rtld.c revision 282412
1/*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5 * Copyright 2012 John Marino <draco@marino.st>.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * $FreeBSD: stable/10/libexec/rtld-elf/rtld.c 282412 2015-05-04 08:19:12Z kib $
29 */
30
31/*
32 * Dynamic linker for ELF.
33 *
34 * John Polstra <jdp@polstra.com>.
35 */
36
37#ifndef __GNUC__
38#error "GCC is needed to compile this file"
39#endif
40
41#include <sys/param.h>
42#include <sys/mount.h>
43#include <sys/mman.h>
44#include <sys/stat.h>
45#include <sys/sysctl.h>
46#include <sys/uio.h>
47#include <sys/utsname.h>
48#include <sys/ktrace.h>
49
50#include <dlfcn.h>
51#include <err.h>
52#include <errno.h>
53#include <fcntl.h>
54#include <stdarg.h>
55#include <stdio.h>
56#include <stdlib.h>
57#include <string.h>
58#include <unistd.h>
59
60#include "debug.h"
61#include "rtld.h"
62#include "libmap.h"
63#include "rtld_tls.h"
64#include "rtld_printf.h"
65#include "notes.h"
66
67#ifndef COMPAT_32BIT
68#define PATH_RTLD	"/libexec/ld-elf.so.1"
69#else
70#define PATH_RTLD	"/libexec/ld-elf32.so.1"
71#endif
72
73/* Types. */
74typedef void (*func_ptr_type)();
75typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76
77/*
78 * Function declarations.
79 */
80static const char *basename(const char *);
81static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
82    const Elf_Dyn **, const Elf_Dyn **);
83static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
84    const Elf_Dyn *);
85static void digest_dynamic(Obj_Entry *, int);
86static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
87static Obj_Entry *dlcheck(void *);
88static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
89    int lo_flags, int mode, RtldLockState *lockstate);
90static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
91static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
92static bool donelist_check(DoneList *, const Obj_Entry *);
93static void errmsg_restore(char *);
94static char *errmsg_save(void);
95static void *fill_search_info(const char *, size_t, void *);
96static char *find_library(const char *, const Obj_Entry *);
97static const char *gethints(bool);
98static void init_dag(Obj_Entry *);
99static void init_pagesizes(Elf_Auxinfo **aux_info);
100static void init_rtld(caddr_t, Elf_Auxinfo **);
101static void initlist_add_neededs(Needed_Entry *, Objlist *);
102static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
103static void linkmap_add(Obj_Entry *);
104static void linkmap_delete(Obj_Entry *);
105static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
106static void unload_filtees(Obj_Entry *);
107static int load_needed_objects(Obj_Entry *, int);
108static int load_preload_objects(void);
109static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
110static void map_stacks_exec(RtldLockState *);
111static Obj_Entry *obj_from_addr(const void *);
112static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
113static void objlist_call_init(Objlist *, RtldLockState *);
114static void objlist_clear(Objlist *);
115static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
116static void objlist_init(Objlist *);
117static void objlist_push_head(Objlist *, Obj_Entry *);
118static void objlist_push_tail(Objlist *, Obj_Entry *);
119static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
120static void objlist_remove(Objlist *, Obj_Entry *);
121static void *path_enumerate(const char *, path_enum_proc, void *);
122static int relocate_object_dag(Obj_Entry *root, bool bind_now,
123    Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
124static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
125    int flags, RtldLockState *lockstate);
126static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
127    RtldLockState *);
128static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
129    int flags, RtldLockState *lockstate);
130static int rtld_dirname(const char *, char *);
131static int rtld_dirname_abs(const char *, char *);
132static void *rtld_dlopen(const char *name, int fd, int mode);
133static void rtld_exit(void);
134static char *search_library_path(const char *, const char *);
135static const void **get_program_var_addr(const char *, RtldLockState *);
136static void set_program_var(const char *, const void *);
137static int symlook_default(SymLook *, const Obj_Entry *refobj);
138static int symlook_global(SymLook *, DoneList *);
139static void symlook_init_from_req(SymLook *, const SymLook *);
140static int symlook_list(SymLook *, const Objlist *, DoneList *);
141static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
142static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
143static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
144static void trace_loaded_objects(Obj_Entry *);
145static void unlink_object(Obj_Entry *);
146static void unload_object(Obj_Entry *);
147static void unref_dag(Obj_Entry *);
148static void ref_dag(Obj_Entry *);
149static char *origin_subst_one(Obj_Entry *, char *, const char *,
150    const char *, bool);
151static char *origin_subst(Obj_Entry *, char *);
152static bool obj_resolve_origin(Obj_Entry *obj);
153static void preinit_main(void);
154static int  rtld_verify_versions(const Objlist *);
155static int  rtld_verify_object_versions(Obj_Entry *);
156static void object_add_name(Obj_Entry *, const char *);
157static int  object_match_name(const Obj_Entry *, const char *);
158static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
159static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
160    struct dl_phdr_info *phdr_info);
161static uint32_t gnu_hash(const char *);
162static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
163    const unsigned long);
164
165void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
166void _r_debug_postinit(struct link_map *) __noinline __exported;
167
168/*
169 * Data declarations.
170 */
171static char *error_message;	/* Message for dlerror(), or NULL */
172struct r_debug r_debug __exported;	/* for GDB; */
173static bool libmap_disable;	/* Disable libmap */
174static bool ld_loadfltr;	/* Immediate filters processing */
175static char *libmap_override;	/* Maps to use in addition to libmap.conf */
176static bool trust;		/* False for setuid and setgid programs */
177static bool dangerous_ld_env;	/* True if environment variables have been
178				   used to affect the libraries loaded */
179static char *ld_bind_now;	/* Environment variable for immediate binding */
180static char *ld_debug;		/* Environment variable for debugging */
181static char *ld_library_path;	/* Environment variable for search path */
182static char *ld_preload;	/* Environment variable for libraries to
183				   load first */
184static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
185static char *ld_tracing;	/* Called from ldd to print libs */
186static char *ld_utrace;		/* Use utrace() to log events. */
187static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
188static Obj_Entry **obj_tail;	/* Link field of last object in list */
189static Obj_Entry *obj_main;	/* The main program shared object */
190static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
191static unsigned int obj_count;	/* Number of objects in obj_list */
192static unsigned int obj_loads;	/* Number of objects in obj_list */
193
194static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
195  STAILQ_HEAD_INITIALIZER(list_global);
196static Objlist list_main =	/* Objects loaded at program startup */
197  STAILQ_HEAD_INITIALIZER(list_main);
198static Objlist list_fini =	/* Objects needing fini() calls */
199  STAILQ_HEAD_INITIALIZER(list_fini);
200
201Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
202
203#define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
204
205extern Elf_Dyn _DYNAMIC;
206#pragma weak _DYNAMIC
207#ifndef RTLD_IS_DYNAMIC
208#define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
209#endif
210
211int dlclose(void *) __exported;
212char *dlerror(void) __exported;
213void *dlopen(const char *, int) __exported;
214void *fdlopen(int, int) __exported;
215void *dlsym(void *, const char *) __exported;
216dlfunc_t dlfunc(void *, const char *) __exported;
217void *dlvsym(void *, const char *, const char *) __exported;
218int dladdr(const void *, Dl_info *) __exported;
219void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
220    void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
221int dlinfo(void *, int , void *) __exported;
222int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
223int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
224int _rtld_get_stack_prot(void) __exported;
225int _rtld_is_dlopened(void *) __exported;
226void _rtld_error(const char *, ...) __exported;
227
228int npagesizes, osreldate;
229size_t *pagesizes;
230
231long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
232
233static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
234static int max_stack_flags;
235
236/*
237 * Global declarations normally provided by crt1.  The dynamic linker is
238 * not built with crt1, so we have to provide them ourselves.
239 */
240char *__progname;
241char **environ;
242
243/*
244 * Used to pass argc, argv to init functions.
245 */
246int main_argc;
247char **main_argv;
248
249/*
250 * Globals to control TLS allocation.
251 */
252size_t tls_last_offset;		/* Static TLS offset of last module */
253size_t tls_last_size;		/* Static TLS size of last module */
254size_t tls_static_space;	/* Static TLS space allocated */
255size_t tls_static_max_align;
256int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
257int tls_max_index = 1;		/* Largest module index allocated */
258
259bool ld_library_path_rpath = false;
260
261/*
262 * Fill in a DoneList with an allocation large enough to hold all of
263 * the currently-loaded objects.  Keep this as a macro since it calls
264 * alloca and we want that to occur within the scope of the caller.
265 */
266#define donelist_init(dlp)					\
267    ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
268    assert((dlp)->objs != NULL),				\
269    (dlp)->num_alloc = obj_count,				\
270    (dlp)->num_used = 0)
271
272#define	UTRACE_DLOPEN_START		1
273#define	UTRACE_DLOPEN_STOP		2
274#define	UTRACE_DLCLOSE_START		3
275#define	UTRACE_DLCLOSE_STOP		4
276#define	UTRACE_LOAD_OBJECT		5
277#define	UTRACE_UNLOAD_OBJECT		6
278#define	UTRACE_ADD_RUNDEP		7
279#define	UTRACE_PRELOAD_FINISHED		8
280#define	UTRACE_INIT_CALL		9
281#define	UTRACE_FINI_CALL		10
282
283struct utrace_rtld {
284	char sig[4];			/* 'RTLD' */
285	int event;
286	void *handle;
287	void *mapbase;			/* Used for 'parent' and 'init/fini' */
288	size_t mapsize;
289	int refcnt;			/* Used for 'mode' */
290	char name[MAXPATHLEN];
291};
292
293#define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
294	if (ld_utrace != NULL)					\
295		ld_utrace_log(e, h, mb, ms, r, n);		\
296} while (0)
297
298static void
299ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
300    int refcnt, const char *name)
301{
302	struct utrace_rtld ut;
303
304	ut.sig[0] = 'R';
305	ut.sig[1] = 'T';
306	ut.sig[2] = 'L';
307	ut.sig[3] = 'D';
308	ut.event = event;
309	ut.handle = handle;
310	ut.mapbase = mapbase;
311	ut.mapsize = mapsize;
312	ut.refcnt = refcnt;
313	bzero(ut.name, sizeof(ut.name));
314	if (name)
315		strlcpy(ut.name, name, sizeof(ut.name));
316	utrace(&ut, sizeof(ut));
317}
318
319/*
320 * Main entry point for dynamic linking.  The first argument is the
321 * stack pointer.  The stack is expected to be laid out as described
322 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
323 * Specifically, the stack pointer points to a word containing
324 * ARGC.  Following that in the stack is a null-terminated sequence
325 * of pointers to argument strings.  Then comes a null-terminated
326 * sequence of pointers to environment strings.  Finally, there is a
327 * sequence of "auxiliary vector" entries.
328 *
329 * The second argument points to a place to store the dynamic linker's
330 * exit procedure pointer and the third to a place to store the main
331 * program's object.
332 *
333 * The return value is the main program's entry point.
334 */
335func_ptr_type
336_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
337{
338    Elf_Auxinfo *aux_info[AT_COUNT];
339    int i;
340    int argc;
341    char **argv;
342    char **env;
343    Elf_Auxinfo *aux;
344    Elf_Auxinfo *auxp;
345    const char *argv0;
346    Objlist_Entry *entry;
347    Obj_Entry *obj;
348    Obj_Entry **preload_tail;
349    Obj_Entry *last_interposer;
350    Objlist initlist;
351    RtldLockState lockstate;
352    char *library_path_rpath;
353    int mib[2];
354    size_t len;
355
356    /*
357     * On entry, the dynamic linker itself has not been relocated yet.
358     * Be very careful not to reference any global data until after
359     * init_rtld has returned.  It is OK to reference file-scope statics
360     * and string constants, and to call static and global functions.
361     */
362
363    /* Find the auxiliary vector on the stack. */
364    argc = *sp++;
365    argv = (char **) sp;
366    sp += argc + 1;	/* Skip over arguments and NULL terminator */
367    env = (char **) sp;
368    while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
369	;
370    aux = (Elf_Auxinfo *) sp;
371
372    /* Digest the auxiliary vector. */
373    for (i = 0;  i < AT_COUNT;  i++)
374	aux_info[i] = NULL;
375    for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
376	if (auxp->a_type < AT_COUNT)
377	    aux_info[auxp->a_type] = auxp;
378    }
379
380    /* Initialize and relocate ourselves. */
381    assert(aux_info[AT_BASE] != NULL);
382    init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
383
384    __progname = obj_rtld.path;
385    argv0 = argv[0] != NULL ? argv[0] : "(null)";
386    environ = env;
387    main_argc = argc;
388    main_argv = argv;
389
390    if (aux_info[AT_CANARY] != NULL &&
391	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
392	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
393	    if (i > sizeof(__stack_chk_guard))
394		    i = sizeof(__stack_chk_guard);
395	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
396    } else {
397	mib[0] = CTL_KERN;
398	mib[1] = KERN_ARND;
399
400	len = sizeof(__stack_chk_guard);
401	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
402	    len != sizeof(__stack_chk_guard)) {
403		/* If sysctl was unsuccessful, use the "terminator canary". */
404		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
405		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
406		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
407		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
408	}
409    }
410
411    trust = !issetugid();
412
413    ld_bind_now = getenv(LD_ "BIND_NOW");
414    /*
415     * If the process is tainted, then we un-set the dangerous environment
416     * variables.  The process will be marked as tainted until setuid(2)
417     * is called.  If any child process calls setuid(2) we do not want any
418     * future processes to honor the potentially un-safe variables.
419     */
420    if (!trust) {
421        if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
422	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
423	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
424	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
425		_rtld_error("environment corrupt; aborting");
426		rtld_die();
427	}
428    }
429    ld_debug = getenv(LD_ "DEBUG");
430    libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
431    libmap_override = getenv(LD_ "LIBMAP");
432    ld_library_path = getenv(LD_ "LIBRARY_PATH");
433    ld_preload = getenv(LD_ "PRELOAD");
434    ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
435    ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
436    library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
437    if (library_path_rpath != NULL) {
438	    if (library_path_rpath[0] == 'y' ||
439		library_path_rpath[0] == 'Y' ||
440		library_path_rpath[0] == '1')
441		    ld_library_path_rpath = true;
442	    else
443		    ld_library_path_rpath = false;
444    }
445    dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
446	(ld_library_path != NULL) || (ld_preload != NULL) ||
447	(ld_elf_hints_path != NULL) || ld_loadfltr;
448    ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
449    ld_utrace = getenv(LD_ "UTRACE");
450
451    if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
452	ld_elf_hints_path = _PATH_ELF_HINTS;
453
454    if (ld_debug != NULL && *ld_debug != '\0')
455	debug = 1;
456    dbg("%s is initialized, base address = %p", __progname,
457	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
458    dbg("RTLD dynamic = %p", obj_rtld.dynamic);
459    dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
460
461    dbg("initializing thread locks");
462    lockdflt_init();
463
464    /*
465     * Load the main program, or process its program header if it is
466     * already loaded.
467     */
468    if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
469	int fd = aux_info[AT_EXECFD]->a_un.a_val;
470	dbg("loading main program");
471	obj_main = map_object(fd, argv0, NULL);
472	close(fd);
473	if (obj_main == NULL)
474	    rtld_die();
475	max_stack_flags = obj->stack_flags;
476    } else {				/* Main program already loaded. */
477	const Elf_Phdr *phdr;
478	int phnum;
479	caddr_t entry;
480
481	dbg("processing main program's program header");
482	assert(aux_info[AT_PHDR] != NULL);
483	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
484	assert(aux_info[AT_PHNUM] != NULL);
485	phnum = aux_info[AT_PHNUM]->a_un.a_val;
486	assert(aux_info[AT_PHENT] != NULL);
487	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
488	assert(aux_info[AT_ENTRY] != NULL);
489	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
490	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
491	    rtld_die();
492    }
493
494    if (aux_info[AT_EXECPATH] != 0) {
495	    char *kexecpath;
496	    char buf[MAXPATHLEN];
497
498	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
499	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
500	    if (kexecpath[0] == '/')
501		    obj_main->path = kexecpath;
502	    else if (getcwd(buf, sizeof(buf)) == NULL ||
503		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
504		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
505		    obj_main->path = xstrdup(argv0);
506	    else
507		    obj_main->path = xstrdup(buf);
508    } else {
509	    dbg("No AT_EXECPATH");
510	    obj_main->path = xstrdup(argv0);
511    }
512    dbg("obj_main path %s", obj_main->path);
513    obj_main->mainprog = true;
514
515    if (aux_info[AT_STACKPROT] != NULL &&
516      aux_info[AT_STACKPROT]->a_un.a_val != 0)
517	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
518
519#ifndef COMPAT_32BIT
520    /*
521     * Get the actual dynamic linker pathname from the executable if
522     * possible.  (It should always be possible.)  That ensures that
523     * gdb will find the right dynamic linker even if a non-standard
524     * one is being used.
525     */
526    if (obj_main->interp != NULL &&
527      strcmp(obj_main->interp, obj_rtld.path) != 0) {
528	free(obj_rtld.path);
529	obj_rtld.path = xstrdup(obj_main->interp);
530        __progname = obj_rtld.path;
531    }
532#endif
533
534    digest_dynamic(obj_main, 0);
535    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
536	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
537	obj_main->dynsymcount);
538
539    linkmap_add(obj_main);
540    linkmap_add(&obj_rtld);
541
542    /* Link the main program into the list of objects. */
543    *obj_tail = obj_main;
544    obj_tail = &obj_main->next;
545    obj_count++;
546    obj_loads++;
547
548    /* Initialize a fake symbol for resolving undefined weak references. */
549    sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
550    sym_zero.st_shndx = SHN_UNDEF;
551    sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
552
553    if (!libmap_disable)
554        libmap_disable = (bool)lm_init(libmap_override);
555
556    dbg("loading LD_PRELOAD libraries");
557    if (load_preload_objects() == -1)
558	rtld_die();
559    preload_tail = obj_tail;
560
561    dbg("loading needed objects");
562    if (load_needed_objects(obj_main, 0) == -1)
563	rtld_die();
564
565    /* Make a list of all objects loaded at startup. */
566    last_interposer = obj_main;
567    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
568	if (obj->z_interpose && obj != obj_main) {
569	    objlist_put_after(&list_main, last_interposer, obj);
570	    last_interposer = obj;
571	} else {
572	    objlist_push_tail(&list_main, obj);
573	}
574    	obj->refcount++;
575    }
576
577    dbg("checking for required versions");
578    if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
579	rtld_die();
580
581    if (ld_tracing) {		/* We're done */
582	trace_loaded_objects(obj_main);
583	exit(0);
584    }
585
586    if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
587       dump_relocations(obj_main);
588       exit (0);
589    }
590
591    /*
592     * Processing tls relocations requires having the tls offsets
593     * initialized.  Prepare offsets before starting initial
594     * relocation processing.
595     */
596    dbg("initializing initial thread local storage offsets");
597    STAILQ_FOREACH(entry, &list_main, link) {
598	/*
599	 * Allocate all the initial objects out of the static TLS
600	 * block even if they didn't ask for it.
601	 */
602	allocate_tls_offset(entry->obj);
603    }
604
605    if (relocate_objects(obj_main,
606      ld_bind_now != NULL && *ld_bind_now != '\0',
607      &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
608	rtld_die();
609
610    dbg("doing copy relocations");
611    if (do_copy_relocations(obj_main) == -1)
612	rtld_die();
613
614    if (getenv(LD_ "DUMP_REL_POST") != NULL) {
615       dump_relocations(obj_main);
616       exit (0);
617    }
618
619    /*
620     * Setup TLS for main thread.  This must be done after the
621     * relocations are processed, since tls initialization section
622     * might be the subject for relocations.
623     */
624    dbg("initializing initial thread local storage");
625    allocate_initial_tls(obj_list);
626
627    dbg("initializing key program variables");
628    set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
629    set_program_var("environ", env);
630    set_program_var("__elf_aux_vector", aux);
631
632    /* Make a list of init functions to call. */
633    objlist_init(&initlist);
634    initlist_add_objects(obj_list, preload_tail, &initlist);
635
636    r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
637
638    map_stacks_exec(NULL);
639
640    dbg("resolving ifuncs");
641    if (resolve_objects_ifunc(obj_main,
642      ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
643      NULL) == -1)
644	rtld_die();
645
646    if (!obj_main->crt_no_init) {
647	/*
648	 * Make sure we don't call the main program's init and fini
649	 * functions for binaries linked with old crt1 which calls
650	 * _init itself.
651	 */
652	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
653	obj_main->preinit_array = obj_main->init_array =
654	    obj_main->fini_array = (Elf_Addr)NULL;
655    }
656
657    wlock_acquire(rtld_bind_lock, &lockstate);
658    if (obj_main->crt_no_init)
659	preinit_main();
660    objlist_call_init(&initlist, &lockstate);
661    _r_debug_postinit(&obj_main->linkmap);
662    objlist_clear(&initlist);
663    dbg("loading filtees");
664    for (obj = obj_list->next; obj != NULL; obj = obj->next) {
665	if (ld_loadfltr || obj->z_loadfltr)
666	    load_filtees(obj, 0, &lockstate);
667    }
668    lock_release(rtld_bind_lock, &lockstate);
669
670    dbg("transferring control to program entry point = %p", obj_main->entry);
671
672    /* Return the exit procedure and the program entry point. */
673    *exit_proc = rtld_exit;
674    *objp = obj_main;
675    return (func_ptr_type) obj_main->entry;
676}
677
678void *
679rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
680{
681	void *ptr;
682	Elf_Addr target;
683
684	ptr = (void *)make_function_pointer(def, obj);
685	target = ((Elf_Addr (*)(void))ptr)();
686	return ((void *)target);
687}
688
689Elf_Addr
690_rtld_bind(Obj_Entry *obj, Elf_Size reloff)
691{
692    const Elf_Rel *rel;
693    const Elf_Sym *def;
694    const Obj_Entry *defobj;
695    Elf_Addr *where;
696    Elf_Addr target;
697    RtldLockState lockstate;
698
699    rlock_acquire(rtld_bind_lock, &lockstate);
700    if (sigsetjmp(lockstate.env, 0) != 0)
701	    lock_upgrade(rtld_bind_lock, &lockstate);
702    if (obj->pltrel)
703	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
704    else
705	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
706
707    where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
708    def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
709	&lockstate);
710    if (def == NULL)
711	rtld_die();
712    if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
713	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
714    else
715	target = (Elf_Addr)(defobj->relocbase + def->st_value);
716
717    dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
718      defobj->strtab + def->st_name, basename(obj->path),
719      (void *)target, basename(defobj->path));
720
721    /*
722     * Write the new contents for the jmpslot. Note that depending on
723     * architecture, the value which we need to return back to the
724     * lazy binding trampoline may or may not be the target
725     * address. The value returned from reloc_jmpslot() is the value
726     * that the trampoline needs.
727     */
728    target = reloc_jmpslot(where, target, defobj, obj, rel);
729    lock_release(rtld_bind_lock, &lockstate);
730    return target;
731}
732
733/*
734 * Error reporting function.  Use it like printf.  If formats the message
735 * into a buffer, and sets things up so that the next call to dlerror()
736 * will return the message.
737 */
738void
739_rtld_error(const char *fmt, ...)
740{
741    static char buf[512];
742    va_list ap;
743
744    va_start(ap, fmt);
745    rtld_vsnprintf(buf, sizeof buf, fmt, ap);
746    error_message = buf;
747    va_end(ap);
748}
749
750/*
751 * Return a dynamically-allocated copy of the current error message, if any.
752 */
753static char *
754errmsg_save(void)
755{
756    return error_message == NULL ? NULL : xstrdup(error_message);
757}
758
759/*
760 * Restore the current error message from a copy which was previously saved
761 * by errmsg_save().  The copy is freed.
762 */
763static void
764errmsg_restore(char *saved_msg)
765{
766    if (saved_msg == NULL)
767	error_message = NULL;
768    else {
769	_rtld_error("%s", saved_msg);
770	free(saved_msg);
771    }
772}
773
774static const char *
775basename(const char *name)
776{
777    const char *p = strrchr(name, '/');
778    return p != NULL ? p + 1 : name;
779}
780
781static struct utsname uts;
782
783static char *
784origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
785    const char *subst, bool may_free)
786{
787	char *p, *p1, *res, *resp;
788	int subst_len, kw_len, subst_count, old_len, new_len;
789
790	kw_len = strlen(kw);
791
792	/*
793	 * First, count the number of the keyword occurences, to
794	 * preallocate the final string.
795	 */
796	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
797		p1 = strstr(p, kw);
798		if (p1 == NULL)
799			break;
800	}
801
802	/*
803	 * If the keyword is not found, just return.
804	 *
805	 * Return non-substituted string if resolution failed.  We
806	 * cannot do anything more reasonable, the failure mode of the
807	 * caller is unresolved library anyway.
808	 */
809	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
810		return (may_free ? real : xstrdup(real));
811	if (obj != NULL)
812		subst = obj->origin_path;
813
814	/*
815	 * There is indeed something to substitute.  Calculate the
816	 * length of the resulting string, and allocate it.
817	 */
818	subst_len = strlen(subst);
819	old_len = strlen(real);
820	new_len = old_len + (subst_len - kw_len) * subst_count;
821	res = xmalloc(new_len + 1);
822
823	/*
824	 * Now, execute the substitution loop.
825	 */
826	for (p = real, resp = res, *resp = '\0';;) {
827		p1 = strstr(p, kw);
828		if (p1 != NULL) {
829			/* Copy the prefix before keyword. */
830			memcpy(resp, p, p1 - p);
831			resp += p1 - p;
832			/* Keyword replacement. */
833			memcpy(resp, subst, subst_len);
834			resp += subst_len;
835			*resp = '\0';
836			p = p1 + kw_len;
837		} else
838			break;
839	}
840
841	/* Copy to the end of string and finish. */
842	strcat(resp, p);
843	if (may_free)
844		free(real);
845	return (res);
846}
847
848static char *
849origin_subst(Obj_Entry *obj, char *real)
850{
851	char *res1, *res2, *res3, *res4;
852
853	if (obj == NULL || !trust)
854		return (xstrdup(real));
855	if (uts.sysname[0] == '\0') {
856		if (uname(&uts) != 0) {
857			_rtld_error("utsname failed: %d", errno);
858			return (NULL);
859		}
860	}
861	res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false);
862	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
863	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
864	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
865	return (res4);
866}
867
868void
869rtld_die(void)
870{
871    const char *msg = dlerror();
872
873    if (msg == NULL)
874	msg = "Fatal error";
875    rtld_fdputstr(STDERR_FILENO, msg);
876    rtld_fdputchar(STDERR_FILENO, '\n');
877    _exit(1);
878}
879
880/*
881 * Process a shared object's DYNAMIC section, and save the important
882 * information in its Obj_Entry structure.
883 */
884static void
885digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
886    const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
887{
888    const Elf_Dyn *dynp;
889    Needed_Entry **needed_tail = &obj->needed;
890    Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
891    Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
892    const Elf_Hashelt *hashtab;
893    const Elf32_Word *hashval;
894    Elf32_Word bkt, nmaskwords;
895    int bloom_size32;
896    int plttype = DT_REL;
897
898    *dyn_rpath = NULL;
899    *dyn_soname = NULL;
900    *dyn_runpath = NULL;
901
902    obj->bind_now = false;
903    for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
904	switch (dynp->d_tag) {
905
906	case DT_REL:
907	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
908	    break;
909
910	case DT_RELSZ:
911	    obj->relsize = dynp->d_un.d_val;
912	    break;
913
914	case DT_RELENT:
915	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
916	    break;
917
918	case DT_JMPREL:
919	    obj->pltrel = (const Elf_Rel *)
920	      (obj->relocbase + dynp->d_un.d_ptr);
921	    break;
922
923	case DT_PLTRELSZ:
924	    obj->pltrelsize = dynp->d_un.d_val;
925	    break;
926
927	case DT_RELA:
928	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
929	    break;
930
931	case DT_RELASZ:
932	    obj->relasize = dynp->d_un.d_val;
933	    break;
934
935	case DT_RELAENT:
936	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
937	    break;
938
939	case DT_PLTREL:
940	    plttype = dynp->d_un.d_val;
941	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
942	    break;
943
944	case DT_SYMTAB:
945	    obj->symtab = (const Elf_Sym *)
946	      (obj->relocbase + dynp->d_un.d_ptr);
947	    break;
948
949	case DT_SYMENT:
950	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
951	    break;
952
953	case DT_STRTAB:
954	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
955	    break;
956
957	case DT_STRSZ:
958	    obj->strsize = dynp->d_un.d_val;
959	    break;
960
961	case DT_VERNEED:
962	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
963		dynp->d_un.d_val);
964	    break;
965
966	case DT_VERNEEDNUM:
967	    obj->verneednum = dynp->d_un.d_val;
968	    break;
969
970	case DT_VERDEF:
971	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
972		dynp->d_un.d_val);
973	    break;
974
975	case DT_VERDEFNUM:
976	    obj->verdefnum = dynp->d_un.d_val;
977	    break;
978
979	case DT_VERSYM:
980	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
981		dynp->d_un.d_val);
982	    break;
983
984	case DT_HASH:
985	    {
986		hashtab = (const Elf_Hashelt *)(obj->relocbase +
987		    dynp->d_un.d_ptr);
988		obj->nbuckets = hashtab[0];
989		obj->nchains = hashtab[1];
990		obj->buckets = hashtab + 2;
991		obj->chains = obj->buckets + obj->nbuckets;
992		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
993		  obj->buckets != NULL;
994	    }
995	    break;
996
997	case DT_GNU_HASH:
998	    {
999		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1000		    dynp->d_un.d_ptr);
1001		obj->nbuckets_gnu = hashtab[0];
1002		obj->symndx_gnu = hashtab[1];
1003		nmaskwords = hashtab[2];
1004		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1005		obj->maskwords_bm_gnu = nmaskwords - 1;
1006		obj->shift2_gnu = hashtab[3];
1007		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1008		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1009		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1010		  obj->symndx_gnu;
1011		/* Number of bitmask words is required to be power of 2 */
1012		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1013		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1014	    }
1015	    break;
1016
1017	case DT_NEEDED:
1018	    if (!obj->rtld) {
1019		Needed_Entry *nep = NEW(Needed_Entry);
1020		nep->name = dynp->d_un.d_val;
1021		nep->obj = NULL;
1022		nep->next = NULL;
1023
1024		*needed_tail = nep;
1025		needed_tail = &nep->next;
1026	    }
1027	    break;
1028
1029	case DT_FILTER:
1030	    if (!obj->rtld) {
1031		Needed_Entry *nep = NEW(Needed_Entry);
1032		nep->name = dynp->d_un.d_val;
1033		nep->obj = NULL;
1034		nep->next = NULL;
1035
1036		*needed_filtees_tail = nep;
1037		needed_filtees_tail = &nep->next;
1038	    }
1039	    break;
1040
1041	case DT_AUXILIARY:
1042	    if (!obj->rtld) {
1043		Needed_Entry *nep = NEW(Needed_Entry);
1044		nep->name = dynp->d_un.d_val;
1045		nep->obj = NULL;
1046		nep->next = NULL;
1047
1048		*needed_aux_filtees_tail = nep;
1049		needed_aux_filtees_tail = &nep->next;
1050	    }
1051	    break;
1052
1053	case DT_PLTGOT:
1054	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1055	    break;
1056
1057	case DT_TEXTREL:
1058	    obj->textrel = true;
1059	    break;
1060
1061	case DT_SYMBOLIC:
1062	    obj->symbolic = true;
1063	    break;
1064
1065	case DT_RPATH:
1066	    /*
1067	     * We have to wait until later to process this, because we
1068	     * might not have gotten the address of the string table yet.
1069	     */
1070	    *dyn_rpath = dynp;
1071	    break;
1072
1073	case DT_SONAME:
1074	    *dyn_soname = dynp;
1075	    break;
1076
1077	case DT_RUNPATH:
1078	    *dyn_runpath = dynp;
1079	    break;
1080
1081	case DT_INIT:
1082	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1083	    break;
1084
1085	case DT_PREINIT_ARRAY:
1086	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1087	    break;
1088
1089	case DT_PREINIT_ARRAYSZ:
1090	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1091	    break;
1092
1093	case DT_INIT_ARRAY:
1094	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1095	    break;
1096
1097	case DT_INIT_ARRAYSZ:
1098	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1099	    break;
1100
1101	case DT_FINI:
1102	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1103	    break;
1104
1105	case DT_FINI_ARRAY:
1106	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1107	    break;
1108
1109	case DT_FINI_ARRAYSZ:
1110	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1111	    break;
1112
1113	/*
1114	 * Don't process DT_DEBUG on MIPS as the dynamic section
1115	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1116	 */
1117
1118#ifndef __mips__
1119	case DT_DEBUG:
1120	    /* XXX - not implemented yet */
1121	    if (!early)
1122		dbg("Filling in DT_DEBUG entry");
1123	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1124	    break;
1125#endif
1126
1127	case DT_FLAGS:
1128		if (dynp->d_un.d_val & DF_ORIGIN)
1129		    obj->z_origin = true;
1130		if (dynp->d_un.d_val & DF_SYMBOLIC)
1131		    obj->symbolic = true;
1132		if (dynp->d_un.d_val & DF_TEXTREL)
1133		    obj->textrel = true;
1134		if (dynp->d_un.d_val & DF_BIND_NOW)
1135		    obj->bind_now = true;
1136		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1137		    ;*/
1138	    break;
1139#ifdef __mips__
1140	case DT_MIPS_LOCAL_GOTNO:
1141		obj->local_gotno = dynp->d_un.d_val;
1142	    break;
1143
1144	case DT_MIPS_SYMTABNO:
1145		obj->symtabno = dynp->d_un.d_val;
1146		break;
1147
1148	case DT_MIPS_GOTSYM:
1149		obj->gotsym = dynp->d_un.d_val;
1150		break;
1151
1152	case DT_MIPS_RLD_MAP:
1153		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1154		break;
1155#endif
1156
1157	case DT_FLAGS_1:
1158		if (dynp->d_un.d_val & DF_1_NOOPEN)
1159		    obj->z_noopen = true;
1160		if (dynp->d_un.d_val & DF_1_ORIGIN)
1161		    obj->z_origin = true;
1162		if (dynp->d_un.d_val & DF_1_GLOBAL)
1163		    obj->z_global = true;
1164		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1165		    obj->bind_now = true;
1166		if (dynp->d_un.d_val & DF_1_NODELETE)
1167		    obj->z_nodelete = true;
1168		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1169		    obj->z_loadfltr = true;
1170		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1171		    obj->z_interpose = true;
1172		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1173		    obj->z_nodeflib = true;
1174	    break;
1175
1176	default:
1177	    if (!early) {
1178		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1179		    (long)dynp->d_tag);
1180	    }
1181	    break;
1182	}
1183    }
1184
1185    obj->traced = false;
1186
1187    if (plttype == DT_RELA) {
1188	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1189	obj->pltrel = NULL;
1190	obj->pltrelasize = obj->pltrelsize;
1191	obj->pltrelsize = 0;
1192    }
1193
1194    /* Determine size of dynsym table (equal to nchains of sysv hash) */
1195    if (obj->valid_hash_sysv)
1196	obj->dynsymcount = obj->nchains;
1197    else if (obj->valid_hash_gnu) {
1198	obj->dynsymcount = 0;
1199	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1200	    if (obj->buckets_gnu[bkt] == 0)
1201		continue;
1202	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1203	    do
1204		obj->dynsymcount++;
1205	    while ((*hashval++ & 1u) == 0);
1206	}
1207	obj->dynsymcount += obj->symndx_gnu;
1208    }
1209}
1210
1211static bool
1212obj_resolve_origin(Obj_Entry *obj)
1213{
1214
1215	if (obj->origin_path != NULL)
1216		return (true);
1217	obj->origin_path = xmalloc(PATH_MAX);
1218	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1219}
1220
1221static void
1222digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1223    const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1224{
1225
1226	if (obj->z_origin && !obj_resolve_origin(obj))
1227		rtld_die();
1228
1229	if (dyn_runpath != NULL) {
1230		obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1231		obj->runpath = origin_subst(obj, obj->runpath);
1232	} else if (dyn_rpath != NULL) {
1233		obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1234		obj->rpath = origin_subst(obj, obj->rpath);
1235	}
1236	if (dyn_soname != NULL)
1237		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1238}
1239
1240static void
1241digest_dynamic(Obj_Entry *obj, int early)
1242{
1243	const Elf_Dyn *dyn_rpath;
1244	const Elf_Dyn *dyn_soname;
1245	const Elf_Dyn *dyn_runpath;
1246
1247	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1248	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1249}
1250
1251/*
1252 * Process a shared object's program header.  This is used only for the
1253 * main program, when the kernel has already loaded the main program
1254 * into memory before calling the dynamic linker.  It creates and
1255 * returns an Obj_Entry structure.
1256 */
1257static Obj_Entry *
1258digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1259{
1260    Obj_Entry *obj;
1261    const Elf_Phdr *phlimit = phdr + phnum;
1262    const Elf_Phdr *ph;
1263    Elf_Addr note_start, note_end;
1264    int nsegs = 0;
1265
1266    obj = obj_new();
1267    for (ph = phdr;  ph < phlimit;  ph++) {
1268	if (ph->p_type != PT_PHDR)
1269	    continue;
1270
1271	obj->phdr = phdr;
1272	obj->phsize = ph->p_memsz;
1273	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1274	break;
1275    }
1276
1277    obj->stack_flags = PF_X | PF_R | PF_W;
1278
1279    for (ph = phdr;  ph < phlimit;  ph++) {
1280	switch (ph->p_type) {
1281
1282	case PT_INTERP:
1283	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1284	    break;
1285
1286	case PT_LOAD:
1287	    if (nsegs == 0) {	/* First load segment */
1288		obj->vaddrbase = trunc_page(ph->p_vaddr);
1289		obj->mapbase = obj->vaddrbase + obj->relocbase;
1290		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1291		  obj->vaddrbase;
1292	    } else {		/* Last load segment */
1293		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1294		  obj->vaddrbase;
1295	    }
1296	    nsegs++;
1297	    break;
1298
1299	case PT_DYNAMIC:
1300	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1301	    break;
1302
1303	case PT_TLS:
1304	    obj->tlsindex = 1;
1305	    obj->tlssize = ph->p_memsz;
1306	    obj->tlsalign = ph->p_align;
1307	    obj->tlsinitsize = ph->p_filesz;
1308	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1309	    break;
1310
1311	case PT_GNU_STACK:
1312	    obj->stack_flags = ph->p_flags;
1313	    break;
1314
1315	case PT_GNU_RELRO:
1316	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1317	    obj->relro_size = round_page(ph->p_memsz);
1318	    break;
1319
1320	case PT_NOTE:
1321	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1322	    note_end = note_start + ph->p_filesz;
1323	    digest_notes(obj, note_start, note_end);
1324	    break;
1325	}
1326    }
1327    if (nsegs < 1) {
1328	_rtld_error("%s: too few PT_LOAD segments", path);
1329	return NULL;
1330    }
1331
1332    obj->entry = entry;
1333    return obj;
1334}
1335
1336void
1337digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1338{
1339	const Elf_Note *note;
1340	const char *note_name;
1341	uintptr_t p;
1342
1343	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1344	    note = (const Elf_Note *)((const char *)(note + 1) +
1345	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1346	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1347		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1348		    note->n_descsz != sizeof(int32_t))
1349			continue;
1350		if (note->n_type != ABI_NOTETYPE &&
1351		    note->n_type != CRT_NOINIT_NOTETYPE)
1352			continue;
1353		note_name = (const char *)(note + 1);
1354		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1355		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1356			continue;
1357		switch (note->n_type) {
1358		case ABI_NOTETYPE:
1359			/* FreeBSD osrel note */
1360			p = (uintptr_t)(note + 1);
1361			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1362			obj->osrel = *(const int32_t *)(p);
1363			dbg("note osrel %d", obj->osrel);
1364			break;
1365		case CRT_NOINIT_NOTETYPE:
1366			/* FreeBSD 'crt does not call init' note */
1367			obj->crt_no_init = true;
1368			dbg("note crt_no_init");
1369			break;
1370		}
1371	}
1372}
1373
1374static Obj_Entry *
1375dlcheck(void *handle)
1376{
1377    Obj_Entry *obj;
1378
1379    for (obj = obj_list;  obj != NULL;  obj = obj->next)
1380	if (obj == (Obj_Entry *) handle)
1381	    break;
1382
1383    if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1384	_rtld_error("Invalid shared object handle %p", handle);
1385	return NULL;
1386    }
1387    return obj;
1388}
1389
1390/*
1391 * If the given object is already in the donelist, return true.  Otherwise
1392 * add the object to the list and return false.
1393 */
1394static bool
1395donelist_check(DoneList *dlp, const Obj_Entry *obj)
1396{
1397    unsigned int i;
1398
1399    for (i = 0;  i < dlp->num_used;  i++)
1400	if (dlp->objs[i] == obj)
1401	    return true;
1402    /*
1403     * Our donelist allocation should always be sufficient.  But if
1404     * our threads locking isn't working properly, more shared objects
1405     * could have been loaded since we allocated the list.  That should
1406     * never happen, but we'll handle it properly just in case it does.
1407     */
1408    if (dlp->num_used < dlp->num_alloc)
1409	dlp->objs[dlp->num_used++] = obj;
1410    return false;
1411}
1412
1413/*
1414 * Hash function for symbol table lookup.  Don't even think about changing
1415 * this.  It is specified by the System V ABI.
1416 */
1417unsigned long
1418elf_hash(const char *name)
1419{
1420    const unsigned char *p = (const unsigned char *) name;
1421    unsigned long h = 0;
1422    unsigned long g;
1423
1424    while (*p != '\0') {
1425	h = (h << 4) + *p++;
1426	if ((g = h & 0xf0000000) != 0)
1427	    h ^= g >> 24;
1428	h &= ~g;
1429    }
1430    return h;
1431}
1432
1433/*
1434 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1435 * unsigned in case it's implemented with a wider type.
1436 */
1437static uint32_t
1438gnu_hash(const char *s)
1439{
1440	uint32_t h;
1441	unsigned char c;
1442
1443	h = 5381;
1444	for (c = *s; c != '\0'; c = *++s)
1445		h = h * 33 + c;
1446	return (h & 0xffffffff);
1447}
1448
1449/*
1450 * Find the library with the given name, and return its full pathname.
1451 * The returned string is dynamically allocated.  Generates an error
1452 * message and returns NULL if the library cannot be found.
1453 *
1454 * If the second argument is non-NULL, then it refers to an already-
1455 * loaded shared object, whose library search path will be searched.
1456 *
1457 * The search order is:
1458 *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1459 *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1460 *   LD_LIBRARY_PATH
1461 *   DT_RUNPATH in the referencing file
1462 *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1463 *	 from list)
1464 *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1465 *
1466 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1467 */
1468static char *
1469find_library(const char *xname, const Obj_Entry *refobj)
1470{
1471    char *pathname;
1472    char *name;
1473    bool nodeflib, objgiven;
1474
1475    objgiven = refobj != NULL;
1476    if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1477	if (xname[0] != '/' && !trust) {
1478	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1479	      xname);
1480	    return NULL;
1481	}
1482	return (origin_subst(__DECONST(Obj_Entry *, refobj),
1483	  __DECONST(char *, xname)));
1484    }
1485
1486    if (libmap_disable || !objgiven ||
1487	(name = lm_find(refobj->path, xname)) == NULL)
1488	name = (char *)xname;
1489
1490    dbg(" Searching for \"%s\"", name);
1491
1492    /*
1493     * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1494     * back to pre-conforming behaviour if user requested so with
1495     * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1496     * nodeflib.
1497     */
1498    if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1499	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1500	  (refobj != NULL &&
1501	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1502          (pathname = search_library_path(name, gethints(false))) != NULL ||
1503	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1504	    return (pathname);
1505    } else {
1506	nodeflib = objgiven ? refobj->z_nodeflib : false;
1507	if ((objgiven &&
1508	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1509	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1510	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1511	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1512	  (objgiven &&
1513	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1514	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1515	  (objgiven && !nodeflib &&
1516	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1517	    return (pathname);
1518    }
1519
1520    if (objgiven && refobj->path != NULL) {
1521	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1522	  name, basename(refobj->path));
1523    } else {
1524	_rtld_error("Shared object \"%s\" not found", name);
1525    }
1526    return NULL;
1527}
1528
1529/*
1530 * Given a symbol number in a referencing object, find the corresponding
1531 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1532 * no definition was found.  Returns a pointer to the Obj_Entry of the
1533 * defining object via the reference parameter DEFOBJ_OUT.
1534 */
1535const Elf_Sym *
1536find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1537    const Obj_Entry **defobj_out, int flags, SymCache *cache,
1538    RtldLockState *lockstate)
1539{
1540    const Elf_Sym *ref;
1541    const Elf_Sym *def;
1542    const Obj_Entry *defobj;
1543    SymLook req;
1544    const char *name;
1545    int res;
1546
1547    /*
1548     * If we have already found this symbol, get the information from
1549     * the cache.
1550     */
1551    if (symnum >= refobj->dynsymcount)
1552	return NULL;	/* Bad object */
1553    if (cache != NULL && cache[symnum].sym != NULL) {
1554	*defobj_out = cache[symnum].obj;
1555	return cache[symnum].sym;
1556    }
1557
1558    ref = refobj->symtab + symnum;
1559    name = refobj->strtab + ref->st_name;
1560    def = NULL;
1561    defobj = NULL;
1562
1563    /*
1564     * We don't have to do a full scale lookup if the symbol is local.
1565     * We know it will bind to the instance in this load module; to
1566     * which we already have a pointer (ie ref). By not doing a lookup,
1567     * we not only improve performance, but it also avoids unresolvable
1568     * symbols when local symbols are not in the hash table. This has
1569     * been seen with the ia64 toolchain.
1570     */
1571    if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1572	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1573	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1574		symnum);
1575	}
1576	symlook_init(&req, name);
1577	req.flags = flags;
1578	req.ventry = fetch_ventry(refobj, symnum);
1579	req.lockstate = lockstate;
1580	res = symlook_default(&req, refobj);
1581	if (res == 0) {
1582	    def = req.sym_out;
1583	    defobj = req.defobj_out;
1584	}
1585    } else {
1586	def = ref;
1587	defobj = refobj;
1588    }
1589
1590    /*
1591     * If we found no definition and the reference is weak, treat the
1592     * symbol as having the value zero.
1593     */
1594    if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1595	def = &sym_zero;
1596	defobj = obj_main;
1597    }
1598
1599    if (def != NULL) {
1600	*defobj_out = defobj;
1601	/* Record the information in the cache to avoid subsequent lookups. */
1602	if (cache != NULL) {
1603	    cache[symnum].sym = def;
1604	    cache[symnum].obj = defobj;
1605	}
1606    } else {
1607	if (refobj != &obj_rtld)
1608	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1609    }
1610    return def;
1611}
1612
1613/*
1614 * Return the search path from the ldconfig hints file, reading it if
1615 * necessary.  If nostdlib is true, then the default search paths are
1616 * not added to result.
1617 *
1618 * Returns NULL if there are problems with the hints file,
1619 * or if the search path there is empty.
1620 */
1621static const char *
1622gethints(bool nostdlib)
1623{
1624	static char *hints, *filtered_path;
1625	struct elfhints_hdr hdr;
1626	struct fill_search_info_args sargs, hargs;
1627	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1628	struct dl_serpath *SLPpath, *hintpath;
1629	char *p;
1630	unsigned int SLPndx, hintndx, fndx, fcount;
1631	int fd;
1632	size_t flen;
1633	bool skip;
1634
1635	/* First call, read the hints file */
1636	if (hints == NULL) {
1637		/* Keep from trying again in case the hints file is bad. */
1638		hints = "";
1639
1640		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1641			return (NULL);
1642		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1643		    hdr.magic != ELFHINTS_MAGIC ||
1644		    hdr.version != 1) {
1645			close(fd);
1646			return (NULL);
1647		}
1648		p = xmalloc(hdr.dirlistlen + 1);
1649		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1650		    read(fd, p, hdr.dirlistlen + 1) !=
1651		    (ssize_t)hdr.dirlistlen + 1) {
1652			free(p);
1653			close(fd);
1654			return (NULL);
1655		}
1656		hints = p;
1657		close(fd);
1658	}
1659
1660	/*
1661	 * If caller agreed to receive list which includes the default
1662	 * paths, we are done. Otherwise, if we still did not
1663	 * calculated filtered result, do it now.
1664	 */
1665	if (!nostdlib)
1666		return (hints[0] != '\0' ? hints : NULL);
1667	if (filtered_path != NULL)
1668		goto filt_ret;
1669
1670	/*
1671	 * Obtain the list of all configured search paths, and the
1672	 * list of the default paths.
1673	 *
1674	 * First estimate the size of the results.
1675	 */
1676	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1677	smeta.dls_cnt = 0;
1678	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1679	hmeta.dls_cnt = 0;
1680
1681	sargs.request = RTLD_DI_SERINFOSIZE;
1682	sargs.serinfo = &smeta;
1683	hargs.request = RTLD_DI_SERINFOSIZE;
1684	hargs.serinfo = &hmeta;
1685
1686	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1687	path_enumerate(p, fill_search_info, &hargs);
1688
1689	SLPinfo = xmalloc(smeta.dls_size);
1690	hintinfo = xmalloc(hmeta.dls_size);
1691
1692	/*
1693	 * Next fetch both sets of paths.
1694	 */
1695	sargs.request = RTLD_DI_SERINFO;
1696	sargs.serinfo = SLPinfo;
1697	sargs.serpath = &SLPinfo->dls_serpath[0];
1698	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1699
1700	hargs.request = RTLD_DI_SERINFO;
1701	hargs.serinfo = hintinfo;
1702	hargs.serpath = &hintinfo->dls_serpath[0];
1703	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1704
1705	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1706	path_enumerate(p, fill_search_info, &hargs);
1707
1708	/*
1709	 * Now calculate the difference between two sets, by excluding
1710	 * standard paths from the full set.
1711	 */
1712	fndx = 0;
1713	fcount = 0;
1714	filtered_path = xmalloc(hdr.dirlistlen + 1);
1715	hintpath = &hintinfo->dls_serpath[0];
1716	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1717		skip = false;
1718		SLPpath = &SLPinfo->dls_serpath[0];
1719		/*
1720		 * Check each standard path against current.
1721		 */
1722		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1723			/* matched, skip the path */
1724			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1725				skip = true;
1726				break;
1727			}
1728		}
1729		if (skip)
1730			continue;
1731		/*
1732		 * Not matched against any standard path, add the path
1733		 * to result. Separate consequtive paths with ':'.
1734		 */
1735		if (fcount > 0) {
1736			filtered_path[fndx] = ':';
1737			fndx++;
1738		}
1739		fcount++;
1740		flen = strlen(hintpath->dls_name);
1741		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1742		fndx += flen;
1743	}
1744	filtered_path[fndx] = '\0';
1745
1746	free(SLPinfo);
1747	free(hintinfo);
1748
1749filt_ret:
1750	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1751}
1752
1753static void
1754init_dag(Obj_Entry *root)
1755{
1756    const Needed_Entry *needed;
1757    const Objlist_Entry *elm;
1758    DoneList donelist;
1759
1760    if (root->dag_inited)
1761	return;
1762    donelist_init(&donelist);
1763
1764    /* Root object belongs to own DAG. */
1765    objlist_push_tail(&root->dldags, root);
1766    objlist_push_tail(&root->dagmembers, root);
1767    donelist_check(&donelist, root);
1768
1769    /*
1770     * Add dependencies of root object to DAG in breadth order
1771     * by exploiting the fact that each new object get added
1772     * to the tail of the dagmembers list.
1773     */
1774    STAILQ_FOREACH(elm, &root->dagmembers, link) {
1775	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1776	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1777		continue;
1778	    objlist_push_tail(&needed->obj->dldags, root);
1779	    objlist_push_tail(&root->dagmembers, needed->obj);
1780	}
1781    }
1782    root->dag_inited = true;
1783}
1784
1785static void
1786process_z(Obj_Entry *root)
1787{
1788	const Objlist_Entry *elm;
1789	Obj_Entry *obj;
1790
1791	/*
1792	 * Walk over object DAG and process every dependent object
1793	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
1794	 * to grow their own DAG.
1795	 *
1796	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
1797	 * symlook_global() to work.
1798	 *
1799	 * For DF_1_NODELETE, the DAG should have its reference upped.
1800	 */
1801	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1802		obj = elm->obj;
1803		if (obj == NULL)
1804			continue;
1805		if (obj->z_nodelete && !obj->ref_nodel) {
1806			dbg("obj %s -z nodelete", obj->path);
1807			init_dag(obj);
1808			ref_dag(obj);
1809			obj->ref_nodel = true;
1810		}
1811		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
1812			dbg("obj %s -z global", obj->path);
1813			objlist_push_tail(&list_global, obj);
1814			init_dag(obj);
1815		}
1816	}
1817}
1818/*
1819 * Initialize the dynamic linker.  The argument is the address at which
1820 * the dynamic linker has been mapped into memory.  The primary task of
1821 * this function is to relocate the dynamic linker.
1822 */
1823static void
1824init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1825{
1826    Obj_Entry objtmp;	/* Temporary rtld object */
1827    const Elf_Dyn *dyn_rpath;
1828    const Elf_Dyn *dyn_soname;
1829    const Elf_Dyn *dyn_runpath;
1830
1831#ifdef RTLD_INIT_PAGESIZES_EARLY
1832    /* The page size is required by the dynamic memory allocator. */
1833    init_pagesizes(aux_info);
1834#endif
1835
1836    /*
1837     * Conjure up an Obj_Entry structure for the dynamic linker.
1838     *
1839     * The "path" member can't be initialized yet because string constants
1840     * cannot yet be accessed. Below we will set it correctly.
1841     */
1842    memset(&objtmp, 0, sizeof(objtmp));
1843    objtmp.path = NULL;
1844    objtmp.rtld = true;
1845    objtmp.mapbase = mapbase;
1846#ifdef PIC
1847    objtmp.relocbase = mapbase;
1848#endif
1849    if (RTLD_IS_DYNAMIC()) {
1850	objtmp.dynamic = rtld_dynamic(&objtmp);
1851	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1852	assert(objtmp.needed == NULL);
1853#if !defined(__mips__)
1854	/* MIPS has a bogus DT_TEXTREL. */
1855	assert(!objtmp.textrel);
1856#endif
1857
1858	/*
1859	 * Temporarily put the dynamic linker entry into the object list, so
1860	 * that symbols can be found.
1861	 */
1862
1863	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1864    }
1865
1866    /* Initialize the object list. */
1867    obj_tail = &obj_list;
1868
1869    /* Now that non-local variables can be accesses, copy out obj_rtld. */
1870    memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1871
1872#ifndef RTLD_INIT_PAGESIZES_EARLY
1873    /* The page size is required by the dynamic memory allocator. */
1874    init_pagesizes(aux_info);
1875#endif
1876
1877    if (aux_info[AT_OSRELDATE] != NULL)
1878	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1879
1880    digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1881
1882    /* Replace the path with a dynamically allocated copy. */
1883    obj_rtld.path = xstrdup(PATH_RTLD);
1884
1885    r_debug.r_brk = r_debug_state;
1886    r_debug.r_state = RT_CONSISTENT;
1887}
1888
1889/*
1890 * Retrieve the array of supported page sizes.  The kernel provides the page
1891 * sizes in increasing order.
1892 */
1893static void
1894init_pagesizes(Elf_Auxinfo **aux_info)
1895{
1896	static size_t psa[MAXPAGESIZES];
1897	int mib[2];
1898	size_t len, size;
1899
1900	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
1901	    NULL) {
1902		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
1903		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
1904	} else {
1905		len = 2;
1906		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
1907			size = sizeof(psa);
1908		else {
1909			/* As a fallback, retrieve the base page size. */
1910			size = sizeof(psa[0]);
1911			if (aux_info[AT_PAGESZ] != NULL) {
1912				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
1913				goto psa_filled;
1914			} else {
1915				mib[0] = CTL_HW;
1916				mib[1] = HW_PAGESIZE;
1917				len = 2;
1918			}
1919		}
1920		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
1921			_rtld_error("sysctl for hw.pagesize(s) failed");
1922			rtld_die();
1923		}
1924psa_filled:
1925		pagesizes = psa;
1926	}
1927	npagesizes = size / sizeof(pagesizes[0]);
1928	/* Discard any invalid entries at the end of the array. */
1929	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
1930		npagesizes--;
1931}
1932
1933/*
1934 * Add the init functions from a needed object list (and its recursive
1935 * needed objects) to "list".  This is not used directly; it is a helper
1936 * function for initlist_add_objects().  The write lock must be held
1937 * when this function is called.
1938 */
1939static void
1940initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1941{
1942    /* Recursively process the successor needed objects. */
1943    if (needed->next != NULL)
1944	initlist_add_neededs(needed->next, list);
1945
1946    /* Process the current needed object. */
1947    if (needed->obj != NULL)
1948	initlist_add_objects(needed->obj, &needed->obj->next, list);
1949}
1950
1951/*
1952 * Scan all of the DAGs rooted in the range of objects from "obj" to
1953 * "tail" and add their init functions to "list".  This recurses over
1954 * the DAGs and ensure the proper init ordering such that each object's
1955 * needed libraries are initialized before the object itself.  At the
1956 * same time, this function adds the objects to the global finalization
1957 * list "list_fini" in the opposite order.  The write lock must be
1958 * held when this function is called.
1959 */
1960static void
1961initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1962{
1963
1964    if (obj->init_scanned || obj->init_done)
1965	return;
1966    obj->init_scanned = true;
1967
1968    /* Recursively process the successor objects. */
1969    if (&obj->next != tail)
1970	initlist_add_objects(obj->next, tail, list);
1971
1972    /* Recursively process the needed objects. */
1973    if (obj->needed != NULL)
1974	initlist_add_neededs(obj->needed, list);
1975    if (obj->needed_filtees != NULL)
1976	initlist_add_neededs(obj->needed_filtees, list);
1977    if (obj->needed_aux_filtees != NULL)
1978	initlist_add_neededs(obj->needed_aux_filtees, list);
1979
1980    /* Add the object to the init list. */
1981    if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1982      obj->init_array != (Elf_Addr)NULL)
1983	objlist_push_tail(list, obj);
1984
1985    /* Add the object to the global fini list in the reverse order. */
1986    if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1987      && !obj->on_fini_list) {
1988	objlist_push_head(&list_fini, obj);
1989	obj->on_fini_list = true;
1990    }
1991}
1992
1993#ifndef FPTR_TARGET
1994#define FPTR_TARGET(f)	((Elf_Addr) (f))
1995#endif
1996
1997static void
1998free_needed_filtees(Needed_Entry *n)
1999{
2000    Needed_Entry *needed, *needed1;
2001
2002    for (needed = n; needed != NULL; needed = needed->next) {
2003	if (needed->obj != NULL) {
2004	    dlclose(needed->obj);
2005	    needed->obj = NULL;
2006	}
2007    }
2008    for (needed = n; needed != NULL; needed = needed1) {
2009	needed1 = needed->next;
2010	free(needed);
2011    }
2012}
2013
2014static void
2015unload_filtees(Obj_Entry *obj)
2016{
2017
2018    free_needed_filtees(obj->needed_filtees);
2019    obj->needed_filtees = NULL;
2020    free_needed_filtees(obj->needed_aux_filtees);
2021    obj->needed_aux_filtees = NULL;
2022    obj->filtees_loaded = false;
2023}
2024
2025static void
2026load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2027    RtldLockState *lockstate)
2028{
2029
2030    for (; needed != NULL; needed = needed->next) {
2031	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2032	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2033	  RTLD_LOCAL, lockstate);
2034    }
2035}
2036
2037static void
2038load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2039{
2040
2041    lock_restart_for_upgrade(lockstate);
2042    if (!obj->filtees_loaded) {
2043	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2044	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2045	obj->filtees_loaded = true;
2046    }
2047}
2048
2049static int
2050process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2051{
2052    Obj_Entry *obj1;
2053
2054    for (; needed != NULL; needed = needed->next) {
2055	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2056	  flags & ~RTLD_LO_NOLOAD);
2057	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2058	    return (-1);
2059    }
2060    return (0);
2061}
2062
2063/*
2064 * Given a shared object, traverse its list of needed objects, and load
2065 * each of them.  Returns 0 on success.  Generates an error message and
2066 * returns -1 on failure.
2067 */
2068static int
2069load_needed_objects(Obj_Entry *first, int flags)
2070{
2071    Obj_Entry *obj;
2072
2073    for (obj = first;  obj != NULL;  obj = obj->next) {
2074	if (process_needed(obj, obj->needed, flags) == -1)
2075	    return (-1);
2076    }
2077    return (0);
2078}
2079
2080static int
2081load_preload_objects(void)
2082{
2083    char *p = ld_preload;
2084    Obj_Entry *obj;
2085    static const char delim[] = " \t:;";
2086
2087    if (p == NULL)
2088	return 0;
2089
2090    p += strspn(p, delim);
2091    while (*p != '\0') {
2092	size_t len = strcspn(p, delim);
2093	char savech;
2094
2095	savech = p[len];
2096	p[len] = '\0';
2097	obj = load_object(p, -1, NULL, 0);
2098	if (obj == NULL)
2099	    return -1;	/* XXX - cleanup */
2100	obj->z_interpose = true;
2101	p[len] = savech;
2102	p += len;
2103	p += strspn(p, delim);
2104    }
2105    LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2106    return 0;
2107}
2108
2109static const char *
2110printable_path(const char *path)
2111{
2112
2113	return (path == NULL ? "<unknown>" : path);
2114}
2115
2116/*
2117 * Load a shared object into memory, if it is not already loaded.  The
2118 * object may be specified by name or by user-supplied file descriptor
2119 * fd_u. In the later case, the fd_u descriptor is not closed, but its
2120 * duplicate is.
2121 *
2122 * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2123 * on failure.
2124 */
2125static Obj_Entry *
2126load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2127{
2128    Obj_Entry *obj;
2129    int fd;
2130    struct stat sb;
2131    char *path;
2132
2133    if (name != NULL) {
2134	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2135	    if (object_match_name(obj, name))
2136		return (obj);
2137	}
2138
2139	path = find_library(name, refobj);
2140	if (path == NULL)
2141	    return (NULL);
2142    } else
2143	path = NULL;
2144
2145    /*
2146     * If we didn't find a match by pathname, or the name is not
2147     * supplied, open the file and check again by device and inode.
2148     * This avoids false mismatches caused by multiple links or ".."
2149     * in pathnames.
2150     *
2151     * To avoid a race, we open the file and use fstat() rather than
2152     * using stat().
2153     */
2154    fd = -1;
2155    if (fd_u == -1) {
2156	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2157	    _rtld_error("Cannot open \"%s\"", path);
2158	    free(path);
2159	    return (NULL);
2160	}
2161    } else {
2162	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2163	if (fd == -1) {
2164	    _rtld_error("Cannot dup fd");
2165	    free(path);
2166	    return (NULL);
2167	}
2168    }
2169    if (fstat(fd, &sb) == -1) {
2170	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2171	close(fd);
2172	free(path);
2173	return NULL;
2174    }
2175    for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2176	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2177	    break;
2178    if (obj != NULL && name != NULL) {
2179	object_add_name(obj, name);
2180	free(path);
2181	close(fd);
2182	return obj;
2183    }
2184    if (flags & RTLD_LO_NOLOAD) {
2185	free(path);
2186	close(fd);
2187	return (NULL);
2188    }
2189
2190    /* First use of this object, so we must map it in */
2191    obj = do_load_object(fd, name, path, &sb, flags);
2192    if (obj == NULL)
2193	free(path);
2194    close(fd);
2195
2196    return obj;
2197}
2198
2199static Obj_Entry *
2200do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2201  int flags)
2202{
2203    Obj_Entry *obj;
2204    struct statfs fs;
2205
2206    /*
2207     * but first, make sure that environment variables haven't been
2208     * used to circumvent the noexec flag on a filesystem.
2209     */
2210    if (dangerous_ld_env) {
2211	if (fstatfs(fd, &fs) != 0) {
2212	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2213	    return NULL;
2214	}
2215	if (fs.f_flags & MNT_NOEXEC) {
2216	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2217	    return NULL;
2218	}
2219    }
2220    dbg("loading \"%s\"", printable_path(path));
2221    obj = map_object(fd, printable_path(path), sbp);
2222    if (obj == NULL)
2223        return NULL;
2224
2225    /*
2226     * If DT_SONAME is present in the object, digest_dynamic2 already
2227     * added it to the object names.
2228     */
2229    if (name != NULL)
2230	object_add_name(obj, name);
2231    obj->path = path;
2232    digest_dynamic(obj, 0);
2233    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2234	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2235    if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2236      RTLD_LO_DLOPEN) {
2237	dbg("refusing to load non-loadable \"%s\"", obj->path);
2238	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2239	munmap(obj->mapbase, obj->mapsize);
2240	obj_free(obj);
2241	return (NULL);
2242    }
2243
2244    obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2245    *obj_tail = obj;
2246    obj_tail = &obj->next;
2247    obj_count++;
2248    obj_loads++;
2249    linkmap_add(obj);	/* for GDB & dlinfo() */
2250    max_stack_flags |= obj->stack_flags;
2251
2252    dbg("  %p .. %p: %s", obj->mapbase,
2253         obj->mapbase + obj->mapsize - 1, obj->path);
2254    if (obj->textrel)
2255	dbg("  WARNING: %s has impure text", obj->path);
2256    LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2257	obj->path);
2258
2259    return obj;
2260}
2261
2262static Obj_Entry *
2263obj_from_addr(const void *addr)
2264{
2265    Obj_Entry *obj;
2266
2267    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2268	if (addr < (void *) obj->mapbase)
2269	    continue;
2270	if (addr < (void *) (obj->mapbase + obj->mapsize))
2271	    return obj;
2272    }
2273    return NULL;
2274}
2275
2276static void
2277preinit_main(void)
2278{
2279    Elf_Addr *preinit_addr;
2280    int index;
2281
2282    preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2283    if (preinit_addr == NULL)
2284	return;
2285
2286    for (index = 0; index < obj_main->preinit_array_num; index++) {
2287	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2288	    dbg("calling preinit function for %s at %p", obj_main->path,
2289	      (void *)preinit_addr[index]);
2290	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2291	      0, 0, obj_main->path);
2292	    call_init_pointer(obj_main, preinit_addr[index]);
2293	}
2294    }
2295}
2296
2297/*
2298 * Call the finalization functions for each of the objects in "list"
2299 * belonging to the DAG of "root" and referenced once. If NULL "root"
2300 * is specified, every finalization function will be called regardless
2301 * of the reference count and the list elements won't be freed. All of
2302 * the objects are expected to have non-NULL fini functions.
2303 */
2304static void
2305objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2306{
2307    Objlist_Entry *elm;
2308    char *saved_msg;
2309    Elf_Addr *fini_addr;
2310    int index;
2311
2312    assert(root == NULL || root->refcount == 1);
2313
2314    /*
2315     * Preserve the current error message since a fini function might
2316     * call into the dynamic linker and overwrite it.
2317     */
2318    saved_msg = errmsg_save();
2319    do {
2320	STAILQ_FOREACH(elm, list, link) {
2321	    if (root != NULL && (elm->obj->refcount != 1 ||
2322	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2323		continue;
2324	    /* Remove object from fini list to prevent recursive invocation. */
2325	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2326	    /*
2327	     * XXX: If a dlopen() call references an object while the
2328	     * fini function is in progress, we might end up trying to
2329	     * unload the referenced object in dlclose() or the object
2330	     * won't be unloaded although its fini function has been
2331	     * called.
2332	     */
2333	    lock_release(rtld_bind_lock, lockstate);
2334
2335	    /*
2336	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2337	     * When this happens, DT_FINI_ARRAY is processed first.
2338	     */
2339	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2340	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2341		for (index = elm->obj->fini_array_num - 1; index >= 0;
2342		  index--) {
2343		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2344			dbg("calling fini function for %s at %p",
2345			    elm->obj->path, (void *)fini_addr[index]);
2346			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2347			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2348			call_initfini_pointer(elm->obj, fini_addr[index]);
2349		    }
2350		}
2351	    }
2352	    if (elm->obj->fini != (Elf_Addr)NULL) {
2353		dbg("calling fini function for %s at %p", elm->obj->path,
2354		    (void *)elm->obj->fini);
2355		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2356		    0, 0, elm->obj->path);
2357		call_initfini_pointer(elm->obj, elm->obj->fini);
2358	    }
2359	    wlock_acquire(rtld_bind_lock, lockstate);
2360	    /* No need to free anything if process is going down. */
2361	    if (root != NULL)
2362	    	free(elm);
2363	    /*
2364	     * We must restart the list traversal after every fini call
2365	     * because a dlclose() call from the fini function or from
2366	     * another thread might have modified the reference counts.
2367	     */
2368	    break;
2369	}
2370    } while (elm != NULL);
2371    errmsg_restore(saved_msg);
2372}
2373
2374/*
2375 * Call the initialization functions for each of the objects in
2376 * "list".  All of the objects are expected to have non-NULL init
2377 * functions.
2378 */
2379static void
2380objlist_call_init(Objlist *list, RtldLockState *lockstate)
2381{
2382    Objlist_Entry *elm;
2383    Obj_Entry *obj;
2384    char *saved_msg;
2385    Elf_Addr *init_addr;
2386    int index;
2387
2388    /*
2389     * Clean init_scanned flag so that objects can be rechecked and
2390     * possibly initialized earlier if any of vectors called below
2391     * cause the change by using dlopen.
2392     */
2393    for (obj = obj_list;  obj != NULL;  obj = obj->next)
2394	obj->init_scanned = false;
2395
2396    /*
2397     * Preserve the current error message since an init function might
2398     * call into the dynamic linker and overwrite it.
2399     */
2400    saved_msg = errmsg_save();
2401    STAILQ_FOREACH(elm, list, link) {
2402	if (elm->obj->init_done) /* Initialized early. */
2403	    continue;
2404	/*
2405	 * Race: other thread might try to use this object before current
2406	 * one completes the initilization. Not much can be done here
2407	 * without better locking.
2408	 */
2409	elm->obj->init_done = true;
2410	lock_release(rtld_bind_lock, lockstate);
2411
2412        /*
2413         * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2414         * When this happens, DT_INIT is processed first.
2415         */
2416	if (elm->obj->init != (Elf_Addr)NULL) {
2417	    dbg("calling init function for %s at %p", elm->obj->path,
2418	        (void *)elm->obj->init);
2419	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2420	        0, 0, elm->obj->path);
2421	    call_initfini_pointer(elm->obj, elm->obj->init);
2422	}
2423	init_addr = (Elf_Addr *)elm->obj->init_array;
2424	if (init_addr != NULL) {
2425	    for (index = 0; index < elm->obj->init_array_num; index++) {
2426		if (init_addr[index] != 0 && init_addr[index] != 1) {
2427		    dbg("calling init function for %s at %p", elm->obj->path,
2428			(void *)init_addr[index]);
2429		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2430			(void *)init_addr[index], 0, 0, elm->obj->path);
2431		    call_init_pointer(elm->obj, init_addr[index]);
2432		}
2433	    }
2434	}
2435	wlock_acquire(rtld_bind_lock, lockstate);
2436    }
2437    errmsg_restore(saved_msg);
2438}
2439
2440static void
2441objlist_clear(Objlist *list)
2442{
2443    Objlist_Entry *elm;
2444
2445    while (!STAILQ_EMPTY(list)) {
2446	elm = STAILQ_FIRST(list);
2447	STAILQ_REMOVE_HEAD(list, link);
2448	free(elm);
2449    }
2450}
2451
2452static Objlist_Entry *
2453objlist_find(Objlist *list, const Obj_Entry *obj)
2454{
2455    Objlist_Entry *elm;
2456
2457    STAILQ_FOREACH(elm, list, link)
2458	if (elm->obj == obj)
2459	    return elm;
2460    return NULL;
2461}
2462
2463static void
2464objlist_init(Objlist *list)
2465{
2466    STAILQ_INIT(list);
2467}
2468
2469static void
2470objlist_push_head(Objlist *list, Obj_Entry *obj)
2471{
2472    Objlist_Entry *elm;
2473
2474    elm = NEW(Objlist_Entry);
2475    elm->obj = obj;
2476    STAILQ_INSERT_HEAD(list, elm, link);
2477}
2478
2479static void
2480objlist_push_tail(Objlist *list, Obj_Entry *obj)
2481{
2482    Objlist_Entry *elm;
2483
2484    elm = NEW(Objlist_Entry);
2485    elm->obj = obj;
2486    STAILQ_INSERT_TAIL(list, elm, link);
2487}
2488
2489static void
2490objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2491{
2492	Objlist_Entry *elm, *listelm;
2493
2494	STAILQ_FOREACH(listelm, list, link) {
2495		if (listelm->obj == listobj)
2496			break;
2497	}
2498	elm = NEW(Objlist_Entry);
2499	elm->obj = obj;
2500	if (listelm != NULL)
2501		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2502	else
2503		STAILQ_INSERT_TAIL(list, elm, link);
2504}
2505
2506static void
2507objlist_remove(Objlist *list, Obj_Entry *obj)
2508{
2509    Objlist_Entry *elm;
2510
2511    if ((elm = objlist_find(list, obj)) != NULL) {
2512	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2513	free(elm);
2514    }
2515}
2516
2517/*
2518 * Relocate dag rooted in the specified object.
2519 * Returns 0 on success, or -1 on failure.
2520 */
2521
2522static int
2523relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2524    int flags, RtldLockState *lockstate)
2525{
2526	Objlist_Entry *elm;
2527	int error;
2528
2529	error = 0;
2530	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2531		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2532		    lockstate);
2533		if (error == -1)
2534			break;
2535	}
2536	return (error);
2537}
2538
2539/*
2540 * Relocate single object.
2541 * Returns 0 on success, or -1 on failure.
2542 */
2543static int
2544relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2545    int flags, RtldLockState *lockstate)
2546{
2547
2548	if (obj->relocated)
2549		return (0);
2550	obj->relocated = true;
2551	if (obj != rtldobj)
2552		dbg("relocating \"%s\"", obj->path);
2553
2554	if (obj->symtab == NULL || obj->strtab == NULL ||
2555	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2556		_rtld_error("%s: Shared object has no run-time symbol table",
2557			    obj->path);
2558		return (-1);
2559	}
2560
2561	if (obj->textrel) {
2562		/* There are relocations to the write-protected text segment. */
2563		if (mprotect(obj->mapbase, obj->textsize,
2564		    PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2565			_rtld_error("%s: Cannot write-enable text segment: %s",
2566			    obj->path, rtld_strerror(errno));
2567			return (-1);
2568		}
2569	}
2570
2571	/* Process the non-PLT non-IFUNC relocations. */
2572	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2573		return (-1);
2574
2575	if (obj->textrel) {	/* Re-protected the text segment. */
2576		if (mprotect(obj->mapbase, obj->textsize,
2577		    PROT_READ|PROT_EXEC) == -1) {
2578			_rtld_error("%s: Cannot write-protect text segment: %s",
2579			    obj->path, rtld_strerror(errno));
2580			return (-1);
2581		}
2582	}
2583
2584	/* Set the special PLT or GOT entries. */
2585	init_pltgot(obj);
2586
2587	/* Process the PLT relocations. */
2588	if (reloc_plt(obj) == -1)
2589		return (-1);
2590	/* Relocate the jump slots if we are doing immediate binding. */
2591	if (obj->bind_now || bind_now)
2592		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2593			return (-1);
2594
2595	/*
2596	 * Process the non-PLT IFUNC relocations.  The relocations are
2597	 * processed in two phases, because IFUNC resolvers may
2598	 * reference other symbols, which must be readily processed
2599	 * before resolvers are called.
2600	 */
2601	if (obj->non_plt_gnu_ifunc &&
2602	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2603		return (-1);
2604
2605	if (obj->relro_size > 0) {
2606		if (mprotect(obj->relro_page, obj->relro_size,
2607		    PROT_READ) == -1) {
2608			_rtld_error("%s: Cannot enforce relro protection: %s",
2609			    obj->path, rtld_strerror(errno));
2610			return (-1);
2611		}
2612	}
2613
2614	/*
2615	 * Set up the magic number and version in the Obj_Entry.  These
2616	 * were checked in the crt1.o from the original ElfKit, so we
2617	 * set them for backward compatibility.
2618	 */
2619	obj->magic = RTLD_MAGIC;
2620	obj->version = RTLD_VERSION;
2621
2622	return (0);
2623}
2624
2625/*
2626 * Relocate newly-loaded shared objects.  The argument is a pointer to
2627 * the Obj_Entry for the first such object.  All objects from the first
2628 * to the end of the list of objects are relocated.  Returns 0 on success,
2629 * or -1 on failure.
2630 */
2631static int
2632relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2633    int flags, RtldLockState *lockstate)
2634{
2635	Obj_Entry *obj;
2636	int error;
2637
2638	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2639		error = relocate_object(obj, bind_now, rtldobj, flags,
2640		    lockstate);
2641		if (error == -1)
2642			break;
2643	}
2644	return (error);
2645}
2646
2647/*
2648 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2649 * referencing STT_GNU_IFUNC symbols is postponed till the other
2650 * relocations are done.  The indirect functions specified as
2651 * ifunc are allowed to call other symbols, so we need to have
2652 * objects relocated before asking for resolution from indirects.
2653 *
2654 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2655 * instead of the usual lazy handling of PLT slots.  It is
2656 * consistent with how GNU does it.
2657 */
2658static int
2659resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2660    RtldLockState *lockstate)
2661{
2662	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2663		return (-1);
2664	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2665	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2666		return (-1);
2667	return (0);
2668}
2669
2670static int
2671resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2672    RtldLockState *lockstate)
2673{
2674	Obj_Entry *obj;
2675
2676	for (obj = first;  obj != NULL;  obj = obj->next) {
2677		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2678			return (-1);
2679	}
2680	return (0);
2681}
2682
2683static int
2684initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2685    RtldLockState *lockstate)
2686{
2687	Objlist_Entry *elm;
2688
2689	STAILQ_FOREACH(elm, list, link) {
2690		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2691		    lockstate) == -1)
2692			return (-1);
2693	}
2694	return (0);
2695}
2696
2697/*
2698 * Cleanup procedure.  It will be called (by the atexit mechanism) just
2699 * before the process exits.
2700 */
2701static void
2702rtld_exit(void)
2703{
2704    RtldLockState lockstate;
2705
2706    wlock_acquire(rtld_bind_lock, &lockstate);
2707    dbg("rtld_exit()");
2708    objlist_call_fini(&list_fini, NULL, &lockstate);
2709    /* No need to remove the items from the list, since we are exiting. */
2710    if (!libmap_disable)
2711        lm_fini();
2712    lock_release(rtld_bind_lock, &lockstate);
2713}
2714
2715/*
2716 * Iterate over a search path, translate each element, and invoke the
2717 * callback on the result.
2718 */
2719static void *
2720path_enumerate(const char *path, path_enum_proc callback, void *arg)
2721{
2722    const char *trans;
2723    if (path == NULL)
2724	return (NULL);
2725
2726    path += strspn(path, ":;");
2727    while (*path != '\0') {
2728	size_t len;
2729	char  *res;
2730
2731	len = strcspn(path, ":;");
2732	trans = lm_findn(NULL, path, len);
2733	if (trans)
2734	    res = callback(trans, strlen(trans), arg);
2735	else
2736	    res = callback(path, len, arg);
2737
2738	if (res != NULL)
2739	    return (res);
2740
2741	path += len;
2742	path += strspn(path, ":;");
2743    }
2744
2745    return (NULL);
2746}
2747
2748struct try_library_args {
2749    const char	*name;
2750    size_t	 namelen;
2751    char	*buffer;
2752    size_t	 buflen;
2753};
2754
2755static void *
2756try_library_path(const char *dir, size_t dirlen, void *param)
2757{
2758    struct try_library_args *arg;
2759
2760    arg = param;
2761    if (*dir == '/' || trust) {
2762	char *pathname;
2763
2764	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2765		return (NULL);
2766
2767	pathname = arg->buffer;
2768	strncpy(pathname, dir, dirlen);
2769	pathname[dirlen] = '/';
2770	strcpy(pathname + dirlen + 1, arg->name);
2771
2772	dbg("  Trying \"%s\"", pathname);
2773	if (access(pathname, F_OK) == 0) {		/* We found it */
2774	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2775	    strcpy(pathname, arg->buffer);
2776	    return (pathname);
2777	}
2778    }
2779    return (NULL);
2780}
2781
2782static char *
2783search_library_path(const char *name, const char *path)
2784{
2785    char *p;
2786    struct try_library_args arg;
2787
2788    if (path == NULL)
2789	return NULL;
2790
2791    arg.name = name;
2792    arg.namelen = strlen(name);
2793    arg.buffer = xmalloc(PATH_MAX);
2794    arg.buflen = PATH_MAX;
2795
2796    p = path_enumerate(path, try_library_path, &arg);
2797
2798    free(arg.buffer);
2799
2800    return (p);
2801}
2802
2803int
2804dlclose(void *handle)
2805{
2806    Obj_Entry *root;
2807    RtldLockState lockstate;
2808
2809    wlock_acquire(rtld_bind_lock, &lockstate);
2810    root = dlcheck(handle);
2811    if (root == NULL) {
2812	lock_release(rtld_bind_lock, &lockstate);
2813	return -1;
2814    }
2815    LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2816	root->path);
2817
2818    /* Unreference the object and its dependencies. */
2819    root->dl_refcount--;
2820
2821    if (root->refcount == 1) {
2822	/*
2823	 * The object will be no longer referenced, so we must unload it.
2824	 * First, call the fini functions.
2825	 */
2826	objlist_call_fini(&list_fini, root, &lockstate);
2827
2828	unref_dag(root);
2829
2830	/* Finish cleaning up the newly-unreferenced objects. */
2831	GDB_STATE(RT_DELETE,&root->linkmap);
2832	unload_object(root);
2833	GDB_STATE(RT_CONSISTENT,NULL);
2834    } else
2835	unref_dag(root);
2836
2837    LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2838    lock_release(rtld_bind_lock, &lockstate);
2839    return 0;
2840}
2841
2842char *
2843dlerror(void)
2844{
2845    char *msg = error_message;
2846    error_message = NULL;
2847    return msg;
2848}
2849
2850/*
2851 * This function is deprecated and has no effect.
2852 */
2853void
2854dllockinit(void *context,
2855	   void *(*lock_create)(void *context),
2856           void (*rlock_acquire)(void *lock),
2857           void (*wlock_acquire)(void *lock),
2858           void (*lock_release)(void *lock),
2859           void (*lock_destroy)(void *lock),
2860	   void (*context_destroy)(void *context))
2861{
2862    static void *cur_context;
2863    static void (*cur_context_destroy)(void *);
2864
2865    /* Just destroy the context from the previous call, if necessary. */
2866    if (cur_context_destroy != NULL)
2867	cur_context_destroy(cur_context);
2868    cur_context = context;
2869    cur_context_destroy = context_destroy;
2870}
2871
2872void *
2873dlopen(const char *name, int mode)
2874{
2875
2876	return (rtld_dlopen(name, -1, mode));
2877}
2878
2879void *
2880fdlopen(int fd, int mode)
2881{
2882
2883	return (rtld_dlopen(NULL, fd, mode));
2884}
2885
2886static void *
2887rtld_dlopen(const char *name, int fd, int mode)
2888{
2889    RtldLockState lockstate;
2890    int lo_flags;
2891
2892    LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2893    ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2894    if (ld_tracing != NULL) {
2895	rlock_acquire(rtld_bind_lock, &lockstate);
2896	if (sigsetjmp(lockstate.env, 0) != 0)
2897	    lock_upgrade(rtld_bind_lock, &lockstate);
2898	environ = (char **)*get_program_var_addr("environ", &lockstate);
2899	lock_release(rtld_bind_lock, &lockstate);
2900    }
2901    lo_flags = RTLD_LO_DLOPEN;
2902    if (mode & RTLD_NODELETE)
2903	    lo_flags |= RTLD_LO_NODELETE;
2904    if (mode & RTLD_NOLOAD)
2905	    lo_flags |= RTLD_LO_NOLOAD;
2906    if (ld_tracing != NULL)
2907	    lo_flags |= RTLD_LO_TRACE;
2908
2909    return (dlopen_object(name, fd, obj_main, lo_flags,
2910      mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2911}
2912
2913static void
2914dlopen_cleanup(Obj_Entry *obj)
2915{
2916
2917	obj->dl_refcount--;
2918	unref_dag(obj);
2919	if (obj->refcount == 0)
2920		unload_object(obj);
2921}
2922
2923static Obj_Entry *
2924dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2925    int mode, RtldLockState *lockstate)
2926{
2927    Obj_Entry **old_obj_tail;
2928    Obj_Entry *obj;
2929    Objlist initlist;
2930    RtldLockState mlockstate;
2931    int result;
2932
2933    objlist_init(&initlist);
2934
2935    if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2936	wlock_acquire(rtld_bind_lock, &mlockstate);
2937	lockstate = &mlockstate;
2938    }
2939    GDB_STATE(RT_ADD,NULL);
2940
2941    old_obj_tail = obj_tail;
2942    obj = NULL;
2943    if (name == NULL && fd == -1) {
2944	obj = obj_main;
2945	obj->refcount++;
2946    } else {
2947	obj = load_object(name, fd, refobj, lo_flags);
2948    }
2949
2950    if (obj) {
2951	obj->dl_refcount++;
2952	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2953	    objlist_push_tail(&list_global, obj);
2954	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2955	    assert(*old_obj_tail == obj);
2956	    result = load_needed_objects(obj,
2957		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
2958	    init_dag(obj);
2959	    ref_dag(obj);
2960	    if (result != -1)
2961		result = rtld_verify_versions(&obj->dagmembers);
2962	    if (result != -1 && ld_tracing)
2963		goto trace;
2964	    if (result == -1 || relocate_object_dag(obj,
2965	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
2966	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2967	      lockstate) == -1) {
2968		dlopen_cleanup(obj);
2969		obj = NULL;
2970	    } else if (lo_flags & RTLD_LO_EARLY) {
2971		/*
2972		 * Do not call the init functions for early loaded
2973		 * filtees.  The image is still not initialized enough
2974		 * for them to work.
2975		 *
2976		 * Our object is found by the global object list and
2977		 * will be ordered among all init calls done right
2978		 * before transferring control to main.
2979		 */
2980	    } else {
2981		/* Make list of init functions to call. */
2982		initlist_add_objects(obj, &obj->next, &initlist);
2983	    }
2984	    /*
2985	     * Process all no_delete or global objects here, given
2986	     * them own DAGs to prevent their dependencies from being
2987	     * unloaded.  This has to be done after we have loaded all
2988	     * of the dependencies, so that we do not miss any.
2989	     */
2990	    if (obj != NULL)
2991		process_z(obj);
2992	} else {
2993	    /*
2994	     * Bump the reference counts for objects on this DAG.  If
2995	     * this is the first dlopen() call for the object that was
2996	     * already loaded as a dependency, initialize the dag
2997	     * starting at it.
2998	     */
2999	    init_dag(obj);
3000	    ref_dag(obj);
3001
3002	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3003		goto trace;
3004	}
3005	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3006	  obj->z_nodelete) && !obj->ref_nodel) {
3007	    dbg("obj %s nodelete", obj->path);
3008	    ref_dag(obj);
3009	    obj->z_nodelete = obj->ref_nodel = true;
3010	}
3011    }
3012
3013    LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3014	name);
3015    GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3016
3017    if (!(lo_flags & RTLD_LO_EARLY)) {
3018	map_stacks_exec(lockstate);
3019    }
3020
3021    if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3022      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3023      lockstate) == -1) {
3024	objlist_clear(&initlist);
3025	dlopen_cleanup(obj);
3026	if (lockstate == &mlockstate)
3027	    lock_release(rtld_bind_lock, lockstate);
3028	return (NULL);
3029    }
3030
3031    if (!(lo_flags & RTLD_LO_EARLY)) {
3032	/* Call the init functions. */
3033	objlist_call_init(&initlist, lockstate);
3034    }
3035    objlist_clear(&initlist);
3036    if (lockstate == &mlockstate)
3037	lock_release(rtld_bind_lock, lockstate);
3038    return obj;
3039trace:
3040    trace_loaded_objects(obj);
3041    if (lockstate == &mlockstate)
3042	lock_release(rtld_bind_lock, lockstate);
3043    exit(0);
3044}
3045
3046static void *
3047do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3048    int flags)
3049{
3050    DoneList donelist;
3051    const Obj_Entry *obj, *defobj;
3052    const Elf_Sym *def;
3053    SymLook req;
3054    RtldLockState lockstate;
3055#ifndef __ia64__
3056    tls_index ti;
3057#endif
3058    int res;
3059
3060    def = NULL;
3061    defobj = NULL;
3062    symlook_init(&req, name);
3063    req.ventry = ve;
3064    req.flags = flags | SYMLOOK_IN_PLT;
3065    req.lockstate = &lockstate;
3066
3067    rlock_acquire(rtld_bind_lock, &lockstate);
3068    if (sigsetjmp(lockstate.env, 0) != 0)
3069	    lock_upgrade(rtld_bind_lock, &lockstate);
3070    if (handle == NULL || handle == RTLD_NEXT ||
3071	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3072
3073	if ((obj = obj_from_addr(retaddr)) == NULL) {
3074	    _rtld_error("Cannot determine caller's shared object");
3075	    lock_release(rtld_bind_lock, &lockstate);
3076	    return NULL;
3077	}
3078	if (handle == NULL) {	/* Just the caller's shared object. */
3079	    res = symlook_obj(&req, obj);
3080	    if (res == 0) {
3081		def = req.sym_out;
3082		defobj = req.defobj_out;
3083	    }
3084	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3085		   handle == RTLD_SELF) { /* ... caller included */
3086	    if (handle == RTLD_NEXT)
3087		obj = obj->next;
3088	    for (; obj != NULL; obj = obj->next) {
3089		res = symlook_obj(&req, obj);
3090		if (res == 0) {
3091		    if (def == NULL ||
3092		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3093			def = req.sym_out;
3094			defobj = req.defobj_out;
3095			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3096			    break;
3097		    }
3098		}
3099	    }
3100	    /*
3101	     * Search the dynamic linker itself, and possibly resolve the
3102	     * symbol from there.  This is how the application links to
3103	     * dynamic linker services such as dlopen.
3104	     */
3105	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3106		res = symlook_obj(&req, &obj_rtld);
3107		if (res == 0) {
3108		    def = req.sym_out;
3109		    defobj = req.defobj_out;
3110		}
3111	    }
3112	} else {
3113	    assert(handle == RTLD_DEFAULT);
3114	    res = symlook_default(&req, obj);
3115	    if (res == 0) {
3116		defobj = req.defobj_out;
3117		def = req.sym_out;
3118	    }
3119	}
3120    } else {
3121	if ((obj = dlcheck(handle)) == NULL) {
3122	    lock_release(rtld_bind_lock, &lockstate);
3123	    return NULL;
3124	}
3125
3126	donelist_init(&donelist);
3127	if (obj->mainprog) {
3128            /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3129	    res = symlook_global(&req, &donelist);
3130	    if (res == 0) {
3131		def = req.sym_out;
3132		defobj = req.defobj_out;
3133	    }
3134	    /*
3135	     * Search the dynamic linker itself, and possibly resolve the
3136	     * symbol from there.  This is how the application links to
3137	     * dynamic linker services such as dlopen.
3138	     */
3139	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3140		res = symlook_obj(&req, &obj_rtld);
3141		if (res == 0) {
3142		    def = req.sym_out;
3143		    defobj = req.defobj_out;
3144		}
3145	    }
3146	}
3147	else {
3148	    /* Search the whole DAG rooted at the given object. */
3149	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3150	    if (res == 0) {
3151		def = req.sym_out;
3152		defobj = req.defobj_out;
3153	    }
3154	}
3155    }
3156
3157    if (def != NULL) {
3158	lock_release(rtld_bind_lock, &lockstate);
3159
3160	/*
3161	 * The value required by the caller is derived from the value
3162	 * of the symbol. For the ia64 architecture, we need to
3163	 * construct a function descriptor which the caller can use to
3164	 * call the function with the right 'gp' value. For other
3165	 * architectures and for non-functions, the value is simply
3166	 * the relocated value of the symbol.
3167	 */
3168	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3169	    return (make_function_pointer(def, defobj));
3170	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3171	    return (rtld_resolve_ifunc(defobj, def));
3172	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3173#ifdef __ia64__
3174	    return (__tls_get_addr(defobj->tlsindex, def->st_value));
3175#else
3176	    ti.ti_module = defobj->tlsindex;
3177	    ti.ti_offset = def->st_value;
3178	    return (__tls_get_addr(&ti));
3179#endif
3180	} else
3181	    return (defobj->relocbase + def->st_value);
3182    }
3183
3184    _rtld_error("Undefined symbol \"%s\"", name);
3185    lock_release(rtld_bind_lock, &lockstate);
3186    return NULL;
3187}
3188
3189void *
3190dlsym(void *handle, const char *name)
3191{
3192	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3193	    SYMLOOK_DLSYM);
3194}
3195
3196dlfunc_t
3197dlfunc(void *handle, const char *name)
3198{
3199	union {
3200		void *d;
3201		dlfunc_t f;
3202	} rv;
3203
3204	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3205	    SYMLOOK_DLSYM);
3206	return (rv.f);
3207}
3208
3209void *
3210dlvsym(void *handle, const char *name, const char *version)
3211{
3212	Ver_Entry ventry;
3213
3214	ventry.name = version;
3215	ventry.file = NULL;
3216	ventry.hash = elf_hash(version);
3217	ventry.flags= 0;
3218	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3219	    SYMLOOK_DLSYM);
3220}
3221
3222int
3223_rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3224{
3225    const Obj_Entry *obj;
3226    RtldLockState lockstate;
3227
3228    rlock_acquire(rtld_bind_lock, &lockstate);
3229    obj = obj_from_addr(addr);
3230    if (obj == NULL) {
3231        _rtld_error("No shared object contains address");
3232	lock_release(rtld_bind_lock, &lockstate);
3233        return (0);
3234    }
3235    rtld_fill_dl_phdr_info(obj, phdr_info);
3236    lock_release(rtld_bind_lock, &lockstate);
3237    return (1);
3238}
3239
3240int
3241dladdr(const void *addr, Dl_info *info)
3242{
3243    const Obj_Entry *obj;
3244    const Elf_Sym *def;
3245    void *symbol_addr;
3246    unsigned long symoffset;
3247    RtldLockState lockstate;
3248
3249    rlock_acquire(rtld_bind_lock, &lockstate);
3250    obj = obj_from_addr(addr);
3251    if (obj == NULL) {
3252        _rtld_error("No shared object contains address");
3253	lock_release(rtld_bind_lock, &lockstate);
3254        return 0;
3255    }
3256    info->dli_fname = obj->path;
3257    info->dli_fbase = obj->mapbase;
3258    info->dli_saddr = (void *)0;
3259    info->dli_sname = NULL;
3260
3261    /*
3262     * Walk the symbol list looking for the symbol whose address is
3263     * closest to the address sent in.
3264     */
3265    for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3266        def = obj->symtab + symoffset;
3267
3268        /*
3269         * For skip the symbol if st_shndx is either SHN_UNDEF or
3270         * SHN_COMMON.
3271         */
3272        if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3273            continue;
3274
3275        /*
3276         * If the symbol is greater than the specified address, or if it
3277         * is further away from addr than the current nearest symbol,
3278         * then reject it.
3279         */
3280        symbol_addr = obj->relocbase + def->st_value;
3281        if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3282            continue;
3283
3284        /* Update our idea of the nearest symbol. */
3285        info->dli_sname = obj->strtab + def->st_name;
3286        info->dli_saddr = symbol_addr;
3287
3288        /* Exact match? */
3289        if (info->dli_saddr == addr)
3290            break;
3291    }
3292    lock_release(rtld_bind_lock, &lockstate);
3293    return 1;
3294}
3295
3296int
3297dlinfo(void *handle, int request, void *p)
3298{
3299    const Obj_Entry *obj;
3300    RtldLockState lockstate;
3301    int error;
3302
3303    rlock_acquire(rtld_bind_lock, &lockstate);
3304
3305    if (handle == NULL || handle == RTLD_SELF) {
3306	void *retaddr;
3307
3308	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3309	if ((obj = obj_from_addr(retaddr)) == NULL)
3310	    _rtld_error("Cannot determine caller's shared object");
3311    } else
3312	obj = dlcheck(handle);
3313
3314    if (obj == NULL) {
3315	lock_release(rtld_bind_lock, &lockstate);
3316	return (-1);
3317    }
3318
3319    error = 0;
3320    switch (request) {
3321    case RTLD_DI_LINKMAP:
3322	*((struct link_map const **)p) = &obj->linkmap;
3323	break;
3324    case RTLD_DI_ORIGIN:
3325	error = rtld_dirname(obj->path, p);
3326	break;
3327
3328    case RTLD_DI_SERINFOSIZE:
3329    case RTLD_DI_SERINFO:
3330	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3331	break;
3332
3333    default:
3334	_rtld_error("Invalid request %d passed to dlinfo()", request);
3335	error = -1;
3336    }
3337
3338    lock_release(rtld_bind_lock, &lockstate);
3339
3340    return (error);
3341}
3342
3343static void
3344rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3345{
3346
3347	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3348	phdr_info->dlpi_name = obj->path;
3349	phdr_info->dlpi_phdr = obj->phdr;
3350	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3351	phdr_info->dlpi_tls_modid = obj->tlsindex;
3352	phdr_info->dlpi_tls_data = obj->tlsinit;
3353	phdr_info->dlpi_adds = obj_loads;
3354	phdr_info->dlpi_subs = obj_loads - obj_count;
3355}
3356
3357int
3358dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3359{
3360    struct dl_phdr_info phdr_info;
3361    const Obj_Entry *obj;
3362    RtldLockState bind_lockstate, phdr_lockstate;
3363    int error;
3364
3365    wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3366    rlock_acquire(rtld_bind_lock, &bind_lockstate);
3367
3368    error = 0;
3369
3370    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3371	rtld_fill_dl_phdr_info(obj, &phdr_info);
3372	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3373		break;
3374
3375    }
3376    lock_release(rtld_bind_lock, &bind_lockstate);
3377    lock_release(rtld_phdr_lock, &phdr_lockstate);
3378
3379    return (error);
3380}
3381
3382static void *
3383fill_search_info(const char *dir, size_t dirlen, void *param)
3384{
3385    struct fill_search_info_args *arg;
3386
3387    arg = param;
3388
3389    if (arg->request == RTLD_DI_SERINFOSIZE) {
3390	arg->serinfo->dls_cnt ++;
3391	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3392    } else {
3393	struct dl_serpath *s_entry;
3394
3395	s_entry = arg->serpath;
3396	s_entry->dls_name  = arg->strspace;
3397	s_entry->dls_flags = arg->flags;
3398
3399	strncpy(arg->strspace, dir, dirlen);
3400	arg->strspace[dirlen] = '\0';
3401
3402	arg->strspace += dirlen + 1;
3403	arg->serpath++;
3404    }
3405
3406    return (NULL);
3407}
3408
3409static int
3410do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3411{
3412    struct dl_serinfo _info;
3413    struct fill_search_info_args args;
3414
3415    args.request = RTLD_DI_SERINFOSIZE;
3416    args.serinfo = &_info;
3417
3418    _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3419    _info.dls_cnt  = 0;
3420
3421    path_enumerate(obj->rpath, fill_search_info, &args);
3422    path_enumerate(ld_library_path, fill_search_info, &args);
3423    path_enumerate(obj->runpath, fill_search_info, &args);
3424    path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3425    if (!obj->z_nodeflib)
3426      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3427
3428
3429    if (request == RTLD_DI_SERINFOSIZE) {
3430	info->dls_size = _info.dls_size;
3431	info->dls_cnt = _info.dls_cnt;
3432	return (0);
3433    }
3434
3435    if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3436	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3437	return (-1);
3438    }
3439
3440    args.request  = RTLD_DI_SERINFO;
3441    args.serinfo  = info;
3442    args.serpath  = &info->dls_serpath[0];
3443    args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3444
3445    args.flags = LA_SER_RUNPATH;
3446    if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3447	return (-1);
3448
3449    args.flags = LA_SER_LIBPATH;
3450    if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3451	return (-1);
3452
3453    args.flags = LA_SER_RUNPATH;
3454    if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3455	return (-1);
3456
3457    args.flags = LA_SER_CONFIG;
3458    if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3459      != NULL)
3460	return (-1);
3461
3462    args.flags = LA_SER_DEFAULT;
3463    if (!obj->z_nodeflib &&
3464      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3465	return (-1);
3466    return (0);
3467}
3468
3469static int
3470rtld_dirname(const char *path, char *bname)
3471{
3472    const char *endp;
3473
3474    /* Empty or NULL string gets treated as "." */
3475    if (path == NULL || *path == '\0') {
3476	bname[0] = '.';
3477	bname[1] = '\0';
3478	return (0);
3479    }
3480
3481    /* Strip trailing slashes */
3482    endp = path + strlen(path) - 1;
3483    while (endp > path && *endp == '/')
3484	endp--;
3485
3486    /* Find the start of the dir */
3487    while (endp > path && *endp != '/')
3488	endp--;
3489
3490    /* Either the dir is "/" or there are no slashes */
3491    if (endp == path) {
3492	bname[0] = *endp == '/' ? '/' : '.';
3493	bname[1] = '\0';
3494	return (0);
3495    } else {
3496	do {
3497	    endp--;
3498	} while (endp > path && *endp == '/');
3499    }
3500
3501    if (endp - path + 2 > PATH_MAX)
3502    {
3503	_rtld_error("Filename is too long: %s", path);
3504	return(-1);
3505    }
3506
3507    strncpy(bname, path, endp - path + 1);
3508    bname[endp - path + 1] = '\0';
3509    return (0);
3510}
3511
3512static int
3513rtld_dirname_abs(const char *path, char *base)
3514{
3515	char *last;
3516
3517	if (realpath(path, base) == NULL)
3518		return (-1);
3519	dbg("%s -> %s", path, base);
3520	last = strrchr(base, '/');
3521	if (last == NULL)
3522		return (-1);
3523	if (last != base)
3524		*last = '\0';
3525	return (0);
3526}
3527
3528static void
3529linkmap_add(Obj_Entry *obj)
3530{
3531    struct link_map *l = &obj->linkmap;
3532    struct link_map *prev;
3533
3534    obj->linkmap.l_name = obj->path;
3535    obj->linkmap.l_addr = obj->mapbase;
3536    obj->linkmap.l_ld = obj->dynamic;
3537#ifdef __mips__
3538    /* GDB needs load offset on MIPS to use the symbols */
3539    obj->linkmap.l_offs = obj->relocbase;
3540#endif
3541
3542    if (r_debug.r_map == NULL) {
3543	r_debug.r_map = l;
3544	return;
3545    }
3546
3547    /*
3548     * Scan to the end of the list, but not past the entry for the
3549     * dynamic linker, which we want to keep at the very end.
3550     */
3551    for (prev = r_debug.r_map;
3552      prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3553      prev = prev->l_next)
3554	;
3555
3556    /* Link in the new entry. */
3557    l->l_prev = prev;
3558    l->l_next = prev->l_next;
3559    if (l->l_next != NULL)
3560	l->l_next->l_prev = l;
3561    prev->l_next = l;
3562}
3563
3564static void
3565linkmap_delete(Obj_Entry *obj)
3566{
3567    struct link_map *l = &obj->linkmap;
3568
3569    if (l->l_prev == NULL) {
3570	if ((r_debug.r_map = l->l_next) != NULL)
3571	    l->l_next->l_prev = NULL;
3572	return;
3573    }
3574
3575    if ((l->l_prev->l_next = l->l_next) != NULL)
3576	l->l_next->l_prev = l->l_prev;
3577}
3578
3579/*
3580 * Function for the debugger to set a breakpoint on to gain control.
3581 *
3582 * The two parameters allow the debugger to easily find and determine
3583 * what the runtime loader is doing and to whom it is doing it.
3584 *
3585 * When the loadhook trap is hit (r_debug_state, set at program
3586 * initialization), the arguments can be found on the stack:
3587 *
3588 *  +8   struct link_map *m
3589 *  +4   struct r_debug  *rd
3590 *  +0   RetAddr
3591 */
3592void
3593r_debug_state(struct r_debug* rd, struct link_map *m)
3594{
3595    /*
3596     * The following is a hack to force the compiler to emit calls to
3597     * this function, even when optimizing.  If the function is empty,
3598     * the compiler is not obliged to emit any code for calls to it,
3599     * even when marked __noinline.  However, gdb depends on those
3600     * calls being made.
3601     */
3602    __compiler_membar();
3603}
3604
3605/*
3606 * A function called after init routines have completed. This can be used to
3607 * break before a program's entry routine is called, and can be used when
3608 * main is not available in the symbol table.
3609 */
3610void
3611_r_debug_postinit(struct link_map *m)
3612{
3613
3614	/* See r_debug_state(). */
3615	__compiler_membar();
3616}
3617
3618/*
3619 * Get address of the pointer variable in the main program.
3620 * Prefer non-weak symbol over the weak one.
3621 */
3622static const void **
3623get_program_var_addr(const char *name, RtldLockState *lockstate)
3624{
3625    SymLook req;
3626    DoneList donelist;
3627
3628    symlook_init(&req, name);
3629    req.lockstate = lockstate;
3630    donelist_init(&donelist);
3631    if (symlook_global(&req, &donelist) != 0)
3632	return (NULL);
3633    if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3634	return ((const void **)make_function_pointer(req.sym_out,
3635	  req.defobj_out));
3636    else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3637	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3638    else
3639	return ((const void **)(req.defobj_out->relocbase +
3640	  req.sym_out->st_value));
3641}
3642
3643/*
3644 * Set a pointer variable in the main program to the given value.  This
3645 * is used to set key variables such as "environ" before any of the
3646 * init functions are called.
3647 */
3648static void
3649set_program_var(const char *name, const void *value)
3650{
3651    const void **addr;
3652
3653    if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3654	dbg("\"%s\": *%p <-- %p", name, addr, value);
3655	*addr = value;
3656    }
3657}
3658
3659/*
3660 * Search the global objects, including dependencies and main object,
3661 * for the given symbol.
3662 */
3663static int
3664symlook_global(SymLook *req, DoneList *donelist)
3665{
3666    SymLook req1;
3667    const Objlist_Entry *elm;
3668    int res;
3669
3670    symlook_init_from_req(&req1, req);
3671
3672    /* Search all objects loaded at program start up. */
3673    if (req->defobj_out == NULL ||
3674      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3675	res = symlook_list(&req1, &list_main, donelist);
3676	if (res == 0 && (req->defobj_out == NULL ||
3677	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3678	    req->sym_out = req1.sym_out;
3679	    req->defobj_out = req1.defobj_out;
3680	    assert(req->defobj_out != NULL);
3681	}
3682    }
3683
3684    /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3685    STAILQ_FOREACH(elm, &list_global, link) {
3686	if (req->defobj_out != NULL &&
3687	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3688	    break;
3689	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3690	if (res == 0 && (req->defobj_out == NULL ||
3691	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3692	    req->sym_out = req1.sym_out;
3693	    req->defobj_out = req1.defobj_out;
3694	    assert(req->defobj_out != NULL);
3695	}
3696    }
3697
3698    return (req->sym_out != NULL ? 0 : ESRCH);
3699}
3700
3701/*
3702 * Given a symbol name in a referencing object, find the corresponding
3703 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3704 * no definition was found.  Returns a pointer to the Obj_Entry of the
3705 * defining object via the reference parameter DEFOBJ_OUT.
3706 */
3707static int
3708symlook_default(SymLook *req, const Obj_Entry *refobj)
3709{
3710    DoneList donelist;
3711    const Objlist_Entry *elm;
3712    SymLook req1;
3713    int res;
3714
3715    donelist_init(&donelist);
3716    symlook_init_from_req(&req1, req);
3717
3718    /* Look first in the referencing object if linked symbolically. */
3719    if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3720	res = symlook_obj(&req1, refobj);
3721	if (res == 0) {
3722	    req->sym_out = req1.sym_out;
3723	    req->defobj_out = req1.defobj_out;
3724	    assert(req->defobj_out != NULL);
3725	}
3726    }
3727
3728    symlook_global(req, &donelist);
3729
3730    /* Search all dlopened DAGs containing the referencing object. */
3731    STAILQ_FOREACH(elm, &refobj->dldags, link) {
3732	if (req->sym_out != NULL &&
3733	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3734	    break;
3735	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3736	if (res == 0 && (req->sym_out == NULL ||
3737	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3738	    req->sym_out = req1.sym_out;
3739	    req->defobj_out = req1.defobj_out;
3740	    assert(req->defobj_out != NULL);
3741	}
3742    }
3743
3744    /*
3745     * Search the dynamic linker itself, and possibly resolve the
3746     * symbol from there.  This is how the application links to
3747     * dynamic linker services such as dlopen.
3748     */
3749    if (req->sym_out == NULL ||
3750      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3751	res = symlook_obj(&req1, &obj_rtld);
3752	if (res == 0) {
3753	    req->sym_out = req1.sym_out;
3754	    req->defobj_out = req1.defobj_out;
3755	    assert(req->defobj_out != NULL);
3756	}
3757    }
3758
3759    return (req->sym_out != NULL ? 0 : ESRCH);
3760}
3761
3762static int
3763symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3764{
3765    const Elf_Sym *def;
3766    const Obj_Entry *defobj;
3767    const Objlist_Entry *elm;
3768    SymLook req1;
3769    int res;
3770
3771    def = NULL;
3772    defobj = NULL;
3773    STAILQ_FOREACH(elm, objlist, link) {
3774	if (donelist_check(dlp, elm->obj))
3775	    continue;
3776	symlook_init_from_req(&req1, req);
3777	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3778	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3779		def = req1.sym_out;
3780		defobj = req1.defobj_out;
3781		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3782		    break;
3783	    }
3784	}
3785    }
3786    if (def != NULL) {
3787	req->sym_out = def;
3788	req->defobj_out = defobj;
3789	return (0);
3790    }
3791    return (ESRCH);
3792}
3793
3794/*
3795 * Search the chain of DAGS cointed to by the given Needed_Entry
3796 * for a symbol of the given name.  Each DAG is scanned completely
3797 * before advancing to the next one.  Returns a pointer to the symbol,
3798 * or NULL if no definition was found.
3799 */
3800static int
3801symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3802{
3803    const Elf_Sym *def;
3804    const Needed_Entry *n;
3805    const Obj_Entry *defobj;
3806    SymLook req1;
3807    int res;
3808
3809    def = NULL;
3810    defobj = NULL;
3811    symlook_init_from_req(&req1, req);
3812    for (n = needed; n != NULL; n = n->next) {
3813	if (n->obj == NULL ||
3814	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3815	    continue;
3816	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3817	    def = req1.sym_out;
3818	    defobj = req1.defobj_out;
3819	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3820		break;
3821	}
3822    }
3823    if (def != NULL) {
3824	req->sym_out = def;
3825	req->defobj_out = defobj;
3826	return (0);
3827    }
3828    return (ESRCH);
3829}
3830
3831/*
3832 * Search the symbol table of a single shared object for a symbol of
3833 * the given name and version, if requested.  Returns a pointer to the
3834 * symbol, or NULL if no definition was found.  If the object is
3835 * filter, return filtered symbol from filtee.
3836 *
3837 * The symbol's hash value is passed in for efficiency reasons; that
3838 * eliminates many recomputations of the hash value.
3839 */
3840int
3841symlook_obj(SymLook *req, const Obj_Entry *obj)
3842{
3843    DoneList donelist;
3844    SymLook req1;
3845    int flags, res, mres;
3846
3847    /*
3848     * If there is at least one valid hash at this point, we prefer to
3849     * use the faster GNU version if available.
3850     */
3851    if (obj->valid_hash_gnu)
3852	mres = symlook_obj1_gnu(req, obj);
3853    else if (obj->valid_hash_sysv)
3854	mres = symlook_obj1_sysv(req, obj);
3855    else
3856	return (EINVAL);
3857
3858    if (mres == 0) {
3859	if (obj->needed_filtees != NULL) {
3860	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3861	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3862	    donelist_init(&donelist);
3863	    symlook_init_from_req(&req1, req);
3864	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3865	    if (res == 0) {
3866		req->sym_out = req1.sym_out;
3867		req->defobj_out = req1.defobj_out;
3868	    }
3869	    return (res);
3870	}
3871	if (obj->needed_aux_filtees != NULL) {
3872	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3873	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3874	    donelist_init(&donelist);
3875	    symlook_init_from_req(&req1, req);
3876	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3877	    if (res == 0) {
3878		req->sym_out = req1.sym_out;
3879		req->defobj_out = req1.defobj_out;
3880		return (res);
3881	    }
3882	}
3883    }
3884    return (mres);
3885}
3886
3887/* Symbol match routine common to both hash functions */
3888static bool
3889matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3890    const unsigned long symnum)
3891{
3892	Elf_Versym verndx;
3893	const Elf_Sym *symp;
3894	const char *strp;
3895
3896	symp = obj->symtab + symnum;
3897	strp = obj->strtab + symp->st_name;
3898
3899	switch (ELF_ST_TYPE(symp->st_info)) {
3900	case STT_FUNC:
3901	case STT_NOTYPE:
3902	case STT_OBJECT:
3903	case STT_COMMON:
3904	case STT_GNU_IFUNC:
3905		if (symp->st_value == 0)
3906			return (false);
3907		/* fallthrough */
3908	case STT_TLS:
3909		if (symp->st_shndx != SHN_UNDEF)
3910			break;
3911#ifndef __mips__
3912		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3913		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3914			break;
3915		/* fallthrough */
3916#endif
3917	default:
3918		return (false);
3919	}
3920	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3921		return (false);
3922
3923	if (req->ventry == NULL) {
3924		if (obj->versyms != NULL) {
3925			verndx = VER_NDX(obj->versyms[symnum]);
3926			if (verndx > obj->vernum) {
3927				_rtld_error(
3928				    "%s: symbol %s references wrong version %d",
3929				    obj->path, obj->strtab + symnum, verndx);
3930				return (false);
3931			}
3932			/*
3933			 * If we are not called from dlsym (i.e. this
3934			 * is a normal relocation from unversioned
3935			 * binary), accept the symbol immediately if
3936			 * it happens to have first version after this
3937			 * shared object became versioned.  Otherwise,
3938			 * if symbol is versioned and not hidden,
3939			 * remember it. If it is the only symbol with
3940			 * this name exported by the shared object, it
3941			 * will be returned as a match by the calling
3942			 * function. If symbol is global (verndx < 2)
3943			 * accept it unconditionally.
3944			 */
3945			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3946			    verndx == VER_NDX_GIVEN) {
3947				result->sym_out = symp;
3948				return (true);
3949			}
3950			else if (verndx >= VER_NDX_GIVEN) {
3951				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
3952				    == 0) {
3953					if (result->vsymp == NULL)
3954						result->vsymp = symp;
3955					result->vcount++;
3956				}
3957				return (false);
3958			}
3959		}
3960		result->sym_out = symp;
3961		return (true);
3962	}
3963	if (obj->versyms == NULL) {
3964		if (object_match_name(obj, req->ventry->name)) {
3965			_rtld_error("%s: object %s should provide version %s "
3966			    "for symbol %s", obj_rtld.path, obj->path,
3967			    req->ventry->name, obj->strtab + symnum);
3968			return (false);
3969		}
3970	} else {
3971		verndx = VER_NDX(obj->versyms[symnum]);
3972		if (verndx > obj->vernum) {
3973			_rtld_error("%s: symbol %s references wrong version %d",
3974			    obj->path, obj->strtab + symnum, verndx);
3975			return (false);
3976		}
3977		if (obj->vertab[verndx].hash != req->ventry->hash ||
3978		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3979			/*
3980			 * Version does not match. Look if this is a
3981			 * global symbol and if it is not hidden. If
3982			 * global symbol (verndx < 2) is available,
3983			 * use it. Do not return symbol if we are
3984			 * called by dlvsym, because dlvsym looks for
3985			 * a specific version and default one is not
3986			 * what dlvsym wants.
3987			 */
3988			if ((req->flags & SYMLOOK_DLSYM) ||
3989			    (verndx >= VER_NDX_GIVEN) ||
3990			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
3991				return (false);
3992		}
3993	}
3994	result->sym_out = symp;
3995	return (true);
3996}
3997
3998/*
3999 * Search for symbol using SysV hash function.
4000 * obj->buckets is known not to be NULL at this point; the test for this was
4001 * performed with the obj->valid_hash_sysv assignment.
4002 */
4003static int
4004symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4005{
4006	unsigned long symnum;
4007	Sym_Match_Result matchres;
4008
4009	matchres.sym_out = NULL;
4010	matchres.vsymp = NULL;
4011	matchres.vcount = 0;
4012
4013	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4014	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4015		if (symnum >= obj->nchains)
4016			return (ESRCH);	/* Bad object */
4017
4018		if (matched_symbol(req, obj, &matchres, symnum)) {
4019			req->sym_out = matchres.sym_out;
4020			req->defobj_out = obj;
4021			return (0);
4022		}
4023	}
4024	if (matchres.vcount == 1) {
4025		req->sym_out = matchres.vsymp;
4026		req->defobj_out = obj;
4027		return (0);
4028	}
4029	return (ESRCH);
4030}
4031
4032/* Search for symbol using GNU hash function */
4033static int
4034symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4035{
4036	Elf_Addr bloom_word;
4037	const Elf32_Word *hashval;
4038	Elf32_Word bucket;
4039	Sym_Match_Result matchres;
4040	unsigned int h1, h2;
4041	unsigned long symnum;
4042
4043	matchres.sym_out = NULL;
4044	matchres.vsymp = NULL;
4045	matchres.vcount = 0;
4046
4047	/* Pick right bitmask word from Bloom filter array */
4048	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4049	    obj->maskwords_bm_gnu];
4050
4051	/* Calculate modulus word size of gnu hash and its derivative */
4052	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4053	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4054
4055	/* Filter out the "definitely not in set" queries */
4056	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4057		return (ESRCH);
4058
4059	/* Locate hash chain and corresponding value element*/
4060	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4061	if (bucket == 0)
4062		return (ESRCH);
4063	hashval = &obj->chain_zero_gnu[bucket];
4064	do {
4065		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4066			symnum = hashval - obj->chain_zero_gnu;
4067			if (matched_symbol(req, obj, &matchres, symnum)) {
4068				req->sym_out = matchres.sym_out;
4069				req->defobj_out = obj;
4070				return (0);
4071			}
4072		}
4073	} while ((*hashval++ & 1) == 0);
4074	if (matchres.vcount == 1) {
4075		req->sym_out = matchres.vsymp;
4076		req->defobj_out = obj;
4077		return (0);
4078	}
4079	return (ESRCH);
4080}
4081
4082static void
4083trace_loaded_objects(Obj_Entry *obj)
4084{
4085    char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4086    int		c;
4087
4088    if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4089	main_local = "";
4090
4091    if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4092	fmt1 = "\t%o => %p (%x)\n";
4093
4094    if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4095	fmt2 = "\t%o (%x)\n";
4096
4097    list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
4098
4099    for (; obj; obj = obj->next) {
4100	Needed_Entry		*needed;
4101	char			*name, *path;
4102	bool			is_lib;
4103
4104	if (list_containers && obj->needed != NULL)
4105	    rtld_printf("%s:\n", obj->path);
4106	for (needed = obj->needed; needed; needed = needed->next) {
4107	    if (needed->obj != NULL) {
4108		if (needed->obj->traced && !list_containers)
4109		    continue;
4110		needed->obj->traced = true;
4111		path = needed->obj->path;
4112	    } else
4113		path = "not found";
4114
4115	    name = (char *)obj->strtab + needed->name;
4116	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4117
4118	    fmt = is_lib ? fmt1 : fmt2;
4119	    while ((c = *fmt++) != '\0') {
4120		switch (c) {
4121		default:
4122		    rtld_putchar(c);
4123		    continue;
4124		case '\\':
4125		    switch (c = *fmt) {
4126		    case '\0':
4127			continue;
4128		    case 'n':
4129			rtld_putchar('\n');
4130			break;
4131		    case 't':
4132			rtld_putchar('\t');
4133			break;
4134		    }
4135		    break;
4136		case '%':
4137		    switch (c = *fmt) {
4138		    case '\0':
4139			continue;
4140		    case '%':
4141		    default:
4142			rtld_putchar(c);
4143			break;
4144		    case 'A':
4145			rtld_putstr(main_local);
4146			break;
4147		    case 'a':
4148			rtld_putstr(obj_main->path);
4149			break;
4150		    case 'o':
4151			rtld_putstr(name);
4152			break;
4153#if 0
4154		    case 'm':
4155			rtld_printf("%d", sodp->sod_major);
4156			break;
4157		    case 'n':
4158			rtld_printf("%d", sodp->sod_minor);
4159			break;
4160#endif
4161		    case 'p':
4162			rtld_putstr(path);
4163			break;
4164		    case 'x':
4165			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4166			  0);
4167			break;
4168		    }
4169		    break;
4170		}
4171		++fmt;
4172	    }
4173	}
4174    }
4175}
4176
4177/*
4178 * Unload a dlopened object and its dependencies from memory and from
4179 * our data structures.  It is assumed that the DAG rooted in the
4180 * object has already been unreferenced, and that the object has a
4181 * reference count of 0.
4182 */
4183static void
4184unload_object(Obj_Entry *root)
4185{
4186    Obj_Entry *obj;
4187    Obj_Entry **linkp;
4188
4189    assert(root->refcount == 0);
4190
4191    /*
4192     * Pass over the DAG removing unreferenced objects from
4193     * appropriate lists.
4194     */
4195    unlink_object(root);
4196
4197    /* Unmap all objects that are no longer referenced. */
4198    linkp = &obj_list->next;
4199    while ((obj = *linkp) != NULL) {
4200	if (obj->refcount == 0) {
4201	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4202		obj->path);
4203	    dbg("unloading \"%s\"", obj->path);
4204	    unload_filtees(root);
4205	    munmap(obj->mapbase, obj->mapsize);
4206	    linkmap_delete(obj);
4207	    *linkp = obj->next;
4208	    obj_count--;
4209	    obj_free(obj);
4210	} else
4211	    linkp = &obj->next;
4212    }
4213    obj_tail = linkp;
4214}
4215
4216static void
4217unlink_object(Obj_Entry *root)
4218{
4219    Objlist_Entry *elm;
4220
4221    if (root->refcount == 0) {
4222	/* Remove the object from the RTLD_GLOBAL list. */
4223	objlist_remove(&list_global, root);
4224
4225    	/* Remove the object from all objects' DAG lists. */
4226    	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4227	    objlist_remove(&elm->obj->dldags, root);
4228	    if (elm->obj != root)
4229		unlink_object(elm->obj);
4230	}
4231    }
4232}
4233
4234static void
4235ref_dag(Obj_Entry *root)
4236{
4237    Objlist_Entry *elm;
4238
4239    assert(root->dag_inited);
4240    STAILQ_FOREACH(elm, &root->dagmembers, link)
4241	elm->obj->refcount++;
4242}
4243
4244static void
4245unref_dag(Obj_Entry *root)
4246{
4247    Objlist_Entry *elm;
4248
4249    assert(root->dag_inited);
4250    STAILQ_FOREACH(elm, &root->dagmembers, link)
4251	elm->obj->refcount--;
4252}
4253
4254/*
4255 * Common code for MD __tls_get_addr().
4256 */
4257static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4258static void *
4259tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4260{
4261    Elf_Addr *newdtv, *dtv;
4262    RtldLockState lockstate;
4263    int to_copy;
4264
4265    dtv = *dtvp;
4266    /* Check dtv generation in case new modules have arrived */
4267    if (dtv[0] != tls_dtv_generation) {
4268	wlock_acquire(rtld_bind_lock, &lockstate);
4269	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4270	to_copy = dtv[1];
4271	if (to_copy > tls_max_index)
4272	    to_copy = tls_max_index;
4273	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4274	newdtv[0] = tls_dtv_generation;
4275	newdtv[1] = tls_max_index;
4276	free(dtv);
4277	lock_release(rtld_bind_lock, &lockstate);
4278	dtv = *dtvp = newdtv;
4279    }
4280
4281    /* Dynamically allocate module TLS if necessary */
4282    if (dtv[index + 1] == 0) {
4283	/* Signal safe, wlock will block out signals. */
4284	wlock_acquire(rtld_bind_lock, &lockstate);
4285	if (!dtv[index + 1])
4286	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4287	lock_release(rtld_bind_lock, &lockstate);
4288    }
4289    return ((void *)(dtv[index + 1] + offset));
4290}
4291
4292void *
4293tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4294{
4295	Elf_Addr *dtv;
4296
4297	dtv = *dtvp;
4298	/* Check dtv generation in case new modules have arrived */
4299	if (__predict_true(dtv[0] == tls_dtv_generation &&
4300	    dtv[index + 1] != 0))
4301		return ((void *)(dtv[index + 1] + offset));
4302	return (tls_get_addr_slow(dtvp, index, offset));
4303}
4304
4305#if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
4306
4307/*
4308 * Allocate Static TLS using the Variant I method.
4309 */
4310void *
4311allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4312{
4313    Obj_Entry *obj;
4314    char *tcb;
4315    Elf_Addr **tls;
4316    Elf_Addr *dtv;
4317    Elf_Addr addr;
4318    int i;
4319
4320    if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4321	return (oldtcb);
4322
4323    assert(tcbsize >= TLS_TCB_SIZE);
4324    tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4325    tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4326
4327    if (oldtcb != NULL) {
4328	memcpy(tls, oldtcb, tls_static_space);
4329	free(oldtcb);
4330
4331	/* Adjust the DTV. */
4332	dtv = tls[0];
4333	for (i = 0; i < dtv[1]; i++) {
4334	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4335		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4336		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4337	    }
4338	}
4339    } else {
4340	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4341	tls[0] = dtv;
4342	dtv[0] = tls_dtv_generation;
4343	dtv[1] = tls_max_index;
4344
4345	for (obj = objs; obj; obj = obj->next) {
4346	    if (obj->tlsoffset > 0) {
4347		addr = (Elf_Addr)tls + obj->tlsoffset;
4348		if (obj->tlsinitsize > 0)
4349		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4350		if (obj->tlssize > obj->tlsinitsize)
4351		    memset((void*) (addr + obj->tlsinitsize), 0,
4352			   obj->tlssize - obj->tlsinitsize);
4353		dtv[obj->tlsindex + 1] = addr;
4354	    }
4355	}
4356    }
4357
4358    return (tcb);
4359}
4360
4361void
4362free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4363{
4364    Elf_Addr *dtv;
4365    Elf_Addr tlsstart, tlsend;
4366    int dtvsize, i;
4367
4368    assert(tcbsize >= TLS_TCB_SIZE);
4369
4370    tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4371    tlsend = tlsstart + tls_static_space;
4372
4373    dtv = *(Elf_Addr **)tlsstart;
4374    dtvsize = dtv[1];
4375    for (i = 0; i < dtvsize; i++) {
4376	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4377	    free((void*)dtv[i+2]);
4378	}
4379    }
4380    free(dtv);
4381    free(tcb);
4382}
4383
4384#endif
4385
4386#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4387
4388/*
4389 * Allocate Static TLS using the Variant II method.
4390 */
4391void *
4392allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4393{
4394    Obj_Entry *obj;
4395    size_t size, ralign;
4396    char *tls;
4397    Elf_Addr *dtv, *olddtv;
4398    Elf_Addr segbase, oldsegbase, addr;
4399    int i;
4400
4401    ralign = tcbalign;
4402    if (tls_static_max_align > ralign)
4403	    ralign = tls_static_max_align;
4404    size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4405
4406    assert(tcbsize >= 2*sizeof(Elf_Addr));
4407    tls = malloc_aligned(size, ralign);
4408    dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4409
4410    segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4411    ((Elf_Addr*)segbase)[0] = segbase;
4412    ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4413
4414    dtv[0] = tls_dtv_generation;
4415    dtv[1] = tls_max_index;
4416
4417    if (oldtls) {
4418	/*
4419	 * Copy the static TLS block over whole.
4420	 */
4421	oldsegbase = (Elf_Addr) oldtls;
4422	memcpy((void *)(segbase - tls_static_space),
4423	       (const void *)(oldsegbase - tls_static_space),
4424	       tls_static_space);
4425
4426	/*
4427	 * If any dynamic TLS blocks have been created tls_get_addr(),
4428	 * move them over.
4429	 */
4430	olddtv = ((Elf_Addr**)oldsegbase)[1];
4431	for (i = 0; i < olddtv[1]; i++) {
4432	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4433		dtv[i+2] = olddtv[i+2];
4434		olddtv[i+2] = 0;
4435	    }
4436	}
4437
4438	/*
4439	 * We assume that this block was the one we created with
4440	 * allocate_initial_tls().
4441	 */
4442	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4443    } else {
4444	for (obj = objs; obj; obj = obj->next) {
4445	    if (obj->tlsoffset) {
4446		addr = segbase - obj->tlsoffset;
4447		memset((void*) (addr + obj->tlsinitsize),
4448		       0, obj->tlssize - obj->tlsinitsize);
4449		if (obj->tlsinit)
4450		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4451		dtv[obj->tlsindex + 1] = addr;
4452	    }
4453	}
4454    }
4455
4456    return (void*) segbase;
4457}
4458
4459void
4460free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4461{
4462    Elf_Addr* dtv;
4463    size_t size, ralign;
4464    int dtvsize, i;
4465    Elf_Addr tlsstart, tlsend;
4466
4467    /*
4468     * Figure out the size of the initial TLS block so that we can
4469     * find stuff which ___tls_get_addr() allocated dynamically.
4470     */
4471    ralign = tcbalign;
4472    if (tls_static_max_align > ralign)
4473	    ralign = tls_static_max_align;
4474    size = round(tls_static_space, ralign);
4475
4476    dtv = ((Elf_Addr**)tls)[1];
4477    dtvsize = dtv[1];
4478    tlsend = (Elf_Addr) tls;
4479    tlsstart = tlsend - size;
4480    for (i = 0; i < dtvsize; i++) {
4481	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4482		free_aligned((void *)dtv[i + 2]);
4483	}
4484    }
4485
4486    free_aligned((void *)tlsstart);
4487    free((void*) dtv);
4488}
4489
4490#endif
4491
4492/*
4493 * Allocate TLS block for module with given index.
4494 */
4495void *
4496allocate_module_tls(int index)
4497{
4498    Obj_Entry* obj;
4499    char* p;
4500
4501    for (obj = obj_list; obj; obj = obj->next) {
4502	if (obj->tlsindex == index)
4503	    break;
4504    }
4505    if (!obj) {
4506	_rtld_error("Can't find module with TLS index %d", index);
4507	rtld_die();
4508    }
4509
4510    p = malloc_aligned(obj->tlssize, obj->tlsalign);
4511    memcpy(p, obj->tlsinit, obj->tlsinitsize);
4512    memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4513
4514    return p;
4515}
4516
4517bool
4518allocate_tls_offset(Obj_Entry *obj)
4519{
4520    size_t off;
4521
4522    if (obj->tls_done)
4523	return true;
4524
4525    if (obj->tlssize == 0) {
4526	obj->tls_done = true;
4527	return true;
4528    }
4529
4530    if (obj->tlsindex == 1)
4531	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4532    else
4533	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4534				   obj->tlssize, obj->tlsalign);
4535
4536    /*
4537     * If we have already fixed the size of the static TLS block, we
4538     * must stay within that size. When allocating the static TLS, we
4539     * leave a small amount of space spare to be used for dynamically
4540     * loading modules which use static TLS.
4541     */
4542    if (tls_static_space != 0) {
4543	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4544	    return false;
4545    } else if (obj->tlsalign > tls_static_max_align) {
4546	    tls_static_max_align = obj->tlsalign;
4547    }
4548
4549    tls_last_offset = obj->tlsoffset = off;
4550    tls_last_size = obj->tlssize;
4551    obj->tls_done = true;
4552
4553    return true;
4554}
4555
4556void
4557free_tls_offset(Obj_Entry *obj)
4558{
4559
4560    /*
4561     * If we were the last thing to allocate out of the static TLS
4562     * block, we give our space back to the 'allocator'. This is a
4563     * simplistic workaround to allow libGL.so.1 to be loaded and
4564     * unloaded multiple times.
4565     */
4566    if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4567	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4568	tls_last_offset -= obj->tlssize;
4569	tls_last_size = 0;
4570    }
4571}
4572
4573void *
4574_rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4575{
4576    void *ret;
4577    RtldLockState lockstate;
4578
4579    wlock_acquire(rtld_bind_lock, &lockstate);
4580    ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4581    lock_release(rtld_bind_lock, &lockstate);
4582    return (ret);
4583}
4584
4585void
4586_rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4587{
4588    RtldLockState lockstate;
4589
4590    wlock_acquire(rtld_bind_lock, &lockstate);
4591    free_tls(tcb, tcbsize, tcbalign);
4592    lock_release(rtld_bind_lock, &lockstate);
4593}
4594
4595static void
4596object_add_name(Obj_Entry *obj, const char *name)
4597{
4598    Name_Entry *entry;
4599    size_t len;
4600
4601    len = strlen(name);
4602    entry = malloc(sizeof(Name_Entry) + len);
4603
4604    if (entry != NULL) {
4605	strcpy(entry->name, name);
4606	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4607    }
4608}
4609
4610static int
4611object_match_name(const Obj_Entry *obj, const char *name)
4612{
4613    Name_Entry *entry;
4614
4615    STAILQ_FOREACH(entry, &obj->names, link) {
4616	if (strcmp(name, entry->name) == 0)
4617	    return (1);
4618    }
4619    return (0);
4620}
4621
4622static Obj_Entry *
4623locate_dependency(const Obj_Entry *obj, const char *name)
4624{
4625    const Objlist_Entry *entry;
4626    const Needed_Entry *needed;
4627
4628    STAILQ_FOREACH(entry, &list_main, link) {
4629	if (object_match_name(entry->obj, name))
4630	    return entry->obj;
4631    }
4632
4633    for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4634	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4635	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4636	    /*
4637	     * If there is DT_NEEDED for the name we are looking for,
4638	     * we are all set.  Note that object might not be found if
4639	     * dependency was not loaded yet, so the function can
4640	     * return NULL here.  This is expected and handled
4641	     * properly by the caller.
4642	     */
4643	    return (needed->obj);
4644	}
4645    }
4646    _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4647	obj->path, name);
4648    rtld_die();
4649}
4650
4651static int
4652check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4653    const Elf_Vernaux *vna)
4654{
4655    const Elf_Verdef *vd;
4656    const char *vername;
4657
4658    vername = refobj->strtab + vna->vna_name;
4659    vd = depobj->verdef;
4660    if (vd == NULL) {
4661	_rtld_error("%s: version %s required by %s not defined",
4662	    depobj->path, vername, refobj->path);
4663	return (-1);
4664    }
4665    for (;;) {
4666	if (vd->vd_version != VER_DEF_CURRENT) {
4667	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4668		depobj->path, vd->vd_version);
4669	    return (-1);
4670	}
4671	if (vna->vna_hash == vd->vd_hash) {
4672	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4673		((char *)vd + vd->vd_aux);
4674	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4675		return (0);
4676	}
4677	if (vd->vd_next == 0)
4678	    break;
4679	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4680    }
4681    if (vna->vna_flags & VER_FLG_WEAK)
4682	return (0);
4683    _rtld_error("%s: version %s required by %s not found",
4684	depobj->path, vername, refobj->path);
4685    return (-1);
4686}
4687
4688static int
4689rtld_verify_object_versions(Obj_Entry *obj)
4690{
4691    const Elf_Verneed *vn;
4692    const Elf_Verdef  *vd;
4693    const Elf_Verdaux *vda;
4694    const Elf_Vernaux *vna;
4695    const Obj_Entry *depobj;
4696    int maxvernum, vernum;
4697
4698    if (obj->ver_checked)
4699	return (0);
4700    obj->ver_checked = true;
4701
4702    maxvernum = 0;
4703    /*
4704     * Walk over defined and required version records and figure out
4705     * max index used by any of them. Do very basic sanity checking
4706     * while there.
4707     */
4708    vn = obj->verneed;
4709    while (vn != NULL) {
4710	if (vn->vn_version != VER_NEED_CURRENT) {
4711	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4712		obj->path, vn->vn_version);
4713	    return (-1);
4714	}
4715	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4716	for (;;) {
4717	    vernum = VER_NEED_IDX(vna->vna_other);
4718	    if (vernum > maxvernum)
4719		maxvernum = vernum;
4720	    if (vna->vna_next == 0)
4721		 break;
4722	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4723	}
4724	if (vn->vn_next == 0)
4725	    break;
4726	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4727    }
4728
4729    vd = obj->verdef;
4730    while (vd != NULL) {
4731	if (vd->vd_version != VER_DEF_CURRENT) {
4732	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4733		obj->path, vd->vd_version);
4734	    return (-1);
4735	}
4736	vernum = VER_DEF_IDX(vd->vd_ndx);
4737	if (vernum > maxvernum)
4738		maxvernum = vernum;
4739	if (vd->vd_next == 0)
4740	    break;
4741	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4742    }
4743
4744    if (maxvernum == 0)
4745	return (0);
4746
4747    /*
4748     * Store version information in array indexable by version index.
4749     * Verify that object version requirements are satisfied along the
4750     * way.
4751     */
4752    obj->vernum = maxvernum + 1;
4753    obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4754
4755    vd = obj->verdef;
4756    while (vd != NULL) {
4757	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4758	    vernum = VER_DEF_IDX(vd->vd_ndx);
4759	    assert(vernum <= maxvernum);
4760	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4761	    obj->vertab[vernum].hash = vd->vd_hash;
4762	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4763	    obj->vertab[vernum].file = NULL;
4764	    obj->vertab[vernum].flags = 0;
4765	}
4766	if (vd->vd_next == 0)
4767	    break;
4768	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4769    }
4770
4771    vn = obj->verneed;
4772    while (vn != NULL) {
4773	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4774	if (depobj == NULL)
4775	    return (-1);
4776	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4777	for (;;) {
4778	    if (check_object_provided_version(obj, depobj, vna))
4779		return (-1);
4780	    vernum = VER_NEED_IDX(vna->vna_other);
4781	    assert(vernum <= maxvernum);
4782	    obj->vertab[vernum].hash = vna->vna_hash;
4783	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4784	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4785	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4786		VER_INFO_HIDDEN : 0;
4787	    if (vna->vna_next == 0)
4788		 break;
4789	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4790	}
4791	if (vn->vn_next == 0)
4792	    break;
4793	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4794    }
4795    return 0;
4796}
4797
4798static int
4799rtld_verify_versions(const Objlist *objlist)
4800{
4801    Objlist_Entry *entry;
4802    int rc;
4803
4804    rc = 0;
4805    STAILQ_FOREACH(entry, objlist, link) {
4806	/*
4807	 * Skip dummy objects or objects that have their version requirements
4808	 * already checked.
4809	 */
4810	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4811	    continue;
4812	if (rtld_verify_object_versions(entry->obj) == -1) {
4813	    rc = -1;
4814	    if (ld_tracing == NULL)
4815		break;
4816	}
4817    }
4818    if (rc == 0 || ld_tracing != NULL)
4819    	rc = rtld_verify_object_versions(&obj_rtld);
4820    return rc;
4821}
4822
4823const Ver_Entry *
4824fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4825{
4826    Elf_Versym vernum;
4827
4828    if (obj->vertab) {
4829	vernum = VER_NDX(obj->versyms[symnum]);
4830	if (vernum >= obj->vernum) {
4831	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4832		obj->path, obj->strtab + symnum, vernum);
4833	} else if (obj->vertab[vernum].hash != 0) {
4834	    return &obj->vertab[vernum];
4835	}
4836    }
4837    return NULL;
4838}
4839
4840int
4841_rtld_get_stack_prot(void)
4842{
4843
4844	return (stack_prot);
4845}
4846
4847int
4848_rtld_is_dlopened(void *arg)
4849{
4850	Obj_Entry *obj;
4851	RtldLockState lockstate;
4852	int res;
4853
4854	rlock_acquire(rtld_bind_lock, &lockstate);
4855	obj = dlcheck(arg);
4856	if (obj == NULL)
4857		obj = obj_from_addr(arg);
4858	if (obj == NULL) {
4859		_rtld_error("No shared object contains address");
4860		lock_release(rtld_bind_lock, &lockstate);
4861		return (-1);
4862	}
4863	res = obj->dlopened ? 1 : 0;
4864	lock_release(rtld_bind_lock, &lockstate);
4865	return (res);
4866}
4867
4868static void
4869map_stacks_exec(RtldLockState *lockstate)
4870{
4871	void (*thr_map_stacks_exec)(void);
4872
4873	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4874		return;
4875	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4876	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4877	if (thr_map_stacks_exec != NULL) {
4878		stack_prot |= PROT_EXEC;
4879		thr_map_stacks_exec();
4880	}
4881}
4882
4883void
4884symlook_init(SymLook *dst, const char *name)
4885{
4886
4887	bzero(dst, sizeof(*dst));
4888	dst->name = name;
4889	dst->hash = elf_hash(name);
4890	dst->hash_gnu = gnu_hash(name);
4891}
4892
4893static void
4894symlook_init_from_req(SymLook *dst, const SymLook *src)
4895{
4896
4897	dst->name = src->name;
4898	dst->hash = src->hash;
4899	dst->hash_gnu = src->hash_gnu;
4900	dst->ventry = src->ventry;
4901	dst->flags = src->flags;
4902	dst->defobj_out = NULL;
4903	dst->sym_out = NULL;
4904	dst->lockstate = src->lockstate;
4905}
4906
4907/*
4908 * Overrides for libc_pic-provided functions.
4909 */
4910
4911int
4912__getosreldate(void)
4913{
4914	size_t len;
4915	int oid[2];
4916	int error, osrel;
4917
4918	if (osreldate != 0)
4919		return (osreldate);
4920
4921	oid[0] = CTL_KERN;
4922	oid[1] = KERN_OSRELDATE;
4923	osrel = 0;
4924	len = sizeof(osrel);
4925	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4926	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4927		osreldate = osrel;
4928	return (osreldate);
4929}
4930
4931void
4932exit(int status)
4933{
4934
4935	_exit(status);
4936}
4937
4938void (*__cleanup)(void);
4939int __isthreaded = 0;
4940int _thread_autoinit_dummy_decl = 1;
4941
4942/*
4943 * No unresolved symbols for rtld.
4944 */
4945void
4946__pthread_cxa_finalize(struct dl_phdr_info *a)
4947{
4948}
4949
4950void
4951__stack_chk_fail(void)
4952{
4953
4954	_rtld_error("stack overflow detected; terminated");
4955	rtld_die();
4956}
4957__weak_reference(__stack_chk_fail, __stack_chk_fail_local);
4958
4959void
4960__chk_fail(void)
4961{
4962
4963	_rtld_error("buffer overflow detected; terminated");
4964	rtld_die();
4965}
4966
4967const char *
4968rtld_strerror(int errnum)
4969{
4970
4971	if (errnum < 0 || errnum >= sys_nerr)
4972		return ("Unknown error");
4973	return (sys_errlist[errnum]);
4974}
4975