rtld.c revision 296727
1/*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5 * Copyright 2012 John Marino <draco@marino.st>.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * $FreeBSD: stable/10/libexec/rtld-elf/rtld.c 296727 2016-03-12 17:12:00Z kib $
29 */
30
31/*
32 * Dynamic linker for ELF.
33 *
34 * John Polstra <jdp@polstra.com>.
35 */
36
37#include <sys/param.h>
38#include <sys/mount.h>
39#include <sys/mman.h>
40#include <sys/stat.h>
41#include <sys/sysctl.h>
42#include <sys/uio.h>
43#include <sys/utsname.h>
44#include <sys/ktrace.h>
45
46#include <dlfcn.h>
47#include <err.h>
48#include <errno.h>
49#include <fcntl.h>
50#include <stdarg.h>
51#include <stdio.h>
52#include <stdlib.h>
53#include <string.h>
54#include <unistd.h>
55
56#include "debug.h"
57#include "rtld.h"
58#include "libmap.h"
59#include "rtld_tls.h"
60#include "rtld_printf.h"
61#include "notes.h"
62
63#ifndef COMPAT_32BIT
64#define PATH_RTLD	"/libexec/ld-elf.so.1"
65#else
66#define PATH_RTLD	"/libexec/ld-elf32.so.1"
67#endif
68
69/* Types. */
70typedef void (*func_ptr_type)();
71typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
72
73/*
74 * Function declarations.
75 */
76static const char *basename(const char *);
77static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
78    const Elf_Dyn **, const Elf_Dyn **);
79static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
80    const Elf_Dyn *);
81static void digest_dynamic(Obj_Entry *, int);
82static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
83static Obj_Entry *dlcheck(void *);
84static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
85    int lo_flags, int mode, RtldLockState *lockstate);
86static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
87static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
88static bool donelist_check(DoneList *, const Obj_Entry *);
89static void errmsg_restore(char *);
90static char *errmsg_save(void);
91static void *fill_search_info(const char *, size_t, void *);
92static char *find_library(const char *, const Obj_Entry *);
93static const char *gethints(bool);
94static void init_dag(Obj_Entry *);
95static void init_pagesizes(Elf_Auxinfo **aux_info);
96static void init_rtld(caddr_t, Elf_Auxinfo **);
97static void initlist_add_neededs(Needed_Entry *, Objlist *);
98static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
99static void linkmap_add(Obj_Entry *);
100static void linkmap_delete(Obj_Entry *);
101static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
102static void unload_filtees(Obj_Entry *);
103static int load_needed_objects(Obj_Entry *, int);
104static int load_preload_objects(void);
105static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
106static void map_stacks_exec(RtldLockState *);
107static Obj_Entry *obj_from_addr(const void *);
108static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
109static void objlist_call_init(Objlist *, RtldLockState *);
110static void objlist_clear(Objlist *);
111static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
112static void objlist_init(Objlist *);
113static void objlist_push_head(Objlist *, Obj_Entry *);
114static void objlist_push_tail(Objlist *, Obj_Entry *);
115static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
116static void objlist_remove(Objlist *, Obj_Entry *);
117static void *path_enumerate(const char *, path_enum_proc, void *);
118static int relocate_object_dag(Obj_Entry *root, bool bind_now,
119    Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
120static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
121    int flags, RtldLockState *lockstate);
122static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
123    RtldLockState *);
124static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
125    int flags, RtldLockState *lockstate);
126static int rtld_dirname(const char *, char *);
127static int rtld_dirname_abs(const char *, char *);
128static void *rtld_dlopen(const char *name, int fd, int mode);
129static void rtld_exit(void);
130static char *search_library_path(const char *, const char *);
131static const void **get_program_var_addr(const char *, RtldLockState *);
132static void set_program_var(const char *, const void *);
133static int symlook_default(SymLook *, const Obj_Entry *refobj);
134static int symlook_global(SymLook *, DoneList *);
135static void symlook_init_from_req(SymLook *, const SymLook *);
136static int symlook_list(SymLook *, const Objlist *, DoneList *);
137static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
138static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
139static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
140static void trace_loaded_objects(Obj_Entry *);
141static void unlink_object(Obj_Entry *);
142static void unload_object(Obj_Entry *);
143static void unref_dag(Obj_Entry *);
144static void ref_dag(Obj_Entry *);
145static char *origin_subst_one(Obj_Entry *, char *, const char *,
146    const char *, bool);
147static char *origin_subst(Obj_Entry *, char *);
148static bool obj_resolve_origin(Obj_Entry *obj);
149static void preinit_main(void);
150static int  rtld_verify_versions(const Objlist *);
151static int  rtld_verify_object_versions(Obj_Entry *);
152static void object_add_name(Obj_Entry *, const char *);
153static int  object_match_name(const Obj_Entry *, const char *);
154static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
155static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
156    struct dl_phdr_info *phdr_info);
157static uint32_t gnu_hash(const char *);
158static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
159    const unsigned long);
160
161void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
162void _r_debug_postinit(struct link_map *) __noinline __exported;
163
164/*
165 * Data declarations.
166 */
167static char *error_message;	/* Message for dlerror(), or NULL */
168struct r_debug r_debug __exported;	/* for GDB; */
169static bool libmap_disable;	/* Disable libmap */
170static bool ld_loadfltr;	/* Immediate filters processing */
171static char *libmap_override;	/* Maps to use in addition to libmap.conf */
172static bool trust;		/* False for setuid and setgid programs */
173static bool dangerous_ld_env;	/* True if environment variables have been
174				   used to affect the libraries loaded */
175static char *ld_bind_now;	/* Environment variable for immediate binding */
176static char *ld_debug;		/* Environment variable for debugging */
177static char *ld_library_path;	/* Environment variable for search path */
178static char *ld_preload;	/* Environment variable for libraries to
179				   load first */
180static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
181static char *ld_tracing;	/* Called from ldd to print libs */
182static char *ld_utrace;		/* Use utrace() to log events. */
183static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
184static Obj_Entry *obj_main;	/* The main program shared object */
185static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
186static unsigned int obj_count;	/* Number of objects in obj_list */
187static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
188
189static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
190  STAILQ_HEAD_INITIALIZER(list_global);
191static Objlist list_main =	/* Objects loaded at program startup */
192  STAILQ_HEAD_INITIALIZER(list_main);
193static Objlist list_fini =	/* Objects needing fini() calls */
194  STAILQ_HEAD_INITIALIZER(list_fini);
195
196Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
197
198#define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
199
200extern Elf_Dyn _DYNAMIC;
201#pragma weak _DYNAMIC
202#ifndef RTLD_IS_DYNAMIC
203#define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
204#endif
205
206int dlclose(void *) __exported;
207char *dlerror(void) __exported;
208void *dlopen(const char *, int) __exported;
209void *fdlopen(int, int) __exported;
210void *dlsym(void *, const char *) __exported;
211dlfunc_t dlfunc(void *, const char *) __exported;
212void *dlvsym(void *, const char *, const char *) __exported;
213int dladdr(const void *, Dl_info *) __exported;
214void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
215    void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
216int dlinfo(void *, int , void *) __exported;
217int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
218int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
219int _rtld_get_stack_prot(void) __exported;
220int _rtld_is_dlopened(void *) __exported;
221void _rtld_error(const char *, ...) __exported;
222
223int npagesizes, osreldate;
224size_t *pagesizes;
225
226long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
227
228static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
229static int max_stack_flags;
230
231/*
232 * Global declarations normally provided by crt1.  The dynamic linker is
233 * not built with crt1, so we have to provide them ourselves.
234 */
235char *__progname;
236char **environ;
237
238/*
239 * Used to pass argc, argv to init functions.
240 */
241int main_argc;
242char **main_argv;
243
244/*
245 * Globals to control TLS allocation.
246 */
247size_t tls_last_offset;		/* Static TLS offset of last module */
248size_t tls_last_size;		/* Static TLS size of last module */
249size_t tls_static_space;	/* Static TLS space allocated */
250size_t tls_static_max_align;
251int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
252int tls_max_index = 1;		/* Largest module index allocated */
253
254bool ld_library_path_rpath = false;
255
256/*
257 * Fill in a DoneList with an allocation large enough to hold all of
258 * the currently-loaded objects.  Keep this as a macro since it calls
259 * alloca and we want that to occur within the scope of the caller.
260 */
261#define donelist_init(dlp)					\
262    ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
263    assert((dlp)->objs != NULL),				\
264    (dlp)->num_alloc = obj_count,				\
265    (dlp)->num_used = 0)
266
267#define	UTRACE_DLOPEN_START		1
268#define	UTRACE_DLOPEN_STOP		2
269#define	UTRACE_DLCLOSE_START		3
270#define	UTRACE_DLCLOSE_STOP		4
271#define	UTRACE_LOAD_OBJECT		5
272#define	UTRACE_UNLOAD_OBJECT		6
273#define	UTRACE_ADD_RUNDEP		7
274#define	UTRACE_PRELOAD_FINISHED		8
275#define	UTRACE_INIT_CALL		9
276#define	UTRACE_FINI_CALL		10
277#define	UTRACE_DLSYM_START		11
278#define	UTRACE_DLSYM_STOP		12
279
280struct utrace_rtld {
281	char sig[4];			/* 'RTLD' */
282	int event;
283	void *handle;
284	void *mapbase;			/* Used for 'parent' and 'init/fini' */
285	size_t mapsize;
286	int refcnt;			/* Used for 'mode' */
287	char name[MAXPATHLEN];
288};
289
290#define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
291	if (ld_utrace != NULL)					\
292		ld_utrace_log(e, h, mb, ms, r, n);		\
293} while (0)
294
295static void
296ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
297    int refcnt, const char *name)
298{
299	struct utrace_rtld ut;
300
301	ut.sig[0] = 'R';
302	ut.sig[1] = 'T';
303	ut.sig[2] = 'L';
304	ut.sig[3] = 'D';
305	ut.event = event;
306	ut.handle = handle;
307	ut.mapbase = mapbase;
308	ut.mapsize = mapsize;
309	ut.refcnt = refcnt;
310	bzero(ut.name, sizeof(ut.name));
311	if (name)
312		strlcpy(ut.name, name, sizeof(ut.name));
313	utrace(&ut, sizeof(ut));
314}
315
316/*
317 * Main entry point for dynamic linking.  The first argument is the
318 * stack pointer.  The stack is expected to be laid out as described
319 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
320 * Specifically, the stack pointer points to a word containing
321 * ARGC.  Following that in the stack is a null-terminated sequence
322 * of pointers to argument strings.  Then comes a null-terminated
323 * sequence of pointers to environment strings.  Finally, there is a
324 * sequence of "auxiliary vector" entries.
325 *
326 * The second argument points to a place to store the dynamic linker's
327 * exit procedure pointer and the third to a place to store the main
328 * program's object.
329 *
330 * The return value is the main program's entry point.
331 */
332func_ptr_type
333_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
334{
335    Elf_Auxinfo *aux_info[AT_COUNT];
336    int i;
337    int argc;
338    char **argv;
339    char **env;
340    Elf_Auxinfo *aux;
341    Elf_Auxinfo *auxp;
342    const char *argv0;
343    Objlist_Entry *entry;
344    Obj_Entry *obj;
345    Obj_Entry *preload_tail;
346    Obj_Entry *last_interposer;
347    Objlist initlist;
348    RtldLockState lockstate;
349    char *library_path_rpath;
350    int mib[2];
351    size_t len;
352
353    /*
354     * On entry, the dynamic linker itself has not been relocated yet.
355     * Be very careful not to reference any global data until after
356     * init_rtld has returned.  It is OK to reference file-scope statics
357     * and string constants, and to call static and global functions.
358     */
359
360    /* Find the auxiliary vector on the stack. */
361    argc = *sp++;
362    argv = (char **) sp;
363    sp += argc + 1;	/* Skip over arguments and NULL terminator */
364    env = (char **) sp;
365    while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
366	;
367    aux = (Elf_Auxinfo *) sp;
368
369    /* Digest the auxiliary vector. */
370    for (i = 0;  i < AT_COUNT;  i++)
371	aux_info[i] = NULL;
372    for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
373	if (auxp->a_type < AT_COUNT)
374	    aux_info[auxp->a_type] = auxp;
375    }
376
377    /* Initialize and relocate ourselves. */
378    assert(aux_info[AT_BASE] != NULL);
379    init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
380
381    __progname = obj_rtld.path;
382    argv0 = argv[0] != NULL ? argv[0] : "(null)";
383    environ = env;
384    main_argc = argc;
385    main_argv = argv;
386
387    if (aux_info[AT_CANARY] != NULL &&
388	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
389	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
390	    if (i > sizeof(__stack_chk_guard))
391		    i = sizeof(__stack_chk_guard);
392	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
393    } else {
394	mib[0] = CTL_KERN;
395	mib[1] = KERN_ARND;
396
397	len = sizeof(__stack_chk_guard);
398	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
399	    len != sizeof(__stack_chk_guard)) {
400		/* If sysctl was unsuccessful, use the "terminator canary". */
401		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
402		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
403		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
404		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
405	}
406    }
407
408    trust = !issetugid();
409
410    ld_bind_now = getenv(LD_ "BIND_NOW");
411    /*
412     * If the process is tainted, then we un-set the dangerous environment
413     * variables.  The process will be marked as tainted until setuid(2)
414     * is called.  If any child process calls setuid(2) we do not want any
415     * future processes to honor the potentially un-safe variables.
416     */
417    if (!trust) {
418        if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
419	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
420	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
421	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
422		_rtld_error("environment corrupt; aborting");
423		rtld_die();
424	}
425    }
426    ld_debug = getenv(LD_ "DEBUG");
427    libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
428    libmap_override = getenv(LD_ "LIBMAP");
429    ld_library_path = getenv(LD_ "LIBRARY_PATH");
430    ld_preload = getenv(LD_ "PRELOAD");
431    ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
432    ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
433    library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
434    if (library_path_rpath != NULL) {
435	    if (library_path_rpath[0] == 'y' ||
436		library_path_rpath[0] == 'Y' ||
437		library_path_rpath[0] == '1')
438		    ld_library_path_rpath = true;
439	    else
440		    ld_library_path_rpath = false;
441    }
442    dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
443	(ld_library_path != NULL) || (ld_preload != NULL) ||
444	(ld_elf_hints_path != NULL) || ld_loadfltr;
445    ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
446    ld_utrace = getenv(LD_ "UTRACE");
447
448    if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
449	ld_elf_hints_path = _PATH_ELF_HINTS;
450
451    if (ld_debug != NULL && *ld_debug != '\0')
452	debug = 1;
453    dbg("%s is initialized, base address = %p", __progname,
454	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
455    dbg("RTLD dynamic = %p", obj_rtld.dynamic);
456    dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
457
458    dbg("initializing thread locks");
459    lockdflt_init();
460
461    /*
462     * Load the main program, or process its program header if it is
463     * already loaded.
464     */
465    if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
466	int fd = aux_info[AT_EXECFD]->a_un.a_val;
467	dbg("loading main program");
468	obj_main = map_object(fd, argv0, NULL);
469	close(fd);
470	if (obj_main == NULL)
471	    rtld_die();
472	max_stack_flags = obj->stack_flags;
473    } else {				/* Main program already loaded. */
474	const Elf_Phdr *phdr;
475	int phnum;
476	caddr_t entry;
477
478	dbg("processing main program's program header");
479	assert(aux_info[AT_PHDR] != NULL);
480	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
481	assert(aux_info[AT_PHNUM] != NULL);
482	phnum = aux_info[AT_PHNUM]->a_un.a_val;
483	assert(aux_info[AT_PHENT] != NULL);
484	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
485	assert(aux_info[AT_ENTRY] != NULL);
486	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
487	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
488	    rtld_die();
489    }
490
491    if (aux_info[AT_EXECPATH] != 0) {
492	    char *kexecpath;
493	    char buf[MAXPATHLEN];
494
495	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
496	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
497	    if (kexecpath[0] == '/')
498		    obj_main->path = kexecpath;
499	    else if (getcwd(buf, sizeof(buf)) == NULL ||
500		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
501		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
502		    obj_main->path = xstrdup(argv0);
503	    else
504		    obj_main->path = xstrdup(buf);
505    } else {
506	    dbg("No AT_EXECPATH");
507	    obj_main->path = xstrdup(argv0);
508    }
509    dbg("obj_main path %s", obj_main->path);
510    obj_main->mainprog = true;
511
512    if (aux_info[AT_STACKPROT] != NULL &&
513      aux_info[AT_STACKPROT]->a_un.a_val != 0)
514	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
515
516#ifndef COMPAT_32BIT
517    /*
518     * Get the actual dynamic linker pathname from the executable if
519     * possible.  (It should always be possible.)  That ensures that
520     * gdb will find the right dynamic linker even if a non-standard
521     * one is being used.
522     */
523    if (obj_main->interp != NULL &&
524      strcmp(obj_main->interp, obj_rtld.path) != 0) {
525	free(obj_rtld.path);
526	obj_rtld.path = xstrdup(obj_main->interp);
527        __progname = obj_rtld.path;
528    }
529#endif
530
531    digest_dynamic(obj_main, 0);
532    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
533	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
534	obj_main->dynsymcount);
535
536    linkmap_add(obj_main);
537    linkmap_add(&obj_rtld);
538
539    /* Link the main program into the list of objects. */
540    TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
541    obj_count++;
542    obj_loads++;
543
544    /* Initialize a fake symbol for resolving undefined weak references. */
545    sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
546    sym_zero.st_shndx = SHN_UNDEF;
547    sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
548
549    if (!libmap_disable)
550        libmap_disable = (bool)lm_init(libmap_override);
551
552    dbg("loading LD_PRELOAD libraries");
553    if (load_preload_objects() == -1)
554	rtld_die();
555    preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
556
557    dbg("loading needed objects");
558    if (load_needed_objects(obj_main, 0) == -1)
559	rtld_die();
560
561    /* Make a list of all objects loaded at startup. */
562    last_interposer = obj_main;
563    TAILQ_FOREACH(obj, &obj_list, next) {
564	if (obj->marker)
565	    continue;
566	if (obj->z_interpose && obj != obj_main) {
567	    objlist_put_after(&list_main, last_interposer, obj);
568	    last_interposer = obj;
569	} else {
570	    objlist_push_tail(&list_main, obj);
571	}
572    	obj->refcount++;
573    }
574
575    dbg("checking for required versions");
576    if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
577	rtld_die();
578
579    if (ld_tracing) {		/* We're done */
580	trace_loaded_objects(obj_main);
581	exit(0);
582    }
583
584    if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
585       dump_relocations(obj_main);
586       exit (0);
587    }
588
589    /*
590     * Processing tls relocations requires having the tls offsets
591     * initialized.  Prepare offsets before starting initial
592     * relocation processing.
593     */
594    dbg("initializing initial thread local storage offsets");
595    STAILQ_FOREACH(entry, &list_main, link) {
596	/*
597	 * Allocate all the initial objects out of the static TLS
598	 * block even if they didn't ask for it.
599	 */
600	allocate_tls_offset(entry->obj);
601    }
602
603    if (relocate_objects(obj_main,
604      ld_bind_now != NULL && *ld_bind_now != '\0',
605      &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
606	rtld_die();
607
608    dbg("doing copy relocations");
609    if (do_copy_relocations(obj_main) == -1)
610	rtld_die();
611
612    if (getenv(LD_ "DUMP_REL_POST") != NULL) {
613       dump_relocations(obj_main);
614       exit (0);
615    }
616
617    /*
618     * Setup TLS for main thread.  This must be done after the
619     * relocations are processed, since tls initialization section
620     * might be the subject for relocations.
621     */
622    dbg("initializing initial thread local storage");
623    allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
624
625    dbg("initializing key program variables");
626    set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
627    set_program_var("environ", env);
628    set_program_var("__elf_aux_vector", aux);
629
630    /* Make a list of init functions to call. */
631    objlist_init(&initlist);
632    initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
633      preload_tail, &initlist);
634
635    r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
636
637    map_stacks_exec(NULL);
638
639    dbg("resolving ifuncs");
640    if (resolve_objects_ifunc(obj_main,
641      ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
642      NULL) == -1)
643	rtld_die();
644
645    if (!obj_main->crt_no_init) {
646	/*
647	 * Make sure we don't call the main program's init and fini
648	 * functions for binaries linked with old crt1 which calls
649	 * _init itself.
650	 */
651	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
652	obj_main->preinit_array = obj_main->init_array =
653	    obj_main->fini_array = (Elf_Addr)NULL;
654    }
655
656    wlock_acquire(rtld_bind_lock, &lockstate);
657    if (obj_main->crt_no_init)
658	preinit_main();
659    objlist_call_init(&initlist, &lockstate);
660    _r_debug_postinit(&obj_main->linkmap);
661    objlist_clear(&initlist);
662    dbg("loading filtees");
663    TAILQ_FOREACH(obj, &obj_list, next) {
664	if (obj->marker)
665	    continue;
666	if (ld_loadfltr || obj->z_loadfltr)
667	    load_filtees(obj, 0, &lockstate);
668    }
669    lock_release(rtld_bind_lock, &lockstate);
670
671    dbg("transferring control to program entry point = %p", obj_main->entry);
672
673    /* Return the exit procedure and the program entry point. */
674    *exit_proc = rtld_exit;
675    *objp = obj_main;
676    return (func_ptr_type) obj_main->entry;
677}
678
679void *
680rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
681{
682	void *ptr;
683	Elf_Addr target;
684
685	ptr = (void *)make_function_pointer(def, obj);
686	target = ((Elf_Addr (*)(void))ptr)();
687	return ((void *)target);
688}
689
690Elf_Addr
691_rtld_bind(Obj_Entry *obj, Elf_Size reloff)
692{
693    const Elf_Rel *rel;
694    const Elf_Sym *def;
695    const Obj_Entry *defobj;
696    Elf_Addr *where;
697    Elf_Addr target;
698    RtldLockState lockstate;
699
700    rlock_acquire(rtld_bind_lock, &lockstate);
701    if (sigsetjmp(lockstate.env, 0) != 0)
702	    lock_upgrade(rtld_bind_lock, &lockstate);
703    if (obj->pltrel)
704	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
705    else
706	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
707
708    where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
709    def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
710	&lockstate);
711    if (def == NULL)
712	rtld_die();
713    if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
714	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
715    else
716	target = (Elf_Addr)(defobj->relocbase + def->st_value);
717
718    dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
719      defobj->strtab + def->st_name, basename(obj->path),
720      (void *)target, basename(defobj->path));
721
722    /*
723     * Write the new contents for the jmpslot. Note that depending on
724     * architecture, the value which we need to return back to the
725     * lazy binding trampoline may or may not be the target
726     * address. The value returned from reloc_jmpslot() is the value
727     * that the trampoline needs.
728     */
729    target = reloc_jmpslot(where, target, defobj, obj, rel);
730    lock_release(rtld_bind_lock, &lockstate);
731    return target;
732}
733
734/*
735 * Error reporting function.  Use it like printf.  If formats the message
736 * into a buffer, and sets things up so that the next call to dlerror()
737 * will return the message.
738 */
739void
740_rtld_error(const char *fmt, ...)
741{
742    static char buf[512];
743    va_list ap;
744
745    va_start(ap, fmt);
746    rtld_vsnprintf(buf, sizeof buf, fmt, ap);
747    error_message = buf;
748    va_end(ap);
749}
750
751/*
752 * Return a dynamically-allocated copy of the current error message, if any.
753 */
754static char *
755errmsg_save(void)
756{
757    return error_message == NULL ? NULL : xstrdup(error_message);
758}
759
760/*
761 * Restore the current error message from a copy which was previously saved
762 * by errmsg_save().  The copy is freed.
763 */
764static void
765errmsg_restore(char *saved_msg)
766{
767    if (saved_msg == NULL)
768	error_message = NULL;
769    else {
770	_rtld_error("%s", saved_msg);
771	free(saved_msg);
772    }
773}
774
775static const char *
776basename(const char *name)
777{
778    const char *p = strrchr(name, '/');
779    return p != NULL ? p + 1 : name;
780}
781
782static struct utsname uts;
783
784static char *
785origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
786    const char *subst, bool may_free)
787{
788	char *p, *p1, *res, *resp;
789	int subst_len, kw_len, subst_count, old_len, new_len;
790
791	kw_len = strlen(kw);
792
793	/*
794	 * First, count the number of the keyword occurences, to
795	 * preallocate the final string.
796	 */
797	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
798		p1 = strstr(p, kw);
799		if (p1 == NULL)
800			break;
801	}
802
803	/*
804	 * If the keyword is not found, just return.
805	 *
806	 * Return non-substituted string if resolution failed.  We
807	 * cannot do anything more reasonable, the failure mode of the
808	 * caller is unresolved library anyway.
809	 */
810	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
811		return (may_free ? real : xstrdup(real));
812	if (obj != NULL)
813		subst = obj->origin_path;
814
815	/*
816	 * There is indeed something to substitute.  Calculate the
817	 * length of the resulting string, and allocate it.
818	 */
819	subst_len = strlen(subst);
820	old_len = strlen(real);
821	new_len = old_len + (subst_len - kw_len) * subst_count;
822	res = xmalloc(new_len + 1);
823
824	/*
825	 * Now, execute the substitution loop.
826	 */
827	for (p = real, resp = res, *resp = '\0';;) {
828		p1 = strstr(p, kw);
829		if (p1 != NULL) {
830			/* Copy the prefix before keyword. */
831			memcpy(resp, p, p1 - p);
832			resp += p1 - p;
833			/* Keyword replacement. */
834			memcpy(resp, subst, subst_len);
835			resp += subst_len;
836			*resp = '\0';
837			p = p1 + kw_len;
838		} else
839			break;
840	}
841
842	/* Copy to the end of string and finish. */
843	strcat(resp, p);
844	if (may_free)
845		free(real);
846	return (res);
847}
848
849static char *
850origin_subst(Obj_Entry *obj, char *real)
851{
852	char *res1, *res2, *res3, *res4;
853
854	if (obj == NULL || !trust)
855		return (xstrdup(real));
856	if (uts.sysname[0] == '\0') {
857		if (uname(&uts) != 0) {
858			_rtld_error("utsname failed: %d", errno);
859			return (NULL);
860		}
861	}
862	res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false);
863	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
864	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
865	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
866	return (res4);
867}
868
869void
870rtld_die(void)
871{
872    const char *msg = dlerror();
873
874    if (msg == NULL)
875	msg = "Fatal error";
876    rtld_fdputstr(STDERR_FILENO, msg);
877    rtld_fdputchar(STDERR_FILENO, '\n');
878    _exit(1);
879}
880
881/*
882 * Process a shared object's DYNAMIC section, and save the important
883 * information in its Obj_Entry structure.
884 */
885static void
886digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
887    const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
888{
889    const Elf_Dyn *dynp;
890    Needed_Entry **needed_tail = &obj->needed;
891    Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
892    Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
893    const Elf_Hashelt *hashtab;
894    const Elf32_Word *hashval;
895    Elf32_Word bkt, nmaskwords;
896    int bloom_size32;
897    int plttype = DT_REL;
898
899    *dyn_rpath = NULL;
900    *dyn_soname = NULL;
901    *dyn_runpath = NULL;
902
903    obj->bind_now = false;
904    for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
905	switch (dynp->d_tag) {
906
907	case DT_REL:
908	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
909	    break;
910
911	case DT_RELSZ:
912	    obj->relsize = dynp->d_un.d_val;
913	    break;
914
915	case DT_RELENT:
916	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
917	    break;
918
919	case DT_JMPREL:
920	    obj->pltrel = (const Elf_Rel *)
921	      (obj->relocbase + dynp->d_un.d_ptr);
922	    break;
923
924	case DT_PLTRELSZ:
925	    obj->pltrelsize = dynp->d_un.d_val;
926	    break;
927
928	case DT_RELA:
929	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
930	    break;
931
932	case DT_RELASZ:
933	    obj->relasize = dynp->d_un.d_val;
934	    break;
935
936	case DT_RELAENT:
937	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
938	    break;
939
940	case DT_PLTREL:
941	    plttype = dynp->d_un.d_val;
942	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
943	    break;
944
945	case DT_SYMTAB:
946	    obj->symtab = (const Elf_Sym *)
947	      (obj->relocbase + dynp->d_un.d_ptr);
948	    break;
949
950	case DT_SYMENT:
951	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
952	    break;
953
954	case DT_STRTAB:
955	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
956	    break;
957
958	case DT_STRSZ:
959	    obj->strsize = dynp->d_un.d_val;
960	    break;
961
962	case DT_VERNEED:
963	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
964		dynp->d_un.d_val);
965	    break;
966
967	case DT_VERNEEDNUM:
968	    obj->verneednum = dynp->d_un.d_val;
969	    break;
970
971	case DT_VERDEF:
972	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
973		dynp->d_un.d_val);
974	    break;
975
976	case DT_VERDEFNUM:
977	    obj->verdefnum = dynp->d_un.d_val;
978	    break;
979
980	case DT_VERSYM:
981	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
982		dynp->d_un.d_val);
983	    break;
984
985	case DT_HASH:
986	    {
987		hashtab = (const Elf_Hashelt *)(obj->relocbase +
988		    dynp->d_un.d_ptr);
989		obj->nbuckets = hashtab[0];
990		obj->nchains = hashtab[1];
991		obj->buckets = hashtab + 2;
992		obj->chains = obj->buckets + obj->nbuckets;
993		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
994		  obj->buckets != NULL;
995	    }
996	    break;
997
998	case DT_GNU_HASH:
999	    {
1000		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1001		    dynp->d_un.d_ptr);
1002		obj->nbuckets_gnu = hashtab[0];
1003		obj->symndx_gnu = hashtab[1];
1004		nmaskwords = hashtab[2];
1005		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1006		obj->maskwords_bm_gnu = nmaskwords - 1;
1007		obj->shift2_gnu = hashtab[3];
1008		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1009		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1010		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1011		  obj->symndx_gnu;
1012		/* Number of bitmask words is required to be power of 2 */
1013		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1014		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1015	    }
1016	    break;
1017
1018	case DT_NEEDED:
1019	    if (!obj->rtld) {
1020		Needed_Entry *nep = NEW(Needed_Entry);
1021		nep->name = dynp->d_un.d_val;
1022		nep->obj = NULL;
1023		nep->next = NULL;
1024
1025		*needed_tail = nep;
1026		needed_tail = &nep->next;
1027	    }
1028	    break;
1029
1030	case DT_FILTER:
1031	    if (!obj->rtld) {
1032		Needed_Entry *nep = NEW(Needed_Entry);
1033		nep->name = dynp->d_un.d_val;
1034		nep->obj = NULL;
1035		nep->next = NULL;
1036
1037		*needed_filtees_tail = nep;
1038		needed_filtees_tail = &nep->next;
1039	    }
1040	    break;
1041
1042	case DT_AUXILIARY:
1043	    if (!obj->rtld) {
1044		Needed_Entry *nep = NEW(Needed_Entry);
1045		nep->name = dynp->d_un.d_val;
1046		nep->obj = NULL;
1047		nep->next = NULL;
1048
1049		*needed_aux_filtees_tail = nep;
1050		needed_aux_filtees_tail = &nep->next;
1051	    }
1052	    break;
1053
1054	case DT_PLTGOT:
1055	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1056	    break;
1057
1058	case DT_TEXTREL:
1059	    obj->textrel = true;
1060	    break;
1061
1062	case DT_SYMBOLIC:
1063	    obj->symbolic = true;
1064	    break;
1065
1066	case DT_RPATH:
1067	    /*
1068	     * We have to wait until later to process this, because we
1069	     * might not have gotten the address of the string table yet.
1070	     */
1071	    *dyn_rpath = dynp;
1072	    break;
1073
1074	case DT_SONAME:
1075	    *dyn_soname = dynp;
1076	    break;
1077
1078	case DT_RUNPATH:
1079	    *dyn_runpath = dynp;
1080	    break;
1081
1082	case DT_INIT:
1083	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1084	    break;
1085
1086	case DT_PREINIT_ARRAY:
1087	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1088	    break;
1089
1090	case DT_PREINIT_ARRAYSZ:
1091	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1092	    break;
1093
1094	case DT_INIT_ARRAY:
1095	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1096	    break;
1097
1098	case DT_INIT_ARRAYSZ:
1099	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1100	    break;
1101
1102	case DT_FINI:
1103	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1104	    break;
1105
1106	case DT_FINI_ARRAY:
1107	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1108	    break;
1109
1110	case DT_FINI_ARRAYSZ:
1111	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1112	    break;
1113
1114	/*
1115	 * Don't process DT_DEBUG on MIPS as the dynamic section
1116	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1117	 */
1118
1119#ifndef __mips__
1120	case DT_DEBUG:
1121	    if (!early)
1122		dbg("Filling in DT_DEBUG entry");
1123	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1124	    break;
1125#endif
1126
1127	case DT_FLAGS:
1128		if (dynp->d_un.d_val & DF_ORIGIN)
1129		    obj->z_origin = true;
1130		if (dynp->d_un.d_val & DF_SYMBOLIC)
1131		    obj->symbolic = true;
1132		if (dynp->d_un.d_val & DF_TEXTREL)
1133		    obj->textrel = true;
1134		if (dynp->d_un.d_val & DF_BIND_NOW)
1135		    obj->bind_now = true;
1136		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1137		    ;*/
1138	    break;
1139#ifdef __mips__
1140	case DT_MIPS_LOCAL_GOTNO:
1141		obj->local_gotno = dynp->d_un.d_val;
1142	    break;
1143
1144	case DT_MIPS_SYMTABNO:
1145		obj->symtabno = dynp->d_un.d_val;
1146		break;
1147
1148	case DT_MIPS_GOTSYM:
1149		obj->gotsym = dynp->d_un.d_val;
1150		break;
1151
1152	case DT_MIPS_RLD_MAP:
1153		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1154		break;
1155#endif
1156
1157	case DT_FLAGS_1:
1158		if (dynp->d_un.d_val & DF_1_NOOPEN)
1159		    obj->z_noopen = true;
1160		if (dynp->d_un.d_val & DF_1_ORIGIN)
1161		    obj->z_origin = true;
1162		if (dynp->d_un.d_val & DF_1_GLOBAL)
1163		    obj->z_global = true;
1164		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1165		    obj->bind_now = true;
1166		if (dynp->d_un.d_val & DF_1_NODELETE)
1167		    obj->z_nodelete = true;
1168		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1169		    obj->z_loadfltr = true;
1170		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1171		    obj->z_interpose = true;
1172		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1173		    obj->z_nodeflib = true;
1174	    break;
1175
1176	default:
1177	    if (!early) {
1178		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1179		    (long)dynp->d_tag);
1180	    }
1181	    break;
1182	}
1183    }
1184
1185    obj->traced = false;
1186
1187    if (plttype == DT_RELA) {
1188	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1189	obj->pltrel = NULL;
1190	obj->pltrelasize = obj->pltrelsize;
1191	obj->pltrelsize = 0;
1192    }
1193
1194    /* Determine size of dynsym table (equal to nchains of sysv hash) */
1195    if (obj->valid_hash_sysv)
1196	obj->dynsymcount = obj->nchains;
1197    else if (obj->valid_hash_gnu) {
1198	obj->dynsymcount = 0;
1199	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1200	    if (obj->buckets_gnu[bkt] == 0)
1201		continue;
1202	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1203	    do
1204		obj->dynsymcount++;
1205	    while ((*hashval++ & 1u) == 0);
1206	}
1207	obj->dynsymcount += obj->symndx_gnu;
1208    }
1209}
1210
1211static bool
1212obj_resolve_origin(Obj_Entry *obj)
1213{
1214
1215	if (obj->origin_path != NULL)
1216		return (true);
1217	obj->origin_path = xmalloc(PATH_MAX);
1218	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1219}
1220
1221static void
1222digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1223    const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1224{
1225
1226	if (obj->z_origin && !obj_resolve_origin(obj))
1227		rtld_die();
1228
1229	if (dyn_runpath != NULL) {
1230		obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1231		obj->runpath = origin_subst(obj, obj->runpath);
1232	} else if (dyn_rpath != NULL) {
1233		obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1234		obj->rpath = origin_subst(obj, obj->rpath);
1235	}
1236	if (dyn_soname != NULL)
1237		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1238}
1239
1240static void
1241digest_dynamic(Obj_Entry *obj, int early)
1242{
1243	const Elf_Dyn *dyn_rpath;
1244	const Elf_Dyn *dyn_soname;
1245	const Elf_Dyn *dyn_runpath;
1246
1247	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1248	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1249}
1250
1251/*
1252 * Process a shared object's program header.  This is used only for the
1253 * main program, when the kernel has already loaded the main program
1254 * into memory before calling the dynamic linker.  It creates and
1255 * returns an Obj_Entry structure.
1256 */
1257static Obj_Entry *
1258digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1259{
1260    Obj_Entry *obj;
1261    const Elf_Phdr *phlimit = phdr + phnum;
1262    const Elf_Phdr *ph;
1263    Elf_Addr note_start, note_end;
1264    int nsegs = 0;
1265
1266    obj = obj_new();
1267    for (ph = phdr;  ph < phlimit;  ph++) {
1268	if (ph->p_type != PT_PHDR)
1269	    continue;
1270
1271	obj->phdr = phdr;
1272	obj->phsize = ph->p_memsz;
1273	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1274	break;
1275    }
1276
1277    obj->stack_flags = PF_X | PF_R | PF_W;
1278
1279    for (ph = phdr;  ph < phlimit;  ph++) {
1280	switch (ph->p_type) {
1281
1282	case PT_INTERP:
1283	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1284	    break;
1285
1286	case PT_LOAD:
1287	    if (nsegs == 0) {	/* First load segment */
1288		obj->vaddrbase = trunc_page(ph->p_vaddr);
1289		obj->mapbase = obj->vaddrbase + obj->relocbase;
1290		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1291		  obj->vaddrbase;
1292	    } else {		/* Last load segment */
1293		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1294		  obj->vaddrbase;
1295	    }
1296	    nsegs++;
1297	    break;
1298
1299	case PT_DYNAMIC:
1300	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1301	    break;
1302
1303	case PT_TLS:
1304	    obj->tlsindex = 1;
1305	    obj->tlssize = ph->p_memsz;
1306	    obj->tlsalign = ph->p_align;
1307	    obj->tlsinitsize = ph->p_filesz;
1308	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1309	    break;
1310
1311	case PT_GNU_STACK:
1312	    obj->stack_flags = ph->p_flags;
1313	    break;
1314
1315	case PT_GNU_RELRO:
1316	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1317	    obj->relro_size = round_page(ph->p_memsz);
1318	    break;
1319
1320	case PT_NOTE:
1321	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1322	    note_end = note_start + ph->p_filesz;
1323	    digest_notes(obj, note_start, note_end);
1324	    break;
1325	}
1326    }
1327    if (nsegs < 1) {
1328	_rtld_error("%s: too few PT_LOAD segments", path);
1329	return NULL;
1330    }
1331
1332    obj->entry = entry;
1333    return obj;
1334}
1335
1336void
1337digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1338{
1339	const Elf_Note *note;
1340	const char *note_name;
1341	uintptr_t p;
1342
1343	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1344	    note = (const Elf_Note *)((const char *)(note + 1) +
1345	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1346	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1347		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1348		    note->n_descsz != sizeof(int32_t))
1349			continue;
1350		if (note->n_type != ABI_NOTETYPE &&
1351		    note->n_type != CRT_NOINIT_NOTETYPE)
1352			continue;
1353		note_name = (const char *)(note + 1);
1354		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1355		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1356			continue;
1357		switch (note->n_type) {
1358		case ABI_NOTETYPE:
1359			/* FreeBSD osrel note */
1360			p = (uintptr_t)(note + 1);
1361			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1362			obj->osrel = *(const int32_t *)(p);
1363			dbg("note osrel %d", obj->osrel);
1364			break;
1365		case CRT_NOINIT_NOTETYPE:
1366			/* FreeBSD 'crt does not call init' note */
1367			obj->crt_no_init = true;
1368			dbg("note crt_no_init");
1369			break;
1370		}
1371	}
1372}
1373
1374static Obj_Entry *
1375dlcheck(void *handle)
1376{
1377    Obj_Entry *obj;
1378
1379    TAILQ_FOREACH(obj, &obj_list, next) {
1380	if (obj == (Obj_Entry *) handle)
1381	    break;
1382    }
1383
1384    if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1385	_rtld_error("Invalid shared object handle %p", handle);
1386	return NULL;
1387    }
1388    return obj;
1389}
1390
1391/*
1392 * If the given object is already in the donelist, return true.  Otherwise
1393 * add the object to the list and return false.
1394 */
1395static bool
1396donelist_check(DoneList *dlp, const Obj_Entry *obj)
1397{
1398    unsigned int i;
1399
1400    for (i = 0;  i < dlp->num_used;  i++)
1401	if (dlp->objs[i] == obj)
1402	    return true;
1403    /*
1404     * Our donelist allocation should always be sufficient.  But if
1405     * our threads locking isn't working properly, more shared objects
1406     * could have been loaded since we allocated the list.  That should
1407     * never happen, but we'll handle it properly just in case it does.
1408     */
1409    if (dlp->num_used < dlp->num_alloc)
1410	dlp->objs[dlp->num_used++] = obj;
1411    return false;
1412}
1413
1414/*
1415 * Hash function for symbol table lookup.  Don't even think about changing
1416 * this.  It is specified by the System V ABI.
1417 */
1418unsigned long
1419elf_hash(const char *name)
1420{
1421    const unsigned char *p = (const unsigned char *) name;
1422    unsigned long h = 0;
1423    unsigned long g;
1424
1425    while (*p != '\0') {
1426	h = (h << 4) + *p++;
1427	if ((g = h & 0xf0000000) != 0)
1428	    h ^= g >> 24;
1429	h &= ~g;
1430    }
1431    return h;
1432}
1433
1434/*
1435 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1436 * unsigned in case it's implemented with a wider type.
1437 */
1438static uint32_t
1439gnu_hash(const char *s)
1440{
1441	uint32_t h;
1442	unsigned char c;
1443
1444	h = 5381;
1445	for (c = *s; c != '\0'; c = *++s)
1446		h = h * 33 + c;
1447	return (h & 0xffffffff);
1448}
1449
1450/*
1451 * Find the library with the given name, and return its full pathname.
1452 * The returned string is dynamically allocated.  Generates an error
1453 * message and returns NULL if the library cannot be found.
1454 *
1455 * If the second argument is non-NULL, then it refers to an already-
1456 * loaded shared object, whose library search path will be searched.
1457 *
1458 * The search order is:
1459 *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1460 *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1461 *   LD_LIBRARY_PATH
1462 *   DT_RUNPATH in the referencing file
1463 *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1464 *	 from list)
1465 *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1466 *
1467 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1468 */
1469static char *
1470find_library(const char *xname, const Obj_Entry *refobj)
1471{
1472    char *pathname;
1473    char *name;
1474    bool nodeflib, objgiven;
1475
1476    objgiven = refobj != NULL;
1477    if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1478	if (xname[0] != '/' && !trust) {
1479	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1480	      xname);
1481	    return NULL;
1482	}
1483	return (origin_subst(__DECONST(Obj_Entry *, refobj),
1484	  __DECONST(char *, xname)));
1485    }
1486
1487    if (libmap_disable || !objgiven ||
1488	(name = lm_find(refobj->path, xname)) == NULL)
1489	name = (char *)xname;
1490
1491    dbg(" Searching for \"%s\"", name);
1492
1493    /*
1494     * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1495     * back to pre-conforming behaviour if user requested so with
1496     * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1497     * nodeflib.
1498     */
1499    if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1500	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1501	  (refobj != NULL &&
1502	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1503          (pathname = search_library_path(name, gethints(false))) != NULL ||
1504	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1505	    return (pathname);
1506    } else {
1507	nodeflib = objgiven ? refobj->z_nodeflib : false;
1508	if ((objgiven &&
1509	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1510	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1511	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1512	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1513	  (objgiven &&
1514	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1515	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1516	  (objgiven && !nodeflib &&
1517	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1518	    return (pathname);
1519    }
1520
1521    if (objgiven && refobj->path != NULL) {
1522	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1523	  name, basename(refobj->path));
1524    } else {
1525	_rtld_error("Shared object \"%s\" not found", name);
1526    }
1527    return NULL;
1528}
1529
1530/*
1531 * Given a symbol number in a referencing object, find the corresponding
1532 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1533 * no definition was found.  Returns a pointer to the Obj_Entry of the
1534 * defining object via the reference parameter DEFOBJ_OUT.
1535 */
1536const Elf_Sym *
1537find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1538    const Obj_Entry **defobj_out, int flags, SymCache *cache,
1539    RtldLockState *lockstate)
1540{
1541    const Elf_Sym *ref;
1542    const Elf_Sym *def;
1543    const Obj_Entry *defobj;
1544    SymLook req;
1545    const char *name;
1546    int res;
1547
1548    /*
1549     * If we have already found this symbol, get the information from
1550     * the cache.
1551     */
1552    if (symnum >= refobj->dynsymcount)
1553	return NULL;	/* Bad object */
1554    if (cache != NULL && cache[symnum].sym != NULL) {
1555	*defobj_out = cache[symnum].obj;
1556	return cache[symnum].sym;
1557    }
1558
1559    ref = refobj->symtab + symnum;
1560    name = refobj->strtab + ref->st_name;
1561    def = NULL;
1562    defobj = NULL;
1563
1564    /*
1565     * We don't have to do a full scale lookup if the symbol is local.
1566     * We know it will bind to the instance in this load module; to
1567     * which we already have a pointer (ie ref). By not doing a lookup,
1568     * we not only improve performance, but it also avoids unresolvable
1569     * symbols when local symbols are not in the hash table. This has
1570     * been seen with the ia64 toolchain.
1571     */
1572    if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1573	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1574	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1575		symnum);
1576	}
1577	symlook_init(&req, name);
1578	req.flags = flags;
1579	req.ventry = fetch_ventry(refobj, symnum);
1580	req.lockstate = lockstate;
1581	res = symlook_default(&req, refobj);
1582	if (res == 0) {
1583	    def = req.sym_out;
1584	    defobj = req.defobj_out;
1585	}
1586    } else {
1587	def = ref;
1588	defobj = refobj;
1589    }
1590
1591    /*
1592     * If we found no definition and the reference is weak, treat the
1593     * symbol as having the value zero.
1594     */
1595    if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1596	def = &sym_zero;
1597	defobj = obj_main;
1598    }
1599
1600    if (def != NULL) {
1601	*defobj_out = defobj;
1602	/* Record the information in the cache to avoid subsequent lookups. */
1603	if (cache != NULL) {
1604	    cache[symnum].sym = def;
1605	    cache[symnum].obj = defobj;
1606	}
1607    } else {
1608	if (refobj != &obj_rtld)
1609	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1610    }
1611    return def;
1612}
1613
1614/*
1615 * Return the search path from the ldconfig hints file, reading it if
1616 * necessary.  If nostdlib is true, then the default search paths are
1617 * not added to result.
1618 *
1619 * Returns NULL if there are problems with the hints file,
1620 * or if the search path there is empty.
1621 */
1622static const char *
1623gethints(bool nostdlib)
1624{
1625	static char *hints, *filtered_path;
1626	struct elfhints_hdr hdr;
1627	struct fill_search_info_args sargs, hargs;
1628	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1629	struct dl_serpath *SLPpath, *hintpath;
1630	char *p;
1631	unsigned int SLPndx, hintndx, fndx, fcount;
1632	int fd;
1633	size_t flen;
1634	bool skip;
1635
1636	/* First call, read the hints file */
1637	if (hints == NULL) {
1638		/* Keep from trying again in case the hints file is bad. */
1639		hints = "";
1640
1641		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1642			return (NULL);
1643		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1644		    hdr.magic != ELFHINTS_MAGIC ||
1645		    hdr.version != 1) {
1646			close(fd);
1647			return (NULL);
1648		}
1649		p = xmalloc(hdr.dirlistlen + 1);
1650		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1651		    read(fd, p, hdr.dirlistlen + 1) !=
1652		    (ssize_t)hdr.dirlistlen + 1) {
1653			free(p);
1654			close(fd);
1655			return (NULL);
1656		}
1657		hints = p;
1658		close(fd);
1659	}
1660
1661	/*
1662	 * If caller agreed to receive list which includes the default
1663	 * paths, we are done. Otherwise, if we still did not
1664	 * calculated filtered result, do it now.
1665	 */
1666	if (!nostdlib)
1667		return (hints[0] != '\0' ? hints : NULL);
1668	if (filtered_path != NULL)
1669		goto filt_ret;
1670
1671	/*
1672	 * Obtain the list of all configured search paths, and the
1673	 * list of the default paths.
1674	 *
1675	 * First estimate the size of the results.
1676	 */
1677	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1678	smeta.dls_cnt = 0;
1679	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1680	hmeta.dls_cnt = 0;
1681
1682	sargs.request = RTLD_DI_SERINFOSIZE;
1683	sargs.serinfo = &smeta;
1684	hargs.request = RTLD_DI_SERINFOSIZE;
1685	hargs.serinfo = &hmeta;
1686
1687	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1688	path_enumerate(p, fill_search_info, &hargs);
1689
1690	SLPinfo = xmalloc(smeta.dls_size);
1691	hintinfo = xmalloc(hmeta.dls_size);
1692
1693	/*
1694	 * Next fetch both sets of paths.
1695	 */
1696	sargs.request = RTLD_DI_SERINFO;
1697	sargs.serinfo = SLPinfo;
1698	sargs.serpath = &SLPinfo->dls_serpath[0];
1699	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1700
1701	hargs.request = RTLD_DI_SERINFO;
1702	hargs.serinfo = hintinfo;
1703	hargs.serpath = &hintinfo->dls_serpath[0];
1704	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1705
1706	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1707	path_enumerate(p, fill_search_info, &hargs);
1708
1709	/*
1710	 * Now calculate the difference between two sets, by excluding
1711	 * standard paths from the full set.
1712	 */
1713	fndx = 0;
1714	fcount = 0;
1715	filtered_path = xmalloc(hdr.dirlistlen + 1);
1716	hintpath = &hintinfo->dls_serpath[0];
1717	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1718		skip = false;
1719		SLPpath = &SLPinfo->dls_serpath[0];
1720		/*
1721		 * Check each standard path against current.
1722		 */
1723		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1724			/* matched, skip the path */
1725			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1726				skip = true;
1727				break;
1728			}
1729		}
1730		if (skip)
1731			continue;
1732		/*
1733		 * Not matched against any standard path, add the path
1734		 * to result. Separate consequtive paths with ':'.
1735		 */
1736		if (fcount > 0) {
1737			filtered_path[fndx] = ':';
1738			fndx++;
1739		}
1740		fcount++;
1741		flen = strlen(hintpath->dls_name);
1742		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1743		fndx += flen;
1744	}
1745	filtered_path[fndx] = '\0';
1746
1747	free(SLPinfo);
1748	free(hintinfo);
1749
1750filt_ret:
1751	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1752}
1753
1754static void
1755init_dag(Obj_Entry *root)
1756{
1757    const Needed_Entry *needed;
1758    const Objlist_Entry *elm;
1759    DoneList donelist;
1760
1761    if (root->dag_inited)
1762	return;
1763    donelist_init(&donelist);
1764
1765    /* Root object belongs to own DAG. */
1766    objlist_push_tail(&root->dldags, root);
1767    objlist_push_tail(&root->dagmembers, root);
1768    donelist_check(&donelist, root);
1769
1770    /*
1771     * Add dependencies of root object to DAG in breadth order
1772     * by exploiting the fact that each new object get added
1773     * to the tail of the dagmembers list.
1774     */
1775    STAILQ_FOREACH(elm, &root->dagmembers, link) {
1776	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1777	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1778		continue;
1779	    objlist_push_tail(&needed->obj->dldags, root);
1780	    objlist_push_tail(&root->dagmembers, needed->obj);
1781	}
1782    }
1783    root->dag_inited = true;
1784}
1785
1786Obj_Entry *
1787globallist_curr(const Obj_Entry *obj)
1788{
1789
1790	for (;;) {
1791		if (obj == NULL)
1792			return (NULL);
1793		if (!obj->marker)
1794			return (__DECONST(Obj_Entry *, obj));
1795		obj = TAILQ_PREV(obj, obj_entry_q, next);
1796	}
1797}
1798
1799Obj_Entry *
1800globallist_next(const Obj_Entry *obj)
1801{
1802
1803	for (;;) {
1804		obj = TAILQ_NEXT(obj, next);
1805		if (obj == NULL)
1806			return (NULL);
1807		if (!obj->marker)
1808			return (__DECONST(Obj_Entry *, obj));
1809	}
1810}
1811
1812static void
1813process_z(Obj_Entry *root)
1814{
1815	const Objlist_Entry *elm;
1816	Obj_Entry *obj;
1817
1818	/*
1819	 * Walk over object DAG and process every dependent object
1820	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
1821	 * to grow their own DAG.
1822	 *
1823	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
1824	 * symlook_global() to work.
1825	 *
1826	 * For DF_1_NODELETE, the DAG should have its reference upped.
1827	 */
1828	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1829		obj = elm->obj;
1830		if (obj == NULL)
1831			continue;
1832		if (obj->z_nodelete && !obj->ref_nodel) {
1833			dbg("obj %s -z nodelete", obj->path);
1834			init_dag(obj);
1835			ref_dag(obj);
1836			obj->ref_nodel = true;
1837		}
1838		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
1839			dbg("obj %s -z global", obj->path);
1840			objlist_push_tail(&list_global, obj);
1841			init_dag(obj);
1842		}
1843	}
1844}
1845/*
1846 * Initialize the dynamic linker.  The argument is the address at which
1847 * the dynamic linker has been mapped into memory.  The primary task of
1848 * this function is to relocate the dynamic linker.
1849 */
1850static void
1851init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1852{
1853    Obj_Entry objtmp;	/* Temporary rtld object */
1854    const Elf_Dyn *dyn_rpath;
1855    const Elf_Dyn *dyn_soname;
1856    const Elf_Dyn *dyn_runpath;
1857
1858#ifdef RTLD_INIT_PAGESIZES_EARLY
1859    /* The page size is required by the dynamic memory allocator. */
1860    init_pagesizes(aux_info);
1861#endif
1862
1863    /*
1864     * Conjure up an Obj_Entry structure for the dynamic linker.
1865     *
1866     * The "path" member can't be initialized yet because string constants
1867     * cannot yet be accessed. Below we will set it correctly.
1868     */
1869    memset(&objtmp, 0, sizeof(objtmp));
1870    objtmp.path = NULL;
1871    objtmp.rtld = true;
1872    objtmp.mapbase = mapbase;
1873#ifdef PIC
1874    objtmp.relocbase = mapbase;
1875#endif
1876    if (RTLD_IS_DYNAMIC()) {
1877	objtmp.dynamic = rtld_dynamic(&objtmp);
1878	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1879	assert(objtmp.needed == NULL);
1880#if !defined(__mips__)
1881	/* MIPS has a bogus DT_TEXTREL. */
1882	assert(!objtmp.textrel);
1883#endif
1884
1885	/*
1886	 * Temporarily put the dynamic linker entry into the object list, so
1887	 * that symbols can be found.
1888	 */
1889
1890	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1891    }
1892
1893    /* Initialize the object list. */
1894    TAILQ_INIT(&obj_list);
1895
1896    /* Now that non-local variables can be accesses, copy out obj_rtld. */
1897    memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1898
1899#ifndef RTLD_INIT_PAGESIZES_EARLY
1900    /* The page size is required by the dynamic memory allocator. */
1901    init_pagesizes(aux_info);
1902#endif
1903
1904    if (aux_info[AT_OSRELDATE] != NULL)
1905	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1906
1907    digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1908
1909    /* Replace the path with a dynamically allocated copy. */
1910    obj_rtld.path = xstrdup(PATH_RTLD);
1911
1912    r_debug.r_brk = r_debug_state;
1913    r_debug.r_state = RT_CONSISTENT;
1914}
1915
1916/*
1917 * Retrieve the array of supported page sizes.  The kernel provides the page
1918 * sizes in increasing order.
1919 */
1920static void
1921init_pagesizes(Elf_Auxinfo **aux_info)
1922{
1923	static size_t psa[MAXPAGESIZES];
1924	int mib[2];
1925	size_t len, size;
1926
1927	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
1928	    NULL) {
1929		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
1930		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
1931	} else {
1932		len = 2;
1933		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
1934			size = sizeof(psa);
1935		else {
1936			/* As a fallback, retrieve the base page size. */
1937			size = sizeof(psa[0]);
1938			if (aux_info[AT_PAGESZ] != NULL) {
1939				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
1940				goto psa_filled;
1941			} else {
1942				mib[0] = CTL_HW;
1943				mib[1] = HW_PAGESIZE;
1944				len = 2;
1945			}
1946		}
1947		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
1948			_rtld_error("sysctl for hw.pagesize(s) failed");
1949			rtld_die();
1950		}
1951psa_filled:
1952		pagesizes = psa;
1953	}
1954	npagesizes = size / sizeof(pagesizes[0]);
1955	/* Discard any invalid entries at the end of the array. */
1956	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
1957		npagesizes--;
1958}
1959
1960/*
1961 * Add the init functions from a needed object list (and its recursive
1962 * needed objects) to "list".  This is not used directly; it is a helper
1963 * function for initlist_add_objects().  The write lock must be held
1964 * when this function is called.
1965 */
1966static void
1967initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1968{
1969    /* Recursively process the successor needed objects. */
1970    if (needed->next != NULL)
1971	initlist_add_neededs(needed->next, list);
1972
1973    /* Process the current needed object. */
1974    if (needed->obj != NULL)
1975	initlist_add_objects(needed->obj, needed->obj, list);
1976}
1977
1978/*
1979 * Scan all of the DAGs rooted in the range of objects from "obj" to
1980 * "tail" and add their init functions to "list".  This recurses over
1981 * the DAGs and ensure the proper init ordering such that each object's
1982 * needed libraries are initialized before the object itself.  At the
1983 * same time, this function adds the objects to the global finalization
1984 * list "list_fini" in the opposite order.  The write lock must be
1985 * held when this function is called.
1986 */
1987static void
1988initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
1989{
1990    Obj_Entry *nobj;
1991
1992    if (obj->init_scanned || obj->init_done)
1993	return;
1994    obj->init_scanned = true;
1995
1996    /* Recursively process the successor objects. */
1997    nobj = globallist_next(obj);
1998    if (nobj != NULL && obj != tail)
1999	initlist_add_objects(nobj, tail, list);
2000
2001    /* Recursively process the needed objects. */
2002    if (obj->needed != NULL)
2003	initlist_add_neededs(obj->needed, list);
2004    if (obj->needed_filtees != NULL)
2005	initlist_add_neededs(obj->needed_filtees, list);
2006    if (obj->needed_aux_filtees != NULL)
2007	initlist_add_neededs(obj->needed_aux_filtees, list);
2008
2009    /* Add the object to the init list. */
2010    if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
2011      obj->init_array != (Elf_Addr)NULL)
2012	objlist_push_tail(list, obj);
2013
2014    /* Add the object to the global fini list in the reverse order. */
2015    if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2016      && !obj->on_fini_list) {
2017	objlist_push_head(&list_fini, obj);
2018	obj->on_fini_list = true;
2019    }
2020}
2021
2022#ifndef FPTR_TARGET
2023#define FPTR_TARGET(f)	((Elf_Addr) (f))
2024#endif
2025
2026static void
2027free_needed_filtees(Needed_Entry *n)
2028{
2029    Needed_Entry *needed, *needed1;
2030
2031    for (needed = n; needed != NULL; needed = needed->next) {
2032	if (needed->obj != NULL) {
2033	    dlclose(needed->obj);
2034	    needed->obj = NULL;
2035	}
2036    }
2037    for (needed = n; needed != NULL; needed = needed1) {
2038	needed1 = needed->next;
2039	free(needed);
2040    }
2041}
2042
2043static void
2044unload_filtees(Obj_Entry *obj)
2045{
2046
2047    free_needed_filtees(obj->needed_filtees);
2048    obj->needed_filtees = NULL;
2049    free_needed_filtees(obj->needed_aux_filtees);
2050    obj->needed_aux_filtees = NULL;
2051    obj->filtees_loaded = false;
2052}
2053
2054static void
2055load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2056    RtldLockState *lockstate)
2057{
2058
2059    for (; needed != NULL; needed = needed->next) {
2060	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2061	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2062	  RTLD_LOCAL, lockstate);
2063    }
2064}
2065
2066static void
2067load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2068{
2069
2070    lock_restart_for_upgrade(lockstate);
2071    if (!obj->filtees_loaded) {
2072	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2073	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2074	obj->filtees_loaded = true;
2075    }
2076}
2077
2078static int
2079process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2080{
2081    Obj_Entry *obj1;
2082
2083    for (; needed != NULL; needed = needed->next) {
2084	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2085	  flags & ~RTLD_LO_NOLOAD);
2086	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2087	    return (-1);
2088    }
2089    return (0);
2090}
2091
2092/*
2093 * Given a shared object, traverse its list of needed objects, and load
2094 * each of them.  Returns 0 on success.  Generates an error message and
2095 * returns -1 on failure.
2096 */
2097static int
2098load_needed_objects(Obj_Entry *first, int flags)
2099{
2100    Obj_Entry *obj;
2101
2102    obj = first;
2103    TAILQ_FOREACH_FROM(obj, &obj_list, next) {
2104	if (obj->marker)
2105	    continue;
2106	if (process_needed(obj, obj->needed, flags) == -1)
2107	    return (-1);
2108    }
2109    return (0);
2110}
2111
2112static int
2113load_preload_objects(void)
2114{
2115    char *p = ld_preload;
2116    Obj_Entry *obj;
2117    static const char delim[] = " \t:;";
2118
2119    if (p == NULL)
2120	return 0;
2121
2122    p += strspn(p, delim);
2123    while (*p != '\0') {
2124	size_t len = strcspn(p, delim);
2125	char savech;
2126
2127	savech = p[len];
2128	p[len] = '\0';
2129	obj = load_object(p, -1, NULL, 0);
2130	if (obj == NULL)
2131	    return -1;	/* XXX - cleanup */
2132	obj->z_interpose = true;
2133	p[len] = savech;
2134	p += len;
2135	p += strspn(p, delim);
2136    }
2137    LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2138    return 0;
2139}
2140
2141static const char *
2142printable_path(const char *path)
2143{
2144
2145	return (path == NULL ? "<unknown>" : path);
2146}
2147
2148/*
2149 * Load a shared object into memory, if it is not already loaded.  The
2150 * object may be specified by name or by user-supplied file descriptor
2151 * fd_u. In the later case, the fd_u descriptor is not closed, but its
2152 * duplicate is.
2153 *
2154 * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2155 * on failure.
2156 */
2157static Obj_Entry *
2158load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2159{
2160    Obj_Entry *obj;
2161    int fd;
2162    struct stat sb;
2163    char *path;
2164
2165    if (name != NULL) {
2166	TAILQ_FOREACH(obj, &obj_list, next) {
2167	    if (obj->marker)
2168		continue;
2169	    if (object_match_name(obj, name))
2170		return (obj);
2171	}
2172
2173	path = find_library(name, refobj);
2174	if (path == NULL)
2175	    return (NULL);
2176    } else
2177	path = NULL;
2178
2179    /*
2180     * If we didn't find a match by pathname, or the name is not
2181     * supplied, open the file and check again by device and inode.
2182     * This avoids false mismatches caused by multiple links or ".."
2183     * in pathnames.
2184     *
2185     * To avoid a race, we open the file and use fstat() rather than
2186     * using stat().
2187     */
2188    fd = -1;
2189    if (fd_u == -1) {
2190	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2191	    _rtld_error("Cannot open \"%s\"", path);
2192	    free(path);
2193	    return (NULL);
2194	}
2195    } else {
2196	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2197	if (fd == -1) {
2198	    _rtld_error("Cannot dup fd");
2199	    free(path);
2200	    return (NULL);
2201	}
2202    }
2203    if (fstat(fd, &sb) == -1) {
2204	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2205	close(fd);
2206	free(path);
2207	return NULL;
2208    }
2209    TAILQ_FOREACH(obj, &obj_list, next) {
2210	if (obj->marker)
2211	    continue;
2212	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2213	    break;
2214    }
2215    if (obj != NULL && name != NULL) {
2216	object_add_name(obj, name);
2217	free(path);
2218	close(fd);
2219	return obj;
2220    }
2221    if (flags & RTLD_LO_NOLOAD) {
2222	free(path);
2223	close(fd);
2224	return (NULL);
2225    }
2226
2227    /* First use of this object, so we must map it in */
2228    obj = do_load_object(fd, name, path, &sb, flags);
2229    if (obj == NULL)
2230	free(path);
2231    close(fd);
2232
2233    return obj;
2234}
2235
2236static Obj_Entry *
2237do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2238  int flags)
2239{
2240    Obj_Entry *obj;
2241    struct statfs fs;
2242
2243    /*
2244     * but first, make sure that environment variables haven't been
2245     * used to circumvent the noexec flag on a filesystem.
2246     */
2247    if (dangerous_ld_env) {
2248	if (fstatfs(fd, &fs) != 0) {
2249	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2250	    return NULL;
2251	}
2252	if (fs.f_flags & MNT_NOEXEC) {
2253	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2254	    return NULL;
2255	}
2256    }
2257    dbg("loading \"%s\"", printable_path(path));
2258    obj = map_object(fd, printable_path(path), sbp);
2259    if (obj == NULL)
2260        return NULL;
2261
2262    /*
2263     * If DT_SONAME is present in the object, digest_dynamic2 already
2264     * added it to the object names.
2265     */
2266    if (name != NULL)
2267	object_add_name(obj, name);
2268    obj->path = path;
2269    digest_dynamic(obj, 0);
2270    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2271	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2272    if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2273      RTLD_LO_DLOPEN) {
2274	dbg("refusing to load non-loadable \"%s\"", obj->path);
2275	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2276	munmap(obj->mapbase, obj->mapsize);
2277	obj_free(obj);
2278	return (NULL);
2279    }
2280
2281    obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2282    TAILQ_INSERT_TAIL(&obj_list, obj, next);
2283    obj_count++;
2284    obj_loads++;
2285    linkmap_add(obj);	/* for GDB & dlinfo() */
2286    max_stack_flags |= obj->stack_flags;
2287
2288    dbg("  %p .. %p: %s", obj->mapbase,
2289         obj->mapbase + obj->mapsize - 1, obj->path);
2290    if (obj->textrel)
2291	dbg("  WARNING: %s has impure text", obj->path);
2292    LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2293	obj->path);
2294
2295    return obj;
2296}
2297
2298static Obj_Entry *
2299obj_from_addr(const void *addr)
2300{
2301    Obj_Entry *obj;
2302
2303    TAILQ_FOREACH(obj, &obj_list, next) {
2304	if (obj->marker)
2305	    continue;
2306	if (addr < (void *) obj->mapbase)
2307	    continue;
2308	if (addr < (void *) (obj->mapbase + obj->mapsize))
2309	    return obj;
2310    }
2311    return NULL;
2312}
2313
2314static void
2315preinit_main(void)
2316{
2317    Elf_Addr *preinit_addr;
2318    int index;
2319
2320    preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2321    if (preinit_addr == NULL)
2322	return;
2323
2324    for (index = 0; index < obj_main->preinit_array_num; index++) {
2325	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2326	    dbg("calling preinit function for %s at %p", obj_main->path,
2327	      (void *)preinit_addr[index]);
2328	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2329	      0, 0, obj_main->path);
2330	    call_init_pointer(obj_main, preinit_addr[index]);
2331	}
2332    }
2333}
2334
2335/*
2336 * Call the finalization functions for each of the objects in "list"
2337 * belonging to the DAG of "root" and referenced once. If NULL "root"
2338 * is specified, every finalization function will be called regardless
2339 * of the reference count and the list elements won't be freed. All of
2340 * the objects are expected to have non-NULL fini functions.
2341 */
2342static void
2343objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2344{
2345    Objlist_Entry *elm;
2346    char *saved_msg;
2347    Elf_Addr *fini_addr;
2348    int index;
2349
2350    assert(root == NULL || root->refcount == 1);
2351
2352    /*
2353     * Preserve the current error message since a fini function might
2354     * call into the dynamic linker and overwrite it.
2355     */
2356    saved_msg = errmsg_save();
2357    do {
2358	STAILQ_FOREACH(elm, list, link) {
2359	    if (root != NULL && (elm->obj->refcount != 1 ||
2360	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2361		continue;
2362	    /* Remove object from fini list to prevent recursive invocation. */
2363	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2364	    /*
2365	     * XXX: If a dlopen() call references an object while the
2366	     * fini function is in progress, we might end up trying to
2367	     * unload the referenced object in dlclose() or the object
2368	     * won't be unloaded although its fini function has been
2369	     * called.
2370	     */
2371	    lock_release(rtld_bind_lock, lockstate);
2372
2373	    /*
2374	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2375	     * When this happens, DT_FINI_ARRAY is processed first.
2376	     */
2377	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2378	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2379		for (index = elm->obj->fini_array_num - 1; index >= 0;
2380		  index--) {
2381		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2382			dbg("calling fini function for %s at %p",
2383			    elm->obj->path, (void *)fini_addr[index]);
2384			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2385			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2386			call_initfini_pointer(elm->obj, fini_addr[index]);
2387		    }
2388		}
2389	    }
2390	    if (elm->obj->fini != (Elf_Addr)NULL) {
2391		dbg("calling fini function for %s at %p", elm->obj->path,
2392		    (void *)elm->obj->fini);
2393		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2394		    0, 0, elm->obj->path);
2395		call_initfini_pointer(elm->obj, elm->obj->fini);
2396	    }
2397	    wlock_acquire(rtld_bind_lock, lockstate);
2398	    /* No need to free anything if process is going down. */
2399	    if (root != NULL)
2400	    	free(elm);
2401	    /*
2402	     * We must restart the list traversal after every fini call
2403	     * because a dlclose() call from the fini function or from
2404	     * another thread might have modified the reference counts.
2405	     */
2406	    break;
2407	}
2408    } while (elm != NULL);
2409    errmsg_restore(saved_msg);
2410}
2411
2412/*
2413 * Call the initialization functions for each of the objects in
2414 * "list".  All of the objects are expected to have non-NULL init
2415 * functions.
2416 */
2417static void
2418objlist_call_init(Objlist *list, RtldLockState *lockstate)
2419{
2420    Objlist_Entry *elm;
2421    Obj_Entry *obj;
2422    char *saved_msg;
2423    Elf_Addr *init_addr;
2424    int index;
2425
2426    /*
2427     * Clean init_scanned flag so that objects can be rechecked and
2428     * possibly initialized earlier if any of vectors called below
2429     * cause the change by using dlopen.
2430     */
2431    TAILQ_FOREACH(obj, &obj_list, next) {
2432	if (obj->marker)
2433	    continue;
2434	obj->init_scanned = false;
2435    }
2436
2437    /*
2438     * Preserve the current error message since an init function might
2439     * call into the dynamic linker and overwrite it.
2440     */
2441    saved_msg = errmsg_save();
2442    STAILQ_FOREACH(elm, list, link) {
2443	if (elm->obj->init_done) /* Initialized early. */
2444	    continue;
2445	/*
2446	 * Race: other thread might try to use this object before current
2447	 * one completes the initilization. Not much can be done here
2448	 * without better locking.
2449	 */
2450	elm->obj->init_done = true;
2451	lock_release(rtld_bind_lock, lockstate);
2452
2453        /*
2454         * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2455         * When this happens, DT_INIT is processed first.
2456         */
2457	if (elm->obj->init != (Elf_Addr)NULL) {
2458	    dbg("calling init function for %s at %p", elm->obj->path,
2459	        (void *)elm->obj->init);
2460	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2461	        0, 0, elm->obj->path);
2462	    call_initfini_pointer(elm->obj, elm->obj->init);
2463	}
2464	init_addr = (Elf_Addr *)elm->obj->init_array;
2465	if (init_addr != NULL) {
2466	    for (index = 0; index < elm->obj->init_array_num; index++) {
2467		if (init_addr[index] != 0 && init_addr[index] != 1) {
2468		    dbg("calling init function for %s at %p", elm->obj->path,
2469			(void *)init_addr[index]);
2470		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2471			(void *)init_addr[index], 0, 0, elm->obj->path);
2472		    call_init_pointer(elm->obj, init_addr[index]);
2473		}
2474	    }
2475	}
2476	wlock_acquire(rtld_bind_lock, lockstate);
2477    }
2478    errmsg_restore(saved_msg);
2479}
2480
2481static void
2482objlist_clear(Objlist *list)
2483{
2484    Objlist_Entry *elm;
2485
2486    while (!STAILQ_EMPTY(list)) {
2487	elm = STAILQ_FIRST(list);
2488	STAILQ_REMOVE_HEAD(list, link);
2489	free(elm);
2490    }
2491}
2492
2493static Objlist_Entry *
2494objlist_find(Objlist *list, const Obj_Entry *obj)
2495{
2496    Objlist_Entry *elm;
2497
2498    STAILQ_FOREACH(elm, list, link)
2499	if (elm->obj == obj)
2500	    return elm;
2501    return NULL;
2502}
2503
2504static void
2505objlist_init(Objlist *list)
2506{
2507    STAILQ_INIT(list);
2508}
2509
2510static void
2511objlist_push_head(Objlist *list, Obj_Entry *obj)
2512{
2513    Objlist_Entry *elm;
2514
2515    elm = NEW(Objlist_Entry);
2516    elm->obj = obj;
2517    STAILQ_INSERT_HEAD(list, elm, link);
2518}
2519
2520static void
2521objlist_push_tail(Objlist *list, Obj_Entry *obj)
2522{
2523    Objlist_Entry *elm;
2524
2525    elm = NEW(Objlist_Entry);
2526    elm->obj = obj;
2527    STAILQ_INSERT_TAIL(list, elm, link);
2528}
2529
2530static void
2531objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2532{
2533	Objlist_Entry *elm, *listelm;
2534
2535	STAILQ_FOREACH(listelm, list, link) {
2536		if (listelm->obj == listobj)
2537			break;
2538	}
2539	elm = NEW(Objlist_Entry);
2540	elm->obj = obj;
2541	if (listelm != NULL)
2542		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2543	else
2544		STAILQ_INSERT_TAIL(list, elm, link);
2545}
2546
2547static void
2548objlist_remove(Objlist *list, Obj_Entry *obj)
2549{
2550    Objlist_Entry *elm;
2551
2552    if ((elm = objlist_find(list, obj)) != NULL) {
2553	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2554	free(elm);
2555    }
2556}
2557
2558/*
2559 * Relocate dag rooted in the specified object.
2560 * Returns 0 on success, or -1 on failure.
2561 */
2562
2563static int
2564relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2565    int flags, RtldLockState *lockstate)
2566{
2567	Objlist_Entry *elm;
2568	int error;
2569
2570	error = 0;
2571	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2572		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2573		    lockstate);
2574		if (error == -1)
2575			break;
2576	}
2577	return (error);
2578}
2579
2580/*
2581 * Relocate single object.
2582 * Returns 0 on success, or -1 on failure.
2583 */
2584static int
2585relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2586    int flags, RtldLockState *lockstate)
2587{
2588
2589	if (obj->relocated)
2590		return (0);
2591	obj->relocated = true;
2592	if (obj != rtldobj)
2593		dbg("relocating \"%s\"", obj->path);
2594
2595	if (obj->symtab == NULL || obj->strtab == NULL ||
2596	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2597		_rtld_error("%s: Shared object has no run-time symbol table",
2598			    obj->path);
2599		return (-1);
2600	}
2601
2602	if (obj->textrel) {
2603		/* There are relocations to the write-protected text segment. */
2604		if (mprotect(obj->mapbase, obj->textsize,
2605		    PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2606			_rtld_error("%s: Cannot write-enable text segment: %s",
2607			    obj->path, rtld_strerror(errno));
2608			return (-1);
2609		}
2610	}
2611
2612	/* Process the non-PLT non-IFUNC relocations. */
2613	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2614		return (-1);
2615
2616	if (obj->textrel) {	/* Re-protected the text segment. */
2617		if (mprotect(obj->mapbase, obj->textsize,
2618		    PROT_READ|PROT_EXEC) == -1) {
2619			_rtld_error("%s: Cannot write-protect text segment: %s",
2620			    obj->path, rtld_strerror(errno));
2621			return (-1);
2622		}
2623	}
2624
2625	/* Set the special PLT or GOT entries. */
2626	init_pltgot(obj);
2627
2628	/* Process the PLT relocations. */
2629	if (reloc_plt(obj) == -1)
2630		return (-1);
2631	/* Relocate the jump slots if we are doing immediate binding. */
2632	if (obj->bind_now || bind_now)
2633		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2634			return (-1);
2635
2636	/*
2637	 * Process the non-PLT IFUNC relocations.  The relocations are
2638	 * processed in two phases, because IFUNC resolvers may
2639	 * reference other symbols, which must be readily processed
2640	 * before resolvers are called.
2641	 */
2642	if (obj->non_plt_gnu_ifunc &&
2643	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2644		return (-1);
2645
2646	if (obj->relro_size > 0) {
2647		if (mprotect(obj->relro_page, obj->relro_size,
2648		    PROT_READ) == -1) {
2649			_rtld_error("%s: Cannot enforce relro protection: %s",
2650			    obj->path, rtld_strerror(errno));
2651			return (-1);
2652		}
2653	}
2654
2655	/*
2656	 * Set up the magic number and version in the Obj_Entry.  These
2657	 * were checked in the crt1.o from the original ElfKit, so we
2658	 * set them for backward compatibility.
2659	 */
2660	obj->magic = RTLD_MAGIC;
2661	obj->version = RTLD_VERSION;
2662
2663	return (0);
2664}
2665
2666/*
2667 * Relocate newly-loaded shared objects.  The argument is a pointer to
2668 * the Obj_Entry for the first such object.  All objects from the first
2669 * to the end of the list of objects are relocated.  Returns 0 on success,
2670 * or -1 on failure.
2671 */
2672static int
2673relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2674    int flags, RtldLockState *lockstate)
2675{
2676	Obj_Entry *obj;
2677	int error;
2678
2679	error = 0;
2680	obj = first;
2681	TAILQ_FOREACH_FROM(obj, &obj_list, next) {
2682		if (obj->marker)
2683			continue;
2684		error = relocate_object(obj, bind_now, rtldobj, flags,
2685		    lockstate);
2686		if (error == -1)
2687			break;
2688	}
2689	return (error);
2690}
2691
2692/*
2693 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2694 * referencing STT_GNU_IFUNC symbols is postponed till the other
2695 * relocations are done.  The indirect functions specified as
2696 * ifunc are allowed to call other symbols, so we need to have
2697 * objects relocated before asking for resolution from indirects.
2698 *
2699 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2700 * instead of the usual lazy handling of PLT slots.  It is
2701 * consistent with how GNU does it.
2702 */
2703static int
2704resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2705    RtldLockState *lockstate)
2706{
2707	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2708		return (-1);
2709	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2710	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2711		return (-1);
2712	return (0);
2713}
2714
2715static int
2716resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2717    RtldLockState *lockstate)
2718{
2719	Obj_Entry *obj;
2720
2721	obj = first;
2722	TAILQ_FOREACH_FROM(obj, &obj_list, next) {
2723		if (obj->marker)
2724			continue;
2725		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2726			return (-1);
2727	}
2728	return (0);
2729}
2730
2731static int
2732initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2733    RtldLockState *lockstate)
2734{
2735	Objlist_Entry *elm;
2736
2737	STAILQ_FOREACH(elm, list, link) {
2738		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2739		    lockstate) == -1)
2740			return (-1);
2741	}
2742	return (0);
2743}
2744
2745/*
2746 * Cleanup procedure.  It will be called (by the atexit mechanism) just
2747 * before the process exits.
2748 */
2749static void
2750rtld_exit(void)
2751{
2752    RtldLockState lockstate;
2753
2754    wlock_acquire(rtld_bind_lock, &lockstate);
2755    dbg("rtld_exit()");
2756    objlist_call_fini(&list_fini, NULL, &lockstate);
2757    /* No need to remove the items from the list, since we are exiting. */
2758    if (!libmap_disable)
2759        lm_fini();
2760    lock_release(rtld_bind_lock, &lockstate);
2761}
2762
2763/*
2764 * Iterate over a search path, translate each element, and invoke the
2765 * callback on the result.
2766 */
2767static void *
2768path_enumerate(const char *path, path_enum_proc callback, void *arg)
2769{
2770    const char *trans;
2771    if (path == NULL)
2772	return (NULL);
2773
2774    path += strspn(path, ":;");
2775    while (*path != '\0') {
2776	size_t len;
2777	char  *res;
2778
2779	len = strcspn(path, ":;");
2780	trans = lm_findn(NULL, path, len);
2781	if (trans)
2782	    res = callback(trans, strlen(trans), arg);
2783	else
2784	    res = callback(path, len, arg);
2785
2786	if (res != NULL)
2787	    return (res);
2788
2789	path += len;
2790	path += strspn(path, ":;");
2791    }
2792
2793    return (NULL);
2794}
2795
2796struct try_library_args {
2797    const char	*name;
2798    size_t	 namelen;
2799    char	*buffer;
2800    size_t	 buflen;
2801};
2802
2803static void *
2804try_library_path(const char *dir, size_t dirlen, void *param)
2805{
2806    struct try_library_args *arg;
2807
2808    arg = param;
2809    if (*dir == '/' || trust) {
2810	char *pathname;
2811
2812	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2813		return (NULL);
2814
2815	pathname = arg->buffer;
2816	strncpy(pathname, dir, dirlen);
2817	pathname[dirlen] = '/';
2818	strcpy(pathname + dirlen + 1, arg->name);
2819
2820	dbg("  Trying \"%s\"", pathname);
2821	if (access(pathname, F_OK) == 0) {		/* We found it */
2822	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2823	    strcpy(pathname, arg->buffer);
2824	    return (pathname);
2825	}
2826    }
2827    return (NULL);
2828}
2829
2830static char *
2831search_library_path(const char *name, const char *path)
2832{
2833    char *p;
2834    struct try_library_args arg;
2835
2836    if (path == NULL)
2837	return NULL;
2838
2839    arg.name = name;
2840    arg.namelen = strlen(name);
2841    arg.buffer = xmalloc(PATH_MAX);
2842    arg.buflen = PATH_MAX;
2843
2844    p = path_enumerate(path, try_library_path, &arg);
2845
2846    free(arg.buffer);
2847
2848    return (p);
2849}
2850
2851int
2852dlclose(void *handle)
2853{
2854    Obj_Entry *root;
2855    RtldLockState lockstate;
2856
2857    wlock_acquire(rtld_bind_lock, &lockstate);
2858    root = dlcheck(handle);
2859    if (root == NULL) {
2860	lock_release(rtld_bind_lock, &lockstate);
2861	return -1;
2862    }
2863    LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2864	root->path);
2865
2866    /* Unreference the object and its dependencies. */
2867    root->dl_refcount--;
2868
2869    if (root->refcount == 1) {
2870	/*
2871	 * The object will be no longer referenced, so we must unload it.
2872	 * First, call the fini functions.
2873	 */
2874	objlist_call_fini(&list_fini, root, &lockstate);
2875
2876	unref_dag(root);
2877
2878	/* Finish cleaning up the newly-unreferenced objects. */
2879	GDB_STATE(RT_DELETE,&root->linkmap);
2880	unload_object(root);
2881	GDB_STATE(RT_CONSISTENT,NULL);
2882    } else
2883	unref_dag(root);
2884
2885    LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2886    lock_release(rtld_bind_lock, &lockstate);
2887    return 0;
2888}
2889
2890char *
2891dlerror(void)
2892{
2893    char *msg = error_message;
2894    error_message = NULL;
2895    return msg;
2896}
2897
2898/*
2899 * This function is deprecated and has no effect.
2900 */
2901void
2902dllockinit(void *context,
2903	   void *(*lock_create)(void *context),
2904           void (*rlock_acquire)(void *lock),
2905           void (*wlock_acquire)(void *lock),
2906           void (*lock_release)(void *lock),
2907           void (*lock_destroy)(void *lock),
2908	   void (*context_destroy)(void *context))
2909{
2910    static void *cur_context;
2911    static void (*cur_context_destroy)(void *);
2912
2913    /* Just destroy the context from the previous call, if necessary. */
2914    if (cur_context_destroy != NULL)
2915	cur_context_destroy(cur_context);
2916    cur_context = context;
2917    cur_context_destroy = context_destroy;
2918}
2919
2920void *
2921dlopen(const char *name, int mode)
2922{
2923
2924	return (rtld_dlopen(name, -1, mode));
2925}
2926
2927void *
2928fdlopen(int fd, int mode)
2929{
2930
2931	return (rtld_dlopen(NULL, fd, mode));
2932}
2933
2934static void *
2935rtld_dlopen(const char *name, int fd, int mode)
2936{
2937    RtldLockState lockstate;
2938    int lo_flags;
2939
2940    LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2941    ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2942    if (ld_tracing != NULL) {
2943	rlock_acquire(rtld_bind_lock, &lockstate);
2944	if (sigsetjmp(lockstate.env, 0) != 0)
2945	    lock_upgrade(rtld_bind_lock, &lockstate);
2946	environ = (char **)*get_program_var_addr("environ", &lockstate);
2947	lock_release(rtld_bind_lock, &lockstate);
2948    }
2949    lo_flags = RTLD_LO_DLOPEN;
2950    if (mode & RTLD_NODELETE)
2951	    lo_flags |= RTLD_LO_NODELETE;
2952    if (mode & RTLD_NOLOAD)
2953	    lo_flags |= RTLD_LO_NOLOAD;
2954    if (ld_tracing != NULL)
2955	    lo_flags |= RTLD_LO_TRACE;
2956
2957    return (dlopen_object(name, fd, obj_main, lo_flags,
2958      mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2959}
2960
2961static void
2962dlopen_cleanup(Obj_Entry *obj)
2963{
2964
2965	obj->dl_refcount--;
2966	unref_dag(obj);
2967	if (obj->refcount == 0)
2968		unload_object(obj);
2969}
2970
2971static Obj_Entry *
2972dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2973    int mode, RtldLockState *lockstate)
2974{
2975    Obj_Entry *old_obj_tail;
2976    Obj_Entry *obj;
2977    Objlist initlist;
2978    RtldLockState mlockstate;
2979    int result;
2980
2981    objlist_init(&initlist);
2982
2983    if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2984	wlock_acquire(rtld_bind_lock, &mlockstate);
2985	lockstate = &mlockstate;
2986    }
2987    GDB_STATE(RT_ADD,NULL);
2988
2989    old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
2990    obj = NULL;
2991    if (name == NULL && fd == -1) {
2992	obj = obj_main;
2993	obj->refcount++;
2994    } else {
2995	obj = load_object(name, fd, refobj, lo_flags);
2996    }
2997
2998    if (obj) {
2999	obj->dl_refcount++;
3000	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3001	    objlist_push_tail(&list_global, obj);
3002	if (globallist_next(old_obj_tail) != NULL) {
3003	    /* We loaded something new. */
3004	    assert(globallist_next(old_obj_tail) == obj);
3005	    result = load_needed_objects(obj,
3006		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3007	    init_dag(obj);
3008	    ref_dag(obj);
3009	    if (result != -1)
3010		result = rtld_verify_versions(&obj->dagmembers);
3011	    if (result != -1 && ld_tracing)
3012		goto trace;
3013	    if (result == -1 || relocate_object_dag(obj,
3014	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3015	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3016	      lockstate) == -1) {
3017		dlopen_cleanup(obj);
3018		obj = NULL;
3019	    } else if (lo_flags & RTLD_LO_EARLY) {
3020		/*
3021		 * Do not call the init functions for early loaded
3022		 * filtees.  The image is still not initialized enough
3023		 * for them to work.
3024		 *
3025		 * Our object is found by the global object list and
3026		 * will be ordered among all init calls done right
3027		 * before transferring control to main.
3028		 */
3029	    } else {
3030		/* Make list of init functions to call. */
3031		initlist_add_objects(obj, obj, &initlist);
3032	    }
3033	    /*
3034	     * Process all no_delete or global objects here, given
3035	     * them own DAGs to prevent their dependencies from being
3036	     * unloaded.  This has to be done after we have loaded all
3037	     * of the dependencies, so that we do not miss any.
3038	     */
3039	    if (obj != NULL)
3040		process_z(obj);
3041	} else {
3042	    /*
3043	     * Bump the reference counts for objects on this DAG.  If
3044	     * this is the first dlopen() call for the object that was
3045	     * already loaded as a dependency, initialize the dag
3046	     * starting at it.
3047	     */
3048	    init_dag(obj);
3049	    ref_dag(obj);
3050
3051	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3052		goto trace;
3053	}
3054	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3055	  obj->z_nodelete) && !obj->ref_nodel) {
3056	    dbg("obj %s nodelete", obj->path);
3057	    ref_dag(obj);
3058	    obj->z_nodelete = obj->ref_nodel = true;
3059	}
3060    }
3061
3062    LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3063	name);
3064    GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3065
3066    if (!(lo_flags & RTLD_LO_EARLY)) {
3067	map_stacks_exec(lockstate);
3068    }
3069
3070    if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3071      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3072      lockstate) == -1) {
3073	objlist_clear(&initlist);
3074	dlopen_cleanup(obj);
3075	if (lockstate == &mlockstate)
3076	    lock_release(rtld_bind_lock, lockstate);
3077	return (NULL);
3078    }
3079
3080    if (!(lo_flags & RTLD_LO_EARLY)) {
3081	/* Call the init functions. */
3082	objlist_call_init(&initlist, lockstate);
3083    }
3084    objlist_clear(&initlist);
3085    if (lockstate == &mlockstate)
3086	lock_release(rtld_bind_lock, lockstate);
3087    return obj;
3088trace:
3089    trace_loaded_objects(obj);
3090    if (lockstate == &mlockstate)
3091	lock_release(rtld_bind_lock, lockstate);
3092    exit(0);
3093}
3094
3095static void *
3096do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3097    int flags)
3098{
3099    DoneList donelist;
3100    const Obj_Entry *obj, *defobj;
3101    const Elf_Sym *def;
3102    SymLook req;
3103    RtldLockState lockstate;
3104#ifndef __ia64__
3105    tls_index ti;
3106#endif
3107    void *sym;
3108    int res;
3109
3110    def = NULL;
3111    defobj = NULL;
3112    symlook_init(&req, name);
3113    req.ventry = ve;
3114    req.flags = flags | SYMLOOK_IN_PLT;
3115    req.lockstate = &lockstate;
3116
3117    LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3118    rlock_acquire(rtld_bind_lock, &lockstate);
3119    if (sigsetjmp(lockstate.env, 0) != 0)
3120	    lock_upgrade(rtld_bind_lock, &lockstate);
3121    if (handle == NULL || handle == RTLD_NEXT ||
3122	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3123
3124	if ((obj = obj_from_addr(retaddr)) == NULL) {
3125	    _rtld_error("Cannot determine caller's shared object");
3126	    lock_release(rtld_bind_lock, &lockstate);
3127	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3128	    return NULL;
3129	}
3130	if (handle == NULL) {	/* Just the caller's shared object. */
3131	    res = symlook_obj(&req, obj);
3132	    if (res == 0) {
3133		def = req.sym_out;
3134		defobj = req.defobj_out;
3135	    }
3136	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3137		   handle == RTLD_SELF) { /* ... caller included */
3138	    if (handle == RTLD_NEXT)
3139		obj = globallist_next(obj);
3140	    TAILQ_FOREACH_FROM(obj, &obj_list, next) {
3141		if (obj->marker)
3142		    continue;
3143		res = symlook_obj(&req, obj);
3144		if (res == 0) {
3145		    if (def == NULL ||
3146		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3147			def = req.sym_out;
3148			defobj = req.defobj_out;
3149			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3150			    break;
3151		    }
3152		}
3153	    }
3154	    /*
3155	     * Search the dynamic linker itself, and possibly resolve the
3156	     * symbol from there.  This is how the application links to
3157	     * dynamic linker services such as dlopen.
3158	     */
3159	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3160		res = symlook_obj(&req, &obj_rtld);
3161		if (res == 0) {
3162		    def = req.sym_out;
3163		    defobj = req.defobj_out;
3164		}
3165	    }
3166	} else {
3167	    assert(handle == RTLD_DEFAULT);
3168	    res = symlook_default(&req, obj);
3169	    if (res == 0) {
3170		defobj = req.defobj_out;
3171		def = req.sym_out;
3172	    }
3173	}
3174    } else {
3175	if ((obj = dlcheck(handle)) == NULL) {
3176	    lock_release(rtld_bind_lock, &lockstate);
3177	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3178	    return NULL;
3179	}
3180
3181	donelist_init(&donelist);
3182	if (obj->mainprog) {
3183            /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3184	    res = symlook_global(&req, &donelist);
3185	    if (res == 0) {
3186		def = req.sym_out;
3187		defobj = req.defobj_out;
3188	    }
3189	    /*
3190	     * Search the dynamic linker itself, and possibly resolve the
3191	     * symbol from there.  This is how the application links to
3192	     * dynamic linker services such as dlopen.
3193	     */
3194	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3195		res = symlook_obj(&req, &obj_rtld);
3196		if (res == 0) {
3197		    def = req.sym_out;
3198		    defobj = req.defobj_out;
3199		}
3200	    }
3201	}
3202	else {
3203	    /* Search the whole DAG rooted at the given object. */
3204	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3205	    if (res == 0) {
3206		def = req.sym_out;
3207		defobj = req.defobj_out;
3208	    }
3209	}
3210    }
3211
3212    if (def != NULL) {
3213	lock_release(rtld_bind_lock, &lockstate);
3214
3215	/*
3216	 * The value required by the caller is derived from the value
3217	 * of the symbol. For the ia64 architecture, we need to
3218	 * construct a function descriptor which the caller can use to
3219	 * call the function with the right 'gp' value. For other
3220	 * architectures and for non-functions, the value is simply
3221	 * the relocated value of the symbol.
3222	 */
3223	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3224	    sym = make_function_pointer(def, defobj);
3225	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3226	    sym = rtld_resolve_ifunc(defobj, def);
3227	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3228#ifdef __ia64__
3229	    return (__tls_get_addr(defobj->tlsindex, def->st_value));
3230#else
3231	    ti.ti_module = defobj->tlsindex;
3232	    ti.ti_offset = def->st_value;
3233	    sym = __tls_get_addr(&ti);
3234#endif
3235	} else
3236	    sym = defobj->relocbase + def->st_value;
3237	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3238	return (sym);
3239    }
3240
3241    _rtld_error("Undefined symbol \"%s\"", name);
3242    lock_release(rtld_bind_lock, &lockstate);
3243    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3244    return NULL;
3245}
3246
3247void *
3248dlsym(void *handle, const char *name)
3249{
3250	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3251	    SYMLOOK_DLSYM);
3252}
3253
3254dlfunc_t
3255dlfunc(void *handle, const char *name)
3256{
3257	union {
3258		void *d;
3259		dlfunc_t f;
3260	} rv;
3261
3262	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3263	    SYMLOOK_DLSYM);
3264	return (rv.f);
3265}
3266
3267void *
3268dlvsym(void *handle, const char *name, const char *version)
3269{
3270	Ver_Entry ventry;
3271
3272	ventry.name = version;
3273	ventry.file = NULL;
3274	ventry.hash = elf_hash(version);
3275	ventry.flags= 0;
3276	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3277	    SYMLOOK_DLSYM);
3278}
3279
3280int
3281_rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3282{
3283    const Obj_Entry *obj;
3284    RtldLockState lockstate;
3285
3286    rlock_acquire(rtld_bind_lock, &lockstate);
3287    obj = obj_from_addr(addr);
3288    if (obj == NULL) {
3289        _rtld_error("No shared object contains address");
3290	lock_release(rtld_bind_lock, &lockstate);
3291        return (0);
3292    }
3293    rtld_fill_dl_phdr_info(obj, phdr_info);
3294    lock_release(rtld_bind_lock, &lockstate);
3295    return (1);
3296}
3297
3298int
3299dladdr(const void *addr, Dl_info *info)
3300{
3301    const Obj_Entry *obj;
3302    const Elf_Sym *def;
3303    void *symbol_addr;
3304    unsigned long symoffset;
3305    RtldLockState lockstate;
3306
3307    rlock_acquire(rtld_bind_lock, &lockstate);
3308    obj = obj_from_addr(addr);
3309    if (obj == NULL) {
3310        _rtld_error("No shared object contains address");
3311	lock_release(rtld_bind_lock, &lockstate);
3312        return 0;
3313    }
3314    info->dli_fname = obj->path;
3315    info->dli_fbase = obj->mapbase;
3316    info->dli_saddr = (void *)0;
3317    info->dli_sname = NULL;
3318
3319    /*
3320     * Walk the symbol list looking for the symbol whose address is
3321     * closest to the address sent in.
3322     */
3323    for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3324        def = obj->symtab + symoffset;
3325
3326        /*
3327         * For skip the symbol if st_shndx is either SHN_UNDEF or
3328         * SHN_COMMON.
3329         */
3330        if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3331            continue;
3332
3333        /*
3334         * If the symbol is greater than the specified address, or if it
3335         * is further away from addr than the current nearest symbol,
3336         * then reject it.
3337         */
3338        symbol_addr = obj->relocbase + def->st_value;
3339        if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3340            continue;
3341
3342        /* Update our idea of the nearest symbol. */
3343        info->dli_sname = obj->strtab + def->st_name;
3344        info->dli_saddr = symbol_addr;
3345
3346        /* Exact match? */
3347        if (info->dli_saddr == addr)
3348            break;
3349    }
3350    lock_release(rtld_bind_lock, &lockstate);
3351    return 1;
3352}
3353
3354int
3355dlinfo(void *handle, int request, void *p)
3356{
3357    const Obj_Entry *obj;
3358    RtldLockState lockstate;
3359    int error;
3360
3361    rlock_acquire(rtld_bind_lock, &lockstate);
3362
3363    if (handle == NULL || handle == RTLD_SELF) {
3364	void *retaddr;
3365
3366	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3367	if ((obj = obj_from_addr(retaddr)) == NULL)
3368	    _rtld_error("Cannot determine caller's shared object");
3369    } else
3370	obj = dlcheck(handle);
3371
3372    if (obj == NULL) {
3373	lock_release(rtld_bind_lock, &lockstate);
3374	return (-1);
3375    }
3376
3377    error = 0;
3378    switch (request) {
3379    case RTLD_DI_LINKMAP:
3380	*((struct link_map const **)p) = &obj->linkmap;
3381	break;
3382    case RTLD_DI_ORIGIN:
3383	error = rtld_dirname(obj->path, p);
3384	break;
3385
3386    case RTLD_DI_SERINFOSIZE:
3387    case RTLD_DI_SERINFO:
3388	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3389	break;
3390
3391    default:
3392	_rtld_error("Invalid request %d passed to dlinfo()", request);
3393	error = -1;
3394    }
3395
3396    lock_release(rtld_bind_lock, &lockstate);
3397
3398    return (error);
3399}
3400
3401static void
3402rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3403{
3404
3405	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3406	phdr_info->dlpi_name = obj->path;
3407	phdr_info->dlpi_phdr = obj->phdr;
3408	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3409	phdr_info->dlpi_tls_modid = obj->tlsindex;
3410	phdr_info->dlpi_tls_data = obj->tlsinit;
3411	phdr_info->dlpi_adds = obj_loads;
3412	phdr_info->dlpi_subs = obj_loads - obj_count;
3413}
3414
3415int
3416dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3417{
3418	struct dl_phdr_info phdr_info;
3419	Obj_Entry *obj, marker;
3420	RtldLockState bind_lockstate, phdr_lockstate;
3421	int error;
3422
3423	bzero(&marker, sizeof(marker));
3424	marker.marker = true;
3425	error = 0;
3426
3427	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3428	rlock_acquire(rtld_bind_lock, &bind_lockstate);
3429	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3430		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3431		rtld_fill_dl_phdr_info(obj, &phdr_info);
3432		lock_release(rtld_bind_lock, &bind_lockstate);
3433
3434		error = callback(&phdr_info, sizeof phdr_info, param);
3435
3436		rlock_acquire(rtld_bind_lock, &bind_lockstate);
3437		obj = globallist_next(&marker);
3438		TAILQ_REMOVE(&obj_list, &marker, next);
3439		if (error != 0) {
3440			lock_release(rtld_bind_lock, &bind_lockstate);
3441			lock_release(rtld_phdr_lock, &phdr_lockstate);
3442			return (error);
3443		}
3444	}
3445
3446	if (error == 0) {
3447		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3448		lock_release(rtld_bind_lock, &bind_lockstate);
3449		error = callback(&phdr_info, sizeof(phdr_info), param);
3450	}
3451	lock_release(rtld_phdr_lock, &phdr_lockstate);
3452	return (error);
3453}
3454
3455static void *
3456fill_search_info(const char *dir, size_t dirlen, void *param)
3457{
3458    struct fill_search_info_args *arg;
3459
3460    arg = param;
3461
3462    if (arg->request == RTLD_DI_SERINFOSIZE) {
3463	arg->serinfo->dls_cnt ++;
3464	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3465    } else {
3466	struct dl_serpath *s_entry;
3467
3468	s_entry = arg->serpath;
3469	s_entry->dls_name  = arg->strspace;
3470	s_entry->dls_flags = arg->flags;
3471
3472	strncpy(arg->strspace, dir, dirlen);
3473	arg->strspace[dirlen] = '\0';
3474
3475	arg->strspace += dirlen + 1;
3476	arg->serpath++;
3477    }
3478
3479    return (NULL);
3480}
3481
3482static int
3483do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3484{
3485    struct dl_serinfo _info;
3486    struct fill_search_info_args args;
3487
3488    args.request = RTLD_DI_SERINFOSIZE;
3489    args.serinfo = &_info;
3490
3491    _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3492    _info.dls_cnt  = 0;
3493
3494    path_enumerate(obj->rpath, fill_search_info, &args);
3495    path_enumerate(ld_library_path, fill_search_info, &args);
3496    path_enumerate(obj->runpath, fill_search_info, &args);
3497    path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3498    if (!obj->z_nodeflib)
3499      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3500
3501
3502    if (request == RTLD_DI_SERINFOSIZE) {
3503	info->dls_size = _info.dls_size;
3504	info->dls_cnt = _info.dls_cnt;
3505	return (0);
3506    }
3507
3508    if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3509	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3510	return (-1);
3511    }
3512
3513    args.request  = RTLD_DI_SERINFO;
3514    args.serinfo  = info;
3515    args.serpath  = &info->dls_serpath[0];
3516    args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3517
3518    args.flags = LA_SER_RUNPATH;
3519    if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3520	return (-1);
3521
3522    args.flags = LA_SER_LIBPATH;
3523    if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3524	return (-1);
3525
3526    args.flags = LA_SER_RUNPATH;
3527    if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3528	return (-1);
3529
3530    args.flags = LA_SER_CONFIG;
3531    if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3532      != NULL)
3533	return (-1);
3534
3535    args.flags = LA_SER_DEFAULT;
3536    if (!obj->z_nodeflib &&
3537      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3538	return (-1);
3539    return (0);
3540}
3541
3542static int
3543rtld_dirname(const char *path, char *bname)
3544{
3545    const char *endp;
3546
3547    /* Empty or NULL string gets treated as "." */
3548    if (path == NULL || *path == '\0') {
3549	bname[0] = '.';
3550	bname[1] = '\0';
3551	return (0);
3552    }
3553
3554    /* Strip trailing slashes */
3555    endp = path + strlen(path) - 1;
3556    while (endp > path && *endp == '/')
3557	endp--;
3558
3559    /* Find the start of the dir */
3560    while (endp > path && *endp != '/')
3561	endp--;
3562
3563    /* Either the dir is "/" or there are no slashes */
3564    if (endp == path) {
3565	bname[0] = *endp == '/' ? '/' : '.';
3566	bname[1] = '\0';
3567	return (0);
3568    } else {
3569	do {
3570	    endp--;
3571	} while (endp > path && *endp == '/');
3572    }
3573
3574    if (endp - path + 2 > PATH_MAX)
3575    {
3576	_rtld_error("Filename is too long: %s", path);
3577	return(-1);
3578    }
3579
3580    strncpy(bname, path, endp - path + 1);
3581    bname[endp - path + 1] = '\0';
3582    return (0);
3583}
3584
3585static int
3586rtld_dirname_abs(const char *path, char *base)
3587{
3588	char *last;
3589
3590	if (realpath(path, base) == NULL)
3591		return (-1);
3592	dbg("%s -> %s", path, base);
3593	last = strrchr(base, '/');
3594	if (last == NULL)
3595		return (-1);
3596	if (last != base)
3597		*last = '\0';
3598	return (0);
3599}
3600
3601static void
3602linkmap_add(Obj_Entry *obj)
3603{
3604    struct link_map *l = &obj->linkmap;
3605    struct link_map *prev;
3606
3607    obj->linkmap.l_name = obj->path;
3608    obj->linkmap.l_addr = obj->mapbase;
3609    obj->linkmap.l_ld = obj->dynamic;
3610#ifdef __mips__
3611    /* GDB needs load offset on MIPS to use the symbols */
3612    obj->linkmap.l_offs = obj->relocbase;
3613#endif
3614
3615    if (r_debug.r_map == NULL) {
3616	r_debug.r_map = l;
3617	return;
3618    }
3619
3620    /*
3621     * Scan to the end of the list, but not past the entry for the
3622     * dynamic linker, which we want to keep at the very end.
3623     */
3624    for (prev = r_debug.r_map;
3625      prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3626      prev = prev->l_next)
3627	;
3628
3629    /* Link in the new entry. */
3630    l->l_prev = prev;
3631    l->l_next = prev->l_next;
3632    if (l->l_next != NULL)
3633	l->l_next->l_prev = l;
3634    prev->l_next = l;
3635}
3636
3637static void
3638linkmap_delete(Obj_Entry *obj)
3639{
3640    struct link_map *l = &obj->linkmap;
3641
3642    if (l->l_prev == NULL) {
3643	if ((r_debug.r_map = l->l_next) != NULL)
3644	    l->l_next->l_prev = NULL;
3645	return;
3646    }
3647
3648    if ((l->l_prev->l_next = l->l_next) != NULL)
3649	l->l_next->l_prev = l->l_prev;
3650}
3651
3652/*
3653 * Function for the debugger to set a breakpoint on to gain control.
3654 *
3655 * The two parameters allow the debugger to easily find and determine
3656 * what the runtime loader is doing and to whom it is doing it.
3657 *
3658 * When the loadhook trap is hit (r_debug_state, set at program
3659 * initialization), the arguments can be found on the stack:
3660 *
3661 *  +8   struct link_map *m
3662 *  +4   struct r_debug  *rd
3663 *  +0   RetAddr
3664 */
3665void
3666r_debug_state(struct r_debug* rd, struct link_map *m)
3667{
3668    /*
3669     * The following is a hack to force the compiler to emit calls to
3670     * this function, even when optimizing.  If the function is empty,
3671     * the compiler is not obliged to emit any code for calls to it,
3672     * even when marked __noinline.  However, gdb depends on those
3673     * calls being made.
3674     */
3675    __compiler_membar();
3676}
3677
3678/*
3679 * A function called after init routines have completed. This can be used to
3680 * break before a program's entry routine is called, and can be used when
3681 * main is not available in the symbol table.
3682 */
3683void
3684_r_debug_postinit(struct link_map *m)
3685{
3686
3687	/* See r_debug_state(). */
3688	__compiler_membar();
3689}
3690
3691/*
3692 * Get address of the pointer variable in the main program.
3693 * Prefer non-weak symbol over the weak one.
3694 */
3695static const void **
3696get_program_var_addr(const char *name, RtldLockState *lockstate)
3697{
3698    SymLook req;
3699    DoneList donelist;
3700
3701    symlook_init(&req, name);
3702    req.lockstate = lockstate;
3703    donelist_init(&donelist);
3704    if (symlook_global(&req, &donelist) != 0)
3705	return (NULL);
3706    if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3707	return ((const void **)make_function_pointer(req.sym_out,
3708	  req.defobj_out));
3709    else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3710	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3711    else
3712	return ((const void **)(req.defobj_out->relocbase +
3713	  req.sym_out->st_value));
3714}
3715
3716/*
3717 * Set a pointer variable in the main program to the given value.  This
3718 * is used to set key variables such as "environ" before any of the
3719 * init functions are called.
3720 */
3721static void
3722set_program_var(const char *name, const void *value)
3723{
3724    const void **addr;
3725
3726    if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3727	dbg("\"%s\": *%p <-- %p", name, addr, value);
3728	*addr = value;
3729    }
3730}
3731
3732/*
3733 * Search the global objects, including dependencies and main object,
3734 * for the given symbol.
3735 */
3736static int
3737symlook_global(SymLook *req, DoneList *donelist)
3738{
3739    SymLook req1;
3740    const Objlist_Entry *elm;
3741    int res;
3742
3743    symlook_init_from_req(&req1, req);
3744
3745    /* Search all objects loaded at program start up. */
3746    if (req->defobj_out == NULL ||
3747      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3748	res = symlook_list(&req1, &list_main, donelist);
3749	if (res == 0 && (req->defobj_out == NULL ||
3750	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3751	    req->sym_out = req1.sym_out;
3752	    req->defobj_out = req1.defobj_out;
3753	    assert(req->defobj_out != NULL);
3754	}
3755    }
3756
3757    /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3758    STAILQ_FOREACH(elm, &list_global, link) {
3759	if (req->defobj_out != NULL &&
3760	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3761	    break;
3762	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3763	if (res == 0 && (req->defobj_out == NULL ||
3764	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3765	    req->sym_out = req1.sym_out;
3766	    req->defobj_out = req1.defobj_out;
3767	    assert(req->defobj_out != NULL);
3768	}
3769    }
3770
3771    return (req->sym_out != NULL ? 0 : ESRCH);
3772}
3773
3774/*
3775 * Given a symbol name in a referencing object, find the corresponding
3776 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3777 * no definition was found.  Returns a pointer to the Obj_Entry of the
3778 * defining object via the reference parameter DEFOBJ_OUT.
3779 */
3780static int
3781symlook_default(SymLook *req, const Obj_Entry *refobj)
3782{
3783    DoneList donelist;
3784    const Objlist_Entry *elm;
3785    SymLook req1;
3786    int res;
3787
3788    donelist_init(&donelist);
3789    symlook_init_from_req(&req1, req);
3790
3791    /* Look first in the referencing object if linked symbolically. */
3792    if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3793	res = symlook_obj(&req1, refobj);
3794	if (res == 0) {
3795	    req->sym_out = req1.sym_out;
3796	    req->defobj_out = req1.defobj_out;
3797	    assert(req->defobj_out != NULL);
3798	}
3799    }
3800
3801    symlook_global(req, &donelist);
3802
3803    /* Search all dlopened DAGs containing the referencing object. */
3804    STAILQ_FOREACH(elm, &refobj->dldags, link) {
3805	if (req->sym_out != NULL &&
3806	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3807	    break;
3808	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3809	if (res == 0 && (req->sym_out == NULL ||
3810	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3811	    req->sym_out = req1.sym_out;
3812	    req->defobj_out = req1.defobj_out;
3813	    assert(req->defobj_out != NULL);
3814	}
3815    }
3816
3817    /*
3818     * Search the dynamic linker itself, and possibly resolve the
3819     * symbol from there.  This is how the application links to
3820     * dynamic linker services such as dlopen.
3821     */
3822    if (req->sym_out == NULL ||
3823      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3824	res = symlook_obj(&req1, &obj_rtld);
3825	if (res == 0) {
3826	    req->sym_out = req1.sym_out;
3827	    req->defobj_out = req1.defobj_out;
3828	    assert(req->defobj_out != NULL);
3829	}
3830    }
3831
3832    return (req->sym_out != NULL ? 0 : ESRCH);
3833}
3834
3835static int
3836symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3837{
3838    const Elf_Sym *def;
3839    const Obj_Entry *defobj;
3840    const Objlist_Entry *elm;
3841    SymLook req1;
3842    int res;
3843
3844    def = NULL;
3845    defobj = NULL;
3846    STAILQ_FOREACH(elm, objlist, link) {
3847	if (donelist_check(dlp, elm->obj))
3848	    continue;
3849	symlook_init_from_req(&req1, req);
3850	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3851	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3852		def = req1.sym_out;
3853		defobj = req1.defobj_out;
3854		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3855		    break;
3856	    }
3857	}
3858    }
3859    if (def != NULL) {
3860	req->sym_out = def;
3861	req->defobj_out = defobj;
3862	return (0);
3863    }
3864    return (ESRCH);
3865}
3866
3867/*
3868 * Search the chain of DAGS cointed to by the given Needed_Entry
3869 * for a symbol of the given name.  Each DAG is scanned completely
3870 * before advancing to the next one.  Returns a pointer to the symbol,
3871 * or NULL if no definition was found.
3872 */
3873static int
3874symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3875{
3876    const Elf_Sym *def;
3877    const Needed_Entry *n;
3878    const Obj_Entry *defobj;
3879    SymLook req1;
3880    int res;
3881
3882    def = NULL;
3883    defobj = NULL;
3884    symlook_init_from_req(&req1, req);
3885    for (n = needed; n != NULL; n = n->next) {
3886	if (n->obj == NULL ||
3887	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3888	    continue;
3889	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3890	    def = req1.sym_out;
3891	    defobj = req1.defobj_out;
3892	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3893		break;
3894	}
3895    }
3896    if (def != NULL) {
3897	req->sym_out = def;
3898	req->defobj_out = defobj;
3899	return (0);
3900    }
3901    return (ESRCH);
3902}
3903
3904/*
3905 * Search the symbol table of a single shared object for a symbol of
3906 * the given name and version, if requested.  Returns a pointer to the
3907 * symbol, or NULL if no definition was found.  If the object is
3908 * filter, return filtered symbol from filtee.
3909 *
3910 * The symbol's hash value is passed in for efficiency reasons; that
3911 * eliminates many recomputations of the hash value.
3912 */
3913int
3914symlook_obj(SymLook *req, const Obj_Entry *obj)
3915{
3916    DoneList donelist;
3917    SymLook req1;
3918    int flags, res, mres;
3919
3920    /*
3921     * If there is at least one valid hash at this point, we prefer to
3922     * use the faster GNU version if available.
3923     */
3924    if (obj->valid_hash_gnu)
3925	mres = symlook_obj1_gnu(req, obj);
3926    else if (obj->valid_hash_sysv)
3927	mres = symlook_obj1_sysv(req, obj);
3928    else
3929	return (EINVAL);
3930
3931    if (mres == 0) {
3932	if (obj->needed_filtees != NULL) {
3933	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3934	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3935	    donelist_init(&donelist);
3936	    symlook_init_from_req(&req1, req);
3937	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3938	    if (res == 0) {
3939		req->sym_out = req1.sym_out;
3940		req->defobj_out = req1.defobj_out;
3941	    }
3942	    return (res);
3943	}
3944	if (obj->needed_aux_filtees != NULL) {
3945	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3946	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3947	    donelist_init(&donelist);
3948	    symlook_init_from_req(&req1, req);
3949	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3950	    if (res == 0) {
3951		req->sym_out = req1.sym_out;
3952		req->defobj_out = req1.defobj_out;
3953		return (res);
3954	    }
3955	}
3956    }
3957    return (mres);
3958}
3959
3960/* Symbol match routine common to both hash functions */
3961static bool
3962matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3963    const unsigned long symnum)
3964{
3965	Elf_Versym verndx;
3966	const Elf_Sym *symp;
3967	const char *strp;
3968
3969	symp = obj->symtab + symnum;
3970	strp = obj->strtab + symp->st_name;
3971
3972	switch (ELF_ST_TYPE(symp->st_info)) {
3973	case STT_FUNC:
3974	case STT_NOTYPE:
3975	case STT_OBJECT:
3976	case STT_COMMON:
3977	case STT_GNU_IFUNC:
3978		if (symp->st_value == 0)
3979			return (false);
3980		/* fallthrough */
3981	case STT_TLS:
3982		if (symp->st_shndx != SHN_UNDEF)
3983			break;
3984#ifndef __mips__
3985		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3986		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3987			break;
3988		/* fallthrough */
3989#endif
3990	default:
3991		return (false);
3992	}
3993	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3994		return (false);
3995
3996	if (req->ventry == NULL) {
3997		if (obj->versyms != NULL) {
3998			verndx = VER_NDX(obj->versyms[symnum]);
3999			if (verndx > obj->vernum) {
4000				_rtld_error(
4001				    "%s: symbol %s references wrong version %d",
4002				    obj->path, obj->strtab + symnum, verndx);
4003				return (false);
4004			}
4005			/*
4006			 * If we are not called from dlsym (i.e. this
4007			 * is a normal relocation from unversioned
4008			 * binary), accept the symbol immediately if
4009			 * it happens to have first version after this
4010			 * shared object became versioned.  Otherwise,
4011			 * if symbol is versioned and not hidden,
4012			 * remember it. If it is the only symbol with
4013			 * this name exported by the shared object, it
4014			 * will be returned as a match by the calling
4015			 * function. If symbol is global (verndx < 2)
4016			 * accept it unconditionally.
4017			 */
4018			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4019			    verndx == VER_NDX_GIVEN) {
4020				result->sym_out = symp;
4021				return (true);
4022			}
4023			else if (verndx >= VER_NDX_GIVEN) {
4024				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4025				    == 0) {
4026					if (result->vsymp == NULL)
4027						result->vsymp = symp;
4028					result->vcount++;
4029				}
4030				return (false);
4031			}
4032		}
4033		result->sym_out = symp;
4034		return (true);
4035	}
4036	if (obj->versyms == NULL) {
4037		if (object_match_name(obj, req->ventry->name)) {
4038			_rtld_error("%s: object %s should provide version %s "
4039			    "for symbol %s", obj_rtld.path, obj->path,
4040			    req->ventry->name, obj->strtab + symnum);
4041			return (false);
4042		}
4043	} else {
4044		verndx = VER_NDX(obj->versyms[symnum]);
4045		if (verndx > obj->vernum) {
4046			_rtld_error("%s: symbol %s references wrong version %d",
4047			    obj->path, obj->strtab + symnum, verndx);
4048			return (false);
4049		}
4050		if (obj->vertab[verndx].hash != req->ventry->hash ||
4051		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4052			/*
4053			 * Version does not match. Look if this is a
4054			 * global symbol and if it is not hidden. If
4055			 * global symbol (verndx < 2) is available,
4056			 * use it. Do not return symbol if we are
4057			 * called by dlvsym, because dlvsym looks for
4058			 * a specific version and default one is not
4059			 * what dlvsym wants.
4060			 */
4061			if ((req->flags & SYMLOOK_DLSYM) ||
4062			    (verndx >= VER_NDX_GIVEN) ||
4063			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4064				return (false);
4065		}
4066	}
4067	result->sym_out = symp;
4068	return (true);
4069}
4070
4071/*
4072 * Search for symbol using SysV hash function.
4073 * obj->buckets is known not to be NULL at this point; the test for this was
4074 * performed with the obj->valid_hash_sysv assignment.
4075 */
4076static int
4077symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4078{
4079	unsigned long symnum;
4080	Sym_Match_Result matchres;
4081
4082	matchres.sym_out = NULL;
4083	matchres.vsymp = NULL;
4084	matchres.vcount = 0;
4085
4086	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4087	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4088		if (symnum >= obj->nchains)
4089			return (ESRCH);	/* Bad object */
4090
4091		if (matched_symbol(req, obj, &matchres, symnum)) {
4092			req->sym_out = matchres.sym_out;
4093			req->defobj_out = obj;
4094			return (0);
4095		}
4096	}
4097	if (matchres.vcount == 1) {
4098		req->sym_out = matchres.vsymp;
4099		req->defobj_out = obj;
4100		return (0);
4101	}
4102	return (ESRCH);
4103}
4104
4105/* Search for symbol using GNU hash function */
4106static int
4107symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4108{
4109	Elf_Addr bloom_word;
4110	const Elf32_Word *hashval;
4111	Elf32_Word bucket;
4112	Sym_Match_Result matchres;
4113	unsigned int h1, h2;
4114	unsigned long symnum;
4115
4116	matchres.sym_out = NULL;
4117	matchres.vsymp = NULL;
4118	matchres.vcount = 0;
4119
4120	/* Pick right bitmask word from Bloom filter array */
4121	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4122	    obj->maskwords_bm_gnu];
4123
4124	/* Calculate modulus word size of gnu hash and its derivative */
4125	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4126	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4127
4128	/* Filter out the "definitely not in set" queries */
4129	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4130		return (ESRCH);
4131
4132	/* Locate hash chain and corresponding value element*/
4133	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4134	if (bucket == 0)
4135		return (ESRCH);
4136	hashval = &obj->chain_zero_gnu[bucket];
4137	do {
4138		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4139			symnum = hashval - obj->chain_zero_gnu;
4140			if (matched_symbol(req, obj, &matchres, symnum)) {
4141				req->sym_out = matchres.sym_out;
4142				req->defobj_out = obj;
4143				return (0);
4144			}
4145		}
4146	} while ((*hashval++ & 1) == 0);
4147	if (matchres.vcount == 1) {
4148		req->sym_out = matchres.vsymp;
4149		req->defobj_out = obj;
4150		return (0);
4151	}
4152	return (ESRCH);
4153}
4154
4155static void
4156trace_loaded_objects(Obj_Entry *obj)
4157{
4158    char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4159    int		c;
4160
4161    if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4162	main_local = "";
4163
4164    if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4165	fmt1 = "\t%o => %p (%x)\n";
4166
4167    if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4168	fmt2 = "\t%o (%x)\n";
4169
4170    list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
4171
4172    TAILQ_FOREACH_FROM(obj, &obj_list, next) {
4173	Needed_Entry		*needed;
4174	char			*name, *path;
4175	bool			is_lib;
4176
4177	if (obj->marker)
4178	    continue;
4179	if (list_containers && obj->needed != NULL)
4180	    rtld_printf("%s:\n", obj->path);
4181	for (needed = obj->needed; needed; needed = needed->next) {
4182	    if (needed->obj != NULL) {
4183		if (needed->obj->traced && !list_containers)
4184		    continue;
4185		needed->obj->traced = true;
4186		path = needed->obj->path;
4187	    } else
4188		path = "not found";
4189
4190	    name = (char *)obj->strtab + needed->name;
4191	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4192
4193	    fmt = is_lib ? fmt1 : fmt2;
4194	    while ((c = *fmt++) != '\0') {
4195		switch (c) {
4196		default:
4197		    rtld_putchar(c);
4198		    continue;
4199		case '\\':
4200		    switch (c = *fmt) {
4201		    case '\0':
4202			continue;
4203		    case 'n':
4204			rtld_putchar('\n');
4205			break;
4206		    case 't':
4207			rtld_putchar('\t');
4208			break;
4209		    }
4210		    break;
4211		case '%':
4212		    switch (c = *fmt) {
4213		    case '\0':
4214			continue;
4215		    case '%':
4216		    default:
4217			rtld_putchar(c);
4218			break;
4219		    case 'A':
4220			rtld_putstr(main_local);
4221			break;
4222		    case 'a':
4223			rtld_putstr(obj_main->path);
4224			break;
4225		    case 'o':
4226			rtld_putstr(name);
4227			break;
4228#if 0
4229		    case 'm':
4230			rtld_printf("%d", sodp->sod_major);
4231			break;
4232		    case 'n':
4233			rtld_printf("%d", sodp->sod_minor);
4234			break;
4235#endif
4236		    case 'p':
4237			rtld_putstr(path);
4238			break;
4239		    case 'x':
4240			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4241			  0);
4242			break;
4243		    }
4244		    break;
4245		}
4246		++fmt;
4247	    }
4248	}
4249    }
4250}
4251
4252/*
4253 * Unload a dlopened object and its dependencies from memory and from
4254 * our data structures.  It is assumed that the DAG rooted in the
4255 * object has already been unreferenced, and that the object has a
4256 * reference count of 0.
4257 */
4258static void
4259unload_object(Obj_Entry *root)
4260{
4261	Obj_Entry *obj, *obj1;
4262
4263	assert(root->refcount == 0);
4264
4265	/*
4266	 * Pass over the DAG removing unreferenced objects from
4267	 * appropriate lists.
4268	 */
4269	unlink_object(root);
4270
4271	/* Unmap all objects that are no longer referenced. */
4272	TAILQ_FOREACH_SAFE(obj, &obj_list, next, obj1) {
4273		if (obj->marker || obj->refcount != 0)
4274			continue;
4275		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4276		    obj->mapsize, 0, obj->path);
4277		dbg("unloading \"%s\"", obj->path);
4278		unload_filtees(root);
4279		munmap(obj->mapbase, obj->mapsize);
4280		linkmap_delete(obj);
4281		TAILQ_REMOVE(&obj_list, obj, next);
4282		obj_count--;
4283		obj_free(obj);
4284	}
4285}
4286
4287static void
4288unlink_object(Obj_Entry *root)
4289{
4290    Objlist_Entry *elm;
4291
4292    if (root->refcount == 0) {
4293	/* Remove the object from the RTLD_GLOBAL list. */
4294	objlist_remove(&list_global, root);
4295
4296    	/* Remove the object from all objects' DAG lists. */
4297    	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4298	    objlist_remove(&elm->obj->dldags, root);
4299	    if (elm->obj != root)
4300		unlink_object(elm->obj);
4301	}
4302    }
4303}
4304
4305static void
4306ref_dag(Obj_Entry *root)
4307{
4308    Objlist_Entry *elm;
4309
4310    assert(root->dag_inited);
4311    STAILQ_FOREACH(elm, &root->dagmembers, link)
4312	elm->obj->refcount++;
4313}
4314
4315static void
4316unref_dag(Obj_Entry *root)
4317{
4318    Objlist_Entry *elm;
4319
4320    assert(root->dag_inited);
4321    STAILQ_FOREACH(elm, &root->dagmembers, link)
4322	elm->obj->refcount--;
4323}
4324
4325/*
4326 * Common code for MD __tls_get_addr().
4327 */
4328static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4329static void *
4330tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4331{
4332    Elf_Addr *newdtv, *dtv;
4333    RtldLockState lockstate;
4334    int to_copy;
4335
4336    dtv = *dtvp;
4337    /* Check dtv generation in case new modules have arrived */
4338    if (dtv[0] != tls_dtv_generation) {
4339	wlock_acquire(rtld_bind_lock, &lockstate);
4340	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4341	to_copy = dtv[1];
4342	if (to_copy > tls_max_index)
4343	    to_copy = tls_max_index;
4344	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4345	newdtv[0] = tls_dtv_generation;
4346	newdtv[1] = tls_max_index;
4347	free(dtv);
4348	lock_release(rtld_bind_lock, &lockstate);
4349	dtv = *dtvp = newdtv;
4350    }
4351
4352    /* Dynamically allocate module TLS if necessary */
4353    if (dtv[index + 1] == 0) {
4354	/* Signal safe, wlock will block out signals. */
4355	wlock_acquire(rtld_bind_lock, &lockstate);
4356	if (!dtv[index + 1])
4357	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4358	lock_release(rtld_bind_lock, &lockstate);
4359    }
4360    return ((void *)(dtv[index + 1] + offset));
4361}
4362
4363void *
4364tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4365{
4366	Elf_Addr *dtv;
4367
4368	dtv = *dtvp;
4369	/* Check dtv generation in case new modules have arrived */
4370	if (__predict_true(dtv[0] == tls_dtv_generation &&
4371	    dtv[index + 1] != 0))
4372		return ((void *)(dtv[index + 1] + offset));
4373	return (tls_get_addr_slow(dtvp, index, offset));
4374}
4375
4376#if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
4377
4378/*
4379 * Allocate Static TLS using the Variant I method.
4380 */
4381void *
4382allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4383{
4384    Obj_Entry *obj;
4385    char *tcb;
4386    Elf_Addr **tls;
4387    Elf_Addr *dtv;
4388    Elf_Addr addr;
4389    int i;
4390
4391    if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4392	return (oldtcb);
4393
4394    assert(tcbsize >= TLS_TCB_SIZE);
4395    tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4396    tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4397
4398    if (oldtcb != NULL) {
4399	memcpy(tls, oldtcb, tls_static_space);
4400	free(oldtcb);
4401
4402	/* Adjust the DTV. */
4403	dtv = tls[0];
4404	for (i = 0; i < dtv[1]; i++) {
4405	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4406		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4407		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4408	    }
4409	}
4410    } else {
4411	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4412	tls[0] = dtv;
4413	dtv[0] = tls_dtv_generation;
4414	dtv[1] = tls_max_index;
4415
4416	for (obj = globallist_curr(objs); obj != NULL;
4417	  obj = globallist_next(obj)) {
4418	    if (obj->tlsoffset > 0) {
4419		addr = (Elf_Addr)tls + obj->tlsoffset;
4420		if (obj->tlsinitsize > 0)
4421		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4422		if (obj->tlssize > obj->tlsinitsize)
4423		    memset((void*) (addr + obj->tlsinitsize), 0,
4424			   obj->tlssize - obj->tlsinitsize);
4425		dtv[obj->tlsindex + 1] = addr;
4426	    }
4427	}
4428    }
4429
4430    return (tcb);
4431}
4432
4433void
4434free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4435{
4436    Elf_Addr *dtv;
4437    Elf_Addr tlsstart, tlsend;
4438    int dtvsize, i;
4439
4440    assert(tcbsize >= TLS_TCB_SIZE);
4441
4442    tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4443    tlsend = tlsstart + tls_static_space;
4444
4445    dtv = *(Elf_Addr **)tlsstart;
4446    dtvsize = dtv[1];
4447    for (i = 0; i < dtvsize; i++) {
4448	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4449	    free((void*)dtv[i+2]);
4450	}
4451    }
4452    free(dtv);
4453    free(tcb);
4454}
4455
4456#endif
4457
4458#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4459
4460/*
4461 * Allocate Static TLS using the Variant II method.
4462 */
4463void *
4464allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4465{
4466    Obj_Entry *obj;
4467    size_t size, ralign;
4468    char *tls;
4469    Elf_Addr *dtv, *olddtv;
4470    Elf_Addr segbase, oldsegbase, addr;
4471    int i;
4472
4473    ralign = tcbalign;
4474    if (tls_static_max_align > ralign)
4475	    ralign = tls_static_max_align;
4476    size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4477
4478    assert(tcbsize >= 2*sizeof(Elf_Addr));
4479    tls = malloc_aligned(size, ralign);
4480    dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4481
4482    segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4483    ((Elf_Addr*)segbase)[0] = segbase;
4484    ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4485
4486    dtv[0] = tls_dtv_generation;
4487    dtv[1] = tls_max_index;
4488
4489    if (oldtls) {
4490	/*
4491	 * Copy the static TLS block over whole.
4492	 */
4493	oldsegbase = (Elf_Addr) oldtls;
4494	memcpy((void *)(segbase - tls_static_space),
4495	       (const void *)(oldsegbase - tls_static_space),
4496	       tls_static_space);
4497
4498	/*
4499	 * If any dynamic TLS blocks have been created tls_get_addr(),
4500	 * move them over.
4501	 */
4502	olddtv = ((Elf_Addr**)oldsegbase)[1];
4503	for (i = 0; i < olddtv[1]; i++) {
4504	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4505		dtv[i+2] = olddtv[i+2];
4506		olddtv[i+2] = 0;
4507	    }
4508	}
4509
4510	/*
4511	 * We assume that this block was the one we created with
4512	 * allocate_initial_tls().
4513	 */
4514	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4515    } else {
4516	obj = objs;
4517	TAILQ_FOREACH_FROM(obj, &obj_list, next) {
4518		if (obj->marker || obj->tlsoffset == 0)
4519			continue;
4520		addr = segbase - obj->tlsoffset;
4521		memset((void*) (addr + obj->tlsinitsize),
4522		       0, obj->tlssize - obj->tlsinitsize);
4523		if (obj->tlsinit)
4524		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4525		dtv[obj->tlsindex + 1] = addr;
4526	}
4527    }
4528
4529    return (void*) segbase;
4530}
4531
4532void
4533free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4534{
4535    Elf_Addr* dtv;
4536    size_t size, ralign;
4537    int dtvsize, i;
4538    Elf_Addr tlsstart, tlsend;
4539
4540    /*
4541     * Figure out the size of the initial TLS block so that we can
4542     * find stuff which ___tls_get_addr() allocated dynamically.
4543     */
4544    ralign = tcbalign;
4545    if (tls_static_max_align > ralign)
4546	    ralign = tls_static_max_align;
4547    size = round(tls_static_space, ralign);
4548
4549    dtv = ((Elf_Addr**)tls)[1];
4550    dtvsize = dtv[1];
4551    tlsend = (Elf_Addr) tls;
4552    tlsstart = tlsend - size;
4553    for (i = 0; i < dtvsize; i++) {
4554	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4555		free_aligned((void *)dtv[i + 2]);
4556	}
4557    }
4558
4559    free_aligned((void *)tlsstart);
4560    free((void*) dtv);
4561}
4562
4563#endif
4564
4565/*
4566 * Allocate TLS block for module with given index.
4567 */
4568void *
4569allocate_module_tls(int index)
4570{
4571    Obj_Entry* obj;
4572    char* p;
4573
4574    TAILQ_FOREACH(obj, &obj_list, next) {
4575	if (obj->marker)
4576	    continue;
4577	if (obj->tlsindex == index)
4578	    break;
4579    }
4580    if (!obj) {
4581	_rtld_error("Can't find module with TLS index %d", index);
4582	rtld_die();
4583    }
4584
4585    p = malloc_aligned(obj->tlssize, obj->tlsalign);
4586    memcpy(p, obj->tlsinit, obj->tlsinitsize);
4587    memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4588
4589    return p;
4590}
4591
4592bool
4593allocate_tls_offset(Obj_Entry *obj)
4594{
4595    size_t off;
4596
4597    if (obj->tls_done)
4598	return true;
4599
4600    if (obj->tlssize == 0) {
4601	obj->tls_done = true;
4602	return true;
4603    }
4604
4605    if (tls_last_offset == 0)
4606	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4607    else
4608	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4609				   obj->tlssize, obj->tlsalign);
4610
4611    /*
4612     * If we have already fixed the size of the static TLS block, we
4613     * must stay within that size. When allocating the static TLS, we
4614     * leave a small amount of space spare to be used for dynamically
4615     * loading modules which use static TLS.
4616     */
4617    if (tls_static_space != 0) {
4618	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4619	    return false;
4620    } else if (obj->tlsalign > tls_static_max_align) {
4621	    tls_static_max_align = obj->tlsalign;
4622    }
4623
4624    tls_last_offset = obj->tlsoffset = off;
4625    tls_last_size = obj->tlssize;
4626    obj->tls_done = true;
4627
4628    return true;
4629}
4630
4631void
4632free_tls_offset(Obj_Entry *obj)
4633{
4634
4635    /*
4636     * If we were the last thing to allocate out of the static TLS
4637     * block, we give our space back to the 'allocator'. This is a
4638     * simplistic workaround to allow libGL.so.1 to be loaded and
4639     * unloaded multiple times.
4640     */
4641    if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4642	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4643	tls_last_offset -= obj->tlssize;
4644	tls_last_size = 0;
4645    }
4646}
4647
4648void *
4649_rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4650{
4651    void *ret;
4652    RtldLockState lockstate;
4653
4654    wlock_acquire(rtld_bind_lock, &lockstate);
4655    ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
4656      tcbsize, tcbalign);
4657    lock_release(rtld_bind_lock, &lockstate);
4658    return (ret);
4659}
4660
4661void
4662_rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4663{
4664    RtldLockState lockstate;
4665
4666    wlock_acquire(rtld_bind_lock, &lockstate);
4667    free_tls(tcb, tcbsize, tcbalign);
4668    lock_release(rtld_bind_lock, &lockstate);
4669}
4670
4671static void
4672object_add_name(Obj_Entry *obj, const char *name)
4673{
4674    Name_Entry *entry;
4675    size_t len;
4676
4677    len = strlen(name);
4678    entry = malloc(sizeof(Name_Entry) + len);
4679
4680    if (entry != NULL) {
4681	strcpy(entry->name, name);
4682	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4683    }
4684}
4685
4686static int
4687object_match_name(const Obj_Entry *obj, const char *name)
4688{
4689    Name_Entry *entry;
4690
4691    STAILQ_FOREACH(entry, &obj->names, link) {
4692	if (strcmp(name, entry->name) == 0)
4693	    return (1);
4694    }
4695    return (0);
4696}
4697
4698static Obj_Entry *
4699locate_dependency(const Obj_Entry *obj, const char *name)
4700{
4701    const Objlist_Entry *entry;
4702    const Needed_Entry *needed;
4703
4704    STAILQ_FOREACH(entry, &list_main, link) {
4705	if (object_match_name(entry->obj, name))
4706	    return entry->obj;
4707    }
4708
4709    for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4710	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4711	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4712	    /*
4713	     * If there is DT_NEEDED for the name we are looking for,
4714	     * we are all set.  Note that object might not be found if
4715	     * dependency was not loaded yet, so the function can
4716	     * return NULL here.  This is expected and handled
4717	     * properly by the caller.
4718	     */
4719	    return (needed->obj);
4720	}
4721    }
4722    _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4723	obj->path, name);
4724    rtld_die();
4725}
4726
4727static int
4728check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4729    const Elf_Vernaux *vna)
4730{
4731    const Elf_Verdef *vd;
4732    const char *vername;
4733
4734    vername = refobj->strtab + vna->vna_name;
4735    vd = depobj->verdef;
4736    if (vd == NULL) {
4737	_rtld_error("%s: version %s required by %s not defined",
4738	    depobj->path, vername, refobj->path);
4739	return (-1);
4740    }
4741    for (;;) {
4742	if (vd->vd_version != VER_DEF_CURRENT) {
4743	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4744		depobj->path, vd->vd_version);
4745	    return (-1);
4746	}
4747	if (vna->vna_hash == vd->vd_hash) {
4748	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4749		((char *)vd + vd->vd_aux);
4750	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4751		return (0);
4752	}
4753	if (vd->vd_next == 0)
4754	    break;
4755	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4756    }
4757    if (vna->vna_flags & VER_FLG_WEAK)
4758	return (0);
4759    _rtld_error("%s: version %s required by %s not found",
4760	depobj->path, vername, refobj->path);
4761    return (-1);
4762}
4763
4764static int
4765rtld_verify_object_versions(Obj_Entry *obj)
4766{
4767    const Elf_Verneed *vn;
4768    const Elf_Verdef  *vd;
4769    const Elf_Verdaux *vda;
4770    const Elf_Vernaux *vna;
4771    const Obj_Entry *depobj;
4772    int maxvernum, vernum;
4773
4774    if (obj->ver_checked)
4775	return (0);
4776    obj->ver_checked = true;
4777
4778    maxvernum = 0;
4779    /*
4780     * Walk over defined and required version records and figure out
4781     * max index used by any of them. Do very basic sanity checking
4782     * while there.
4783     */
4784    vn = obj->verneed;
4785    while (vn != NULL) {
4786	if (vn->vn_version != VER_NEED_CURRENT) {
4787	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4788		obj->path, vn->vn_version);
4789	    return (-1);
4790	}
4791	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4792	for (;;) {
4793	    vernum = VER_NEED_IDX(vna->vna_other);
4794	    if (vernum > maxvernum)
4795		maxvernum = vernum;
4796	    if (vna->vna_next == 0)
4797		 break;
4798	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4799	}
4800	if (vn->vn_next == 0)
4801	    break;
4802	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4803    }
4804
4805    vd = obj->verdef;
4806    while (vd != NULL) {
4807	if (vd->vd_version != VER_DEF_CURRENT) {
4808	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4809		obj->path, vd->vd_version);
4810	    return (-1);
4811	}
4812	vernum = VER_DEF_IDX(vd->vd_ndx);
4813	if (vernum > maxvernum)
4814		maxvernum = vernum;
4815	if (vd->vd_next == 0)
4816	    break;
4817	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4818    }
4819
4820    if (maxvernum == 0)
4821	return (0);
4822
4823    /*
4824     * Store version information in array indexable by version index.
4825     * Verify that object version requirements are satisfied along the
4826     * way.
4827     */
4828    obj->vernum = maxvernum + 1;
4829    obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4830
4831    vd = obj->verdef;
4832    while (vd != NULL) {
4833	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4834	    vernum = VER_DEF_IDX(vd->vd_ndx);
4835	    assert(vernum <= maxvernum);
4836	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4837	    obj->vertab[vernum].hash = vd->vd_hash;
4838	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4839	    obj->vertab[vernum].file = NULL;
4840	    obj->vertab[vernum].flags = 0;
4841	}
4842	if (vd->vd_next == 0)
4843	    break;
4844	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4845    }
4846
4847    vn = obj->verneed;
4848    while (vn != NULL) {
4849	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4850	if (depobj == NULL)
4851	    return (-1);
4852	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4853	for (;;) {
4854	    if (check_object_provided_version(obj, depobj, vna))
4855		return (-1);
4856	    vernum = VER_NEED_IDX(vna->vna_other);
4857	    assert(vernum <= maxvernum);
4858	    obj->vertab[vernum].hash = vna->vna_hash;
4859	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4860	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4861	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4862		VER_INFO_HIDDEN : 0;
4863	    if (vna->vna_next == 0)
4864		 break;
4865	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4866	}
4867	if (vn->vn_next == 0)
4868	    break;
4869	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4870    }
4871    return 0;
4872}
4873
4874static int
4875rtld_verify_versions(const Objlist *objlist)
4876{
4877    Objlist_Entry *entry;
4878    int rc;
4879
4880    rc = 0;
4881    STAILQ_FOREACH(entry, objlist, link) {
4882	/*
4883	 * Skip dummy objects or objects that have their version requirements
4884	 * already checked.
4885	 */
4886	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4887	    continue;
4888	if (rtld_verify_object_versions(entry->obj) == -1) {
4889	    rc = -1;
4890	    if (ld_tracing == NULL)
4891		break;
4892	}
4893    }
4894    if (rc == 0 || ld_tracing != NULL)
4895    	rc = rtld_verify_object_versions(&obj_rtld);
4896    return rc;
4897}
4898
4899const Ver_Entry *
4900fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4901{
4902    Elf_Versym vernum;
4903
4904    if (obj->vertab) {
4905	vernum = VER_NDX(obj->versyms[symnum]);
4906	if (vernum >= obj->vernum) {
4907	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4908		obj->path, obj->strtab + symnum, vernum);
4909	} else if (obj->vertab[vernum].hash != 0) {
4910	    return &obj->vertab[vernum];
4911	}
4912    }
4913    return NULL;
4914}
4915
4916int
4917_rtld_get_stack_prot(void)
4918{
4919
4920	return (stack_prot);
4921}
4922
4923int
4924_rtld_is_dlopened(void *arg)
4925{
4926	Obj_Entry *obj;
4927	RtldLockState lockstate;
4928	int res;
4929
4930	rlock_acquire(rtld_bind_lock, &lockstate);
4931	obj = dlcheck(arg);
4932	if (obj == NULL)
4933		obj = obj_from_addr(arg);
4934	if (obj == NULL) {
4935		_rtld_error("No shared object contains address");
4936		lock_release(rtld_bind_lock, &lockstate);
4937		return (-1);
4938	}
4939	res = obj->dlopened ? 1 : 0;
4940	lock_release(rtld_bind_lock, &lockstate);
4941	return (res);
4942}
4943
4944static void
4945map_stacks_exec(RtldLockState *lockstate)
4946{
4947	void (*thr_map_stacks_exec)(void);
4948
4949	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4950		return;
4951	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4952	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4953	if (thr_map_stacks_exec != NULL) {
4954		stack_prot |= PROT_EXEC;
4955		thr_map_stacks_exec();
4956	}
4957}
4958
4959void
4960symlook_init(SymLook *dst, const char *name)
4961{
4962
4963	bzero(dst, sizeof(*dst));
4964	dst->name = name;
4965	dst->hash = elf_hash(name);
4966	dst->hash_gnu = gnu_hash(name);
4967}
4968
4969static void
4970symlook_init_from_req(SymLook *dst, const SymLook *src)
4971{
4972
4973	dst->name = src->name;
4974	dst->hash = src->hash;
4975	dst->hash_gnu = src->hash_gnu;
4976	dst->ventry = src->ventry;
4977	dst->flags = src->flags;
4978	dst->defobj_out = NULL;
4979	dst->sym_out = NULL;
4980	dst->lockstate = src->lockstate;
4981}
4982
4983/*
4984 * Overrides for libc_pic-provided functions.
4985 */
4986
4987int
4988__getosreldate(void)
4989{
4990	size_t len;
4991	int oid[2];
4992	int error, osrel;
4993
4994	if (osreldate != 0)
4995		return (osreldate);
4996
4997	oid[0] = CTL_KERN;
4998	oid[1] = KERN_OSRELDATE;
4999	osrel = 0;
5000	len = sizeof(osrel);
5001	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5002	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5003		osreldate = osrel;
5004	return (osreldate);
5005}
5006
5007void
5008exit(int status)
5009{
5010
5011	_exit(status);
5012}
5013
5014void (*__cleanup)(void);
5015int __isthreaded = 0;
5016int _thread_autoinit_dummy_decl = 1;
5017
5018/*
5019 * No unresolved symbols for rtld.
5020 */
5021void
5022__pthread_cxa_finalize(struct dl_phdr_info *a)
5023{
5024}
5025
5026void
5027__stack_chk_fail(void)
5028{
5029
5030	_rtld_error("stack overflow detected; terminated");
5031	rtld_die();
5032}
5033__weak_reference(__stack_chk_fail, __stack_chk_fail_local);
5034
5035void
5036__chk_fail(void)
5037{
5038
5039	_rtld_error("buffer overflow detected; terminated");
5040	rtld_die();
5041}
5042
5043const char *
5044rtld_strerror(int errnum)
5045{
5046
5047	if (errnum < 0 || errnum >= sys_nerr)
5048		return ("Unknown error");
5049	return (sys_errlist[errnum]);
5050}
5051