rtld.c revision 287331
1/*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5 * Copyright 2012 John Marino <draco@marino.st>.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * $FreeBSD: stable/10/libexec/rtld-elf/rtld.c 287331 2015-08-31 19:20:18Z emaste $
29 */
30
31/*
32 * Dynamic linker for ELF.
33 *
34 * John Polstra <jdp@polstra.com>.
35 */
36
37#include <sys/param.h>
38#include <sys/mount.h>
39#include <sys/mman.h>
40#include <sys/stat.h>
41#include <sys/sysctl.h>
42#include <sys/uio.h>
43#include <sys/utsname.h>
44#include <sys/ktrace.h>
45
46#include <dlfcn.h>
47#include <err.h>
48#include <errno.h>
49#include <fcntl.h>
50#include <stdarg.h>
51#include <stdio.h>
52#include <stdlib.h>
53#include <string.h>
54#include <unistd.h>
55
56#include "debug.h"
57#include "rtld.h"
58#include "libmap.h"
59#include "rtld_tls.h"
60#include "rtld_printf.h"
61#include "notes.h"
62
63#ifndef COMPAT_32BIT
64#define PATH_RTLD	"/libexec/ld-elf.so.1"
65#else
66#define PATH_RTLD	"/libexec/ld-elf32.so.1"
67#endif
68
69/* Types. */
70typedef void (*func_ptr_type)();
71typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
72
73/*
74 * Function declarations.
75 */
76static const char *basename(const char *);
77static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
78    const Elf_Dyn **, const Elf_Dyn **);
79static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
80    const Elf_Dyn *);
81static void digest_dynamic(Obj_Entry *, int);
82static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
83static Obj_Entry *dlcheck(void *);
84static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
85    int lo_flags, int mode, RtldLockState *lockstate);
86static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
87static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
88static bool donelist_check(DoneList *, const Obj_Entry *);
89static void errmsg_restore(char *);
90static char *errmsg_save(void);
91static void *fill_search_info(const char *, size_t, void *);
92static char *find_library(const char *, const Obj_Entry *);
93static const char *gethints(bool);
94static void init_dag(Obj_Entry *);
95static void init_pagesizes(Elf_Auxinfo **aux_info);
96static void init_rtld(caddr_t, Elf_Auxinfo **);
97static void initlist_add_neededs(Needed_Entry *, Objlist *);
98static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
99static void linkmap_add(Obj_Entry *);
100static void linkmap_delete(Obj_Entry *);
101static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
102static void unload_filtees(Obj_Entry *);
103static int load_needed_objects(Obj_Entry *, int);
104static int load_preload_objects(void);
105static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
106static void map_stacks_exec(RtldLockState *);
107static Obj_Entry *obj_from_addr(const void *);
108static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
109static void objlist_call_init(Objlist *, RtldLockState *);
110static void objlist_clear(Objlist *);
111static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
112static void objlist_init(Objlist *);
113static void objlist_push_head(Objlist *, Obj_Entry *);
114static void objlist_push_tail(Objlist *, Obj_Entry *);
115static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
116static void objlist_remove(Objlist *, Obj_Entry *);
117static void *path_enumerate(const char *, path_enum_proc, void *);
118static int relocate_object_dag(Obj_Entry *root, bool bind_now,
119    Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
120static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
121    int flags, RtldLockState *lockstate);
122static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
123    RtldLockState *);
124static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
125    int flags, RtldLockState *lockstate);
126static int rtld_dirname(const char *, char *);
127static int rtld_dirname_abs(const char *, char *);
128static void *rtld_dlopen(const char *name, int fd, int mode);
129static void rtld_exit(void);
130static char *search_library_path(const char *, const char *);
131static const void **get_program_var_addr(const char *, RtldLockState *);
132static void set_program_var(const char *, const void *);
133static int symlook_default(SymLook *, const Obj_Entry *refobj);
134static int symlook_global(SymLook *, DoneList *);
135static void symlook_init_from_req(SymLook *, const SymLook *);
136static int symlook_list(SymLook *, const Objlist *, DoneList *);
137static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
138static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
139static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
140static void trace_loaded_objects(Obj_Entry *);
141static void unlink_object(Obj_Entry *);
142static void unload_object(Obj_Entry *);
143static void unref_dag(Obj_Entry *);
144static void ref_dag(Obj_Entry *);
145static char *origin_subst_one(Obj_Entry *, char *, const char *,
146    const char *, bool);
147static char *origin_subst(Obj_Entry *, char *);
148static bool obj_resolve_origin(Obj_Entry *obj);
149static void preinit_main(void);
150static int  rtld_verify_versions(const Objlist *);
151static int  rtld_verify_object_versions(Obj_Entry *);
152static void object_add_name(Obj_Entry *, const char *);
153static int  object_match_name(const Obj_Entry *, const char *);
154static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
155static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
156    struct dl_phdr_info *phdr_info);
157static uint32_t gnu_hash(const char *);
158static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
159    const unsigned long);
160
161void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
162void _r_debug_postinit(struct link_map *) __noinline __exported;
163
164/*
165 * Data declarations.
166 */
167static char *error_message;	/* Message for dlerror(), or NULL */
168struct r_debug r_debug __exported;	/* for GDB; */
169static bool libmap_disable;	/* Disable libmap */
170static bool ld_loadfltr;	/* Immediate filters processing */
171static char *libmap_override;	/* Maps to use in addition to libmap.conf */
172static bool trust;		/* False for setuid and setgid programs */
173static bool dangerous_ld_env;	/* True if environment variables have been
174				   used to affect the libraries loaded */
175static char *ld_bind_now;	/* Environment variable for immediate binding */
176static char *ld_debug;		/* Environment variable for debugging */
177static char *ld_library_path;	/* Environment variable for search path */
178static char *ld_preload;	/* Environment variable for libraries to
179				   load first */
180static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
181static char *ld_tracing;	/* Called from ldd to print libs */
182static char *ld_utrace;		/* Use utrace() to log events. */
183static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
184static Obj_Entry **obj_tail;	/* Link field of last object in list */
185static Obj_Entry *obj_main;	/* The main program shared object */
186static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
187static unsigned int obj_count;	/* Number of objects in obj_list */
188static unsigned int obj_loads;	/* Number of objects in obj_list */
189
190static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
191  STAILQ_HEAD_INITIALIZER(list_global);
192static Objlist list_main =	/* Objects loaded at program startup */
193  STAILQ_HEAD_INITIALIZER(list_main);
194static Objlist list_fini =	/* Objects needing fini() calls */
195  STAILQ_HEAD_INITIALIZER(list_fini);
196
197Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
198
199#define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
200
201extern Elf_Dyn _DYNAMIC;
202#pragma weak _DYNAMIC
203#ifndef RTLD_IS_DYNAMIC
204#define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
205#endif
206
207int dlclose(void *) __exported;
208char *dlerror(void) __exported;
209void *dlopen(const char *, int) __exported;
210void *fdlopen(int, int) __exported;
211void *dlsym(void *, const char *) __exported;
212dlfunc_t dlfunc(void *, const char *) __exported;
213void *dlvsym(void *, const char *, const char *) __exported;
214int dladdr(const void *, Dl_info *) __exported;
215void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
216    void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
217int dlinfo(void *, int , void *) __exported;
218int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
219int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
220int _rtld_get_stack_prot(void) __exported;
221int _rtld_is_dlopened(void *) __exported;
222void _rtld_error(const char *, ...) __exported;
223
224int npagesizes, osreldate;
225size_t *pagesizes;
226
227long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
228
229static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
230static int max_stack_flags;
231
232/*
233 * Global declarations normally provided by crt1.  The dynamic linker is
234 * not built with crt1, so we have to provide them ourselves.
235 */
236char *__progname;
237char **environ;
238
239/*
240 * Used to pass argc, argv to init functions.
241 */
242int main_argc;
243char **main_argv;
244
245/*
246 * Globals to control TLS allocation.
247 */
248size_t tls_last_offset;		/* Static TLS offset of last module */
249size_t tls_last_size;		/* Static TLS size of last module */
250size_t tls_static_space;	/* Static TLS space allocated */
251size_t tls_static_max_align;
252int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
253int tls_max_index = 1;		/* Largest module index allocated */
254
255bool ld_library_path_rpath = false;
256
257/*
258 * Fill in a DoneList with an allocation large enough to hold all of
259 * the currently-loaded objects.  Keep this as a macro since it calls
260 * alloca and we want that to occur within the scope of the caller.
261 */
262#define donelist_init(dlp)					\
263    ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
264    assert((dlp)->objs != NULL),				\
265    (dlp)->num_alloc = obj_count,				\
266    (dlp)->num_used = 0)
267
268#define	UTRACE_DLOPEN_START		1
269#define	UTRACE_DLOPEN_STOP		2
270#define	UTRACE_DLCLOSE_START		3
271#define	UTRACE_DLCLOSE_STOP		4
272#define	UTRACE_LOAD_OBJECT		5
273#define	UTRACE_UNLOAD_OBJECT		6
274#define	UTRACE_ADD_RUNDEP		7
275#define	UTRACE_PRELOAD_FINISHED		8
276#define	UTRACE_INIT_CALL		9
277#define	UTRACE_FINI_CALL		10
278#define	UTRACE_DLSYM_START		11
279#define	UTRACE_DLSYM_STOP		12
280
281struct utrace_rtld {
282	char sig[4];			/* 'RTLD' */
283	int event;
284	void *handle;
285	void *mapbase;			/* Used for 'parent' and 'init/fini' */
286	size_t mapsize;
287	int refcnt;			/* Used for 'mode' */
288	char name[MAXPATHLEN];
289};
290
291#define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
292	if (ld_utrace != NULL)					\
293		ld_utrace_log(e, h, mb, ms, r, n);		\
294} while (0)
295
296static void
297ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
298    int refcnt, const char *name)
299{
300	struct utrace_rtld ut;
301
302	ut.sig[0] = 'R';
303	ut.sig[1] = 'T';
304	ut.sig[2] = 'L';
305	ut.sig[3] = 'D';
306	ut.event = event;
307	ut.handle = handle;
308	ut.mapbase = mapbase;
309	ut.mapsize = mapsize;
310	ut.refcnt = refcnt;
311	bzero(ut.name, sizeof(ut.name));
312	if (name)
313		strlcpy(ut.name, name, sizeof(ut.name));
314	utrace(&ut, sizeof(ut));
315}
316
317/*
318 * Main entry point for dynamic linking.  The first argument is the
319 * stack pointer.  The stack is expected to be laid out as described
320 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
321 * Specifically, the stack pointer points to a word containing
322 * ARGC.  Following that in the stack is a null-terminated sequence
323 * of pointers to argument strings.  Then comes a null-terminated
324 * sequence of pointers to environment strings.  Finally, there is a
325 * sequence of "auxiliary vector" entries.
326 *
327 * The second argument points to a place to store the dynamic linker's
328 * exit procedure pointer and the third to a place to store the main
329 * program's object.
330 *
331 * The return value is the main program's entry point.
332 */
333func_ptr_type
334_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
335{
336    Elf_Auxinfo *aux_info[AT_COUNT];
337    int i;
338    int argc;
339    char **argv;
340    char **env;
341    Elf_Auxinfo *aux;
342    Elf_Auxinfo *auxp;
343    const char *argv0;
344    Objlist_Entry *entry;
345    Obj_Entry *obj;
346    Obj_Entry **preload_tail;
347    Obj_Entry *last_interposer;
348    Objlist initlist;
349    RtldLockState lockstate;
350    char *library_path_rpath;
351    int mib[2];
352    size_t len;
353
354    /*
355     * On entry, the dynamic linker itself has not been relocated yet.
356     * Be very careful not to reference any global data until after
357     * init_rtld has returned.  It is OK to reference file-scope statics
358     * and string constants, and to call static and global functions.
359     */
360
361    /* Find the auxiliary vector on the stack. */
362    argc = *sp++;
363    argv = (char **) sp;
364    sp += argc + 1;	/* Skip over arguments and NULL terminator */
365    env = (char **) sp;
366    while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
367	;
368    aux = (Elf_Auxinfo *) sp;
369
370    /* Digest the auxiliary vector. */
371    for (i = 0;  i < AT_COUNT;  i++)
372	aux_info[i] = NULL;
373    for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
374	if (auxp->a_type < AT_COUNT)
375	    aux_info[auxp->a_type] = auxp;
376    }
377
378    /* Initialize and relocate ourselves. */
379    assert(aux_info[AT_BASE] != NULL);
380    init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
381
382    __progname = obj_rtld.path;
383    argv0 = argv[0] != NULL ? argv[0] : "(null)";
384    environ = env;
385    main_argc = argc;
386    main_argv = argv;
387
388    if (aux_info[AT_CANARY] != NULL &&
389	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
390	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
391	    if (i > sizeof(__stack_chk_guard))
392		    i = sizeof(__stack_chk_guard);
393	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
394    } else {
395	mib[0] = CTL_KERN;
396	mib[1] = KERN_ARND;
397
398	len = sizeof(__stack_chk_guard);
399	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
400	    len != sizeof(__stack_chk_guard)) {
401		/* If sysctl was unsuccessful, use the "terminator canary". */
402		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
403		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
404		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
405		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
406	}
407    }
408
409    trust = !issetugid();
410
411    ld_bind_now = getenv(LD_ "BIND_NOW");
412    /*
413     * If the process is tainted, then we un-set the dangerous environment
414     * variables.  The process will be marked as tainted until setuid(2)
415     * is called.  If any child process calls setuid(2) we do not want any
416     * future processes to honor the potentially un-safe variables.
417     */
418    if (!trust) {
419        if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
420	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
421	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
422	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
423		_rtld_error("environment corrupt; aborting");
424		rtld_die();
425	}
426    }
427    ld_debug = getenv(LD_ "DEBUG");
428    libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
429    libmap_override = getenv(LD_ "LIBMAP");
430    ld_library_path = getenv(LD_ "LIBRARY_PATH");
431    ld_preload = getenv(LD_ "PRELOAD");
432    ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
433    ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
434    library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
435    if (library_path_rpath != NULL) {
436	    if (library_path_rpath[0] == 'y' ||
437		library_path_rpath[0] == 'Y' ||
438		library_path_rpath[0] == '1')
439		    ld_library_path_rpath = true;
440	    else
441		    ld_library_path_rpath = false;
442    }
443    dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
444	(ld_library_path != NULL) || (ld_preload != NULL) ||
445	(ld_elf_hints_path != NULL) || ld_loadfltr;
446    ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
447    ld_utrace = getenv(LD_ "UTRACE");
448
449    if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
450	ld_elf_hints_path = _PATH_ELF_HINTS;
451
452    if (ld_debug != NULL && *ld_debug != '\0')
453	debug = 1;
454    dbg("%s is initialized, base address = %p", __progname,
455	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
456    dbg("RTLD dynamic = %p", obj_rtld.dynamic);
457    dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
458
459    dbg("initializing thread locks");
460    lockdflt_init();
461
462    /*
463     * Load the main program, or process its program header if it is
464     * already loaded.
465     */
466    if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
467	int fd = aux_info[AT_EXECFD]->a_un.a_val;
468	dbg("loading main program");
469	obj_main = map_object(fd, argv0, NULL);
470	close(fd);
471	if (obj_main == NULL)
472	    rtld_die();
473	max_stack_flags = obj->stack_flags;
474    } else {				/* Main program already loaded. */
475	const Elf_Phdr *phdr;
476	int phnum;
477	caddr_t entry;
478
479	dbg("processing main program's program header");
480	assert(aux_info[AT_PHDR] != NULL);
481	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
482	assert(aux_info[AT_PHNUM] != NULL);
483	phnum = aux_info[AT_PHNUM]->a_un.a_val;
484	assert(aux_info[AT_PHENT] != NULL);
485	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
486	assert(aux_info[AT_ENTRY] != NULL);
487	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
488	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
489	    rtld_die();
490    }
491
492    if (aux_info[AT_EXECPATH] != 0) {
493	    char *kexecpath;
494	    char buf[MAXPATHLEN];
495
496	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
497	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
498	    if (kexecpath[0] == '/')
499		    obj_main->path = kexecpath;
500	    else if (getcwd(buf, sizeof(buf)) == NULL ||
501		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
502		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
503		    obj_main->path = xstrdup(argv0);
504	    else
505		    obj_main->path = xstrdup(buf);
506    } else {
507	    dbg("No AT_EXECPATH");
508	    obj_main->path = xstrdup(argv0);
509    }
510    dbg("obj_main path %s", obj_main->path);
511    obj_main->mainprog = true;
512
513    if (aux_info[AT_STACKPROT] != NULL &&
514      aux_info[AT_STACKPROT]->a_un.a_val != 0)
515	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
516
517#ifndef COMPAT_32BIT
518    /*
519     * Get the actual dynamic linker pathname from the executable if
520     * possible.  (It should always be possible.)  That ensures that
521     * gdb will find the right dynamic linker even if a non-standard
522     * one is being used.
523     */
524    if (obj_main->interp != NULL &&
525      strcmp(obj_main->interp, obj_rtld.path) != 0) {
526	free(obj_rtld.path);
527	obj_rtld.path = xstrdup(obj_main->interp);
528        __progname = obj_rtld.path;
529    }
530#endif
531
532    digest_dynamic(obj_main, 0);
533    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
534	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
535	obj_main->dynsymcount);
536
537    linkmap_add(obj_main);
538    linkmap_add(&obj_rtld);
539
540    /* Link the main program into the list of objects. */
541    *obj_tail = obj_main;
542    obj_tail = &obj_main->next;
543    obj_count++;
544    obj_loads++;
545
546    /* Initialize a fake symbol for resolving undefined weak references. */
547    sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
548    sym_zero.st_shndx = SHN_UNDEF;
549    sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
550
551    if (!libmap_disable)
552        libmap_disable = (bool)lm_init(libmap_override);
553
554    dbg("loading LD_PRELOAD libraries");
555    if (load_preload_objects() == -1)
556	rtld_die();
557    preload_tail = obj_tail;
558
559    dbg("loading needed objects");
560    if (load_needed_objects(obj_main, 0) == -1)
561	rtld_die();
562
563    /* Make a list of all objects loaded at startup. */
564    last_interposer = obj_main;
565    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
566	if (obj->z_interpose && obj != obj_main) {
567	    objlist_put_after(&list_main, last_interposer, obj);
568	    last_interposer = obj;
569	} else {
570	    objlist_push_tail(&list_main, obj);
571	}
572    	obj->refcount++;
573    }
574
575    dbg("checking for required versions");
576    if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
577	rtld_die();
578
579    if (ld_tracing) {		/* We're done */
580	trace_loaded_objects(obj_main);
581	exit(0);
582    }
583
584    if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
585       dump_relocations(obj_main);
586       exit (0);
587    }
588
589    /*
590     * Processing tls relocations requires having the tls offsets
591     * initialized.  Prepare offsets before starting initial
592     * relocation processing.
593     */
594    dbg("initializing initial thread local storage offsets");
595    STAILQ_FOREACH(entry, &list_main, link) {
596	/*
597	 * Allocate all the initial objects out of the static TLS
598	 * block even if they didn't ask for it.
599	 */
600	allocate_tls_offset(entry->obj);
601    }
602
603    if (relocate_objects(obj_main,
604      ld_bind_now != NULL && *ld_bind_now != '\0',
605      &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
606	rtld_die();
607
608    dbg("doing copy relocations");
609    if (do_copy_relocations(obj_main) == -1)
610	rtld_die();
611
612    if (getenv(LD_ "DUMP_REL_POST") != NULL) {
613       dump_relocations(obj_main);
614       exit (0);
615    }
616
617    /*
618     * Setup TLS for main thread.  This must be done after the
619     * relocations are processed, since tls initialization section
620     * might be the subject for relocations.
621     */
622    dbg("initializing initial thread local storage");
623    allocate_initial_tls(obj_list);
624
625    dbg("initializing key program variables");
626    set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
627    set_program_var("environ", env);
628    set_program_var("__elf_aux_vector", aux);
629
630    /* Make a list of init functions to call. */
631    objlist_init(&initlist);
632    initlist_add_objects(obj_list, preload_tail, &initlist);
633
634    r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
635
636    map_stacks_exec(NULL);
637
638    dbg("resolving ifuncs");
639    if (resolve_objects_ifunc(obj_main,
640      ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
641      NULL) == -1)
642	rtld_die();
643
644    if (!obj_main->crt_no_init) {
645	/*
646	 * Make sure we don't call the main program's init and fini
647	 * functions for binaries linked with old crt1 which calls
648	 * _init itself.
649	 */
650	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
651	obj_main->preinit_array = obj_main->init_array =
652	    obj_main->fini_array = (Elf_Addr)NULL;
653    }
654
655    wlock_acquire(rtld_bind_lock, &lockstate);
656    if (obj_main->crt_no_init)
657	preinit_main();
658    objlist_call_init(&initlist, &lockstate);
659    _r_debug_postinit(&obj_main->linkmap);
660    objlist_clear(&initlist);
661    dbg("loading filtees");
662    for (obj = obj_list->next; obj != NULL; obj = obj->next) {
663	if (ld_loadfltr || obj->z_loadfltr)
664	    load_filtees(obj, 0, &lockstate);
665    }
666    lock_release(rtld_bind_lock, &lockstate);
667
668    dbg("transferring control to program entry point = %p", obj_main->entry);
669
670    /* Return the exit procedure and the program entry point. */
671    *exit_proc = rtld_exit;
672    *objp = obj_main;
673    return (func_ptr_type) obj_main->entry;
674}
675
676void *
677rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
678{
679	void *ptr;
680	Elf_Addr target;
681
682	ptr = (void *)make_function_pointer(def, obj);
683	target = ((Elf_Addr (*)(void))ptr)();
684	return ((void *)target);
685}
686
687Elf_Addr
688_rtld_bind(Obj_Entry *obj, Elf_Size reloff)
689{
690    const Elf_Rel *rel;
691    const Elf_Sym *def;
692    const Obj_Entry *defobj;
693    Elf_Addr *where;
694    Elf_Addr target;
695    RtldLockState lockstate;
696
697    rlock_acquire(rtld_bind_lock, &lockstate);
698    if (sigsetjmp(lockstate.env, 0) != 0)
699	    lock_upgrade(rtld_bind_lock, &lockstate);
700    if (obj->pltrel)
701	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
702    else
703	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
704
705    where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
706    def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
707	&lockstate);
708    if (def == NULL)
709	rtld_die();
710    if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
711	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
712    else
713	target = (Elf_Addr)(defobj->relocbase + def->st_value);
714
715    dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
716      defobj->strtab + def->st_name, basename(obj->path),
717      (void *)target, basename(defobj->path));
718
719    /*
720     * Write the new contents for the jmpslot. Note that depending on
721     * architecture, the value which we need to return back to the
722     * lazy binding trampoline may or may not be the target
723     * address. The value returned from reloc_jmpslot() is the value
724     * that the trampoline needs.
725     */
726    target = reloc_jmpslot(where, target, defobj, obj, rel);
727    lock_release(rtld_bind_lock, &lockstate);
728    return target;
729}
730
731/*
732 * Error reporting function.  Use it like printf.  If formats the message
733 * into a buffer, and sets things up so that the next call to dlerror()
734 * will return the message.
735 */
736void
737_rtld_error(const char *fmt, ...)
738{
739    static char buf[512];
740    va_list ap;
741
742    va_start(ap, fmt);
743    rtld_vsnprintf(buf, sizeof buf, fmt, ap);
744    error_message = buf;
745    va_end(ap);
746}
747
748/*
749 * Return a dynamically-allocated copy of the current error message, if any.
750 */
751static char *
752errmsg_save(void)
753{
754    return error_message == NULL ? NULL : xstrdup(error_message);
755}
756
757/*
758 * Restore the current error message from a copy which was previously saved
759 * by errmsg_save().  The copy is freed.
760 */
761static void
762errmsg_restore(char *saved_msg)
763{
764    if (saved_msg == NULL)
765	error_message = NULL;
766    else {
767	_rtld_error("%s", saved_msg);
768	free(saved_msg);
769    }
770}
771
772static const char *
773basename(const char *name)
774{
775    const char *p = strrchr(name, '/');
776    return p != NULL ? p + 1 : name;
777}
778
779static struct utsname uts;
780
781static char *
782origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
783    const char *subst, bool may_free)
784{
785	char *p, *p1, *res, *resp;
786	int subst_len, kw_len, subst_count, old_len, new_len;
787
788	kw_len = strlen(kw);
789
790	/*
791	 * First, count the number of the keyword occurences, to
792	 * preallocate the final string.
793	 */
794	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
795		p1 = strstr(p, kw);
796		if (p1 == NULL)
797			break;
798	}
799
800	/*
801	 * If the keyword is not found, just return.
802	 *
803	 * Return non-substituted string if resolution failed.  We
804	 * cannot do anything more reasonable, the failure mode of the
805	 * caller is unresolved library anyway.
806	 */
807	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
808		return (may_free ? real : xstrdup(real));
809	if (obj != NULL)
810		subst = obj->origin_path;
811
812	/*
813	 * There is indeed something to substitute.  Calculate the
814	 * length of the resulting string, and allocate it.
815	 */
816	subst_len = strlen(subst);
817	old_len = strlen(real);
818	new_len = old_len + (subst_len - kw_len) * subst_count;
819	res = xmalloc(new_len + 1);
820
821	/*
822	 * Now, execute the substitution loop.
823	 */
824	for (p = real, resp = res, *resp = '\0';;) {
825		p1 = strstr(p, kw);
826		if (p1 != NULL) {
827			/* Copy the prefix before keyword. */
828			memcpy(resp, p, p1 - p);
829			resp += p1 - p;
830			/* Keyword replacement. */
831			memcpy(resp, subst, subst_len);
832			resp += subst_len;
833			*resp = '\0';
834			p = p1 + kw_len;
835		} else
836			break;
837	}
838
839	/* Copy to the end of string and finish. */
840	strcat(resp, p);
841	if (may_free)
842		free(real);
843	return (res);
844}
845
846static char *
847origin_subst(Obj_Entry *obj, char *real)
848{
849	char *res1, *res2, *res3, *res4;
850
851	if (obj == NULL || !trust)
852		return (xstrdup(real));
853	if (uts.sysname[0] == '\0') {
854		if (uname(&uts) != 0) {
855			_rtld_error("utsname failed: %d", errno);
856			return (NULL);
857		}
858	}
859	res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false);
860	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
861	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
862	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
863	return (res4);
864}
865
866void
867rtld_die(void)
868{
869    const char *msg = dlerror();
870
871    if (msg == NULL)
872	msg = "Fatal error";
873    rtld_fdputstr(STDERR_FILENO, msg);
874    rtld_fdputchar(STDERR_FILENO, '\n');
875    _exit(1);
876}
877
878/*
879 * Process a shared object's DYNAMIC section, and save the important
880 * information in its Obj_Entry structure.
881 */
882static void
883digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
884    const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
885{
886    const Elf_Dyn *dynp;
887    Needed_Entry **needed_tail = &obj->needed;
888    Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
889    Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
890    const Elf_Hashelt *hashtab;
891    const Elf32_Word *hashval;
892    Elf32_Word bkt, nmaskwords;
893    int bloom_size32;
894    int plttype = DT_REL;
895
896    *dyn_rpath = NULL;
897    *dyn_soname = NULL;
898    *dyn_runpath = NULL;
899
900    obj->bind_now = false;
901    for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
902	switch (dynp->d_tag) {
903
904	case DT_REL:
905	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
906	    break;
907
908	case DT_RELSZ:
909	    obj->relsize = dynp->d_un.d_val;
910	    break;
911
912	case DT_RELENT:
913	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
914	    break;
915
916	case DT_JMPREL:
917	    obj->pltrel = (const Elf_Rel *)
918	      (obj->relocbase + dynp->d_un.d_ptr);
919	    break;
920
921	case DT_PLTRELSZ:
922	    obj->pltrelsize = dynp->d_un.d_val;
923	    break;
924
925	case DT_RELA:
926	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
927	    break;
928
929	case DT_RELASZ:
930	    obj->relasize = dynp->d_un.d_val;
931	    break;
932
933	case DT_RELAENT:
934	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
935	    break;
936
937	case DT_PLTREL:
938	    plttype = dynp->d_un.d_val;
939	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
940	    break;
941
942	case DT_SYMTAB:
943	    obj->symtab = (const Elf_Sym *)
944	      (obj->relocbase + dynp->d_un.d_ptr);
945	    break;
946
947	case DT_SYMENT:
948	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
949	    break;
950
951	case DT_STRTAB:
952	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
953	    break;
954
955	case DT_STRSZ:
956	    obj->strsize = dynp->d_un.d_val;
957	    break;
958
959	case DT_VERNEED:
960	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
961		dynp->d_un.d_val);
962	    break;
963
964	case DT_VERNEEDNUM:
965	    obj->verneednum = dynp->d_un.d_val;
966	    break;
967
968	case DT_VERDEF:
969	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
970		dynp->d_un.d_val);
971	    break;
972
973	case DT_VERDEFNUM:
974	    obj->verdefnum = dynp->d_un.d_val;
975	    break;
976
977	case DT_VERSYM:
978	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
979		dynp->d_un.d_val);
980	    break;
981
982	case DT_HASH:
983	    {
984		hashtab = (const Elf_Hashelt *)(obj->relocbase +
985		    dynp->d_un.d_ptr);
986		obj->nbuckets = hashtab[0];
987		obj->nchains = hashtab[1];
988		obj->buckets = hashtab + 2;
989		obj->chains = obj->buckets + obj->nbuckets;
990		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
991		  obj->buckets != NULL;
992	    }
993	    break;
994
995	case DT_GNU_HASH:
996	    {
997		hashtab = (const Elf_Hashelt *)(obj->relocbase +
998		    dynp->d_un.d_ptr);
999		obj->nbuckets_gnu = hashtab[0];
1000		obj->symndx_gnu = hashtab[1];
1001		nmaskwords = hashtab[2];
1002		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1003		obj->maskwords_bm_gnu = nmaskwords - 1;
1004		obj->shift2_gnu = hashtab[3];
1005		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1006		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1007		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1008		  obj->symndx_gnu;
1009		/* Number of bitmask words is required to be power of 2 */
1010		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1011		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1012	    }
1013	    break;
1014
1015	case DT_NEEDED:
1016	    if (!obj->rtld) {
1017		Needed_Entry *nep = NEW(Needed_Entry);
1018		nep->name = dynp->d_un.d_val;
1019		nep->obj = NULL;
1020		nep->next = NULL;
1021
1022		*needed_tail = nep;
1023		needed_tail = &nep->next;
1024	    }
1025	    break;
1026
1027	case DT_FILTER:
1028	    if (!obj->rtld) {
1029		Needed_Entry *nep = NEW(Needed_Entry);
1030		nep->name = dynp->d_un.d_val;
1031		nep->obj = NULL;
1032		nep->next = NULL;
1033
1034		*needed_filtees_tail = nep;
1035		needed_filtees_tail = &nep->next;
1036	    }
1037	    break;
1038
1039	case DT_AUXILIARY:
1040	    if (!obj->rtld) {
1041		Needed_Entry *nep = NEW(Needed_Entry);
1042		nep->name = dynp->d_un.d_val;
1043		nep->obj = NULL;
1044		nep->next = NULL;
1045
1046		*needed_aux_filtees_tail = nep;
1047		needed_aux_filtees_tail = &nep->next;
1048	    }
1049	    break;
1050
1051	case DT_PLTGOT:
1052	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1053	    break;
1054
1055	case DT_TEXTREL:
1056	    obj->textrel = true;
1057	    break;
1058
1059	case DT_SYMBOLIC:
1060	    obj->symbolic = true;
1061	    break;
1062
1063	case DT_RPATH:
1064	    /*
1065	     * We have to wait until later to process this, because we
1066	     * might not have gotten the address of the string table yet.
1067	     */
1068	    *dyn_rpath = dynp;
1069	    break;
1070
1071	case DT_SONAME:
1072	    *dyn_soname = dynp;
1073	    break;
1074
1075	case DT_RUNPATH:
1076	    *dyn_runpath = dynp;
1077	    break;
1078
1079	case DT_INIT:
1080	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1081	    break;
1082
1083	case DT_PREINIT_ARRAY:
1084	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1085	    break;
1086
1087	case DT_PREINIT_ARRAYSZ:
1088	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1089	    break;
1090
1091	case DT_INIT_ARRAY:
1092	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1093	    break;
1094
1095	case DT_INIT_ARRAYSZ:
1096	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1097	    break;
1098
1099	case DT_FINI:
1100	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1101	    break;
1102
1103	case DT_FINI_ARRAY:
1104	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1105	    break;
1106
1107	case DT_FINI_ARRAYSZ:
1108	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1109	    break;
1110
1111	/*
1112	 * Don't process DT_DEBUG on MIPS as the dynamic section
1113	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1114	 */
1115
1116#ifndef __mips__
1117	case DT_DEBUG:
1118	    /* XXX - not implemented yet */
1119	    if (!early)
1120		dbg("Filling in DT_DEBUG entry");
1121	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1122	    break;
1123#endif
1124
1125	case DT_FLAGS:
1126		if (dynp->d_un.d_val & DF_ORIGIN)
1127		    obj->z_origin = true;
1128		if (dynp->d_un.d_val & DF_SYMBOLIC)
1129		    obj->symbolic = true;
1130		if (dynp->d_un.d_val & DF_TEXTREL)
1131		    obj->textrel = true;
1132		if (dynp->d_un.d_val & DF_BIND_NOW)
1133		    obj->bind_now = true;
1134		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1135		    ;*/
1136	    break;
1137#ifdef __mips__
1138	case DT_MIPS_LOCAL_GOTNO:
1139		obj->local_gotno = dynp->d_un.d_val;
1140	    break;
1141
1142	case DT_MIPS_SYMTABNO:
1143		obj->symtabno = dynp->d_un.d_val;
1144		break;
1145
1146	case DT_MIPS_GOTSYM:
1147		obj->gotsym = dynp->d_un.d_val;
1148		break;
1149
1150	case DT_MIPS_RLD_MAP:
1151		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1152		break;
1153#endif
1154
1155	case DT_FLAGS_1:
1156		if (dynp->d_un.d_val & DF_1_NOOPEN)
1157		    obj->z_noopen = true;
1158		if (dynp->d_un.d_val & DF_1_ORIGIN)
1159		    obj->z_origin = true;
1160		if (dynp->d_un.d_val & DF_1_GLOBAL)
1161		    obj->z_global = true;
1162		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1163		    obj->bind_now = true;
1164		if (dynp->d_un.d_val & DF_1_NODELETE)
1165		    obj->z_nodelete = true;
1166		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1167		    obj->z_loadfltr = true;
1168		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1169		    obj->z_interpose = true;
1170		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1171		    obj->z_nodeflib = true;
1172	    break;
1173
1174	default:
1175	    if (!early) {
1176		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1177		    (long)dynp->d_tag);
1178	    }
1179	    break;
1180	}
1181    }
1182
1183    obj->traced = false;
1184
1185    if (plttype == DT_RELA) {
1186	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1187	obj->pltrel = NULL;
1188	obj->pltrelasize = obj->pltrelsize;
1189	obj->pltrelsize = 0;
1190    }
1191
1192    /* Determine size of dynsym table (equal to nchains of sysv hash) */
1193    if (obj->valid_hash_sysv)
1194	obj->dynsymcount = obj->nchains;
1195    else if (obj->valid_hash_gnu) {
1196	obj->dynsymcount = 0;
1197	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1198	    if (obj->buckets_gnu[bkt] == 0)
1199		continue;
1200	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1201	    do
1202		obj->dynsymcount++;
1203	    while ((*hashval++ & 1u) == 0);
1204	}
1205	obj->dynsymcount += obj->symndx_gnu;
1206    }
1207}
1208
1209static bool
1210obj_resolve_origin(Obj_Entry *obj)
1211{
1212
1213	if (obj->origin_path != NULL)
1214		return (true);
1215	obj->origin_path = xmalloc(PATH_MAX);
1216	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1217}
1218
1219static void
1220digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1221    const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1222{
1223
1224	if (obj->z_origin && !obj_resolve_origin(obj))
1225		rtld_die();
1226
1227	if (dyn_runpath != NULL) {
1228		obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1229		obj->runpath = origin_subst(obj, obj->runpath);
1230	} else if (dyn_rpath != NULL) {
1231		obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1232		obj->rpath = origin_subst(obj, obj->rpath);
1233	}
1234	if (dyn_soname != NULL)
1235		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1236}
1237
1238static void
1239digest_dynamic(Obj_Entry *obj, int early)
1240{
1241	const Elf_Dyn *dyn_rpath;
1242	const Elf_Dyn *dyn_soname;
1243	const Elf_Dyn *dyn_runpath;
1244
1245	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1246	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1247}
1248
1249/*
1250 * Process a shared object's program header.  This is used only for the
1251 * main program, when the kernel has already loaded the main program
1252 * into memory before calling the dynamic linker.  It creates and
1253 * returns an Obj_Entry structure.
1254 */
1255static Obj_Entry *
1256digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1257{
1258    Obj_Entry *obj;
1259    const Elf_Phdr *phlimit = phdr + phnum;
1260    const Elf_Phdr *ph;
1261    Elf_Addr note_start, note_end;
1262    int nsegs = 0;
1263
1264    obj = obj_new();
1265    for (ph = phdr;  ph < phlimit;  ph++) {
1266	if (ph->p_type != PT_PHDR)
1267	    continue;
1268
1269	obj->phdr = phdr;
1270	obj->phsize = ph->p_memsz;
1271	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1272	break;
1273    }
1274
1275    obj->stack_flags = PF_X | PF_R | PF_W;
1276
1277    for (ph = phdr;  ph < phlimit;  ph++) {
1278	switch (ph->p_type) {
1279
1280	case PT_INTERP:
1281	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1282	    break;
1283
1284	case PT_LOAD:
1285	    if (nsegs == 0) {	/* First load segment */
1286		obj->vaddrbase = trunc_page(ph->p_vaddr);
1287		obj->mapbase = obj->vaddrbase + obj->relocbase;
1288		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1289		  obj->vaddrbase;
1290	    } else {		/* Last load segment */
1291		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1292		  obj->vaddrbase;
1293	    }
1294	    nsegs++;
1295	    break;
1296
1297	case PT_DYNAMIC:
1298	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1299	    break;
1300
1301	case PT_TLS:
1302	    obj->tlsindex = 1;
1303	    obj->tlssize = ph->p_memsz;
1304	    obj->tlsalign = ph->p_align;
1305	    obj->tlsinitsize = ph->p_filesz;
1306	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1307	    break;
1308
1309	case PT_GNU_STACK:
1310	    obj->stack_flags = ph->p_flags;
1311	    break;
1312
1313	case PT_GNU_RELRO:
1314	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1315	    obj->relro_size = round_page(ph->p_memsz);
1316	    break;
1317
1318	case PT_NOTE:
1319	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1320	    note_end = note_start + ph->p_filesz;
1321	    digest_notes(obj, note_start, note_end);
1322	    break;
1323	}
1324    }
1325    if (nsegs < 1) {
1326	_rtld_error("%s: too few PT_LOAD segments", path);
1327	return NULL;
1328    }
1329
1330    obj->entry = entry;
1331    return obj;
1332}
1333
1334void
1335digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1336{
1337	const Elf_Note *note;
1338	const char *note_name;
1339	uintptr_t p;
1340
1341	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1342	    note = (const Elf_Note *)((const char *)(note + 1) +
1343	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1344	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1345		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1346		    note->n_descsz != sizeof(int32_t))
1347			continue;
1348		if (note->n_type != ABI_NOTETYPE &&
1349		    note->n_type != CRT_NOINIT_NOTETYPE)
1350			continue;
1351		note_name = (const char *)(note + 1);
1352		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1353		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1354			continue;
1355		switch (note->n_type) {
1356		case ABI_NOTETYPE:
1357			/* FreeBSD osrel note */
1358			p = (uintptr_t)(note + 1);
1359			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1360			obj->osrel = *(const int32_t *)(p);
1361			dbg("note osrel %d", obj->osrel);
1362			break;
1363		case CRT_NOINIT_NOTETYPE:
1364			/* FreeBSD 'crt does not call init' note */
1365			obj->crt_no_init = true;
1366			dbg("note crt_no_init");
1367			break;
1368		}
1369	}
1370}
1371
1372static Obj_Entry *
1373dlcheck(void *handle)
1374{
1375    Obj_Entry *obj;
1376
1377    for (obj = obj_list;  obj != NULL;  obj = obj->next)
1378	if (obj == (Obj_Entry *) handle)
1379	    break;
1380
1381    if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1382	_rtld_error("Invalid shared object handle %p", handle);
1383	return NULL;
1384    }
1385    return obj;
1386}
1387
1388/*
1389 * If the given object is already in the donelist, return true.  Otherwise
1390 * add the object to the list and return false.
1391 */
1392static bool
1393donelist_check(DoneList *dlp, const Obj_Entry *obj)
1394{
1395    unsigned int i;
1396
1397    for (i = 0;  i < dlp->num_used;  i++)
1398	if (dlp->objs[i] == obj)
1399	    return true;
1400    /*
1401     * Our donelist allocation should always be sufficient.  But if
1402     * our threads locking isn't working properly, more shared objects
1403     * could have been loaded since we allocated the list.  That should
1404     * never happen, but we'll handle it properly just in case it does.
1405     */
1406    if (dlp->num_used < dlp->num_alloc)
1407	dlp->objs[dlp->num_used++] = obj;
1408    return false;
1409}
1410
1411/*
1412 * Hash function for symbol table lookup.  Don't even think about changing
1413 * this.  It is specified by the System V ABI.
1414 */
1415unsigned long
1416elf_hash(const char *name)
1417{
1418    const unsigned char *p = (const unsigned char *) name;
1419    unsigned long h = 0;
1420    unsigned long g;
1421
1422    while (*p != '\0') {
1423	h = (h << 4) + *p++;
1424	if ((g = h & 0xf0000000) != 0)
1425	    h ^= g >> 24;
1426	h &= ~g;
1427    }
1428    return h;
1429}
1430
1431/*
1432 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1433 * unsigned in case it's implemented with a wider type.
1434 */
1435static uint32_t
1436gnu_hash(const char *s)
1437{
1438	uint32_t h;
1439	unsigned char c;
1440
1441	h = 5381;
1442	for (c = *s; c != '\0'; c = *++s)
1443		h = h * 33 + c;
1444	return (h & 0xffffffff);
1445}
1446
1447/*
1448 * Find the library with the given name, and return its full pathname.
1449 * The returned string is dynamically allocated.  Generates an error
1450 * message and returns NULL if the library cannot be found.
1451 *
1452 * If the second argument is non-NULL, then it refers to an already-
1453 * loaded shared object, whose library search path will be searched.
1454 *
1455 * The search order is:
1456 *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1457 *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1458 *   LD_LIBRARY_PATH
1459 *   DT_RUNPATH in the referencing file
1460 *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1461 *	 from list)
1462 *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1463 *
1464 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1465 */
1466static char *
1467find_library(const char *xname, const Obj_Entry *refobj)
1468{
1469    char *pathname;
1470    char *name;
1471    bool nodeflib, objgiven;
1472
1473    objgiven = refobj != NULL;
1474    if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1475	if (xname[0] != '/' && !trust) {
1476	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1477	      xname);
1478	    return NULL;
1479	}
1480	return (origin_subst(__DECONST(Obj_Entry *, refobj),
1481	  __DECONST(char *, xname)));
1482    }
1483
1484    if (libmap_disable || !objgiven ||
1485	(name = lm_find(refobj->path, xname)) == NULL)
1486	name = (char *)xname;
1487
1488    dbg(" Searching for \"%s\"", name);
1489
1490    /*
1491     * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1492     * back to pre-conforming behaviour if user requested so with
1493     * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1494     * nodeflib.
1495     */
1496    if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1497	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1498	  (refobj != NULL &&
1499	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1500          (pathname = search_library_path(name, gethints(false))) != NULL ||
1501	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1502	    return (pathname);
1503    } else {
1504	nodeflib = objgiven ? refobj->z_nodeflib : false;
1505	if ((objgiven &&
1506	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1507	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1508	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1509	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1510	  (objgiven &&
1511	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1512	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1513	  (objgiven && !nodeflib &&
1514	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1515	    return (pathname);
1516    }
1517
1518    if (objgiven && refobj->path != NULL) {
1519	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1520	  name, basename(refobj->path));
1521    } else {
1522	_rtld_error("Shared object \"%s\" not found", name);
1523    }
1524    return NULL;
1525}
1526
1527/*
1528 * Given a symbol number in a referencing object, find the corresponding
1529 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1530 * no definition was found.  Returns a pointer to the Obj_Entry of the
1531 * defining object via the reference parameter DEFOBJ_OUT.
1532 */
1533const Elf_Sym *
1534find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1535    const Obj_Entry **defobj_out, int flags, SymCache *cache,
1536    RtldLockState *lockstate)
1537{
1538    const Elf_Sym *ref;
1539    const Elf_Sym *def;
1540    const Obj_Entry *defobj;
1541    SymLook req;
1542    const char *name;
1543    int res;
1544
1545    /*
1546     * If we have already found this symbol, get the information from
1547     * the cache.
1548     */
1549    if (symnum >= refobj->dynsymcount)
1550	return NULL;	/* Bad object */
1551    if (cache != NULL && cache[symnum].sym != NULL) {
1552	*defobj_out = cache[symnum].obj;
1553	return cache[symnum].sym;
1554    }
1555
1556    ref = refobj->symtab + symnum;
1557    name = refobj->strtab + ref->st_name;
1558    def = NULL;
1559    defobj = NULL;
1560
1561    /*
1562     * We don't have to do a full scale lookup if the symbol is local.
1563     * We know it will bind to the instance in this load module; to
1564     * which we already have a pointer (ie ref). By not doing a lookup,
1565     * we not only improve performance, but it also avoids unresolvable
1566     * symbols when local symbols are not in the hash table. This has
1567     * been seen with the ia64 toolchain.
1568     */
1569    if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1570	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1571	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1572		symnum);
1573	}
1574	symlook_init(&req, name);
1575	req.flags = flags;
1576	req.ventry = fetch_ventry(refobj, symnum);
1577	req.lockstate = lockstate;
1578	res = symlook_default(&req, refobj);
1579	if (res == 0) {
1580	    def = req.sym_out;
1581	    defobj = req.defobj_out;
1582	}
1583    } else {
1584	def = ref;
1585	defobj = refobj;
1586    }
1587
1588    /*
1589     * If we found no definition and the reference is weak, treat the
1590     * symbol as having the value zero.
1591     */
1592    if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1593	def = &sym_zero;
1594	defobj = obj_main;
1595    }
1596
1597    if (def != NULL) {
1598	*defobj_out = defobj;
1599	/* Record the information in the cache to avoid subsequent lookups. */
1600	if (cache != NULL) {
1601	    cache[symnum].sym = def;
1602	    cache[symnum].obj = defobj;
1603	}
1604    } else {
1605	if (refobj != &obj_rtld)
1606	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1607    }
1608    return def;
1609}
1610
1611/*
1612 * Return the search path from the ldconfig hints file, reading it if
1613 * necessary.  If nostdlib is true, then the default search paths are
1614 * not added to result.
1615 *
1616 * Returns NULL if there are problems with the hints file,
1617 * or if the search path there is empty.
1618 */
1619static const char *
1620gethints(bool nostdlib)
1621{
1622	static char *hints, *filtered_path;
1623	struct elfhints_hdr hdr;
1624	struct fill_search_info_args sargs, hargs;
1625	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1626	struct dl_serpath *SLPpath, *hintpath;
1627	char *p;
1628	unsigned int SLPndx, hintndx, fndx, fcount;
1629	int fd;
1630	size_t flen;
1631	bool skip;
1632
1633	/* First call, read the hints file */
1634	if (hints == NULL) {
1635		/* Keep from trying again in case the hints file is bad. */
1636		hints = "";
1637
1638		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1639			return (NULL);
1640		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1641		    hdr.magic != ELFHINTS_MAGIC ||
1642		    hdr.version != 1) {
1643			close(fd);
1644			return (NULL);
1645		}
1646		p = xmalloc(hdr.dirlistlen + 1);
1647		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1648		    read(fd, p, hdr.dirlistlen + 1) !=
1649		    (ssize_t)hdr.dirlistlen + 1) {
1650			free(p);
1651			close(fd);
1652			return (NULL);
1653		}
1654		hints = p;
1655		close(fd);
1656	}
1657
1658	/*
1659	 * If caller agreed to receive list which includes the default
1660	 * paths, we are done. Otherwise, if we still did not
1661	 * calculated filtered result, do it now.
1662	 */
1663	if (!nostdlib)
1664		return (hints[0] != '\0' ? hints : NULL);
1665	if (filtered_path != NULL)
1666		goto filt_ret;
1667
1668	/*
1669	 * Obtain the list of all configured search paths, and the
1670	 * list of the default paths.
1671	 *
1672	 * First estimate the size of the results.
1673	 */
1674	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1675	smeta.dls_cnt = 0;
1676	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1677	hmeta.dls_cnt = 0;
1678
1679	sargs.request = RTLD_DI_SERINFOSIZE;
1680	sargs.serinfo = &smeta;
1681	hargs.request = RTLD_DI_SERINFOSIZE;
1682	hargs.serinfo = &hmeta;
1683
1684	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1685	path_enumerate(p, fill_search_info, &hargs);
1686
1687	SLPinfo = xmalloc(smeta.dls_size);
1688	hintinfo = xmalloc(hmeta.dls_size);
1689
1690	/*
1691	 * Next fetch both sets of paths.
1692	 */
1693	sargs.request = RTLD_DI_SERINFO;
1694	sargs.serinfo = SLPinfo;
1695	sargs.serpath = &SLPinfo->dls_serpath[0];
1696	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1697
1698	hargs.request = RTLD_DI_SERINFO;
1699	hargs.serinfo = hintinfo;
1700	hargs.serpath = &hintinfo->dls_serpath[0];
1701	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1702
1703	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1704	path_enumerate(p, fill_search_info, &hargs);
1705
1706	/*
1707	 * Now calculate the difference between two sets, by excluding
1708	 * standard paths from the full set.
1709	 */
1710	fndx = 0;
1711	fcount = 0;
1712	filtered_path = xmalloc(hdr.dirlistlen + 1);
1713	hintpath = &hintinfo->dls_serpath[0];
1714	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1715		skip = false;
1716		SLPpath = &SLPinfo->dls_serpath[0];
1717		/*
1718		 * Check each standard path against current.
1719		 */
1720		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1721			/* matched, skip the path */
1722			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1723				skip = true;
1724				break;
1725			}
1726		}
1727		if (skip)
1728			continue;
1729		/*
1730		 * Not matched against any standard path, add the path
1731		 * to result. Separate consequtive paths with ':'.
1732		 */
1733		if (fcount > 0) {
1734			filtered_path[fndx] = ':';
1735			fndx++;
1736		}
1737		fcount++;
1738		flen = strlen(hintpath->dls_name);
1739		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1740		fndx += flen;
1741	}
1742	filtered_path[fndx] = '\0';
1743
1744	free(SLPinfo);
1745	free(hintinfo);
1746
1747filt_ret:
1748	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1749}
1750
1751static void
1752init_dag(Obj_Entry *root)
1753{
1754    const Needed_Entry *needed;
1755    const Objlist_Entry *elm;
1756    DoneList donelist;
1757
1758    if (root->dag_inited)
1759	return;
1760    donelist_init(&donelist);
1761
1762    /* Root object belongs to own DAG. */
1763    objlist_push_tail(&root->dldags, root);
1764    objlist_push_tail(&root->dagmembers, root);
1765    donelist_check(&donelist, root);
1766
1767    /*
1768     * Add dependencies of root object to DAG in breadth order
1769     * by exploiting the fact that each new object get added
1770     * to the tail of the dagmembers list.
1771     */
1772    STAILQ_FOREACH(elm, &root->dagmembers, link) {
1773	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1774	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1775		continue;
1776	    objlist_push_tail(&needed->obj->dldags, root);
1777	    objlist_push_tail(&root->dagmembers, needed->obj);
1778	}
1779    }
1780    root->dag_inited = true;
1781}
1782
1783static void
1784process_z(Obj_Entry *root)
1785{
1786	const Objlist_Entry *elm;
1787	Obj_Entry *obj;
1788
1789	/*
1790	 * Walk over object DAG and process every dependent object
1791	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
1792	 * to grow their own DAG.
1793	 *
1794	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
1795	 * symlook_global() to work.
1796	 *
1797	 * For DF_1_NODELETE, the DAG should have its reference upped.
1798	 */
1799	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1800		obj = elm->obj;
1801		if (obj == NULL)
1802			continue;
1803		if (obj->z_nodelete && !obj->ref_nodel) {
1804			dbg("obj %s -z nodelete", obj->path);
1805			init_dag(obj);
1806			ref_dag(obj);
1807			obj->ref_nodel = true;
1808		}
1809		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
1810			dbg("obj %s -z global", obj->path);
1811			objlist_push_tail(&list_global, obj);
1812			init_dag(obj);
1813		}
1814	}
1815}
1816/*
1817 * Initialize the dynamic linker.  The argument is the address at which
1818 * the dynamic linker has been mapped into memory.  The primary task of
1819 * this function is to relocate the dynamic linker.
1820 */
1821static void
1822init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1823{
1824    Obj_Entry objtmp;	/* Temporary rtld object */
1825    const Elf_Dyn *dyn_rpath;
1826    const Elf_Dyn *dyn_soname;
1827    const Elf_Dyn *dyn_runpath;
1828
1829#ifdef RTLD_INIT_PAGESIZES_EARLY
1830    /* The page size is required by the dynamic memory allocator. */
1831    init_pagesizes(aux_info);
1832#endif
1833
1834    /*
1835     * Conjure up an Obj_Entry structure for the dynamic linker.
1836     *
1837     * The "path" member can't be initialized yet because string constants
1838     * cannot yet be accessed. Below we will set it correctly.
1839     */
1840    memset(&objtmp, 0, sizeof(objtmp));
1841    objtmp.path = NULL;
1842    objtmp.rtld = true;
1843    objtmp.mapbase = mapbase;
1844#ifdef PIC
1845    objtmp.relocbase = mapbase;
1846#endif
1847    if (RTLD_IS_DYNAMIC()) {
1848	objtmp.dynamic = rtld_dynamic(&objtmp);
1849	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1850	assert(objtmp.needed == NULL);
1851#if !defined(__mips__)
1852	/* MIPS has a bogus DT_TEXTREL. */
1853	assert(!objtmp.textrel);
1854#endif
1855
1856	/*
1857	 * Temporarily put the dynamic linker entry into the object list, so
1858	 * that symbols can be found.
1859	 */
1860
1861	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1862    }
1863
1864    /* Initialize the object list. */
1865    obj_tail = &obj_list;
1866
1867    /* Now that non-local variables can be accesses, copy out obj_rtld. */
1868    memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1869
1870#ifndef RTLD_INIT_PAGESIZES_EARLY
1871    /* The page size is required by the dynamic memory allocator. */
1872    init_pagesizes(aux_info);
1873#endif
1874
1875    if (aux_info[AT_OSRELDATE] != NULL)
1876	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1877
1878    digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1879
1880    /* Replace the path with a dynamically allocated copy. */
1881    obj_rtld.path = xstrdup(PATH_RTLD);
1882
1883    r_debug.r_brk = r_debug_state;
1884    r_debug.r_state = RT_CONSISTENT;
1885}
1886
1887/*
1888 * Retrieve the array of supported page sizes.  The kernel provides the page
1889 * sizes in increasing order.
1890 */
1891static void
1892init_pagesizes(Elf_Auxinfo **aux_info)
1893{
1894	static size_t psa[MAXPAGESIZES];
1895	int mib[2];
1896	size_t len, size;
1897
1898	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
1899	    NULL) {
1900		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
1901		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
1902	} else {
1903		len = 2;
1904		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
1905			size = sizeof(psa);
1906		else {
1907			/* As a fallback, retrieve the base page size. */
1908			size = sizeof(psa[0]);
1909			if (aux_info[AT_PAGESZ] != NULL) {
1910				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
1911				goto psa_filled;
1912			} else {
1913				mib[0] = CTL_HW;
1914				mib[1] = HW_PAGESIZE;
1915				len = 2;
1916			}
1917		}
1918		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
1919			_rtld_error("sysctl for hw.pagesize(s) failed");
1920			rtld_die();
1921		}
1922psa_filled:
1923		pagesizes = psa;
1924	}
1925	npagesizes = size / sizeof(pagesizes[0]);
1926	/* Discard any invalid entries at the end of the array. */
1927	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
1928		npagesizes--;
1929}
1930
1931/*
1932 * Add the init functions from a needed object list (and its recursive
1933 * needed objects) to "list".  This is not used directly; it is a helper
1934 * function for initlist_add_objects().  The write lock must be held
1935 * when this function is called.
1936 */
1937static void
1938initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1939{
1940    /* Recursively process the successor needed objects. */
1941    if (needed->next != NULL)
1942	initlist_add_neededs(needed->next, list);
1943
1944    /* Process the current needed object. */
1945    if (needed->obj != NULL)
1946	initlist_add_objects(needed->obj, &needed->obj->next, list);
1947}
1948
1949/*
1950 * Scan all of the DAGs rooted in the range of objects from "obj" to
1951 * "tail" and add their init functions to "list".  This recurses over
1952 * the DAGs and ensure the proper init ordering such that each object's
1953 * needed libraries are initialized before the object itself.  At the
1954 * same time, this function adds the objects to the global finalization
1955 * list "list_fini" in the opposite order.  The write lock must be
1956 * held when this function is called.
1957 */
1958static void
1959initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1960{
1961
1962    if (obj->init_scanned || obj->init_done)
1963	return;
1964    obj->init_scanned = true;
1965
1966    /* Recursively process the successor objects. */
1967    if (&obj->next != tail)
1968	initlist_add_objects(obj->next, tail, list);
1969
1970    /* Recursively process the needed objects. */
1971    if (obj->needed != NULL)
1972	initlist_add_neededs(obj->needed, list);
1973    if (obj->needed_filtees != NULL)
1974	initlist_add_neededs(obj->needed_filtees, list);
1975    if (obj->needed_aux_filtees != NULL)
1976	initlist_add_neededs(obj->needed_aux_filtees, list);
1977
1978    /* Add the object to the init list. */
1979    if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1980      obj->init_array != (Elf_Addr)NULL)
1981	objlist_push_tail(list, obj);
1982
1983    /* Add the object to the global fini list in the reverse order. */
1984    if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1985      && !obj->on_fini_list) {
1986	objlist_push_head(&list_fini, obj);
1987	obj->on_fini_list = true;
1988    }
1989}
1990
1991#ifndef FPTR_TARGET
1992#define FPTR_TARGET(f)	((Elf_Addr) (f))
1993#endif
1994
1995static void
1996free_needed_filtees(Needed_Entry *n)
1997{
1998    Needed_Entry *needed, *needed1;
1999
2000    for (needed = n; needed != NULL; needed = needed->next) {
2001	if (needed->obj != NULL) {
2002	    dlclose(needed->obj);
2003	    needed->obj = NULL;
2004	}
2005    }
2006    for (needed = n; needed != NULL; needed = needed1) {
2007	needed1 = needed->next;
2008	free(needed);
2009    }
2010}
2011
2012static void
2013unload_filtees(Obj_Entry *obj)
2014{
2015
2016    free_needed_filtees(obj->needed_filtees);
2017    obj->needed_filtees = NULL;
2018    free_needed_filtees(obj->needed_aux_filtees);
2019    obj->needed_aux_filtees = NULL;
2020    obj->filtees_loaded = false;
2021}
2022
2023static void
2024load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2025    RtldLockState *lockstate)
2026{
2027
2028    for (; needed != NULL; needed = needed->next) {
2029	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2030	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2031	  RTLD_LOCAL, lockstate);
2032    }
2033}
2034
2035static void
2036load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2037{
2038
2039    lock_restart_for_upgrade(lockstate);
2040    if (!obj->filtees_loaded) {
2041	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2042	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2043	obj->filtees_loaded = true;
2044    }
2045}
2046
2047static int
2048process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2049{
2050    Obj_Entry *obj1;
2051
2052    for (; needed != NULL; needed = needed->next) {
2053	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2054	  flags & ~RTLD_LO_NOLOAD);
2055	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2056	    return (-1);
2057    }
2058    return (0);
2059}
2060
2061/*
2062 * Given a shared object, traverse its list of needed objects, and load
2063 * each of them.  Returns 0 on success.  Generates an error message and
2064 * returns -1 on failure.
2065 */
2066static int
2067load_needed_objects(Obj_Entry *first, int flags)
2068{
2069    Obj_Entry *obj;
2070
2071    for (obj = first;  obj != NULL;  obj = obj->next) {
2072	if (process_needed(obj, obj->needed, flags) == -1)
2073	    return (-1);
2074    }
2075    return (0);
2076}
2077
2078static int
2079load_preload_objects(void)
2080{
2081    char *p = ld_preload;
2082    Obj_Entry *obj;
2083    static const char delim[] = " \t:;";
2084
2085    if (p == NULL)
2086	return 0;
2087
2088    p += strspn(p, delim);
2089    while (*p != '\0') {
2090	size_t len = strcspn(p, delim);
2091	char savech;
2092
2093	savech = p[len];
2094	p[len] = '\0';
2095	obj = load_object(p, -1, NULL, 0);
2096	if (obj == NULL)
2097	    return -1;	/* XXX - cleanup */
2098	obj->z_interpose = true;
2099	p[len] = savech;
2100	p += len;
2101	p += strspn(p, delim);
2102    }
2103    LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2104    return 0;
2105}
2106
2107static const char *
2108printable_path(const char *path)
2109{
2110
2111	return (path == NULL ? "<unknown>" : path);
2112}
2113
2114/*
2115 * Load a shared object into memory, if it is not already loaded.  The
2116 * object may be specified by name or by user-supplied file descriptor
2117 * fd_u. In the later case, the fd_u descriptor is not closed, but its
2118 * duplicate is.
2119 *
2120 * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2121 * on failure.
2122 */
2123static Obj_Entry *
2124load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2125{
2126    Obj_Entry *obj;
2127    int fd;
2128    struct stat sb;
2129    char *path;
2130
2131    if (name != NULL) {
2132	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2133	    if (object_match_name(obj, name))
2134		return (obj);
2135	}
2136
2137	path = find_library(name, refobj);
2138	if (path == NULL)
2139	    return (NULL);
2140    } else
2141	path = NULL;
2142
2143    /*
2144     * If we didn't find a match by pathname, or the name is not
2145     * supplied, open the file and check again by device and inode.
2146     * This avoids false mismatches caused by multiple links or ".."
2147     * in pathnames.
2148     *
2149     * To avoid a race, we open the file and use fstat() rather than
2150     * using stat().
2151     */
2152    fd = -1;
2153    if (fd_u == -1) {
2154	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2155	    _rtld_error("Cannot open \"%s\"", path);
2156	    free(path);
2157	    return (NULL);
2158	}
2159    } else {
2160	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2161	if (fd == -1) {
2162	    _rtld_error("Cannot dup fd");
2163	    free(path);
2164	    return (NULL);
2165	}
2166    }
2167    if (fstat(fd, &sb) == -1) {
2168	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2169	close(fd);
2170	free(path);
2171	return NULL;
2172    }
2173    for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2174	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2175	    break;
2176    if (obj != NULL && name != NULL) {
2177	object_add_name(obj, name);
2178	free(path);
2179	close(fd);
2180	return obj;
2181    }
2182    if (flags & RTLD_LO_NOLOAD) {
2183	free(path);
2184	close(fd);
2185	return (NULL);
2186    }
2187
2188    /* First use of this object, so we must map it in */
2189    obj = do_load_object(fd, name, path, &sb, flags);
2190    if (obj == NULL)
2191	free(path);
2192    close(fd);
2193
2194    return obj;
2195}
2196
2197static Obj_Entry *
2198do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2199  int flags)
2200{
2201    Obj_Entry *obj;
2202    struct statfs fs;
2203
2204    /*
2205     * but first, make sure that environment variables haven't been
2206     * used to circumvent the noexec flag on a filesystem.
2207     */
2208    if (dangerous_ld_env) {
2209	if (fstatfs(fd, &fs) != 0) {
2210	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2211	    return NULL;
2212	}
2213	if (fs.f_flags & MNT_NOEXEC) {
2214	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2215	    return NULL;
2216	}
2217    }
2218    dbg("loading \"%s\"", printable_path(path));
2219    obj = map_object(fd, printable_path(path), sbp);
2220    if (obj == NULL)
2221        return NULL;
2222
2223    /*
2224     * If DT_SONAME is present in the object, digest_dynamic2 already
2225     * added it to the object names.
2226     */
2227    if (name != NULL)
2228	object_add_name(obj, name);
2229    obj->path = path;
2230    digest_dynamic(obj, 0);
2231    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2232	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2233    if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2234      RTLD_LO_DLOPEN) {
2235	dbg("refusing to load non-loadable \"%s\"", obj->path);
2236	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2237	munmap(obj->mapbase, obj->mapsize);
2238	obj_free(obj);
2239	return (NULL);
2240    }
2241
2242    obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2243    *obj_tail = obj;
2244    obj_tail = &obj->next;
2245    obj_count++;
2246    obj_loads++;
2247    linkmap_add(obj);	/* for GDB & dlinfo() */
2248    max_stack_flags |= obj->stack_flags;
2249
2250    dbg("  %p .. %p: %s", obj->mapbase,
2251         obj->mapbase + obj->mapsize - 1, obj->path);
2252    if (obj->textrel)
2253	dbg("  WARNING: %s has impure text", obj->path);
2254    LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2255	obj->path);
2256
2257    return obj;
2258}
2259
2260static Obj_Entry *
2261obj_from_addr(const void *addr)
2262{
2263    Obj_Entry *obj;
2264
2265    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2266	if (addr < (void *) obj->mapbase)
2267	    continue;
2268	if (addr < (void *) (obj->mapbase + obj->mapsize))
2269	    return obj;
2270    }
2271    return NULL;
2272}
2273
2274static void
2275preinit_main(void)
2276{
2277    Elf_Addr *preinit_addr;
2278    int index;
2279
2280    preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2281    if (preinit_addr == NULL)
2282	return;
2283
2284    for (index = 0; index < obj_main->preinit_array_num; index++) {
2285	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2286	    dbg("calling preinit function for %s at %p", obj_main->path,
2287	      (void *)preinit_addr[index]);
2288	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2289	      0, 0, obj_main->path);
2290	    call_init_pointer(obj_main, preinit_addr[index]);
2291	}
2292    }
2293}
2294
2295/*
2296 * Call the finalization functions for each of the objects in "list"
2297 * belonging to the DAG of "root" and referenced once. If NULL "root"
2298 * is specified, every finalization function will be called regardless
2299 * of the reference count and the list elements won't be freed. All of
2300 * the objects are expected to have non-NULL fini functions.
2301 */
2302static void
2303objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2304{
2305    Objlist_Entry *elm;
2306    char *saved_msg;
2307    Elf_Addr *fini_addr;
2308    int index;
2309
2310    assert(root == NULL || root->refcount == 1);
2311
2312    /*
2313     * Preserve the current error message since a fini function might
2314     * call into the dynamic linker and overwrite it.
2315     */
2316    saved_msg = errmsg_save();
2317    do {
2318	STAILQ_FOREACH(elm, list, link) {
2319	    if (root != NULL && (elm->obj->refcount != 1 ||
2320	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2321		continue;
2322	    /* Remove object from fini list to prevent recursive invocation. */
2323	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2324	    /*
2325	     * XXX: If a dlopen() call references an object while the
2326	     * fini function is in progress, we might end up trying to
2327	     * unload the referenced object in dlclose() or the object
2328	     * won't be unloaded although its fini function has been
2329	     * called.
2330	     */
2331	    lock_release(rtld_bind_lock, lockstate);
2332
2333	    /*
2334	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2335	     * When this happens, DT_FINI_ARRAY is processed first.
2336	     */
2337	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2338	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2339		for (index = elm->obj->fini_array_num - 1; index >= 0;
2340		  index--) {
2341		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2342			dbg("calling fini function for %s at %p",
2343			    elm->obj->path, (void *)fini_addr[index]);
2344			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2345			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2346			call_initfini_pointer(elm->obj, fini_addr[index]);
2347		    }
2348		}
2349	    }
2350	    if (elm->obj->fini != (Elf_Addr)NULL) {
2351		dbg("calling fini function for %s at %p", elm->obj->path,
2352		    (void *)elm->obj->fini);
2353		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2354		    0, 0, elm->obj->path);
2355		call_initfini_pointer(elm->obj, elm->obj->fini);
2356	    }
2357	    wlock_acquire(rtld_bind_lock, lockstate);
2358	    /* No need to free anything if process is going down. */
2359	    if (root != NULL)
2360	    	free(elm);
2361	    /*
2362	     * We must restart the list traversal after every fini call
2363	     * because a dlclose() call from the fini function or from
2364	     * another thread might have modified the reference counts.
2365	     */
2366	    break;
2367	}
2368    } while (elm != NULL);
2369    errmsg_restore(saved_msg);
2370}
2371
2372/*
2373 * Call the initialization functions for each of the objects in
2374 * "list".  All of the objects are expected to have non-NULL init
2375 * functions.
2376 */
2377static void
2378objlist_call_init(Objlist *list, RtldLockState *lockstate)
2379{
2380    Objlist_Entry *elm;
2381    Obj_Entry *obj;
2382    char *saved_msg;
2383    Elf_Addr *init_addr;
2384    int index;
2385
2386    /*
2387     * Clean init_scanned flag so that objects can be rechecked and
2388     * possibly initialized earlier if any of vectors called below
2389     * cause the change by using dlopen.
2390     */
2391    for (obj = obj_list;  obj != NULL;  obj = obj->next)
2392	obj->init_scanned = false;
2393
2394    /*
2395     * Preserve the current error message since an init function might
2396     * call into the dynamic linker and overwrite it.
2397     */
2398    saved_msg = errmsg_save();
2399    STAILQ_FOREACH(elm, list, link) {
2400	if (elm->obj->init_done) /* Initialized early. */
2401	    continue;
2402	/*
2403	 * Race: other thread might try to use this object before current
2404	 * one completes the initilization. Not much can be done here
2405	 * without better locking.
2406	 */
2407	elm->obj->init_done = true;
2408	lock_release(rtld_bind_lock, lockstate);
2409
2410        /*
2411         * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2412         * When this happens, DT_INIT is processed first.
2413         */
2414	if (elm->obj->init != (Elf_Addr)NULL) {
2415	    dbg("calling init function for %s at %p", elm->obj->path,
2416	        (void *)elm->obj->init);
2417	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2418	        0, 0, elm->obj->path);
2419	    call_initfini_pointer(elm->obj, elm->obj->init);
2420	}
2421	init_addr = (Elf_Addr *)elm->obj->init_array;
2422	if (init_addr != NULL) {
2423	    for (index = 0; index < elm->obj->init_array_num; index++) {
2424		if (init_addr[index] != 0 && init_addr[index] != 1) {
2425		    dbg("calling init function for %s at %p", elm->obj->path,
2426			(void *)init_addr[index]);
2427		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2428			(void *)init_addr[index], 0, 0, elm->obj->path);
2429		    call_init_pointer(elm->obj, init_addr[index]);
2430		}
2431	    }
2432	}
2433	wlock_acquire(rtld_bind_lock, lockstate);
2434    }
2435    errmsg_restore(saved_msg);
2436}
2437
2438static void
2439objlist_clear(Objlist *list)
2440{
2441    Objlist_Entry *elm;
2442
2443    while (!STAILQ_EMPTY(list)) {
2444	elm = STAILQ_FIRST(list);
2445	STAILQ_REMOVE_HEAD(list, link);
2446	free(elm);
2447    }
2448}
2449
2450static Objlist_Entry *
2451objlist_find(Objlist *list, const Obj_Entry *obj)
2452{
2453    Objlist_Entry *elm;
2454
2455    STAILQ_FOREACH(elm, list, link)
2456	if (elm->obj == obj)
2457	    return elm;
2458    return NULL;
2459}
2460
2461static void
2462objlist_init(Objlist *list)
2463{
2464    STAILQ_INIT(list);
2465}
2466
2467static void
2468objlist_push_head(Objlist *list, Obj_Entry *obj)
2469{
2470    Objlist_Entry *elm;
2471
2472    elm = NEW(Objlist_Entry);
2473    elm->obj = obj;
2474    STAILQ_INSERT_HEAD(list, elm, link);
2475}
2476
2477static void
2478objlist_push_tail(Objlist *list, Obj_Entry *obj)
2479{
2480    Objlist_Entry *elm;
2481
2482    elm = NEW(Objlist_Entry);
2483    elm->obj = obj;
2484    STAILQ_INSERT_TAIL(list, elm, link);
2485}
2486
2487static void
2488objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2489{
2490	Objlist_Entry *elm, *listelm;
2491
2492	STAILQ_FOREACH(listelm, list, link) {
2493		if (listelm->obj == listobj)
2494			break;
2495	}
2496	elm = NEW(Objlist_Entry);
2497	elm->obj = obj;
2498	if (listelm != NULL)
2499		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2500	else
2501		STAILQ_INSERT_TAIL(list, elm, link);
2502}
2503
2504static void
2505objlist_remove(Objlist *list, Obj_Entry *obj)
2506{
2507    Objlist_Entry *elm;
2508
2509    if ((elm = objlist_find(list, obj)) != NULL) {
2510	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2511	free(elm);
2512    }
2513}
2514
2515/*
2516 * Relocate dag rooted in the specified object.
2517 * Returns 0 on success, or -1 on failure.
2518 */
2519
2520static int
2521relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2522    int flags, RtldLockState *lockstate)
2523{
2524	Objlist_Entry *elm;
2525	int error;
2526
2527	error = 0;
2528	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2529		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2530		    lockstate);
2531		if (error == -1)
2532			break;
2533	}
2534	return (error);
2535}
2536
2537/*
2538 * Relocate single object.
2539 * Returns 0 on success, or -1 on failure.
2540 */
2541static int
2542relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2543    int flags, RtldLockState *lockstate)
2544{
2545
2546	if (obj->relocated)
2547		return (0);
2548	obj->relocated = true;
2549	if (obj != rtldobj)
2550		dbg("relocating \"%s\"", obj->path);
2551
2552	if (obj->symtab == NULL || obj->strtab == NULL ||
2553	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2554		_rtld_error("%s: Shared object has no run-time symbol table",
2555			    obj->path);
2556		return (-1);
2557	}
2558
2559	if (obj->textrel) {
2560		/* There are relocations to the write-protected text segment. */
2561		if (mprotect(obj->mapbase, obj->textsize,
2562		    PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2563			_rtld_error("%s: Cannot write-enable text segment: %s",
2564			    obj->path, rtld_strerror(errno));
2565			return (-1);
2566		}
2567	}
2568
2569	/* Process the non-PLT non-IFUNC relocations. */
2570	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2571		return (-1);
2572
2573	if (obj->textrel) {	/* Re-protected the text segment. */
2574		if (mprotect(obj->mapbase, obj->textsize,
2575		    PROT_READ|PROT_EXEC) == -1) {
2576			_rtld_error("%s: Cannot write-protect text segment: %s",
2577			    obj->path, rtld_strerror(errno));
2578			return (-1);
2579		}
2580	}
2581
2582	/* Set the special PLT or GOT entries. */
2583	init_pltgot(obj);
2584
2585	/* Process the PLT relocations. */
2586	if (reloc_plt(obj) == -1)
2587		return (-1);
2588	/* Relocate the jump slots if we are doing immediate binding. */
2589	if (obj->bind_now || bind_now)
2590		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2591			return (-1);
2592
2593	/*
2594	 * Process the non-PLT IFUNC relocations.  The relocations are
2595	 * processed in two phases, because IFUNC resolvers may
2596	 * reference other symbols, which must be readily processed
2597	 * before resolvers are called.
2598	 */
2599	if (obj->non_plt_gnu_ifunc &&
2600	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2601		return (-1);
2602
2603	if (obj->relro_size > 0) {
2604		if (mprotect(obj->relro_page, obj->relro_size,
2605		    PROT_READ) == -1) {
2606			_rtld_error("%s: Cannot enforce relro protection: %s",
2607			    obj->path, rtld_strerror(errno));
2608			return (-1);
2609		}
2610	}
2611
2612	/*
2613	 * Set up the magic number and version in the Obj_Entry.  These
2614	 * were checked in the crt1.o from the original ElfKit, so we
2615	 * set them for backward compatibility.
2616	 */
2617	obj->magic = RTLD_MAGIC;
2618	obj->version = RTLD_VERSION;
2619
2620	return (0);
2621}
2622
2623/*
2624 * Relocate newly-loaded shared objects.  The argument is a pointer to
2625 * the Obj_Entry for the first such object.  All objects from the first
2626 * to the end of the list of objects are relocated.  Returns 0 on success,
2627 * or -1 on failure.
2628 */
2629static int
2630relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2631    int flags, RtldLockState *lockstate)
2632{
2633	Obj_Entry *obj;
2634	int error;
2635
2636	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2637		error = relocate_object(obj, bind_now, rtldobj, flags,
2638		    lockstate);
2639		if (error == -1)
2640			break;
2641	}
2642	return (error);
2643}
2644
2645/*
2646 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2647 * referencing STT_GNU_IFUNC symbols is postponed till the other
2648 * relocations are done.  The indirect functions specified as
2649 * ifunc are allowed to call other symbols, so we need to have
2650 * objects relocated before asking for resolution from indirects.
2651 *
2652 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2653 * instead of the usual lazy handling of PLT slots.  It is
2654 * consistent with how GNU does it.
2655 */
2656static int
2657resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2658    RtldLockState *lockstate)
2659{
2660	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2661		return (-1);
2662	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2663	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2664		return (-1);
2665	return (0);
2666}
2667
2668static int
2669resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2670    RtldLockState *lockstate)
2671{
2672	Obj_Entry *obj;
2673
2674	for (obj = first;  obj != NULL;  obj = obj->next) {
2675		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2676			return (-1);
2677	}
2678	return (0);
2679}
2680
2681static int
2682initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2683    RtldLockState *lockstate)
2684{
2685	Objlist_Entry *elm;
2686
2687	STAILQ_FOREACH(elm, list, link) {
2688		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2689		    lockstate) == -1)
2690			return (-1);
2691	}
2692	return (0);
2693}
2694
2695/*
2696 * Cleanup procedure.  It will be called (by the atexit mechanism) just
2697 * before the process exits.
2698 */
2699static void
2700rtld_exit(void)
2701{
2702    RtldLockState lockstate;
2703
2704    wlock_acquire(rtld_bind_lock, &lockstate);
2705    dbg("rtld_exit()");
2706    objlist_call_fini(&list_fini, NULL, &lockstate);
2707    /* No need to remove the items from the list, since we are exiting. */
2708    if (!libmap_disable)
2709        lm_fini();
2710    lock_release(rtld_bind_lock, &lockstate);
2711}
2712
2713/*
2714 * Iterate over a search path, translate each element, and invoke the
2715 * callback on the result.
2716 */
2717static void *
2718path_enumerate(const char *path, path_enum_proc callback, void *arg)
2719{
2720    const char *trans;
2721    if (path == NULL)
2722	return (NULL);
2723
2724    path += strspn(path, ":;");
2725    while (*path != '\0') {
2726	size_t len;
2727	char  *res;
2728
2729	len = strcspn(path, ":;");
2730	trans = lm_findn(NULL, path, len);
2731	if (trans)
2732	    res = callback(trans, strlen(trans), arg);
2733	else
2734	    res = callback(path, len, arg);
2735
2736	if (res != NULL)
2737	    return (res);
2738
2739	path += len;
2740	path += strspn(path, ":;");
2741    }
2742
2743    return (NULL);
2744}
2745
2746struct try_library_args {
2747    const char	*name;
2748    size_t	 namelen;
2749    char	*buffer;
2750    size_t	 buflen;
2751};
2752
2753static void *
2754try_library_path(const char *dir, size_t dirlen, void *param)
2755{
2756    struct try_library_args *arg;
2757
2758    arg = param;
2759    if (*dir == '/' || trust) {
2760	char *pathname;
2761
2762	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2763		return (NULL);
2764
2765	pathname = arg->buffer;
2766	strncpy(pathname, dir, dirlen);
2767	pathname[dirlen] = '/';
2768	strcpy(pathname + dirlen + 1, arg->name);
2769
2770	dbg("  Trying \"%s\"", pathname);
2771	if (access(pathname, F_OK) == 0) {		/* We found it */
2772	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2773	    strcpy(pathname, arg->buffer);
2774	    return (pathname);
2775	}
2776    }
2777    return (NULL);
2778}
2779
2780static char *
2781search_library_path(const char *name, const char *path)
2782{
2783    char *p;
2784    struct try_library_args arg;
2785
2786    if (path == NULL)
2787	return NULL;
2788
2789    arg.name = name;
2790    arg.namelen = strlen(name);
2791    arg.buffer = xmalloc(PATH_MAX);
2792    arg.buflen = PATH_MAX;
2793
2794    p = path_enumerate(path, try_library_path, &arg);
2795
2796    free(arg.buffer);
2797
2798    return (p);
2799}
2800
2801int
2802dlclose(void *handle)
2803{
2804    Obj_Entry *root;
2805    RtldLockState lockstate;
2806
2807    wlock_acquire(rtld_bind_lock, &lockstate);
2808    root = dlcheck(handle);
2809    if (root == NULL) {
2810	lock_release(rtld_bind_lock, &lockstate);
2811	return -1;
2812    }
2813    LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2814	root->path);
2815
2816    /* Unreference the object and its dependencies. */
2817    root->dl_refcount--;
2818
2819    if (root->refcount == 1) {
2820	/*
2821	 * The object will be no longer referenced, so we must unload it.
2822	 * First, call the fini functions.
2823	 */
2824	objlist_call_fini(&list_fini, root, &lockstate);
2825
2826	unref_dag(root);
2827
2828	/* Finish cleaning up the newly-unreferenced objects. */
2829	GDB_STATE(RT_DELETE,&root->linkmap);
2830	unload_object(root);
2831	GDB_STATE(RT_CONSISTENT,NULL);
2832    } else
2833	unref_dag(root);
2834
2835    LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2836    lock_release(rtld_bind_lock, &lockstate);
2837    return 0;
2838}
2839
2840char *
2841dlerror(void)
2842{
2843    char *msg = error_message;
2844    error_message = NULL;
2845    return msg;
2846}
2847
2848/*
2849 * This function is deprecated and has no effect.
2850 */
2851void
2852dllockinit(void *context,
2853	   void *(*lock_create)(void *context),
2854           void (*rlock_acquire)(void *lock),
2855           void (*wlock_acquire)(void *lock),
2856           void (*lock_release)(void *lock),
2857           void (*lock_destroy)(void *lock),
2858	   void (*context_destroy)(void *context))
2859{
2860    static void *cur_context;
2861    static void (*cur_context_destroy)(void *);
2862
2863    /* Just destroy the context from the previous call, if necessary. */
2864    if (cur_context_destroy != NULL)
2865	cur_context_destroy(cur_context);
2866    cur_context = context;
2867    cur_context_destroy = context_destroy;
2868}
2869
2870void *
2871dlopen(const char *name, int mode)
2872{
2873
2874	return (rtld_dlopen(name, -1, mode));
2875}
2876
2877void *
2878fdlopen(int fd, int mode)
2879{
2880
2881	return (rtld_dlopen(NULL, fd, mode));
2882}
2883
2884static void *
2885rtld_dlopen(const char *name, int fd, int mode)
2886{
2887    RtldLockState lockstate;
2888    int lo_flags;
2889
2890    LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2891    ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2892    if (ld_tracing != NULL) {
2893	rlock_acquire(rtld_bind_lock, &lockstate);
2894	if (sigsetjmp(lockstate.env, 0) != 0)
2895	    lock_upgrade(rtld_bind_lock, &lockstate);
2896	environ = (char **)*get_program_var_addr("environ", &lockstate);
2897	lock_release(rtld_bind_lock, &lockstate);
2898    }
2899    lo_flags = RTLD_LO_DLOPEN;
2900    if (mode & RTLD_NODELETE)
2901	    lo_flags |= RTLD_LO_NODELETE;
2902    if (mode & RTLD_NOLOAD)
2903	    lo_flags |= RTLD_LO_NOLOAD;
2904    if (ld_tracing != NULL)
2905	    lo_flags |= RTLD_LO_TRACE;
2906
2907    return (dlopen_object(name, fd, obj_main, lo_flags,
2908      mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2909}
2910
2911static void
2912dlopen_cleanup(Obj_Entry *obj)
2913{
2914
2915	obj->dl_refcount--;
2916	unref_dag(obj);
2917	if (obj->refcount == 0)
2918		unload_object(obj);
2919}
2920
2921static Obj_Entry *
2922dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2923    int mode, RtldLockState *lockstate)
2924{
2925    Obj_Entry **old_obj_tail;
2926    Obj_Entry *obj;
2927    Objlist initlist;
2928    RtldLockState mlockstate;
2929    int result;
2930
2931    objlist_init(&initlist);
2932
2933    if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2934	wlock_acquire(rtld_bind_lock, &mlockstate);
2935	lockstate = &mlockstate;
2936    }
2937    GDB_STATE(RT_ADD,NULL);
2938
2939    old_obj_tail = obj_tail;
2940    obj = NULL;
2941    if (name == NULL && fd == -1) {
2942	obj = obj_main;
2943	obj->refcount++;
2944    } else {
2945	obj = load_object(name, fd, refobj, lo_flags);
2946    }
2947
2948    if (obj) {
2949	obj->dl_refcount++;
2950	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2951	    objlist_push_tail(&list_global, obj);
2952	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2953	    assert(*old_obj_tail == obj);
2954	    result = load_needed_objects(obj,
2955		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
2956	    init_dag(obj);
2957	    ref_dag(obj);
2958	    if (result != -1)
2959		result = rtld_verify_versions(&obj->dagmembers);
2960	    if (result != -1 && ld_tracing)
2961		goto trace;
2962	    if (result == -1 || relocate_object_dag(obj,
2963	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
2964	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2965	      lockstate) == -1) {
2966		dlopen_cleanup(obj);
2967		obj = NULL;
2968	    } else if (lo_flags & RTLD_LO_EARLY) {
2969		/*
2970		 * Do not call the init functions for early loaded
2971		 * filtees.  The image is still not initialized enough
2972		 * for them to work.
2973		 *
2974		 * Our object is found by the global object list and
2975		 * will be ordered among all init calls done right
2976		 * before transferring control to main.
2977		 */
2978	    } else {
2979		/* Make list of init functions to call. */
2980		initlist_add_objects(obj, &obj->next, &initlist);
2981	    }
2982	    /*
2983	     * Process all no_delete or global objects here, given
2984	     * them own DAGs to prevent their dependencies from being
2985	     * unloaded.  This has to be done after we have loaded all
2986	     * of the dependencies, so that we do not miss any.
2987	     */
2988	    if (obj != NULL)
2989		process_z(obj);
2990	} else {
2991	    /*
2992	     * Bump the reference counts for objects on this DAG.  If
2993	     * this is the first dlopen() call for the object that was
2994	     * already loaded as a dependency, initialize the dag
2995	     * starting at it.
2996	     */
2997	    init_dag(obj);
2998	    ref_dag(obj);
2999
3000	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3001		goto trace;
3002	}
3003	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3004	  obj->z_nodelete) && !obj->ref_nodel) {
3005	    dbg("obj %s nodelete", obj->path);
3006	    ref_dag(obj);
3007	    obj->z_nodelete = obj->ref_nodel = true;
3008	}
3009    }
3010
3011    LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3012	name);
3013    GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3014
3015    if (!(lo_flags & RTLD_LO_EARLY)) {
3016	map_stacks_exec(lockstate);
3017    }
3018
3019    if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3020      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3021      lockstate) == -1) {
3022	objlist_clear(&initlist);
3023	dlopen_cleanup(obj);
3024	if (lockstate == &mlockstate)
3025	    lock_release(rtld_bind_lock, lockstate);
3026	return (NULL);
3027    }
3028
3029    if (!(lo_flags & RTLD_LO_EARLY)) {
3030	/* Call the init functions. */
3031	objlist_call_init(&initlist, lockstate);
3032    }
3033    objlist_clear(&initlist);
3034    if (lockstate == &mlockstate)
3035	lock_release(rtld_bind_lock, lockstate);
3036    return obj;
3037trace:
3038    trace_loaded_objects(obj);
3039    if (lockstate == &mlockstate)
3040	lock_release(rtld_bind_lock, lockstate);
3041    exit(0);
3042}
3043
3044static void *
3045do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3046    int flags)
3047{
3048    DoneList donelist;
3049    const Obj_Entry *obj, *defobj;
3050    const Elf_Sym *def;
3051    SymLook req;
3052    RtldLockState lockstate;
3053#ifndef __ia64__
3054    tls_index ti;
3055#endif
3056    void *sym;
3057    int res;
3058
3059    def = NULL;
3060    defobj = NULL;
3061    symlook_init(&req, name);
3062    req.ventry = ve;
3063    req.flags = flags | SYMLOOK_IN_PLT;
3064    req.lockstate = &lockstate;
3065
3066    LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3067    rlock_acquire(rtld_bind_lock, &lockstate);
3068    if (sigsetjmp(lockstate.env, 0) != 0)
3069	    lock_upgrade(rtld_bind_lock, &lockstate);
3070    if (handle == NULL || handle == RTLD_NEXT ||
3071	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3072
3073	if ((obj = obj_from_addr(retaddr)) == NULL) {
3074	    _rtld_error("Cannot determine caller's shared object");
3075	    lock_release(rtld_bind_lock, &lockstate);
3076	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3077	    return NULL;
3078	}
3079	if (handle == NULL) {	/* Just the caller's shared object. */
3080	    res = symlook_obj(&req, obj);
3081	    if (res == 0) {
3082		def = req.sym_out;
3083		defobj = req.defobj_out;
3084	    }
3085	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3086		   handle == RTLD_SELF) { /* ... caller included */
3087	    if (handle == RTLD_NEXT)
3088		obj = obj->next;
3089	    for (; obj != NULL; obj = obj->next) {
3090		res = symlook_obj(&req, obj);
3091		if (res == 0) {
3092		    if (def == NULL ||
3093		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3094			def = req.sym_out;
3095			defobj = req.defobj_out;
3096			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3097			    break;
3098		    }
3099		}
3100	    }
3101	    /*
3102	     * Search the dynamic linker itself, and possibly resolve the
3103	     * symbol from there.  This is how the application links to
3104	     * dynamic linker services such as dlopen.
3105	     */
3106	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3107		res = symlook_obj(&req, &obj_rtld);
3108		if (res == 0) {
3109		    def = req.sym_out;
3110		    defobj = req.defobj_out;
3111		}
3112	    }
3113	} else {
3114	    assert(handle == RTLD_DEFAULT);
3115	    res = symlook_default(&req, obj);
3116	    if (res == 0) {
3117		defobj = req.defobj_out;
3118		def = req.sym_out;
3119	    }
3120	}
3121    } else {
3122	if ((obj = dlcheck(handle)) == NULL) {
3123	    lock_release(rtld_bind_lock, &lockstate);
3124	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3125	    return NULL;
3126	}
3127
3128	donelist_init(&donelist);
3129	if (obj->mainprog) {
3130            /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3131	    res = symlook_global(&req, &donelist);
3132	    if (res == 0) {
3133		def = req.sym_out;
3134		defobj = req.defobj_out;
3135	    }
3136	    /*
3137	     * Search the dynamic linker itself, and possibly resolve the
3138	     * symbol from there.  This is how the application links to
3139	     * dynamic linker services such as dlopen.
3140	     */
3141	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3142		res = symlook_obj(&req, &obj_rtld);
3143		if (res == 0) {
3144		    def = req.sym_out;
3145		    defobj = req.defobj_out;
3146		}
3147	    }
3148	}
3149	else {
3150	    /* Search the whole DAG rooted at the given object. */
3151	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3152	    if (res == 0) {
3153		def = req.sym_out;
3154		defobj = req.defobj_out;
3155	    }
3156	}
3157    }
3158
3159    if (def != NULL) {
3160	lock_release(rtld_bind_lock, &lockstate);
3161
3162	/*
3163	 * The value required by the caller is derived from the value
3164	 * of the symbol. For the ia64 architecture, we need to
3165	 * construct a function descriptor which the caller can use to
3166	 * call the function with the right 'gp' value. For other
3167	 * architectures and for non-functions, the value is simply
3168	 * the relocated value of the symbol.
3169	 */
3170	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3171	    sym = make_function_pointer(def, defobj);
3172	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3173	    sym = rtld_resolve_ifunc(defobj, def);
3174	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3175#ifdef __ia64__
3176	    return (__tls_get_addr(defobj->tlsindex, def->st_value));
3177#else
3178	    ti.ti_module = defobj->tlsindex;
3179	    ti.ti_offset = def->st_value;
3180	    sym = __tls_get_addr(&ti);
3181#endif
3182	} else
3183	    sym = defobj->relocbase + def->st_value;
3184	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3185	return (sym);
3186    }
3187
3188    _rtld_error("Undefined symbol \"%s\"", name);
3189    lock_release(rtld_bind_lock, &lockstate);
3190    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3191    return NULL;
3192}
3193
3194void *
3195dlsym(void *handle, const char *name)
3196{
3197	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3198	    SYMLOOK_DLSYM);
3199}
3200
3201dlfunc_t
3202dlfunc(void *handle, const char *name)
3203{
3204	union {
3205		void *d;
3206		dlfunc_t f;
3207	} rv;
3208
3209	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3210	    SYMLOOK_DLSYM);
3211	return (rv.f);
3212}
3213
3214void *
3215dlvsym(void *handle, const char *name, const char *version)
3216{
3217	Ver_Entry ventry;
3218
3219	ventry.name = version;
3220	ventry.file = NULL;
3221	ventry.hash = elf_hash(version);
3222	ventry.flags= 0;
3223	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3224	    SYMLOOK_DLSYM);
3225}
3226
3227int
3228_rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3229{
3230    const Obj_Entry *obj;
3231    RtldLockState lockstate;
3232
3233    rlock_acquire(rtld_bind_lock, &lockstate);
3234    obj = obj_from_addr(addr);
3235    if (obj == NULL) {
3236        _rtld_error("No shared object contains address");
3237	lock_release(rtld_bind_lock, &lockstate);
3238        return (0);
3239    }
3240    rtld_fill_dl_phdr_info(obj, phdr_info);
3241    lock_release(rtld_bind_lock, &lockstate);
3242    return (1);
3243}
3244
3245int
3246dladdr(const void *addr, Dl_info *info)
3247{
3248    const Obj_Entry *obj;
3249    const Elf_Sym *def;
3250    void *symbol_addr;
3251    unsigned long symoffset;
3252    RtldLockState lockstate;
3253
3254    rlock_acquire(rtld_bind_lock, &lockstate);
3255    obj = obj_from_addr(addr);
3256    if (obj == NULL) {
3257        _rtld_error("No shared object contains address");
3258	lock_release(rtld_bind_lock, &lockstate);
3259        return 0;
3260    }
3261    info->dli_fname = obj->path;
3262    info->dli_fbase = obj->mapbase;
3263    info->dli_saddr = (void *)0;
3264    info->dli_sname = NULL;
3265
3266    /*
3267     * Walk the symbol list looking for the symbol whose address is
3268     * closest to the address sent in.
3269     */
3270    for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3271        def = obj->symtab + symoffset;
3272
3273        /*
3274         * For skip the symbol if st_shndx is either SHN_UNDEF or
3275         * SHN_COMMON.
3276         */
3277        if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3278            continue;
3279
3280        /*
3281         * If the symbol is greater than the specified address, or if it
3282         * is further away from addr than the current nearest symbol,
3283         * then reject it.
3284         */
3285        symbol_addr = obj->relocbase + def->st_value;
3286        if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3287            continue;
3288
3289        /* Update our idea of the nearest symbol. */
3290        info->dli_sname = obj->strtab + def->st_name;
3291        info->dli_saddr = symbol_addr;
3292
3293        /* Exact match? */
3294        if (info->dli_saddr == addr)
3295            break;
3296    }
3297    lock_release(rtld_bind_lock, &lockstate);
3298    return 1;
3299}
3300
3301int
3302dlinfo(void *handle, int request, void *p)
3303{
3304    const Obj_Entry *obj;
3305    RtldLockState lockstate;
3306    int error;
3307
3308    rlock_acquire(rtld_bind_lock, &lockstate);
3309
3310    if (handle == NULL || handle == RTLD_SELF) {
3311	void *retaddr;
3312
3313	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3314	if ((obj = obj_from_addr(retaddr)) == NULL)
3315	    _rtld_error("Cannot determine caller's shared object");
3316    } else
3317	obj = dlcheck(handle);
3318
3319    if (obj == NULL) {
3320	lock_release(rtld_bind_lock, &lockstate);
3321	return (-1);
3322    }
3323
3324    error = 0;
3325    switch (request) {
3326    case RTLD_DI_LINKMAP:
3327	*((struct link_map const **)p) = &obj->linkmap;
3328	break;
3329    case RTLD_DI_ORIGIN:
3330	error = rtld_dirname(obj->path, p);
3331	break;
3332
3333    case RTLD_DI_SERINFOSIZE:
3334    case RTLD_DI_SERINFO:
3335	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3336	break;
3337
3338    default:
3339	_rtld_error("Invalid request %d passed to dlinfo()", request);
3340	error = -1;
3341    }
3342
3343    lock_release(rtld_bind_lock, &lockstate);
3344
3345    return (error);
3346}
3347
3348static void
3349rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3350{
3351
3352	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3353	phdr_info->dlpi_name = obj->path;
3354	phdr_info->dlpi_phdr = obj->phdr;
3355	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3356	phdr_info->dlpi_tls_modid = obj->tlsindex;
3357	phdr_info->dlpi_tls_data = obj->tlsinit;
3358	phdr_info->dlpi_adds = obj_loads;
3359	phdr_info->dlpi_subs = obj_loads - obj_count;
3360}
3361
3362int
3363dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3364{
3365    struct dl_phdr_info phdr_info;
3366    const Obj_Entry *obj;
3367    RtldLockState bind_lockstate, phdr_lockstate;
3368    int error;
3369
3370    wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3371    rlock_acquire(rtld_bind_lock, &bind_lockstate);
3372
3373    error = 0;
3374
3375    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3376	rtld_fill_dl_phdr_info(obj, &phdr_info);
3377	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3378		break;
3379
3380    }
3381    lock_release(rtld_bind_lock, &bind_lockstate);
3382    lock_release(rtld_phdr_lock, &phdr_lockstate);
3383
3384    return (error);
3385}
3386
3387static void *
3388fill_search_info(const char *dir, size_t dirlen, void *param)
3389{
3390    struct fill_search_info_args *arg;
3391
3392    arg = param;
3393
3394    if (arg->request == RTLD_DI_SERINFOSIZE) {
3395	arg->serinfo->dls_cnt ++;
3396	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3397    } else {
3398	struct dl_serpath *s_entry;
3399
3400	s_entry = arg->serpath;
3401	s_entry->dls_name  = arg->strspace;
3402	s_entry->dls_flags = arg->flags;
3403
3404	strncpy(arg->strspace, dir, dirlen);
3405	arg->strspace[dirlen] = '\0';
3406
3407	arg->strspace += dirlen + 1;
3408	arg->serpath++;
3409    }
3410
3411    return (NULL);
3412}
3413
3414static int
3415do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3416{
3417    struct dl_serinfo _info;
3418    struct fill_search_info_args args;
3419
3420    args.request = RTLD_DI_SERINFOSIZE;
3421    args.serinfo = &_info;
3422
3423    _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3424    _info.dls_cnt  = 0;
3425
3426    path_enumerate(obj->rpath, fill_search_info, &args);
3427    path_enumerate(ld_library_path, fill_search_info, &args);
3428    path_enumerate(obj->runpath, fill_search_info, &args);
3429    path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3430    if (!obj->z_nodeflib)
3431      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3432
3433
3434    if (request == RTLD_DI_SERINFOSIZE) {
3435	info->dls_size = _info.dls_size;
3436	info->dls_cnt = _info.dls_cnt;
3437	return (0);
3438    }
3439
3440    if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3441	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3442	return (-1);
3443    }
3444
3445    args.request  = RTLD_DI_SERINFO;
3446    args.serinfo  = info;
3447    args.serpath  = &info->dls_serpath[0];
3448    args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3449
3450    args.flags = LA_SER_RUNPATH;
3451    if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3452	return (-1);
3453
3454    args.flags = LA_SER_LIBPATH;
3455    if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3456	return (-1);
3457
3458    args.flags = LA_SER_RUNPATH;
3459    if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3460	return (-1);
3461
3462    args.flags = LA_SER_CONFIG;
3463    if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3464      != NULL)
3465	return (-1);
3466
3467    args.flags = LA_SER_DEFAULT;
3468    if (!obj->z_nodeflib &&
3469      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3470	return (-1);
3471    return (0);
3472}
3473
3474static int
3475rtld_dirname(const char *path, char *bname)
3476{
3477    const char *endp;
3478
3479    /* Empty or NULL string gets treated as "." */
3480    if (path == NULL || *path == '\0') {
3481	bname[0] = '.';
3482	bname[1] = '\0';
3483	return (0);
3484    }
3485
3486    /* Strip trailing slashes */
3487    endp = path + strlen(path) - 1;
3488    while (endp > path && *endp == '/')
3489	endp--;
3490
3491    /* Find the start of the dir */
3492    while (endp > path && *endp != '/')
3493	endp--;
3494
3495    /* Either the dir is "/" or there are no slashes */
3496    if (endp == path) {
3497	bname[0] = *endp == '/' ? '/' : '.';
3498	bname[1] = '\0';
3499	return (0);
3500    } else {
3501	do {
3502	    endp--;
3503	} while (endp > path && *endp == '/');
3504    }
3505
3506    if (endp - path + 2 > PATH_MAX)
3507    {
3508	_rtld_error("Filename is too long: %s", path);
3509	return(-1);
3510    }
3511
3512    strncpy(bname, path, endp - path + 1);
3513    bname[endp - path + 1] = '\0';
3514    return (0);
3515}
3516
3517static int
3518rtld_dirname_abs(const char *path, char *base)
3519{
3520	char *last;
3521
3522	if (realpath(path, base) == NULL)
3523		return (-1);
3524	dbg("%s -> %s", path, base);
3525	last = strrchr(base, '/');
3526	if (last == NULL)
3527		return (-1);
3528	if (last != base)
3529		*last = '\0';
3530	return (0);
3531}
3532
3533static void
3534linkmap_add(Obj_Entry *obj)
3535{
3536    struct link_map *l = &obj->linkmap;
3537    struct link_map *prev;
3538
3539    obj->linkmap.l_name = obj->path;
3540    obj->linkmap.l_addr = obj->mapbase;
3541    obj->linkmap.l_ld = obj->dynamic;
3542#ifdef __mips__
3543    /* GDB needs load offset on MIPS to use the symbols */
3544    obj->linkmap.l_offs = obj->relocbase;
3545#endif
3546
3547    if (r_debug.r_map == NULL) {
3548	r_debug.r_map = l;
3549	return;
3550    }
3551
3552    /*
3553     * Scan to the end of the list, but not past the entry for the
3554     * dynamic linker, which we want to keep at the very end.
3555     */
3556    for (prev = r_debug.r_map;
3557      prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3558      prev = prev->l_next)
3559	;
3560
3561    /* Link in the new entry. */
3562    l->l_prev = prev;
3563    l->l_next = prev->l_next;
3564    if (l->l_next != NULL)
3565	l->l_next->l_prev = l;
3566    prev->l_next = l;
3567}
3568
3569static void
3570linkmap_delete(Obj_Entry *obj)
3571{
3572    struct link_map *l = &obj->linkmap;
3573
3574    if (l->l_prev == NULL) {
3575	if ((r_debug.r_map = l->l_next) != NULL)
3576	    l->l_next->l_prev = NULL;
3577	return;
3578    }
3579
3580    if ((l->l_prev->l_next = l->l_next) != NULL)
3581	l->l_next->l_prev = l->l_prev;
3582}
3583
3584/*
3585 * Function for the debugger to set a breakpoint on to gain control.
3586 *
3587 * The two parameters allow the debugger to easily find and determine
3588 * what the runtime loader is doing and to whom it is doing it.
3589 *
3590 * When the loadhook trap is hit (r_debug_state, set at program
3591 * initialization), the arguments can be found on the stack:
3592 *
3593 *  +8   struct link_map *m
3594 *  +4   struct r_debug  *rd
3595 *  +0   RetAddr
3596 */
3597void
3598r_debug_state(struct r_debug* rd, struct link_map *m)
3599{
3600    /*
3601     * The following is a hack to force the compiler to emit calls to
3602     * this function, even when optimizing.  If the function is empty,
3603     * the compiler is not obliged to emit any code for calls to it,
3604     * even when marked __noinline.  However, gdb depends on those
3605     * calls being made.
3606     */
3607    __compiler_membar();
3608}
3609
3610/*
3611 * A function called after init routines have completed. This can be used to
3612 * break before a program's entry routine is called, and can be used when
3613 * main is not available in the symbol table.
3614 */
3615void
3616_r_debug_postinit(struct link_map *m)
3617{
3618
3619	/* See r_debug_state(). */
3620	__compiler_membar();
3621}
3622
3623/*
3624 * Get address of the pointer variable in the main program.
3625 * Prefer non-weak symbol over the weak one.
3626 */
3627static const void **
3628get_program_var_addr(const char *name, RtldLockState *lockstate)
3629{
3630    SymLook req;
3631    DoneList donelist;
3632
3633    symlook_init(&req, name);
3634    req.lockstate = lockstate;
3635    donelist_init(&donelist);
3636    if (symlook_global(&req, &donelist) != 0)
3637	return (NULL);
3638    if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3639	return ((const void **)make_function_pointer(req.sym_out,
3640	  req.defobj_out));
3641    else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3642	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3643    else
3644	return ((const void **)(req.defobj_out->relocbase +
3645	  req.sym_out->st_value));
3646}
3647
3648/*
3649 * Set a pointer variable in the main program to the given value.  This
3650 * is used to set key variables such as "environ" before any of the
3651 * init functions are called.
3652 */
3653static void
3654set_program_var(const char *name, const void *value)
3655{
3656    const void **addr;
3657
3658    if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3659	dbg("\"%s\": *%p <-- %p", name, addr, value);
3660	*addr = value;
3661    }
3662}
3663
3664/*
3665 * Search the global objects, including dependencies and main object,
3666 * for the given symbol.
3667 */
3668static int
3669symlook_global(SymLook *req, DoneList *donelist)
3670{
3671    SymLook req1;
3672    const Objlist_Entry *elm;
3673    int res;
3674
3675    symlook_init_from_req(&req1, req);
3676
3677    /* Search all objects loaded at program start up. */
3678    if (req->defobj_out == NULL ||
3679      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3680	res = symlook_list(&req1, &list_main, donelist);
3681	if (res == 0 && (req->defobj_out == NULL ||
3682	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3683	    req->sym_out = req1.sym_out;
3684	    req->defobj_out = req1.defobj_out;
3685	    assert(req->defobj_out != NULL);
3686	}
3687    }
3688
3689    /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3690    STAILQ_FOREACH(elm, &list_global, link) {
3691	if (req->defobj_out != NULL &&
3692	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3693	    break;
3694	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3695	if (res == 0 && (req->defobj_out == NULL ||
3696	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3697	    req->sym_out = req1.sym_out;
3698	    req->defobj_out = req1.defobj_out;
3699	    assert(req->defobj_out != NULL);
3700	}
3701    }
3702
3703    return (req->sym_out != NULL ? 0 : ESRCH);
3704}
3705
3706/*
3707 * Given a symbol name in a referencing object, find the corresponding
3708 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3709 * no definition was found.  Returns a pointer to the Obj_Entry of the
3710 * defining object via the reference parameter DEFOBJ_OUT.
3711 */
3712static int
3713symlook_default(SymLook *req, const Obj_Entry *refobj)
3714{
3715    DoneList donelist;
3716    const Objlist_Entry *elm;
3717    SymLook req1;
3718    int res;
3719
3720    donelist_init(&donelist);
3721    symlook_init_from_req(&req1, req);
3722
3723    /* Look first in the referencing object if linked symbolically. */
3724    if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3725	res = symlook_obj(&req1, refobj);
3726	if (res == 0) {
3727	    req->sym_out = req1.sym_out;
3728	    req->defobj_out = req1.defobj_out;
3729	    assert(req->defobj_out != NULL);
3730	}
3731    }
3732
3733    symlook_global(req, &donelist);
3734
3735    /* Search all dlopened DAGs containing the referencing object. */
3736    STAILQ_FOREACH(elm, &refobj->dldags, link) {
3737	if (req->sym_out != NULL &&
3738	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3739	    break;
3740	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3741	if (res == 0 && (req->sym_out == NULL ||
3742	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3743	    req->sym_out = req1.sym_out;
3744	    req->defobj_out = req1.defobj_out;
3745	    assert(req->defobj_out != NULL);
3746	}
3747    }
3748
3749    /*
3750     * Search the dynamic linker itself, and possibly resolve the
3751     * symbol from there.  This is how the application links to
3752     * dynamic linker services such as dlopen.
3753     */
3754    if (req->sym_out == NULL ||
3755      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3756	res = symlook_obj(&req1, &obj_rtld);
3757	if (res == 0) {
3758	    req->sym_out = req1.sym_out;
3759	    req->defobj_out = req1.defobj_out;
3760	    assert(req->defobj_out != NULL);
3761	}
3762    }
3763
3764    return (req->sym_out != NULL ? 0 : ESRCH);
3765}
3766
3767static int
3768symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3769{
3770    const Elf_Sym *def;
3771    const Obj_Entry *defobj;
3772    const Objlist_Entry *elm;
3773    SymLook req1;
3774    int res;
3775
3776    def = NULL;
3777    defobj = NULL;
3778    STAILQ_FOREACH(elm, objlist, link) {
3779	if (donelist_check(dlp, elm->obj))
3780	    continue;
3781	symlook_init_from_req(&req1, req);
3782	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3783	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3784		def = req1.sym_out;
3785		defobj = req1.defobj_out;
3786		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3787		    break;
3788	    }
3789	}
3790    }
3791    if (def != NULL) {
3792	req->sym_out = def;
3793	req->defobj_out = defobj;
3794	return (0);
3795    }
3796    return (ESRCH);
3797}
3798
3799/*
3800 * Search the chain of DAGS cointed to by the given Needed_Entry
3801 * for a symbol of the given name.  Each DAG is scanned completely
3802 * before advancing to the next one.  Returns a pointer to the symbol,
3803 * or NULL if no definition was found.
3804 */
3805static int
3806symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3807{
3808    const Elf_Sym *def;
3809    const Needed_Entry *n;
3810    const Obj_Entry *defobj;
3811    SymLook req1;
3812    int res;
3813
3814    def = NULL;
3815    defobj = NULL;
3816    symlook_init_from_req(&req1, req);
3817    for (n = needed; n != NULL; n = n->next) {
3818	if (n->obj == NULL ||
3819	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3820	    continue;
3821	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3822	    def = req1.sym_out;
3823	    defobj = req1.defobj_out;
3824	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3825		break;
3826	}
3827    }
3828    if (def != NULL) {
3829	req->sym_out = def;
3830	req->defobj_out = defobj;
3831	return (0);
3832    }
3833    return (ESRCH);
3834}
3835
3836/*
3837 * Search the symbol table of a single shared object for a symbol of
3838 * the given name and version, if requested.  Returns a pointer to the
3839 * symbol, or NULL if no definition was found.  If the object is
3840 * filter, return filtered symbol from filtee.
3841 *
3842 * The symbol's hash value is passed in for efficiency reasons; that
3843 * eliminates many recomputations of the hash value.
3844 */
3845int
3846symlook_obj(SymLook *req, const Obj_Entry *obj)
3847{
3848    DoneList donelist;
3849    SymLook req1;
3850    int flags, res, mres;
3851
3852    /*
3853     * If there is at least one valid hash at this point, we prefer to
3854     * use the faster GNU version if available.
3855     */
3856    if (obj->valid_hash_gnu)
3857	mres = symlook_obj1_gnu(req, obj);
3858    else if (obj->valid_hash_sysv)
3859	mres = symlook_obj1_sysv(req, obj);
3860    else
3861	return (EINVAL);
3862
3863    if (mres == 0) {
3864	if (obj->needed_filtees != NULL) {
3865	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3866	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3867	    donelist_init(&donelist);
3868	    symlook_init_from_req(&req1, req);
3869	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3870	    if (res == 0) {
3871		req->sym_out = req1.sym_out;
3872		req->defobj_out = req1.defobj_out;
3873	    }
3874	    return (res);
3875	}
3876	if (obj->needed_aux_filtees != NULL) {
3877	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3878	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3879	    donelist_init(&donelist);
3880	    symlook_init_from_req(&req1, req);
3881	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3882	    if (res == 0) {
3883		req->sym_out = req1.sym_out;
3884		req->defobj_out = req1.defobj_out;
3885		return (res);
3886	    }
3887	}
3888    }
3889    return (mres);
3890}
3891
3892/* Symbol match routine common to both hash functions */
3893static bool
3894matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3895    const unsigned long symnum)
3896{
3897	Elf_Versym verndx;
3898	const Elf_Sym *symp;
3899	const char *strp;
3900
3901	symp = obj->symtab + symnum;
3902	strp = obj->strtab + symp->st_name;
3903
3904	switch (ELF_ST_TYPE(symp->st_info)) {
3905	case STT_FUNC:
3906	case STT_NOTYPE:
3907	case STT_OBJECT:
3908	case STT_COMMON:
3909	case STT_GNU_IFUNC:
3910		if (symp->st_value == 0)
3911			return (false);
3912		/* fallthrough */
3913	case STT_TLS:
3914		if (symp->st_shndx != SHN_UNDEF)
3915			break;
3916#ifndef __mips__
3917		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3918		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3919			break;
3920		/* fallthrough */
3921#endif
3922	default:
3923		return (false);
3924	}
3925	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3926		return (false);
3927
3928	if (req->ventry == NULL) {
3929		if (obj->versyms != NULL) {
3930			verndx = VER_NDX(obj->versyms[symnum]);
3931			if (verndx > obj->vernum) {
3932				_rtld_error(
3933				    "%s: symbol %s references wrong version %d",
3934				    obj->path, obj->strtab + symnum, verndx);
3935				return (false);
3936			}
3937			/*
3938			 * If we are not called from dlsym (i.e. this
3939			 * is a normal relocation from unversioned
3940			 * binary), accept the symbol immediately if
3941			 * it happens to have first version after this
3942			 * shared object became versioned.  Otherwise,
3943			 * if symbol is versioned and not hidden,
3944			 * remember it. If it is the only symbol with
3945			 * this name exported by the shared object, it
3946			 * will be returned as a match by the calling
3947			 * function. If symbol is global (verndx < 2)
3948			 * accept it unconditionally.
3949			 */
3950			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3951			    verndx == VER_NDX_GIVEN) {
3952				result->sym_out = symp;
3953				return (true);
3954			}
3955			else if (verndx >= VER_NDX_GIVEN) {
3956				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
3957				    == 0) {
3958					if (result->vsymp == NULL)
3959						result->vsymp = symp;
3960					result->vcount++;
3961				}
3962				return (false);
3963			}
3964		}
3965		result->sym_out = symp;
3966		return (true);
3967	}
3968	if (obj->versyms == NULL) {
3969		if (object_match_name(obj, req->ventry->name)) {
3970			_rtld_error("%s: object %s should provide version %s "
3971			    "for symbol %s", obj_rtld.path, obj->path,
3972			    req->ventry->name, obj->strtab + symnum);
3973			return (false);
3974		}
3975	} else {
3976		verndx = VER_NDX(obj->versyms[symnum]);
3977		if (verndx > obj->vernum) {
3978			_rtld_error("%s: symbol %s references wrong version %d",
3979			    obj->path, obj->strtab + symnum, verndx);
3980			return (false);
3981		}
3982		if (obj->vertab[verndx].hash != req->ventry->hash ||
3983		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3984			/*
3985			 * Version does not match. Look if this is a
3986			 * global symbol and if it is not hidden. If
3987			 * global symbol (verndx < 2) is available,
3988			 * use it. Do not return symbol if we are
3989			 * called by dlvsym, because dlvsym looks for
3990			 * a specific version and default one is not
3991			 * what dlvsym wants.
3992			 */
3993			if ((req->flags & SYMLOOK_DLSYM) ||
3994			    (verndx >= VER_NDX_GIVEN) ||
3995			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
3996				return (false);
3997		}
3998	}
3999	result->sym_out = symp;
4000	return (true);
4001}
4002
4003/*
4004 * Search for symbol using SysV hash function.
4005 * obj->buckets is known not to be NULL at this point; the test for this was
4006 * performed with the obj->valid_hash_sysv assignment.
4007 */
4008static int
4009symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4010{
4011	unsigned long symnum;
4012	Sym_Match_Result matchres;
4013
4014	matchres.sym_out = NULL;
4015	matchres.vsymp = NULL;
4016	matchres.vcount = 0;
4017
4018	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4019	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4020		if (symnum >= obj->nchains)
4021			return (ESRCH);	/* Bad object */
4022
4023		if (matched_symbol(req, obj, &matchres, symnum)) {
4024			req->sym_out = matchres.sym_out;
4025			req->defobj_out = obj;
4026			return (0);
4027		}
4028	}
4029	if (matchres.vcount == 1) {
4030		req->sym_out = matchres.vsymp;
4031		req->defobj_out = obj;
4032		return (0);
4033	}
4034	return (ESRCH);
4035}
4036
4037/* Search for symbol using GNU hash function */
4038static int
4039symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4040{
4041	Elf_Addr bloom_word;
4042	const Elf32_Word *hashval;
4043	Elf32_Word bucket;
4044	Sym_Match_Result matchres;
4045	unsigned int h1, h2;
4046	unsigned long symnum;
4047
4048	matchres.sym_out = NULL;
4049	matchres.vsymp = NULL;
4050	matchres.vcount = 0;
4051
4052	/* Pick right bitmask word from Bloom filter array */
4053	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4054	    obj->maskwords_bm_gnu];
4055
4056	/* Calculate modulus word size of gnu hash and its derivative */
4057	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4058	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4059
4060	/* Filter out the "definitely not in set" queries */
4061	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4062		return (ESRCH);
4063
4064	/* Locate hash chain and corresponding value element*/
4065	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4066	if (bucket == 0)
4067		return (ESRCH);
4068	hashval = &obj->chain_zero_gnu[bucket];
4069	do {
4070		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4071			symnum = hashval - obj->chain_zero_gnu;
4072			if (matched_symbol(req, obj, &matchres, symnum)) {
4073				req->sym_out = matchres.sym_out;
4074				req->defobj_out = obj;
4075				return (0);
4076			}
4077		}
4078	} while ((*hashval++ & 1) == 0);
4079	if (matchres.vcount == 1) {
4080		req->sym_out = matchres.vsymp;
4081		req->defobj_out = obj;
4082		return (0);
4083	}
4084	return (ESRCH);
4085}
4086
4087static void
4088trace_loaded_objects(Obj_Entry *obj)
4089{
4090    char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4091    int		c;
4092
4093    if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4094	main_local = "";
4095
4096    if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4097	fmt1 = "\t%o => %p (%x)\n";
4098
4099    if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4100	fmt2 = "\t%o (%x)\n";
4101
4102    list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
4103
4104    for (; obj; obj = obj->next) {
4105	Needed_Entry		*needed;
4106	char			*name, *path;
4107	bool			is_lib;
4108
4109	if (list_containers && obj->needed != NULL)
4110	    rtld_printf("%s:\n", obj->path);
4111	for (needed = obj->needed; needed; needed = needed->next) {
4112	    if (needed->obj != NULL) {
4113		if (needed->obj->traced && !list_containers)
4114		    continue;
4115		needed->obj->traced = true;
4116		path = needed->obj->path;
4117	    } else
4118		path = "not found";
4119
4120	    name = (char *)obj->strtab + needed->name;
4121	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4122
4123	    fmt = is_lib ? fmt1 : fmt2;
4124	    while ((c = *fmt++) != '\0') {
4125		switch (c) {
4126		default:
4127		    rtld_putchar(c);
4128		    continue;
4129		case '\\':
4130		    switch (c = *fmt) {
4131		    case '\0':
4132			continue;
4133		    case 'n':
4134			rtld_putchar('\n');
4135			break;
4136		    case 't':
4137			rtld_putchar('\t');
4138			break;
4139		    }
4140		    break;
4141		case '%':
4142		    switch (c = *fmt) {
4143		    case '\0':
4144			continue;
4145		    case '%':
4146		    default:
4147			rtld_putchar(c);
4148			break;
4149		    case 'A':
4150			rtld_putstr(main_local);
4151			break;
4152		    case 'a':
4153			rtld_putstr(obj_main->path);
4154			break;
4155		    case 'o':
4156			rtld_putstr(name);
4157			break;
4158#if 0
4159		    case 'm':
4160			rtld_printf("%d", sodp->sod_major);
4161			break;
4162		    case 'n':
4163			rtld_printf("%d", sodp->sod_minor);
4164			break;
4165#endif
4166		    case 'p':
4167			rtld_putstr(path);
4168			break;
4169		    case 'x':
4170			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4171			  0);
4172			break;
4173		    }
4174		    break;
4175		}
4176		++fmt;
4177	    }
4178	}
4179    }
4180}
4181
4182/*
4183 * Unload a dlopened object and its dependencies from memory and from
4184 * our data structures.  It is assumed that the DAG rooted in the
4185 * object has already been unreferenced, and that the object has a
4186 * reference count of 0.
4187 */
4188static void
4189unload_object(Obj_Entry *root)
4190{
4191    Obj_Entry *obj;
4192    Obj_Entry **linkp;
4193
4194    assert(root->refcount == 0);
4195
4196    /*
4197     * Pass over the DAG removing unreferenced objects from
4198     * appropriate lists.
4199     */
4200    unlink_object(root);
4201
4202    /* Unmap all objects that are no longer referenced. */
4203    linkp = &obj_list->next;
4204    while ((obj = *linkp) != NULL) {
4205	if (obj->refcount == 0) {
4206	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4207		obj->path);
4208	    dbg("unloading \"%s\"", obj->path);
4209	    unload_filtees(root);
4210	    munmap(obj->mapbase, obj->mapsize);
4211	    linkmap_delete(obj);
4212	    *linkp = obj->next;
4213	    obj_count--;
4214	    obj_free(obj);
4215	} else
4216	    linkp = &obj->next;
4217    }
4218    obj_tail = linkp;
4219}
4220
4221static void
4222unlink_object(Obj_Entry *root)
4223{
4224    Objlist_Entry *elm;
4225
4226    if (root->refcount == 0) {
4227	/* Remove the object from the RTLD_GLOBAL list. */
4228	objlist_remove(&list_global, root);
4229
4230    	/* Remove the object from all objects' DAG lists. */
4231    	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4232	    objlist_remove(&elm->obj->dldags, root);
4233	    if (elm->obj != root)
4234		unlink_object(elm->obj);
4235	}
4236    }
4237}
4238
4239static void
4240ref_dag(Obj_Entry *root)
4241{
4242    Objlist_Entry *elm;
4243
4244    assert(root->dag_inited);
4245    STAILQ_FOREACH(elm, &root->dagmembers, link)
4246	elm->obj->refcount++;
4247}
4248
4249static void
4250unref_dag(Obj_Entry *root)
4251{
4252    Objlist_Entry *elm;
4253
4254    assert(root->dag_inited);
4255    STAILQ_FOREACH(elm, &root->dagmembers, link)
4256	elm->obj->refcount--;
4257}
4258
4259/*
4260 * Common code for MD __tls_get_addr().
4261 */
4262static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4263static void *
4264tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4265{
4266    Elf_Addr *newdtv, *dtv;
4267    RtldLockState lockstate;
4268    int to_copy;
4269
4270    dtv = *dtvp;
4271    /* Check dtv generation in case new modules have arrived */
4272    if (dtv[0] != tls_dtv_generation) {
4273	wlock_acquire(rtld_bind_lock, &lockstate);
4274	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4275	to_copy = dtv[1];
4276	if (to_copy > tls_max_index)
4277	    to_copy = tls_max_index;
4278	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4279	newdtv[0] = tls_dtv_generation;
4280	newdtv[1] = tls_max_index;
4281	free(dtv);
4282	lock_release(rtld_bind_lock, &lockstate);
4283	dtv = *dtvp = newdtv;
4284    }
4285
4286    /* Dynamically allocate module TLS if necessary */
4287    if (dtv[index + 1] == 0) {
4288	/* Signal safe, wlock will block out signals. */
4289	wlock_acquire(rtld_bind_lock, &lockstate);
4290	if (!dtv[index + 1])
4291	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4292	lock_release(rtld_bind_lock, &lockstate);
4293    }
4294    return ((void *)(dtv[index + 1] + offset));
4295}
4296
4297void *
4298tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4299{
4300	Elf_Addr *dtv;
4301
4302	dtv = *dtvp;
4303	/* Check dtv generation in case new modules have arrived */
4304	if (__predict_true(dtv[0] == tls_dtv_generation &&
4305	    dtv[index + 1] != 0))
4306		return ((void *)(dtv[index + 1] + offset));
4307	return (tls_get_addr_slow(dtvp, index, offset));
4308}
4309
4310#if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
4311
4312/*
4313 * Allocate Static TLS using the Variant I method.
4314 */
4315void *
4316allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4317{
4318    Obj_Entry *obj;
4319    char *tcb;
4320    Elf_Addr **tls;
4321    Elf_Addr *dtv;
4322    Elf_Addr addr;
4323    int i;
4324
4325    if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4326	return (oldtcb);
4327
4328    assert(tcbsize >= TLS_TCB_SIZE);
4329    tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4330    tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4331
4332    if (oldtcb != NULL) {
4333	memcpy(tls, oldtcb, tls_static_space);
4334	free(oldtcb);
4335
4336	/* Adjust the DTV. */
4337	dtv = tls[0];
4338	for (i = 0; i < dtv[1]; i++) {
4339	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4340		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4341		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4342	    }
4343	}
4344    } else {
4345	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4346	tls[0] = dtv;
4347	dtv[0] = tls_dtv_generation;
4348	dtv[1] = tls_max_index;
4349
4350	for (obj = objs; obj; obj = obj->next) {
4351	    if (obj->tlsoffset > 0) {
4352		addr = (Elf_Addr)tls + obj->tlsoffset;
4353		if (obj->tlsinitsize > 0)
4354		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4355		if (obj->tlssize > obj->tlsinitsize)
4356		    memset((void*) (addr + obj->tlsinitsize), 0,
4357			   obj->tlssize - obj->tlsinitsize);
4358		dtv[obj->tlsindex + 1] = addr;
4359	    }
4360	}
4361    }
4362
4363    return (tcb);
4364}
4365
4366void
4367free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4368{
4369    Elf_Addr *dtv;
4370    Elf_Addr tlsstart, tlsend;
4371    int dtvsize, i;
4372
4373    assert(tcbsize >= TLS_TCB_SIZE);
4374
4375    tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4376    tlsend = tlsstart + tls_static_space;
4377
4378    dtv = *(Elf_Addr **)tlsstart;
4379    dtvsize = dtv[1];
4380    for (i = 0; i < dtvsize; i++) {
4381	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4382	    free((void*)dtv[i+2]);
4383	}
4384    }
4385    free(dtv);
4386    free(tcb);
4387}
4388
4389#endif
4390
4391#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4392
4393/*
4394 * Allocate Static TLS using the Variant II method.
4395 */
4396void *
4397allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4398{
4399    Obj_Entry *obj;
4400    size_t size, ralign;
4401    char *tls;
4402    Elf_Addr *dtv, *olddtv;
4403    Elf_Addr segbase, oldsegbase, addr;
4404    int i;
4405
4406    ralign = tcbalign;
4407    if (tls_static_max_align > ralign)
4408	    ralign = tls_static_max_align;
4409    size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4410
4411    assert(tcbsize >= 2*sizeof(Elf_Addr));
4412    tls = malloc_aligned(size, ralign);
4413    dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4414
4415    segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4416    ((Elf_Addr*)segbase)[0] = segbase;
4417    ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4418
4419    dtv[0] = tls_dtv_generation;
4420    dtv[1] = tls_max_index;
4421
4422    if (oldtls) {
4423	/*
4424	 * Copy the static TLS block over whole.
4425	 */
4426	oldsegbase = (Elf_Addr) oldtls;
4427	memcpy((void *)(segbase - tls_static_space),
4428	       (const void *)(oldsegbase - tls_static_space),
4429	       tls_static_space);
4430
4431	/*
4432	 * If any dynamic TLS blocks have been created tls_get_addr(),
4433	 * move them over.
4434	 */
4435	olddtv = ((Elf_Addr**)oldsegbase)[1];
4436	for (i = 0; i < olddtv[1]; i++) {
4437	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4438		dtv[i+2] = olddtv[i+2];
4439		olddtv[i+2] = 0;
4440	    }
4441	}
4442
4443	/*
4444	 * We assume that this block was the one we created with
4445	 * allocate_initial_tls().
4446	 */
4447	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4448    } else {
4449	for (obj = objs; obj; obj = obj->next) {
4450	    if (obj->tlsoffset) {
4451		addr = segbase - obj->tlsoffset;
4452		memset((void*) (addr + obj->tlsinitsize),
4453		       0, obj->tlssize - obj->tlsinitsize);
4454		if (obj->tlsinit)
4455		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4456		dtv[obj->tlsindex + 1] = addr;
4457	    }
4458	}
4459    }
4460
4461    return (void*) segbase;
4462}
4463
4464void
4465free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4466{
4467    Elf_Addr* dtv;
4468    size_t size, ralign;
4469    int dtvsize, i;
4470    Elf_Addr tlsstart, tlsend;
4471
4472    /*
4473     * Figure out the size of the initial TLS block so that we can
4474     * find stuff which ___tls_get_addr() allocated dynamically.
4475     */
4476    ralign = tcbalign;
4477    if (tls_static_max_align > ralign)
4478	    ralign = tls_static_max_align;
4479    size = round(tls_static_space, ralign);
4480
4481    dtv = ((Elf_Addr**)tls)[1];
4482    dtvsize = dtv[1];
4483    tlsend = (Elf_Addr) tls;
4484    tlsstart = tlsend - size;
4485    for (i = 0; i < dtvsize; i++) {
4486	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4487		free_aligned((void *)dtv[i + 2]);
4488	}
4489    }
4490
4491    free_aligned((void *)tlsstart);
4492    free((void*) dtv);
4493}
4494
4495#endif
4496
4497/*
4498 * Allocate TLS block for module with given index.
4499 */
4500void *
4501allocate_module_tls(int index)
4502{
4503    Obj_Entry* obj;
4504    char* p;
4505
4506    for (obj = obj_list; obj; obj = obj->next) {
4507	if (obj->tlsindex == index)
4508	    break;
4509    }
4510    if (!obj) {
4511	_rtld_error("Can't find module with TLS index %d", index);
4512	rtld_die();
4513    }
4514
4515    p = malloc_aligned(obj->tlssize, obj->tlsalign);
4516    memcpy(p, obj->tlsinit, obj->tlsinitsize);
4517    memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4518
4519    return p;
4520}
4521
4522bool
4523allocate_tls_offset(Obj_Entry *obj)
4524{
4525    size_t off;
4526
4527    if (obj->tls_done)
4528	return true;
4529
4530    if (obj->tlssize == 0) {
4531	obj->tls_done = true;
4532	return true;
4533    }
4534
4535    if (obj->tlsindex == 1)
4536	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4537    else
4538	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4539				   obj->tlssize, obj->tlsalign);
4540
4541    /*
4542     * If we have already fixed the size of the static TLS block, we
4543     * must stay within that size. When allocating the static TLS, we
4544     * leave a small amount of space spare to be used for dynamically
4545     * loading modules which use static TLS.
4546     */
4547    if (tls_static_space != 0) {
4548	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4549	    return false;
4550    } else if (obj->tlsalign > tls_static_max_align) {
4551	    tls_static_max_align = obj->tlsalign;
4552    }
4553
4554    tls_last_offset = obj->tlsoffset = off;
4555    tls_last_size = obj->tlssize;
4556    obj->tls_done = true;
4557
4558    return true;
4559}
4560
4561void
4562free_tls_offset(Obj_Entry *obj)
4563{
4564
4565    /*
4566     * If we were the last thing to allocate out of the static TLS
4567     * block, we give our space back to the 'allocator'. This is a
4568     * simplistic workaround to allow libGL.so.1 to be loaded and
4569     * unloaded multiple times.
4570     */
4571    if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4572	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4573	tls_last_offset -= obj->tlssize;
4574	tls_last_size = 0;
4575    }
4576}
4577
4578void *
4579_rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4580{
4581    void *ret;
4582    RtldLockState lockstate;
4583
4584    wlock_acquire(rtld_bind_lock, &lockstate);
4585    ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4586    lock_release(rtld_bind_lock, &lockstate);
4587    return (ret);
4588}
4589
4590void
4591_rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4592{
4593    RtldLockState lockstate;
4594
4595    wlock_acquire(rtld_bind_lock, &lockstate);
4596    free_tls(tcb, tcbsize, tcbalign);
4597    lock_release(rtld_bind_lock, &lockstate);
4598}
4599
4600static void
4601object_add_name(Obj_Entry *obj, const char *name)
4602{
4603    Name_Entry *entry;
4604    size_t len;
4605
4606    len = strlen(name);
4607    entry = malloc(sizeof(Name_Entry) + len);
4608
4609    if (entry != NULL) {
4610	strcpy(entry->name, name);
4611	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4612    }
4613}
4614
4615static int
4616object_match_name(const Obj_Entry *obj, const char *name)
4617{
4618    Name_Entry *entry;
4619
4620    STAILQ_FOREACH(entry, &obj->names, link) {
4621	if (strcmp(name, entry->name) == 0)
4622	    return (1);
4623    }
4624    return (0);
4625}
4626
4627static Obj_Entry *
4628locate_dependency(const Obj_Entry *obj, const char *name)
4629{
4630    const Objlist_Entry *entry;
4631    const Needed_Entry *needed;
4632
4633    STAILQ_FOREACH(entry, &list_main, link) {
4634	if (object_match_name(entry->obj, name))
4635	    return entry->obj;
4636    }
4637
4638    for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4639	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4640	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4641	    /*
4642	     * If there is DT_NEEDED for the name we are looking for,
4643	     * we are all set.  Note that object might not be found if
4644	     * dependency was not loaded yet, so the function can
4645	     * return NULL here.  This is expected and handled
4646	     * properly by the caller.
4647	     */
4648	    return (needed->obj);
4649	}
4650    }
4651    _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4652	obj->path, name);
4653    rtld_die();
4654}
4655
4656static int
4657check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4658    const Elf_Vernaux *vna)
4659{
4660    const Elf_Verdef *vd;
4661    const char *vername;
4662
4663    vername = refobj->strtab + vna->vna_name;
4664    vd = depobj->verdef;
4665    if (vd == NULL) {
4666	_rtld_error("%s: version %s required by %s not defined",
4667	    depobj->path, vername, refobj->path);
4668	return (-1);
4669    }
4670    for (;;) {
4671	if (vd->vd_version != VER_DEF_CURRENT) {
4672	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4673		depobj->path, vd->vd_version);
4674	    return (-1);
4675	}
4676	if (vna->vna_hash == vd->vd_hash) {
4677	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4678		((char *)vd + vd->vd_aux);
4679	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4680		return (0);
4681	}
4682	if (vd->vd_next == 0)
4683	    break;
4684	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4685    }
4686    if (vna->vna_flags & VER_FLG_WEAK)
4687	return (0);
4688    _rtld_error("%s: version %s required by %s not found",
4689	depobj->path, vername, refobj->path);
4690    return (-1);
4691}
4692
4693static int
4694rtld_verify_object_versions(Obj_Entry *obj)
4695{
4696    const Elf_Verneed *vn;
4697    const Elf_Verdef  *vd;
4698    const Elf_Verdaux *vda;
4699    const Elf_Vernaux *vna;
4700    const Obj_Entry *depobj;
4701    int maxvernum, vernum;
4702
4703    if (obj->ver_checked)
4704	return (0);
4705    obj->ver_checked = true;
4706
4707    maxvernum = 0;
4708    /*
4709     * Walk over defined and required version records and figure out
4710     * max index used by any of them. Do very basic sanity checking
4711     * while there.
4712     */
4713    vn = obj->verneed;
4714    while (vn != NULL) {
4715	if (vn->vn_version != VER_NEED_CURRENT) {
4716	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4717		obj->path, vn->vn_version);
4718	    return (-1);
4719	}
4720	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4721	for (;;) {
4722	    vernum = VER_NEED_IDX(vna->vna_other);
4723	    if (vernum > maxvernum)
4724		maxvernum = vernum;
4725	    if (vna->vna_next == 0)
4726		 break;
4727	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4728	}
4729	if (vn->vn_next == 0)
4730	    break;
4731	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4732    }
4733
4734    vd = obj->verdef;
4735    while (vd != NULL) {
4736	if (vd->vd_version != VER_DEF_CURRENT) {
4737	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4738		obj->path, vd->vd_version);
4739	    return (-1);
4740	}
4741	vernum = VER_DEF_IDX(vd->vd_ndx);
4742	if (vernum > maxvernum)
4743		maxvernum = vernum;
4744	if (vd->vd_next == 0)
4745	    break;
4746	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4747    }
4748
4749    if (maxvernum == 0)
4750	return (0);
4751
4752    /*
4753     * Store version information in array indexable by version index.
4754     * Verify that object version requirements are satisfied along the
4755     * way.
4756     */
4757    obj->vernum = maxvernum + 1;
4758    obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4759
4760    vd = obj->verdef;
4761    while (vd != NULL) {
4762	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4763	    vernum = VER_DEF_IDX(vd->vd_ndx);
4764	    assert(vernum <= maxvernum);
4765	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4766	    obj->vertab[vernum].hash = vd->vd_hash;
4767	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4768	    obj->vertab[vernum].file = NULL;
4769	    obj->vertab[vernum].flags = 0;
4770	}
4771	if (vd->vd_next == 0)
4772	    break;
4773	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4774    }
4775
4776    vn = obj->verneed;
4777    while (vn != NULL) {
4778	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4779	if (depobj == NULL)
4780	    return (-1);
4781	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4782	for (;;) {
4783	    if (check_object_provided_version(obj, depobj, vna))
4784		return (-1);
4785	    vernum = VER_NEED_IDX(vna->vna_other);
4786	    assert(vernum <= maxvernum);
4787	    obj->vertab[vernum].hash = vna->vna_hash;
4788	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4789	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4790	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4791		VER_INFO_HIDDEN : 0;
4792	    if (vna->vna_next == 0)
4793		 break;
4794	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4795	}
4796	if (vn->vn_next == 0)
4797	    break;
4798	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4799    }
4800    return 0;
4801}
4802
4803static int
4804rtld_verify_versions(const Objlist *objlist)
4805{
4806    Objlist_Entry *entry;
4807    int rc;
4808
4809    rc = 0;
4810    STAILQ_FOREACH(entry, objlist, link) {
4811	/*
4812	 * Skip dummy objects or objects that have their version requirements
4813	 * already checked.
4814	 */
4815	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4816	    continue;
4817	if (rtld_verify_object_versions(entry->obj) == -1) {
4818	    rc = -1;
4819	    if (ld_tracing == NULL)
4820		break;
4821	}
4822    }
4823    if (rc == 0 || ld_tracing != NULL)
4824    	rc = rtld_verify_object_versions(&obj_rtld);
4825    return rc;
4826}
4827
4828const Ver_Entry *
4829fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4830{
4831    Elf_Versym vernum;
4832
4833    if (obj->vertab) {
4834	vernum = VER_NDX(obj->versyms[symnum]);
4835	if (vernum >= obj->vernum) {
4836	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4837		obj->path, obj->strtab + symnum, vernum);
4838	} else if (obj->vertab[vernum].hash != 0) {
4839	    return &obj->vertab[vernum];
4840	}
4841    }
4842    return NULL;
4843}
4844
4845int
4846_rtld_get_stack_prot(void)
4847{
4848
4849	return (stack_prot);
4850}
4851
4852int
4853_rtld_is_dlopened(void *arg)
4854{
4855	Obj_Entry *obj;
4856	RtldLockState lockstate;
4857	int res;
4858
4859	rlock_acquire(rtld_bind_lock, &lockstate);
4860	obj = dlcheck(arg);
4861	if (obj == NULL)
4862		obj = obj_from_addr(arg);
4863	if (obj == NULL) {
4864		_rtld_error("No shared object contains address");
4865		lock_release(rtld_bind_lock, &lockstate);
4866		return (-1);
4867	}
4868	res = obj->dlopened ? 1 : 0;
4869	lock_release(rtld_bind_lock, &lockstate);
4870	return (res);
4871}
4872
4873static void
4874map_stacks_exec(RtldLockState *lockstate)
4875{
4876	void (*thr_map_stacks_exec)(void);
4877
4878	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4879		return;
4880	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4881	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4882	if (thr_map_stacks_exec != NULL) {
4883		stack_prot |= PROT_EXEC;
4884		thr_map_stacks_exec();
4885	}
4886}
4887
4888void
4889symlook_init(SymLook *dst, const char *name)
4890{
4891
4892	bzero(dst, sizeof(*dst));
4893	dst->name = name;
4894	dst->hash = elf_hash(name);
4895	dst->hash_gnu = gnu_hash(name);
4896}
4897
4898static void
4899symlook_init_from_req(SymLook *dst, const SymLook *src)
4900{
4901
4902	dst->name = src->name;
4903	dst->hash = src->hash;
4904	dst->hash_gnu = src->hash_gnu;
4905	dst->ventry = src->ventry;
4906	dst->flags = src->flags;
4907	dst->defobj_out = NULL;
4908	dst->sym_out = NULL;
4909	dst->lockstate = src->lockstate;
4910}
4911
4912/*
4913 * Overrides for libc_pic-provided functions.
4914 */
4915
4916int
4917__getosreldate(void)
4918{
4919	size_t len;
4920	int oid[2];
4921	int error, osrel;
4922
4923	if (osreldate != 0)
4924		return (osreldate);
4925
4926	oid[0] = CTL_KERN;
4927	oid[1] = KERN_OSRELDATE;
4928	osrel = 0;
4929	len = sizeof(osrel);
4930	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4931	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4932		osreldate = osrel;
4933	return (osreldate);
4934}
4935
4936void
4937exit(int status)
4938{
4939
4940	_exit(status);
4941}
4942
4943void (*__cleanup)(void);
4944int __isthreaded = 0;
4945int _thread_autoinit_dummy_decl = 1;
4946
4947/*
4948 * No unresolved symbols for rtld.
4949 */
4950void
4951__pthread_cxa_finalize(struct dl_phdr_info *a)
4952{
4953}
4954
4955void
4956__stack_chk_fail(void)
4957{
4958
4959	_rtld_error("stack overflow detected; terminated");
4960	rtld_die();
4961}
4962__weak_reference(__stack_chk_fail, __stack_chk_fail_local);
4963
4964void
4965__chk_fail(void)
4966{
4967
4968	_rtld_error("buffer overflow detected; terminated");
4969	rtld_die();
4970}
4971
4972const char *
4973rtld_strerror(int errnum)
4974{
4975
4976	if (errnum < 0 || errnum >= sys_nerr)
4977		return ("Unknown error");
4978	return (sys_errlist[errnum]);
4979}
4980