_override = getenv(LD_ "LIBMAP");
430    ld_library_path = getenv(LD_ "LIBRARY_PATH");
431    ld_preload = getenv(LD_ "PRELOAD");
432    ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
433    ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
434    library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
435    if (library_path_rpath != NULL) {
436	    if (library_path_rpath[0] == 'y' ||
437		library_path_rpath[0] == 'Y' ||
438		library_path_rpath[0] == '1')
439		    ld_library_path_rpath = true;
440	    else
441		    ld_library_path_rpath = false;
442    }
443    dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
444	(ld_library_path != NULL) || (ld_preload != NULL) ||
445	(ld_elf_hints_path != NULL) || ld_loadfltr;
446    ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
447    ld_utrace = getenv(LD_ "UTRACE");
448
449    if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
450	ld_elf_hints_path = _PATH_ELF_HINTS;
451
452    if (ld_debug != NULL && *ld_debug != '\0')
453	debug = 1;
454    dbg("%s is initialized, base address = %p", __progname,
455	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
456    dbg("RTLD dynamic = %p", obj_rtld.dynamic);
457    dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
458
459    dbg("initializing thread locks");
460    lockdflt_init();
461
462    /*
463     * Load the main program, or process its program header if it is
464     * already loaded.
465     */
466    if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
467	int fd = aux_info[AT_EXECFD]->a_un.a_val;
468	dbg("loading main program");
469	obj_main = map_object(fd, argv0, NULL);
470	close(fd);
471	if (obj_main == NULL)
472	    rtld_die();
473	max_stack_flags = obj->stack_flags;
474    } else {				/* Main program already loaded. */
475	const Elf_Phdr *phdr;
476	int phnum;
477	caddr_t entry;
478
479	dbg("processing main program's program header");
480	assert(aux_info[AT_PHDR] != NULL);
481	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
482	assert(aux_info[AT_PHNUM] != NULL);
483	phnum = aux_info[AT_PHNUM]->a_un.a_val;
484	assert(aux_info[AT_PHENT] != NULL);
485	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
486	assert(aux_info[AT_ENTRY] != NULL);
487	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
488	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
489	    rtld_die();
490    }
491
492    if (aux_info[AT_EXECPATH] != 0) {
493	    char *kexecpath;
494	    char buf[MAXPATHLEN];
495
496	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
497	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
498	    if (kexecpath[0] == '/')
499		    obj_main->path = kexecpath;
500	    else if (getcwd(buf, sizeof(buf)) == NULL ||
501		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
502		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
503		    obj_main->path = xstrdup(argv0);
504	    else
505		    obj_main->path = xstrdup(buf);
506    } else {
507	    dbg("No AT_EXECPATH");
508	    obj_main->path = xstrdup(argv0);
509    }
510    dbg("obj_main path %s", obj_main->path);
511    obj_main->mainprog = true;
512
513    if (aux_info[AT_STACKPROT] != NULL &&
514      aux_info[AT_STACKPROT]->a_un.a_val != 0)
515	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
516
517#ifndef COMPAT_32BIT
518    /*
519     * Get the actual dynamic linker pathname from the executable if
520     * possible.  (It should always be possible.)  That ensures that
521     * gdb will find the right dynamic linker even if a non-standard
522     * one is being used.
523     */
524    if (obj_main->interp != NULL &&
525      strcmp(obj_main->interp, obj_rtld.path) != 0) {
526	free(obj_rtld.path);
527	obj_rtld.path = xstrdup(obj_main->interp);
528        __progname = obj_rtld.path;
529    }
530#endif
531
532    digest_dynamic(obj_main, 0);
533    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
534	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
535	obj_main->dynsymcount);
536
537    linkmap_add(obj_main);
538    linkmap_add(&obj_rtld);
539
540    /* Link the main program into the list of objects. */
541    TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
542    obj_count++;
543    obj_loads++;
544
545    /* Initialize a fake symbol for resolving undefined weak references. */
546    sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
547    sym_zero.st_shndx = SHN_UNDEF;
548    sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
549
550    if (!libmap_disable)
551        libmap_disable = (bool)lm_init(libmap_override);
552
553    dbg("loading LD_PRELOAD libraries");
554    if (load_preload_objects() == -1)
555	rtld_die();
556    preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
557
558    dbg("loading needed objects");
559    if (load_needed_objects(obj_main, 0) == -1)
560	rtld_die();
561
562    /* Make a list of all objects loaded at startup. */
563    last_interposer = obj_main;
564    TAILQ_FOREACH(obj, &obj_list, next) {
565	if (obj->marker)
566	    continue;
567	if (obj->z_interpose && obj != obj_main) {
568	    objlist_put_after(&list_main, last_interposer, obj);
569	    last_interposer = obj;
570	} else {
571	    objlist_push_tail(&list_main, obj);
572	}
573    	obj->refcount++;
574    }
575
576    dbg("checking for required versions");
577    if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
578	rtld_die();
579
580    if (ld_tracing) {		/* We're done */
581	trace_loaded_objects(obj_main);
582	exit(0);
583    }
584
585    if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
586       dump_relocations(obj_main);
587       exit (0);
588    }
589
590    /*
591     * Processing tls relocations requires having the tls offsets
592     * initialized.  Prepare offsets before starting initial
593     * relocation processing.
594     */
595    dbg("initializing initial thread local storage offsets");
596    STAILQ_FOREACH(entry, &list_main, link) {
597	/*
598	 * Allocate all the initial objects out of the static TLS
599	 * block even if they didn't ask for it.
600	 */
601	allocate_tls_offset(entry->obj);
602    }
603
604    if (relocate_objects(obj_main,
605      ld_bind_now != NULL && *ld_bind_now != '\0',
606      &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
607	rtld_die();
608
609    dbg("doing copy relocations");
610    if (do_copy_relocations(obj_main) == -1)
611	rtld_die();
612
613    dbg("enforcing main obj relro");
614    if (obj_enforce_relro(obj_main) == -1)
615	rtld_die();
616
617    if (getenv(LD_ "DUMP_REL_POST") != NULL) {
618       dump_relocations(obj_main);
619       exit (0);
620    }
621
622    /*
623     * Setup TLS for main thread.  This must be done after the
624     * relocations are processed, since tls initialization section
625     * might be the subject for relocations.
626     */
627    dbg("initializing initial thread local storage");
628    allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
629
630    dbg("initializing key program variables");
631    set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
632    set_program_var("environ", env);
633    set_program_var("__elf_aux_vector", aux);
634
635    /* Make a list of init functions to call. */
636    objlist_init(&initlist);
637    initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
638      preload_tail, &initlist);
639
640    r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
641
642    map_stacks_exec(NULL);
643    ifunc_init(aux);
644
645    dbg("resolving ifuncs");
646    if (resolve_objects_ifunc(obj_main,
647      ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
648      NULL) == -1)
649	rtld_die();
650
651    if (!obj_main->crt_no_init) {
652	/*
653	 * Make sure we don't call the main program's init and fini
654	 * functions for binaries linked with old crt1 which calls
655	 * _init itself.
656	 */
657	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
658	obj_main->preinit_array = obj_main->init_array =
659	    obj_main->fini_array = (Elf_Addr)NULL;
660    }
661
662    wlock_acquire(rtld_bind_lock, &lockstate);
663    if (obj_main->crt_no_init)
664	preinit_main();
665    objlist_call_init(&initlist, &lockstate);
666    _r_debug_postinit(&obj_main->linkmap);
667    objlist_clear(&initlist);
668    dbg("loading filtees");
669    TAILQ_FOREACH(obj, &obj_list, next) {
670	if (obj->marker)
671	    continue;
672	if (ld_loadfltr || obj->z_loadfltr)
673	    load_filtees(obj, 0, &lockstate);
674    }
675    lock_release(rtld_bind_lock, &lockstate);
676
677    dbg("transferring control to program entry point = %p", obj_main->entry);
678
679    /* Return the exit procedure and the program entry point. */
680    *exit_proc = rtld_exit;
681    *objp = obj_main;
682    return (func_ptr_type) obj_main->entry;
683}
684
685void *
686rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
687{
688	void *ptr;
689	Elf_Addr target;
690
691	ptr = (void *)make_function_pointer(def, obj);
692	target = call_ifunc_resolver(ptr);
693	return ((void *)target);
694}
695
696Elf_Addr
697_rtld_bind(Obj_Entry *obj, Elf_Size reloff)
698{
699    const Elf_Rel *rel;
700    const Elf_Sym *def;
701    const Obj_Entry *defobj;
702    Elf_Addr *where;
703    Elf_Addr target;
704    RtldLockState lockstate;
705
706    rlock_acquire(rtld_bind_lock, &lockstate);
707    if (sigsetjmp(lockstate.env, 0) != 0)
708	    lock_upgrade(rtld_bind_lock, &lockstate);
709    if (obj->pltrel)
710	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
711    else
712	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
713
714    where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
715    def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
716	NULL, &lockstate);
717    if (def == NULL)
718	rtld_die();
719    if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
720	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
721    else
722	target = (Elf_Addr)(defobj->relocbase + def->st_value);
723
724    dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
725      defobj->strtab + def->st_name, basename(obj->path),
726      (void *)target, basename(defobj->path));
727
728    /*
729     * Write the new contents for the jmpslot. Note that depending on
730     * architecture, the value which we need to return back to the
731     * lazy binding trampoline may or may not be the target
732     * address. The value returned from reloc_jmpslot() is the value
733     * that the trampoline needs.
734     */
735    target = reloc_jmpslot(where, target, defobj, obj, rel);
736    lock_release(rtld_bind_lock, &lockstate);
737    return target;
738}
739
740/*
741 * Error reporting function.  Use it like printf.  If formats the message
742 * into a buffer, and sets things up so that the next call to dlerror()
743 * will return the message.
744 */
745void
746_rtld_error(const char *fmt, ...)
747{
748    static char buf[512];
749    va_list ap;
750
751    va_start(ap, fmt);
752    rtld_vsnprintf(buf, sizeof buf, fmt, ap);
753    error_message = buf;
754    va_end(ap);
755}
756
757/*
758 * Return a dynamically-allocated copy of the current error message, if any.
759 */
760static char *
761errmsg_save(void)
762{
763    return error_message == NULL ? NULL : xstrdup(error_message);
764}
765
766/*
767 * Restore the current error message from a copy which was previously saved
768 * by errmsg_save().  The copy is freed.
769 */
770static void
771errmsg_restore(char *saved_msg)
772{
773    if (saved_msg == NULL)
774	error_message = NULL;
775    else {
776	_rtld_error("%s", saved_msg);
777	free(saved_msg);
778    }
779}
780
781static const char *
782basename(const char *name)
783{
784    const char *p = strrchr(name, '/');
785    return p != NULL ? p + 1 : name;
786}
787
788static struct utsname uts;
789
790static char *
791origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
792    const char *subst, bool may_free)
793{
794	char *p, *p1, *res, *resp;
795	int subst_len, kw_len, subst_count, old_len, new_len;
796
797	kw_len = strlen(kw);
798
799	/*
800	 * First, count the number of the keyword occurences, to
801	 * preallocate the final string.
802	 */
803	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
804		p1 = strstr(p, kw);
805		if (p1 == NULL)
806			break;
807	}
808
809	/*
810	 * If the keyword is not found, just return.
811	 *
812	 * Return non-substituted string if resolution failed.  We
813	 * cannot do anything more reasonable, the failure mode of the
814	 * caller is unresolved library anyway.
815	 */
816	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
817		return (may_free ? real : xstrdup(real));
818	if (obj != NULL)
819		subst = obj->origin_path;
820
821	/*
822	 * There is indeed something to substitute.  Calculate the
823	 * length of the resulting string, and allocate it.
824	 */
825	subst_len = strlen(subst);
826	old_len = strlen(real);
827	new_len = old_len + (subst_len - kw_len) * subst_count;
828	res = xmalloc(new_len + 1);
829
830	/*
831	 * Now, execute the substitution loop.
832	 */
833	for (p = real, resp = res, *resp = '\0';;) {
834		p1 = strstr(p, kw);
835		if (p1 != NULL) {
836			/* Copy the prefix before keyword. */
837			memcpy(resp, p, p1 - p);
838			resp += p1 - p;
839			/* Keyword replacement. */
840			memcpy(resp, subst, subst_len);
841			resp += subst_len;
842			*resp = '\0';
843			p = p1 + kw_len;
844		} else
845			break;
846	}
847
848	/* Copy to the end of string and finish. */
849	strcat(resp, p);
850	if (may_free)
851		free(real);
852	return (res);
853}
854
855static char *
856origin_subst(Obj_Entry *obj, char *real)
857{
858	char *res1, *res2, *res3, *res4;
859
860	if (obj == NULL || !trust)
861		return (xstrdup(real));
862	if (uts.sysname[0] == '\0') {
863		if (uname(&uts) != 0) {
864			_rtld_error("utsname failed: %d", errno);
865			return (NULL);
866		}
867	}
868	res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false);
869	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
870	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
871	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
872	return (res4);
873}
874
875void
876rtld_die(void)
877{
878    const char *msg = dlerror();
879
880    if (msg == NULL)
881	msg = "Fatal error";
882    rtld_fdputstr(STDERR_FILENO, msg);
883    rtld_fdputchar(STDERR_FILENO, '\n');
884    _exit(1);
885}
886
887/*
888 * Process a shared object's DYNAMIC section, and save the important
889 * information in its Obj_Entry structure.
890 */
891static void
892digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
893    const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
894{
895    const Elf_Dyn *dynp;
896    Needed_Entry **needed_tail = &obj->needed;
897    Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
898    Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
899    const Elf_Hashelt *hashtab;
900    const Elf32_Word *hashval;
901    Elf32_Word bkt, nmaskwords;
902    int bloom_size32;
903    int plttype = DT_REL;
904
905    *dyn_rpath = NULL;
906    *dyn_soname = NULL;
907    *dyn_runpath = NULL;
908
909    obj->bind_now = false;
910    for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
911	switch (dynp->d_tag) {
912
913	case DT_REL:
914	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
915	    break;
916
917	case DT_RELSZ:
918	    obj->relsize = dynp->d_un.d_val;
919	    break;
920
921	case DT_RELENT:
922	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
923	    break;
924
925	case DT_JMPREL:
926	    obj->pltrel = (const Elf_Rel *)
927	      (obj->relocbase + dynp->d_un.d_ptr);
928	    break;
929
930	case DT_PLTRELSZ:
931	    obj->pltrelsize = dynp->d_un.d_val;
932	    break;
933
934	case DT_RELA:
935	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
936	    break;
937
938	case DT_RELASZ:
939	    obj->relasize = dynp->d_un.d_val;
940	    break;
941
942	case DT_RELAENT:
943	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
944	    break;
945
946	case DT_PLTREL:
947	    plttype = dynp->d_un.d_val;
948	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
949	    break;
950
951	case DT_SYMTAB:
952	    obj->symtab = (const Elf_Sym *)
953	      (obj->relocbase + dynp->d_un.d_ptr);
954	    break;
955
956	case DT_SYMENT:
957	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
958	    break;
959
960	case DT_STRTAB:
961	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
962	    break;
963
964	case DT_STRSZ:
965	    obj->strsize = dynp->d_un.d_val;
966	    break;
967
968	case DT_VERNEED:
969	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
970		dynp->d_un.d_val);
971	    break;
972
973	case DT_VERNEEDNUM:
974	    obj->verneednum = dynp->d_un.d_val;
975	    break;
976
977	case DT_VERDEF:
978	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
979		dynp->d_un.d_val);
980	    break;
981
982	case DT_VERDEFNUM:
983	    obj->verdefnum = dynp->d_un.d_val;
984	    break;
985
986	case DT_VERSYM:
987	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
988		dynp->d_un.d_val);
989	    break;
990
991	case DT_HASH:
992	    {
993		hashtab = (const Elf_Hashelt *)(obj->relocbase +
994		    dynp->d_un.d_ptr);
995		obj->nbuckets = hashtab[0];
996		obj->nchains = hashtab[1];
997		obj->buckets = hashtab + 2;
998		obj->chains = obj->buckets + obj->nbuckets;
999		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1000		  obj->buckets != NULL;
1001	    }
1002	    break;
1003
1004	case DT_GNU_HASH:
1005	    {
1006		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1007		    dynp->d_un.d_ptr);
1008		obj->nbuckets_gnu = hashtab[0];
1009		obj->symndx_gnu = hashtab[1];
1010		nmaskwords = hashtab[2];
1011		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1012		obj->maskwords_bm_gnu = nmaskwords - 1;
1013		obj->shift2_gnu = hashtab[3];
1014		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1015		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1016		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1017		  obj->symndx_gnu;
1018		/* Number of bitmask words is required to be power of 2 */
1019		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1020		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1021	    }
1022	    break;
1023
1024	case DT_NEEDED:
1025	    if (!obj->rtld) {
1026		Needed_Entry *nep = NEW(Needed_Entry);
1027		nep->name = dynp->d_un.d_val;
1028		nep->obj = NULL;
1029		nep->next = NULL;
1030
1031		*needed_tail = nep;
1032		needed_tail = &nep->next;
1033	    }
1034	    break;
1035
1036	case DT_FILTER:
1037	    if (!obj->rtld) {
1038		Needed_Entry *nep = NEW(Needed_Entry);
1039		nep->name = dynp->d_un.d_val;
1040		nep->obj = NULL;
1041		nep->next = NULL;
1042
1043		*needed_filtees_tail = nep;
1044		needed_filtees_tail = &nep->next;
1045	    }
1046	    break;
1047
1048	case DT_AUXILIARY:
1049	    if (!obj->rtld) {
1050		Needed_Entry *nep = NEW(Needed_Entry);
1051		nep->name = dynp->d_un.d_val;
1052		nep->obj = NULL;
1053		nep->next = NULL;
1054
1055		*needed_aux_filtees_tail = nep;
1056		needed_aux_filtees_tail = &nep->next;
1057	    }
1058	    break;
1059
1060	case DT_PLTGOT:
1061	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1062	    break;
1063
1064	case DT_TEXTREL:
1065	    obj->textrel = true;
1066	    break;
1067
1068	case DT_SYMBOLIC:
1069	    obj->symbolic = true;
1070	    break;
1071
1072	case DT_RPATH:
1073	    /*
1074	     * We have to wait until later to process this, because we
1075	     * might not have gotten the address of the string table yet.
1076	     */
1077	    *dyn_rpath = dynp;
1078	    break;
1079
1080	case DT_SONAME:
1081	    *dyn_soname = dynp;
1082	    break;
1083
1084	case DT_RUNPATH:
1085	    *dyn_runpath = dynp;
1086	    break;
1087
1088	case DT_INIT:
1089	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1090	    break;
1091
1092	case DT_PREINIT_ARRAY:
1093	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1094	    break;
1095
1096	case DT_PREINIT_ARRAYSZ:
1097	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1098	    break;
1099
1100	case DT_INIT_ARRAY:
1101	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1102	    break;
1103
1104	case DT_INIT_ARRAYSZ:
1105	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1106	    break;
1107
1108	case DT_FINI:
1109	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1110	    break;
1111
1112	case DT_FINI_ARRAY:
1113	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1114	    break;
1115
1116	case DT_FINI_ARRAYSZ:
1117	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1118	    break;
1119
1120	/*
1121	 * Don't process DT_DEBUG on MIPS as the dynamic section
1122	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1123	 */
1124
1125#ifndef __mips__
1126	case DT_DEBUG:
1127	    if (!early)
1128		dbg("Filling in DT_DEBUG entry");
1129	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1130	    break;
1131#endif
1132
1133	case DT_FLAGS:
1134		if (dynp->d_un.d_val & DF_ORIGIN)
1135		    obj->z_origin = true;
1136		if (dynp->d_un.d_val & DF_SYMBOLIC)
1137		    obj->symbolic = true;
1138		if (dynp->d_un.d_val & DF_TEXTREL)
1139		    obj->textrel = true;
1140		if (dynp->d_un.d_val & DF_BIND_NOW)
1141		    obj->bind_now = true;
1142		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1143		    ;*/
1144	    break;
1145#ifdef __mips__
1146	case DT_MIPS_LOCAL_GOTNO:
1147		obj->local_gotno = dynp->d_un.d_val;
1148	    break;
1149
1150	case DT_MIPS_SYMTABNO:
1151		obj->symtabno = dynp->d_un.d_val;
1152		break;
1153
1154	case DT_MIPS_GOTSYM:
1155		obj->gotsym = dynp->d_un.d_val;
1156		break;
1157
1158	case DT_MIPS_RLD_MAP:
1159		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1160		break;
1161#endif
1162
1163	case DT_FLAGS_1:
1164		if (dynp->d_un.d_val & DF_1_NOOPEN)
1165		    obj->z_noopen = true;
1166		if (dynp->d_un.d_val & DF_1_ORIGIN)
1167		    obj->z_origin = true;
1168		if (dynp->d_un.d_val & DF_1_GLOBAL)
1169		    obj->z_global = true;
1170		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1171		    obj->bind_now = true;
1172		if (dynp->d_un.d_val & DF_1_NODELETE)
1173		    obj->z_nodelete = true;
1174		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1175		    obj->z_loadfltr = true;
1176		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1177		    obj->z_interpose = true;
1178		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1179		    obj->z_nodeflib = true;
1180	    break;
1181
1182	default:
1183	    if (!early) {
1184		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1185		    (long)dynp->d_tag);
1186	    }
1187	    break;
1188	}
1189    }
1190
1191    obj->traced = false;
1192
1193    if (plttype == DT_RELA) {
1194	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1195	obj->pltrel = NULL;
1196	obj->pltrelasize = obj->pltrelsize;
1197	obj->pltrelsize = 0;
1198    }
1199
1200    /* Determine size of dynsym table (equal to nchains of sysv hash) */
1201    if (obj->valid_hash_sysv)
1202	obj->dynsymcount = obj->nchains;
1203    else if (obj->valid_hash_gnu) {
1204	obj->dynsymcount = 0;
1205	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1206	    if (obj->buckets_gnu[bkt] == 0)
1207		continue;
1208	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1209	    do
1210		obj->dynsymcount++;
1211	    while ((*hashval++ & 1u) == 0);
1212	}
1213	obj->dynsymcount += obj->symndx_gnu;
1214    }
1215}
1216
1217static bool
1218obj_resolve_origin(Obj_Entry *obj)
1219{
1220
1221	if (obj->origin_path != NULL)
1222		return (true);
1223	obj->origin_path = xmalloc(PATH_MAX);
1224	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1225}
1226
1227static void
1228digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1229    const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1230{
1231
1232	if (obj->z_origin && !obj_resolve_origin(obj))
1233		rtld_die();
1234
1235	if (dyn_runpath != NULL) {
1236		obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1237		obj->runpath = origin_subst(obj, obj->runpath);
1238	} else if (dyn_rpath != NULL) {
1239		obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1240		obj->rpath = origin_subst(obj, obj->rpath);
1241	}
1242	if (dyn_soname != NULL)
1243		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1244}
1245
1246static void
1247digest_dynamic(Obj_Entry *obj, int early)
1248{
1249	const Elf_Dyn *dyn_rpath;
1250	const Elf_Dyn *dyn_soname;
1251	const Elf_Dyn *dyn_runpath;
1252
1253	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1254	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1255}
1256
1257/*
1258 * Process a shared object's program header.  This is used only for the
1259 * main program, when the kernel has already loaded the main program
1260 * into memory before calling the dynamic linker.  It creates and
1261 * returns an Obj_Entry structure.
1262 */
1263static Obj_Entry *
1264digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1265{
1266    Obj_Entry *obj;
1267    const Elf_Phdr *phlimit = phdr + phnum;
1268    const Elf_Phdr *ph;
1269    Elf_Addr note_start, note_end;
1270    int nsegs = 0;
1271
1272    obj = obj_new();
1273    for (ph = phdr;  ph < phlimit;  ph++) {
1274	if (ph->p_type != PT_PHDR)
1275	    continue;
1276
1277	obj->phdr = phdr;
1278	obj->phsize = ph->p_memsz;
1279	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1280	break;
1281    }
1282
1283    obj->stack_flags = PF_X | PF_R | PF_W;
1284
1285    for (ph = phdr;  ph < phlimit;  ph++) {
1286	switch (ph->p_type) {
1287
1288	case PT_INTERP:
1289	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1290	    break;
1291
1292	case PT_LOAD:
1293	    if (nsegs == 0) {	/* First load segment */
1294		obj->vaddrbase = trunc_page(ph->p_vaddr);
1295		obj->mapbase = obj->vaddrbase + obj->relocbase;
1296		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1297		  obj->vaddrbase;
1298	    } else {		/* Last load segment */
1299		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1300		  obj->vaddrbase;
1301	    }
1302	    nsegs++;
1303	    break;
1304
1305	case PT_DYNAMIC:
1306	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1307	    break;
1308
1309	case PT_TLS:
1310	    obj->tlsindex = 1;
1311	    obj->tlssize = ph->p_memsz;
1312	    obj->tlsalign = ph->p_align;
1313	    obj->tlsinitsize = ph->p_filesz;
1314	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1315	    break;
1316
1317	case PT_GNU_STACK:
1318	    obj->stack_flags = ph->p_flags;
1319	    break;
1320
1321	case PT_GNU_RELRO:
1322	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1323	    obj->relro_size = round_page(ph->p_memsz);
1324	    break;
1325
1326	case PT_NOTE:
1327	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1328	    note_end = note_start + ph->p_filesz;
1329	    digest_notes(obj, note_start, note_end);
1330	    break;
1331	}
1332    }
1333    if (nsegs < 1) {
1334	_rtld_error("%s: too few PT_LOAD segments", path);
1335	return NULL;
1336    }
1337
1338    obj->entry = entry;
1339    return obj;
1340}
1341
1342void
1343digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1344{
1345	const Elf_Note *note;
1346	const char *note_name;
1347	uintptr_t p;
1348
1349	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1350	    note = (const Elf_Note *)((const char *)(note + 1) +
1351	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1352	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1353		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1354		    note->n_descsz != sizeof(int32_t))
1355			continue;
1356		if (note->n_type != ABI_NOTETYPE &&
1357		    note->n_type != CRT_NOINIT_NOTETYPE)
1358			continue;
1359		note_name = (const char *)(note + 1);
1360		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1361		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1362			continue;
1363		switch (note->n_type) {
1364		case ABI_NOTETYPE:
1365			/* FreeBSD osrel note */
1366			p = (uintptr_t)(note + 1);
1367			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1368			obj->osrel = *(const int32_t *)(p);
1369			dbg("note osrel %d", obj->osrel);
1370			break;
1371		case CRT_NOINIT_NOTETYPE:
1372			/* FreeBSD 'crt does not call init' note */
1373			obj->crt_no_init = true;
1374			dbg("note crt_no_init");
1375			break;
1376		}
1377	}
1378}
1379
1380static Obj_Entry *
1381dlcheck(void *handle)
1382{
1383    Obj_Entry *obj;
1384
1385    TAILQ_FOREACH(obj, &obj_list, next) {
1386	if (obj == (Obj_Entry *) handle)
1387	    break;
1388    }
1389
1390    if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1391	_rtld_error("Invalid shared object handle %p", handle);
1392	return NULL;
1393    }
1394    return obj;
1395}
1396
1397/*
1398 * If the given object is already in the donelist, return true.  Otherwise
1399 * add the object to the list and return false.
1400 */
1401static bool
1402donelist_check(DoneList *dlp, const Obj_Entry *obj)
1403{
1404    unsigned int i;
1405
1406    for (i = 0;  i < dlp->num_used;  i++)
1407	if (dlp->objs[i] == obj)
1408	    return true;
1409    /*
1410     * Our donelist allocation should always be sufficient.  But if
1411     * our threads locking isn't working properly, more shared objects
1412     * could have been loaded since we allocated the list.  That should
1413     * never happen, but we'll handle it properly just in case it does.
1414     */
1415    if (dlp->num_used < dlp->num_alloc)
1416	dlp->objs[dlp->num_used++] = obj;
1417    return false;
1418}
1419
1420/*
1421 * Hash function for symbol table lookup.  Don't even think about changing
1422 * this.  It is specified by the System V ABI.
1423 */
1424unsigned long
1425elf_hash(const char *name)
1426{
1427    const unsigned char *p = (const unsigned char *) name;
1428    unsigned long h = 0;
1429    unsigned long g;
1430
1431    while (*p != '\0') {
1432	h = (h << 4) + *p++;
1433	if ((g = h & 0xf0000000) != 0)
1434	    h ^= g >> 24;
1435	h &= ~g;
1436    }
1437    return h;
1438}
1439
1440/*
1441 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1442 * unsigned in case it's implemented with a wider type.
1443 */
1444static uint32_t
1445gnu_hash(const char *s)
1446{
1447	uint32_t h;
1448	unsigned char c;
1449
1450	h = 5381;
1451	for (c = *s; c != '\0'; c = *++s)
1452		h = h * 33 + c;
1453	return (h & 0xffffffff);
1454}
1455
1456/*
1457 * Find the library with the given name, and return its full pathname.
1458 * The returned string is dynamically allocated.  Generates an error
1459 * message and returns NULL if the library cannot be found.
1460 *
1461 * If the second argument is non-NULL, then it refers to an already-
1462 * loaded shared object, whose library search path will be searched.
1463 *
1464 * The search order is:
1465 *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1466 *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1467 *   LD_LIBRARY_PATH
1468 *   DT_RUNPATH in the referencing file
1469 *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1470 *	 from list)
1471 *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1472 *
1473 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1474 */
1475static char *
1476find_library(const char *xname, const Obj_Entry *refobj)
1477{
1478    char *pathname;
1479    char *name;
1480    bool nodeflib, objgiven;
1481
1482    objgiven = refobj != NULL;
1483    if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1484	if (xname[0] != '/' && !trust) {
1485	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1486	      xname);
1487	    return NULL;
1488	}
1489	return (origin_subst(__DECONST(Obj_Entry *, refobj),
1490	  __DECONST(char *, xname)));
1491    }
1492
1493    if (libmap_disable || !objgiven ||
1494	(name = lm_find(refobj->path, xname)) == NULL)
1495	name = (char *)xname;
1496
1497    dbg(" Searching for \"%s\"", name);
1498
1499    /*
1500     * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1501     * back to pre-conforming behaviour if user requested so with
1502     * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1503     * nodeflib.
1504     */
1505    if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1506	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1507	  (refobj != NULL &&
1508	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1509          (pathname = search_library_path(name, gethints(false))) != NULL ||
1510	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1511	    return (pathname);
1512    } else {
1513	nodeflib = objgiven ? refobj->z_nodeflib : false;
1514	if ((objgiven &&
1515	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1516	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1517	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1518	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1519	  (objgiven &&
1520	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1521	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1522	  (objgiven && !nodeflib &&
1523	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1524	    return (pathname);
1525    }
1526
1527    if (objgiven && refobj->path != NULL) {
1528	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1529	  name, basename(refobj->path));
1530    } else {
1531	_rtld_error("Shared object \"%s\" not found", name);
1532    }
1533    return NULL;
1534}
1535
1536/*
1537 * Given a symbol number in a referencing object, find the corresponding
1538 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1539 * no definition was found.  Returns a pointer to the Obj_Entry of the
1540 * defining object via the reference parameter DEFOBJ_OUT.
1541 */
1542const Elf_Sym *
1543find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1544    const Obj_Entry **defobj_out, int flags, SymCache *cache,
1545    RtldLockState *lockstate)
1546{
1547    const Elf_Sym *ref;
1548    const Elf_Sym *def;
1549    const Obj_Entry *defobj;
1550    SymLook req;
1551    const char *name;
1552    int res;
1553
1554    /*
1555     * If we have already found this symbol, get the information from
1556     * the cache.
1557     */
1558    if (symnum >= refobj->dynsymcount)
1559	return NULL;	/* Bad object */
1560    if (cache != NULL && cache[symnum].sym != NULL) {
1561	*defobj_out = cache[symnum].obj;
1562	return cache[symnum].sym;
1563    }
1564
1565    ref = refobj->symtab + symnum;
1566    name = refobj->strtab + ref->st_name;
1567    def = NULL;
1568    defobj = NULL;
1569
1570    /*
1571     * We don't have to do a full scale lookup if the symbol is local.
1572     * We know it will bind to the instance in this load module; to
1573     * which we already have a pointer (ie ref). By not doing a lookup,
1574     * we not only improve performance, but it also avoids unresolvable
1575     * symbols when local symbols are not in the hash table. This has
1576     * been seen with the ia64 toolchain.
1577     */
1578    if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1579	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1580	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1581		symnum);
1582	}
1583	symlook_init(&req, name);
1584	req.flags = flags;
1585	req.ventry = fetch_ventry(refobj, symnum);
1586	req.lockstate = lockstate;
1587	res = symlook_default(&req, refobj);
1588	if (res == 0) {
1589	    def = req.sym_out;
1590	    defobj = req.defobj_out;
1591	}
1592    } else {
1593	def = ref;
1594	defobj = refobj;
1595    }
1596
1597    /*
1598     * If we found no definition and the reference is weak, treat the
1599     * symbol as having the value zero.
1600     */
1601    if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1602	def = &sym_zero;
1603	defobj = obj_main;
1604    }
1605
1606    if (def != NULL) {
1607	*defobj_out = defobj;
1608	/* Record the information in the cache to avoid subsequent lookups. */
1609	if (cache != NULL) {
1610	    cache[symnum].sym = def;
1611	    cache[symnum].obj = defobj;
1612	}
1613    } else {
1614	if (refobj != &obj_rtld)
1615	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1616    }
1617    return def;
1618}
1619
1620/*
1621 * Return the search path from the ldconfig hints file, reading it if
1622 * necessary.  If nostdlib is true, then the default search paths are
1623 * not added to result.
1624 *
1625 * Returns NULL if there are problems with the hints file,
1626 * or if the search path there is empty.
1627 */
1628static const char *
1629gethints(bool nostdlib)
1630{
1631	static char *hints, *filtered_path;
1632	static struct elfhints_hdr hdr;
1633	struct fill_search_info_args sargs, hargs;
1634	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1635	struct dl_serpath *SLPpath, *hintpath;
1636	char *p;
1637	struct stat hint_stat;
1638	unsigned int SLPndx, hintndx, fndx, fcount;
1639	int fd;
1640	size_t flen;
1641	uint32_t dl;
1642	bool skip;
1643
1644	/* First call, read the hints file */
1645	if (hints == NULL) {
1646		/* Keep from trying again in case the hints file is bad. */
1647		hints = "";
1648
1649		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1650			return (NULL);
1651
1652		/*
1653		 * Check of hdr.dirlistlen value against type limit
1654		 * intends to pacify static analyzers.  Further
1655		 * paranoia leads to checks that dirlist is fully
1656		 * contained in the file range.
1657		 */
1658		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1659		    hdr.magic != ELFHINTS_MAGIC ||
1660		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1661		    fstat(fd, &hint_stat) == -1) {
1662cleanup1:
1663			close(fd);
1664			hdr.dirlistlen = 0;
1665			return (NULL);
1666		}
1667		dl = hdr.strtab;
1668		if (dl + hdr.dirlist < dl)
1669			goto cleanup1;
1670		dl += hdr.dirlist;
1671		if (dl + hdr.dirlistlen < dl)
1672			goto cleanup1;
1673		dl += hdr.dirlistlen;
1674		if (dl > hint_stat.st_size)
1675			goto cleanup1;
1676		p = xmalloc(hdr.dirlistlen + 1);
1677
1678		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1679		    read(fd, p, hdr.dirlistlen + 1) !=
1680		    (ssize_t)hdr.dirlistlen + 1 || p[hdr.dirlistlen] != '\0') {
1681			free(p);
1682			goto cleanup1;
1683		}
1684		hints = p;
1685		close(fd);
1686	}
1687
1688	/*
1689	 * If caller agreed to receive list which includes the default
1690	 * paths, we are done. Otherwise, if we still did not
1691	 * calculated filtered result, do it now.
1692	 */
1693	if (!nostdlib)
1694		return (hints[0] != '\0' ? hints : NULL);
1695	if (filtered_path != NULL)
1696		goto filt_ret;
1697
1698	/*
1699	 * Obtain the list of all configured search paths, and the
1700	 * list of the default paths.
1701	 *
1702	 * First estimate the size of the results.
1703	 */
1704	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1705	smeta.dls_cnt = 0;
1706	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1707	hmeta.dls_cnt = 0;
1708
1709	sargs.request = RTLD_DI_SERINFOSIZE;
1710	sargs.serinfo = &smeta;
1711	hargs.request = RTLD_DI_SERINFOSIZE;
1712	hargs.serinfo = &hmeta;
1713
1714	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1715	path_enumerate(hints, fill_search_info, &hargs);
1716
1717	SLPinfo = xmalloc(smeta.dls_size);
1718	hintinfo = xmalloc(hmeta.dls_size);
1719
1720	/*
1721	 * Next fetch both sets of paths.
1722	 */
1723	sargs.request = RTLD_DI_SERINFO;
1724	sargs.serinfo = SLPinfo;
1725	sargs.serpath = &SLPinfo->dls_serpath[0];
1726	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1727
1728	hargs.request = RTLD_DI_SERINFO;
1729	hargs.serinfo = hintinfo;
1730	hargs.serpath = &hintinfo->dls_serpath[0];
1731	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1732
1733	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1734	path_enumerate(hints, fill_search_info, &hargs);
1735
1736	/*
1737	 * Now calculate the difference between two sets, by excluding
1738	 * standard paths from the full set.
1739	 */
1740	fndx = 0;
1741	fcount = 0;
1742	filtered_path = xmalloc(hdr.dirlistlen + 1);
1743	hintpath = &hintinfo->dls_serpath[0];
1744	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1745		skip = false;
1746		SLPpath = &SLPinfo->dls_serpath[0];
1747		/*
1748		 * Check each standard path against current.
1749		 */
1750		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1751			/* matched, skip the path */
1752			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1753				skip = true;
1754				break;
1755			}
1756		}
1757		if (skip)
1758			continue;
1759		/*
1760		 * Not matched against any standard path, add the path
1761		 * to result. Separate consequtive paths with ':'.
1762		 */
1763		if (fcount > 0) {
1764			filtered_path[fndx] = ':';
1765			fndx++;
1766		}
1767		fcount++;
1768		flen = strlen(hintpath->dls_name);
1769		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1770		fndx += flen;
1771	}
1772	filtered_path[fndx] = '\0';
1773
1774	free(SLPinfo);
1775	free(hintinfo);
1776
1777filt_ret:
1778	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1779}
1780
1781static void
1782init_dag(Obj_Entry *root)
1783{
1784    const Needed_Entry *needed;
1785    const Objlist_Entry *elm;
1786    DoneList donelist;
1787
1788    if (root->dag_inited)
1789	return;
1790    donelist_init(&donelist);
1791
1792    /* Root object belongs to own DAG. */
1793    objlist_push_tail(&root->dldags, root);
1794    objlist_push_tail(&root->dagmembers, root);
1795    donelist_check(&donelist, root);
1796
1797    /*
1798     * Add dependencies of root object to DAG in breadth order
1799     * by exploiting the fact that each new object get added
1800     * to the tail of the dagmembers list.
1801     */
1802    STAILQ_FOREACH(elm, &root->dagmembers, link) {
1803	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1804	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1805		continue;
1806	    objlist_push_tail(&needed->obj->dldags, root);
1807	    objlist_push_tail(&root->dagmembers, needed->obj);
1808	}
1809    }
1810    root->dag_inited = true;
1811}
1812
1813Obj_Entry *
1814globallist_curr(const Obj_Entry *obj)
1815{
1816
1817	for (;;) {
1818		if (obj == NULL)
1819			return (NULL);
1820		if (!obj->marker)
1821			return (__DECONST(Obj_Entry *, obj));
1822		obj = TAILQ_PREV(obj, obj_entry_q, next);
1823	}
1824}
1825
1826Obj_Entry *
1827globallist_next(const Obj_Entry *obj)
1828{
1829
1830	for (;;) {
1831		obj = TAILQ_NEXT(obj, next);
1832		if (obj == NULL)
1833			return (NULL);
1834		if (!obj->marker)
1835			return (__DECONST(Obj_Entry *, obj));
1836	}
1837}
1838
1839static void
1840process_z(Obj_Entry *root)
1841{
1842	const Objlist_Entry *elm;
1843	Obj_Entry *obj;
1844
1845	/*
1846	 * Walk over object DAG and process every dependent object
1847	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
1848	 * to grow their own DAG.
1849	 *
1850	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
1851	 * symlook_global() to work.
1852	 *
1853	 * For DF_1_NODELETE, the DAG should have its reference upped.
1854	 */
1855	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1856		obj = elm->obj;
1857		if (obj == NULL)
1858			continue;
1859		if (obj->z_nodelete && !obj->ref_nodel) {
1860			dbg("obj %s -z nodelete", obj->path);
1861			init_dag(obj);
1862			ref_dag(obj);
1863			obj->ref_nodel = true;
1864		}
1865		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
1866			dbg("obj %s -z global", obj->path);
1867			objlist_push_tail(&list_global, obj);
1868			init_dag(obj);
1869		}
1870	}
1871}
1872/*
1873 * Initialize the dynamic linker.  The argument is the address at which
1874 * the dynamic linker has been mapped into memory.  The primary task of
1875 * this function is to relocate the dynamic linker.
1876 */
1877static void
1878init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1879{
1880    Obj_Entry objtmp;	/* Temporary rtld object */
1881    const Elf_Ehdr *ehdr;
1882    const Elf_Dyn *dyn_rpath;
1883    const Elf_Dyn *dyn_soname;
1884    const Elf_Dyn *dyn_runpath;
1885
1886#ifdef RTLD_INIT_PAGESIZES_EARLY
1887    /* The page size is required by the dynamic memory allocator. */
1888    init_pagesizes(aux_info);
1889#endif
1890
1891    /*
1892     * Conjure up an Obj_Entry structure for the dynamic linker.
1893     *
1894     * The "path" member can't be initialized yet because string constants
1895     * cannot yet be accessed. Below we will set it correctly.
1896     */
1897    memset(&objtmp, 0, sizeof(objtmp));
1898    objtmp.path = NULL;
1899    objtmp.rtld = true;
1900    objtmp.mapbase = mapbase;
1901#ifdef PIC
1902    objtmp.relocbase = mapbase;
1903#endif
1904    if (RTLD_IS_DYNAMIC()) {
1905	objtmp.dynamic = rtld_dynamic(&objtmp);
1906	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1907	assert(objtmp.needed == NULL);
1908#if !defined(__mips__)
1909	/* MIPS has a bogus DT_TEXTREL. */
1910	assert(!objtmp.textrel);
1911#endif
1912
1913	/*
1914	 * Temporarily put the dynamic linker entry into the object list, so
1915	 * that symbols can be found.
1916	 */
1917
1918	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1919    }
1920    ehdr = (Elf_Ehdr *)mapbase;
1921    objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
1922    objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
1923
1924    /* Initialize the object list. */
1925    TAILQ_INIT(&obj_list);
1926
1927    /* Now that non-local variables can be accesses, copy out obj_rtld. */
1928    memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1929
1930#ifndef RTLD_INIT_PAGESIZES_EARLY
1931    /* The page size is required by the dynamic memory allocator. */
1932    init_pagesizes(aux_info);
1933#endif
1934
1935    if (aux_info[AT_OSRELDATE] != NULL)
1936	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1937
1938    digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1939
1940    /* Replace the path with a dynamically allocated copy. */
1941    obj_rtld.path = xstrdup(PATH_RTLD);
1942
1943    r_debug.r_brk = r_debug_state;
1944    r_debug.r_state = RT_CONSISTENT;
1945}
1946
1947/*
1948 * Retrieve the array of supported page sizes.  The kernel provides the page
1949 * sizes in increasing order.
1950 */
1951static void
1952init_pagesizes(Elf_Auxinfo **aux_info)
1953{
1954	static size_t psa[MAXPAGESIZES];
1955	int mib[2];
1956	size_t len, size;
1957
1958	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
1959	    NULL) {
1960		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
1961		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
1962	} else {
1963		len = 2;
1964		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
1965			size = sizeof(psa);
1966		else {
1967			/* As a fallback, retrieve the base page size. */
1968			size = sizeof(psa[0]);
1969			if (aux_info[AT_PAGESZ] != NULL) {
1970				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
1971				goto psa_filled;
1972			} else {
1973				mib[0] = CTL_HW;
1974				mib[1] = HW_PAGESIZE;
1975				len = 2;
1976			}
1977		}
1978		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
1979			_rtld_error("sysctl for hw.pagesize(s) failed");
1980			rtld_die();
1981		}
1982psa_filled:
1983		pagesizes = psa;
1984	}
1985	npagesizes = size / sizeof(pagesizes[0]);
1986	/* Discard any invalid entries at the end of the array. */
1987	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
1988		npagesizes--;
1989}
1990
1991/*
1992 * Add the init functions from a needed object list (and its recursive
1993 * needed objects) to "list".  This is not used directly; it is a helper
1994 * function for initlist_add_objects().  The write lock must be held
1995 * when this function is called.
1996 */
1997static void
1998initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1999{
2000    /* Recursively process the successor needed objects. */
2001    if (needed->next != NULL)
2002	initlist_add_neededs(needed->next, list);
2003
2004    /* Process the current needed object. */
2005    if (needed->obj != NULL)
2006	initlist_add_objects(needed->obj, needed->obj, list);
2007}
2008
2009/*
2010 * Scan all of the DAGs rooted in the range of objects from "obj" to
2011 * "tail" and add their init functions to "list".  This recurses over
2012 * the DAGs and ensure the proper init ordering such that each object's
2013 * needed libraries are initialized before the object itself.  At the
2014 * same time, this function adds the objects to the global finalization
2015 * list "list_fini" in the opposite order.  The write lock must be
2016 * held when this function is called.
2017 */
2018static void
2019initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2020{
2021    Obj_Entry *nobj;
2022
2023    if (obj->init_scanned || obj->init_done)
2024	return;
2025    obj->init_scanned = true;
2026
2027    /* Recursively process the successor objects. */
2028    nobj = globallist_next(obj);
2029    if (nobj != NULL && obj != tail)
2030	initlist_add_objects(nobj, tail, list);
2031
2032    /* Recursively process the needed objects. */
2033    if (obj->needed != NULL)
2034	initlist_add_neededs(obj->needed, list);
2035    if (obj->needed_filtees != NULL)
2036	initlist_add_neededs(obj->needed_filtees, list);
2037    if (obj->needed_aux_filtees != NULL)
2038	initlist_add_neededs(obj->needed_aux_filtees, list);
2039
2040    /* Add the object to the init list. */
2041    if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
2042      obj->init_array != (Elf_Addr)NULL)
2043	objlist_push_tail(list, obj);
2044
2045    /* Add the object to the global fini list in the reverse order. */
2046    if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2047      && !obj->on_fini_list) {
2048	objlist_push_head(&list_fini, obj);
2049	obj->on_fini_list = true;
2050    }
2051}
2052
2053#ifndef FPTR_TARGET
2054#define FPTR_TARGET(f)	((Elf_Addr) (f))
2055#endif
2056
2057static void
2058free_needed_filtees(Needed_Entry *n)
2059{
2060    Needed_Entry *needed, *needed1;
2061
2062    for (needed = n; needed != NULL; needed = needed->next) {
2063	if (needed->obj != NULL) {
2064	    dlclose(needed->obj);
2065	    needed->obj = NULL;
2066	}
2067    }
2068    for (needed = n; needed != NULL; needed = needed1) {
2069	needed1 = needed->next;
2070	free(needed);
2071    }
2072}
2073
2074static void
2075unload_filtees(Obj_Entry *obj)
2076{
2077
2078    free_needed_filtees(obj->needed_filtees);
2079    obj->needed_filtees = NULL;
2080    free_needed_filtees(obj->needed_aux_filtees);
2081    obj->needed_aux_filtees = NULL;
2082    obj->filtees_loaded = false;
2083}
2084
2085static void
2086load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2087    RtldLockState *lockstate)
2088{
2089
2090    for (; needed != NULL; needed = needed->next) {
2091	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2092	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2093	  RTLD_LOCAL, lockstate);
2094    }
2095}
2096
2097static void
2098load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2099{
2100
2101    lock_restart_for_upgrade(lockstate);
2102    if (!obj->filtees_loaded) {
2103	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2104	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2105	obj->filtees_loaded = true;
2106    }
2107}
2108
2109static int
2110process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2111{
2112    Obj_Entry *obj1;
2113
2114    for (; needed != NULL; needed = needed->next) {
2115	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2116	  flags & ~RTLD_LO_NOLOAD);
2117	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2118	    return (-1);
2119    }
2120    return (0);
2121}
2122
2123/*
2124 * Given a shared object, traverse its list of needed objects, and load
2125 * each of them.  Returns 0 on success.  Generates an error message and
2126 * returns -1 on failure.
2127 */
2128static int
2129load_needed_objects(Obj_Entry *first, int flags)
2130{
2131    Obj_Entry *obj;
2132
2133    for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2134	if (obj->marker)
2135	    continue;
2136	if (process_needed(obj, obj->needed, flags) == -1)
2137	    return (-1);
2138    }
2139    return (0);
2140}
2141
2142static int
2143load_preload_objects(void)
2144{
2145    char *p = ld_preload;
2146    Obj_Entry *obj;
2147    static const char delim[] = " \t:;";
2148
2149    if (p == NULL)
2150	return 0;
2151
2152    p += strspn(p, delim);
2153    while (*p != '\0') {
2154	size_t len = strcspn(p, delim);
2155	char savech;
2156
2157	savech = p[len];
2158	p[len] = '\0';
2159	obj = load_object(p, -1, NULL, 0);
2160	if (obj == NULL)
2161	    return -1;	/* XXX - cleanup */
2162	obj->z_interpose = true;
2163	p[len] = savech;
2164	p += len;
2165	p += strspn(p, delim);
2166    }
2167    LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2168    return 0;
2169}
2170
2171static const char *
2172printable_path(const char *path)
2173{
2174
2175	return (path == NULL ? "<unknown>" : path);
2176}
2177
2178/*
2179 * Load a shared object into memory, if it is not already loaded.  The
2180 * object may be specified by name or by user-supplied file descriptor
2181 * fd_u. In the later case, the fd_u descriptor is not closed, but its
2182 * duplicate is.
2183 *
2184 * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2185 * on failure.
2186 */
2187static Obj_Entry *
2188load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2189{
2190    Obj_Entry *obj;
2191    int fd;
2192    struct stat sb;
2193    char *path;
2194
2195    if (name != NULL) {
2196	TAILQ_FOREACH(obj, &obj_list, next) {
2197	    if (obj->marker)
2198		continue;
2199	    if (object_match_name(obj, name))
2200		return (obj);
2201	}
2202
2203	path = find_library(name, refobj);
2204	if (path == NULL)
2205	    return (NULL);
2206    } else
2207	path = NULL;
2208
2209    /*
2210     * If we didn't find a match by pathname, or the name is not
2211     * supplied, open the file and check again by device and inode.
2212     * This avoids false mismatches caused by multiple links or ".."
2213     * in pathnames.
2214     *
2215     * To avoid a race, we open the file and use fstat() rather than
2216     * using stat().
2217     */
2218    fd = -1;
2219    if (fd_u == -1) {
2220	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2221	    _rtld_error("Cannot open \"%s\"", path);
2222	    free(path);
2223	    return (NULL);
2224	}
2225    } else {
2226	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2227	if (fd == -1) {
2228	    _rtld_error("Cannot dup fd");
2229	    free(path);
2230	    return (NULL);
2231	}
2232    }
2233    if (fstat(fd, &sb) == -1) {
2234	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2235	close(fd);
2236	free(path);
2237	return NULL;
2238    }
2239    TAILQ_FOREACH(obj, &obj_list, next) {
2240	if (obj->marker)
2241	    continue;
2242	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2243	    break;
2244    }
2245    if (obj != NULL && name != NULL) {
2246	object_add_name(obj, name);
2247	free(path);
2248	close(fd);
2249	return obj;
2250    }
2251    if (flags & RTLD_LO_NOLOAD) {
2252	free(path);
2253	close(fd);
2254	return (NULL);
2255    }
2256
2257    /* First use of this object, so we must map it in */
2258    obj = do_load_object(fd, name, path, &sb, flags);
2259    if (obj == NULL)
2260	free(path);
2261    close(fd);
2262
2263    return obj;
2264}
2265
2266static Obj_Entry *
2267do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2268  int flags)
2269{
2270    Obj_Entry *obj;
2271    struct statfs fs;
2272
2273    /*
2274     * but first, make sure that environment variables haven't been
2275     * used to circumvent the noexec flag on a filesystem.
2276     */
2277    if (dangerous_ld_env) {
2278	if (fstatfs(fd, &fs) != 0) {
2279	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2280	    return NULL;
2281	}
2282	if (fs.f_flags & MNT_NOEXEC) {
2283	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2284	    return NULL;
2285	}
2286    }
2287    dbg("loading \"%s\"", printable_path(path));
2288    obj = map_object(fd, printable_path(path), sbp);
2289    if (obj == NULL)
2290        return NULL;
2291
2292    /*
2293     * If DT_SONAME is present in the object, digest_dynamic2 already
2294     * added it to the object names.
2295     */
2296    if (name != NULL)
2297	object_add_name(obj, name);
2298    obj->path = path;
2299    digest_dynamic(obj, 0);
2300    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2301	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2302    if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2303      RTLD_LO_DLOPEN) {
2304	dbg("refusing to load non-loadable \"%s\"", obj->path);
2305	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2306	munmap(obj->mapbase, obj->mapsize);
2307	obj_free(obj);
2308	return (NULL);
2309    }
2310
2311    obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2312    TAILQ_INSERT_TAIL(&obj_list, obj, next);
2313    obj_count++;
2314    obj_loads++;
2315    linkmap_add(obj);	/* for GDB & dlinfo() */
2316    max_stack_flags |= obj->stack_flags;
2317
2318    dbg("  %p .. %p: %s", obj->mapbase,
2319         obj->mapbase + obj->mapsize - 1, obj->path);
2320    if (obj->textrel)
2321	dbg("  WARNING: %s has impure text", obj->path);
2322    LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2323	obj->path);
2324
2325    return obj;
2326}
2327
2328static Obj_Entry *
2329obj_from_addr(const void *addr)
2330{
2331    Obj_Entry *obj;
2332
2333    TAILQ_FOREACH(obj, &obj_list, next) {
2334	if (obj->marker)
2335	    continue;
2336	if (addr < (void *) obj->mapbase)
2337	    continue;
2338	if (addr < (void *) (obj->mapbase + obj->mapsize))
2339	    return obj;
2340    }
2341    return NULL;
2342}
2343
2344static void
2345preinit_main(void)
2346{
2347    Elf_Addr *preinit_addr;
2348    int index;
2349
2350    preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2351    if (preinit_addr == NULL)
2352	return;
2353
2354    for (index = 0; index < obj_main->preinit_array_num; index++) {
2355	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2356	    dbg("calling preinit function for %s at %p", obj_main->path,
2357	      (void *)preinit_addr[index]);
2358	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2359	      0, 0, obj_main->path);
2360	    call_init_pointer(obj_main, preinit_addr[index]);
2361	}
2362    }
2363}
2364
2365/*
2366 * Call the finalization functions for each of the objects in "list"
2367 * belonging to the DAG of "root" and referenced once. If NULL "root"
2368 * is specified, every finalization function will be called regardless
2369 * of the reference count and the list elements won't be freed. All of
2370 * the objects are expected to have non-NULL fini functions.
2371 */
2372static void
2373objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2374{
2375    Objlist_Entry *elm;
2376    char *saved_msg;
2377    Elf_Addr *fini_addr;
2378    int index;
2379
2380    assert(root == NULL || root->refcount == 1);
2381
2382    /*
2383     * Preserve the current error message since a fini function might
2384     * call into the dynamic linker and overwrite it.
2385     */
2386    saved_msg = errmsg_save();
2387    do {
2388	STAILQ_FOREACH(elm, list, link) {
2389	    if (root != NULL && (elm->obj->refcount != 1 ||
2390	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2391		continue;
2392	    /* Remove object from fini list to prevent recursive invocation. */
2393	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2394	    /*
2395	     * XXX: If a dlopen() call references an object while the
2396	     * fini function is in progress, we might end up trying to
2397	     * unload the referenced object in dlclose() or the object
2398	     * won't be unloaded although its fini function has been
2399	     * called.
2400	     */
2401	    lock_release(rtld_bind_lock, lockstate);
2402
2403	    /*
2404	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2405	     * When this happens, DT_FINI_ARRAY is processed first.
2406	     */
2407	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2408	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2409		for (index = elm->obj->fini_array_num - 1; index >= 0;
2410		  index--) {
2411		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2412			dbg("calling fini function for %s at %p",
2413			    elm->obj->path, (void *)fini_addr[index]);
2414			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2415			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2416			call_initfini_pointer(elm->obj, fini_addr[index]);
2417		    }
2418		}
2419	    }
2420	    if (elm->obj->fini != (Elf_Addr)NULL) {
2421		dbg("calling fini function for %s at %p", elm->obj->path,
2422		    (void *)elm->obj->fini);
2423		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2424		    0, 0, elm->obj->path);
2425		call_initfini_pointer(elm->obj, elm->obj->fini);
2426	    }
2427	    wlock_acquire(rtld_bind_lock, lockstate);
2428	    /* No need to free anything if process is going down. */
2429	    if (root != NULL)
2430	    	free(elm);
2431	    /*
2432	     * We must restart the list traversal after every fini call
2433	     * because a dlclose() call from the fini function or from
2434	     * another thread might have modified the reference counts.
2435	     */
2436	    break;
2437	}
2438    } while (elm != NULL);
2439    errmsg_restore(saved_msg);
2440}
2441
2442/*
2443 * Call the initialization functions for each of the objects in
2444 * "list".  All of the objects are expected to have non-NULL init
2445 * functions.
2446 */
2447static void
2448objlist_call_init(Objlist *list, RtldLockState *lockstate)
2449{
2450    Objlist_Entry *elm;
2451    Obj_Entry *obj;
2452    char *saved_msg;
2453    Elf_Addr *init_addr;
2454    int index;
2455
2456    /*
2457     * Clean init_scanned flag so that objects can be rechecked and
2458     * possibly initialized earlier if any of vectors called below
2459     * cause the change by using dlopen.
2460     */
2461    TAILQ_FOREACH(obj, &obj_list, next) {
2462	if (obj->marker)
2463	    continue;
2464	obj->init_scanned = false;
2465    }
2466
2467    /*
2468     * Preserve the current error message since an init function might
2469     * call into the dynamic linker and overwrite it.
2470     */
2471    saved_msg = errmsg_save();
2472    STAILQ_FOREACH(elm, list, link) {
2473	if (elm->obj->init_done) /* Initialized early. */
2474	    continue;
2475	/*
2476	 * Race: other thread might try to use this object before current
2477	 * one completes the initialization. Not much can be done here
2478	 * without better locking.
2479	 */
2480	elm->obj->init_done = true;
2481	lock_release(rtld_bind_lock, lockstate);
2482
2483        /*
2484         * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2485         * When this happens, DT_INIT is processed first.
2486         */
2487	if (elm->obj->init != (Elf_Addr)NULL) {
2488	    dbg("calling init function for %s at %p", elm->obj->path,
2489	        (void *)elm->obj->init);
2490	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2491	        0, 0, elm->obj->path);
2492	    call_initfini_pointer(elm->obj, elm->obj->init);
2493	}
2494	init_addr = (Elf_Addr *)elm->obj->init_array;
2495	if (init_addr != NULL) {
2496	    for (index = 0; index < elm->obj->init_array_num; index++) {
2497		if (init_addr[index] != 0 && init_addr[index] != 1) {
2498		    dbg("calling init function for %s at %p", elm->obj->path,
2499			(void *)init_addr[index]);
2500		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2501			(void *)init_addr[index], 0, 0, elm->obj->path);
2502		    call_init_pointer(elm->obj, init_addr[index]);
2503		}
2504	    }
2505	}
2506	wlock_acquire(rtld_bind_lock, lockstate);
2507    }
2508    errmsg_restore(saved_msg);
2509}
2510
2511static void
2512objlist_clear(Objlist *list)
2513{
2514    Objlist_Entry *elm;
2515
2516    while (!STAILQ_EMPTY(list)) {
2517	elm = STAILQ_FIRST(list);
2518	STAILQ_REMOVE_HEAD(list, link);
2519	free(elm);
2520    }
2521}
2522
2523static Objlist_Entry *
2524objlist_find(Objlist *list, const Obj_Entry *obj)
2525{
2526    Objlist_Entry *elm;
2527
2528    STAILQ_FOREACH(elm, list, link)
2529	if (elm->obj == obj)
2530	    return elm;
2531    return NULL;
2532}
2533
2534static void
2535objlist_init(Objlist *list)
2536{
2537    STAILQ_INIT(list);
2538}
2539
2540static void
2541objlist_push_head(Objlist *list, Obj_Entry *obj)
2542{
2543    Objlist_Entry *elm;
2544
2545    elm = NEW(Objlist_Entry);
2546    elm->obj = obj;
2547    STAILQ_INSERT_HEAD(list, elm, link);
2548}
2549
2550static void
2551objlist_push_tail(Objlist *list, Obj_Entry *obj)
2552{
2553    Objlist_Entry *elm;
2554
2555    elm = NEW(Objlist_Entry);
2556    elm->obj = obj;
2557    STAILQ_INSERT_TAIL(list, elm, link);
2558}
2559
2560static void
2561objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2562{
2563	Objlist_Entry *elm, *listelm;
2564
2565	STAILQ_FOREACH(listelm, list, link) {
2566		if (listelm->obj == listobj)
2567			break;
2568	}
2569	elm = NEW(Objlist_Entry);
2570	elm->obj = obj;
2571	if (listelm != NULL)
2572		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2573	else
2574		STAILQ_INSERT_TAIL(list, elm, link);
2575}
2576
2577static void
2578objlist_remove(Objlist *list, Obj_Entry *obj)
2579{
2580    Objlist_Entry *elm;
2581
2582    if ((elm = objlist_find(list, obj)) != NULL) {
2583	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2584	free(elm);
2585    }
2586}
2587
2588/*
2589 * Relocate dag rooted in the specified object.
2590 * Returns 0 on success, or -1 on failure.
2591 */
2592
2593static int
2594relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2595    int flags, RtldLockState *lockstate)
2596{
2597	Objlist_Entry *elm;
2598	int error;
2599
2600	error = 0;
2601	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2602		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2603		    lockstate);
2604		if (error == -1)
2605			break;
2606	}
2607	return (error);
2608}
2609
2610/*
2611 * Prepare for, or clean after, relocating an object marked with
2612 * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2613 * segments are remapped read-write.  After relocations are done, the
2614 * segment's permissions are returned back to the modes specified in
2615 * the phdrs.  If any relocation happened, or always for wired
2616 * program, COW is triggered.
2617 */
2618static int
2619reloc_textrel_prot(Obj_Entry *obj, bool before)
2620{
2621	const Elf_Phdr *ph;
2622	void *base;
2623	size_t l, sz;
2624	int prot;
2625
2626	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2627	    l--, ph++) {
2628		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2629			continue;
2630		base = obj->relocbase + trunc_page(ph->p_vaddr);
2631		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2632		    trunc_page(ph->p_vaddr);
2633		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2634		if (mprotect(base, sz, prot) == -1) {
2635			_rtld_error("%s: Cannot write-%sable text segment: %s",
2636			    obj->path, before ? "en" : "dis",
2637			    rtld_strerror(errno));
2638			return (-1);
2639		}
2640	}
2641	return (0);
2642}
2643
2644/*
2645 * Relocate single object.
2646 * Returns 0 on success, or -1 on failure.
2647 */
2648static int
2649relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2650    int flags, RtldLockState *lockstate)
2651{
2652
2653	if (obj->relocated)
2654		return (0);
2655	obj->relocated = true;
2656	if (obj != rtldobj)
2657		dbg("relocating \"%s\"", obj->path);
2658
2659	if (obj->symtab == NULL || obj->strtab == NULL ||
2660	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2661		_rtld_error("%s: Shared object has no run-time symbol table",
2662			    obj->path);
2663		return (-1);
2664	}
2665
2666	/* There are relocations to the write-protected text segment. */
2667	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2668		return (-1);
2669
2670	/* Process the non-PLT non-IFUNC relocations. */
2671	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2672		return (-1);
2673
2674	/* Re-protected the text segment. */
2675	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2676		return (-1);
2677
2678	/* Set the special PLT or GOT entries. */
2679	init_pltgot(obj);
2680
2681	/* Process the PLT relocations. */
2682	if (reloc_plt(obj) == -1)
2683		return (-1);
2684	/* Relocate the jump slots if we are doing immediate binding. */
2685	if (obj->bind_now || bind_now)
2686		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2687			return (-1);
2688
2689	/*
2690	 * Process the non-PLT IFUNC relocations.  The relocations are
2691	 * processed in two phases, because IFUNC resolvers may
2692	 * reference other symbols, which must be readily processed
2693	 * before resolvers are called.
2694	 */
2695	if (obj->non_plt_gnu_ifunc &&
2696	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2697		return (-1);
2698
2699	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
2700		return (-1);
2701
2702	/*
2703	 * Set up the magic number and version in the Obj_Entry.  These
2704	 * were checked in the crt1.o from the original ElfKit, so we
2705	 * set them for backward compatibility.
2706	 */
2707	obj->magic = RTLD_MAGIC;
2708	obj->version = RTLD_VERSION;
2709
2710	return (0);
2711}
2712
2713/*
2714 * Relocate newly-loaded shared objects.  The argument is a pointer to
2715 * the Obj_Entry for the first such object.  All objects from the first
2716 * to the end of the list of objects are relocated.  Returns 0 on success,
2717 * or -1 on failure.
2718 */
2719static int
2720relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2721    int flags, RtldLockState *lockstate)
2722{
2723	Obj_Entry *obj;
2724	int error;
2725
2726	for (error = 0, obj = first;  obj != NULL;
2727	    obj = TAILQ_NEXT(obj, next)) {
2728		if (obj->marker)
2729			continue;
2730		error = relocate_object(obj, bind_now, rtldobj, flags,
2731		    lockstate);
2732		if (error == -1)
2733			break;
2734	}
2735	return (error);
2736}
2737
2738/*
2739 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2740 * referencing STT_GNU_IFUNC symbols is postponed till the other
2741 * relocations are done.  The indirect functions specified as
2742 * ifunc are allowed to call other symbols, so we need to have
2743 * objects relocated before asking for resolution from indirects.
2744 *
2745 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2746 * instead of the usual lazy handling of PLT slots.  It is
2747 * consistent with how GNU does it.
2748 */
2749static int
2750resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2751    RtldLockState *lockstate)
2752{
2753	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2754		return (-1);
2755	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2756	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2757		return (-1);
2758	return (0);
2759}
2760
2761static int
2762resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2763    RtldLockState *lockstate)
2764{
2765	Obj_Entry *obj;
2766
2767	for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2768		if (obj->marker)
2769			continue;
2770		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2771			return (-1);
2772	}
2773	return (0);
2774}
2775
2776static int
2777initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2778    RtldLockState *lockstate)
2779{
2780	Objlist_Entry *elm;
2781
2782	STAILQ_FOREACH(elm, list, link) {
2783		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2784		    lockstate) == -1)
2785			return (-1);
2786	}
2787	return (0);
2788}
2789
2790/*
2791 * Cleanup procedure.  It will be called (by the atexit mechanism) just
2792 * before the process exits.
2793 */
2794static void
2795rtld_exit(void)
2796{
2797    RtldLockState lockstate;
2798
2799    wlock_acquire(rtld_bind_lock, &lockstate);
2800    dbg("rtld_exit()");
2801    objlist_call_fini(&list_fini, NULL, &lockstate);
2802    /* No need to remove the items from the list, since we are exiting. */
2803    if (!libmap_disable)
2804        lm_fini();
2805    lock_release(rtld_bind_lock, &lockstate);
2806}
2807
2808/*
2809 * Iterate over a search path, translate each element, and invoke the
2810 * callback on the result.
2811 */
2812static void *
2813path_enumerate(const char *path, path_enum_proc callback, void *arg)
2814{
2815    const char *trans;
2816    if (path == NULL)
2817	return (NULL);
2818
2819    path += strspn(path, ":;");
2820    while (*path != '\0') {
2821	size_t len;
2822	char  *res;
2823
2824	len = strcspn(path, ":;");
2825	trans = lm_findn(NULL, path, len);
2826	if (trans)
2827	    res = callback(trans, strlen(trans), arg);
2828	else
2829	    res = callback(path, len, arg);
2830
2831	if (res != NULL)
2832	    return (res);
2833
2834	path += len;
2835	path += strspn(path, ":;");
2836    }
2837
2838    return (NULL);
2839}
2840
2841struct try_library_args {
2842    const char	*name;
2843    size_t	 namelen;
2844    char	*buffer;
2845    size_t	 buflen;
2846};
2847
2848static void *
2849try_library_path(const char *dir, size_t dirlen, void *param)
2850{
2851    struct try_library_args *arg;
2852
2853    arg = param;
2854    if (*dir == '/' || trust) {
2855	char *pathname;
2856
2857	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2858		return (NULL);
2859
2860	pathname = arg->buffer;
2861	strncpy(pathname, dir, dirlen);
2862	pathname[dirlen] = '/';
2863	strcpy(pathname + dirlen + 1, arg->name);
2864
2865	dbg("  Trying \"%s\"", pathname);
2866	if (access(pathname, F_OK) == 0) {		/* We found it */
2867	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2868	    strcpy(pathname, arg->buffer);
2869	    return (pathname);
2870	}
2871    }
2872    return (NULL);
2873}
2874
2875static char *
2876search_library_path(const char *name, const char *path)
2877{
2878    char *p;
2879    struct try_library_args arg;
2880
2881    if (path == NULL)
2882	return NULL;
2883
2884    arg.name = name;
2885    arg.namelen = strlen(name);
2886    arg.buffer = xmalloc(PATH_MAX);
2887    arg.buflen = PATH_MAX;
2888
2889    p = path_enumerate(path, try_library_path, &arg);
2890
2891    free(arg.buffer);
2892
2893    return (p);
2894}
2895
2896int
2897dlclose(void *handle)
2898{
2899    Obj_Entry *root;
2900    RtldLockState lockstate;
2901
2902    wlock_acquire(rtld_bind_lock, &lockstate);
2903    root = dlcheck(handle);
2904    if (root == NULL) {
2905	lock_release(rtld_bind_lock, &lockstate);
2906	return -1;
2907    }
2908    LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2909	root->path);
2910
2911    /* Unreference the object and its dependencies. */
2912    root->dl_refcount--;
2913
2914    if (root->refcount == 1) {
2915	/*
2916	 * The object will be no longer referenced, so we must unload it.
2917	 * First, call the fini functions.
2918	 */
2919	objlist_call_fini(&list_fini, root, &lockstate);
2920
2921	unref_dag(root);
2922
2923	/* Finish cleaning up the newly-unreferenced objects. */
2924	GDB_STATE(RT_DELETE,&root->linkmap);
2925	unload_object(root);
2926	GDB_STATE(RT_CONSISTENT,NULL);
2927    } else
2928	unref_dag(root);
2929
2930    LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2931    lock_release(rtld_bind_lock, &lockstate);
2932    return 0;
2933}
2934
2935char *
2936dlerror(void)
2937{
2938    char *msg = error_message;
2939    error_message = NULL;
2940    return msg;
2941}
2942
2943/*
2944 * This function is deprecated and has no effect.
2945 */
2946void
2947dllockinit(void *context,
2948	   void *(*lock_create)(void *context),
2949           void (*rlock_acquire)(void *lock),
2950           void (*wlock_acquire)(void *lock),
2951           void (*lock_release)(void *lock),
2952           void (*lock_destroy)(void *lock),
2953	   void (*context_destroy)(void *context))
2954{
2955    static void *cur_context;
2956    static void (*cur_context_destroy)(void *);
2957
2958    /* Just destroy the context from the previous call, if necessary. */
2959    if (cur_context_destroy != NULL)
2960	cur_context_destroy(cur_context);
2961    cur_context = context;
2962    cur_context_destroy = context_destroy;
2963}
2964
2965void *
2966dlopen(const char *name, int mode)
2967{
2968
2969	return (rtld_dlopen(name, -1, mode));
2970}
2971
2972void *
2973fdlopen(int fd, int mode)
2974{
2975
2976	return (rtld_dlopen(NULL, fd, mode));
2977}
2978
2979static void *
2980rtld_dlopen(const char *name, int fd, int mode)
2981{
2982    RtldLockState lockstate;
2983    int lo_flags;
2984
2985    LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2986    ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2987    if (ld_tracing != NULL) {
2988	rlock_acquire(rtld_bind_lock, &lockstate);
2989	if (sigsetjmp(lockstate.env, 0) != 0)
2990	    lock_upgrade(rtld_bind_lock, &lockstate);
2991	environ = (char **)*get_program_var_addr("environ", &lockstate);
2992	lock_release(rtld_bind_lock, &lockstate);
2993    }
2994    lo_flags = RTLD_LO_DLOPEN;
2995    if (mode & RTLD_NODELETE)
2996	    lo_flags |= RTLD_LO_NODELETE;
2997    if (mode & RTLD_NOLOAD)
2998	    lo_flags |= RTLD_LO_NOLOAD;
2999    if (ld_tracing != NULL)
3000	    lo_flags |= RTLD_LO_TRACE;
3001
3002    return (dlopen_object(name, fd, obj_main, lo_flags,
3003      mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3004}
3005
3006static void
3007dlopen_cleanup(Obj_Entry *obj)
3008{
3009
3010	obj->dl_refcount--;
3011	unref_dag(obj);
3012	if (obj->refcount == 0)
3013		unload_object(obj);
3014}
3015
3016static Obj_Entry *
3017dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3018    int mode, RtldLockState *lockstate)
3019{
3020    Obj_Entry *old_obj_tail;
3021    Obj_Entry *obj;
3022    Objlist initlist;
3023    RtldLockState mlockstate;
3024    int result;
3025
3026    objlist_init(&initlist);
3027
3028    if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3029	wlock_acquire(rtld_bind_lock, &mlockstate);
3030	lockstate = &mlockstate;
3031    }
3032    GDB_STATE(RT_ADD,NULL);
3033
3034    old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3035    obj = NULL;
3036    if (name == NULL && fd == -1) {
3037	obj = obj_main;
3038	obj->refcount++;
3039    } else {
3040	obj = load_object(name, fd, refobj, lo_flags);
3041    }
3042
3043    if (obj) {
3044	obj->dl_refcount++;
3045	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3046	    objlist_push_tail(&list_global, obj);
3047	if (globallist_next(old_obj_tail) != NULL) {
3048	    /* We loaded something new. */
3049	    assert(globallist_next(old_obj_tail) == obj);
3050	    result = load_needed_objects(obj,
3051		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3052	    init_dag(obj);
3053	    ref_dag(obj);
3054	    if (result != -1)
3055		result = rtld_verify_versions(&obj->dagmembers);
3056	    if (result != -1 && ld_tracing)
3057		goto trace;
3058	    if (result == -1 || relocate_object_dag(obj,
3059	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3060	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3061	      lockstate) == -1) {
3062		dlopen_cleanup(obj);
3063		obj = NULL;
3064	    } else if (lo_flags & RTLD_LO_EARLY) {
3065		/*
3066		 * Do not call the init functions for early loaded
3067		 * filtees.  The image is still not initialized enough
3068		 * for them to work.
3069		 *
3070		 * Our object is found by the global object list and
3071		 * will be ordered among all init calls done right
3072		 * before transferring control to main.
3073		 */
3074	    } else {
3075		/* Make list of init functions to call. */
3076		initlist_add_objects(obj, obj, &initlist);
3077	    }
3078	    /*
3079	     * Process all no_delete or global objects here, given
3080	     * them own DAGs to prevent their dependencies from being
3081	     * unloaded.  This has to be done after we have loaded all
3082	     * of the dependencies, so that we do not miss any.
3083	     */
3084	    if (obj != NULL)
3085		process_z(obj);
3086	} else {
3087	    /*
3088	     * Bump the reference counts for objects on this DAG.  If
3089	     * this is the first dlopen() call for the object that was
3090	     * already loaded as a dependency, initialize the dag
3091	     * starting at it.
3092	     */
3093	    init_dag(obj);
3094	    ref_dag(obj);
3095
3096	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3097		goto trace;
3098	}
3099	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3100	  obj->z_nodelete) && !obj->ref_nodel) {
3101	    dbg("obj %s nodelete", obj->path);
3102	    ref_dag(obj);
3103	    obj->z_nodelete = obj->ref_nodel = true;
3104	}
3105    }
3106
3107    LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3108	name);
3109    GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3110
3111    if (!(lo_flags & RTLD_LO_EARLY)) {
3112	map_stacks_exec(lockstate);
3113    }
3114
3115    if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3116      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3117      lockstate) == -1) {
3118	objlist_clear(&initlist);
3119	dlopen_cleanup(obj);
3120	if (lockstate == &mlockstate)
3121	    lock_release(rtld_bind_lock, lockstate);
3122	return (NULL);
3123    }
3124
3125    if (!(lo_flags & RTLD_LO_EARLY)) {
3126	/* Call the init functions. */
3127	objlist_call_init(&initlist, lockstate);
3128    }
3129    objlist_clear(&initlist);
3130    if (lockstate == &mlockstate)
3131	lock_release(rtld_bind_lock, lockstate);
3132    return obj;
3133trace:
3134    trace_loaded_objects(obj);
3135    if (lockstate == &mlockstate)
3136	lock_release(rtld_bind_lock, lockstate);
3137    exit(0);
3138}
3139
3140static void *
3141do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3142    int flags)
3143{
3144    DoneList donelist;
3145    const Obj_Entry *obj, *defobj;
3146    const Elf_Sym *def;
3147    SymLook req;
3148    RtldLockState lockstate;
3149#ifndef __ia64__
3150    tls_index ti;
3151#endif
3152    void *sym;
3153    int res;
3154
3155    def = NULL;
3156    defobj = NULL;
3157    symlook_init(&req, name);
3158    req.ventry = ve;
3159    req.flags = flags | SYMLOOK_IN_PLT;
3160    req.lockstate = &lockstate;
3161
3162    LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3163    rlock_acquire(rtld_bind_lock, &lockstate);
3164    if (sigsetjmp(lockstate.env, 0) != 0)
3165	    lock_upgrade(rtld_bind_lock, &lockstate);
3166    if (handle == NULL || handle == RTLD_NEXT ||
3167	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3168
3169	if ((obj = obj_from_addr(retaddr)) == NULL) {
3170	    _rtld_error("Cannot determine caller's shared object");
3171	    lock_release(rtld_bind_lock, &lockstate);
3172	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3173	    return NULL;
3174	}
3175	if (handle == NULL) {	/* Just the caller's shared object. */
3176	    res = symlook_obj(&req, obj);
3177	    if (res == 0) {
3178		def = req.sym_out;
3179		defobj = req.defobj_out;
3180	    }
3181	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3182		   handle == RTLD_SELF) { /* ... caller included */
3183	    if (handle == RTLD_NEXT)
3184		obj = globallist_next(obj);
3185	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3186		if (obj->marker)
3187		    continue;
3188		res = symlook_obj(&req, obj);
3189		if (res == 0) {
3190		    if (def == NULL ||
3191		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3192			def = req.sym_out;
3193			defobj = req.defobj_out;
3194			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3195			    break;
3196		    }
3197		}
3198	    }
3199	    /*
3200	     * Search the dynamic linker itself, and possibly resolve the
3201	     * symbol from there.  This is how the application links to
3202	     * dynamic linker services such as dlopen.
3203	     */
3204	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3205		res = symlook_obj(&req, &obj_rtld);
3206		if (res == 0) {
3207		    def = req.sym_out;
3208		    defobj = req.defobj_out;
3209		}
3210	    }
3211	} else {
3212	    assert(handle == RTLD_DEFAULT);
3213	    res = symlook_default(&req, obj);
3214	    if (res == 0) {
3215		defobj = req.defobj_out;
3216		def = req.sym_out;
3217	    }
3218	}
3219    } else {
3220	if ((obj = dlcheck(handle)) == NULL) {
3221	    lock_release(rtld_bind_lock, &lockstate);
3222	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3223	    return NULL;
3224	}
3225
3226	donelist_init(&donelist);
3227	if (obj->mainprog) {
3228            /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3229	    res = symlook_global(&req, &donelist);
3230	    if (res == 0) {
3231		def = req.sym_out;
3232		defobj = req.defobj_out;
3233	    }
3234	    /*
3235	     * Search the dynamic linker itself, and possibly resolve the
3236	     * symbol from there.  This is how the application links to
3237	     * dynamic linker services such as dlopen.
3238	     */
3239	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3240		res = symlook_obj(&req, &obj_rtld);
3241		if (res == 0) {
3242		    def = req.sym_out;
3243		    defobj = req.defobj_out;
3244		}
3245	    }
3246	}
3247	else {
3248	    /* Search the whole DAG rooted at the given object. */
3249	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3250	    if (res == 0) {
3251		def = req.sym_out;
3252		defobj = req.defobj_out;
3253	    }
3254	}
3255    }
3256
3257    if (def != NULL) {
3258	lock_release(rtld_bind_lock, &lockstate);
3259
3260	/*
3261	 * The value required by the caller is derived from the value
3262	 * of the symbol. For the ia64 architecture, we need to
3263	 * construct a function descriptor which the caller can use to
3264	 * call the function with the right 'gp' value. For other
3265	 * architectures and for non-functions, the value is simply
3266	 * the relocated value of the symbol.
3267	 */
3268	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3269	    sym = make_function_pointer(def, defobj);
3270	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3271	    sym = rtld_resolve_ifunc(defobj, def);
3272	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3273#ifdef __ia64__
3274	    return (__tls_get_addr(defobj->tlsindex, def->st_value));
3275#else
3276	    ti.ti_module = defobj->tlsindex;
3277	    ti.ti_offset = def->st_value;
3278	    sym = __tls_get_addr(&ti);
3279#endif
3280	} else
3281	    sym = defobj->relocbase + def->st_value;
3282	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3283	return (sym);
3284    }
3285
3286    _rtld_error("Undefined symbol \"%s\"", name);
3287    lock_release(rtld_bind_lock, &lockstate);
3288    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3289    return NULL;
3290}
3291
3292void *
3293dlsym(void *handle, const char *name)
3294{
3295	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3296	    SYMLOOK_DLSYM);
3297}
3298
3299dlfunc_t
3300dlfunc(void *handle, const char *name)
3301{
3302	union {
3303		void *d;
3304		dlfunc_t f;
3305	} rv;
3306
3307	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3308	    SYMLOOK_DLSYM);
3309	return (rv.f);
3310}
3311
3312void *
3313dlvsym(void *handle, const char *name, const char *version)
3314{
3315	Ver_Entry ventry;
3316
3317	ventry.name = version;
3318	ventry.file = NULL;
3319	ventry.hash = elf_hash(version);
3320	ventry.flags= 0;
3321	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3322	    SYMLOOK_DLSYM);
3323}
3324
3325int
3326_rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3327{
3328    const Obj_Entry *obj;
3329    RtldLockState lockstate;
3330
3331    rlock_acquire(rtld_bind_lock, &lockstate);
3332    obj = obj_from_addr(addr);
3333    if (obj == NULL) {
3334        _rtld_error("No shared object contains address");
3335	lock_release(rtld_bind_lock, &lockstate);
3336        return (0);
3337    }
3338    rtld_fill_dl_phdr_info(obj, phdr_info);
3339    lock_release(rtld_bind_lock, &lockstate);
3340    return (1);
3341}
3342
3343int
3344dladdr(const void *addr, Dl_info *info)
3345{
3346    const Obj_Entry *obj;
3347    const Elf_Sym *def;
3348    void *symbol_addr;
3349    unsigned long symoffset;
3350    RtldLockState lockstate;
3351
3352    rlock_acquire(rtld_bind_lock, &lockstate);
3353    obj = obj_from_addr(addr);
3354    if (obj == NULL) {
3355        _rtld_error("No shared object contains address");
3356	lock_release(rtld_bind_lock, &lockstate);
3357        return 0;
3358    }
3359    info->dli_fname = obj->path;
3360    info->dli_fbase = obj->mapbase;
3361    info->dli_saddr = (void *)0;
3362    info->dli_sname = NULL;
3363
3364    /*
3365     * Walk the symbol list looking for the symbol whose address is
3366     * closest to the address sent in.
3367     */
3368    for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3369        def = obj->symtab + symoffset;
3370
3371        /*
3372         * For skip the symbol if st_shndx is either SHN_UNDEF or
3373         * SHN_COMMON.
3374         */
3375        if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3376            continue;
3377
3378        /*
3379         * If the symbol is greater than the specified address, or if it
3380         * is further away from addr than the current nearest symbol,
3381         * then reject it.
3382         */
3383        symbol_addr = obj->relocbase + def->st_value;
3384        if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3385            continue;
3386
3387        /* Update our idea of the nearest symbol. */
3388        info->dli_sname = obj->strtab + def->st_name;
3389        info->dli_saddr = symbol_addr;
3390
3391        /* Exact match? */
3392        if (info->dli_saddr == addr)
3393            break;
3394    }
3395    lock_release(rtld_bind_lock, &lockstate);
3396    return 1;
3397}
3398
3399int
3400dlinfo(void *handle, int request, void *p)
3401{
3402    const Obj_Entry *obj;
3403    RtldLockState lockstate;
3404    int error;
3405
3406    rlock_acquire(rtld_bind_lock, &lockstate);
3407
3408    if (handle == NULL || handle == RTLD_SELF) {
3409	void *retaddr;
3410
3411	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3412	if ((obj = obj_from_addr(retaddr)) == NULL)
3413	    _rtld_error("Cannot determine caller's shared object");
3414    } else
3415	obj = dlcheck(handle);
3416
3417    if (obj == NULL) {
3418	lock_release(rtld_bind_lock, &lockstate);
3419	return (-1);
3420    }
3421
3422    error = 0;
3423    switch (request) {
3424    case RTLD_DI_LINKMAP:
3425	*((struct link_map const **)p) = &obj->linkmap;
3426	break;
3427    case RTLD_DI_ORIGIN:
3428	error = rtld_dirname(obj->path, p);
3429	break;
3430
3431    case RTLD_DI_SERINFOSIZE:
3432    case RTLD_DI_SERINFO:
3433	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3434	break;
3435
3436    default:
3437	_rtld_error("Invalid request %d passed to dlinfo()", request);
3438	error = -1;
3439    }
3440
3441    lock_release(rtld_bind_lock, &lockstate);
3442
3443    return (error);
3444}
3445
3446static void
3447rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3448{
3449
3450	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3451	phdr_info->dlpi_name = obj->path;
3452	phdr_info->dlpi_phdr = obj->phdr;
3453	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3454	phdr_info->dlpi_tls_modid = obj->tlsindex;
3455	phdr_info->dlpi_tls_data = obj->tlsinit;
3456	phdr_info->dlpi_adds = obj_loads;
3457	phdr_info->dlpi_subs = obj_loads - obj_count;
3458}
3459
3460int
3461dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3462{
3463	struct dl_phdr_info phdr_info;
3464	Obj_Entry *obj, marker;
3465	RtldLockState bind_lockstate, phdr_lockstate;
3466	int error;
3467
3468	bzero(&marker, sizeof(marker));
3469	marker.marker = true;
3470	error = 0;
3471
3472	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3473	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3474	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3475		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3476		rtld_fill_dl_phdr_info(obj, &phdr_info);
3477		lock_release(rtld_bind_lock, &bind_lockstate);
3478
3479		error = callback(&phdr_info, sizeof phdr_info, param);
3480
3481		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3482		obj = globallist_next(&marker);
3483		TAILQ_REMOVE(&obj_list, &marker, next);
3484		if (error != 0) {
3485			lock_release(rtld_bind_lock, &bind_lockstate);
3486			lock_release(rtld_phdr_lock, &phdr_lockstate);
3487			return (error);
3488		}
3489	}
3490
3491	if (error == 0) {
3492		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3493		lock_release(rtld_bind_lock, &bind_lockstate);
3494		error = callback(&phdr_info, sizeof(phdr_info), param);
3495	}
3496	lock_release(rtld_phdr_lock, &phdr_lockstate);
3497	return (error);
3498}
3499
3500static void *
3501fill_search_info(const char *dir, size_t dirlen, void *param)
3502{
3503    struct fill_search_info_args *arg;
3504
3505    arg = param;
3506
3507    if (arg->request == RTLD_DI_SERINFOSIZE) {
3508	arg->serinfo->dls_cnt ++;
3509	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3510    } else {
3511	struct dl_serpath *s_entry;
3512
3513	s_entry = arg->serpath;
3514	s_entry->dls_name  = arg->strspace;
3515	s_entry->dls_flags = arg->flags;
3516
3517	strncpy(arg->strspace, dir, dirlen);
3518	arg->strspace[dirlen] = '\0';
3519
3520	arg->strspace += dirlen + 1;
3521	arg->serpath++;
3522    }
3523
3524    return (NULL);
3525}
3526
3527static int
3528do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3529{
3530    struct dl_serinfo _info;
3531    struct fill_search_info_args args;
3532
3533    args.request = RTLD_DI_SERINFOSIZE;
3534    args.serinfo = &_info;
3535
3536    _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3537    _info.dls_cnt  = 0;
3538
3539    path_enumerate(obj->rpath, fill_search_info, &args);
3540    path_enumerate(ld_library_path, fill_search_info, &args);
3541    path_enumerate(obj->runpath, fill_search_info, &args);
3542    path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3543    if (!obj->z_nodeflib)
3544      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3545
3546
3547    if (request == RTLD_DI_SERINFOSIZE) {
3548	info->dls_size = _info.dls_size;
3549	info->dls_cnt = _info.dls_cnt;
3550	return (0);
3551    }
3552
3553    if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3554	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3555	return (-1);
3556    }
3557
3558    args.request  = RTLD_DI_SERINFO;
3559    args.serinfo  = info;
3560    args.serpath  = &info->dls_serpath[0];
3561    args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3562
3563    args.flags = LA_SER_RUNPATH;
3564    if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3565	return (-1);
3566
3567    args.flags = LA_SER_LIBPATH;
3568    if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3569	return (-1);
3570
3571    args.flags = LA_SER_RUNPATH;
3572    if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3573	return (-1);
3574
3575    args.flags = LA_SER_CONFIG;
3576    if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3577      != NULL)
3578	return (-1);
3579
3580    args.flags = LA_SER_DEFAULT;
3581    if (!obj->z_nodeflib &&
3582      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3583	return (-1);
3584    return (0);
3585}
3586
3587static int
3588rtld_dirname(const char *path, char *bname)
3589{
3590    const char *endp;
3591
3592    /* Empty or NULL string gets treated as "." */
3593    if (path == NULL || *path == '\0') {
3594	bname[0] = '.';
3595	bname[1] = '\0';
3596	return (0);
3597    }
3598
3599    /* Strip trailing slashes */
3600    endp = path + strlen(path) - 1;
3601    while (endp > path && *endp == '/')
3602	endp--;
3603
3604    /* Find the start of the dir */
3605    while (endp > path && *endp != '/')
3606	endp--;
3607
3608    /* Either the dir is "/" or there are no slashes */
3609    if (endp == path) {
3610	bname[0] = *endp == '/' ? '/' : '.';
3611	bname[1] = '\0';
3612	return (0);
3613    } else {
3614	do {
3615	    endp--;
3616	} while (endp > path && *endp == '/');
3617    }
3618
3619    if (endp - path + 2 > PATH_MAX)
3620    {
3621	_rtld_error("Filename is too long: %s", path);
3622	return(-1);
3623    }
3624
3625    strncpy(bname, path, endp - path + 1);
3626    bname[endp - path + 1] = '\0';
3627    return (0);
3628}
3629
3630static int
3631rtld_dirname_abs(const char *path, char *base)
3632{
3633	char *last;
3634
3635	if (realpath(path, base) == NULL)
3636		return (-1);
3637	dbg("%s -> %s", path, base);
3638	last = strrchr(base, '/');
3639	if (last == NULL)
3640		return (-1);
3641	if (last != base)
3642		*last = '\0';
3643	return (0);
3644}
3645
3646static void
3647linkmap_add(Obj_Entry *obj)
3648{
3649    struct link_map *l = &obj->linkmap;
3650    struct link_map *prev;
3651
3652    obj->linkmap.l_name = obj->path;
3653    obj->linkmap.l_addr = obj->mapbase;
3654    obj->linkmap.l_ld = obj->dynamic;
3655#ifdef __mips__
3656    /* GDB needs load offset on MIPS to use the symbols */
3657    obj->linkmap.l_offs = obj->relocbase;
3658#endif
3659
3660    if (r_debug.r_map == NULL) {
3661	r_debug.r_map = l;
3662	return;
3663    }
3664
3665    /*
3666     * Scan to the end of the list, but not past the entry for the
3667     * dynamic linker, which we want to keep at the very end.
3668     */
3669    for (prev = r_debug.r_map;
3670      prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3671      prev = prev->l_next)
3672	;
3673
3674    /* Link in the new entry. */
3675    l->l_prev = prev;
3676    l->l_next = prev->l_next;
3677    if (l->l_next != NULL)
3678	l->l_next->l_prev = l;
3679    prev->l_next = l;
3680}
3681
3682static void
3683linkmap_delete(Obj_Entry *obj)
3684{
3685    struct link_map *l = &obj->linkmap;
3686
3687    if (l->l_prev == NULL) {
3688	if ((r_debug.r_map = l->l_next) != NULL)
3689	    l->l_next->l_prev = NULL;
3690	return;
3691    }
3692
3693    if ((l->l_prev->l_next = l->l_next) != NULL)
3694	l->l_next->l_prev = l->l_prev;
3695}
3696
3697/*
3698 * Function for the debugger to set a breakpoint on to gain control.
3699 *
3700 * The two parameters allow the debugger to easily find and determine
3701 * what the runtime loader is doing and to whom it is doing it.
3702 *
3703 * When the loadhook trap is hit (r_debug_state, set at program
3704 * initialization), the arguments can be found on the stack:
3705 *
3706 *  +8   struct link_map *m
3707 *  +4   struct r_debug  *rd
3708 *  +0   RetAddr
3709 */
3710void
3711r_debug_state(struct r_debug* rd, struct link_map *m)
3712{
3713    /*
3714     * The following is a hack to force the compiler to emit calls to
3715     * this function, even when optimizing.  If the function is empty,
3716     * the compiler is not obliged to emit any code for calls to it,
3717     * even when marked __noinline.  However, gdb depends on those
3718     * calls being made.
3719     */
3720    __compiler_membar();
3721}
3722
3723/*
3724 * A function called after init routines have completed. This can be used to
3725 * break before a program's entry routine is called, and can be used when
3726 * main is not available in the symbol table.
3727 */
3728void
3729_r_debug_postinit(struct link_map *m)
3730{
3731
3732	/* See r_debug_state(). */
3733	__compiler_membar();
3734}
3735
3736/*
3737 * Get address of the pointer variable in the main program.
3738 * Prefer non-weak symbol over the weak one.
3739 */
3740static const void **
3741get_program_var_addr(const char *name, RtldLockState *lockstate)
3742{
3743    SymLook req;
3744    DoneList donelist;
3745
3746    symlook_init(&req, name);
3747    req.lockstate = lockstate;
3748    donelist_init(&donelist);
3749    if (symlook_global(&req, &donelist) != 0)
3750	return (NULL);
3751    if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3752	return ((const void **)make_function_pointer(req.sym_out,
3753	  req.defobj_out));
3754    else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3755	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3756    else
3757	return ((const void **)(req.defobj_out->relocbase +
3758	  req.sym_out->st_value));
3759}
3760
3761/*
3762 * Set a pointer variable in the main program to the given value.  This
3763 * is used to set key variables such as "environ" before any of the
3764 * init functions are called.
3765 */
3766static void
3767set_program_var(const char *name, const void *value)
3768{
3769    const void **addr;
3770
3771    if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3772	dbg("\"%s\": *%p <-- %p", name, addr, value);
3773	*addr = value;
3774    }
3775}
3776
3777/*
3778 * Search the global objects, including dependencies and main object,
3779 * for the given symbol.
3780 */
3781static int
3782symlook_global(SymLook *req, DoneList *donelist)
3783{
3784    SymLook req1;
3785    const Objlist_Entry *elm;
3786    int res;
3787
3788    symlook_init_from_req(&req1, req);
3789
3790    /* Search all objects loaded at program start up. */
3791    if (req->defobj_out == NULL ||
3792      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3793	res = symlook_list(&req1, &list_main, donelist);
3794	if (res == 0 && (req->defobj_out == NULL ||
3795	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3796	    req->sym_out = req1.sym_out;
3797	    req->defobj_out = req1.defobj_out;
3798	    assert(req->defobj_out != NULL);
3799	}
3800    }
3801
3802    /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3803    STAILQ_FOREACH(elm, &list_global, link) {
3804	if (req->defobj_out != NULL &&
3805	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3806	    break;
3807	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3808	if (res == 0 && (req->defobj_out == NULL ||
3809	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3810	    req->sym_out = req1.sym_out;
3811	    req->defobj_out = req1.defobj_out;
3812	    assert(req->defobj_out != NULL);
3813	}
3814    }
3815
3816    return (req->sym_out != NULL ? 0 : ESRCH);
3817}
3818
3819/*
3820 * Given a symbol name in a referencing object, find the corresponding
3821 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3822 * no definition was found.  Returns a pointer to the Obj_Entry of the
3823 * defining object via the reference parameter DEFOBJ_OUT.
3824 */
3825static int
3826symlook_default(SymLook *req, const Obj_Entry *refobj)
3827{
3828    DoneList donelist;
3829    const Objlist_Entry *elm;
3830    SymLook req1;
3831    int res;
3832
3833    donelist_init(&donelist);
3834    symlook_init_from_req(&req1, req);
3835
3836    /*
3837     * Look first in the referencing object if linked symbolically,
3838     * and similarly handle protected symbols.
3839     */
3840    res = symlook_obj(&req1, refobj);
3841    if (res == 0 && (refobj->symbolic ||
3842      ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
3843	req->sym_out = req1.sym_out;
3844	req->defobj_out = req1.defobj_out;
3845	assert(req->defobj_out != NULL);
3846    }
3847    if (refobj->symbolic || req->defobj_out != NULL)
3848	donelist_check(&donelist, refobj);
3849
3850    symlook_global(req, &donelist);
3851
3852    /* Search all dlopened DAGs containing the referencing object. */
3853    STAILQ_FOREACH(elm, &refobj->dldags, link) {
3854	if (req->sym_out != NULL &&
3855	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3856	    break;
3857	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3858	if (res == 0 && (req->sym_out == NULL ||
3859	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3860	    req->sym_out = req1.sym_out;
3861	    req->defobj_out = req1.defobj_out;
3862	    assert(req->defobj_out != NULL);
3863	}
3864    }
3865
3866    /*
3867     * Search the dynamic linker itself, and possibly resolve the
3868     * symbol from there.  This is how the application links to
3869     * dynamic linker services such as dlopen.
3870     */
3871    if (req->sym_out == NULL ||
3872      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3873	res = symlook_obj(&req1, &obj_rtld);
3874	if (res == 0) {
3875	    req->sym_out = req1.sym_out;
3876	    req->defobj_out = req1.defobj_out;
3877	    assert(req->defobj_out != NULL);
3878	}
3879    }
3880
3881    return (req->sym_out != NULL ? 0 : ESRCH);
3882}
3883
3884static int
3885symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3886{
3887    const Elf_Sym *def;
3888    const Obj_Entry *defobj;
3889    const Objlist_Entry *elm;
3890    SymLook req1;
3891    int res;
3892
3893    def = NULL;
3894    defobj = NULL;
3895    STAILQ_FOREACH(elm, objlist, link) {
3896	if (donelist_check(dlp, elm->obj))
3897	    continue;
3898	symlook_init_from_req(&req1, req);
3899	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3900	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3901		def = req1.sym_out;
3902		defobj = req1.defobj_out;
3903		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3904		    break;
3905	    }
3906	}
3907    }
3908    if (def != NULL) {
3909	req->sym_out = def;
3910	req->defobj_out = defobj;
3911	return (0);
3912    }
3913    return (ESRCH);
3914}
3915
3916/*
3917 * Search the chain of DAGS cointed to by the given Needed_Entry
3918 * for a symbol of the given name.  Each DAG is scanned completely
3919 * before advancing to the next one.  Returns a pointer to the symbol,
3920 * or NULL if no definition was found.
3921 */
3922static int
3923symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3924{
3925    const Elf_Sym *def;
3926    const Needed_Entry *n;
3927    const Obj_Entry *defobj;
3928    SymLook req1;
3929    int res;
3930
3931    def = NULL;
3932    defobj = NULL;
3933    symlook_init_from_req(&req1, req);
3934    for (n = needed; n != NULL; n = n->next) {
3935	if (n->obj == NULL ||
3936	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3937	    continue;
3938	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3939	    def = req1.sym_out;
3940	    defobj = req1.defobj_out;
3941	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3942		break;
3943	}
3944    }
3945    if (def != NULL) {
3946	req->sym_out = def;
3947	req->defobj_out = defobj;
3948	return (0);
3949    }
3950    return (ESRCH);
3951}
3952
3953/*
3954 * Search the symbol table of a single shared object for a symbol of
3955 * the given name and version, if requested.  Returns a pointer to the
3956 * symbol, or NULL if no definition was found.  If the object is
3957 * filter, return filtered symbol from filtee.
3958 *
3959 * The symbol's hash value is passed in for efficiency reasons; that
3960 * eliminates many recomputations of the hash value.
3961 */
3962int
3963symlook_obj(SymLook *req, const Obj_Entry *obj)
3964{
3965    DoneList donelist;
3966    SymLook req1;
3967    int flags, res, mres;
3968
3969    /*
3970     * If there is at least one valid hash at this point, we prefer to
3971     * use the faster GNU version if available.
3972     */
3973    if (obj->valid_hash_gnu)
3974	mres = symlook_obj1_gnu(req, obj);
3975    else if (obj->valid_hash_sysv)
3976	mres = symlook_obj1_sysv(req, obj);
3977    else
3978	return (EINVAL);
3979
3980    if (mres == 0) {
3981	if (obj->needed_filtees != NULL) {
3982	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3983	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3984	    donelist_init(&donelist);
3985	    symlook_init_from_req(&req1, req);
3986	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3987	    if (res == 0) {
3988		req->sym_out = req1.sym_out;
3989		req->defobj_out = req1.defobj_out;
3990	    }
3991	    return (res);
3992	}
3993	if (obj->needed_aux_filtees != NULL) {
3994	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3995	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3996	    donelist_init(&donelist);
3997	    symlook_init_from_req(&req1, req);
3998	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3999	    if (res == 0) {
4000		req->sym_out = req1.sym_out;
4001		req->defobj_out = req1.defobj_out;
4002		return (res);
4003	    }
4004	}
4005    }
4006    return (mres);
4007}
4008
4009/* Symbol match routine common to both hash functions */
4010static bool
4011matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4012    const unsigned long symnum)
4013{
4014	Elf_Versym verndx;
4015	const Elf_Sym *symp;
4016	const char *strp;
4017
4018	symp = obj->symtab + symnum;
4019	strp = obj->strtab + symp->st_name;
4020
4021	switch (ELF_ST_TYPE(symp->st_info)) {
4022	case STT_FUNC:
4023	case STT_NOTYPE:
4024	case STT_OBJECT:
4025	case STT_COMMON:
4026	case STT_GNU_IFUNC:
4027		if (symp->st_value == 0)
4028			return (false);
4029		/* fallthrough */
4030	case STT_TLS:
4031		if (symp->st_shndx != SHN_UNDEF)
4032			break;
4033#ifndef __mips__
4034		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4035		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4036			break;
4037		/* fallthrough */
4038#endif
4039	default:
4040		return (false);
4041	}
4042	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4043		return (false);
4044
4045	if (req->ventry == NULL) {
4046		if (obj->versyms != NULL) {
4047			verndx = VER_NDX(obj->versyms[symnum]);
4048			if (verndx > obj->vernum) {
4049				_rtld_error(
4050				    "%s: symbol %s references wrong version %d",
4051				    obj->path, obj->strtab + symnum, verndx);
4052				return (false);
4053			}
4054			/*
4055			 * If we are not called from dlsym (i.e. this
4056			 * is a normal relocation from unversioned
4057			 * binary), accept the symbol immediately if
4058			 * it happens to have first version after this
4059			 * shared object became versioned.  Otherwise,
4060			 * if symbol is versioned and not hidden,
4061			 * remember it. If it is the only symbol with
4062			 * this name exported by the shared object, it
4063			 * will be returned as a match by the calling
4064			 * function. If symbol is global (verndx < 2)
4065			 * accept it unconditionally.
4066			 */
4067			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4068			    verndx == VER_NDX_GIVEN) {
4069				result->sym_out = symp;
4070				return (true);
4071			}
4072			else if (verndx >= VER_NDX_GIVEN) {
4073				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4074				    == 0) {
4075					if (result->vsymp == NULL)
4076						result->vsymp = symp;
4077					result->vcount++;
4078				}
4079				return (false);
4080			}
4081		}
4082		result->sym_out = symp;
4083		return (true);
4084	}
4085	if (obj->versyms == NULL) {
4086		if (object_match_name(obj, req->ventry->name)) {
4087			_rtld_error("%s: object %s should provide version %s "
4088			    "for symbol %s", obj_rtld.path, obj->path,
4089			    req->ventry->name, obj->strtab + symnum);
4090			return (false);
4091		}
4092	} else {
4093		verndx = VER_NDX(obj->versyms[symnum]);
4094		if (verndx > obj->vernum) {
4095			_rtld_error("%s: symbol %s references wrong version %d",
4096			    obj->path, obj->strtab + symnum, verndx);
4097			return (false);
4098		}
4099		if (obj->vertab[verndx].hash != req->ventry->hash ||
4100		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4101			/*
4102			 * Version does not match. Look if this is a
4103			 * global symbol and if it is not hidden. If
4104			 * global symbol (verndx < 2) is available,
4105			 * use it. Do not return symbol if we are
4106			 * called by dlvsym, because dlvsym looks for
4107			 * a specific version and default one is not
4108			 * what dlvsym wants.
4109			 */
4110			if ((req->flags & SYMLOOK_DLSYM) ||
4111			    (verndx >= VER_NDX_GIVEN) ||
4112			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4113				return (false);
4114		}
4115	}
4116	result->sym_out = symp;
4117	return (true);
4118}
4119
4120/*
4121 * Search for symbol using SysV hash function.
4122 * obj->buckets is known not to be NULL at this point; the test for this was
4123 * performed with the obj->valid_hash_sysv assignment.
4124 */
4125static int
4126symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4127{
4128	unsigned long symnum;
4129	Sym_Match_Result matchres;
4130
4131	matchres.sym_out = NULL;
4132	matchres.vsymp = NULL;
4133	matchres.vcount = 0;
4134
4135	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4136	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4137		if (symnum >= obj->nchains)
4138			return (ESRCH);	/* Bad object */
4139
4140		if (matched_symbol(req, obj, &matchres, symnum)) {
4141			req->sym_out = matchres.sym_out;
4142			req->defobj_out = obj;
4143			return (0);
4144		}
4145	}
4146	if (matchres.vcount == 1) {
4147		req->sym_out = matchres.vsymp;
4148		req->defobj_out = obj;
4149		return (0);
4150	}
4151	return (ESRCH);
4152}
4153
4154/* Search for symbol using GNU hash function */
4155static int
4156symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4157{
4158	Elf_Addr bloom_word;
4159	const Elf32_Word *hashval;
4160	Elf32_Word bucket;
4161	Sym_Match_Result matchres;
4162	unsigned int h1, h2;
4163	unsigned long symnum;
4164
4165	matchres.sym_out = NULL;
4166	matchres.vsymp = NULL;
4167	matchres.vcount = 0;
4168
4169	/* Pick right bitmask word from Bloom filter array */
4170	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4171	    obj->maskwords_bm_gnu];
4172
4173	/* Calculate modulus word size of gnu hash and its derivative */
4174	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4175	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4176
4177	/* Filter out the "definitely not in set" queries */
4178	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4179		return (ESRCH);
4180
4181	/* Locate hash chain and corresponding value element*/
4182	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4183	if (bucket == 0)
4184		return (ESRCH);
4185	hashval = &obj->chain_zero_gnu[bucket];
4186	do {
4187		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4188			symnum = hashval - obj->chain_zero_gnu;
4189			if (matched_symbol(req, obj, &matchres, symnum)) {
4190				req->sym_out = matchres.sym_out;
4191				req->defobj_out = obj;
4192				return (0);
4193			}
4194		}
4195	} while ((*hashval++ & 1) == 0);
4196	if (matchres.vcount == 1) {
4197		req->sym_out = matchres.vsymp;
4198		req->defobj_out = obj;
4199		return (0);
4200	}
4201	return (ESRCH);
4202}
4203
4204static void
4205trace_loaded_objects(Obj_Entry *obj)
4206{
4207    char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4208    int		c;
4209
4210    if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4211	main_local = "";
4212
4213    if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4214	fmt1 = "\t%o => %p (%x)\n";
4215
4216    if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4217	fmt2 = "\t%o (%x)\n";
4218
4219    list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
4220
4221    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4222	Needed_Entry		*needed;
4223	char			*name, *path;
4224	bool			is_lib;
4225
4226	if (obj->marker)
4227	    continue;
4228	if (list_containers && obj->needed != NULL)
4229	    rtld_printf("%s:\n", obj->path);
4230	for (needed = obj->needed; needed; needed = needed->next) {
4231	    if (needed->obj != NULL) {
4232		if (needed->obj->traced && !list_containers)
4233		    continue;
4234		needed->obj->traced = true;
4235		path = needed->obj->path;
4236	    } else
4237		path = "not found";
4238
4239	    name = (char *)obj->strtab + needed->name;
4240	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4241
4242	    fmt = is_lib ? fmt1 : fmt2;
4243	    while ((c = *fmt++) != '\0') {
4244		switch (c) {
4245		default:
4246		    rtld_putchar(c);
4247		    continue;
4248		case '\\':
4249		    switch (c = *fmt) {
4250		    case '\0':
4251			continue;
4252		    case 'n':
4253			rtld_putchar('\n');
4254			break;
4255		    case 't':
4256			rtld_putchar('\t');
4257			break;
4258		    }
4259		    break;
4260		case '%':
4261		    switch (c = *fmt) {
4262		    case '\0':
4263			continue;
4264		    case '%':
4265		    default:
4266			rtld_putchar(c);
4267			break;
4268		    case 'A':
4269			rtld_putstr(main_local);
4270			break;
4271		    case 'a':
4272			rtld_putstr(obj_main->path);
4273			break;
4274		    case 'o':
4275			rtld_putstr(name);
4276			break;
4277#if 0
4278		    case 'm':
4279			rtld_printf("%d", sodp->sod_major);
4280			break;
4281		    case 'n':
4282			rtld_printf("%d", sodp->sod_minor);
4283			break;
4284#endif
4285		    case 'p':
4286			rtld_putstr(path);
4287			break;
4288		    case 'x':
4289			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4290			  0);
4291			break;
4292		    }
4293		    break;
4294		}
4295		++fmt;
4296	    }
4297	}
4298    }
4299}
4300
4301/*
4302 * Unload a dlopened object and its dependencies from memory and from
4303 * our data structures.  It is assumed that the DAG rooted in the
4304 * object has already been unreferenced, and that the object has a
4305 * reference count of 0.
4306 */
4307static void
4308unload_object(Obj_Entry *root)
4309{
4310	Obj_Entry *obj, *obj1;
4311
4312	assert(root->refcount == 0);
4313
4314	/*
4315	 * Pass over the DAG removing unreferenced objects from
4316	 * appropriate lists.
4317	 */
4318	unlink_object(root);
4319
4320	/* Unmap all objects that are no longer referenced. */
4321	TAILQ_FOREACH_SAFE(obj, &obj_list, next, obj1) {
4322		if (obj->marker || obj->refcount != 0)
4323			continue;
4324		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4325		    obj->mapsize, 0, obj->path);
4326		dbg("unloading \"%s\"", obj->path);
4327		unload_filtees(root);
4328		munmap(obj->mapbase, obj->mapsize);
4329		linkmap_delete(obj);
4330		TAILQ_REMOVE(&obj_list, obj, next);
4331		obj_count--;
4332		obj_free(obj);
4333	}
4334}
4335
4336static void
4337unlink_object(Obj_Entry *root)
4338{
4339    Objlist_Entry *elm;
4340
4341    if (root->refcount == 0) {
4342	/* Remove the object from the RTLD_GLOBAL list. */
4343	objlist_remove(&list_global, root);
4344
4345    	/* Remove the object from all objects' DAG lists. */
4346    	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4347	    objlist_remove(&elm->obj->dldags, root);
4348	    if (elm->obj != root)
4349		unlink_object(elm->obj);
4350	}
4351    }
4352}
4353
4354static void
4355ref_dag(Obj_Entry *root)
4356{
4357    Objlist_Entry *elm;
4358
4359    assert(root->dag_inited);
4360    STAILQ_FOREACH(elm, &root->dagmembers, link)
4361	elm->obj->refcount++;
4362}
4363
4364static void
4365unref_dag(Obj_Entry *root)
4366{
4367    Objlist_Entry *elm;
4368
4369    assert(root->dag_inited);
4370    STAILQ_FOREACH(elm, &root->dagmembers, link)
4371	elm->obj->refcount--;
4372}
4373
4374/*
4375 * Common code for MD __tls_get_addr().
4376 */
4377static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4378static void *
4379tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4380{
4381    Elf_Addr *newdtv, *dtv;
4382    RtldLockState lockstate;
4383    int to_copy;
4384
4385    dtv = *dtvp;
4386    /* Check dtv generation in case new modules have arrived */
4387    if (dtv[0] != tls_dtv_generation) {
4388	wlock_acquire(rtld_bind_lock, &lockstate);
4389	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4390	to_copy = dtv[1];
4391	if (to_copy > tls_max_index)
4392	    to_copy = tls_max_index;
4393	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4394	newdtv[0] = tls_dtv_generation;
4395	newdtv[1] = tls_max_index;
4396	free(dtv);
4397	lock_release(rtld_bind_lock, &lockstate);
4398	dtv = *dtvp = newdtv;
4399    }
4400
4401    /* Dynamically allocate module TLS if necessary */
4402    if (dtv[index + 1] == 0) {
4403	/* Signal safe, wlock will block out signals. */
4404	wlock_acquire(rtld_bind_lock, &lockstate);
4405	if (!dtv[index + 1])
4406	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4407	lock_release(rtld_bind_lock, &lockstate);
4408    }
4409    return ((void *)(dtv[index + 1] + offset));
4410}
4411
4412void *
4413tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4414{
4415	Elf_Addr *dtv;
4416
4417	dtv = *dtvp;
4418	/* Check dtv generation in case new modules have arrived */
4419	if (__predict_true(dtv[0] == tls_dtv_generation &&
4420	    dtv[index + 1] != 0))
4421		return ((void *)(dtv[index + 1] + offset));
4422	return (tls_get_addr_slow(dtvp, index, offset));
4423}
4424
4425#if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
4426
4427/*
4428 * Allocate Static TLS using the Variant I method.
4429 */
4430void *
4431allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4432{
4433    Obj_Entry *obj;
4434    char *tcb;
4435    Elf_Addr **tls;
4436    Elf_Addr *dtv;
4437    Elf_Addr addr;
4438    int i;
4439
4440    if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4441	return (oldtcb);
4442
4443    assert(tcbsize >= TLS_TCB_SIZE);
4444    tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4445    tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4446
4447    if (oldtcb != NULL) {
4448	memcpy(tls, oldtcb, tls_static_space);
4449	free(oldtcb);
4450
4451	/* Adjust the DTV. */
4452	dtv = tls[0];
4453	for (i = 0; i < dtv[1]; i++) {
4454	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4455		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4456		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4457	    }
4458	}
4459    } else {
4460	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4461	tls[0] = dtv;
4462	dtv[0] = tls_dtv_generation;
4463	dtv[1] = tls_max_index;
4464
4465	for (obj = globallist_curr(objs); obj != NULL;
4466	  obj = globallist_next(obj)) {
4467	    if (obj->tlsoffset > 0) {
4468		addr = (Elf_Addr)tls + obj->tlsoffset;
4469		if (obj->tlsinitsize > 0)
4470		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4471		if (obj->tlssize > obj->tlsinitsize)
4472		    memset((void*) (addr + obj->tlsinitsize), 0,
4473			   obj->tlssize - obj->tlsinitsize);
4474		dtv[obj->tlsindex + 1] = addr;
4475	    }
4476	}
4477    }
4478
4479    return (tcb);
4480}
4481
4482void
4483free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4484{
4485    Elf_Addr *dtv;
4486    Elf_Addr tlsstart, tlsend;
4487    int dtvsize, i;
4488
4489    assert(tcbsize >= TLS_TCB_SIZE);
4490
4491    tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4492    tlsend = tlsstart + tls_static_space;
4493
4494    dtv = *(Elf_Addr **)tlsstart;
4495    dtvsize = dtv[1];
4496    for (i = 0; i < dtvsize; i++) {
4497	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4498	    free((void*)dtv[i+2]);
4499	}
4500    }
4501    free(dtv);
4502    free(tcb);
4503}
4504
4505#endif
4506
4507#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4508
4509/*
4510 * Allocate Static TLS using the Variant II method.
4511 */
4512void *
4513allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4514{
4515    Obj_Entry *obj;
4516    size_t size, ralign;
4517    char *tls;
4518    Elf_Addr *dtv, *olddtv;
4519    Elf_Addr segbase, oldsegbase, addr;
4520    int i;
4521
4522    ralign = tcbalign;
4523    if (tls_static_max_align > ralign)
4524	    ralign = tls_static_max_align;
4525    size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4526
4527    assert(tcbsize >= 2*sizeof(Elf_Addr));
4528    tls = malloc_aligned(size, ralign);
4529    dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4530
4531    segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4532    ((Elf_Addr*)segbase)[0] = segbase;
4533    ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4534
4535    dtv[0] = tls_dtv_generation;
4536    dtv[1] = tls_max_index;
4537
4538    if (oldtls) {
4539	/*
4540	 * Copy the static TLS block over whole.
4541	 */
4542	oldsegbase = (Elf_Addr) oldtls;
4543	memcpy((void *)(segbase - tls_static_space),
4544	       (const void *)(oldsegbase - tls_static_space),
4545	       tls_static_space);
4546
4547	/*
4548	 * If any dynamic TLS blocks have been created tls_get_addr(),
4549	 * move them over.
4550	 */
4551	olddtv = ((Elf_Addr**)oldsegbase)[1];
4552	for (i = 0; i < olddtv[1]; i++) {
4553	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4554		dtv[i+2] = olddtv[i+2];
4555		olddtv[i+2] = 0;
4556	    }
4557	}
4558
4559	/*
4560	 * We assume that this block was the one we created with
4561	 * allocate_initial_tls().
4562	 */
4563	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4564    } else {
4565	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4566		if (obj->marker || obj->tlsoffset == 0)
4567			continue;
4568		addr = segbase - obj->tlsoffset;
4569		memset((void*) (addr + obj->tlsinitsize),
4570		       0, obj->tlssize - obj->tlsinitsize);
4571		if (obj->tlsinit)
4572		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4573		dtv[obj->tlsindex + 1] = addr;
4574	}
4575    }
4576
4577    return (void*) segbase;
4578}
4579
4580void
4581free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4582{
4583    Elf_Addr* dtv;
4584    size_t size, ralign;
4585    int dtvsize, i;
4586    Elf_Addr tlsstart, tlsend;
4587
4588    /*
4589     * Figure out the size of the initial TLS block so that we can
4590     * find stuff which ___tls_get_addr() allocated dynamically.
4591     */
4592    ralign = tcbalign;
4593    if (tls_static_max_align > ralign)
4594	    ralign = tls_static_max_align;
4595    size = round(tls_static_space, ralign);
4596
4597    dtv = ((Elf_Addr**)tls)[1];
4598    dtvsize = dtv[1];
4599    tlsend = (Elf_Addr) tls;
4600    tlsstart = tlsend - size;
4601    for (i = 0; i < dtvsize; i++) {
4602	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4603		free_aligned((void *)dtv[i + 2]);
4604	}
4605    }
4606
4607    free_aligned((void *)tlsstart);
4608    free((void*) dtv);
4609}
4610
4611#endif
4612
4613/*
4614 * Allocate TLS block for module with given index.
4615 */
4616void *
4617allocate_module_tls(int index)
4618{
4619    Obj_Entry* obj;
4620    char* p;
4621
4622    TAILQ_FOREACH(obj, &obj_list, next) {
4623	if (obj->marker)
4624	    continue;
4625	if (obj->tlsindex == index)
4626	    break;
4627    }
4628    if (!obj) {
4629	_rtld_error("Can't find module with TLS index %d", index);
4630	rtld_die();
4631    }
4632
4633    p = malloc_aligned(obj->tlssize, obj->tlsalign);
4634    memcpy(p, obj->tlsinit, obj->tlsinitsize);
4635    memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4636
4637    return p;
4638}
4639
4640bool
4641allocate_tls_offset(Obj_Entry *obj)
4642{
4643    size_t off;
4644
4645    if (obj->tls_done)
4646	return true;
4647
4648    if (obj->tlssize == 0) {
4649	obj->tls_done = true;
4650	return true;
4651    }
4652
4653    if (tls_last_offset == 0)
4654	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4655    else
4656	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4657				   obj->tlssize, obj->tlsalign);
4658
4659    /*
4660     * If we have already fixed the size of the static TLS block, we
4661     * must stay within that size. When allocating the static TLS, we
4662     * leave a small amount of space spare to be used for dynamically
4663     * loading modules which use static TLS.
4664     */
4665    if (tls_static_space != 0) {
4666	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4667	    return false;
4668    } else if (obj->tlsalign > tls_static_max_align) {
4669	    tls_static_max_align = obj->tlsalign;
4670    }
4671
4672    tls_last_offset = obj->tlsoffset = off;
4673    tls_last_size = obj->tlssize;
4674    obj->tls_done = true;
4675
4676    return true;
4677}
4678
4679void
4680free_tls_offset(Obj_Entry *obj)
4681{
4682
4683    /*
4684     * If we were the last thing to allocate out of the static TLS
4685     * block, we give our space back to the 'allocator'. This is a
4686     * simplistic workaround to allow libGL.so.1 to be loaded and
4687     * unloaded multiple times.
4688     */
4689    if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4690	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4691	tls_last_offset -= obj->tlssize;
4692	tls_last_size = 0;
4693    }
4694}
4695
4696void *
4697_rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4698{
4699    void *ret;
4700    RtldLockState lockstate;
4701
4702    wlock_acquire(rtld_bind_lock, &lockstate);
4703    ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
4704      tcbsize, tcbalign);
4705    lock_release(rtld_bind_lock, &lockstate);
4706    return (ret);
4707}
4708
4709void
4710_rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4711{
4712    RtldLockState lockstate;
4713
4714    wlock_acquire(rtld_bind_lock, &lockstate);
4715    free_tls(tcb, tcbsize, tcbalign);
4716    lock_release(rtld_bind_lock, &lockstate);
4717}
4718
4719static void
4720object_add_name(Obj_Entry *obj, const char *name)
4721{
4722    Name_Entry *entry;
4723    size_t len;
4724
4725    len = strlen(name);
4726    entry = malloc(sizeof(Name_Entry) + len);
4727
4728    if (entry != NULL) {
4729	strcpy(entry->name, name);
4730	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4731    }
4732}
4733
4734static int
4735object_match_name(const Obj_Entry *obj, const char *name)
4736{
4737    Name_Entry *entry;
4738
4739    STAILQ_FOREACH(entry, &obj->names, link) {
4740	if (strcmp(name, entry->name) == 0)
4741	    return (1);
4742    }
4743    return (0);
4744}
4745
4746static Obj_Entry *
4747locate_dependency(const Obj_Entry *obj, const char *name)
4748{
4749    const Objlist_Entry *entry;
4750    const Needed_Entry *needed;
4751
4752    STAILQ_FOREACH(entry, &list_main, link) {
4753	if (object_match_name(entry->obj, name))
4754	    return entry->obj;
4755    }
4756
4757    for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4758	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4759	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4760	    /*
4761	     * If there is DT_NEEDED for the name we are looking for,
4762	     * we are all set.  Note that object might not be found if
4763	     * dependency was not loaded yet, so the function can
4764	     * return NULL here.  This is expected and handled
4765	     * properly by the caller.
4766	     */
4767	    return (needed->obj);
4768	}
4769    }
4770    _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4771	obj->path, name);
4772    rtld_die();
4773}
4774
4775static int
4776check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4777    const Elf_Vernaux *vna)
4778{
4779    const Elf_Verdef *vd;
4780    const char *vername;
4781
4782    vername = refobj->strtab + vna->vna_name;
4783    vd = depobj->verdef;
4784    if (vd == NULL) {
4785	_rtld_error("%s: version %s required by %s not defined",
4786	    depobj->path, vername, refobj->path);
4787	return (-1);
4788    }
4789    for (;;) {
4790	if (vd->vd_version != VER_DEF_CURRENT) {
4791	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4792		depobj->path, vd->vd_version);
4793	    return (-1);
4794	}
4795	if (vna->vna_hash == vd->vd_hash) {
4796	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4797		((char *)vd + vd->vd_aux);
4798	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4799		return (0);
4800	}
4801	if (vd->vd_next == 0)
4802	    break;
4803	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4804    }
4805    if (vna->vna_flags & VER_FLG_WEAK)
4806	return (0);
4807    _rtld_error("%s: version %s required by %s not found",
4808	depobj->path, vername, refobj->path);
4809    return (-1);
4810}
4811
4812static int
4813rtld_verify_object_versions(Obj_Entry *obj)
4814{
4815    const Elf_Verneed *vn;
4816    const Elf_Verdef  *vd;
4817    const Elf_Verdaux *vda;
4818    const Elf_Vernaux *vna;
4819    const Obj_Entry *depobj;
4820    int maxvernum, vernum;
4821
4822    if (obj->ver_checked)
4823	return (0);
4824    obj->ver_checked = true;
4825
4826    maxvernum = 0;
4827    /*
4828     * Walk over defined and required version records and figure out
4829     * max index used by any of them. Do very basic sanity checking
4830     * while there.
4831     */
4832    vn = obj->verneed;
4833    while (vn != NULL) {
4834	if (vn->vn_version != VER_NEED_CURRENT) {
4835	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4836		obj->path, vn->vn_version);
4837	    return (-1);
4838	}
4839	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4840	for (;;) {
4841	    vernum = VER_NEED_IDX(vna->vna_other);
4842	    if (vernum > maxvernum)
4843		maxvernum = vernum;
4844	    if (vna->vna_next == 0)
4845		 break;
4846	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4847	}
4848	if (vn->vn_next == 0)
4849	    break;
4850	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4851    }
4852
4853    vd = obj->verdef;
4854    while (vd != NULL) {
4855	if (vd->vd_version != VER_DEF_CURRENT) {
4856	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4857		obj->path, vd->vd_version);
4858	    return (-1);
4859	}
4860	vernum = VER_DEF_IDX(vd->vd_ndx);
4861	if (vernum > maxvernum)
4862		maxvernum = vernum;
4863	if (vd->vd_next == 0)
4864	    break;
4865	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4866    }
4867
4868    if (maxvernum == 0)
4869	return (0);
4870
4871    /*
4872     * Store version information in array indexable by version index.
4873     * Verify that object version requirements are satisfied along the
4874     * way.
4875     */
4876    obj->vernum = maxvernum + 1;
4877    obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4878
4879    vd = obj->verdef;
4880    while (vd != NULL) {
4881	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4882	    vernum = VER_DEF_IDX(vd->vd_ndx);
4883	    assert(vernum <= maxvernum);
4884	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4885	    obj->vertab[vernum].hash = vd->vd_hash;
4886	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4887	    obj->vertab[vernum].file = NULL;
4888	    obj->vertab[vernum].flags = 0;
4889	}
4890	if (vd->vd_next == 0)
4891	    break;
4892	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4893    }
4894
4895    vn = obj->verneed;
4896    while (vn != NULL) {
4897	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4898	if (depobj == NULL)
4899	    return (-1);
4900	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4901	for (;;) {
4902	    if (check_object_provided_version(obj, depobj, vna))
4903		return (-1);
4904	    vernum = VER_NEED_IDX(vna->vna_other);
4905	    assert(vernum <= maxvernum);
4906	    obj->vertab[vernum].hash = vna->vna_hash;
4907	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4908	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4909	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4910		VER_INFO_HIDDEN : 0;
4911	    if (vna->vna_next == 0)
4912		 break;
4913	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4914	}
4915	if (vn->vn_next == 0)
4916	    break;
4917	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4918    }
4919    return 0;
4920}
4921
4922static int
4923rtld_verify_versions(const Objlist *objlist)
4924{
4925    Objlist_Entry *entry;
4926    int rc;
4927
4928    rc = 0;
4929    STAILQ_FOREACH(entry, objlist, link) {
4930	/*
4931	 * Skip dummy objects or objects that have their version requirements
4932	 * already checked.
4933	 */
4934	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4935	    continue;
4936	if (rtld_verify_object_versions(entry->obj) == -1) {
4937	    rc = -1;
4938	    if (ld_tracing == NULL)
4939		break;
4940	}
4941    }
4942    if (rc == 0 || ld_tracing != NULL)
4943    	rc = rtld_verify_object_versions(&obj_rtld);
4944    return rc;
4945}
4946
4947const Ver_Entry *
4948fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4949{
4950    Elf_Versym vernum;
4951
4952    if (obj->vertab) {
4953	vernum = VER_NDX(obj->versyms[symnum]);
4954	if (vernum >= obj->vernum) {
4955	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4956		obj->path, obj->strtab + symnum, vernum);
4957	} else if (obj->vertab[vernum].hash != 0) {
4958	    return &obj->vertab[vernum];
4959	}
4960    }
4961    return NULL;
4962}
4963
4964int
4965_rtld_get_stack_prot(void)
4966{
4967
4968	return (stack_prot);
4969}
4970
4971int
4972_rtld_is_dlopened(void *arg)
4973{
4974	Obj_Entry *obj;
4975	RtldLockState lockstate;
4976	int res;
4977
4978	rlock_acquire(rtld_bind_lock, &lockstate);
4979	obj = dlcheck(arg);
4980	if (obj == NULL)
4981		obj = obj_from_addr(arg);
4982	if (obj == NULL) {
4983		_rtld_error("No shared object contains address");
4984		lock_release(rtld_bind_lock, &lockstate);
4985		return (-1);
4986	}
4987	res = obj->dlopened ? 1 : 0;
4988	lock_release(rtld_bind_lock, &lockstate);
4989	return (res);
4990}
4991
4992int
4993obj_enforce_relro(Obj_Entry *obj)
4994{
4995
4996	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
4997	    PROT_READ) == -1) {
4998		_rtld_error("%s: Cannot enforce relro protection: %s",
4999		    obj->path, rtld_strerror(errno));
5000		return (-1);
5001	}
5002	return (0);
5003}
5004
5005static void
5006map_stacks_exec(RtldLockState *lockstate)
5007{
5008	void (*thr_map_stacks_exec)(void);
5009
5010	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5011		return;
5012	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5013	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5014	if (thr_map_stacks_exec != NULL) {
5015		stack_prot |= PROT_EXEC;
5016		thr_map_stacks_exec();
5017	}
5018}
5019
5020void
5021symlook_init(SymLook *dst, const char *name)
5022{
5023
5024	bzero(dst, sizeof(*dst));
5025	dst->name = name;
5026	dst->hash = elf_hash(name);
5027	dst->hash_gnu = gnu_hash(name);
5028}
5029
5030static void
5031symlook_init_from_req(SymLook *dst, const SymLook *src)
5032{
5033
5034	dst->name = src->name;
5035	dst->hash = src->hash;
5036	dst->hash_gnu = src->hash_gnu;
5037	dst->ventry = src->ventry;
5038	dst->flags = src->flags;
5039	dst->defobj_out = NULL;
5040	dst->sym_out = NULL;
5041	dst->lockstate = src->lockstate;
5042}
5043
5044/*
5045 * Overrides for libc_pic-provided functions.
5046 */
5047
5048int
5049__getosreldate(void)
5050{
5051	size_t len;
5052	int oid[2];
5053	int error, osrel;
5054
5055	if (osreldate != 0)
5056		return (osreldate);
5057
5058	oid[0] = CTL_KERN;
5059	oid[1] = KERN_OSRELDATE;
5060	osrel = 0;
5061	len = sizeof(osrel);
5062	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5063	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5064		osreldate = osrel;
5065	return (osreldate);
5066}
5067
5068void
5069exit(int status)
5070{
5071
5072	_exit(status);
5073}
5074
5075void (*__cleanup)(void);
5076int __isthreaded = 0;
5077int _thread_autoinit_dummy_decl = 1;
5078
5079/*
5080 * No unresolved symbols for rtld.
5081 */
5082void
5083__pthread_cxa_finalize(struct dl_phdr_info *a)
5084{
5085}
5086
5087void
5088__stack_chk_fail(void)
5089{
5090
5091	_rtld_error("stack overflow detected; terminated");
5092	rtld_die();
5093}
5094__weak_reference(__stack_chk_fail, __stack_chk_fail_local);
5095
5096void
5097__chk_fail(void)
5098{
5099
5100	_rtld_error("buffer overflow detected; terminated");
5101	rtld_die();
5102}
5103
5104const char *
5105rtld_strerror(int errnum)
5106{
5107
5108	if (errnum < 0 || errnum >= sys_nerr)
5109		return ("Unknown error");
5110	return (sys_errlist[errnum]);
5111}
5112