rtld.c revision 304454
1/*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5 * Copyright 2012 John Marino <draco@marino.st>.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * $FreeBSD: stable/10/libexec/rtld-elf/rtld.c 304454 2016-08-19 08:05:08Z kib $
29 */
30
31/*
32 * Dynamic linker for ELF.
33 *
34 * John Polstra <jdp@polstra.com>.
35 */
36
37#include <sys/param.h>
38#include <sys/mount.h>
39#include <sys/mman.h>
40#include <sys/stat.h>
41#include <sys/sysctl.h>
42#include <sys/uio.h>
43#include <sys/utsname.h>
44#include <sys/ktrace.h>
45
46#include <dlfcn.h>
47#include <err.h>
48#include <errno.h>
49#include <fcntl.h>
50#include <stdarg.h>
51#include <stdio.h>
52#include <stdlib.h>
53#include <string.h>
54#include <unistd.h>
55
56#include "debug.h"
57#include "rtld.h"
58#include "libmap.h"
59#include "rtld_tls.h"
60#include "rtld_printf.h"
61#include "notes.h"
62
63#ifndef COMPAT_32BIT
64#define PATH_RTLD	"/libexec/ld-elf.so.1"
65#else
66#define PATH_RTLD	"/libexec/ld-elf32.so.1"
67#endif
68
69/* Types. */
70typedef void (*func_ptr_type)();
71typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
72
73/*
74 * Function declarations.
75 */
76static const char *basename(const char *);
77static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
78    const Elf_Dyn **, const Elf_Dyn **);
79static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
80    const Elf_Dyn *);
81static void digest_dynamic(Obj_Entry *, int);
82static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
83static Obj_Entry *dlcheck(void *);
84static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
85    int lo_flags, int mode, RtldLockState *lockstate);
86static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
87static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
88static bool donelist_check(DoneList *, const Obj_Entry *);
89static void errmsg_restore(char *);
90static char *errmsg_save(void);
91static void *fill_search_info(const char *, size_t, void *);
92static char *find_library(const char *, const Obj_Entry *);
93static const char *gethints(bool);
94static void init_dag(Obj_Entry *);
95static void init_pagesizes(Elf_Auxinfo **aux_info);
96static void init_rtld(caddr_t, Elf_Auxinfo **);
97static void initlist_add_neededs(Needed_Entry *, Objlist *);
98static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
99static void linkmap_add(Obj_Entry *);
100static void linkmap_delete(Obj_Entry *);
101static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
102static void unload_filtees(Obj_Entry *);
103static int load_needed_objects(Obj_Entry *, int);
104static int load_preload_objects(void);
105static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
106static void map_stacks_exec(RtldLockState *);
107static Obj_Entry *obj_from_addr(const void *);
108static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
109static void objlist_call_init(Objlist *, RtldLockState *);
110static void objlist_clear(Objlist *);
111static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
112static void objlist_init(Objlist *);
113static void objlist_push_head(Objlist *, Obj_Entry *);
114static void objlist_push_tail(Objlist *, Obj_Entry *);
115static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
116static void objlist_remove(Objlist *, Obj_Entry *);
117static void *path_enumerate(const char *, path_enum_proc, void *);
118static int relocate_object_dag(Obj_Entry *root, bool bind_now,
119    Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
120static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
121    int flags, RtldLockState *lockstate);
122static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
123    RtldLockState *);
124static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
125    int flags, RtldLockState *lockstate);
126static int rtld_dirname(const char *, char *);
127static int rtld_dirname_abs(const char *, char *);
128static void *rtld_dlopen(const char *name, int fd, int mode);
129static void rtld_exit(void);
130static char *search_library_path(const char *, const char *);
131static const void **get_program_var_addr(const char *, RtldLockState *);
132static void set_program_var(const char *, const void *);
133static int symlook_default(SymLook *, const Obj_Entry *refobj);
134static int symlook_global(SymLook *, DoneList *);
135static void symlook_init_from_req(SymLook *, const SymLook *);
136static int symlook_list(SymLook *, const Objlist *, DoneList *);
137static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
138static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
139static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
140static void trace_loaded_objects(Obj_Entry *);
141static void unlink_object(Obj_Entry *);
142static void unload_object(Obj_Entry *);
143static void unref_dag(Obj_Entry *);
144static void ref_dag(Obj_Entry *);
145static char *origin_subst_one(Obj_Entry *, char *, const char *,
146    const char *, bool);
147static char *origin_subst(Obj_Entry *, char *);
148static bool obj_resolve_origin(Obj_Entry *obj);
149static void preinit_main(void);
150static int  rtld_verify_versions(const Objlist *);
151static int  rtld_verify_object_versions(Obj_Entry *);
152static void object_add_name(Obj_Entry *, const char *);
153static int  object_match_name(const Obj_Entry *, const char *);
154static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
155static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
156    struct dl_phdr_info *phdr_info);
157static uint32_t gnu_hash(const char *);
158static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
159    const unsigned long);
160
161void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
162void _r_debug_postinit(struct link_map *) __noinline __exported;
163
164/*
165 * Data declarations.
166 */
167static char *error_message;	/* Message for dlerror(), or NULL */
168struct r_debug r_debug __exported;	/* for GDB; */
169static bool libmap_disable;	/* Disable libmap */
170static bool ld_loadfltr;	/* Immediate filters processing */
171static char *libmap_override;	/* Maps to use in addition to libmap.conf */
172static bool trust;		/* False for setuid and setgid programs */
173static bool dangerous_ld_env;	/* True if environment variables have been
174				   used to affect the libraries loaded */
175static char *ld_bind_now;	/* Environment variable for immediate binding */
176static char *ld_debug;		/* Environment variable for debugging */
177static char *ld_library_path;	/* Environment variable for search path */
178static char *ld_preload;	/* Environment variable for libraries to
179				   load first */
180static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
181static char *ld_tracing;	/* Called from ldd to print libs */
182static char *ld_utrace;		/* Use utrace() to log events. */
183static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
184static Obj_Entry *obj_main;	/* The main program shared object */
185static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
186static unsigned int obj_count;	/* Number of objects in obj_list */
187static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
188
189static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
190  STAILQ_HEAD_INITIALIZER(list_global);
191static Objlist list_main =	/* Objects loaded at program startup */
192  STAILQ_HEAD_INITIALIZER(list_main);
193static Objlist list_fini =	/* Objects needing fini() calls */
194  STAILQ_HEAD_INITIALIZER(list_fini);
195
196Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
197
198#define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
199
200extern Elf_Dyn _DYNAMIC;
201#pragma weak _DYNAMIC
202#ifndef RTLD_IS_DYNAMIC
203#define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
204#endif
205
206int dlclose(void *) __exported;
207char *dlerror(void) __exported;
208void *dlopen(const char *, int) __exported;
209void *fdlopen(int, int) __exported;
210void *dlsym(void *, const char *) __exported;
211dlfunc_t dlfunc(void *, const char *) __exported;
212void *dlvsym(void *, const char *, const char *) __exported;
213int dladdr(const void *, Dl_info *) __exported;
214void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
215    void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
216int dlinfo(void *, int , void *) __exported;
217int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
218int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
219int _rtld_get_stack_prot(void) __exported;
220int _rtld_is_dlopened(void *) __exported;
221void _rtld_error(const char *, ...) __exported;
222
223int npagesizes, osreldate;
224size_t *pagesizes;
225
226long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
227
228static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
229static int max_stack_flags;
230
231/*
232 * Global declarations normally provided by crt1.  The dynamic linker is
233 * not built with crt1, so we have to provide them ourselves.
234 */
235char *__progname;
236char **environ;
237
238/*
239 * Used to pass argc, argv to init functions.
240 */
241int main_argc;
242char **main_argv;
243
244/*
245 * Globals to control TLS allocation.
246 */
247size_t tls_last_offset;		/* Static TLS offset of last module */
248size_t tls_last_size;		/* Static TLS size of last module */
249size_t tls_static_space;	/* Static TLS space allocated */
250size_t tls_static_max_align;
251int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
252int tls_max_index = 1;		/* Largest module index allocated */
253
254bool ld_library_path_rpath = false;
255
256/*
257 * Fill in a DoneList with an allocation large enough to hold all of
258 * the currently-loaded objects.  Keep this as a macro since it calls
259 * alloca and we want that to occur within the scope of the caller.
260 */
261#define donelist_init(dlp)					\
262    ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
263    assert((dlp)->objs != NULL),				\
264    (dlp)->num_alloc = obj_count,				\
265    (dlp)->num_used = 0)
266
267#define	UTRACE_DLOPEN_START		1
268#define	UTRACE_DLOPEN_STOP		2
269#define	UTRACE_DLCLOSE_START		3
270#define	UTRACE_DLCLOSE_STOP		4
271#define	UTRACE_LOAD_OBJECT		5
272#define	UTRACE_UNLOAD_OBJECT		6
273#define	UTRACE_ADD_RUNDEP		7
274#define	UTRACE_PRELOAD_FINISHED		8
275#define	UTRACE_INIT_CALL		9
276#define	UTRACE_FINI_CALL		10
277#define	UTRACE_DLSYM_START		11
278#define	UTRACE_DLSYM_STOP		12
279
280struct utrace_rtld {
281	char sig[4];			/* 'RTLD' */
282	int event;
283	void *handle;
284	void *mapbase;			/* Used for 'parent' and 'init/fini' */
285	size_t mapsize;
286	int refcnt;			/* Used for 'mode' */
287	char name[MAXPATHLEN];
288};
289
290#define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
291	if (ld_utrace != NULL)					\
292		ld_utrace_log(e, h, mb, ms, r, n);		\
293} while (0)
294
295static void
296ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
297    int refcnt, const char *name)
298{
299	struct utrace_rtld ut;
300
301	ut.sig[0] = 'R';
302	ut.sig[1] = 'T';
303	ut.sig[2] = 'L';
304	ut.sig[3] = 'D';
305	ut.event = event;
306	ut.handle = handle;
307	ut.mapbase = mapbase;
308	ut.mapsize = mapsize;
309	ut.refcnt = refcnt;
310	bzero(ut.name, sizeof(ut.name));
311	if (name)
312		strlcpy(ut.name, name, sizeof(ut.name));
313	utrace(&ut, sizeof(ut));
314}
315
316/*
317 * Main entry point for dynamic linking.  The first argument is the
318 * stack pointer.  The stack is expected to be laid out as described
319 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
320 * Specifically, the stack pointer points to a word containing
321 * ARGC.  Following that in the stack is a null-terminated sequence
322 * of pointers to argument strings.  Then comes a null-terminated
323 * sequence of pointers to environment strings.  Finally, there is a
324 * sequence of "auxiliary vector" entries.
325 *
326 * The second argument points to a place to store the dynamic linker's
327 * exit procedure pointer and the third to a place to store the main
328 * program's object.
329 *
330 * The return value is the main program's entry point.
331 */
332func_ptr_type
333_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
334{
335    Elf_Auxinfo *aux_info[AT_COUNT];
336    int i;
337    int argc;
338    char **argv;
339    char **env;
340    Elf_Auxinfo *aux;
341    Elf_Auxinfo *auxp;
342    const char *argv0;
343    Objlist_Entry *entry;
344    Obj_Entry *obj;
345    Obj_Entry *preload_tail;
346    Obj_Entry *last_interposer;
347    Objlist initlist;
348    RtldLockState lockstate;
349    char *library_path_rpath;
350    int mib[2];
351    size_t len;
352
353    /*
354     * On entry, the dynamic linker itself has not been relocated yet.
355     * Be very careful not to reference any global data until after
356     * init_rtld has returned.  It is OK to reference file-scope statics
357     * and string constants, and to call static and global functions.
358     */
359
360    /* Find the auxiliary vector on the stack. */
361    argc = *sp++;
362    argv = (char **) sp;
363    sp += argc + 1;	/* Skip over arguments and NULL terminator */
364    env = (char **) sp;
365    while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
366	;
367    aux = (Elf_Auxinfo *) sp;
368
369    /* Digest the auxiliary vector. */
370    for (i = 0;  i < AT_COUNT;  i++)
371	aux_info[i] = NULL;
372    for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
373	if (auxp->a_type < AT_COUNT)
374	    aux_info[auxp->a_type] = auxp;
375    }
376
377    /* Initialize and relocate ourselves. */
378    assert(aux_info[AT_BASE] != NULL);
379    init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
380
381    __progname = obj_rtld.path;
382    argv0 = argv[0] != NULL ? argv[0] : "(null)";
383    environ = env;
384    main_argc = argc;
385    main_argv = argv;
386
387    if (aux_info[AT_CANARY] != NULL &&
388	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
389	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
390	    if (i > sizeof(__stack_chk_guard))
391		    i = sizeof(__stack_chk_guard);
392	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
393    } else {
394	mib[0] = CTL_KERN;
395	mib[1] = KERN_ARND;
396
397	len = sizeof(__stack_chk_guard);
398	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
399	    len != sizeof(__stack_chk_guard)) {
400		/* If sysctl was unsuccessful, use the "terminator canary". */
401		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
402		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
403		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
404		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
405	}
406    }
407
408    trust = !issetugid();
409
410    ld_bind_now = getenv(LD_ "BIND_NOW");
411    /*
412     * If the process is tainted, then we un-set the dangerous environment
413     * variables.  The process will be marked as tainted until setuid(2)
414     * is called.  If any child process calls setuid(2) we do not want any
415     * future processes to honor the potentially un-safe variables.
416     */
417    if (!trust) {
418        if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
419	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
420	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
421	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
422		_rtld_error("environment corrupt; aborting");
423		rtld_die();
424	}
425    }
426    ld_debug = getenv(LD_ "DEBUG");
427    libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
428    libmap_override = getenv(LD_ "LIBMAP");
429    ld_library_path = getenv(LD_ "LIBRARY_PATH");
430    ld_preload = getenv(LD_ "PRELOAD");
431    ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
432    ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
433    library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
434    if (library_path_rpath != NULL) {
435	    if (library_path_rpath[0] == 'y' ||
436		library_path_rpath[0] == 'Y' ||
437		library_path_rpath[0] == '1')
438		    ld_library_path_rpath = true;
439	    else
440		    ld_library_path_rpath = false;
441    }
442    dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
443	(ld_library_path != NULL) || (ld_preload != NULL) ||
444	(ld_elf_hints_path != NULL) || ld_loadfltr;
445    ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
446    ld_utrace = getenv(LD_ "UTRACE");
447
448    if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
449	ld_elf_hints_path = _PATH_ELF_HINTS;
450
451    if (ld_debug != NULL && *ld_debug != '\0')
452	debug = 1;
453    dbg("%s is initialized, base address = %p", __progname,
454	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
455    dbg("RTLD dynamic = %p", obj_rtld.dynamic);
456    dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
457
458    dbg("initializing thread locks");
459    lockdflt_init();
460
461    /*
462     * Load the main program, or process its program header if it is
463     * already loaded.
464     */
465    if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
466	int fd = aux_info[AT_EXECFD]->a_un.a_val;
467	dbg("loading main program");
468	obj_main = map_object(fd, argv0, NULL);
469	close(fd);
470	if (obj_main == NULL)
471	    rtld_die();
472	max_stack_flags = obj->stack_flags;
473    } else {				/* Main program already loaded. */
474	const Elf_Phdr *phdr;
475	int phnum;
476	caddr_t entry;
477
478	dbg("processing main program's program header");
479	assert(aux_info[AT_PHDR] != NULL);
480	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
481	assert(aux_info[AT_PHNUM] != NULL);
482	phnum = aux_info[AT_PHNUM]->a_un.a_val;
483	assert(aux_info[AT_PHENT] != NULL);
484	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
485	assert(aux_info[AT_ENTRY] != NULL);
486	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
487	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
488	    rtld_die();
489    }
490
491    if (aux_info[AT_EXECPATH] != 0) {
492	    char *kexecpath;
493	    char buf[MAXPATHLEN];
494
495	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
496	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
497	    if (kexecpath[0] == '/')
498		    obj_main->path = kexecpath;
499	    else if (getcwd(buf, sizeof(buf)) == NULL ||
500		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
501		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
502		    obj_main->path = xstrdup(argv0);
503	    else
504		    obj_main->path = xstrdup(buf);
505    } else {
506	    dbg("No AT_EXECPATH");
507	    obj_main->path = xstrdup(argv0);
508    }
509    dbg("obj_main path %s", obj_main->path);
510    obj_main->mainprog = true;
511
512    if (aux_info[AT_STACKPROT] != NULL &&
513      aux_info[AT_STACKPROT]->a_un.a_val != 0)
514	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
515
516#ifndef COMPAT_32BIT
517    /*
518     * Get the actual dynamic linker pathname from the executable if
519     * possible.  (It should always be possible.)  That ensures that
520     * gdb will find the right dynamic linker even if a non-standard
521     * one is being used.
522     */
523    if (obj_main->interp != NULL &&
524      strcmp(obj_main->interp, obj_rtld.path) != 0) {
525	free(obj_rtld.path);
526	obj_rtld.path = xstrdup(obj_main->interp);
527        __progname = obj_rtld.path;
528    }
529#endif
530
531    digest_dynamic(obj_main, 0);
532    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
533	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
534	obj_main->dynsymcount);
535
536    linkmap_add(obj_main);
537    linkmap_add(&obj_rtld);
538
539    /* Link the main program into the list of objects. */
540    TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
541    obj_count++;
542    obj_loads++;
543
544    /* Initialize a fake symbol for resolving undefined weak references. */
545    sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
546    sym_zero.st_shndx = SHN_UNDEF;
547    sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
548
549    if (!libmap_disable)
550        libmap_disable = (bool)lm_init(libmap_override);
551
552    dbg("loading LD_PRELOAD libraries");
553    if (load_preload_objects() == -1)
554	rtld_die();
555    preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
556
557    dbg("loading needed objects");
558    if (load_needed_objects(obj_main, 0) == -1)
559	rtld_die();
560
561    /* Make a list of all objects loaded at startup. */
562    last_interposer = obj_main;
563    TAILQ_FOREACH(obj, &obj_list, next) {
564	if (obj->marker)
565	    continue;
566	if (obj->z_interpose && obj != obj_main) {
567	    objlist_put_after(&list_main, last_interposer, obj);
568	    last_interposer = obj;
569	} else {
570	    objlist_push_tail(&list_main, obj);
571	}
572    	obj->refcount++;
573    }
574
575    dbg("checking for required versions");
576    if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
577	rtld_die();
578
579    if (ld_tracing) {		/* We're done */
580	trace_loaded_objects(obj_main);
581	exit(0);
582    }
583
584    if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
585       dump_relocations(obj_main);
586       exit (0);
587    }
588
589    /*
590     * Processing tls relocations requires having the tls offsets
591     * initialized.  Prepare offsets before starting initial
592     * relocation processing.
593     */
594    dbg("initializing initial thread local storage offsets");
595    STAILQ_FOREACH(entry, &list_main, link) {
596	/*
597	 * Allocate all the initial objects out of the static TLS
598	 * block even if they didn't ask for it.
599	 */
600	allocate_tls_offset(entry->obj);
601    }
602
603    if (relocate_objects(obj_main,
604      ld_bind_now != NULL && *ld_bind_now != '\0',
605      &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
606	rtld_die();
607
608    dbg("doing copy relocations");
609    if (do_copy_relocations(obj_main) == -1)
610	rtld_die();
611
612    if (getenv(LD_ "DUMP_REL_POST") != NULL) {
613       dump_relocations(obj_main);
614       exit (0);
615    }
616
617    /*
618     * Setup TLS for main thread.  This must be done after the
619     * relocations are processed, since tls initialization section
620     * might be the subject for relocations.
621     */
622    dbg("initializing initial thread local storage");
623    allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
624
625    dbg("initializing key program variables");
626    set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
627    set_program_var("environ", env);
628    set_program_var("__elf_aux_vector", aux);
629
630    /* Make a list of init functions to call. */
631    objlist_init(&initlist);
632    initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
633      preload_tail, &initlist);
634
635    r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
636
637    map_stacks_exec(NULL);
638
639    dbg("resolving ifuncs");
640    if (resolve_objects_ifunc(obj_main,
641      ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
642      NULL) == -1)
643	rtld_die();
644
645    if (!obj_main->crt_no_init) {
646	/*
647	 * Make sure we don't call the main program's init and fini
648	 * functions for binaries linked with old crt1 which calls
649	 * _init itself.
650	 */
651	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
652	obj_main->preinit_array = obj_main->init_array =
653	    obj_main->fini_array = (Elf_Addr)NULL;
654    }
655
656    wlock_acquire(rtld_bind_lock, &lockstate);
657    if (obj_main->crt_no_init)
658	preinit_main();
659    objlist_call_init(&initlist, &lockstate);
660    _r_debug_postinit(&obj_main->linkmap);
661    objlist_clear(&initlist);
662    dbg("loading filtees");
663    TAILQ_FOREACH(obj, &obj_list, next) {
664	if (obj->marker)
665	    continue;
666	if (ld_loadfltr || obj->z_loadfltr)
667	    load_filtees(obj, 0, &lockstate);
668    }
669    lock_release(rtld_bind_lock, &lockstate);
670
671    dbg("transferring control to program entry point = %p", obj_main->entry);
672
673    /* Return the exit procedure and the program entry point. */
674    *exit_proc = rtld_exit;
675    *objp = obj_main;
676    return (func_ptr_type) obj_main->entry;
677}
678
679void *
680rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
681{
682	void *ptr;
683	Elf_Addr target;
684
685	ptr = (void *)make_function_pointer(def, obj);
686	target = ((Elf_Addr (*)(void))ptr)();
687	return ((void *)target);
688}
689
690Elf_Addr
691_rtld_bind(Obj_Entry *obj, Elf_Size reloff)
692{
693    const Elf_Rel *rel;
694    const Elf_Sym *def;
695    const Obj_Entry *defobj;
696    Elf_Addr *where;
697    Elf_Addr target;
698    RtldLockState lockstate;
699
700    rlock_acquire(rtld_bind_lock, &lockstate);
701    if (sigsetjmp(lockstate.env, 0) != 0)
702	    lock_upgrade(rtld_bind_lock, &lockstate);
703    if (obj->pltrel)
704	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
705    else
706	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
707
708    where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
709    def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
710	&lockstate);
711    if (def == NULL)
712	rtld_die();
713    if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
714	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
715    else
716	target = (Elf_Addr)(defobj->relocbase + def->st_value);
717
718    dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
719      defobj->strtab + def->st_name, basename(obj->path),
720      (void *)target, basename(defobj->path));
721
722    /*
723     * Write the new contents for the jmpslot. Note that depending on
724     * architecture, the value which we need to return back to the
725     * lazy binding trampoline may or may not be the target
726     * address. The value returned from reloc_jmpslot() is the value
727     * that the trampoline needs.
728     */
729    target = reloc_jmpslot(where, target, defobj, obj, rel);
730    lock_release(rtld_bind_lock, &lockstate);
731    return target;
732}
733
734/*
735 * Error reporting function.  Use it like printf.  If formats the message
736 * into a buffer, and sets things up so that the next call to dlerror()
737 * will return the message.
738 */
739void
740_rtld_error(const char *fmt, ...)
741{
742    static char buf[512];
743    va_list ap;
744
745    va_start(ap, fmt);
746    rtld_vsnprintf(buf, sizeof buf, fmt, ap);
747    error_message = buf;
748    va_end(ap);
749}
750
751/*
752 * Return a dynamically-allocated copy of the current error message, if any.
753 */
754static char *
755errmsg_save(void)
756{
757    return error_message == NULL ? NULL : xstrdup(error_message);
758}
759
760/*
761 * Restore the current error message from a copy which was previously saved
762 * by errmsg_save().  The copy is freed.
763 */
764static void
765errmsg_restore(char *saved_msg)
766{
767    if (saved_msg == NULL)
768	error_message = NULL;
769    else {
770	_rtld_error("%s", saved_msg);
771	free(saved_msg);
772    }
773}
774
775static const char *
776basename(const char *name)
777{
778    const char *p = strrchr(name, '/');
779    return p != NULL ? p + 1 : name;
780}
781
782static struct utsname uts;
783
784static char *
785origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
786    const char *subst, bool may_free)
787{
788	char *p, *p1, *res, *resp;
789	int subst_len, kw_len, subst_count, old_len, new_len;
790
791	kw_len = strlen(kw);
792
793	/*
794	 * First, count the number of the keyword occurences, to
795	 * preallocate the final string.
796	 */
797	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
798		p1 = strstr(p, kw);
799		if (p1 == NULL)
800			break;
801	}
802
803	/*
804	 * If the keyword is not found, just return.
805	 *
806	 * Return non-substituted string if resolution failed.  We
807	 * cannot do anything more reasonable, the failure mode of the
808	 * caller is unresolved library anyway.
809	 */
810	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
811		return (may_free ? real : xstrdup(real));
812	if (obj != NULL)
813		subst = obj->origin_path;
814
815	/*
816	 * There is indeed something to substitute.  Calculate the
817	 * length of the resulting string, and allocate it.
818	 */
819	subst_len = strlen(subst);
820	old_len = strlen(real);
821	new_len = old_len + (subst_len - kw_len) * subst_count;
822	res = xmalloc(new_len + 1);
823
824	/*
825	 * Now, execute the substitution loop.
826	 */
827	for (p = real, resp = res, *resp = '\0';;) {
828		p1 = strstr(p, kw);
829		if (p1 != NULL) {
830			/* Copy the prefix before keyword. */
831			memcpy(resp, p, p1 - p);
832			resp += p1 - p;
833			/* Keyword replacement. */
834			memcpy(resp, subst, subst_len);
835			resp += subst_len;
836			*resp = '\0';
837			p = p1 + kw_len;
838		} else
839			break;
840	}
841
842	/* Copy to the end of string and finish. */
843	strcat(resp, p);
844	if (may_free)
845		free(real);
846	return (res);
847}
848
849static char *
850origin_subst(Obj_Entry *obj, char *real)
851{
852	char *res1, *res2, *res3, *res4;
853
854	if (obj == NULL || !trust)
855		return (xstrdup(real));
856	if (uts.sysname[0] == '\0') {
857		if (uname(&uts) != 0) {
858			_rtld_error("utsname failed: %d", errno);
859			return (NULL);
860		}
861	}
862	res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false);
863	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
864	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
865	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
866	return (res4);
867}
868
869void
870rtld_die(void)
871{
872    const char *msg = dlerror();
873
874    if (msg == NULL)
875	msg = "Fatal error";
876    rtld_fdputstr(STDERR_FILENO, msg);
877    rtld_fdputchar(STDERR_FILENO, '\n');
878    _exit(1);
879}
880
881/*
882 * Process a shared object's DYNAMIC section, and save the important
883 * information in its Obj_Entry structure.
884 */
885static void
886digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
887    const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
888{
889    const Elf_Dyn *dynp;
890    Needed_Entry **needed_tail = &obj->needed;
891    Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
892    Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
893    const Elf_Hashelt *hashtab;
894    const Elf32_Word *hashval;
895    Elf32_Word bkt, nmaskwords;
896    int bloom_size32;
897    int plttype = DT_REL;
898
899    *dyn_rpath = NULL;
900    *dyn_soname = NULL;
901    *dyn_runpath = NULL;
902
903    obj->bind_now = false;
904    for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
905	switch (dynp->d_tag) {
906
907	case DT_REL:
908	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
909	    break;
910
911	case DT_RELSZ:
912	    obj->relsize = dynp->d_un.d_val;
913	    break;
914
915	case DT_RELENT:
916	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
917	    break;
918
919	case DT_JMPREL:
920	    obj->pltrel = (const Elf_Rel *)
921	      (obj->relocbase + dynp->d_un.d_ptr);
922	    break;
923
924	case DT_PLTRELSZ:
925	    obj->pltrelsize = dynp->d_un.d_val;
926	    break;
927
928	case DT_RELA:
929	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
930	    break;
931
932	case DT_RELASZ:
933	    obj->relasize = dynp->d_un.d_val;
934	    break;
935
936	case DT_RELAENT:
937	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
938	    break;
939
940	case DT_PLTREL:
941	    plttype = dynp->d_un.d_val;
942	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
943	    break;
944
945	case DT_SYMTAB:
946	    obj->symtab = (const Elf_Sym *)
947	      (obj->relocbase + dynp->d_un.d_ptr);
948	    break;
949
950	case DT_SYMENT:
951	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
952	    break;
953
954	case DT_STRTAB:
955	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
956	    break;
957
958	case DT_STRSZ:
959	    obj->strsize = dynp->d_un.d_val;
960	    break;
961
962	case DT_VERNEED:
963	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
964		dynp->d_un.d_val);
965	    break;
966
967	case DT_VERNEEDNUM:
968	    obj->verneednum = dynp->d_un.d_val;
969	    break;
970
971	case DT_VERDEF:
972	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
973		dynp->d_un.d_val);
974	    break;
975
976	case DT_VERDEFNUM:
977	    obj->verdefnum = dynp->d_un.d_val;
978	    break;
979
980	case DT_VERSYM:
981	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
982		dynp->d_un.d_val);
983	    break;
984
985	case DT_HASH:
986	    {
987		hashtab = (const Elf_Hashelt *)(obj->relocbase +
988		    dynp->d_un.d_ptr);
989		obj->nbuckets = hashtab[0];
990		obj->nchains = hashtab[1];
991		obj->buckets = hashtab + 2;
992		obj->chains = obj->buckets + obj->nbuckets;
993		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
994		  obj->buckets != NULL;
995	    }
996	    break;
997
998	case DT_GNU_HASH:
999	    {
1000		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1001		    dynp->d_un.d_ptr);
1002		obj->nbuckets_gnu = hashtab[0];
1003		obj->symndx_gnu = hashtab[1];
1004		nmaskwords = hashtab[2];
1005		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1006		obj->maskwords_bm_gnu = nmaskwords - 1;
1007		obj->shift2_gnu = hashtab[3];
1008		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1009		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1010		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1011		  obj->symndx_gnu;
1012		/* Number of bitmask words is required to be power of 2 */
1013		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1014		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1015	    }
1016	    break;
1017
1018	case DT_NEEDED:
1019	    if (!obj->rtld) {
1020		Needed_Entry *nep = NEW(Needed_Entry);
1021		nep->name = dynp->d_un.d_val;
1022		nep->obj = NULL;
1023		nep->next = NULL;
1024
1025		*needed_tail = nep;
1026		needed_tail = &nep->next;
1027	    }
1028	    break;
1029
1030	case DT_FILTER:
1031	    if (!obj->rtld) {
1032		Needed_Entry *nep = NEW(Needed_Entry);
1033		nep->name = dynp->d_un.d_val;
1034		nep->obj = NULL;
1035		nep->next = NULL;
1036
1037		*needed_filtees_tail = nep;
1038		needed_filtees_tail = &nep->next;
1039	    }
1040	    break;
1041
1042	case DT_AUXILIARY:
1043	    if (!obj->rtld) {
1044		Needed_Entry *nep = NEW(Needed_Entry);
1045		nep->name = dynp->d_un.d_val;
1046		nep->obj = NULL;
1047		nep->next = NULL;
1048
1049		*needed_aux_filtees_tail = nep;
1050		needed_aux_filtees_tail = &nep->next;
1051	    }
1052	    break;
1053
1054	case DT_PLTGOT:
1055	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1056	    break;
1057
1058	case DT_TEXTREL:
1059	    obj->textrel = true;
1060	    break;
1061
1062	case DT_SYMBOLIC:
1063	    obj->symbolic = true;
1064	    break;
1065
1066	case DT_RPATH:
1067	    /*
1068	     * We have to wait until later to process this, because we
1069	     * might not have gotten the address of the string table yet.
1070	     */
1071	    *dyn_rpath = dynp;
1072	    break;
1073
1074	case DT_SONAME:
1075	    *dyn_soname = dynp;
1076	    break;
1077
1078	case DT_RUNPATH:
1079	    *dyn_runpath = dynp;
1080	    break;
1081
1082	case DT_INIT:
1083	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1084	    break;
1085
1086	case DT_PREINIT_ARRAY:
1087	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1088	    break;
1089
1090	case DT_PREINIT_ARRAYSZ:
1091	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1092	    break;
1093
1094	case DT_INIT_ARRAY:
1095	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1096	    break;
1097
1098	case DT_INIT_ARRAYSZ:
1099	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1100	    break;
1101
1102	case DT_FINI:
1103	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1104	    break;
1105
1106	case DT_FINI_ARRAY:
1107	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1108	    break;
1109
1110	case DT_FINI_ARRAYSZ:
1111	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1112	    break;
1113
1114	/*
1115	 * Don't process DT_DEBUG on MIPS as the dynamic section
1116	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1117	 */
1118
1119#ifndef __mips__
1120	case DT_DEBUG:
1121	    if (!early)
1122		dbg("Filling in DT_DEBUG entry");
1123	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1124	    break;
1125#endif
1126
1127	case DT_FLAGS:
1128		if (dynp->d_un.d_val & DF_ORIGIN)
1129		    obj->z_origin = true;
1130		if (dynp->d_un.d_val & DF_SYMBOLIC)
1131		    obj->symbolic = true;
1132		if (dynp->d_un.d_val & DF_TEXTREL)
1133		    obj->textrel = true;
1134		if (dynp->d_un.d_val & DF_BIND_NOW)
1135		    obj->bind_now = true;
1136		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1137		    ;*/
1138	    break;
1139#ifdef __mips__
1140	case DT_MIPS_LOCAL_GOTNO:
1141		obj->local_gotno = dynp->d_un.d_val;
1142	    break;
1143
1144	case DT_MIPS_SYMTABNO:
1145		obj->symtabno = dynp->d_un.d_val;
1146		break;
1147
1148	case DT_MIPS_GOTSYM:
1149		obj->gotsym = dynp->d_un.d_val;
1150		break;
1151
1152	case DT_MIPS_RLD_MAP:
1153		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1154		break;
1155#endif
1156
1157	case DT_FLAGS_1:
1158		if (dynp->d_un.d_val & DF_1_NOOPEN)
1159		    obj->z_noopen = true;
1160		if (dynp->d_un.d_val & DF_1_ORIGIN)
1161		    obj->z_origin = true;
1162		if (dynp->d_un.d_val & DF_1_GLOBAL)
1163		    obj->z_global = true;
1164		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1165		    obj->bind_now = true;
1166		if (dynp->d_un.d_val & DF_1_NODELETE)
1167		    obj->z_nodelete = true;
1168		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1169		    obj->z_loadfltr = true;
1170		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1171		    obj->z_interpose = true;
1172		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1173		    obj->z_nodeflib = true;
1174	    break;
1175
1176	default:
1177	    if (!early) {
1178		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1179		    (long)dynp->d_tag);
1180	    }
1181	    break;
1182	}
1183    }
1184
1185    obj->traced = false;
1186
1187    if (plttype == DT_RELA) {
1188	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1189	obj->pltrel = NULL;
1190	obj->pltrelasize = obj->pltrelsize;
1191	obj->pltrelsize = 0;
1192    }
1193
1194    /* Determine size of dynsym table (equal to nchains of sysv hash) */
1195    if (obj->valid_hash_sysv)
1196	obj->dynsymcount = obj->nchains;
1197    else if (obj->valid_hash_gnu) {
1198	obj->dynsymcount = 0;
1199	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1200	    if (obj->buckets_gnu[bkt] == 0)
1201		continue;
1202	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1203	    do
1204		obj->dynsymcount++;
1205	    while ((*hashval++ & 1u) == 0);
1206	}
1207	obj->dynsymcount += obj->symndx_gnu;
1208    }
1209}
1210
1211static bool
1212obj_resolve_origin(Obj_Entry *obj)
1213{
1214
1215	if (obj->origin_path != NULL)
1216		return (true);
1217	obj->origin_path = xmalloc(PATH_MAX);
1218	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1219}
1220
1221static void
1222digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1223    const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1224{
1225
1226	if (obj->z_origin && !obj_resolve_origin(obj))
1227		rtld_die();
1228
1229	if (dyn_runpath != NULL) {
1230		obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1231		obj->runpath = origin_subst(obj, obj->runpath);
1232	} else if (dyn_rpath != NULL) {
1233		obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1234		obj->rpath = origin_subst(obj, obj->rpath);
1235	}
1236	if (dyn_soname != NULL)
1237		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1238}
1239
1240static void
1241digest_dynamic(Obj_Entry *obj, int early)
1242{
1243	const Elf_Dyn *dyn_rpath;
1244	const Elf_Dyn *dyn_soname;
1245	const Elf_Dyn *dyn_runpath;
1246
1247	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1248	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1249}
1250
1251/*
1252 * Process a shared object's program header.  This is used only for the
1253 * main program, when the kernel has already loaded the main program
1254 * into memory before calling the dynamic linker.  It creates and
1255 * returns an Obj_Entry structure.
1256 */
1257static Obj_Entry *
1258digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1259{
1260    Obj_Entry *obj;
1261    const Elf_Phdr *phlimit = phdr + phnum;
1262    const Elf_Phdr *ph;
1263    Elf_Addr note_start, note_end;
1264    int nsegs = 0;
1265
1266    obj = obj_new();
1267    for (ph = phdr;  ph < phlimit;  ph++) {
1268	if (ph->p_type != PT_PHDR)
1269	    continue;
1270
1271	obj->phdr = phdr;
1272	obj->phsize = ph->p_memsz;
1273	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1274	break;
1275    }
1276
1277    obj->stack_flags = PF_X | PF_R | PF_W;
1278
1279    for (ph = phdr;  ph < phlimit;  ph++) {
1280	switch (ph->p_type) {
1281
1282	case PT_INTERP:
1283	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1284	    break;
1285
1286	case PT_LOAD:
1287	    if (nsegs == 0) {	/* First load segment */
1288		obj->vaddrbase = trunc_page(ph->p_vaddr);
1289		obj->mapbase = obj->vaddrbase + obj->relocbase;
1290		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1291		  obj->vaddrbase;
1292	    } else {		/* Last load segment */
1293		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1294		  obj->vaddrbase;
1295	    }
1296	    nsegs++;
1297	    break;
1298
1299	case PT_DYNAMIC:
1300	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1301	    break;
1302
1303	case PT_TLS:
1304	    obj->tlsindex = 1;
1305	    obj->tlssize = ph->p_memsz;
1306	    obj->tlsalign = ph->p_align;
1307	    obj->tlsinitsize = ph->p_filesz;
1308	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1309	    break;
1310
1311	case PT_GNU_STACK:
1312	    obj->stack_flags = ph->p_flags;
1313	    break;
1314
1315	case PT_GNU_RELRO:
1316	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1317	    obj->relro_size = round_page(ph->p_memsz);
1318	    break;
1319
1320	case PT_NOTE:
1321	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1322	    note_end = note_start + ph->p_filesz;
1323	    digest_notes(obj, note_start, note_end);
1324	    break;
1325	}
1326    }
1327    if (nsegs < 1) {
1328	_rtld_error("%s: too few PT_LOAD segments", path);
1329	return NULL;
1330    }
1331
1332    obj->entry = entry;
1333    return obj;
1334}
1335
1336void
1337digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1338{
1339	const Elf_Note *note;
1340	const char *note_name;
1341	uintptr_t p;
1342
1343	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1344	    note = (const Elf_Note *)((const char *)(note + 1) +
1345	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1346	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1347		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1348		    note->n_descsz != sizeof(int32_t))
1349			continue;
1350		if (note->n_type != ABI_NOTETYPE &&
1351		    note->n_type != CRT_NOINIT_NOTETYPE)
1352			continue;
1353		note_name = (const char *)(note + 1);
1354		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1355		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1356			continue;
1357		switch (note->n_type) {
1358		case ABI_NOTETYPE:
1359			/* FreeBSD osrel note */
1360			p = (uintptr_t)(note + 1);
1361			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1362			obj->osrel = *(const int32_t *)(p);
1363			dbg("note osrel %d", obj->osrel);
1364			break;
1365		case CRT_NOINIT_NOTETYPE:
1366			/* FreeBSD 'crt does not call init' note */
1367			obj->crt_no_init = true;
1368			dbg("note crt_no_init");
1369			break;
1370		}
1371	}
1372}
1373
1374static Obj_Entry *
1375dlcheck(void *handle)
1376{
1377    Obj_Entry *obj;
1378
1379    TAILQ_FOREACH(obj, &obj_list, next) {
1380	if (obj == (Obj_Entry *) handle)
1381	    break;
1382    }
1383
1384    if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1385	_rtld_error("Invalid shared object handle %p", handle);
1386	return NULL;
1387    }
1388    return obj;
1389}
1390
1391/*
1392 * If the given object is already in the donelist, return true.  Otherwise
1393 * add the object to the list and return false.
1394 */
1395static bool
1396donelist_check(DoneList *dlp, const Obj_Entry *obj)
1397{
1398    unsigned int i;
1399
1400    for (i = 0;  i < dlp->num_used;  i++)
1401	if (dlp->objs[i] == obj)
1402	    return true;
1403    /*
1404     * Our donelist allocation should always be sufficient.  But if
1405     * our threads locking isn't working properly, more shared objects
1406     * could have been loaded since we allocated the list.  That should
1407     * never happen, but we'll handle it properly just in case it does.
1408     */
1409    if (dlp->num_used < dlp->num_alloc)
1410	dlp->objs[dlp->num_used++] = obj;
1411    return false;
1412}
1413
1414/*
1415 * Hash function for symbol table lookup.  Don't even think about changing
1416 * this.  It is specified by the System V ABI.
1417 */
1418unsigned long
1419elf_hash(const char *name)
1420{
1421    const unsigned char *p = (const unsigned char *) name;
1422    unsigned long h = 0;
1423    unsigned long g;
1424
1425    while (*p != '\0') {
1426	h = (h << 4) + *p++;
1427	if ((g = h & 0xf0000000) != 0)
1428	    h ^= g >> 24;
1429	h &= ~g;
1430    }
1431    return h;
1432}
1433
1434/*
1435 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1436 * unsigned in case it's implemented with a wider type.
1437 */
1438static uint32_t
1439gnu_hash(const char *s)
1440{
1441	uint32_t h;
1442	unsigned char c;
1443
1444	h = 5381;
1445	for (c = *s; c != '\0'; c = *++s)
1446		h = h * 33 + c;
1447	return (h & 0xffffffff);
1448}
1449
1450/*
1451 * Find the library with the given name, and return its full pathname.
1452 * The returned string is dynamically allocated.  Generates an error
1453 * message and returns NULL if the library cannot be found.
1454 *
1455 * If the second argument is non-NULL, then it refers to an already-
1456 * loaded shared object, whose library search path will be searched.
1457 *
1458 * The search order is:
1459 *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1460 *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1461 *   LD_LIBRARY_PATH
1462 *   DT_RUNPATH in the referencing file
1463 *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1464 *	 from list)
1465 *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1466 *
1467 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1468 */
1469static char *
1470find_library(const char *xname, const Obj_Entry *refobj)
1471{
1472    char *pathname;
1473    char *name;
1474    bool nodeflib, objgiven;
1475
1476    objgiven = refobj != NULL;
1477    if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1478	if (xname[0] != '/' && !trust) {
1479	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1480	      xname);
1481	    return NULL;
1482	}
1483	return (origin_subst(__DECONST(Obj_Entry *, refobj),
1484	  __DECONST(char *, xname)));
1485    }
1486
1487    if (libmap_disable || !objgiven ||
1488	(name = lm_find(refobj->path, xname)) == NULL)
1489	name = (char *)xname;
1490
1491    dbg(" Searching for \"%s\"", name);
1492
1493    /*
1494     * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1495     * back to pre-conforming behaviour if user requested so with
1496     * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1497     * nodeflib.
1498     */
1499    if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1500	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1501	  (refobj != NULL &&
1502	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1503          (pathname = search_library_path(name, gethints(false))) != NULL ||
1504	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1505	    return (pathname);
1506    } else {
1507	nodeflib = objgiven ? refobj->z_nodeflib : false;
1508	if ((objgiven &&
1509	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1510	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1511	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1512	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1513	  (objgiven &&
1514	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1515	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1516	  (objgiven && !nodeflib &&
1517	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1518	    return (pathname);
1519    }
1520
1521    if (objgiven && refobj->path != NULL) {
1522	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1523	  name, basename(refobj->path));
1524    } else {
1525	_rtld_error("Shared object \"%s\" not found", name);
1526    }
1527    return NULL;
1528}
1529
1530/*
1531 * Given a symbol number in a referencing object, find the corresponding
1532 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1533 * no definition was found.  Returns a pointer to the Obj_Entry of the
1534 * defining object via the reference parameter DEFOBJ_OUT.
1535 */
1536const Elf_Sym *
1537find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1538    const Obj_Entry **defobj_out, int flags, SymCache *cache,
1539    RtldLockState *lockstate)
1540{
1541    const Elf_Sym *ref;
1542    const Elf_Sym *def;
1543    const Obj_Entry *defobj;
1544    SymLook req;
1545    const char *name;
1546    int res;
1547
1548    /*
1549     * If we have already found this symbol, get the information from
1550     * the cache.
1551     */
1552    if (symnum >= refobj->dynsymcount)
1553	return NULL;	/* Bad object */
1554    if (cache != NULL && cache[symnum].sym != NULL) {
1555	*defobj_out = cache[symnum].obj;
1556	return cache[symnum].sym;
1557    }
1558
1559    ref = refobj->symtab + symnum;
1560    name = refobj->strtab + ref->st_name;
1561    def = NULL;
1562    defobj = NULL;
1563
1564    /*
1565     * We don't have to do a full scale lookup if the symbol is local.
1566     * We know it will bind to the instance in this load module; to
1567     * which we already have a pointer (ie ref). By not doing a lookup,
1568     * we not only improve performance, but it also avoids unresolvable
1569     * symbols when local symbols are not in the hash table. This has
1570     * been seen with the ia64 toolchain.
1571     */
1572    if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1573	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1574	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1575		symnum);
1576	}
1577	symlook_init(&req, name);
1578	req.flags = flags;
1579	req.ventry = fetch_ventry(refobj, symnum);
1580	req.lockstate = lockstate;
1581	res = symlook_default(&req, refobj);
1582	if (res == 0) {
1583	    def = req.sym_out;
1584	    defobj = req.defobj_out;
1585	}
1586    } else {
1587	def = ref;
1588	defobj = refobj;
1589    }
1590
1591    /*
1592     * If we found no definition and the reference is weak, treat the
1593     * symbol as having the value zero.
1594     */
1595    if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1596	def = &sym_zero;
1597	defobj = obj_main;
1598    }
1599
1600    if (def != NULL) {
1601	*defobj_out = defobj;
1602	/* Record the information in the cache to avoid subsequent lookups. */
1603	if (cache != NULL) {
1604	    cache[symnum].sym = def;
1605	    cache[symnum].obj = defobj;
1606	}
1607    } else {
1608	if (refobj != &obj_rtld)
1609	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1610    }
1611    return def;
1612}
1613
1614/*
1615 * Return the search path from the ldconfig hints file, reading it if
1616 * necessary.  If nostdlib is true, then the default search paths are
1617 * not added to result.
1618 *
1619 * Returns NULL if there are problems with the hints file,
1620 * or if the search path there is empty.
1621 */
1622static const char *
1623gethints(bool nostdlib)
1624{
1625	static char *hints, *filtered_path;
1626	static struct elfhints_hdr hdr;
1627	struct fill_search_info_args sargs, hargs;
1628	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1629	struct dl_serpath *SLPpath, *hintpath;
1630	char *p;
1631	struct stat hint_stat;
1632	unsigned int SLPndx, hintndx, fndx, fcount;
1633	int fd;
1634	size_t flen;
1635	uint32_t dl;
1636	bool skip;
1637
1638	/* First call, read the hints file */
1639	if (hints == NULL) {
1640		/* Keep from trying again in case the hints file is bad. */
1641		hints = "";
1642
1643		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1644			return (NULL);
1645
1646		/*
1647		 * Check of hdr.dirlistlen value against type limit
1648		 * intends to pacify static analyzers.  Further
1649		 * paranoia leads to checks that dirlist is fully
1650		 * contained in the file range.
1651		 */
1652		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1653		    hdr.magic != ELFHINTS_MAGIC ||
1654		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1655		    fstat(fd, &hint_stat) == -1) {
1656cleanup1:
1657			close(fd);
1658			hdr.dirlistlen = 0;
1659			return (NULL);
1660		}
1661		dl = hdr.strtab;
1662		if (dl + hdr.dirlist < dl)
1663			goto cleanup1;
1664		dl += hdr.dirlist;
1665		if (dl + hdr.dirlistlen < dl)
1666			goto cleanup1;
1667		dl += hdr.dirlistlen;
1668		if (dl > hint_stat.st_size)
1669			goto cleanup1;
1670		p = xmalloc(hdr.dirlistlen + 1);
1671
1672		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1673		    read(fd, p, hdr.dirlistlen + 1) !=
1674		    (ssize_t)hdr.dirlistlen + 1 || p[hdr.dirlistlen] != '\0') {
1675			free(p);
1676			goto cleanup1;
1677		}
1678		hints = p;
1679		close(fd);
1680	}
1681
1682	/*
1683	 * If caller agreed to receive list which includes the default
1684	 * paths, we are done. Otherwise, if we still did not
1685	 * calculated filtered result, do it now.
1686	 */
1687	if (!nostdlib)
1688		return (hints[0] != '\0' ? hints : NULL);
1689	if (filtered_path != NULL)
1690		goto filt_ret;
1691
1692	/*
1693	 * Obtain the list of all configured search paths, and the
1694	 * list of the default paths.
1695	 *
1696	 * First estimate the size of the results.
1697	 */
1698	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1699	smeta.dls_cnt = 0;
1700	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1701	hmeta.dls_cnt = 0;
1702
1703	sargs.request = RTLD_DI_SERINFOSIZE;
1704	sargs.serinfo = &smeta;
1705	hargs.request = RTLD_DI_SERINFOSIZE;
1706	hargs.serinfo = &hmeta;
1707
1708	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1709	path_enumerate(hints, fill_search_info, &hargs);
1710
1711	SLPinfo = xmalloc(smeta.dls_size);
1712	hintinfo = xmalloc(hmeta.dls_size);
1713
1714	/*
1715	 * Next fetch both sets of paths.
1716	 */
1717	sargs.request = RTLD_DI_SERINFO;
1718	sargs.serinfo = SLPinfo;
1719	sargs.serpath = &SLPinfo->dls_serpath[0];
1720	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1721
1722	hargs.request = RTLD_DI_SERINFO;
1723	hargs.serinfo = hintinfo;
1724	hargs.serpath = &hintinfo->dls_serpath[0];
1725	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1726
1727	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1728	path_enumerate(hints, fill_search_info, &hargs);
1729
1730	/*
1731	 * Now calculate the difference between two sets, by excluding
1732	 * standard paths from the full set.
1733	 */
1734	fndx = 0;
1735	fcount = 0;
1736	filtered_path = xmalloc(hdr.dirlistlen + 1);
1737	hintpath = &hintinfo->dls_serpath[0];
1738	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1739		skip = false;
1740		SLPpath = &SLPinfo->dls_serpath[0];
1741		/*
1742		 * Check each standard path against current.
1743		 */
1744		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1745			/* matched, skip the path */
1746			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1747				skip = true;
1748				break;
1749			}
1750		}
1751		if (skip)
1752			continue;
1753		/*
1754		 * Not matched against any standard path, add the path
1755		 * to result. Separate consequtive paths with ':'.
1756		 */
1757		if (fcount > 0) {
1758			filtered_path[fndx] = ':';
1759			fndx++;
1760		}
1761		fcount++;
1762		flen = strlen(hintpath->dls_name);
1763		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1764		fndx += flen;
1765	}
1766	filtered_path[fndx] = '\0';
1767
1768	free(SLPinfo);
1769	free(hintinfo);
1770
1771filt_ret:
1772	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1773}
1774
1775static void
1776init_dag(Obj_Entry *root)
1777{
1778    const Needed_Entry *needed;
1779    const Objlist_Entry *elm;
1780    DoneList donelist;
1781
1782    if (root->dag_inited)
1783	return;
1784    donelist_init(&donelist);
1785
1786    /* Root object belongs to own DAG. */
1787    objlist_push_tail(&root->dldags, root);
1788    objlist_push_tail(&root->dagmembers, root);
1789    donelist_check(&donelist, root);
1790
1791    /*
1792     * Add dependencies of root object to DAG in breadth order
1793     * by exploiting the fact that each new object get added
1794     * to the tail of the dagmembers list.
1795     */
1796    STAILQ_FOREACH(elm, &root->dagmembers, link) {
1797	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1798	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1799		continue;
1800	    objlist_push_tail(&needed->obj->dldags, root);
1801	    objlist_push_tail(&root->dagmembers, needed->obj);
1802	}
1803    }
1804    root->dag_inited = true;
1805}
1806
1807Obj_Entry *
1808globallist_curr(const Obj_Entry *obj)
1809{
1810
1811	for (;;) {
1812		if (obj == NULL)
1813			return (NULL);
1814		if (!obj->marker)
1815			return (__DECONST(Obj_Entry *, obj));
1816		obj = TAILQ_PREV(obj, obj_entry_q, next);
1817	}
1818}
1819
1820Obj_Entry *
1821globallist_next(const Obj_Entry *obj)
1822{
1823
1824	for (;;) {
1825		obj = TAILQ_NEXT(obj, next);
1826		if (obj == NULL)
1827			return (NULL);
1828		if (!obj->marker)
1829			return (__DECONST(Obj_Entry *, obj));
1830	}
1831}
1832
1833static void
1834process_z(Obj_Entry *root)
1835{
1836	const Objlist_Entry *elm;
1837	Obj_Entry *obj;
1838
1839	/*
1840	 * Walk over object DAG and process every dependent object
1841	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
1842	 * to grow their own DAG.
1843	 *
1844	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
1845	 * symlook_global() to work.
1846	 *
1847	 * For DF_1_NODELETE, the DAG should have its reference upped.
1848	 */
1849	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1850		obj = elm->obj;
1851		if (obj == NULL)
1852			continue;
1853		if (obj->z_nodelete && !obj->ref_nodel) {
1854			dbg("obj %s -z nodelete", obj->path);
1855			init_dag(obj);
1856			ref_dag(obj);
1857			obj->ref_nodel = true;
1858		}
1859		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
1860			dbg("obj %s -z global", obj->path);
1861			objlist_push_tail(&list_global, obj);
1862			init_dag(obj);
1863		}
1864	}
1865}
1866/*
1867 * Initialize the dynamic linker.  The argument is the address at which
1868 * the dynamic linker has been mapped into memory.  The primary task of
1869 * this function is to relocate the dynamic linker.
1870 */
1871static void
1872init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1873{
1874    Obj_Entry objtmp;	/* Temporary rtld object */
1875    const Elf_Dyn *dyn_rpath;
1876    const Elf_Dyn *dyn_soname;
1877    const Elf_Dyn *dyn_runpath;
1878
1879#ifdef RTLD_INIT_PAGESIZES_EARLY
1880    /* The page size is required by the dynamic memory allocator. */
1881    init_pagesizes(aux_info);
1882#endif
1883
1884    /*
1885     * Conjure up an Obj_Entry structure for the dynamic linker.
1886     *
1887     * The "path" member can't be initialized yet because string constants
1888     * cannot yet be accessed. Below we will set it correctly.
1889     */
1890    memset(&objtmp, 0, sizeof(objtmp));
1891    objtmp.path = NULL;
1892    objtmp.rtld = true;
1893    objtmp.mapbase = mapbase;
1894#ifdef PIC
1895    objtmp.relocbase = mapbase;
1896#endif
1897    if (RTLD_IS_DYNAMIC()) {
1898	objtmp.dynamic = rtld_dynamic(&objtmp);
1899	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1900	assert(objtmp.needed == NULL);
1901#if !defined(__mips__)
1902	/* MIPS has a bogus DT_TEXTREL. */
1903	assert(!objtmp.textrel);
1904#endif
1905
1906	/*
1907	 * Temporarily put the dynamic linker entry into the object list, so
1908	 * that symbols can be found.
1909	 */
1910
1911	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1912    }
1913
1914    /* Initialize the object list. */
1915    TAILQ_INIT(&obj_list);
1916
1917    /* Now that non-local variables can be accesses, copy out obj_rtld. */
1918    memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1919
1920#ifndef RTLD_INIT_PAGESIZES_EARLY
1921    /* The page size is required by the dynamic memory allocator. */
1922    init_pagesizes(aux_info);
1923#endif
1924
1925    if (aux_info[AT_OSRELDATE] != NULL)
1926	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1927
1928    digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1929
1930    /* Replace the path with a dynamically allocated copy. */
1931    obj_rtld.path = xstrdup(PATH_RTLD);
1932
1933    r_debug.r_brk = r_debug_state;
1934    r_debug.r_state = RT_CONSISTENT;
1935}
1936
1937/*
1938 * Retrieve the array of supported page sizes.  The kernel provides the page
1939 * sizes in increasing order.
1940 */
1941static void
1942init_pagesizes(Elf_Auxinfo **aux_info)
1943{
1944	static size_t psa[MAXPAGESIZES];
1945	int mib[2];
1946	size_t len, size;
1947
1948	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
1949	    NULL) {
1950		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
1951		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
1952	} else {
1953		len = 2;
1954		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
1955			size = sizeof(psa);
1956		else {
1957			/* As a fallback, retrieve the base page size. */
1958			size = sizeof(psa[0]);
1959			if (aux_info[AT_PAGESZ] != NULL) {
1960				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
1961				goto psa_filled;
1962			} else {
1963				mib[0] = CTL_HW;
1964				mib[1] = HW_PAGESIZE;
1965				len = 2;
1966			}
1967		}
1968		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
1969			_rtld_error("sysctl for hw.pagesize(s) failed");
1970			rtld_die();
1971		}
1972psa_filled:
1973		pagesizes = psa;
1974	}
1975	npagesizes = size / sizeof(pagesizes[0]);
1976	/* Discard any invalid entries at the end of the array. */
1977	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
1978		npagesizes--;
1979}
1980
1981/*
1982 * Add the init functions from a needed object list (and its recursive
1983 * needed objects) to "list".  This is not used directly; it is a helper
1984 * function for initlist_add_objects().  The write lock must be held
1985 * when this function is called.
1986 */
1987static void
1988initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1989{
1990    /* Recursively process the successor needed objects. */
1991    if (needed->next != NULL)
1992	initlist_add_neededs(needed->next, list);
1993
1994    /* Process the current needed object. */
1995    if (needed->obj != NULL)
1996	initlist_add_objects(needed->obj, needed->obj, list);
1997}
1998
1999/*
2000 * Scan all of the DAGs rooted in the range of objects from "obj" to
2001 * "tail" and add their init functions to "list".  This recurses over
2002 * the DAGs and ensure the proper init ordering such that each object's
2003 * needed libraries are initialized before the object itself.  At the
2004 * same time, this function adds the objects to the global finalization
2005 * list "list_fini" in the opposite order.  The write lock must be
2006 * held when this function is called.
2007 */
2008static void
2009initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2010{
2011    Obj_Entry *nobj;
2012
2013    if (obj->init_scanned || obj->init_done)
2014	return;
2015    obj->init_scanned = true;
2016
2017    /* Recursively process the successor objects. */
2018    nobj = globallist_next(obj);
2019    if (nobj != NULL && obj != tail)
2020	initlist_add_objects(nobj, tail, list);
2021
2022    /* Recursively process the needed objects. */
2023    if (obj->needed != NULL)
2024	initlist_add_neededs(obj->needed, list);
2025    if (obj->needed_filtees != NULL)
2026	initlist_add_neededs(obj->needed_filtees, list);
2027    if (obj->needed_aux_filtees != NULL)
2028	initlist_add_neededs(obj->needed_aux_filtees, list);
2029
2030    /* Add the object to the init list. */
2031    if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
2032      obj->init_array != (Elf_Addr)NULL)
2033	objlist_push_tail(list, obj);
2034
2035    /* Add the object to the global fini list in the reverse order. */
2036    if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2037      && !obj->on_fini_list) {
2038	objlist_push_head(&list_fini, obj);
2039	obj->on_fini_list = true;
2040    }
2041}
2042
2043#ifndef FPTR_TARGET
2044#define FPTR_TARGET(f)	((Elf_Addr) (f))
2045#endif
2046
2047static void
2048free_needed_filtees(Needed_Entry *n)
2049{
2050    Needed_Entry *needed, *needed1;
2051
2052    for (needed = n; needed != NULL; needed = needed->next) {
2053	if (needed->obj != NULL) {
2054	    dlclose(needed->obj);
2055	    needed->obj = NULL;
2056	}
2057    }
2058    for (needed = n; needed != NULL; needed = needed1) {
2059	needed1 = needed->next;
2060	free(needed);
2061    }
2062}
2063
2064static void
2065unload_filtees(Obj_Entry *obj)
2066{
2067
2068    free_needed_filtees(obj->needed_filtees);
2069    obj->needed_filtees = NULL;
2070    free_needed_filtees(obj->needed_aux_filtees);
2071    obj->needed_aux_filtees = NULL;
2072    obj->filtees_loaded = false;
2073}
2074
2075static void
2076load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2077    RtldLockState *lockstate)
2078{
2079
2080    for (; needed != NULL; needed = needed->next) {
2081	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2082	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2083	  RTLD_LOCAL, lockstate);
2084    }
2085}
2086
2087static void
2088load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2089{
2090
2091    lock_restart_for_upgrade(lockstate);
2092    if (!obj->filtees_loaded) {
2093	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2094	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2095	obj->filtees_loaded = true;
2096    }
2097}
2098
2099static int
2100process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2101{
2102    Obj_Entry *obj1;
2103
2104    for (; needed != NULL; needed = needed->next) {
2105	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2106	  flags & ~RTLD_LO_NOLOAD);
2107	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2108	    return (-1);
2109    }
2110    return (0);
2111}
2112
2113/*
2114 * Given a shared object, traverse its list of needed objects, and load
2115 * each of them.  Returns 0 on success.  Generates an error message and
2116 * returns -1 on failure.
2117 */
2118static int
2119load_needed_objects(Obj_Entry *first, int flags)
2120{
2121    Obj_Entry *obj;
2122
2123    for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2124	if (obj->marker)
2125	    continue;
2126	if (process_needed(obj, obj->needed, flags) == -1)
2127	    return (-1);
2128    }
2129    return (0);
2130}
2131
2132static int
2133load_preload_objects(void)
2134{
2135    char *p = ld_preload;
2136    Obj_Entry *obj;
2137    static const char delim[] = " \t:;";
2138
2139    if (p == NULL)
2140	return 0;
2141
2142    p += strspn(p, delim);
2143    while (*p != '\0') {
2144	size_t len = strcspn(p, delim);
2145	char savech;
2146
2147	savech = p[len];
2148	p[len] = '\0';
2149	obj = load_object(p, -1, NULL, 0);
2150	if (obj == NULL)
2151	    return -1;	/* XXX - cleanup */
2152	obj->z_interpose = true;
2153	p[len] = savech;
2154	p += len;
2155	p += strspn(p, delim);
2156    }
2157    LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2158    return 0;
2159}
2160
2161static const char *
2162printable_path(const char *path)
2163{
2164
2165	return (path == NULL ? "<unknown>" : path);
2166}
2167
2168/*
2169 * Load a shared object into memory, if it is not already loaded.  The
2170 * object may be specified by name or by user-supplied file descriptor
2171 * fd_u. In the later case, the fd_u descriptor is not closed, but its
2172 * duplicate is.
2173 *
2174 * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2175 * on failure.
2176 */
2177static Obj_Entry *
2178load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2179{
2180    Obj_Entry *obj;
2181    int fd;
2182    struct stat sb;
2183    char *path;
2184
2185    if (name != NULL) {
2186	TAILQ_FOREACH(obj, &obj_list, next) {
2187	    if (obj->marker)
2188		continue;
2189	    if (object_match_name(obj, name))
2190		return (obj);
2191	}
2192
2193	path = find_library(name, refobj);
2194	if (path == NULL)
2195	    return (NULL);
2196    } else
2197	path = NULL;
2198
2199    /*
2200     * If we didn't find a match by pathname, or the name is not
2201     * supplied, open the file and check again by device and inode.
2202     * This avoids false mismatches caused by multiple links or ".."
2203     * in pathnames.
2204     *
2205     * To avoid a race, we open the file and use fstat() rather than
2206     * using stat().
2207     */
2208    fd = -1;
2209    if (fd_u == -1) {
2210	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2211	    _rtld_error("Cannot open \"%s\"", path);
2212	    free(path);
2213	    return (NULL);
2214	}
2215    } else {
2216	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2217	if (fd == -1) {
2218	    _rtld_error("Cannot dup fd");
2219	    free(path);
2220	    return (NULL);
2221	}
2222    }
2223    if (fstat(fd, &sb) == -1) {
2224	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2225	close(fd);
2226	free(path);
2227	return NULL;
2228    }
2229    TAILQ_FOREACH(obj, &obj_list, next) {
2230	if (obj->marker)
2231	    continue;
2232	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2233	    break;
2234    }
2235    if (obj != NULL && name != NULL) {
2236	object_add_name(obj, name);
2237	free(path);
2238	close(fd);
2239	return obj;
2240    }
2241    if (flags & RTLD_LO_NOLOAD) {
2242	free(path);
2243	close(fd);
2244	return (NULL);
2245    }
2246
2247    /* First use of this object, so we must map it in */
2248    obj = do_load_object(fd, name, path, &sb, flags);
2249    if (obj == NULL)
2250	free(path);
2251    close(fd);
2252
2253    return obj;
2254}
2255
2256static Obj_Entry *
2257do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2258  int flags)
2259{
2260    Obj_Entry *obj;
2261    struct statfs fs;
2262
2263    /*
2264     * but first, make sure that environment variables haven't been
2265     * used to circumvent the noexec flag on a filesystem.
2266     */
2267    if (dangerous_ld_env) {
2268	if (fstatfs(fd, &fs) != 0) {
2269	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2270	    return NULL;
2271	}
2272	if (fs.f_flags & MNT_NOEXEC) {
2273	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2274	    return NULL;
2275	}
2276    }
2277    dbg("loading \"%s\"", printable_path(path));
2278    obj = map_object(fd, printable_path(path), sbp);
2279    if (obj == NULL)
2280        return NULL;
2281
2282    /*
2283     * If DT_SONAME is present in the object, digest_dynamic2 already
2284     * added it to the object names.
2285     */
2286    if (name != NULL)
2287	object_add_name(obj, name);
2288    obj->path = path;
2289    digest_dynamic(obj, 0);
2290    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2291	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2292    if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2293      RTLD_LO_DLOPEN) {
2294	dbg("refusing to load non-loadable \"%s\"", obj->path);
2295	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2296	munmap(obj->mapbase, obj->mapsize);
2297	obj_free(obj);
2298	return (NULL);
2299    }
2300
2301    obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2302    TAILQ_INSERT_TAIL(&obj_list, obj, next);
2303    obj_count++;
2304    obj_loads++;
2305    linkmap_add(obj);	/* for GDB & dlinfo() */
2306    max_stack_flags |= obj->stack_flags;
2307
2308    dbg("  %p .. %p: %s", obj->mapbase,
2309         obj->mapbase + obj->mapsize - 1, obj->path);
2310    if (obj->textrel)
2311	dbg("  WARNING: %s has impure text", obj->path);
2312    LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2313	obj->path);
2314
2315    return obj;
2316}
2317
2318static Obj_Entry *
2319obj_from_addr(const void *addr)
2320{
2321    Obj_Entry *obj;
2322
2323    TAILQ_FOREACH(obj, &obj_list, next) {
2324	if (obj->marker)
2325	    continue;
2326	if (addr < (void *) obj->mapbase)
2327	    continue;
2328	if (addr < (void *) (obj->mapbase + obj->mapsize))
2329	    return obj;
2330    }
2331    return NULL;
2332}
2333
2334static void
2335preinit_main(void)
2336{
2337    Elf_Addr *preinit_addr;
2338    int index;
2339
2340    preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2341    if (preinit_addr == NULL)
2342	return;
2343
2344    for (index = 0; index < obj_main->preinit_array_num; index++) {
2345	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2346	    dbg("calling preinit function for %s at %p", obj_main->path,
2347	      (void *)preinit_addr[index]);
2348	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2349	      0, 0, obj_main->path);
2350	    call_init_pointer(obj_main, preinit_addr[index]);
2351	}
2352    }
2353}
2354
2355/*
2356 * Call the finalization functions for each of the objects in "list"
2357 * belonging to the DAG of "root" and referenced once. If NULL "root"
2358 * is specified, every finalization function will be called regardless
2359 * of the reference count and the list elements won't be freed. All of
2360 * the objects are expected to have non-NULL fini functions.
2361 */
2362static void
2363objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2364{
2365    Objlist_Entry *elm;
2366    char *saved_msg;
2367    Elf_Addr *fini_addr;
2368    int index;
2369
2370    assert(root == NULL || root->refcount == 1);
2371
2372    /*
2373     * Preserve the current error message since a fini function might
2374     * call into the dynamic linker and overwrite it.
2375     */
2376    saved_msg = errmsg_save();
2377    do {
2378	STAILQ_FOREACH(elm, list, link) {
2379	    if (root != NULL && (elm->obj->refcount != 1 ||
2380	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2381		continue;
2382	    /* Remove object from fini list to prevent recursive invocation. */
2383	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2384	    /*
2385	     * XXX: If a dlopen() call references an object while the
2386	     * fini function is in progress, we might end up trying to
2387	     * unload the referenced object in dlclose() or the object
2388	     * won't be unloaded although its fini function has been
2389	     * called.
2390	     */
2391	    lock_release(rtld_bind_lock, lockstate);
2392
2393	    /*
2394	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2395	     * When this happens, DT_FINI_ARRAY is processed first.
2396	     */
2397	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2398	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2399		for (index = elm->obj->fini_array_num - 1; index >= 0;
2400		  index--) {
2401		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2402			dbg("calling fini function for %s at %p",
2403			    elm->obj->path, (void *)fini_addr[index]);
2404			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2405			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2406			call_initfini_pointer(elm->obj, fini_addr[index]);
2407		    }
2408		}
2409	    }
2410	    if (elm->obj->fini != (Elf_Addr)NULL) {
2411		dbg("calling fini function for %s at %p", elm->obj->path,
2412		    (void *)elm->obj->fini);
2413		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2414		    0, 0, elm->obj->path);
2415		call_initfini_pointer(elm->obj, elm->obj->fini);
2416	    }
2417	    wlock_acquire(rtld_bind_lock, lockstate);
2418	    /* No need to free anything if process is going down. */
2419	    if (root != NULL)
2420	    	free(elm);
2421	    /*
2422	     * We must restart the list traversal after every fini call
2423	     * because a dlclose() call from the fini function or from
2424	     * another thread might have modified the reference counts.
2425	     */
2426	    break;
2427	}
2428    } while (elm != NULL);
2429    errmsg_restore(saved_msg);
2430}
2431
2432/*
2433 * Call the initialization functions for each of the objects in
2434 * "list".  All of the objects are expected to have non-NULL init
2435 * functions.
2436 */
2437static void
2438objlist_call_init(Objlist *list, RtldLockState *lockstate)
2439{
2440    Objlist_Entry *elm;
2441    Obj_Entry *obj;
2442    char *saved_msg;
2443    Elf_Addr *init_addr;
2444    int index;
2445
2446    /*
2447     * Clean init_scanned flag so that objects can be rechecked and
2448     * possibly initialized earlier if any of vectors called below
2449     * cause the change by using dlopen.
2450     */
2451    TAILQ_FOREACH(obj, &obj_list, next) {
2452	if (obj->marker)
2453	    continue;
2454	obj->init_scanned = false;
2455    }
2456
2457    /*
2458     * Preserve the current error message since an init function might
2459     * call into the dynamic linker and overwrite it.
2460     */
2461    saved_msg = errmsg_save();
2462    STAILQ_FOREACH(elm, list, link) {
2463	if (elm->obj->init_done) /* Initialized early. */
2464	    continue;
2465	/*
2466	 * Race: other thread might try to use this object before current
2467	 * one completes the initilization. Not much can be done here
2468	 * without better locking.
2469	 */
2470	elm->obj->init_done = true;
2471	lock_release(rtld_bind_lock, lockstate);
2472
2473        /*
2474         * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2475         * When this happens, DT_INIT is processed first.
2476         */
2477	if (elm->obj->init != (Elf_Addr)NULL) {
2478	    dbg("calling init function for %s at %p", elm->obj->path,
2479	        (void *)elm->obj->init);
2480	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2481	        0, 0, elm->obj->path);
2482	    call_initfini_pointer(elm->obj, elm->obj->init);
2483	}
2484	init_addr = (Elf_Addr *)elm->obj->init_array;
2485	if (init_addr != NULL) {
2486	    for (index = 0; index < elm->obj->init_array_num; index++) {
2487		if (init_addr[index] != 0 && init_addr[index] != 1) {
2488		    dbg("calling init function for %s at %p", elm->obj->path,
2489			(void *)init_addr[index]);
2490		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2491			(void *)init_addr[index], 0, 0, elm->obj->path);
2492		    call_init_pointer(elm->obj, init_addr[index]);
2493		}
2494	    }
2495	}
2496	wlock_acquire(rtld_bind_lock, lockstate);
2497    }
2498    errmsg_restore(saved_msg);
2499}
2500
2501static void
2502objlist_clear(Objlist *list)
2503{
2504    Objlist_Entry *elm;
2505
2506    while (!STAILQ_EMPTY(list)) {
2507	elm = STAILQ_FIRST(list);
2508	STAILQ_REMOVE_HEAD(list, link);
2509	free(elm);
2510    }
2511}
2512
2513static Objlist_Entry *
2514objlist_find(Objlist *list, const Obj_Entry *obj)
2515{
2516    Objlist_Entry *elm;
2517
2518    STAILQ_FOREACH(elm, list, link)
2519	if (elm->obj == obj)
2520	    return elm;
2521    return NULL;
2522}
2523
2524static void
2525objlist_init(Objlist *list)
2526{
2527    STAILQ_INIT(list);
2528}
2529
2530static void
2531objlist_push_head(Objlist *list, Obj_Entry *obj)
2532{
2533    Objlist_Entry *elm;
2534
2535    elm = NEW(Objlist_Entry);
2536    elm->obj = obj;
2537    STAILQ_INSERT_HEAD(list, elm, link);
2538}
2539
2540static void
2541objlist_push_tail(Objlist *list, Obj_Entry *obj)
2542{
2543    Objlist_Entry *elm;
2544
2545    elm = NEW(Objlist_Entry);
2546    elm->obj = obj;
2547    STAILQ_INSERT_TAIL(list, elm, link);
2548}
2549
2550static void
2551objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2552{
2553	Objlist_Entry *elm, *listelm;
2554
2555	STAILQ_FOREACH(listelm, list, link) {
2556		if (listelm->obj == listobj)
2557			break;
2558	}
2559	elm = NEW(Objlist_Entry);
2560	elm->obj = obj;
2561	if (listelm != NULL)
2562		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2563	else
2564		STAILQ_INSERT_TAIL(list, elm, link);
2565}
2566
2567static void
2568objlist_remove(Objlist *list, Obj_Entry *obj)
2569{
2570    Objlist_Entry *elm;
2571
2572    if ((elm = objlist_find(list, obj)) != NULL) {
2573	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2574	free(elm);
2575    }
2576}
2577
2578/*
2579 * Relocate dag rooted in the specified object.
2580 * Returns 0 on success, or -1 on failure.
2581 */
2582
2583static int
2584relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2585    int flags, RtldLockState *lockstate)
2586{
2587	Objlist_Entry *elm;
2588	int error;
2589
2590	error = 0;
2591	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2592		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2593		    lockstate);
2594		if (error == -1)
2595			break;
2596	}
2597	return (error);
2598}
2599
2600/*
2601 * Prepare for, or clean after, relocating an object marked with
2602 * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2603 * segments are remapped read-write.  After relocations are done, the
2604 * segment's permissions are returned back to the modes specified in
2605 * the phdrs.  If any relocation happened, or always for wired
2606 * program, COW is triggered.
2607 */
2608static int
2609reloc_textrel_prot(Obj_Entry *obj, bool before)
2610{
2611	const Elf_Phdr *ph;
2612	void *base;
2613	size_t l, sz;
2614	int prot;
2615
2616	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2617	    l--, ph++) {
2618		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2619			continue;
2620		base = obj->relocbase + trunc_page(ph->p_vaddr);
2621		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2622		    trunc_page(ph->p_vaddr);
2623		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2624		if (mprotect(base, sz, prot) == -1) {
2625			_rtld_error("%s: Cannot write-%sable text segment: %s",
2626			    obj->path, before ? "en" : "dis",
2627			    rtld_strerror(errno));
2628			return (-1);
2629		}
2630	}
2631	return (0);
2632}
2633
2634/*
2635 * Relocate single object.
2636 * Returns 0 on success, or -1 on failure.
2637 */
2638static int
2639relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2640    int flags, RtldLockState *lockstate)
2641{
2642
2643	if (obj->relocated)
2644		return (0);
2645	obj->relocated = true;
2646	if (obj != rtldobj)
2647		dbg("relocating \"%s\"", obj->path);
2648
2649	if (obj->symtab == NULL || obj->strtab == NULL ||
2650	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2651		_rtld_error("%s: Shared object has no run-time symbol table",
2652			    obj->path);
2653		return (-1);
2654	}
2655
2656	/* There are relocations to the write-protected text segment. */
2657	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2658		return (-1);
2659
2660	/* Process the non-PLT non-IFUNC relocations. */
2661	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2662		return (-1);
2663
2664	/* Re-protected the text segment. */
2665	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2666		return (-1);
2667
2668	/* Set the special PLT or GOT entries. */
2669	init_pltgot(obj);
2670
2671	/* Process the PLT relocations. */
2672	if (reloc_plt(obj) == -1)
2673		return (-1);
2674	/* Relocate the jump slots if we are doing immediate binding. */
2675	if (obj->bind_now || bind_now)
2676		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2677			return (-1);
2678
2679	/*
2680	 * Process the non-PLT IFUNC relocations.  The relocations are
2681	 * processed in two phases, because IFUNC resolvers may
2682	 * reference other symbols, which must be readily processed
2683	 * before resolvers are called.
2684	 */
2685	if (obj->non_plt_gnu_ifunc &&
2686	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2687		return (-1);
2688
2689	if (obj->relro_size > 0) {
2690		if (mprotect(obj->relro_page, obj->relro_size,
2691		    PROT_READ) == -1) {
2692			_rtld_error("%s: Cannot enforce relro protection: %s",
2693			    obj->path, rtld_strerror(errno));
2694			return (-1);
2695		}
2696	}
2697
2698	/*
2699	 * Set up the magic number and version in the Obj_Entry.  These
2700	 * were checked in the crt1.o from the original ElfKit, so we
2701	 * set them for backward compatibility.
2702	 */
2703	obj->magic = RTLD_MAGIC;
2704	obj->version = RTLD_VERSION;
2705
2706	return (0);
2707}
2708
2709/*
2710 * Relocate newly-loaded shared objects.  The argument is a pointer to
2711 * the Obj_Entry for the first such object.  All objects from the first
2712 * to the end of the list of objects are relocated.  Returns 0 on success,
2713 * or -1 on failure.
2714 */
2715static int
2716relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2717    int flags, RtldLockState *lockstate)
2718{
2719	Obj_Entry *obj;
2720	int error;
2721
2722	for (error = 0, obj = first;  obj != NULL;
2723	    obj = TAILQ_NEXT(obj, next)) {
2724		if (obj->marker)
2725			continue;
2726		error = relocate_object(obj, bind_now, rtldobj, flags,
2727		    lockstate);
2728		if (error == -1)
2729			break;
2730	}
2731	return (error);
2732}
2733
2734/*
2735 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2736 * referencing STT_GNU_IFUNC symbols is postponed till the other
2737 * relocations are done.  The indirect functions specified as
2738 * ifunc are allowed to call other symbols, so we need to have
2739 * objects relocated before asking for resolution from indirects.
2740 *
2741 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2742 * instead of the usual lazy handling of PLT slots.  It is
2743 * consistent with how GNU does it.
2744 */
2745static int
2746resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2747    RtldLockState *lockstate)
2748{
2749	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2750		return (-1);
2751	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2752	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2753		return (-1);
2754	return (0);
2755}
2756
2757static int
2758resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2759    RtldLockState *lockstate)
2760{
2761	Obj_Entry *obj;
2762
2763	for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2764		if (obj->marker)
2765			continue;
2766		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2767			return (-1);
2768	}
2769	return (0);
2770}
2771
2772static int
2773initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2774    RtldLockState *lockstate)
2775{
2776	Objlist_Entry *elm;
2777
2778	STAILQ_FOREACH(elm, list, link) {
2779		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2780		    lockstate) == -1)
2781			return (-1);
2782	}
2783	return (0);
2784}
2785
2786/*
2787 * Cleanup procedure.  It will be called (by the atexit mechanism) just
2788 * before the process exits.
2789 */
2790static void
2791rtld_exit(void)
2792{
2793    RtldLockState lockstate;
2794
2795    wlock_acquire(rtld_bind_lock, &lockstate);
2796    dbg("rtld_exit()");
2797    objlist_call_fini(&list_fini, NULL, &lockstate);
2798    /* No need to remove the items from the list, since we are exiting. */
2799    if (!libmap_disable)
2800        lm_fini();
2801    lock_release(rtld_bind_lock, &lockstate);
2802}
2803
2804/*
2805 * Iterate over a search path, translate each element, and invoke the
2806 * callback on the result.
2807 */
2808static void *
2809path_enumerate(const char *path, path_enum_proc callback, void *arg)
2810{
2811    const char *trans;
2812    if (path == NULL)
2813	return (NULL);
2814
2815    path += strspn(path, ":;");
2816    while (*path != '\0') {
2817	size_t len;
2818	char  *res;
2819
2820	len = strcspn(path, ":;");
2821	trans = lm_findn(NULL, path, len);
2822	if (trans)
2823	    res = callback(trans, strlen(trans), arg);
2824	else
2825	    res = callback(path, len, arg);
2826
2827	if (res != NULL)
2828	    return (res);
2829
2830	path += len;
2831	path += strspn(path, ":;");
2832    }
2833
2834    return (NULL);
2835}
2836
2837struct try_library_args {
2838    const char	*name;
2839    size_t	 namelen;
2840    char	*buffer;
2841    size_t	 buflen;
2842};
2843
2844static void *
2845try_library_path(const char *dir, size_t dirlen, void *param)
2846{
2847    struct try_library_args *arg;
2848
2849    arg = param;
2850    if (*dir == '/' || trust) {
2851	char *pathname;
2852
2853	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2854		return (NULL);
2855
2856	pathname = arg->buffer;
2857	strncpy(pathname, dir, dirlen);
2858	pathname[dirlen] = '/';
2859	strcpy(pathname + dirlen + 1, arg->name);
2860
2861	dbg("  Trying \"%s\"", pathname);
2862	if (access(pathname, F_OK) == 0) {		/* We found it */
2863	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2864	    strcpy(pathname, arg->buffer);
2865	    return (pathname);
2866	}
2867    }
2868    return (NULL);
2869}
2870
2871static char *
2872search_library_path(const char *name, const char *path)
2873{
2874    char *p;
2875    struct try_library_args arg;
2876
2877    if (path == NULL)
2878	return NULL;
2879
2880    arg.name = name;
2881    arg.namelen = strlen(name);
2882    arg.buffer = xmalloc(PATH_MAX);
2883    arg.buflen = PATH_MAX;
2884
2885    p = path_enumerate(path, try_library_path, &arg);
2886
2887    free(arg.buffer);
2888
2889    return (p);
2890}
2891
2892int
2893dlclose(void *handle)
2894{
2895    Obj_Entry *root;
2896    RtldLockState lockstate;
2897
2898    wlock_acquire(rtld_bind_lock, &lockstate);
2899    root = dlcheck(handle);
2900    if (root == NULL) {
2901	lock_release(rtld_bind_lock, &lockstate);
2902	return -1;
2903    }
2904    LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2905	root->path);
2906
2907    /* Unreference the object and its dependencies. */
2908    root->dl_refcount--;
2909
2910    if (root->refcount == 1) {
2911	/*
2912	 * The object will be no longer referenced, so we must unload it.
2913	 * First, call the fini functions.
2914	 */
2915	objlist_call_fini(&list_fini, root, &lockstate);
2916
2917	unref_dag(root);
2918
2919	/* Finish cleaning up the newly-unreferenced objects. */
2920	GDB_STATE(RT_DELETE,&root->linkmap);
2921	unload_object(root);
2922	GDB_STATE(RT_CONSISTENT,NULL);
2923    } else
2924	unref_dag(root);
2925
2926    LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2927    lock_release(rtld_bind_lock, &lockstate);
2928    return 0;
2929}
2930
2931char *
2932dlerror(void)
2933{
2934    char *msg = error_message;
2935    error_message = NULL;
2936    return msg;
2937}
2938
2939/*
2940 * This function is deprecated and has no effect.
2941 */
2942void
2943dllockinit(void *context,
2944	   void *(*lock_create)(void *context),
2945           void (*rlock_acquire)(void *lock),
2946           void (*wlock_acquire)(void *lock),
2947           void (*lock_release)(void *lock),
2948           void (*lock_destroy)(void *lock),
2949	   void (*context_destroy)(void *context))
2950{
2951    static void *cur_context;
2952    static void (*cur_context_destroy)(void *);
2953
2954    /* Just destroy the context from the previous call, if necessary. */
2955    if (cur_context_destroy != NULL)
2956	cur_context_destroy(cur_context);
2957    cur_context = context;
2958    cur_context_destroy = context_destroy;
2959}
2960
2961void *
2962dlopen(const char *name, int mode)
2963{
2964
2965	return (rtld_dlopen(name, -1, mode));
2966}
2967
2968void *
2969fdlopen(int fd, int mode)
2970{
2971
2972	return (rtld_dlopen(NULL, fd, mode));
2973}
2974
2975static void *
2976rtld_dlopen(const char *name, int fd, int mode)
2977{
2978    RtldLockState lockstate;
2979    int lo_flags;
2980
2981    LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2982    ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2983    if (ld_tracing != NULL) {
2984	rlock_acquire(rtld_bind_lock, &lockstate);
2985	if (sigsetjmp(lockstate.env, 0) != 0)
2986	    lock_upgrade(rtld_bind_lock, &lockstate);
2987	environ = (char **)*get_program_var_addr("environ", &lockstate);
2988	lock_release(rtld_bind_lock, &lockstate);
2989    }
2990    lo_flags = RTLD_LO_DLOPEN;
2991    if (mode & RTLD_NODELETE)
2992	    lo_flags |= RTLD_LO_NODELETE;
2993    if (mode & RTLD_NOLOAD)
2994	    lo_flags |= RTLD_LO_NOLOAD;
2995    if (ld_tracing != NULL)
2996	    lo_flags |= RTLD_LO_TRACE;
2997
2998    return (dlopen_object(name, fd, obj_main, lo_flags,
2999      mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3000}
3001
3002static void
3003dlopen_cleanup(Obj_Entry *obj)
3004{
3005
3006	obj->dl_refcount--;
3007	unref_dag(obj);
3008	if (obj->refcount == 0)
3009		unload_object(obj);
3010}
3011
3012static Obj_Entry *
3013dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3014    int mode, RtldLockState *lockstate)
3015{
3016    Obj_Entry *old_obj_tail;
3017    Obj_Entry *obj;
3018    Objlist initlist;
3019    RtldLockState mlockstate;
3020    int result;
3021
3022    objlist_init(&initlist);
3023
3024    if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3025	wlock_acquire(rtld_bind_lock, &mlockstate);
3026	lockstate = &mlockstate;
3027    }
3028    GDB_STATE(RT_ADD,NULL);
3029
3030    old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3031    obj = NULL;
3032    if (name == NULL && fd == -1) {
3033	obj = obj_main;
3034	obj->refcount++;
3035    } else {
3036	obj = load_object(name, fd, refobj, lo_flags);
3037    }
3038
3039    if (obj) {
3040	obj->dl_refcount++;
3041	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3042	    objlist_push_tail(&list_global, obj);
3043	if (globallist_next(old_obj_tail) != NULL) {
3044	    /* We loaded something new. */
3045	    assert(globallist_next(old_obj_tail) == obj);
3046	    result = load_needed_objects(obj,
3047		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3048	    init_dag(obj);
3049	    ref_dag(obj);
3050	    if (result != -1)
3051		result = rtld_verify_versions(&obj->dagmembers);
3052	    if (result != -1 && ld_tracing)
3053		goto trace;
3054	    if (result == -1 || relocate_object_dag(obj,
3055	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3056	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3057	      lockstate) == -1) {
3058		dlopen_cleanup(obj);
3059		obj = NULL;
3060	    } else if (lo_flags & RTLD_LO_EARLY) {
3061		/*
3062		 * Do not call the init functions for early loaded
3063		 * filtees.  The image is still not initialized enough
3064		 * for them to work.
3065		 *
3066		 * Our object is found by the global object list and
3067		 * will be ordered among all init calls done right
3068		 * before transferring control to main.
3069		 */
3070	    } else {
3071		/* Make list of init functions to call. */
3072		initlist_add_objects(obj, obj, &initlist);
3073	    }
3074	    /*
3075	     * Process all no_delete or global objects here, given
3076	     * them own DAGs to prevent their dependencies from being
3077	     * unloaded.  This has to be done after we have loaded all
3078	     * of the dependencies, so that we do not miss any.
3079	     */
3080	    if (obj != NULL)
3081		process_z(obj);
3082	} else {
3083	    /*
3084	     * Bump the reference counts for objects on this DAG.  If
3085	     * this is the first dlopen() call for the object that was
3086	     * already loaded as a dependency, initialize the dag
3087	     * starting at it.
3088	     */
3089	    init_dag(obj);
3090	    ref_dag(obj);
3091
3092	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3093		goto trace;
3094	}
3095	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3096	  obj->z_nodelete) && !obj->ref_nodel) {
3097	    dbg("obj %s nodelete", obj->path);
3098	    ref_dag(obj);
3099	    obj->z_nodelete = obj->ref_nodel = true;
3100	}
3101    }
3102
3103    LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3104	name);
3105    GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3106
3107    if (!(lo_flags & RTLD_LO_EARLY)) {
3108	map_stacks_exec(lockstate);
3109    }
3110
3111    if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3112      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3113      lockstate) == -1) {
3114	objlist_clear(&initlist);
3115	dlopen_cleanup(obj);
3116	if (lockstate == &mlockstate)
3117	    lock_release(rtld_bind_lock, lockstate);
3118	return (NULL);
3119    }
3120
3121    if (!(lo_flags & RTLD_LO_EARLY)) {
3122	/* Call the init functions. */
3123	objlist_call_init(&initlist, lockstate);
3124    }
3125    objlist_clear(&initlist);
3126    if (lockstate == &mlockstate)
3127	lock_release(rtld_bind_lock, lockstate);
3128    return obj;
3129trace:
3130    trace_loaded_objects(obj);
3131    if (lockstate == &mlockstate)
3132	lock_release(rtld_bind_lock, lockstate);
3133    exit(0);
3134}
3135
3136static void *
3137do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3138    int flags)
3139{
3140    DoneList donelist;
3141    const Obj_Entry *obj, *defobj;
3142    const Elf_Sym *def;
3143    SymLook req;
3144    RtldLockState lockstate;
3145#ifndef __ia64__
3146    tls_index ti;
3147#endif
3148    void *sym;
3149    int res;
3150
3151    def = NULL;
3152    defobj = NULL;
3153    symlook_init(&req, name);
3154    req.ventry = ve;
3155    req.flags = flags | SYMLOOK_IN_PLT;
3156    req.lockstate = &lockstate;
3157
3158    LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3159    rlock_acquire(rtld_bind_lock, &lockstate);
3160    if (sigsetjmp(lockstate.env, 0) != 0)
3161	    lock_upgrade(rtld_bind_lock, &lockstate);
3162    if (handle == NULL || handle == RTLD_NEXT ||
3163	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3164
3165	if ((obj = obj_from_addr(retaddr)) == NULL) {
3166	    _rtld_error("Cannot determine caller's shared object");
3167	    lock_release(rtld_bind_lock, &lockstate);
3168	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3169	    return NULL;
3170	}
3171	if (handle == NULL) {	/* Just the caller's shared object. */
3172	    res = symlook_obj(&req, obj);
3173	    if (res == 0) {
3174		def = req.sym_out;
3175		defobj = req.defobj_out;
3176	    }
3177	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3178		   handle == RTLD_SELF) { /* ... caller included */
3179	    if (handle == RTLD_NEXT)
3180		obj = globallist_next(obj);
3181	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3182		if (obj->marker)
3183		    continue;
3184		res = symlook_obj(&req, obj);
3185		if (res == 0) {
3186		    if (def == NULL ||
3187		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3188			def = req.sym_out;
3189			defobj = req.defobj_out;
3190			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3191			    break;
3192		    }
3193		}
3194	    }
3195	    /*
3196	     * Search the dynamic linker itself, and possibly resolve the
3197	     * symbol from there.  This is how the application links to
3198	     * dynamic linker services such as dlopen.
3199	     */
3200	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3201		res = symlook_obj(&req, &obj_rtld);
3202		if (res == 0) {
3203		    def = req.sym_out;
3204		    defobj = req.defobj_out;
3205		}
3206	    }
3207	} else {
3208	    assert(handle == RTLD_DEFAULT);
3209	    res = symlook_default(&req, obj);
3210	    if (res == 0) {
3211		defobj = req.defobj_out;
3212		def = req.sym_out;
3213	    }
3214	}
3215    } else {
3216	if ((obj = dlcheck(handle)) == NULL) {
3217	    lock_release(rtld_bind_lock, &lockstate);
3218	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3219	    return NULL;
3220	}
3221
3222	donelist_init(&donelist);
3223	if (obj->mainprog) {
3224            /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3225	    res = symlook_global(&req, &donelist);
3226	    if (res == 0) {
3227		def = req.sym_out;
3228		defobj = req.defobj_out;
3229	    }
3230	    /*
3231	     * Search the dynamic linker itself, and possibly resolve the
3232	     * symbol from there.  This is how the application links to
3233	     * dynamic linker services such as dlopen.
3234	     */
3235	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3236		res = symlook_obj(&req, &obj_rtld);
3237		if (res == 0) {
3238		    def = req.sym_out;
3239		    defobj = req.defobj_out;
3240		}
3241	    }
3242	}
3243	else {
3244	    /* Search the whole DAG rooted at the given object. */
3245	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3246	    if (res == 0) {
3247		def = req.sym_out;
3248		defobj = req.defobj_out;
3249	    }
3250	}
3251    }
3252
3253    if (def != NULL) {
3254	lock_release(rtld_bind_lock, &lockstate);
3255
3256	/*
3257	 * The value required by the caller is derived from the value
3258	 * of the symbol. For the ia64 architecture, we need to
3259	 * construct a function descriptor which the caller can use to
3260	 * call the function with the right 'gp' value. For other
3261	 * architectures and for non-functions, the value is simply
3262	 * the relocated value of the symbol.
3263	 */
3264	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3265	    sym = make_function_pointer(def, defobj);
3266	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3267	    sym = rtld_resolve_ifunc(defobj, def);
3268	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3269#ifdef __ia64__
3270	    return (__tls_get_addr(defobj->tlsindex, def->st_value));
3271#else
3272	    ti.ti_module = defobj->tlsindex;
3273	    ti.ti_offset = def->st_value;
3274	    sym = __tls_get_addr(&ti);
3275#endif
3276	} else
3277	    sym = defobj->relocbase + def->st_value;
3278	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3279	return (sym);
3280    }
3281
3282    _rtld_error("Undefined symbol \"%s\"", name);
3283    lock_release(rtld_bind_lock, &lockstate);
3284    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3285    return NULL;
3286}
3287
3288void *
3289dlsym(void *handle, const char *name)
3290{
3291	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3292	    SYMLOOK_DLSYM);
3293}
3294
3295dlfunc_t
3296dlfunc(void *handle, const char *name)
3297{
3298	union {
3299		void *d;
3300		dlfunc_t f;
3301	} rv;
3302
3303	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3304	    SYMLOOK_DLSYM);
3305	return (rv.f);
3306}
3307
3308void *
3309dlvsym(void *handle, const char *name, const char *version)
3310{
3311	Ver_Entry ventry;
3312
3313	ventry.name = version;
3314	ventry.file = NULL;
3315	ventry.hash = elf_hash(version);
3316	ventry.flags= 0;
3317	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3318	    SYMLOOK_DLSYM);
3319}
3320
3321int
3322_rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3323{
3324    const Obj_Entry *obj;
3325    RtldLockState lockstate;
3326
3327    rlock_acquire(rtld_bind_lock, &lockstate);
3328    obj = obj_from_addr(addr);
3329    if (obj == NULL) {
3330        _rtld_error("No shared object contains address");
3331	lock_release(rtld_bind_lock, &lockstate);
3332        return (0);
3333    }
3334    rtld_fill_dl_phdr_info(obj, phdr_info);
3335    lock_release(rtld_bind_lock, &lockstate);
3336    return (1);
3337}
3338
3339int
3340dladdr(const void *addr, Dl_info *info)
3341{
3342    const Obj_Entry *obj;
3343    const Elf_Sym *def;
3344    void *symbol_addr;
3345    unsigned long symoffset;
3346    RtldLockState lockstate;
3347
3348    rlock_acquire(rtld_bind_lock, &lockstate);
3349    obj = obj_from_addr(addr);
3350    if (obj == NULL) {
3351        _rtld_error("No shared object contains address");
3352	lock_release(rtld_bind_lock, &lockstate);
3353        return 0;
3354    }
3355    info->dli_fname = obj->path;
3356    info->dli_fbase = obj->mapbase;
3357    info->dli_saddr = (void *)0;
3358    info->dli_sname = NULL;
3359
3360    /*
3361     * Walk the symbol list looking for the symbol whose address is
3362     * closest to the address sent in.
3363     */
3364    for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3365        def = obj->symtab + symoffset;
3366
3367        /*
3368         * For skip the symbol if st_shndx is either SHN_UNDEF or
3369         * SHN_COMMON.
3370         */
3371        if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3372            continue;
3373
3374        /*
3375         * If the symbol is greater than the specified address, or if it
3376         * is further away from addr than the current nearest symbol,
3377         * then reject it.
3378         */
3379        symbol_addr = obj->relocbase + def->st_value;
3380        if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3381            continue;
3382
3383        /* Update our idea of the nearest symbol. */
3384        info->dli_sname = obj->strtab + def->st_name;
3385        info->dli_saddr = symbol_addr;
3386
3387        /* Exact match? */
3388        if (info->dli_saddr == addr)
3389            break;
3390    }
3391    lock_release(rtld_bind_lock, &lockstate);
3392    return 1;
3393}
3394
3395int
3396dlinfo(void *handle, int request, void *p)
3397{
3398    const Obj_Entry *obj;
3399    RtldLockState lockstate;
3400    int error;
3401
3402    rlock_acquire(rtld_bind_lock, &lockstate);
3403
3404    if (handle == NULL || handle == RTLD_SELF) {
3405	void *retaddr;
3406
3407	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3408	if ((obj = obj_from_addr(retaddr)) == NULL)
3409	    _rtld_error("Cannot determine caller's shared object");
3410    } else
3411	obj = dlcheck(handle);
3412
3413    if (obj == NULL) {
3414	lock_release(rtld_bind_lock, &lockstate);
3415	return (-1);
3416    }
3417
3418    error = 0;
3419    switch (request) {
3420    case RTLD_DI_LINKMAP:
3421	*((struct link_map const **)p) = &obj->linkmap;
3422	break;
3423    case RTLD_DI_ORIGIN:
3424	error = rtld_dirname(obj->path, p);
3425	break;
3426
3427    case RTLD_DI_SERINFOSIZE:
3428    case RTLD_DI_SERINFO:
3429	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3430	break;
3431
3432    default:
3433	_rtld_error("Invalid request %d passed to dlinfo()", request);
3434	error = -1;
3435    }
3436
3437    lock_release(rtld_bind_lock, &lockstate);
3438
3439    return (error);
3440}
3441
3442static void
3443rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3444{
3445
3446	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3447	phdr_info->dlpi_name = obj->path;
3448	phdr_info->dlpi_phdr = obj->phdr;
3449	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3450	phdr_info->dlpi_tls_modid = obj->tlsindex;
3451	phdr_info->dlpi_tls_data = obj->tlsinit;
3452	phdr_info->dlpi_adds = obj_loads;
3453	phdr_info->dlpi_subs = obj_loads - obj_count;
3454}
3455
3456int
3457dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3458{
3459	struct dl_phdr_info phdr_info;
3460	Obj_Entry *obj, marker;
3461	RtldLockState bind_lockstate, phdr_lockstate;
3462	int error;
3463
3464	bzero(&marker, sizeof(marker));
3465	marker.marker = true;
3466	error = 0;
3467
3468	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3469	rlock_acquire(rtld_bind_lock, &bind_lockstate);
3470	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3471		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3472		rtld_fill_dl_phdr_info(obj, &phdr_info);
3473		lock_release(rtld_bind_lock, &bind_lockstate);
3474
3475		error = callback(&phdr_info, sizeof phdr_info, param);
3476
3477		rlock_acquire(rtld_bind_lock, &bind_lockstate);
3478		obj = globallist_next(&marker);
3479		TAILQ_REMOVE(&obj_list, &marker, next);
3480		if (error != 0) {
3481			lock_release(rtld_bind_lock, &bind_lockstate);
3482			lock_release(rtld_phdr_lock, &phdr_lockstate);
3483			return (error);
3484		}
3485	}
3486
3487	if (error == 0) {
3488		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3489		lock_release(rtld_bind_lock, &bind_lockstate);
3490		error = callback(&phdr_info, sizeof(phdr_info), param);
3491	}
3492	lock_release(rtld_phdr_lock, &phdr_lockstate);
3493	return (error);
3494}
3495
3496static void *
3497fill_search_info(const char *dir, size_t dirlen, void *param)
3498{
3499    struct fill_search_info_args *arg;
3500
3501    arg = param;
3502
3503    if (arg->request == RTLD_DI_SERINFOSIZE) {
3504	arg->serinfo->dls_cnt ++;
3505	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3506    } else {
3507	struct dl_serpath *s_entry;
3508
3509	s_entry = arg->serpath;
3510	s_entry->dls_name  = arg->strspace;
3511	s_entry->dls_flags = arg->flags;
3512
3513	strncpy(arg->strspace, dir, dirlen);
3514	arg->strspace[dirlen] = '\0';
3515
3516	arg->strspace += dirlen + 1;
3517	arg->serpath++;
3518    }
3519
3520    return (NULL);
3521}
3522
3523static int
3524do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3525{
3526    struct dl_serinfo _info;
3527    struct fill_search_info_args args;
3528
3529    args.request = RTLD_DI_SERINFOSIZE;
3530    args.serinfo = &_info;
3531
3532    _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3533    _info.dls_cnt  = 0;
3534
3535    path_enumerate(obj->rpath, fill_search_info, &args);
3536    path_enumerate(ld_library_path, fill_search_info, &args);
3537    path_enumerate(obj->runpath, fill_search_info, &args);
3538    path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3539    if (!obj->z_nodeflib)
3540      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3541
3542
3543    if (request == RTLD_DI_SERINFOSIZE) {
3544	info->dls_size = _info.dls_size;
3545	info->dls_cnt = _info.dls_cnt;
3546	return (0);
3547    }
3548
3549    if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3550	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3551	return (-1);
3552    }
3553
3554    args.request  = RTLD_DI_SERINFO;
3555    args.serinfo  = info;
3556    args.serpath  = &info->dls_serpath[0];
3557    args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3558
3559    args.flags = LA_SER_RUNPATH;
3560    if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3561	return (-1);
3562
3563    args.flags = LA_SER_LIBPATH;
3564    if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3565	return (-1);
3566
3567    args.flags = LA_SER_RUNPATH;
3568    if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3569	return (-1);
3570
3571    args.flags = LA_SER_CONFIG;
3572    if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3573      != NULL)
3574	return (-1);
3575
3576    args.flags = LA_SER_DEFAULT;
3577    if (!obj->z_nodeflib &&
3578      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3579	return (-1);
3580    return (0);
3581}
3582
3583static int
3584rtld_dirname(const char *path, char *bname)
3585{
3586    const char *endp;
3587
3588    /* Empty or NULL string gets treated as "." */
3589    if (path == NULL || *path == '\0') {
3590	bname[0] = '.';
3591	bname[1] = '\0';
3592	return (0);
3593    }
3594
3595    /* Strip trailing slashes */
3596    endp = path + strlen(path) - 1;
3597    while (endp > path && *endp == '/')
3598	endp--;
3599
3600    /* Find the start of the dir */
3601    while (endp > path && *endp != '/')
3602	endp--;
3603
3604    /* Either the dir is "/" or there are no slashes */
3605    if (endp == path) {
3606	bname[0] = *endp == '/' ? '/' : '.';
3607	bname[1] = '\0';
3608	return (0);
3609    } else {
3610	do {
3611	    endp--;
3612	} while (endp > path && *endp == '/');
3613    }
3614
3615    if (endp - path + 2 > PATH_MAX)
3616    {
3617	_rtld_error("Filename is too long: %s", path);
3618	return(-1);
3619    }
3620
3621    strncpy(bname, path, endp - path + 1);
3622    bname[endp - path + 1] = '\0';
3623    return (0);
3624}
3625
3626static int
3627rtld_dirname_abs(const char *path, char *base)
3628{
3629	char *last;
3630
3631	if (realpath(path, base) == NULL)
3632		return (-1);
3633	dbg("%s -> %s", path, base);
3634	last = strrchr(base, '/');
3635	if (last == NULL)
3636		return (-1);
3637	if (last != base)
3638		*last = '\0';
3639	return (0);
3640}
3641
3642static void
3643linkmap_add(Obj_Entry *obj)
3644{
3645    struct link_map *l = &obj->linkmap;
3646    struct link_map *prev;
3647
3648    obj->linkmap.l_name = obj->path;
3649    obj->linkmap.l_addr = obj->mapbase;
3650    obj->linkmap.l_ld = obj->dynamic;
3651#ifdef __mips__
3652    /* GDB needs load offset on MIPS to use the symbols */
3653    obj->linkmap.l_offs = obj->relocbase;
3654#endif
3655
3656    if (r_debug.r_map == NULL) {
3657	r_debug.r_map = l;
3658	return;
3659    }
3660
3661    /*
3662     * Scan to the end of the list, but not past the entry for the
3663     * dynamic linker, which we want to keep at the very end.
3664     */
3665    for (prev = r_debug.r_map;
3666      prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3667      prev = prev->l_next)
3668	;
3669
3670    /* Link in the new entry. */
3671    l->l_prev = prev;
3672    l->l_next = prev->l_next;
3673    if (l->l_next != NULL)
3674	l->l_next->l_prev = l;
3675    prev->l_next = l;
3676}
3677
3678static void
3679linkmap_delete(Obj_Entry *obj)
3680{
3681    struct link_map *l = &obj->linkmap;
3682
3683    if (l->l_prev == NULL) {
3684	if ((r_debug.r_map = l->l_next) != NULL)
3685	    l->l_next->l_prev = NULL;
3686	return;
3687    }
3688
3689    if ((l->l_prev->l_next = l->l_next) != NULL)
3690	l->l_next->l_prev = l->l_prev;
3691}
3692
3693/*
3694 * Function for the debugger to set a breakpoint on to gain control.
3695 *
3696 * The two parameters allow the debugger to easily find and determine
3697 * what the runtime loader is doing and to whom it is doing it.
3698 *
3699 * When the loadhook trap is hit (r_debug_state, set at program
3700 * initialization), the arguments can be found on the stack:
3701 *
3702 *  +8   struct link_map *m
3703 *  +4   struct r_debug  *rd
3704 *  +0   RetAddr
3705 */
3706void
3707r_debug_state(struct r_debug* rd, struct link_map *m)
3708{
3709    /*
3710     * The following is a hack to force the compiler to emit calls to
3711     * this function, even when optimizing.  If the function is empty,
3712     * the compiler is not obliged to emit any code for calls to it,
3713     * even when marked __noinline.  However, gdb depends on those
3714     * calls being made.
3715     */
3716    __compiler_membar();
3717}
3718
3719/*
3720 * A function called after init routines have completed. This can be used to
3721 * break before a program's entry routine is called, and can be used when
3722 * main is not available in the symbol table.
3723 */
3724void
3725_r_debug_postinit(struct link_map *m)
3726{
3727
3728	/* See r_debug_state(). */
3729	__compiler_membar();
3730}
3731
3732/*
3733 * Get address of the pointer variable in the main program.
3734 * Prefer non-weak symbol over the weak one.
3735 */
3736static const void **
3737get_program_var_addr(const char *name, RtldLockState *lockstate)
3738{
3739    SymLook req;
3740    DoneList donelist;
3741
3742    symlook_init(&req, name);
3743    req.lockstate = lockstate;
3744    donelist_init(&donelist);
3745    if (symlook_global(&req, &donelist) != 0)
3746	return (NULL);
3747    if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3748	return ((const void **)make_function_pointer(req.sym_out,
3749	  req.defobj_out));
3750    else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3751	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3752    else
3753	return ((const void **)(req.defobj_out->relocbase +
3754	  req.sym_out->st_value));
3755}
3756
3757/*
3758 * Set a pointer variable in the main program to the given value.  This
3759 * is used to set key variables such as "environ" before any of the
3760 * init functions are called.
3761 */
3762static void
3763set_program_var(const char *name, const void *value)
3764{
3765    const void **addr;
3766
3767    if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3768	dbg("\"%s\": *%p <-- %p", name, addr, value);
3769	*addr = value;
3770    }
3771}
3772
3773/*
3774 * Search the global objects, including dependencies and main object,
3775 * for the given symbol.
3776 */
3777static int
3778symlook_global(SymLook *req, DoneList *donelist)
3779{
3780    SymLook req1;
3781    const Objlist_Entry *elm;
3782    int res;
3783
3784    symlook_init_from_req(&req1, req);
3785
3786    /* Search all objects loaded at program start up. */
3787    if (req->defobj_out == NULL ||
3788      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3789	res = symlook_list(&req1, &list_main, donelist);
3790	if (res == 0 && (req->defobj_out == NULL ||
3791	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3792	    req->sym_out = req1.sym_out;
3793	    req->defobj_out = req1.defobj_out;
3794	    assert(req->defobj_out != NULL);
3795	}
3796    }
3797
3798    /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3799    STAILQ_FOREACH(elm, &list_global, link) {
3800	if (req->defobj_out != NULL &&
3801	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3802	    break;
3803	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3804	if (res == 0 && (req->defobj_out == NULL ||
3805	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3806	    req->sym_out = req1.sym_out;
3807	    req->defobj_out = req1.defobj_out;
3808	    assert(req->defobj_out != NULL);
3809	}
3810    }
3811
3812    return (req->sym_out != NULL ? 0 : ESRCH);
3813}
3814
3815/*
3816 * Given a symbol name in a referencing object, find the corresponding
3817 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3818 * no definition was found.  Returns a pointer to the Obj_Entry of the
3819 * defining object via the reference parameter DEFOBJ_OUT.
3820 */
3821static int
3822symlook_default(SymLook *req, const Obj_Entry *refobj)
3823{
3824    DoneList donelist;
3825    const Objlist_Entry *elm;
3826    SymLook req1;
3827    int res;
3828
3829    donelist_init(&donelist);
3830    symlook_init_from_req(&req1, req);
3831
3832    /* Look first in the referencing object if linked symbolically. */
3833    if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3834	res = symlook_obj(&req1, refobj);
3835	if (res == 0) {
3836	    req->sym_out = req1.sym_out;
3837	    req->defobj_out = req1.defobj_out;
3838	    assert(req->defobj_out != NULL);
3839	}
3840    }
3841
3842    symlook_global(req, &donelist);
3843
3844    /* Search all dlopened DAGs containing the referencing object. */
3845    STAILQ_FOREACH(elm, &refobj->dldags, link) {
3846	if (req->sym_out != NULL &&
3847	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3848	    break;
3849	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3850	if (res == 0 && (req->sym_out == NULL ||
3851	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3852	    req->sym_out = req1.sym_out;
3853	    req->defobj_out = req1.defobj_out;
3854	    assert(req->defobj_out != NULL);
3855	}
3856    }
3857
3858    /*
3859     * Search the dynamic linker itself, and possibly resolve the
3860     * symbol from there.  This is how the application links to
3861     * dynamic linker services such as dlopen.
3862     */
3863    if (req->sym_out == NULL ||
3864      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3865	res = symlook_obj(&req1, &obj_rtld);
3866	if (res == 0) {
3867	    req->sym_out = req1.sym_out;
3868	    req->defobj_out = req1.defobj_out;
3869	    assert(req->defobj_out != NULL);
3870	}
3871    }
3872
3873    return (req->sym_out != NULL ? 0 : ESRCH);
3874}
3875
3876static int
3877symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3878{
3879    const Elf_Sym *def;
3880    const Obj_Entry *defobj;
3881    const Objlist_Entry *elm;
3882    SymLook req1;
3883    int res;
3884
3885    def = NULL;
3886    defobj = NULL;
3887    STAILQ_FOREACH(elm, objlist, link) {
3888	if (donelist_check(dlp, elm->obj))
3889	    continue;
3890	symlook_init_from_req(&req1, req);
3891	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3892	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3893		def = req1.sym_out;
3894		defobj = req1.defobj_out;
3895		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3896		    break;
3897	    }
3898	}
3899    }
3900    if (def != NULL) {
3901	req->sym_out = def;
3902	req->defobj_out = defobj;
3903	return (0);
3904    }
3905    return (ESRCH);
3906}
3907
3908/*
3909 * Search the chain of DAGS cointed to by the given Needed_Entry
3910 * for a symbol of the given name.  Each DAG is scanned completely
3911 * before advancing to the next one.  Returns a pointer to the symbol,
3912 * or NULL if no definition was found.
3913 */
3914static int
3915symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3916{
3917    const Elf_Sym *def;
3918    const Needed_Entry *n;
3919    const Obj_Entry *defobj;
3920    SymLook req1;
3921    int res;
3922
3923    def = NULL;
3924    defobj = NULL;
3925    symlook_init_from_req(&req1, req);
3926    for (n = needed; n != NULL; n = n->next) {
3927	if (n->obj == NULL ||
3928	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3929	    continue;
3930	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3931	    def = req1.sym_out;
3932	    defobj = req1.defobj_out;
3933	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3934		break;
3935	}
3936    }
3937    if (def != NULL) {
3938	req->sym_out = def;
3939	req->defobj_out = defobj;
3940	return (0);
3941    }
3942    return (ESRCH);
3943}
3944
3945/*
3946 * Search the symbol table of a single shared object for a symbol of
3947 * the given name and version, if requested.  Returns a pointer to the
3948 * symbol, or NULL if no definition was found.  If the object is
3949 * filter, return filtered symbol from filtee.
3950 *
3951 * The symbol's hash value is passed in for efficiency reasons; that
3952 * eliminates many recomputations of the hash value.
3953 */
3954int
3955symlook_obj(SymLook *req, const Obj_Entry *obj)
3956{
3957    DoneList donelist;
3958    SymLook req1;
3959    int flags, res, mres;
3960
3961    /*
3962     * If there is at least one valid hash at this point, we prefer to
3963     * use the faster GNU version if available.
3964     */
3965    if (obj->valid_hash_gnu)
3966	mres = symlook_obj1_gnu(req, obj);
3967    else if (obj->valid_hash_sysv)
3968	mres = symlook_obj1_sysv(req, obj);
3969    else
3970	return (EINVAL);
3971
3972    if (mres == 0) {
3973	if (obj->needed_filtees != NULL) {
3974	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3975	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3976	    donelist_init(&donelist);
3977	    symlook_init_from_req(&req1, req);
3978	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3979	    if (res == 0) {
3980		req->sym_out = req1.sym_out;
3981		req->defobj_out = req1.defobj_out;
3982	    }
3983	    return (res);
3984	}
3985	if (obj->needed_aux_filtees != NULL) {
3986	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3987	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3988	    donelist_init(&donelist);
3989	    symlook_init_from_req(&req1, req);
3990	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3991	    if (res == 0) {
3992		req->sym_out = req1.sym_out;
3993		req->defobj_out = req1.defobj_out;
3994		return (res);
3995	    }
3996	}
3997    }
3998    return (mres);
3999}
4000
4001/* Symbol match routine common to both hash functions */
4002static bool
4003matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4004    const unsigned long symnum)
4005{
4006	Elf_Versym verndx;
4007	const Elf_Sym *symp;
4008	const char *strp;
4009
4010	symp = obj->symtab + symnum;
4011	strp = obj->strtab + symp->st_name;
4012
4013	switch (ELF_ST_TYPE(symp->st_info)) {
4014	case STT_FUNC:
4015	case STT_NOTYPE:
4016	case STT_OBJECT:
4017	case STT_COMMON:
4018	case STT_GNU_IFUNC:
4019		if (symp->st_value == 0)
4020			return (false);
4021		/* fallthrough */
4022	case STT_TLS:
4023		if (symp->st_shndx != SHN_UNDEF)
4024			break;
4025#ifndef __mips__
4026		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4027		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4028			break;
4029		/* fallthrough */
4030#endif
4031	default:
4032		return (false);
4033	}
4034	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4035		return (false);
4036
4037	if (req->ventry == NULL) {
4038		if (obj->versyms != NULL) {
4039			verndx = VER_NDX(obj->versyms[symnum]);
4040			if (verndx > obj->vernum) {
4041				_rtld_error(
4042				    "%s: symbol %s references wrong version %d",
4043				    obj->path, obj->strtab + symnum, verndx);
4044				return (false);
4045			}
4046			/*
4047			 * If we are not called from dlsym (i.e. this
4048			 * is a normal relocation from unversioned
4049			 * binary), accept the symbol immediately if
4050			 * it happens to have first version after this
4051			 * shared object became versioned.  Otherwise,
4052			 * if symbol is versioned and not hidden,
4053			 * remember it. If it is the only symbol with
4054			 * this name exported by the shared object, it
4055			 * will be returned as a match by the calling
4056			 * function. If symbol is global (verndx < 2)
4057			 * accept it unconditionally.
4058			 */
4059			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4060			    verndx == VER_NDX_GIVEN) {
4061				result->sym_out = symp;
4062				return (true);
4063			}
4064			else if (verndx >= VER_NDX_GIVEN) {
4065				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4066				    == 0) {
4067					if (result->vsymp == NULL)
4068						result->vsymp = symp;
4069					result->vcount++;
4070				}
4071				return (false);
4072			}
4073		}
4074		result->sym_out = symp;
4075		return (true);
4076	}
4077	if (obj->versyms == NULL) {
4078		if (object_match_name(obj, req->ventry->name)) {
4079			_rtld_error("%s: object %s should provide version %s "
4080			    "for symbol %s", obj_rtld.path, obj->path,
4081			    req->ventry->name, obj->strtab + symnum);
4082			return (false);
4083		}
4084	} else {
4085		verndx = VER_NDX(obj->versyms[symnum]);
4086		if (verndx > obj->vernum) {
4087			_rtld_error("%s: symbol %s references wrong version %d",
4088			    obj->path, obj->strtab + symnum, verndx);
4089			return (false);
4090		}
4091		if (obj->vertab[verndx].hash != req->ventry->hash ||
4092		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4093			/*
4094			 * Version does not match. Look if this is a
4095			 * global symbol and if it is not hidden. If
4096			 * global symbol (verndx < 2) is available,
4097			 * use it. Do not return symbol if we are
4098			 * called by dlvsym, because dlvsym looks for
4099			 * a specific version and default one is not
4100			 * what dlvsym wants.
4101			 */
4102			if ((req->flags & SYMLOOK_DLSYM) ||
4103			    (verndx >= VER_NDX_GIVEN) ||
4104			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4105				return (false);
4106		}
4107	}
4108	result->sym_out = symp;
4109	return (true);
4110}
4111
4112/*
4113 * Search for symbol using SysV hash function.
4114 * obj->buckets is known not to be NULL at this point; the test for this was
4115 * performed with the obj->valid_hash_sysv assignment.
4116 */
4117static int
4118symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4119{
4120	unsigned long symnum;
4121	Sym_Match_Result matchres;
4122
4123	matchres.sym_out = NULL;
4124	matchres.vsymp = NULL;
4125	matchres.vcount = 0;
4126
4127	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4128	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4129		if (symnum >= obj->nchains)
4130			return (ESRCH);	/* Bad object */
4131
4132		if (matched_symbol(req, obj, &matchres, symnum)) {
4133			req->sym_out = matchres.sym_out;
4134			req->defobj_out = obj;
4135			return (0);
4136		}
4137	}
4138	if (matchres.vcount == 1) {
4139		req->sym_out = matchres.vsymp;
4140		req->defobj_out = obj;
4141		return (0);
4142	}
4143	return (ESRCH);
4144}
4145
4146/* Search for symbol using GNU hash function */
4147static int
4148symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4149{
4150	Elf_Addr bloom_word;
4151	const Elf32_Word *hashval;
4152	Elf32_Word bucket;
4153	Sym_Match_Result matchres;
4154	unsigned int h1, h2;
4155	unsigned long symnum;
4156
4157	matchres.sym_out = NULL;
4158	matchres.vsymp = NULL;
4159	matchres.vcount = 0;
4160
4161	/* Pick right bitmask word from Bloom filter array */
4162	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4163	    obj->maskwords_bm_gnu];
4164
4165	/* Calculate modulus word size of gnu hash and its derivative */
4166	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4167	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4168
4169	/* Filter out the "definitely not in set" queries */
4170	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4171		return (ESRCH);
4172
4173	/* Locate hash chain and corresponding value element*/
4174	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4175	if (bucket == 0)
4176		return (ESRCH);
4177	hashval = &obj->chain_zero_gnu[bucket];
4178	do {
4179		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4180			symnum = hashval - obj->chain_zero_gnu;
4181			if (matched_symbol(req, obj, &matchres, symnum)) {
4182				req->sym_out = matchres.sym_out;
4183				req->defobj_out = obj;
4184				return (0);
4185			}
4186		}
4187	} while ((*hashval++ & 1) == 0);
4188	if (matchres.vcount == 1) {
4189		req->sym_out = matchres.vsymp;
4190		req->defobj_out = obj;
4191		return (0);
4192	}
4193	return (ESRCH);
4194}
4195
4196static void
4197trace_loaded_objects(Obj_Entry *obj)
4198{
4199    char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4200    int		c;
4201
4202    if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4203	main_local = "";
4204
4205    if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4206	fmt1 = "\t%o => %p (%x)\n";
4207
4208    if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4209	fmt2 = "\t%o (%x)\n";
4210
4211    list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
4212
4213    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4214	Needed_Entry		*needed;
4215	char			*name, *path;
4216	bool			is_lib;
4217
4218	if (obj->marker)
4219	    continue;
4220	if (list_containers && obj->needed != NULL)
4221	    rtld_printf("%s:\n", obj->path);
4222	for (needed = obj->needed; needed; needed = needed->next) {
4223	    if (needed->obj != NULL) {
4224		if (needed->obj->traced && !list_containers)
4225		    continue;
4226		needed->obj->traced = true;
4227		path = needed->obj->path;
4228	    } else
4229		path = "not found";
4230
4231	    name = (char *)obj->strtab + needed->name;
4232	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4233
4234	    fmt = is_lib ? fmt1 : fmt2;
4235	    while ((c = *fmt++) != '\0') {
4236		switch (c) {
4237		default:
4238		    rtld_putchar(c);
4239		    continue;
4240		case '\\':
4241		    switch (c = *fmt) {
4242		    case '\0':
4243			continue;
4244		    case 'n':
4245			rtld_putchar('\n');
4246			break;
4247		    case 't':
4248			rtld_putchar('\t');
4249			break;
4250		    }
4251		    break;
4252		case '%':
4253		    switch (c = *fmt) {
4254		    case '\0':
4255			continue;
4256		    case '%':
4257		    default:
4258			rtld_putchar(c);
4259			break;
4260		    case 'A':
4261			rtld_putstr(main_local);
4262			break;
4263		    case 'a':
4264			rtld_putstr(obj_main->path);
4265			break;
4266		    case 'o':
4267			rtld_putstr(name);
4268			break;
4269#if 0
4270		    case 'm':
4271			rtld_printf("%d", sodp->sod_major);
4272			break;
4273		    case 'n':
4274			rtld_printf("%d", sodp->sod_minor);
4275			break;
4276#endif
4277		    case 'p':
4278			rtld_putstr(path);
4279			break;
4280		    case 'x':
4281			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4282			  0);
4283			break;
4284		    }
4285		    break;
4286		}
4287		++fmt;
4288	    }
4289	}
4290    }
4291}
4292
4293/*
4294 * Unload a dlopened object and its dependencies from memory and from
4295 * our data structures.  It is assumed that the DAG rooted in the
4296 * object has already been unreferenced, and that the object has a
4297 * reference count of 0.
4298 */
4299static void
4300unload_object(Obj_Entry *root)
4301{
4302	Obj_Entry *obj, *obj1;
4303
4304	assert(root->refcount == 0);
4305
4306	/*
4307	 * Pass over the DAG removing unreferenced objects from
4308	 * appropriate lists.
4309	 */
4310	unlink_object(root);
4311
4312	/* Unmap all objects that are no longer referenced. */
4313	TAILQ_FOREACH_SAFE(obj, &obj_list, next, obj1) {
4314		if (obj->marker || obj->refcount != 0)
4315			continue;
4316		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4317		    obj->mapsize, 0, obj->path);
4318		dbg("unloading \"%s\"", obj->path);
4319		unload_filtees(root);
4320		munmap(obj->mapbase, obj->mapsize);
4321		linkmap_delete(obj);
4322		TAILQ_REMOVE(&obj_list, obj, next);
4323		obj_count--;
4324		obj_free(obj);
4325	}
4326}
4327
4328static void
4329unlink_object(Obj_Entry *root)
4330{
4331    Objlist_Entry *elm;
4332
4333    if (root->refcount == 0) {
4334	/* Remove the object from the RTLD_GLOBAL list. */
4335	objlist_remove(&list_global, root);
4336
4337    	/* Remove the object from all objects' DAG lists. */
4338    	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4339	    objlist_remove(&elm->obj->dldags, root);
4340	    if (elm->obj != root)
4341		unlink_object(elm->obj);
4342	}
4343    }
4344}
4345
4346static void
4347ref_dag(Obj_Entry *root)
4348{
4349    Objlist_Entry *elm;
4350
4351    assert(root->dag_inited);
4352    STAILQ_FOREACH(elm, &root->dagmembers, link)
4353	elm->obj->refcount++;
4354}
4355
4356static void
4357unref_dag(Obj_Entry *root)
4358{
4359    Objlist_Entry *elm;
4360
4361    assert(root->dag_inited);
4362    STAILQ_FOREACH(elm, &root->dagmembers, link)
4363	elm->obj->refcount--;
4364}
4365
4366/*
4367 * Common code for MD __tls_get_addr().
4368 */
4369static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4370static void *
4371tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4372{
4373    Elf_Addr *newdtv, *dtv;
4374    RtldLockState lockstate;
4375    int to_copy;
4376
4377    dtv = *dtvp;
4378    /* Check dtv generation in case new modules have arrived */
4379    if (dtv[0] != tls_dtv_generation) {
4380	wlock_acquire(rtld_bind_lock, &lockstate);
4381	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4382	to_copy = dtv[1];
4383	if (to_copy > tls_max_index)
4384	    to_copy = tls_max_index;
4385	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4386	newdtv[0] = tls_dtv_generation;
4387	newdtv[1] = tls_max_index;
4388	free(dtv);
4389	lock_release(rtld_bind_lock, &lockstate);
4390	dtv = *dtvp = newdtv;
4391    }
4392
4393    /* Dynamically allocate module TLS if necessary */
4394    if (dtv[index + 1] == 0) {
4395	/* Signal safe, wlock will block out signals. */
4396	wlock_acquire(rtld_bind_lock, &lockstate);
4397	if (!dtv[index + 1])
4398	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4399	lock_release(rtld_bind_lock, &lockstate);
4400    }
4401    return ((void *)(dtv[index + 1] + offset));
4402}
4403
4404void *
4405tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4406{
4407	Elf_Addr *dtv;
4408
4409	dtv = *dtvp;
4410	/* Check dtv generation in case new modules have arrived */
4411	if (__predict_true(dtv[0] == tls_dtv_generation &&
4412	    dtv[index + 1] != 0))
4413		return ((void *)(dtv[index + 1] + offset));
4414	return (tls_get_addr_slow(dtvp, index, offset));
4415}
4416
4417#if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
4418
4419/*
4420 * Allocate Static TLS using the Variant I method.
4421 */
4422void *
4423allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4424{
4425    Obj_Entry *obj;
4426    char *tcb;
4427    Elf_Addr **tls;
4428    Elf_Addr *dtv;
4429    Elf_Addr addr;
4430    int i;
4431
4432    if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4433	return (oldtcb);
4434
4435    assert(tcbsize >= TLS_TCB_SIZE);
4436    tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4437    tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4438
4439    if (oldtcb != NULL) {
4440	memcpy(tls, oldtcb, tls_static_space);
4441	free(oldtcb);
4442
4443	/* Adjust the DTV. */
4444	dtv = tls[0];
4445	for (i = 0; i < dtv[1]; i++) {
4446	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4447		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4448		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4449	    }
4450	}
4451    } else {
4452	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4453	tls[0] = dtv;
4454	dtv[0] = tls_dtv_generation;
4455	dtv[1] = tls_max_index;
4456
4457	for (obj = globallist_curr(objs); obj != NULL;
4458	  obj = globallist_next(obj)) {
4459	    if (obj->tlsoffset > 0) {
4460		addr = (Elf_Addr)tls + obj->tlsoffset;
4461		if (obj->tlsinitsize > 0)
4462		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4463		if (obj->tlssize > obj->tlsinitsize)
4464		    memset((void*) (addr + obj->tlsinitsize), 0,
4465			   obj->tlssize - obj->tlsinitsize);
4466		dtv[obj->tlsindex + 1] = addr;
4467	    }
4468	}
4469    }
4470
4471    return (tcb);
4472}
4473
4474void
4475free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4476{
4477    Elf_Addr *dtv;
4478    Elf_Addr tlsstart, tlsend;
4479    int dtvsize, i;
4480
4481    assert(tcbsize >= TLS_TCB_SIZE);
4482
4483    tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4484    tlsend = tlsstart + tls_static_space;
4485
4486    dtv = *(Elf_Addr **)tlsstart;
4487    dtvsize = dtv[1];
4488    for (i = 0; i < dtvsize; i++) {
4489	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4490	    free((void*)dtv[i+2]);
4491	}
4492    }
4493    free(dtv);
4494    free(tcb);
4495}
4496
4497#endif
4498
4499#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4500
4501/*
4502 * Allocate Static TLS using the Variant II method.
4503 */
4504void *
4505allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4506{
4507    Obj_Entry *obj;
4508    size_t size, ralign;
4509    char *tls;
4510    Elf_Addr *dtv, *olddtv;
4511    Elf_Addr segbase, oldsegbase, addr;
4512    int i;
4513
4514    ralign = tcbalign;
4515    if (tls_static_max_align > ralign)
4516	    ralign = tls_static_max_align;
4517    size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4518
4519    assert(tcbsize >= 2*sizeof(Elf_Addr));
4520    tls = malloc_aligned(size, ralign);
4521    dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4522
4523    segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4524    ((Elf_Addr*)segbase)[0] = segbase;
4525    ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4526
4527    dtv[0] = tls_dtv_generation;
4528    dtv[1] = tls_max_index;
4529
4530    if (oldtls) {
4531	/*
4532	 * Copy the static TLS block over whole.
4533	 */
4534	oldsegbase = (Elf_Addr) oldtls;
4535	memcpy((void *)(segbase - tls_static_space),
4536	       (const void *)(oldsegbase - tls_static_space),
4537	       tls_static_space);
4538
4539	/*
4540	 * If any dynamic TLS blocks have been created tls_get_addr(),
4541	 * move them over.
4542	 */
4543	olddtv = ((Elf_Addr**)oldsegbase)[1];
4544	for (i = 0; i < olddtv[1]; i++) {
4545	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4546		dtv[i+2] = olddtv[i+2];
4547		olddtv[i+2] = 0;
4548	    }
4549	}
4550
4551	/*
4552	 * We assume that this block was the one we created with
4553	 * allocate_initial_tls().
4554	 */
4555	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4556    } else {
4557	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4558		if (obj->marker || obj->tlsoffset == 0)
4559			continue;
4560		addr = segbase - obj->tlsoffset;
4561		memset((void*) (addr + obj->tlsinitsize),
4562		       0, obj->tlssize - obj->tlsinitsize);
4563		if (obj->tlsinit)
4564		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4565		dtv[obj->tlsindex + 1] = addr;
4566	}
4567    }
4568
4569    return (void*) segbase;
4570}
4571
4572void
4573free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4574{
4575    Elf_Addr* dtv;
4576    size_t size, ralign;
4577    int dtvsize, i;
4578    Elf_Addr tlsstart, tlsend;
4579
4580    /*
4581     * Figure out the size of the initial TLS block so that we can
4582     * find stuff which ___tls_get_addr() allocated dynamically.
4583     */
4584    ralign = tcbalign;
4585    if (tls_static_max_align > ralign)
4586	    ralign = tls_static_max_align;
4587    size = round(tls_static_space, ralign);
4588
4589    dtv = ((Elf_Addr**)tls)[1];
4590    dtvsize = dtv[1];
4591    tlsend = (Elf_Addr) tls;
4592    tlsstart = tlsend - size;
4593    for (i = 0; i < dtvsize; i++) {
4594	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4595		free_aligned((void *)dtv[i + 2]);
4596	}
4597    }
4598
4599    free_aligned((void *)tlsstart);
4600    free((void*) dtv);
4601}
4602
4603#endif
4604
4605/*
4606 * Allocate TLS block for module with given index.
4607 */
4608void *
4609allocate_module_tls(int index)
4610{
4611    Obj_Entry* obj;
4612    char* p;
4613
4614    TAILQ_FOREACH(obj, &obj_list, next) {
4615	if (obj->marker)
4616	    continue;
4617	if (obj->tlsindex == index)
4618	    break;
4619    }
4620    if (!obj) {
4621	_rtld_error("Can't find module with TLS index %d", index);
4622	rtld_die();
4623    }
4624
4625    p = malloc_aligned(obj->tlssize, obj->tlsalign);
4626    memcpy(p, obj->tlsinit, obj->tlsinitsize);
4627    memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4628
4629    return p;
4630}
4631
4632bool
4633allocate_tls_offset(Obj_Entry *obj)
4634{
4635    size_t off;
4636
4637    if (obj->tls_done)
4638	return true;
4639
4640    if (obj->tlssize == 0) {
4641	obj->tls_done = true;
4642	return true;
4643    }
4644
4645    if (tls_last_offset == 0)
4646	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4647    else
4648	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4649				   obj->tlssize, obj->tlsalign);
4650
4651    /*
4652     * If we have already fixed the size of the static TLS block, we
4653     * must stay within that size. When allocating the static TLS, we
4654     * leave a small amount of space spare to be used for dynamically
4655     * loading modules which use static TLS.
4656     */
4657    if (tls_static_space != 0) {
4658	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4659	    return false;
4660    } else if (obj->tlsalign > tls_static_max_align) {
4661	    tls_static_max_align = obj->tlsalign;
4662    }
4663
4664    tls_last_offset = obj->tlsoffset = off;
4665    tls_last_size = obj->tlssize;
4666    obj->tls_done = true;
4667
4668    return true;
4669}
4670
4671void
4672free_tls_offset(Obj_Entry *obj)
4673{
4674
4675    /*
4676     * If we were the last thing to allocate out of the static TLS
4677     * block, we give our space back to the 'allocator'. This is a
4678     * simplistic workaround to allow libGL.so.1 to be loaded and
4679     * unloaded multiple times.
4680     */
4681    if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4682	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4683	tls_last_offset -= obj->tlssize;
4684	tls_last_size = 0;
4685    }
4686}
4687
4688void *
4689_rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4690{
4691    void *ret;
4692    RtldLockState lockstate;
4693
4694    wlock_acquire(rtld_bind_lock, &lockstate);
4695    ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
4696      tcbsize, tcbalign);
4697    lock_release(rtld_bind_lock, &lockstate);
4698    return (ret);
4699}
4700
4701void
4702_rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4703{
4704    RtldLockState lockstate;
4705
4706    wlock_acquire(rtld_bind_lock, &lockstate);
4707    free_tls(tcb, tcbsize, tcbalign);
4708    lock_release(rtld_bind_lock, &lockstate);
4709}
4710
4711static void
4712object_add_name(Obj_Entry *obj, const char *name)
4713{
4714    Name_Entry *entry;
4715    size_t len;
4716
4717    len = strlen(name);
4718    entry = malloc(sizeof(Name_Entry) + len);
4719
4720    if (entry != NULL) {
4721	strcpy(entry->name, name);
4722	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4723    }
4724}
4725
4726static int
4727object_match_name(const Obj_Entry *obj, const char *name)
4728{
4729    Name_Entry *entry;
4730
4731    STAILQ_FOREACH(entry, &obj->names, link) {
4732	if (strcmp(name, entry->name) == 0)
4733	    return (1);
4734    }
4735    return (0);
4736}
4737
4738static Obj_Entry *
4739locate_dependency(const Obj_Entry *obj, const char *name)
4740{
4741    const Objlist_Entry *entry;
4742    const Needed_Entry *needed;
4743
4744    STAILQ_FOREACH(entry, &list_main, link) {
4745	if (object_match_name(entry->obj, name))
4746	    return entry->obj;
4747    }
4748
4749    for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4750	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4751	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4752	    /*
4753	     * If there is DT_NEEDED for the name we are looking for,
4754	     * we are all set.  Note that object might not be found if
4755	     * dependency was not loaded yet, so the function can
4756	     * return NULL here.  This is expected and handled
4757	     * properly by the caller.
4758	     */
4759	    return (needed->obj);
4760	}
4761    }
4762    _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4763	obj->path, name);
4764    rtld_die();
4765}
4766
4767static int
4768check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4769    const Elf_Vernaux *vna)
4770{
4771    const Elf_Verdef *vd;
4772    const char *vername;
4773
4774    vername = refobj->strtab + vna->vna_name;
4775    vd = depobj->verdef;
4776    if (vd == NULL) {
4777	_rtld_error("%s: version %s required by %s not defined",
4778	    depobj->path, vername, refobj->path);
4779	return (-1);
4780    }
4781    for (;;) {
4782	if (vd->vd_version != VER_DEF_CURRENT) {
4783	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4784		depobj->path, vd->vd_version);
4785	    return (-1);
4786	}
4787	if (vna->vna_hash == vd->vd_hash) {
4788	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4789		((char *)vd + vd->vd_aux);
4790	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4791		return (0);
4792	}
4793	if (vd->vd_next == 0)
4794	    break;
4795	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4796    }
4797    if (vna->vna_flags & VER_FLG_WEAK)
4798	return (0);
4799    _rtld_error("%s: version %s required by %s not found",
4800	depobj->path, vername, refobj->path);
4801    return (-1);
4802}
4803
4804static int
4805rtld_verify_object_versions(Obj_Entry *obj)
4806{
4807    const Elf_Verneed *vn;
4808    const Elf_Verdef  *vd;
4809    const Elf_Verdaux *vda;
4810    const Elf_Vernaux *vna;
4811    const Obj_Entry *depobj;
4812    int maxvernum, vernum;
4813
4814    if (obj->ver_checked)
4815	return (0);
4816    obj->ver_checked = true;
4817
4818    maxvernum = 0;
4819    /*
4820     * Walk over defined and required version records and figure out
4821     * max index used by any of them. Do very basic sanity checking
4822     * while there.
4823     */
4824    vn = obj->verneed;
4825    while (vn != NULL) {
4826	if (vn->vn_version != VER_NEED_CURRENT) {
4827	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4828		obj->path, vn->vn_version);
4829	    return (-1);
4830	}
4831	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4832	for (;;) {
4833	    vernum = VER_NEED_IDX(vna->vna_other);
4834	    if (vernum > maxvernum)
4835		maxvernum = vernum;
4836	    if (vna->vna_next == 0)
4837		 break;
4838	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4839	}
4840	if (vn->vn_next == 0)
4841	    break;
4842	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4843    }
4844
4845    vd = obj->verdef;
4846    while (vd != NULL) {
4847	if (vd->vd_version != VER_DEF_CURRENT) {
4848	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4849		obj->path, vd->vd_version);
4850	    return (-1);
4851	}
4852	vernum = VER_DEF_IDX(vd->vd_ndx);
4853	if (vernum > maxvernum)
4854		maxvernum = vernum;
4855	if (vd->vd_next == 0)
4856	    break;
4857	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4858    }
4859
4860    if (maxvernum == 0)
4861	return (0);
4862
4863    /*
4864     * Store version information in array indexable by version index.
4865     * Verify that object version requirements are satisfied along the
4866     * way.
4867     */
4868    obj->vernum = maxvernum + 1;
4869    obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4870
4871    vd = obj->verdef;
4872    while (vd != NULL) {
4873	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4874	    vernum = VER_DEF_IDX(vd->vd_ndx);
4875	    assert(vernum <= maxvernum);
4876	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4877	    obj->vertab[vernum].hash = vd->vd_hash;
4878	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4879	    obj->vertab[vernum].file = NULL;
4880	    obj->vertab[vernum].flags = 0;
4881	}
4882	if (vd->vd_next == 0)
4883	    break;
4884	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4885    }
4886
4887    vn = obj->verneed;
4888    while (vn != NULL) {
4889	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4890	if (depobj == NULL)
4891	    return (-1);
4892	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4893	for (;;) {
4894	    if (check_object_provided_version(obj, depobj, vna))
4895		return (-1);
4896	    vernum = VER_NEED_IDX(vna->vna_other);
4897	    assert(vernum <= maxvernum);
4898	    obj->vertab[vernum].hash = vna->vna_hash;
4899	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4900	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4901	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4902		VER_INFO_HIDDEN : 0;
4903	    if (vna->vna_next == 0)
4904		 break;
4905	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4906	}
4907	if (vn->vn_next == 0)
4908	    break;
4909	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4910    }
4911    return 0;
4912}
4913
4914static int
4915rtld_verify_versions(const Objlist *objlist)
4916{
4917    Objlist_Entry *entry;
4918    int rc;
4919
4920    rc = 0;
4921    STAILQ_FOREACH(entry, objlist, link) {
4922	/*
4923	 * Skip dummy objects or objects that have their version requirements
4924	 * already checked.
4925	 */
4926	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4927	    continue;
4928	if (rtld_verify_object_versions(entry->obj) == -1) {
4929	    rc = -1;
4930	    if (ld_tracing == NULL)
4931		break;
4932	}
4933    }
4934    if (rc == 0 || ld_tracing != NULL)
4935    	rc = rtld_verify_object_versions(&obj_rtld);
4936    return rc;
4937}
4938
4939const Ver_Entry *
4940fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4941{
4942    Elf_Versym vernum;
4943
4944    if (obj->vertab) {
4945	vernum = VER_NDX(obj->versyms[symnum]);
4946	if (vernum >= obj->vernum) {
4947	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4948		obj->path, obj->strtab + symnum, vernum);
4949	} else if (obj->vertab[vernum].hash != 0) {
4950	    return &obj->vertab[vernum];
4951	}
4952    }
4953    return NULL;
4954}
4955
4956int
4957_rtld_get_stack_prot(void)
4958{
4959
4960	return (stack_prot);
4961}
4962
4963int
4964_rtld_is_dlopened(void *arg)
4965{
4966	Obj_Entry *obj;
4967	RtldLockState lockstate;
4968	int res;
4969
4970	rlock_acquire(rtld_bind_lock, &lockstate);
4971	obj = dlcheck(arg);
4972	if (obj == NULL)
4973		obj = obj_from_addr(arg);
4974	if (obj == NULL) {
4975		_rtld_error("No shared object contains address");
4976		lock_release(rtld_bind_lock, &lockstate);
4977		return (-1);
4978	}
4979	res = obj->dlopened ? 1 : 0;
4980	lock_release(rtld_bind_lock, &lockstate);
4981	return (res);
4982}
4983
4984static void
4985map_stacks_exec(RtldLockState *lockstate)
4986{
4987	void (*thr_map_stacks_exec)(void);
4988
4989	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4990		return;
4991	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4992	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4993	if (thr_map_stacks_exec != NULL) {
4994		stack_prot |= PROT_EXEC;
4995		thr_map_stacks_exec();
4996	}
4997}
4998
4999void
5000symlook_init(SymLook *dst, const char *name)
5001{
5002
5003	bzero(dst, sizeof(*dst));
5004	dst->name = name;
5005	dst->hash = elf_hash(name);
5006	dst->hash_gnu = gnu_hash(name);
5007}
5008
5009static void
5010symlook_init_from_req(SymLook *dst, const SymLook *src)
5011{
5012
5013	dst->name = src->name;
5014	dst->hash = src->hash;
5015	dst->hash_gnu = src->hash_gnu;
5016	dst->ventry = src->ventry;
5017	dst->flags = src->flags;
5018	dst->defobj_out = NULL;
5019	dst->sym_out = NULL;
5020	dst->lockstate = src->lockstate;
5021}
5022
5023/*
5024 * Overrides for libc_pic-provided functions.
5025 */
5026
5027int
5028__getosreldate(void)
5029{
5030	size_t len;
5031	int oid[2];
5032	int error, osrel;
5033
5034	if (osreldate != 0)
5035		return (osreldate);
5036
5037	oid[0] = CTL_KERN;
5038	oid[1] = KERN_OSRELDATE;
5039	osrel = 0;
5040	len = sizeof(osrel);
5041	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5042	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5043		osreldate = osrel;
5044	return (osreldate);
5045}
5046
5047void
5048exit(int status)
5049{
5050
5051	_exit(status);
5052}
5053
5054void (*__cleanup)(void);
5055int __isthreaded = 0;
5056int _thread_autoinit_dummy_decl = 1;
5057
5058/*
5059 * No unresolved symbols for rtld.
5060 */
5061void
5062__pthread_cxa_finalize(struct dl_phdr_info *a)
5063{
5064}
5065
5066void
5067__stack_chk_fail(void)
5068{
5069
5070	_rtld_error("stack overflow detected; terminated");
5071	rtld_die();
5072}
5073__weak_reference(__stack_chk_fail, __stack_chk_fail_local);
5074
5075void
5076__chk_fail(void)
5077{
5078
5079	_rtld_error("buffer overflow detected; terminated");
5080	rtld_die();
5081}
5082
5083const char *
5084rtld_strerror(int errnum)
5085{
5086
5087	if (errnum < 0 || errnum >= sys_nerr)
5088		return ("Unknown error");
5089	return (sys_errlist[errnum]);
5090}
5091